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Abstract

Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA)

methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs)

mainly based on Logic Trees. The evolution of these sequences is a result of the inter-

actions between the crew and plant; in current PRA methodologies, simplified models of

these complex interactions are used.

In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on

the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant

interactions during potential accident scenarios in NPPs. In addition, an operator/crew

model has been developed to treat the response of the crew to the plant. The "crew model"

is made up of three operators whose behavior is guided by a set of rules-of-behavior (which

represents the knowledge and training of the operators) coupled with written and mental

procedures. In addition, an approach for addressing the crew timing variability in DDETs

has been developed and implemented based on a set of HRA data from a simulator study.

Finally, grouping techniques were developed and applied to the analysis of the scenarios

generated by the crew-plant simulation. These techniques support the post-simulation

analysis by grouping similar accident sequences, identifying the key contributing events,

and quantifying the conditional probability of the groups. These techniques are used to

characterize the context of the crew actions in order to obtain insights for HRA.

The model has been applied for the analysis of a Small Loss Of Coolant Accident

(SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support
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Abstract

an improved characterization of the performance conditions or context of operator ac-

tions, which can be used in an HRA, in the analysis of the reliability of the actions. By

providing information on the evolution of system indications, dynamic of cues, crew tim-

ing in performing procedure steps, situation assessment, and crew challenge, these results

are useful and relevant for the analysis of the crew’s diagnosis/decision-making and, more

generally, of operator cognitive tasks. A comparison of the operator-plant simulation re-

sults based on the DDETs with classical PRA/HRA analyses of selected actions found

significant differences in the available time for operator actions, dynamic response of the

system, and necessary cooldown time. In addition, using grouping techniques, failure and

close to failure scenarios have been identified, analyzed, and an assessment of the PSFs

has done to support the calculation of the Human Error Probabilities (HEPs).
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Abstract in Italian

I modelli di valutazione probabilstica del rischio (Probabilistic Risk Assessment, PRA) e

di analisi di affidabilità umana (Human Reliability Analysis, HRA) in impianti nucelari,

modellano l’evoluzione degli scenari incidentali trimite alberi di guasto (Fault Trees) e

alberi di eventi (Event Trees). Sebbene la struttura dei PRA è sufficientemente adeguata

per modellare questi scenari incidentali, non sempre le interazioni tra operatori e impianto

e soprattutto l’effetto dell’impianto sulle ripsoste degli operatori sono inclusi (per esempio

risposta ad allarmi, stati fisici critci per l’impianto oppure andamento inaspettato dei

parametri di processo).

In questo studio, il software ADS (Accident Dynamic Simulator) che è basato su alberi

di eventi discreti e dinamici (Discrete Dynamic Event Tree, DDET) è stato utilizzato

per la simulazione delle mutue interazioni operatore-impianto nucleare durante scenari

incidentali. In particolare, è stato sviluppato un modello di team di operatori d’impianto

all’interno del software ADS. Il modello è composto da tre operatori la cui risposta è

guidata da un accoppiamento tra una serie di regole di comportamento (che modellano la

conoscenza e l’addestramento degli operatori) con le procedure dell’impianto (sia formali

che mentali). Inoltre, è stato sviluppato un approccio per la gestione della variabilità delle

risposte degli operatori basato sul concetto di "tendenza" il quale è stato ulteriormente

confrontato con dati disponibili da studi in simulatori d’impianti nucleari. Infine, la grande

quantità di dati prodotti dovuti al numero di scenari e in particolare al numero di eventi

durante la loro evoluzione sono stati analizzati sviluppando tecniche di raggruppamento

che consentono di ridurre la loro complessità. Cio’ è stato fatto identificando la serie
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di eventi che portano ad un gruppo comune e caratterizzano la probabilità del singolo

gruppo. Questi dati sono stai poi utilizzati per caratterizzare la risposta degli operatori

o per ottenere informazioni utili da un punto di vista dell’affidabilità umana attraverso

un caso studio. Infine, i rusultati sono stati confrontati con un approccio di analisi di

affidabilità unama classico sottolineando le differenze tra i due approcci e il valore aggiunto

di un approccio dinamico.

Il modello è stato applicato per l’analisi di uno uno scenario incidentale dovuto ad una

piccola perdita di liquido di raffreddamento (Small Loss Of Coolant Accident, SLOCA)

in un reattore ad acqua pressurizzata (Pressurized Water Reactor, PWR). I risultati della

simulazione hanno fornito una migliore caratterizzazione delle delle situazioni che influen-

zano le prestazioni sia dell’impianto che degli operatori nella sala di controllo. Questi

risultati hanno fornito informazioni sull’evoluzione del sistema di indicazioni, la dinamica

dei segnali, i tempi degli operatori nelle esecuzione delle procedure, la valutazione della

situazione attuale, e il carico di lavoro degli operatori che sono importanti per il tratta-

mento degli errori che possoni avvenire in impianti nucleari. Alcuni risultati sono stati

confrontati con i risultati ottenuti da un classico modello PRA dell’impianto. I risultati

ottenuti identificano una serie di differenze nella modellazione delle azioni dell’operatore

ed in particolare il tempo disponibile per effettuare le azioni. Inoltre, utilizzando tecniche

di raggruppamento sono stati individuati scenari di fallimento del sistema e scenari vi-

cino al fallimento. Essi sono stati analizzati e caratterizzati in termini di probabilità di

accadimento. I risultati, sono stati poi utilizzati per il calcolo dei fattori che influenzano

le prestazioni degli operatori nella sala di controllo (Performance Shaping Factors, PSFs).
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Introduction

1.1 Motivation

The safety of complex systems involves close integration between the human operators and

the hardware of the system. During accident scenarios in nuclear power plants, control

room operators are required to perform a range of tasks to maintain the system in a

safe state while bringing it to a stable shutdown condition. Frequently, operators have

to manage complicated situations in a brief time frame. The result is that they can take

inadequate actions leading the system in undesired conditions.

Current models and techniques to predict human errors rely on quasi-static analyses

of the interactions of crew and plant. In such analyses, it is difficult to account for

important aspects of the dynamic context such as the timing of the plant indications, the

workload associated with the procedures, and the on-going tasks and focus of attention of

the operators. Therefore, simulation-based approaches that combine human and system

behaviors may support a better understanding of the operator response.

The objective of this study is to model and analyze the crew-plant interactions during

accident scenarios in a nuclear power plant for obtaining HRA insights. A basic assump-

tion for the crew model is that the crew response during an accident is a combination

of procedure-following and actions supported by the knowledge and training of the op-

erators. Mental procedures and a set of rules-of-behavior represent this knowledge and

training. The crew model is implemented in the Accident Dynamic Simulator, i.e., a Dis-

crete Dynamic Event Tree tool used for dynamic Probabilistic Risk Assessment. In this

work, a tool and a methodology for the modeling and analysis of the dynamic interactions

between control room operators and plant were developed. The dynamic approach can

inform the Human Reliability Analysis by simulating jointly the Nuclear Power Plant and

the control room crew response.
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1.2. Background

1.2 Background

Classical approaches for accident scenario analyses applied into a Probabilistic Risk As-

sessment (PRA) or Probabilistic Safety Assessment (PSA) are structured frameworks that

analyze the system with respect to the failure and success of components or human actions.

With common frameworks such as event tree and fault tree analyses the evaluation of the

crew-plant interactions during an accident scenario require simplified models. Neverthe-

less, these frameworks have proven to be useful and have resulted in the identification of

unforeseen plant weaknesses/vulnerabilities and in consequent modifications of the plant,

its operations and operating procedures, and the training of the personnel. In spite of

this success, the existing, quasi-static1 PRA frameworks have significant limitations.

