INTERREG III
Projekt: Erdbebenmikrozonierung
am südlichen Oberrhein

Teilbericht 1

Zoneneinteilung

Donat Fäh, Brian Steiner, Hans Havenith, Sibylle Steimen
Schweizerischer Erdbebendienst, ETH Zürich

und

Peter Huggenberger, Erich Fäh
Kantonsgeologie, Universität Basel

2006
Inhaltsverzeichnis

1 Übersicht ... 4

2 Basel-West ... 11
 2.1 Geografie ... 11
 2.2 Geologie .. 11
 2.3 H/V-Messresultate .. 11
 2.4 Zonierungskriterien ... 14

3 Rheingraben-West ... 15
 3.1 Geografie ... 15
 3.2 Geologie ... 15
 3.3 H/V-Messresultate ... 16
 3.4 Zonierungskriterien ... 16

4 Basel-Nord .. 19
 4.1 Geografie ... 19
 4.2 Geologie ... 19
 4.3 H/V-Messresultate .. 19
 4.4 Zonierungskriterien ... 19

5 Rheingraben-Ost ... 21
 5.1 Geografie ... 21
 5.2 Geologie ... 21
 5.3 H/V-Messresultate .. 21
 5.4 Zonierungskriterien ... 24

6 Basel-Süd ... 25
 6.1 Geografie ... 25
 6.2 Geologie ... 25
 6.3 H/V-Messresultate .. 25
 6.4 Zonierungskriterien ... 27

7 Flexur-Nord ... 28
 7.1 Geografie ... 28
 7.2 Geologie ... 28
 7.3 H/V-Messresultate .. 29
 7.4 Zonierungskriterien ... 30

8 Flexur-Mitte ... 31
 8.1 Geografie ... 31
 8.2 Geologie ... 31
 8.3 H/V-Messresultate .. 31
 8.4 Zonierungskriterien ... 31

9 Flexur-Süd .. 33
 9.1 Geografie ... 33
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Geologie</td>
<td>33</td>
</tr>
<tr>
<td>9.3</td>
<td>H/V-Messresultate</td>
<td>33</td>
</tr>
<tr>
<td>9.4</td>
<td>Zonierungskriterien</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Basel-Ost</td>
<td>37</td>
</tr>
<tr>
<td>10.1</td>
<td>Geografie</td>
<td>37</td>
</tr>
<tr>
<td>10.2</td>
<td>Geologie</td>
<td>37</td>
</tr>
<tr>
<td>10.3</td>
<td>H/V-Messresultate</td>
<td>39</td>
</tr>
<tr>
<td>10.4</td>
<td>Zonierungskriterien</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>Ergolztal</td>
<td>42</td>
</tr>
<tr>
<td>11.1</td>
<td>Geografie</td>
<td>42</td>
</tr>
<tr>
<td>11.2</td>
<td>Geologie</td>
<td>42</td>
</tr>
<tr>
<td>11.3</td>
<td>H/V-Messresultate</td>
<td>43</td>
</tr>
<tr>
<td>11.4</td>
<td>Zonierungskriterien</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>Querschnitte</td>
<td>45</td>
</tr>
<tr>
<td>12.1</td>
<td>Festlegung der Querschnitte</td>
<td>45</td>
</tr>
<tr>
<td>12.2</td>
<td>Querschnitte Birstal & Bruderholz</td>
<td>45</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Auslegung der Querschnitte</td>
<td>45</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Querschnitt Bruderholz (Neumünchenstein – Münchenstein)</td>
<td>46</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Querschnitt Birstal 2 (Reinach – Münchenstein)</td>
<td>47</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Querschnitt Birstal 3 (Reinach – Dornach)</td>
<td>48</td>
</tr>
<tr>
<td>12.3</td>
<td>Querschnitte Ergolztal</td>
<td>49</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Auslegung der Querschnitte</td>
<td>49</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Querschnitt Ergolztal 1 (Frenkendorf – Füllinsdorf)</td>
<td>50</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Querschnitt Ergolztal 2 (Liestal Zentrum)</td>
<td>51</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Querschnitt Ergolztal 3 (Liestal Ost)</td>
<td>52</td>
</tr>
</tbody>
</table>
1 ÜBERSICHT

Innerhalb der Rheingrabenstruktur sind die Fundamentalsfrequenzen sehr tief (0.4-1Hz), was auf weiche Sedimente bis in große Tiefen hindeutet. Außerhalb des Rheingrabens ist die Fundamentalsfrequenz generell größer als 2 Hz. Die Amplitude der H/V Messung gibt einen Hinweis auf den Geschwindigkeitskontrast zwischen Fels und Lockersedimenten (Abbildung 3). Eine große Amplitude im H/V Spektrum (gute bis sehr gute Amplitudenqualität) weist auf einen hohen Kontrast hin, was zu einem starken Resonanzverhalten der Lockersedimente, und somit zu höheren Verstärkung führen kann.

In den folgenden Abschnitten werden für jedes Gebiet die Kriterien der Zoneneinteilung diskutiert. Ein wichtiger Punkt ist die Definition der Zonengrenze, und die Unterschiede zwischen benachbarten Zonen.
Abbildung 1: Zoneneinteilung im Untersuchungsgebiet.
Abbildung 2: Gemessene Fundamentalsfrequenzwerte im Untersuchungsgebiet.
Abbildung 3: Amplitudenqualität der H/V-Messungen.
Abbildung 4: Mächtigkeit der quartären Ablagerungen im Untersuchungsgebiet.
Abbildung 5: geologische Subzonen (Löss, lockere holozäne Ablagerungen, ältere Ablagerungen) im Untersuchungsgebiet.
Abbildung 6: Felshärte im Untersuchungsgebiet.
2 BASEL-WEST

2.1 GEOGRAFIE

2.2 GEOLLOGIE

Auf dem Rücken der gesamten Zone Basel-West dominieren Lössablagerungen (Abbildung 7). In den Tälern finden sich ältere und jüngere Deckenschotter sowie vereinzelte Aufschlüsse von Elsäser Molasse. Die Brüche der sogenannten Allschwiler Bruchzone streichen SSW-NNE. Diese Zone ist für die Mikrozonierung insofern von Bedeutung, als dort die Mächtigkeit der Melettaschichten und der Elsäser Molasse von ca. 160m im Osten auf ca. 600m im Westen zunimmt.