First, the variability in the timing of automatic and personnel actions, which may

influence the evolution of scenarios and therefore the estimated risk, can only be consid-

ered in a restricted manner. Typically, for hardware failure events as well as operator

actions, a few values of the time of occurrence of the events in the scenario judged to be

conservative are selected and analyzed. However, defining which values are conservative

can be problematic due to the dynamic interactions. For example, an early and complete

failure of emergency coolant injection could be conservative in thermal-hydraulic terms

(yielding a maximum fuel temperature) but easier for the operators to diagnose and there-

fore to manage than a partially successful injection phase, which would produce initial

indications of success that may mask the degraded cooling of the core.

Second, the current PRA framework does not consider comprehensively the context

where the operator actions are taken. Human factors and the experience from accident

precursors and accidents suggest that decision-making is a dominant contributor to the

operator errors. Consequently, the analysis and quantification of operator errors need to

consider the operators’ situation assessment and its evolution during the accident scenario.

This situation assessment introduces so-called cognitive dependencies among operator ac-

1In this context quasi-static means that the dynamics are treated as series of snapshots.
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tions; in other words, the likelihood of a correct situation assessment and of performing

correct actions is influenced by the situation assessment earlier in scenarios. This infor-

mation on the situation assessment associated with preceding actions is considered but

not explicitly included in the accident scenario models of existing PRAs.

In addition, in classical frameworks, a significant preprocessing effort carried out by

the analysis of success criteria conditions is required for the analyst to acquire a detailed

knowledge of the system and its dynamics. During the scenario progression, three major

contributors could in principle affect its evolution and outcome:

• the sequential order of the success and failure events;

• the timing of occurrence of events; and

• the type and timing of the of control room operator response.

To overcome the previous issues, a study of accidents in Nuclear Power Plants (NPPs)

needs to consider the interaction between control room operators, physical processes, and

interventions of automatic systems. Prior to the Three Mile Island accident in 1979, the

role of the control room operators received little attention in nuclear safety [Mosey, 1990].

After that, all nuclear accidents have been reviewed, from Windscale to Chernobyl, and

the root cause analysis has shown that the "human error" is an important component

in all nuclear accidents. As a result, human error and human behavior have come to

be treated in the same way as technical (hardware) systems. This is a limitation, and

for a complete analysis of nuclear accidents, it is necessary to consider the role of oper-

ators in the process of human-system interactions because besides the role of controlling

the system during working operations, operators have to actively interact with it during

emergency or accident situations. Therefore, in order to handle these human-machine in-

teractions models of operators must be employed [Hollnagel, 1996] in a simulation-based

environment.

When an abnormal situation occurs, the preferred mode of response by control room
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operators2 is to follow the guidance of procedures. In evaluating when the operators will

reach a specific assessment of the plant state and perform the required actions on the plant,

the steps of the procedures and the associated workload must be taken into account. The

crew’s execution of the procedure steps and the timing of these tasks are influenced by

the crew as well as by the plant response. In addition a response based on the operators’

knowledge and training has been observed in some events and in simulated situations in

which the operators have perceived the procedures as incomplete [Woods, 1984], [Roth

et al., 1994], and [Carvalho, 2006a]. In such situations, the control room operators’ assess-

ment of the state of the plant and of the required actions differs from those obtained by

following the procedures. A combination of alarms or particular plant parameter behav-

iors may, for instance, cause the operators to consider performing actions supplementary

to those directed by the procedures, anticipating actions that may be required by the

procedures, or transferring to other procedures. Opportunities for these alternatives arise

because the procedures in practice cannot provide fixed, parameter-based criteria for all

decisions and therefore include some steps that involve operator judgment. Therefore,

the interpretation of the procedures, the performance of the procedure steps, and the

assessment of the actual plant state interact and lead the operator and crew response.

In this context, dynamic methodologies attempt to couple dynamic and stochastic

processes to represent the response of the physical processes, the intervention of automatic

control and safety systems, and actions of the personnel during an accident scenario

[Siu, 1994]. This is achieved by embedding models of the physical process and human

operator dynamics within stochastic simulation engines reproducing the occurrence of

components success and failure transitions along the scenarios. In the past years a number

of dynamic methodologies have been investigated. Some of these methodologies are based

on Monte Carlo (MC) discrete event simulation [Labeau et al., 2000] and [Marseguerra and

Zio, 1996], dynamic flowgraph methodology [Garrett and Apostolakis, 2002], [Yau et al.,

1995], and [Matsuoka, 2006], Petri nets [Volovoi, 2004], and Discrete Dynamic Event Trees

2"Control room operators" and "control room crew" are considered synonymous. Often the terms
control room is omitted for convenience.
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(DDET) [USNRC, 1975], [Cojazzi, 1996] and [Hofer et al., 2002]. These methodologies

mainly focus on the analysis of the interactions between the plant physical response and

equipment response (success or failure); together these responses comprise the "machine"

response. A few applications have addressed the interactions between the crew response

and the "machine" response.

The dynamic analysis described in this study refers to the modeling of crew behaviors

in the DDET framework [Sheng and Mosleh, 1996], [Gertman et al., 1996], [Hofer et al.,

2002], [Kloos and Peschke, 2006], [Dang, 2000], and [Metzroth et al., 2008]. This work

uses the DDET framework as implemented in the Accident Dynamic Simulator (ADS)

software tool [Sheng and Mosleh, 1996]. ADS, even if still under development, has been

identified as suitable tool for the description of the human-machine system evolution

during an accident scenario after an initiating event, i.e., an internal or external event to

the plant that perturbs its normal operation. In ADS, an operator model has been used

and further developed, adding new features and new capability to better represent the

crew response during accident scenarios. The operator actions are guided by coupling a

set of rules-of-behavior with a procedure-following operator response based on formal and

mental procedures.

1.3 Objective and scope of the PhD project

The overall aim of this dissertation work can be summarized as:

• develop the crew model, i.e., extend its scope by adding capabilities or models of

specific behaviors;

• develop a model for the crew time variability based on existing HRA data;

• develop and apply post-simulation strategies for the analysis of the DDET-generated

scenarios;
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• develop a methodology for using DDET-based human-machine system approaches

for informing HRA; and

• use the dynamic approach to get insights for safety analysis.

A number of models of operator have been developed [Chang and Mosleh, 1999],

[Cacciabue, 1996]. In terms of the cognitive tasks of situation assessment (diagnosis) and

response selection, these focus mainly on the operators’ knowledge-based behavior and

response. Only a few models address the procedure-guided response, the main response

mode of operators, in which the procedures direct the focus of the operators and specify the

actions to be taken, depending on the plant information [Dang, 1996]. The novel aspect

of this work and one area in which this work makes a contribution is the modeling of

the crew behaviors associated with the operators’ procedure-guided response mode. This

response mode combines strict procedure-following with the use of knowledge and training

in the form of mental procedures and rules-of-behavior; simulation modeling appears to

be essential to the analysis of the interplay between procedures and rule-based cognitive

behavior [Rasmussen, 1981], [Rasmussen, 1983]. The work on the human performance

model complements the modeling of the operating crew in a DDET framework [Chang

and Mosleh, 2006a,b,c,d,e].

Applications of this work are in PRA and HRA. The integrated modeling of the plant-

operator response achieved in this work provides improved capabilities to obtain insights

to be used in the accident sequence analysis component of PRA, e.g., by identifying

interactions between the operators’ response and system response as well as between pro-

cedure instructions and trained knowledge and rules. The more thorough understanding

of these interactions will additionally provide an improved basis for HRA, by supporting

the analysis of tasks and performance contexts and the quantification of Human Error

Probabilities (HEPs).

During accident scenarios (i.e., after initiating events), the control room crew is con-

tinuously monitoring the plant and it performs actions according to the plant procedures
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foreseen for these situations and the associated training. The path through the procedures

and the appropriate crew response is continuously determined by the state (parame-

ter values) of the system variables. In parallel, the automatic systems are responding

analogously according to their designed rules. Consequently, the operator actions and

automatic system responses both change the evolution of the system variables, thereby

producing dynamic interactions during the evolution of the scenario. The outcome of the

scenarios strongly depends on the intervention of the automatic systems, on the actions

selected by the crew, and on the timing of these actions.

For safety assessment, predicting and assessing crew performance involves understand-

ing the indications available to the operators, and the procedures and training that support

decision-making and performance in a given situation. Dynamic aspects are important

to both. When do cues appear? When do operators perceive these cues and take actions

on the plant? Simulator facilities such as NPP training simulators offer the possibility to

observe the (dynamic) response of a few crews in a selection of scenarios, yielding highly

realistic and detailed information on the interactions of system (physical process and au-

tomatic systems) and the crew. However, to obtain a comprehensive understanding of the

impact of the variability in the crew response and of the timing of the operator actions

in a range of scenarios, this information may ideally be extended with simulation models

in which the operator response and the plant and its systems are jointly simulated.

In this work the modeling of crew variability in time performance is performed within

the DDET framework. The fundamental and well-known approach is to obtain distribu-

tions of the performance times or durations of each task of interest. In a Monte Carlo task

simulation, e.g., [Siegel and Wolf, 1969], the time to perform a series of tasks is obtained

by sampling from each of the distributions. In the DDET, the analogous approach is

to discretize the distributions for the performance times of the individual tasks, using a

Discrete Probability Distribution (DPD), e.g., [Coyne and Mosleh, 2008].

The applicability of this work is in the modeling and analysis of a set of accident sce-

narios following an Initiating Event. The main goal is the development of a methodology
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for the identification and quantification of potential vulnerabilities in the joint human-

machine system response that could lead the NPP to unsafe conditions. The methodology

is applied to a case study for a NPP.

In the proposed work, the DDET analysis will be performed for selected accident

scenarios following a specific initiating event of a NPP. The analysis will focus on the

operators’ use of the procedures in conjunction with their knowledge and training. A

second area of contribution for this work is in the development and evaluation of strategies

and tools for constructing DDET models and analyzing DDET results. One issue relates

to the perception that DDET modeling requires an impractically extensive set of inputs.

In addition, the treatment of diverse scenario variants and dynamic interactions generate

large, detailed trees of scenario histories. These require further analysis in order to draw

conclusions and obtain the desired insights. Contributions to the resolution of these issues

are essential steps to realizing the potential of dynamic tools for PRA and dynamic risk

assessment.

1.4 Classical and dynamic PRA

Classical PRAs are comprehensive, structured, and logical analysis methods aimed at

identifying and assessing risks in complex technological systems for the purpose of cost-

effectively improving their safety and performance [Stamatelatos et al., 2002]. In a PRA

of NPPs, accident scenarios, which are dynamic by nature, are analyzed with event trees.

An event tree graphically represents the various accident scenarios that can occur after

an initiating event (Figure 1.2). An event tree starts with an initiating event and develops

scenarios, based on whether a plant system succeeds or fails in performing its function.

The event tree then considers all of the related systems that could respond to an initiating

event, i.e., the so-called functional events or top events, until the sequence ends in either

a safe recovery or reactor core damage.

For each top event in the event tree, success criteria are identified based on thermal-
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hydraulic calculations. A success criterion is a condition that must be verify in order to

have the success of the top event in the event tree. Success criteria can be identified for

systems and for operator actions. Table 1.1 gives some examples of success criteria. The

identification of the success criteria using a set of thermal-hydraulic calculations for a

PRA analysis is fundamental for the calculation of the failure probabilities of the events

in the event tree.

Table 1.1: Example of success criteria for an initiating event of a generic NPP.

Functional event Success criteria
Reactor vessel makeup 1-out-of-3 trains of the Feedwater System

or
2-out-of-3 trains of the High Pressure Injection

Decay heat removal 1-out-of-2 trains of Residual Heat Removal System
or
2-out-of-3 trains of Spray System

Manual depressurization Operators depressurize the system in ’x’ hours

Figure 1.1 shows how the thermal-hydraulic calculations for the identification of suc-

cess criteria enters in the PRA framework. For instance, thermal-hydraulic calculations

support the identification of the N-out-of-M trains of a system necessary for the success

of the functional event (e.g., 1-out-of-3 trains of the Feedwater System for reactor vessel

makeup).

In the HRA, success criteria are important for the quantification of HEPs of given

actions. In particular, the cognitive available time for an action Tcog is defined as the

difference between the maximum time window of the action (Tmax, determined by thermal-

hydraulic calculations) and the actual time needed for performing the action (Tp), which

is assessed based on experience or simulated scenarios (Eq. 1.1).

Tcog = Tmax − Tp (1.1)

The time window of the human action actually represents the success criterion for

the action. It represents the time interval in which operators have to take decisions and
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perform the action in order to lead the plant in a safer state. This time will be used for

the estimation of the HEP to be included in the event tree and fault tree logic.

Fig. 1.1: Thermal-hydraulic calculations are used to obtain system success criteria and the
operator cognitive time to be used in the HRA (upper right part). These are inputs
to the PRA framework (bottom part), i.e., the event tree.

Figure 1.2 is a typical example of an event tree. In event trees, dynamics are difficult

to address because of their quasi-static approach nature based on series of snapshots.

In fact, if one wants to consider the state of the system when the event C fails, one

snapshot is the IE, the success of A, and failure of B. Whereas one success of C is given

by the IE, the failure of A, and the success of B. The PRA is done considering the state

of the previous system until the point of interest (i.e., failure of C or success of C).

The success criteria defined for the events do consider the timing of the equipment or
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operator response; some examples are the time by which diesel generators must provide

backup electrical power following a loss of AC power, the time window for the operators

to execute an action, or the time duration for which equipment must function. However,

the sequence models consider the timing of the events in a restricted manner. To remain

manageable, the sequence model can only treat a representative time for each failure or

success event; a given event tree sequence therefore represents many possible realizations

of a sequence evolution by a bounding sequence with conservative or representative event

timing assumptions. The actual timing of these events may impact the next phase of the

scenario and in particular the response of the operator.

Fig. 1.2: Example of a classical event tree. After the IE, success (upper branches) and failure
(lower branches) paths in the event tree are developed to obtain the sequence prob-
abilities. The success and failure probabilities of the events, i.e., A, B, and C, are
calculated using fault trees which calculate the event probabilities decomposing the
logic of the systems associated to the events.

This classical approach has some limitations. First, in a snapshot approach (or classical

approach), the analysts’ selection of the representative timing of automatic and operator

actions, i.e., "when snapshots are taken", defines the sequences. This means that the

quality of the analysis of the sequences will depend on the analysts’ assumptions concern-

ing representative timing. In making these assumptions, the analysts are limited in terms

of the sources of variability that they can practically keep track of. In addition, they are

12



1.4. Classical and dynamic PRA

limited in terms of their ability to consider the combined effect of these variabilities with

respect to a conservative modeling of the sequence.

Second, with system snapshots one can see the effects of events on the plant but the

"state" of the operator may be ambiguous. In other words, the event sequence indicates

whether or not a required operator action took place (in the allowable time window);

however, the human failure event may have occurred because the operators’ situation

assessment was erroneous or because they failed to carry out the action appropriately. In

the former case, the erroneous situation assessment may affect the likelihood of subsequent

human failure events: an inappropriate diagnosis may affect how new plant information is

interpreted and contribute to subsequent erroneous assessment and human failure events.

In the latter case, the operators’ assessment is sound, which subsequently supports their

assessment of the developing scenario.

Finally, in the classical approach the pace of the operator in performing actions ac-

cording to plant specific procedures (the typical control room operator response) is not

fully addressed. In fact, the timing of any operator action depends on what the operators

have done before, their previous and current decisions, and their speed in executing pro-

cedure steps. All these factors lead to complex dynamic interactions between operators

and plant which are difficult to assess.