In Abbildung 7 sind die Resultate von Bohrungen in Form der im Interreg-Projekt eingeführten Härteklassierung wiedergegeben. Als präquartären Untergrund finden sich westlich dieser Brüche Elsäser Molasse (Härte 2) und im Osten Melettaschichten (Härte 1). Vereinzelt wurde zwischen den beiden Verwerfungen und im Westen auch Cyrenenmergel (Härte 2) angebohrt. Die Tiebohrung Allschwil2 (Hauber, 1991¹) erreichte eine Tiefe von 922m. Es wurden 22m quartäre Sedimente, 240m Cyrenenmergel und 329m Melettaschichten durchbohrt. In einer Tiefe von 610m wurde das Sannoisien erreicht. Letzterer Übergang wird als Grenze zwischen dem geophysisalichen Fels und den darüber liegenden weicheren Sedimenten des Quartärs und Tertiärs bezeichnet. Die weicheren Sedimente weisen somit westlich der Allschwilverwerfung eine beträchtliche Mächtigkeit auf.

2.3 H/V-MESSRESULTATE

In der Zone Basel-West können zwei Maxima in den H/V-Spektren identifiziert werden. Das erste H/V-Maximum liegt, beschränkt auf die Zone Basel-West, im Bereich von 0.4 Hz bis 0.6 Hz (kleine Kreise in Abbildung 8). Das zweite H/V-Maximum liegt im höheren Frequenzbereich von 1.8 Hz bis 6.5 Hz (grosse Kreise in Abbildung 8). Das H/V-Maximum bei der hohen Frequenz ist besser ausgebildet. Es entsteht durch den S-Wellengeschwindigkeitskontrast zwischen der Quartärschicht (Löss und jüngere Deckenschotter) und den präquartären Sedimenten (v.a. Elsäser Molasse und Cyrenenmergel der Härte 2). Es ist zu erwarten, dass vor allem die Lössschichten tiefe S-Wellengeschwindigkeiten aufweisen und damit ein grosser S-Wellengeschwindigkeitskontrast zum Cyrenenmergel vorliegt. Das H/V-Maximum bei der niedrigen Frequenz entsteht durch den S-Wellengeschwindigkeitskontrast zwischen einer Lockersedimentschicht (Quartär und Präquartär) von mehreren hundert Metern Mächtigkeit und dem darunter liegenden, mit zunehmender Tiefe kompakteren Material (Fels).

Die Zone Basel-West grenzt sich durch eine unterschiedliche Ausbildung der beiden H/V-Maxima von der angrenzenden Zone Basel-Nord ab (Abbildung 9 und 10). Das H/V-Maximum im hohen Frequenzbereich (Pfeile in Abbildung 10) ist in Basel-West besser ausgebildet als in Basel-Nord. Der Kontrast zwischen quartären und präquartären Schichten ist in Basel-West höher. Es ist zudem ein signifikanter Sprung in der Fundamentalfrequenz an der Allschwil-verwerfung zu beobachten. Im Westen liegt die Fundamentalfrequenz bei 0.4 Hz – 0.6 Hz, östlich der Verwerfung bei 0.9 Hz – 1.5 Hz. Dies ist auf die Mächtigkeitsänderung der Melet-

taschichten und Elsässer Molasse (vgl. Kapitel 2.2) zurückzuführen. Die Mächtigkeitsände-
rungeklärt auch, weshalb das H/V-Maximum bei der Fundamentalfrequenz in den Zonen
Basel-Nord (Allschwilverwerfung) und Rheingraben-West eine bessere Qualität aufweist, da
die mittlere S-Wellengeschwindigkeit der Lockersedimente tiefer liegt als in Basel-West. Zu-
dem weisen die Melettaschichten in Basel-Nord tiefere S-Wellengeschwindigkeiten auf als die
Elsässemolasse in Basel-West.

Abbildung 7: Im Gebiet Basel-West besteht die Deckschicht aus Lössablagerungen. Im Norden schliesst
eine Ebene mit Niederterrassenschottern an. Mehrere Brüche verlaufen SSW - NNE. A: Schuttfächer
finden sich beim Übergang vom Sundgauer Hügelland zur Rheinebene.

Abbildung 9: Die Amplitudenqualität bei der Fundamentalfrequenz (0.4 Hz – 0.6 Hz) ist in Basel-West sehr niedrig. Sie liefert einen Hinweis auf einen geringen S-Wellengeschwindigkeitskontrast zwischen Lockersedimenten (Quartär und Präquartär) und dem Felsuntergrund, bzw. auf einen S-Wellengeschwindigkeitsgradienten mit zunehmender Tiefe.
Abbildung 10: Zwischen den beiden Zonen Basel-West und Basel-Nord besteht ein wesentlicher Unter-
schied in der Ausbildung der H/V-Maxima. Die H/V-Maxima bei der höheren Frequenz (Pfeile in der
eingefügten Grafik) werden durch den S-Wellengeschwindigkeitskontrast zwischen quartären und prä-
quartären Schichten verursacht und sind in Basel-West deutlicher ausgebildet. Die H/V-Maxima bei der
Fundamentalfrequenz (Kreise in der eingefügten Grafik) sind in Basel-Nord von besserer Qualität.