In classical PRAs, the characterization of the context where the operators have to act,

is based on accident sequence diagrams, the success criteria, and the limited number of

thermal-hydraulic simulations. These runs cover the bounding sequences and do not show

comprehensively the relevant interactions between physical processes, the interventions of

automatic control and safety systems, and the actions of the personnel. Indeed, the

performance conditions make up the context for the actions of personnel and at the same

time, this context is changed by the actions.

Consequently, characterizing these conditions requires analyzing the plant behavior,

the automatic control and safety systems, and the operators’ response that affects both,

which is the idea behind the dynamic PRA. The inclusion of an operator model in the joint
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plant-operator simulation analysis explicitly accounts for the evolution of the crew un-

derstanding and decision making, yielding a broader characterization of the performance

conditions. Such information is useful in predicting the probability that the operators

fail in the situation assessment. The identification of the alternative response strategies

"triggered" by the current crew situation assessment and the plant conditions provides

insight not only on whether but also on how the operators may fail. This approach can be

used to analyze undesirable actions that can be performed and to identify the potential

decision-making errors. Finally, the joint simulation can treat the consequences of such

errors and their impact on the scenario and on further demands on the hardware and

operators.

1.4.1 Discrete Dynamic Event Tree framework

There are different interpretations of the word "dynamic" when used in PRA. One use

of the term dynamic PRA or "living PRA" is in the conventional PRA techniques to

describe periodic updates to reflect any changes in the plant configuration [Sancaktar and

Sharp, 1985]. A second interpretation is when the PRA model is updated to account for

equipment aging [Vesely, 1991]. The third use is to describe an approach that includes

modeling of dynamic processes that take place during the plant system evolution. In other

words, all plant physical characteristics are represented as time-dependent parameters,

and the event tree is developed on a time scale. This dissertation is related to the latter

definition of dynamic PRA.

Discrete dynamic event trees (DDETs) are produced by software coupling stochas-

tic failure/success events (e.g., hardware failures and operators crew actions) with the

continuous-time behavior of the plant process variables, usually captured by a simulation

that solves the differential equations governing the plant physical evolution. Example

of these software are: DYLAM [Cojazzi, 1996], MCDET [Hofer et al., 2002], [Kloos and

Peschke, 2006], ADAPT [Metzroth et al., 2008], ADS [Sheng and Mosleh, 1996], and

[Mercurio et al., 2008]. The latter has been used in this work.
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1.4. Classical and dynamic PRA

A DDET is a tree in which branches may occur at different points in time. A DDET

has three essential characteristics:

• all possible combinations of system states must be considered at each branching

point;

• branchings are performed at arbitrary discrete points in time; and

• the number of sequences can quickly grow if approximations are not applied.

Therefore, the model can be applied in a simulation-oriented framework. The strength

of the model is that the user does not have to specify all possible event sequences at the

beginning of the analysis. Instead, the user must specify a small set of rules and the

simulation generates the event sequences.

The idea of a DDET simulation is to identify branching points or nodes in the system

evolution (i.e., time-points along the simulation at which stochastic events occur), save

the state of the system at each branching point and successively pursue the simulation of

all branches. Branching points can be generated whenever a system, a component, or an

operator action is needed. Each branch represents a possible outcome of the stochastic

event. Simulating the scenario evolution from all branching points allows exploring all

possible behaviors of the system parameters and process variables.

The evolution of a dynamic event tree is shown in the left hand side of Figure 1.3 and

the corresponding evolution of a generic plant parameter is shown in the right hand side

of Figure 1.3. Each path represents a different branch of the scenario. The top of the

left hand side shows the tree after the simulation of sequence 1, whose end state (e.g.,

stable shutdown or plant damage) is determined by the calculated plant process variables

and systems states. In this run, three branching events (represented by undeveloped

nodes) arise and the complete human-machine system state (state of plant parameters,

equipment states, and operator state) is stored for each node. The outcome of a node can

also be multiple like for example when considering timing variability of crew response.
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Once having simulated the first sequence in Figure 1.3, the DDET software returns

to the last node in the sequence (marked ’a’), reloads the overall state and simulates

the sequence 2 to the end state of the undeveloped path. Once again, the end state

is determined by the calculated plant conditions. In this example, no additional events

arise. At this stage, the software returns to the next undeveloped nodes (marked ’b’, ’c’,

’d’, and ’e’ in Figure 1.3), reloads the overall state stored in the nodes and simulates the

resulting sequences up to the end state. The simulation continues until all nodes have

been developed. As one can see in the right hand side, the evolution of the parameters

(in Figure 1.3 only one parameter is shown) is affected by the events occurred during the

simulation. As soon as an event occurs along the scenario, the different outcome can lead

to different parameter behaviors (sequences 1, 2, 3, and 4 in Figure 1.3) or to the same

parameter behavior (sequences 5 and 6). In the latter case, the event marked as ’e’ does

not affect that parameter behavior. But on the other hand, other parameters might be

affected by the same event ’e’.

Fig. 1.3: Example of Discrete Dynamic Event Tree construction (left hand side) with the cor-
responding effect on a plant parameter evolution (right hand side).

A motivation for adopting the DDET approach for the analysis of accident sequences

is that the method can explicitly model and treat the process variables, the time depen-
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dence, and hardware systems. In addition, in the DDET framework an operator or crew

model can be incorporated including variables describing the operator or crew response.

Therefore, in a DDET framework dynamic interactions between plant and operator or

crew can be directly treated.

1.5 Organization of this PhD work

This PhD work has been performed in three main parts: a) development of the DDET tool,

crew model, and post-simulation strategies for the analysis of DDET-generated results;

b) preparation of the input of the system and of the crew model based on the plant-

specific PRA, and generation of scenarios; and c) analysis of the DDET-generated results

for informing HRA and comparison with classical approaches. All these elements of the

work have been performed in an iterative way in order to calibrate and improve both the

system and crew model.

In particular, during the first phase, the model of the plant has been built up with

the aim of modeling the selected case study for the demonstration of the capability of the

dynamic approach; this included the development of the thermal-hydraulic model with

controls, components, systems, and alarms. Then, a crew model based on a procedure-

guided operator response has been developed and implemented in the ADS simulation

environment which has been also improved for the integration of the crew model. Fi-

nally, post-simulation strategies have been developed to handle the great amount of data

generated by the simulation.

In the second phase, the input for both the system (control panel) and the crew

(procedures and rules-of-behavior) has been created. Based on this input, the simulation

tool has been run to generate the DDET scenarios necessary for the analysis.

In the last phase, the DDET-generated scenarios have been used to demonstrate the

capability of the dynamic approach, to obtain insights for HRA through the Performance

Shaping Factors (PSFs), and to compare results from classical and dynamic approaches.
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This dissertation report is organized as follow. In Chapter 2 a literature review of typ-

ical control room operator response and existing HRA and operator models is presented.

In particular the focus will be on models related to the one presented in this PhD work

and on some limitation of the current operator models. In Chapter 3 an overview of the

simulation framework (ADS) and in particular the developed operator model is described.

Chapter 4 describes the methodology developed for the analysis of the DDET scenarios,

i.e., the use of a classifier for classification of scenarios based on similarities and a DDET

parser. Chapter 5 illustrates the case study implemented in this PhD work, the scenario

modeled, and the operator actions implemented in the operator model. In Chapter 6, an

high level overview of the plant parameter evolutions is shown and results are presented

and discussed focusing on their use to inform HRA and comparison with classical HRA

approaches. Finally in Chapter 7 some conclusions are drawn.
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This chapter provides a selected bibliography of the more recent studies on crew per-

formance in NPP training simulators, and classical and advanced dynamic HRA methods.

This review is not intended to be exhaustive but only a selection of the studies closely

related to this dissertation work has been chosen.

In particular, a literature review on how control room crews usually behave in NPPs

during accidents is presented in Section 2.1; this includes a description of the typical

procedure-guided crew response and studies in simulators to understand how crews handle

accidents. Then, an overview of the classical methods for HRA is presented in Section

2.2 underlying the strengths and weaknesses of these methods. Next, in Section 2.3, a

selection of some of the most recent advanced methods for HRA is presented. Finally

Section 2.4 presents the limitation of the current models and the main features of the

model proposed in this work.

2.1 Typical control room crew response

As soon as an abnormal or emergency condition arises in a NPP, the control room crew

is instructed to respond and interact with the system trying to mitigate the potential

undesired consequences. Three types of operator response are considered:

• knowledge-driven: the response of the operator is based only on the operator’s

knowledge and training (i.e., rules-of-behavior);

• procedure-following : the response of the operator depends only on written proce-

dures, i.e., the operator strictly follows them; and

• procedure-guided : the response depends on both procedures and knowledge and

training of the operator who does not strictly follow the procedure, but in addition

cognitive processes guide the response.
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During an accident scenario (as well as during normal conditions) the typical control

room operator response is guided mainly by procedures, i.e., a set of instructions that

the operators must follow during accident situations. In order to examine the operator

performance in control rooms, empirical studies are usually conducted in NPP training

simulators. Data are collected by observing the behavior of control room operators during

emergency scenarios. An interesting point is to examine how control room operators

interpret and use procedures in response to events. Three important works have been

done in this direction, i.e., [Woods, 1984], [Roth et al., 1994], and [Carvalho et al., 2005],

[Carvalho, 2006a], [Carvalho et al., 2006b].

In [Woods, 1984] the author synthesizes some results from several studies of operator

performance during simulated NPP emergencies. Understanding how operators perform

during emergency events is critical to the design and evaluation of human-machine system

interaction. In the work one of the main analyzed issues is how the operators utilize

Emergency Operating Procedures (EOPs) during emergencies. The analysis is based on

a database which collects data about operator performance. In general, EOPs are a

static and sequential list of activities that the operator must perform during the accident.

The analyzed data show that the actual operations are dynamic, i.e., events occur at

indeterminate times, operators can perform parallel actions, and several parameters need

a continuous or semi-continuous monitoring. Therefore, in order to achieve goals within

procedures, a goal controlled approach is usually adopted by control room operators trying

to match the static nature of the procedures with the dynamic nature of the accident

evolution. Controlled approach means that control room operators do not strictly follow

actions contained in procedures but they constantly correct possible errors and control

the step results, through a feedback mechanism. As underlined by Woods, operators have

to understand how the various steps of procedures work together to produce intended

effects.

In [Roth et al., 1994] data from training simulators of two plants running an Interme-

diate System Loss Of Coolant Accident scenario are collected. They analyzed results to
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identify situations where higher-level cognitive activities take place to deal with situations

not fully addressed by the procedure. The results of the study supported that crew sit-

uation assessment and response planning continue to play an important role, even when

EOPs are employed. They argue that there are mainly two approaches in the study of

procedure response by control room operators during emergency scenarios. The first one

is that operators strictly follow EOPs, i.e., they just have to be able to read and follow

each step in the EOPs. The second one is that a higher-level cognitive activity plays

an important role in following EOPs. The role of the situation assessment and response

planning is quite important even if EOPs are employed because they enable the crew to

identify and deal with situations not fully addressed by the procedures. The main result

of the study conducted by [Roth et al., 1994] demonstrates that the operator performance

during emergency scenarios is guided by a higher-level cognitive activity, such as situation

assessment and response planning in performing EOPs. During the scenario evolution,

several crews recognized that some of the steps in the procedure were inappropriate to the

situation and should not be followed and they performed the response based on knowledge

and training.

Finally, experiments conducted in a real control room during micro incidents [Car-

valho et al., 2005], [Carvalho, 2006a], and [Carvalho et al., 2006b] demonstrate that there

are limitations in strictly following procedures by control room operators. In fact, they

argue that procedures do not consider the variability of individuals, the application con-

ditions are not always well defined, the procedure will not be always used in the right

moment, the design of the procedures cannot consider aspects like habits, culture, sociol-

ogy aspects, of the crew, and finally procedures refer to ideal situations modeled by the

designers. The procedure approach is static and ignores the dynamic characteristic of

the work activities. There are situations where the operators decide to accomplish their

scheduled tasks rather than following test procedures; therefore, operators use analogies,

cooperation, hypothesis test, tacit knowledge to solve their problems in unfamiliar situa-

tions, rather than standard operational procedures. In other words they use training and
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experience. Indeed work is often accomplished through a dynamic redistribution of tasks

or roles, involving interactions between individuals, in a cooperative, opportunistic, and

situated way.

As the three studies show, the key point is the interpretation of the procedure steps

based on the cognitive assessment on the plant situation. The dynamics of the plant

are important to be taken into consideration when following procedures. Therefore, real

control room operators do not strictly follow procedure but in addition to the procedure-

following response they use their knowledge and training to perform each procedure step.

In the context, advanced methods for HRA that try to capture the pattern of a typical

control room operator response during accidents have been developed in the last decades.

Those methods, presented in Section 2.3, are based on the so-called first generation HRA

methods introduced in Section 2.2.

2.2 Classical treatment of human performance

In current PRAs, the propagation of an accident scenario from an IE is analyzed in two

major steps [USNRC, 1975]. First, event trees are used to model the scenarios based

on success and failure of safety systems and operator actions, then the likelihood of the

scenario and the probability of the occurrence of the top events is quantified using fault

trees.

The purpose of HRAs is to estimate the likelihood of particular human actions not

being taken when needed, or other human actions that may cause hazardous events (by

themselves or in combination with other conditions) occurring. Failures to take actions

to prevent and cause hazardous events, are commonly called "human errors" in HRA.

HRA methods are some structured approaches that aim at estimating the probability of

failure for a given action. However, this estimation needs to take into account the work

environment and task conditions under which the work is done, since these can provide

an important influence on the likelihood of errors.
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Human reliability analysis employs a set of tools to estimate the likelihood of required

human actions being performed when needed. These likelihoods can then be incorporated

into the overall risk assessment, so they can be combined with other probabilities in the

fault/event tree framework, such as those of equipment faults and other hazardous states,

to estimate the overall likelihood of hazardous events.

An exhaustive description of the currently used HRAmethods can be found in [Forester

et al., 2006]. Those methods are:

• Technique for Human Error Rate Prediction (THERP) [Swain and Guttmann, 1983];

• Accident Sequence Evaluation Program (ASEP) HRA Procedure [Swain, 1996];

• Human Cognitive Reliability (HCR)/Operator Reliability Experiments (ORE) Method

[Hannaman et al., 1986];

• Cause-Based Decision Tree (CBDT) Method [et al., 1992];

• Electric Power Research Institute (EPRI) HRA Calculator [Julius et al., 2005];

• Standard Plant Analysis Risk HRA (SPAR-H) Method [Gertman et al., 2005];

• A Technique for Human Event Analysis (ATHEANA) [ATH, 2000];

• Success Likelihood Index Methodology (SLIM) Multi-Attribute Utility Decomposi-

tion (MAUD) [Embrey et al., 1984];

• Failure Likelihood Index Methodology (FLIM) [Chien et al., 1988]; and

• A Revised Systematic Human Action Reliability Procedure (SHARP1) [Wakefield

et al., 1992].

Many of these HRA models are based on either time-reliability curves or simple infor-

mation processing models, such as a signal-organism-response model. The level of task
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decomposition is more closely associated with the type of action than the underlying pro-

cesses driving the operator behavior. Therefore, these methods are limited in their ability

to fully account for contextual factors and additionally have some limitations summarized

as: they do not provide strong basis for the calculation of error probabilities, they are

analyst-dependent, they do not explicitly consider the context where the operator actions

are taken, and the mutual interaction between operators and plant and vice versa is not

addressed.