2.4 ZONIERUNGSKRITERIEN

Als Kriterium werden die Form der H/V-Spektren mit ihren zwei Maxima und der Sprung in
der Fundamentalfrequenz an der Allschwilverwerfung verwendet. Die Grenze liegt bei einer
Frequenz von 0.65 Hz, wobei die Fundamentalfrequenz im Westen tiefer und im Osten höher
als dieser Wert ist. Die Grenze verläuft ungefähr entlang dem Tal des Mülibach (Abbildung 7).
3 RHEINGRABEN-WEST

3.1 GEOGRAFIE

3.2 GEOLOGIE

Abbildung 11: In der Zone Rheingraben-West sind viele Lössablagerungen zu finden. Entlang von Taleinschnitten sind jüngere Deckenschotter und zementierte Hochterrassenschotter aufgeschlossen.
3.3 H/V-MESSRESULTATE

Um den Effekt einer sich ändernden Auflösung der H/V-Analyse zeigen zu können, werden in Abbildung 14 Analysen bis maximal 4 Hz und Analysen bis 10 Hz gezeigt. Die Standorte der ausgewählten H/V-Messungen sind in Abbildung 13 zu sehen. Bei einigen H/V-Messungen verschwindet bei der Analyse bis 10 Hz das H/V-Maximum bei der Fundamentalfrequenz, welches bei der Analyse bis 4 Hz noch gut sichtbar ist.

3.4 ZONIERUNGSKRITERIEN

Abbildung 12: In der Zone Rheingraben-West liegt die Fundamentalfrequenz zwischen 0.4 Hz und 1.4 Hz. Die Amplitudenqualität ist schlecht. Mit diesen beiden Kriterien lässt sich die Zone klar von Basel-Nord abgrenzen.

Abbildung 14: H/V-Kurven mit verschiedenen Auflösungen für die unter Abbildung 13 gegebenen Punkte. Es sind zwei H/V-Maxima identifizierbar, bei der Fundamentalfrequenz f_0 und bei der Resonanzfrequenz f_1 der quartären Sedimente (Löss und jüngere Deckenschotter). Bei einigen H/V-Messungen verschwindet in der 10 Hz-Auflösung das H/V-Maximum bei der Fundamentalfrequenz, bei der 4 Hz-Auflösung ist es jedoch gut sichtbar.
4 BASEL-NORD

4.1 GEOGRAFIE

4.2 GEOLOGIE

Der präquartäre Untergrund wird fast ausschliesslich durch tonige Melettaschichten gebildet, die eine sehr geringe Gesteinshärte (Härte 1) aufweisen. Eher vereinzelt finden sich auch Cyrenenmergel und Elsässer Molasse. Diese weisen eine etwas grössere Härte (Härte 2) auf.

4.3 H/V-MESSRESULTATE

Die Fundamentalfrequenz bewegt sich im Frequenzbereich 0.5 Hz – 1.4 Hz (Abbildung 16). Diese niedrigen Frequenzwerte zeigen, dass die Zone Basel-Nord vollständig im Rheingraben liegt. Die Fundamentalfrequenz nimmt von Westen nach Osten kontinuierlich ab, ein Hinweis auf die zunehmende Mächtigkeit der Lockersedimente. Die Abnahme der Fundamentalfrequenz setzt sich ausserhalb der Zone nach Osten fort.

4.4 ZONIERUNGSKRITERIEN

Abbildung 16: Die Fundamentalfrequenz bewegt sich zwischen 0,5 Hz und 1,4 Hz. Die H/V-Spektren weisen grosse Maximalwerte bei der Fundamentalfrequenz auf. Durch die sehr gute Amplitudenqualität kann die Zone Basel-Nord gegen Süden abgegrenzt werden.
5 Rheingraben-Ost

5.1 Geografie

Die Zone Rheingraben-Ost zieht sich entlang der Zone der östlichen Rheingrabenflexur *Eastern Rhinegraben Master Fault*, welche durch eine Geländeflexur zum Tafeljura im Osten der Zone gegeben ist. Die Zone umfasst die Gemeinden Riehen ganz im Norden, Birsfelden und Basel-Stadt sowie kleine Teile von Muttenz in der Mitte. Im Süden dehnt sie sich aus über die Gemeinden Münzenstein, Neumünzenstein, Arlesheim, Reinach und einen kleinen Teil von Dornach. Die gesamte Zone liegt in einer Ebene mit wenigen topographischen Erhebungen.

5.2 Geologie

Die oberflächennahe Geologie wird durch die Flussablagerungen gebildet (Wiesetal, Birztal, Rheintal) (Abbildung 17). Es handelt sich mehrheitlich um Schotter, die aufgrund ihrer unterschiedlichen Einzugsgebiete klar voneinander unterschieden werden können.

5.3 H/V-Messresultate

Die Fundamentalfrequenz in der Zone Rheingraben-Ost wird durch sehr tiefe Werte dominiert (Abbildung 18). Die Verteilung im ganzen Gebiet ist relativ homogen. Fast alle H/V-Messstandorte weisen eine Fundamentalfrequenz zwischen 0.4 Hz und 0.7 Hz auf. Im Norden gibt es vereinzelte H/V-Messpunkte, welche eine Fundamentalfrequenz von ca. 1.0 Hz aufweisen. Im Süden der Zone steigt die Fundamentalfrequenz ebenfalls auf höhere Werte zwischen 0.7 Hz und 0.8 Hz an. Die Amplitudenqualität ist in dieser Zone, im Vergleich zu den benachbarten Zonen Basel-Nord und Basel-Süd, eher gering.
Abbildung 18: Die Werte der Fundamentalfrequenz sind sehr homogen. Sie liegen hauptsächlich im Bereich 0.4 Hz – 0.7 Hz, vereinzelt leicht höher bis ca. 1.0 Hz im Norden und 0.8 Hz im Süden. Die Amplitudenqualität ist generell geringer als in den benachbarten Zonen.
5.4 ZONIERUNGSKRITERIEN

Die Abgrenzungen gegenüber der Zone Rheingraben-West und Basel-Nord ist den Kapiteln 3 und 5 erklärt.