Advanced methods should include various needs and requisites like: a) better explana-

tory (causal) models, b) more explicit role for context both in error identification and

probability estimation, c) more scientific basis for selecting and measuring PSFs, d) more

formal use of knowledge accumulated in the behavioral sciences, e) reduced reliance on

expert judgment, f) more realistic representation of the dynamic of human-system inter-

actions, g) traceability, consistency and repeatability. Therefore, advanced methods must

be able to mainly identify the human response in the PRA context, estimate the failure

probability of the response, and identify the causes of errors to support the development

of preventive measures.

2.3 Operator models

In this paragraph a set of operator models is described. The models here described do not

completely cover the entire spectrum of the existing models and they cover only several

of the ones in the nuclear field. The models cited in this chapter are briefly described in

Appendix A.

So far, a number of operator models have been developed in HRA. One of the first

models for human-machine system analysis was the task simulation developed by Siegel

and Wolf [Siegel and Wolf, 1969]. The model focuses on tasks that have to be performed

by operators in a given available time. A typical characteristic of task simulations is

that they do not model the plant behavior in the human-machine system and the tasks
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generally depend on the system design. This means that tasks and available time to

perform certain tasks depend on the pre-analysis of the system. Task simulation is the

base for a number of models developed for aircraft crew and NPP crew simulation. A

model developed in the nuclear field is MICROCREWS that simulates the flow of actions

following tasks across time in a NPP.

Extensions of task simulation are models still based on task simulation in which the

plant behavior in the human-machine system model is explicitly treated. This family

includes models such as PROCRU and INTEROPS. In both, the operator model considers

the knowledge-bases capabilities for fault diagnosis, situation assessment, decision-making

process, and procedure generation. In addition, two other important models have been

developed in the last years and they have been implemented in MCDET and ADAPT

framework. In both of them, the model implemented is based on a procedure-based

operator response and the knowledge-driven operator response is not included.

The bulk of operator models are based on cognitive models. These models introduce

features to represent the cognitive mental state of control room operators. Examples of

these are CES, COSIMO, NPPCREW, JAERI, IDAC , DETAM, OPSIM, and SYBORG.

In several of them, such as OPSIM, NPPCREW, DETAM, and IDAC, the procedure-

following responses are also partially handled.

The development and the use of a particular human-machine system model depend

on the context where it has to work and on the scope that it has to address. In situations

where only set of tasks have to be performed models like task simulation are accurate; on

the other hand, situations in which a direct human-machine system interaction is required,

more sophisticated models are needed.

The application of a particular operator model depends also on the scope to be han-

dled. For example if the scope of the operator model is to simulate the communication

between members of a crew PROCRU model is appropriate or if the scope is to simulate

the interaction between operators and environment, models like MIDAS, or IDAC are

adequate. Table 2.1 summarizes the scope of different operator models with a relative
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Table 2.1: Summary of the scope of different operator models.

Scope Description Operator model
Communication Communication process

among the members of a crew
PROCRU

Interaction Interaction between operators
and environment

MIDAS, SYBORG,
IDAC, TBNM

Operator’s behavior Behavior of a single operator
during abnormal conditions

CES, COSIMO,
OPSIM

Procedure-following response Written or mental procedures
guide the response of the oper-
ator

Task simulation,
MICROCREWS,
MCDET, ADAPT

Cognitive behavior Cognitive behavior based
on both rule-based and
knowledge-based response

PROCRU,
NPPCREW,
JACOS, IDAC

Rule-based behavior Cognitive behavior based on
rule-based response

PROCRU, DE-
TAM

Knowledge-based behavior Cognitive behavior based on
knowledge-based response

CES

Timing of nominal action Execution of an action at nor-
mal time and different than
normal

Task simulation

Procedure-guided Human behavior based on
the combination between
procedure-following response
and knowledge and training of
the operator

IDAC (partially)

short description. Notice that the same model can address different scopes.

In the next Section a small set of operator models strictly related to the one developed

in this PhD work are presented, i.e., DETAM, MCDET, ISA, and ADAPT.

2.3.1 Dynamic Event Tree Analysis Method (DETAM)

The Dynamic Event Tree Analysis Method (DETAM) for accident sequence analysis al-

lows a general treatment of the integrated response of a NPP and its operations to an

Initiating Event (IE) [Acosta, 1991] and [Acosta and Siu, 1993]. DETAM is a generaliza-

tion of the Dynamic Logical Analytical Methodology (DYLAM) [Cojazzi, 1996].
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The DYLAM methodology is a tool for integrating deterministic and probabilistic

failure events; the first version has been implemented in 1981 [Amendola and Reina,

1981]. The basic idea of DYLAM is to provide a tool for coupling the probabilistic and

physical behavior of a system for reliability analysis. The physical part of the system is

contained in a numerical simulation whereas the components of the system are modeled

in terms of working state (success, failure, stuck open, stuck close, etc.). The simulation

is driven by the history of the states of the components which have random transition

during the evolution of the scenario. The top conditions of the system can be analyzed

in terms of values of process variables. The main characteristic of DYLAM is to follow

different paths resulting from the initial states of the components and from transitions of

the component states and to drive the simulation.

The generalization of DYLAM consisting in the implementation of an operator model

in the DYLAM framework is DETAM. In fact, if the plant state is described in terms of the

hardware states and process variables only, DETAM is similar to DYLAM. The difference

between DETAM and DYLAM becomes evident if the operator crew is considered.

In the DETAM approach, the plant process variables and the operators’ understanding

affect each other during the evolution of the scenario events. In fact, a) the plant process

variables linked to the operators’ actions determine the timing of events; b) the plant

process variables lead to different required actions; and c) the operators’ actions lead

to changes in the process variables. In addition, the operators’ understanding of the

current accident evolution may affect the likelihood of future actions. In DETAM, the

operators’ understanding is called crew’s "diagnosis state". Supported by experimental

studies described in [Itoh et al., 1990] the operator’s mental model during simulation

exercises might be mapped in a two-dimensional matrix; the first dimension corresponds

to the diagnosis state whereas the second dimension corresponds to the actions that the

operator (or the crew) is planning to take. In addition in order to characterize the crew

a third state, i.e., the crew’s quality state, characterizes the ability to perform tasks.

The crew’s quality state models the influence of Performance Shaping Factors (PSFs) like
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stress. This third state model has not been implemented but only theoretically considered.

The crew diagnosis state considers the operators’ understanding of the past and current

conditions. DETAM defines the diagnosis state in terms of operators’ understanding and

state of five safety functions. The operators basically monitor the five safety functions

and based on their evolution and value they draw conclusion about the current scenario

(steady state, SLOCA, SGTR, etc.). A high level diagram of the diagnosis state is shown

in Figure 2.1. Note that simple rules can be assigned to model the likelihood of incorrect

diagnosis.

Fig. 2.1: Diagnosis state mental model in DATAM.

The crew planning state refers to a set of actions that the operators are planning to

take. In DETAM, the set of actions are closely relates to actions within procedures. Other

actions are treated in a very limited way. There are two levels of states, i.e., the procedure

sub state and the procedure step sub state. The first specifies which emergency procedure

must be followed and the second one indicates the step in the followed procedure. The

transition between the procedures depends on the indication within the procedure step

whereas transition between procedure steps are guided by the procedure. In DETAM

the probability to skip procedure steps is also implemented. Figure 2.2 shows the crew

planning state mental model at a very high level.

For a DDET point of view, DETAM and in particular DYLAM is a very powerful

model and it has drawn the basis for the further DDET models. As pointed out by the

authors, one of the bottlenecks of the model is the quantity of generated scenarios. This
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Fig. 2.2: Crew planning state mental model in DATAM.

issue has been considered and solved in this dissertation project and it will be further

explained in Section 3.1.4.