6 BASEL-SÜD

6.1 GEOGRAFIE

Die Zone Basel-Süd erstreckt sich über die Gemeinden Oberwil, Therwil, Reinach und Aesch. Im Osten und Westen der Zone liegen das Birstal und das Gebiet des Marchbach mit größerer Siedlungsdichte. Westlich der Gemeinden Reinach und Aesch befindet sich ein eher dünn besiedeltes Gebiet mit sanfter gewellter Topografie.

6.2 GEOLOGIE

6.3 H/V-MESSRESULTATE

Auf dem Gebiet der Zone Basel-Süd wurde nur eine geringe Anzahl H/V-Messungen durchgeführt (Abbildung 20), da das Gebiet grösstenteils ausserhalb des Projektgebietes liegt. Es kann angenommen werden, dass die Fundamentalfrequenz in der Zone Basel-Süd homogen ist. Die Fundamentalfrequenz liegt im Nordwesten zwischen 0.7 Hz und 0.8 Hz und steigt gegen Südosten auf ca. 1.0 Hz an.

Vor allem im Südosten treten mehrere H/V-Maxima mit guter oder guter bis sehr guter Qualität auf (Abbildung 20 und Abbildung 21). Das hochfrequente H/V-Maximum ist auf den S-Wellengeschwindigkeitskontrast zwischen den sehr locker gelagerten quartären Sedimenten (Löss oder Alluvialböden) und den Melettaschichten zurückzuführen.

Abbildung 20: Die H/V-Messungen konzentrieren sich auf die Tal einschnitte. Sie zeigen mittlere Werte für die Fundamentalfrequenz (0.7 Hz – 1.2 Hz) und eine nach Süden ansteigende Amplitudenqualität.
6.4 ZONIERUNGSKRITERIEN

Aufgrund der vorhandenen Unterschiede in den quartären Sedimenten kann die Zone Basel-Süd wiederum in drei geologische Unterzonen aufgeteilt werden. Die ersten zwei Unterzonen werden definiert durch das Vorkommen von locker gelagerten quartären Lockersedimenten (Löss oder Alluvialböden in den zwei Flusstälern), die dritte Unterzone durch das Vorhandensein von pleistozänen Schottern.
7 FLEXUR-NORD

7.1 GEOGRAFIE

7.2 GEOLOGIE

7.3 H/V-Messresultate

Im Nordwesten der Zone Flexur-Nord findet man Fundamentalfrequenzen im Bereich von 0.4 Hz bis 1.2 Hz (Abbildung 23). Diese tiefen Werte beschränken sich auf die Ebene entlang dem Fluss Wiese in der Zone Rheingraben-Ost. In den höher gelegenen südöstlichen Gebieten liegt die Fundamentalfrequenz im mittleren Bereich zwischen 2.3 Hz und 5.5 Hz. Der Übergang zwischen den tiefen und den mittleren Frequenzwerten ist nicht scharf. Dies liegt einerseits am langsamen Übergang von der Ebene zum Tafeljura und andererseits an den langgezogenen Schuttfächern, die sich aus den Hügelzonen heraus in die Ebene ausdehnen. Einige H/V-Messpunkte (A–D in Abbildung 24) auf Schuttfächern haben signifikante H/V-Maxima im Bereich von 1.0 Hz – 5.0 Hz. Schuttfächer bestehen aus weichem unverfestigtem Material. Die Amplitudenqualität in der Zone Flexur-Nord ist heterogen. In dieser Zone ist mit ständigem Wechsel zwischen Felsstandorten (verwitterter Fels an der Oberfläche) und variabler Lockersedimentbedeckung zu rechnen.

Abbildung 24: Die Fundamentalfrequenz auf Schwemmflächen wird durch die stark varierende lokale Geologie beeinflusst.

7.4 ZONIERUNGSKRITERIEN

8 Flexur-Mitte

8.1 Geografie

Die Zone Flexur-Mitte umschliesst eine sehr kleine Fläche auf dem westlichen Gebiet der Gemeinde Muttenz und auf Teilen der Gemeinden Birsfelden und Münchenstein.

8.2 Geologie

Die Mächtigkeit der quartären Überdeckung ist im Allgemeinen gering. Nur in der Mitte der Zone Flexur-Mitte befindet sich ein Sedimentbecken, welches sich in Richtung Osten öffnet.

8.3 H/V-Messresultate

Im Bereich der Zone Flexur-Mitte liegen die Werte für die Fundamentalfrequenz bei ca. 1.0 Hz (Abbildung 26). Wenige H/V-Messungen erreichen höhere Werte bis 3.4 Hz. Westlich dieser Zone, in der Zone Rheingraben-Ost, liegt die Fundamentalfrequenz deutlich unter 0.9 Hz. In der Zone Basel-Ost, östlich der Zone Flexur-Mitte, liegen alle Werte der Fundamentalfrequenz über 1.0 Hz.

8.4 Zonierungsbedingungen

Als Zonierungskriterien dienen die Fundamentalfrequenz und der Verlauf der Hauptverwerfungen des Rheingrabens, welche die Flexurzone geografisch begrenzen. Die Fundamentalfrequenz erreicht entlang dieser Zone Werte von ca. 1.0 Hz. Im Westen nimmt die Mächtigkeit der präquartären Sedimente schnell zu. Die Grenze zur Zone Rheingraben-Ost wird entlang dem Frequenzwert von 0.9 Hz gezogen. Die östliche Grenze der Zone Flexur-Mitte verläuft entlang der östlichen Hauptverwerfung des Rheingrabens.