2.3.2 Monte Carlo Dynamic Event Tree method (MCDET)

The MCDET method is a combination of Monte Carlo (MC) and Discrete Dynamic Event

Tree [Kloos and Peschke, 2006]. MCDET is linked to a deterministic code (MELCOR)

that solves thermal-hydraulic equations. In MCDET both the aleatory (stochastic) and

epistemic (state of knowledge) uncertainties are treated. In MCDET usually the discrete

variables are treated by the DDET whereas the continuous variables are treated by MC.

The number of sets is n. For each set of values provided by the MC, a DDET is generated

in MCDET. The diagram of the MCDET simulation is shown in Figure 2.3.

The authors of MCDET underline that the tool is capable of accounting any deter-

ministic or random transition in time and space. If random transitions have only discrete
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Fig. 2.3: MCDET simulation diagram.

alternatives, MCDET keeps track of all the alternatives and generates a DDET. If also

transitions are associated with continues variables, MCDET uses MC to generate alterna-

tives and produces a random sample of DDETs. In order to keep the computational effort

practicable, a probabilistic cut off criterion is introduced, i.e., the conditional probability

of the sequence is less than a certain threshold then the sequence is cut off.

Recently within the MCDET framework, a crew module has been added as described

in [Peschke and Kloos, 2008a], [Peschke and Kloos, 2008b]. The combination of the crew

module and a deterministic dynamics code is capable of handling the interactions within

operators, hardware, and the physical process. Coupling the stochastic module MCDET

to this combination provides a simulation tool that is able to account for stochastic in-

fluences on the dynamics of the complex system, and, vice versa, for the influence of the
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dynamics on the stochastic.

In the MCDET framework, a scheduler organizes the interaction between crew, hard-

ware, and plant. In order to build up the DDET, the scheduler first calls the routine which

sets the initial and boundary conditions (initialization of the scheduler items). Then, de-

pending on the condition, the deterministic dynamics code or the crew module routine

is activated calculating the first DDET sequence. If there is a branch to be generated

due to either human actions or hardware components, MCDET selects the branch to be

calculated next whereas the information of all other branches, which still have to be cal-

culated, is kept in memory according to a first-in-last-out structure. If there is not any

branch left to be calculated, the DDET is completed. The construction of a new DDET

starts with the activation of the MCDET routine which provides the initial and boundary

conditions.

The human actions modeled in MCDET are mainly based on procedures. MCDET can

be seen as a task simulation methodology where the human actions are modeled according

to the task the operators have to accomplish. A model for the implementation of Human

Error Probabilities (HEPs) is also included in the MCDET framework. As the authors

argue, the crew module of MCDET focuses on the consequences (actions, communications)

of a prevalent mental state and cognitive behavior and does not explicitly model mental

and cognitive processes. It permits situation-dependent sequences of human actions to

be run as they are expected for a dominant cognitive behavior. PSFs such as stress,

knowledge, or ergonomics are considered as dynamic quantities that change in the course

of time.

2.3.3 Integrated Safety Assessment methodology (ISA)

The Integrated Safety Assessment (ISA) methodology was first developed in 1993 [Izquierdo-

Rocha and Sanchez-Perea, 1994]. Further developments of the model can be found in

[Munteanu and Aldemir, 2003] and [Queral et al., 2004]. The model is based on three
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main elements: a plant simulation code, a computerized procedure system, and an in-

terface module between plant code and the procedures. The entire model is based on a

dynamic generation of event trees.

The dynamic event tree generation was developed in 1999 by the Spanish researchers

Munoz, Minguez, and others. The tool was called DENDROS (Dynamic Event Network

Distributed Risk Oriented Scheduler), was developed mainly to model response of safety

features to a transient for Level 1 PRA and is a discrete event processor, managing mes-

sages coming from different calculation modules including the physical system simulator

and decision processes. It is designed for a distributed computing environment using a

network of processors exchanging information through an independent channel. During

a simulation, the scheduler makes a decision about the need to create new processes if a

setpoint is crossed (branching point), changes the already running processes to stand-by

state for later reuse, or even forces some non-active ones to terminate based on the end

conditions, such as probability falling below a user-specified cut off value. Whenever a

branching point is detected, a request is sent to the decision module in order to know

whether a simulation of the resulting possible sequences is needed. Then, the decision

module computes the probability of the sequence either from given data or fault trees in

the form of binary decision diagrams, and compares it with the cut off value to complete

the decision.

The plant model is based on the TRETA code (Transient Response and Test Analyzer)

linked to DENDROS [Munoz et al., 1999]. TETRA is a simulation system able to simulate

all the plant systems including controls, protections, and balance of the plant. Within

TETRA a module which simulates the thermal-hydraulic of the plant is included. The

module models the plant process behavior based on a single and two-phase regime.

The procedure following system is based on COPMA-III developed at the Halden Re-

actor Project. It is a support system which guides the operators during the execution of

the emergency procedures. COMPMA-III basically models the set of procedures imple-

mented by the analyst depending on the event under analysis. The procedure system is
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then connected via buses to the thermal-hydraulic plant model.

As one can understand, the ISA methodology is mainly based on a procedure-following

model meaning that no cognitive activities are modeled.

2.3.4 Analysis of Accident Progression Tree methodology (ADAPT)

The Analysis of Accident Progression Tree (ADAPT) methodology has been developed

in the DDET framework [Metzroth et al., 2008], [Hakobyana et al., 2008]. ADAPT gen-

erates a DDET controlling the evolution of the scenario under consideration and creating

branches specified by the user through rules. ADAPT can execute several scenarios, in

particular any severe accident and any type of simulator as long as it is possible to pro-

duce a text input file and the simulation can be stopped and restarted any time during

the evolution.

In the ADAPT framework, in addition to rules related to hardware components,

branching rules related to human actions can be introduced. In this way, the effect

of the operator actions on the scenario evolution can be seen in the generated scenario.

The human actions incorporated in ADAPT are related EOP actions.

In order to get branching probabilities for the human actions, the SPAR-H model

[NUREG/CR-6883, 2005] has been used. SPAR-H breaks down the HEP into two com-

ponents whose probabilities are treated separately: diagnosis component and action

component. Within each component PSFs are used to account for specific variabilities.

Even if in principle any thermal-hydraulic code can be used, currently for the thermal-

hydraulic part, MELCOR Severe Accident Analysis Code in used. The model so far has

been applied in a PWR NPP with Westinghouse EOPs.
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2.4 Limitations of current operator models

As already underlined in Section 2.1 the dynamics of the plant are important to be taken

into consideration when following procedures. Therefore, real control room operators do

not strictly follow procedures (which are static by nature) but in addition to the procedure-

following response they use their knowledge and training to perform each procedure step.

Thus, in the context of modeling the operators’ behavior during accidents in NPPs both

the strict procedure-following approach and operator knowledge and training must be

considered.

In classical HRA analyses and in the literature review performed in this PhD thesis,

models that explicitly consider both the procedure-following operator response and the

cognitive response based on knowledge and training have not been indentified. They

mainly focus on models that strictly follow procedures. For example, the operator model

implemented in DETAM, is a good starting point for further analysis. It must be pointed

out that the tasks considered in the application of the model are not very different with

regard to the ones considered in the conventional PRA. In particular the calculation of the

available time windows is done by the analyst and it is used to develop the understanding

of the crew behavior during the evolution of the scenarios. In addition, there is not a

casual model of the operator behavior; the analyst supplies the likelihood of the operator

state transitions.

In MCDET and ISA, the main focus is the procedure-following operator response.

There are not features that involve operators’ understanding and training. The same

apply for ADAPT. In addition, ADAPT has been developed for a Level 2 PRA analysis

whereas in this dissertation work the main focus is the Level 1 PRA where the operators

have to interact with the plant in order to avoid the core damage.