Abbildung 26: Die Fundamentalfrequenz beträgt in der Zone Flexur-Mitte ungefähr 1.0 Hz. Die Zone Flexur-Mitte stellt eine Übergangszone in Ost-West-Richtung dar, in welcher innerhalb von 500m ein Sprung in der Fundamentalfrequenz von 0.7 Hz nach 2.5 Hz beobachtet werden kann.
9 Flexur-Süd

9.1 Geografie

9.2 Geologie

Im südlichen Teil der Zone Flexur-Süd finden sich Melettaschichten (Härte 1) unter der quartären Überdeckung. Bei Arlesheim gibt es eine Reihe von Bohrungen, wo Elsässer Molasse (Härte 2) unter Lehmlagen angetroffen wird. Weiter im Norden bei Münchenstein befinden sich in tieferen Lagen Tüllinger Schichten (Härte 3) unter dem Quartär. In höheren Lagen werden Schichten des Doggers angetroffen.

9.3 H/V-Messresultate

Abbildung 28: Die Fundamentalfrequenz ist in der gesamten Zone höher als 1.0 Hz. Sie nimmt nach Osten und Norden zu. Richtung Norden nimmt die Amplitudenqualität ab.
ZONIERUNGSKRITERIEN

Im Südwesten grenzt die Zone Flexur-Süd an die Zone Basel-Süd. Die Abgrenzung wird mit Hilfe der Fundamentalfrequenz und geologischer Kriterien vorgenommen.
Abbildung 30: Die Fundamentalfrequenz ist in drei Klassen eingeteilt. Die H/V-Messpunkte mit $f_0 < 0.9$ Hz liegen westlich der Flexur, jene mit $f_0 > 1.1$ Hz liegen östlich der Zonengrenze. An der Zonengrenze selbst liegt die Fundamentalfrequenz ungefähr zwischen 0.9 Hz und 1.1 Hz.
10 BASEL-Ost

10.1 GEOGRAFIE

10.2 GEOLOGIE

10.3 H/V-MESSRESULTATE

Die Zone Basel-Ost liegt im Bereich der charakteristischen Horst und Grabenstrukturen des westlichen Randes des Tafeljuras am Übergang zur Rheingrabenflexur. Ausser einem Punkt in der Zone Basel-Ost-TF01 (f₀ = 0.90 Hz) liegt die Fundamentalfrequenz über 1.0 Hz (Abbildung 32). Die Verteilung der gemessenen Fundamentalfrequenzwerte variiert in dieser Zone Basel-Ost zwischen 0.9 Hz und 26.2 Hz. In der Zone Basel-Ost können fünf Unterzonen ausgeschieden werden. In den Zonen Basel-Ost-TF01 und -TF02 finden sich Häufungen niedriger Fundamentalfrequenzwerte (0.8 Hz – 4.0 Hz resp. 2.6 Hz – 3.1 Hz). Die H/V-Messpunkte der Zone Basel-Ost-TF01 befinden sich über einer bis zu 50m mächtigen Lockergesteinsfüllung einer Subrosionszone (vgl. Abbildung 31). Die Zone Basel-Ost-TF02 liegt in der Schwemmebene der Ergolz. Die Zonen Basel-Ost HF01 bis 03 umfassen H/V-Messstandorte mit Fundamentalfrequenzwerten höher als 6.50 Hz, bzw. 7.00 Hz oder 10.0 Hz. Im grössten Teilgebiet der Zone Basel-Ost liegt die Fundamentalfrequenz zwischen 1.5 Hz und 10.0 Hz, wobei die Mehrzahl der Messungen zwischen 2.5 Hz und 6.0 Hz liegt. Ein Vergleich mit der Sedimentmächtigkeit und der Härte der darunter liegenden Schichten (Abbildung 31) erklärt die heterogene Verteilung der Fundamentalfrequenzen.

Folgende Unterscheidungen führen zu den fünf H/V-Gruppen:

<table>
<thead>
<tr>
<th>H/V-Gruppe</th>
<th>Qualität</th>
<th>Zweites H/V-Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/V-Gruppe 1</td>
<td>Qualität gut – sehr gut, breite Amplitude</td>
<td>Kein zweites H/V-Maximum</td>
</tr>
<tr>
<td>H/V-Gruppe 2</td>
<td>Qualität gut – sehr gut, breite Amplitude</td>
<td>Breites flaches zweites H/V-Maximum</td>
</tr>
<tr>
<td>H/V-Gruppe 3</td>
<td>Qualität gut</td>
<td>Breites flaches zweites H/V-Maximum</td>
</tr>
<tr>
<td>H/V-Gruppe 4</td>
<td>Qualität gering</td>
<td>Kein zweites H/V-Maximum</td>
</tr>
<tr>
<td>H/V-Gruppe 5</td>
<td>Qualität gut – sehr gut, schmale Amplitude</td>
<td>Kein zweites H/V-Maximum</td>
</tr>
</tbody>
</table>

Tabelle 1: Charakterisierung der H/V-Gruppen in der Zone Basel-Ost.

10.4 ZONIERUNGSKRITERIEN

11 ERGOLZTAL

11.1 GEOGRAFIE

Siedlungs- und Industriegebiete konzentrieren sich auf den Talboden und die untersten Hanglagen entlang der Talflanken. Viele Wohngebiete, z. B. in Liestal, befinden sich in solchen Hanglagen.

11.2 GEOLOGIE

Abbildung 35: Die geologische Karte zeigt im Ergolztal eine räumlich über kurze Distanzen stark varii- rende Oberflächengeologie. Der präquartäre Untergrund weist Härten 1 bis 4 auf.

sich aus durch kleine Härten. An Standorten mit präquartärem Untergrund der Härte 3 werden häufig Einheiten des Unteren Doggers angetroffen.

11.3 H/V-MESSRESULTATE

Die H/V-Messpunkte befinden sich vorwiegend im Übergangsbereich zwischen Zivilisationszentren und Hügelflanken. Die Werte der Fundamentalfrequenzen sind heterogen verteilt (Abbildung 36). Im Norden findet man Standorte mit mittleren Fundamentalfrequenzwerten (4.0 Hz – 6.0 Hz). Im südlichen Teil der Zone wechseln sich niedrige Werte mit sehr hohen Werten ab. Diese Variabilität lässt sich durch die kleinräumigen Unterschiede im geologischen Aufbau erklären. Entsprechend wird es sehr schwierig sein, in gewissen Zonen oder Subzonen eine für die gesamte (Sub-) Zone gültige geophysikalisch-geologische Charakterisierung anzugeben. Die Amplitudenqualität verhält sich ähnlich wie die Fundamentalfrequenz, ohne jedoch miteinander korreliert zu sein. Im Norden, im Bereich der Ergolzmündung, finden sich hingegen einige Standorte mit guter Felsqualität.

In den bewohnten Gebieten finden sich vor allem folgende drei Formationen:

1. **Formation 1**: Die präquartären Formationen sind weich und weisen einen S-Wellengeschwindigkeitsgradienten auf. Es existiert kein grosser Geschwindigkeitskontrast zwischen diesen weichen Formationen und dem geophysikalischen Fels. Somit ist die Qualität der H/V-Amplitude gering. Auch besteht kein signifikanter Geschwindigkeitskontrast zwischen den quartären Lockersedimenten und dem Präquartär. Die gemessene Fundamentalfrequenz der Lockersedimente (Quartär und Präquartär) liegt bei ca. 1.0 Hz.

 a. zwischen 7 Hz und 19 Hz, falls nur eine geringmächtige Überlagerung mit quartären Sedimenten vorliegt, oder
 b. zwischen 2 Hz und 8 Hz, wenn zusätzlich Opalinuston unter den quartären Sedimenten auftritt.

3. **Formation 3**: Sehr lockere, i.a. wenig mächtige alluviale Sedimente (Verwitterungs- und Schwemmlehme) überlagern weiche präquartäre Sedimente. Der S-Wellengeschwindigkeitskontrast ist in diesem Fall genügend gross, um eine Fundamentalfrequenz für die alluvialen Sedimente im H/V-Spektrum zu identifizieren.
Abbildung 36: Die gemessenen Fundamentalfrequenzwerte in der Zone Ergolztal variieren sehr stark. Im Norden gibt es stellenweise Gruppierungen von hohen oder niedrigen Frequenzwerten. Im Süden variieren die Messwerte. Dasselbe gilt für die Amplitudenqualität, die im Norden generell gut ist und im Süden von schlecht bis sehr gut reicht.

11.4 ZONIERUNGSKRITERIEN

12 QUERSCHNITTE

12.1 FESTLEGUNG DER QUERSCHNITTE

Querschnitte dienen dem Aufzeigen von lateralen Änderungen, die durch geologische Eigen-
schaften und Anordnungen bewirkt werden. Die folgenden Querschnitte wurden vorwiegend
über den östlichen Rand des Rheingrabenbruches oder über komplexe geologische Gebiete
gelegt.

12.2 QUERSCHNITTE BIRSTAL & BRUDERHOLZ

12.2.1 AUSLEGUNG DER QUERSCHNITTE

Einige Querschnitte durch die Zonen Rheingraben-Ost und Basel-Süd zeigen den Übergang
zwischen diesen Zonen und der Zone Flexur-Süd (Abbildung 37). Es werden folgende
Querschnitte gezeigt:

- Querschnitt Bruderholz (Neumünchenstein – Münchenstein)
- Querschnitt Birstal 2 (Reinach – Münchenstein)
- Querschnitt Birstal 3 (Reinach – Dornach)

Abbildung 37: Querschnitte durch das Birstal.
12.2.2 QUERSCHNITT BRUDERHOLZ (NEUMÜNCHENSTEIN – MÜNCHENSTEIN)

12.2.3 QUERSCHNITT BIRSTAL 2 (REINACH – MÜNCHENSTEIN)

12.2.4 QUERSCHNITT BIRSTAL 3 (REINACH – DORNACH)

12.3 QUERSCHNITTE ERGOLZTAL

12.3.1 AUSLEGUNG DER QUERSCHNITTE

Es werden drei Profilschnitte durch das Ergolztal gelegt (Abbildung 41). Sie zeigen die Veränderung der H/V-Resultate entlang des Querprofils zum Tal. Es werden folgende Querschnitte diskutiert:

- Querschnitt Ergolztal 1 (Frenkendorf – Füllinsdorf)
- Querschnitt Ergolztal 2 (Liestal Zentrum)
- Querschnitt Ergolztal 3 (Liestal Ost)

Für die Beschreibung der nachfolgend erwähnten Formationen vergleiche Kapitel 11.

Abbildung 41: Querschnitte durch das Ergolztal.
12.3.2 QUERSCHNITT ERGOLZTAL 1 (FRENKENDORF – FÜLLINSDORF)

Im Westen zeigen die beiden H/V-Messpunkte ergolz_06 und ergolz_27 je ein klares H/V-Maximum im mittleren Frequenzbereich \(f_0 = 4.5 \) Hz (Abbildung 42). Unter der quartären Bedeckung befindet sich relativ weicher Opalinuston über härterem Fels. Dadurch entsteht ein genügend grosser S-Wellengeschwindigkeitskontrast zwischen Quartär/Opalinuston und den tiefer liegenden, härteren geologischen Formationen. Entsprechend erfolgt eine Zuordnung zur Formation 2. In östlicher Richtung, nahe beim Zentrum von Frenkendorf (H/V-Messpunkt ergolz_28), verschwindet das beobachtete H/V-Maximum des Quartärs/Opalinuston. In diesem Gebiet liegt offenbar das Quartär direkt auf mächtigen weichen präquartären Schichten (Formation 1). Die beobachtete Fundamentalfrequenz liegt bei ca. 1.0 Hz. Formation 3 wird am H/V-Messpunkt ergolz_29 beobachtet. Wir können die Resonanzfrequenz der dünnen alluvialen Schicht messen (17.8 Hz), sehen jedoch immer noch die Eigenfrequenz (1.0 Hz) der gesamten Lockersedimentablagerung (Quartär und Präquartär). Weiter nach Osten taucht langsam wieder ein H/V-Maximum im Frequenzbereich zwischen 2.5 Hz und 5.0 Hz auf. Es kann angenommen werden, dass wiederum Opalinuston unter den quartären Sedimenten liegt. Somit besteht ein genügender S-Wellengeschwindigkeitskontrast zu tiefer liegenden präquartären Formationen (Formation 2). Die Amplitudenqualität hat ähnliche Werte wie im Westen.
12.3.3 Querschnitt Ergolztal 2 (Liestal Zentrum)

Abbildung 43: Querschnitt Ergolztal 2 – Starke Variabilität in einer Talverzweigung.

12.3.4 QUERSCHNITT ERGOLZTAL 3 (LIESTAL OST)

Abbildung 44: Querschnitt Ergolztal 3 – Unterschiede westlich und östlich des Flusses Ergolz.

Der Querschnitt Ergolztal 3 liegt über dem schmalen Taleinschnitt zwischen Liestal und Lau-
sen (Abbildung 44). Der Talboden südwestlich der Ergolz weist oberflächennah vorwiegend
eine Lössbedeckung auf. Nordöstlich davon finden sich an der Oberfläche vorwiegend
Alluvialböden. Die Hügelflanken bestehen aus anstehendem Hauptrogenstein und Unterem
Dogger. Alle in Abbildung 44 dargestellten H/V-Messpunkte stehen auf quartärem
Untergrund.

An den Messpunkten südlich der Ergolz lässt sich wiederum das H/V-Maximum bei ca. 1.0 Hz
erkennen. Alle diese H/V-Messpunkte zusammen zeigen ein zweites Maximum und erlauben
eine Abschätzung der Resonanzfrequenz der quartären Sedimente (Formation 2). Die Eigen-
frequenz liegt zwischen 7.5 Hz und 12 Hz. Die Messpunkte nördlich der Ergolz haben ein
H/V-Maximum bei ca. 4–5 Hz, was auf eine mächtigere Lockersedimentbedeckung als im
Süden hinweist. Da in der näheren Umgebung Opalinuston vorliegt, sind die Lockersedimente
an diesen Messpunkten wahrscheinlich aus Opalinuston und quartären Sedimenten aufge-
baut. Die Messpunkte nördlich der Ergolz weisen ein zweites H/V-Maximum bei ca. 10 –
12.5 Hz auf.
APPENDIX A „HÄRTEKLASSEN“

Härteklassen der Lithostratigraphie der Umgebung von Basel mit v_p- und v_s- Wellengeschwindigkeiten.

Fünf Klassen: 1 = weiches Gestein (Ton) bis 5 = sehr hartes Gestein (Granit)

<table>
<thead>
<tr>
<th>Formation</th>
<th>Lithologische Kurzbeschreibung</th>
<th>Härteklasse</th>
<th>V_p Literatur [m/s]</th>
<th>V_s Literatur [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotliegendes</td>
<td>Feiner Arkosesandstein (gilt nur für die obersten 100 Meter)</td>
<td>3</td>
<td>[3400 - 3800]¹</td>
<td>[1700 - 2200]¹</td>
</tr>
<tr>
<td>Bundsandstein</td>
<td>Fein- bis grobkörniger Sandstein</td>
<td>3</td>
<td>[2600 - 4200]¹</td>
<td>[1300 - 2300]¹</td>
</tr>
<tr>
<td>Wellendolomit</td>
<td>Dolomit</td>
<td>3</td>
<td>[2600 - 4200]¹</td>
<td>[1300 - 2300]¹</td>
</tr>
<tr>
<td>Wellenmergel</td>
<td>Schiefriger Mergel</td>
<td>2</td>
<td>[2200 - 3600]¹</td>
<td>1500¹</td>
</tr>
<tr>
<td>Orbicularismergel</td>
<td>Schiefriger Mergel</td>
<td>2</td>
<td>[3200 - 7000]¹</td>
<td>[1500 - 3200]¹</td>
</tr>
<tr>
<td>Untere Sulfatzone</td>
<td>Dolomitische Mergel mit Anhydrit</td>
<td>2</td>
<td>[4200 – 6800]¹</td>
<td>[2200 – 3200]¹</td>
</tr>
<tr>
<td>Salzlager</td>
<td>Steinsalz</td>
<td>2</td>
<td>[4200 – 6900]¹</td>
<td>[2800 – 3300]¹</td>
</tr>
<tr>
<td>Obere Sulfatzone</td>
<td>Dolomitische Mergel mit Anhydrit</td>
<td>2</td>
<td>[3800 – 7200]¹</td>
<td>[1600 – 3500]¹</td>
</tr>
<tr>
<td>Dolomitzone</td>
<td>Düngeschichtete Dolomite, z.T. ausgelagut</td>
<td>3</td>
<td>[5000 – 6600]¹</td>
<td>[2500 – 3700]¹</td>
</tr>
<tr>
<td>Trigonodusdolomit</td>
<td>Bröckliger, poröser Dolomit</td>
<td>4</td>
<td>[5100 – 7000]¹</td>
<td>[2500 – 3500]¹</td>
</tr>
<tr>
<td>Schilfsandstein</td>
<td>Feiner Sandstein z.T. siltig od. tonig</td>
<td>3</td>
<td>[2600 – 3400]¹</td>
<td>[1000 – 1500]¹</td>
</tr>
<tr>
<td>Untere Bunte Mergel</td>
<td>Tonige Mergel</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gansinger Dolomit</td>
<td>Dolomit mit Mergellagen</td>
<td>3</td>
<td>[5000 – 7000]¹</td>
<td>[3000 – 3500]¹</td>
</tr>
<tr>
<td>Obere Bunte Mergel</td>
<td>Mergel und Tone</td>
<td>2</td>
<td>[2000 – 3000]¹</td>
<td>[700 – 1200]¹</td>
</tr>
<tr>
<td>Rhät</td>
<td>Quarzsandstein mit sandigen Mergeln, Tone</td>
<td>3</td>
<td>300¹</td>
<td>1000¹</td>
</tr>
<tr>
<td>Insektenmergel</td>
<td>Mergel</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arieten-Gryphitenkalk</td>
<td>Mergel</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtusus-Tone</td>
<td>Tone</td>
<td>2</td>
<td>[2200 – 3000]¹</td>
<td>[600 – 1000]¹</td>
</tr>
<tr>
<td>Formation</td>
<td>Lithologische Kurzbeschreibung</td>
<td>Härteklasse</td>
<td>(V_P) Literatur [m/s]</td>
<td>(V_S) Literatur [m/s]</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Obliqua-Schichten</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opalinus-Ton</td>
<td>Ton</td>
<td>1</td>
<td>([1600 – 2900]^{1})</td>
<td>([300 – 900]^{1})</td>
</tr>
<tr>
<td>Unterer Dogger:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Humphriesi-Schichten</td>
<td>Wechsellagerung Kalk sandige Mergel</td>
<td>3</td>
<td>([3000 – 4900]^{1})</td>
<td>([600 – 2100]^{1})</td>
</tr>
<tr>
<td>- Blagdeni-Schichten</td>
<td>Sandige Mergel, Mergelkalk, Kalk</td>
<td>3</td>
<td>([3000 – 4000]^{1})</td>
<td>([1100 – 1500]^{1})</td>
</tr>
<tr>
<td>Unterer Hauptrogenstein</td>
<td>Kalk</td>
<td>4</td>
<td>([2800 – 6400]^{2})</td>
<td>([2500 – 3000]^{3})</td>
</tr>
<tr>
<td>Homomyenmergel</td>
<td>Sandige Mergel, Mergelkalke</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberer Hauptrogenstein</td>
<td>Kalk</td>
<td>4</td>
<td>([2800 – 6400]^{2})</td>
<td>([2500 – 3000]^{3})</td>
</tr>
<tr>
<td>Varians-Schichten</td>
<td>Mergelkalk</td>
<td>3</td>
<td>([2400 – 3600]^{1})</td>
<td>([800 – 1500]^{1})</td>
</tr>
<tr>
<td>Macrocephalus-Schichten</td>
<td>Knollige Mergel</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callovienton</td>
<td>Tonige Mergel</td>
<td>2</td>
<td>([1200 – 2500]^{2})</td>
<td></td>
</tr>
<tr>
<td>Anceps-Athleta-Lamberti-Schichten</td>
<td>Oolithische Kalke</td>
<td>3</td>
<td>([1700 – 4200]^{2})</td>
<td>([2500 – 3000]^{2})</td>
</tr>
<tr>
<td>Renggeri Tone</td>
<td>Tone</td>
<td>1</td>
<td>([1200 – 2500]^{2})</td>
<td></td>
</tr>
<tr>
<td>Terrain à Chaillles</td>
<td>Mergel mit Kalkknauer</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liesbergschichten</td>
<td>Mergelkalke</td>
<td>3</td>
<td>([1700 – 4200]^{2})</td>
<td></td>
</tr>
<tr>
<td>Rauracien-Korallenkalke</td>
<td>Kalk</td>
<td>4</td>
<td>([2800 – 6400]^{2})</td>
<td></td>
</tr>
<tr>
<td>Vorburgkalke</td>
<td>Mikritische Kalke</td>
<td>4</td>
<td>([2800 – 6400]^{2})</td>
<td></td>
</tr>
<tr>
<td>Natica-Schichten</td>
<td>Mikritische Kalke, Mergelkalke, Mergel Wechsellagerungen</td>
<td>3</td>
<td>([2800 – 6400]^{2})</td>
<td></td>
</tr>
<tr>
<td>Humeralis-Schichten</td>
<td>Mumenbänke mit Oolithen und Mergeln überlagert</td>
<td>3</td>
<td>([1700 – 4200]^{2})</td>
<td></td>
</tr>
<tr>
<td>Verena-Oolith</td>
<td>Dichter Kalk</td>
<td>4</td>
<td>([2800 – 6400]^{2})</td>
<td></td>
</tr>
<tr>
<td>Formation</td>
<td>Lithologische Kurzbeschreibung</td>
<td>Härtekasse</td>
<td>V_P Literatur [m/s]</td>
<td>V_S Literatur [m/s]</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Melanienkalk</td>
<td>Süßwasserkalk und Mergel</td>
<td>3</td>
<td>[1700 – 4200]2</td>
<td></td>
</tr>
<tr>
<td>Streifige Mergel</td>
<td>Mergel</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunte Mergel</td>
<td>Mergel</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeressand</td>
<td>Sandstein</td>
<td>2</td>
<td>[1400 – 4300]2</td>
<td>[800 – 2500]2</td>
</tr>
<tr>
<td>Meletta-Schichten</td>
<td>Ton</td>
<td>1</td>
<td>[1200 – 2500]2</td>
<td>[400 – 600]3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[500 – 650]3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tonig</td>
</tr>
<tr>
<td>Cyrenenmergel</td>
<td>Mergel / Sandstein</td>
<td>2</td>
<td>[1400 – 4300]2</td>
<td>[600 – 800]3</td>
</tr>
<tr>
<td>Elsässer Molasse</td>
<td>Sandstein</td>
<td>2</td>
<td>[1400 – 4300]2</td>
<td>[600 – 800]3</td>
</tr>
<tr>
<td>Tüllinger-Schichten</td>
<td>Süßwasserkalke / Mergel</td>
<td>3</td>
<td>[2200 – 2500]3</td>
<td>[700 – 900]3</td>
</tr>
</tbody>
</table>

Literaturangabe:
1 NAGRA Technischer Bericht NTB 00-01, Sondierbohrung Benken, Beilagenband
3 Anhang B Diplomarbeit Sibylle Steimen