Several needs are important when developing an HRA model which are lacks in classi-

cal HRAmodels and advanced dynamic models. In particular, the following considerations

are regarded as quite important:
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• explicit role of the context in error identification and probability estimation;

• inclusion of recovering actions in the model;

• formal procedures as a base for the modeling of the operator response;

• formal use of the knowledge and training of the operators from simulator studies;

• realistic representation of the dynamic nature of the human-system interaction;

• estimation of the response probability; and

• identification of causes of errors to support the development of preventive or miti-

gating measures.

Most of the conventional and recently developed HRA methods are at the behavioral

(procedural) and contextual (static or quasi-static) level whereas the conceptual (cogni-

tive) level has been in part neglected. A model-based approach which goes in the direction

of covering the three previous levels is challenging and still needed.

In this direction, the existing ADS-IDAC model is trying to encapsulate in the model

the three levels just described. The main issues that the operator model developed in

this dissertation work is the ability to model in addition to the strict procedure-following

response the capability to implement rules which take into account the operators’ under-

standing and knowledge and training. This model uses the previous developed ADS-IDAC

model [Chang and Mosleh, 2006a,b,c,d,e], [Coyne, 2009] as s basis for the development of

the operator model in this study which it is further described in Chapter 3.

The results, further presented in Chapter 6, show the ability of the tools and of the

methodologies developed in this PhD work to model the crew-system response in an

accurate way, i.e., close to the typical crew-system response in a typical control room,

and to obtain insights for HRA. Therefore, the developed operator model embedded in

the ADS software tool is able to model the operator response combining the use of plant

procedures, mental procedures, and "rules" based on training.
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Model of crew response
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This Chapter introduces the model of the crew response and the implementation of

it in the DDET framework. In particular, in Section 3.1 the main features of the con-

ceptual crew model are presented. Then, in Section 3.2 the implementation of the crew

model in the ADS framework is shown. Afterward, in Section 3.3 the application of the

timing methodology for the current operator model is described. Finally, in Section 3.4 a

summary of the arguments presented is drawn.

The main objective of this Chapter is to present the crew model focusing on the main

characteristics important to support HRA. Additionally, another goal is to show how the

crew model is embedded in ADS, what are the main features, and its application on a

test case.

3.1 Main features of the conceptual crew model

A general approach of a control room operator response is based on a cyclical model as

described in [Hollnagel, 2003]. The model shows how the performed actions depend on

the current situation understanding which depend on the occurred events which in their

turn depend on the feedback on the performed action.

The conceptual operator model is composed by four main blocks: perception, situation

assessment, response planning, and execution (Figure 3.1). The perception block manages

the process of acquisition of information from the plant through the control panel. The

information can be alarms, particular components state, or plant behavior. The second

block is the situation assessment. In this block, goals and strategies are identified based

on the perceived information. In this block, the perceived information are registered and

stored in the memory. Based on the perceived information, the operator can take decisions

which are based on stored rules coming from previous successful experiences. The third

one is the response planning block. In this block, the strategies and the identified goals are

set. The strategies could be for instance following emergency procedures, perform mental

procedures, or response based on training. Then, in the execution block the identified
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goals and strategies are performed through actions. The execution of actions, will affect

the subsequent perception, situation assessment, and response planning along with new

perceived information coming from the plant.

Fig. 3.1: Cyclical model of operator response.

In the context of the strictly procedure-following response, the operator model has

just to follow steps in the procedure and the situation assessment and the understanding

on the system are not considered. Once the action in the procedure is taken, the next

procedure step or set of procedures have to be performed until the end of the procedures

is reached.

The operator model in this work follows the directions argued by the studies based on

typical training of control room operators. According to those studies (Section 2.1), the

operators’ performance during emergency scenario is guided by a higher-level cognitive

activity based on a knowledge-driven response. The operator’s response is driven therefore
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by procedures and by the operator’ situation assessment on the system directs the action

to be taken, i.e., the so called procedure-guided response.

Therefore, the operator model developed in this work is based on both procedure-

following response and knowledge and training response and it is modeled in thy cyclical

model.

3.1.1 Procedure-following operator response

Procedures are composed by different tasks where the operators are instructed to achieve

some goals. For instance, a goal could be the depressurization of the system to a certain

pressure level, or the cooldown of the system, or some checks to transfer to a particular

procedure if one or several criteria are verified. A task is then constituted of different

procedure steps designed for accomplish the goal within the task.

Typically, accidents in NPPs, are classified in two groups: design-basis accidents and

beyond-design-basis accidents. In case of design-basis accidents, the management of the

accident within the plant is carried out with the aid of operating manuals or procedures.

When the cause of the accident can be identified, accident management is undertaken

with the guidance of event-oriented procedures. At the same time, critical safety func-

tion criteria are monitored to ensure the safety of the system. These criteria represent

safety relevant conditions that must be maintained in order to preserve the plant in safe

conditions within the design-basis. If one or more critical safety functions are challenged

or violated it is restored by initiating the symptom-oriented accident management. The

symptom-oriented procedures always have priority over the event-oriented procedures

during the execution of accident management measures.

The interaction between event-oriented accident management and the continual critical

safety function monitoring is specified in the operator response guide. The operator

response guide also serves to direct the operator to the beyond-design-basis operating

manual if the design-basis event symptom-oriented measures are insufficient to guarantee
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that the critical safety functions are fulfilled.

The beyond-design-basis operating manual is structured in the same way as the symptom-

oriented section of the design-basis operating manual. In the beyond-design-basis area it

is legitimate to operate plant systems or system components beyond their original design

specifications or they may be used for purposes other than originally planned. The ma-

jority of the beyond-design-basis procedures concentrate on preventive measures. Most

of the procedures have been written in order to prevent core melt and to ensure that the

core remains within the reactor pressure vessel.

This study will focus on both design-basis accidents and beyond design-basis accidents

for a typical PWR power station, depending on the scenario evolution based on the failure

of one or more components.

A typical procedure step is represented in Figure 3.2. In that example, operators are

instructed to check the reactor level and if it is larger than a certain value X, have to

actuate system 1. Then, after that, they have to check again the reactor level and if it is

larger than Z they go to the next procedure step, otherwise they loop back, they check

the system 2, and they re-check the reactor level. However, if the level was not larger

than X at the first check, they have to see whether the level is larger than Y, then they

have to close valve 1 and check the system 2. Afterward, they have to loop back and

check again the reactor level and see whether it is larger than X. And so forth.

Two main issues are important to mention at this stage. The first one is the interaction

between the operators and the plant (close valves, actuate systems, etc.) and the second

is the dynamic of this process. In fact, the time necessary for the operator to check the

reactor level, actuate the system 1 a re-check the level influences the successive scenarios

evolution. If they are too fast, the reactor level has not yet reached the level Y and

therefore the operators have to loop back and redo the procedure steps whereas if they

are slower, the second criterion of the reactor level larger that Y is met and they transfer

to the second procedure step. Therefore, the dynamics of the human-machine system

interactions are important to be assessed and depending on when they occur the next
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phase of the scenario might change. Evaluation of these interactions is important for

HRA and they must be taken into consideration for dynamic PRA evaluations.

Fig. 3.2: Block diagram representation of a typical procedure step of nuclear power plants.

3.1.2 Operator knowledge and training

A typical approach for the development of a conceptual operator model based on opera-

tor’s knowledge and training is to follow the Rasmussen’s SRK three-level action model,

which divides all the human actions in a system into three categories of skill-base (S),

rule-base (R) and knowledge-base (K) [Rasmussen, 1983].
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Skill-based behavior is to indicate a close relationship between information input and

the response of time. A skill-based response is usually performed shortly in time and it

does not depend on the complexity of the given task.

Rule-based behavior is to identify actions controlled by a group of rules. It differs

from the skill-based behavior mainly because of different levels of understanding of the

practices.

Knowledge-based behavior is activated when new unknown situations occur and the

operators have to handle them based on their knowledge and experience. Because of the

limitation of their experience and knowledge on these situations, errors are more likely to

occur than in the other types of categories.

In the operator model developed during this work the second type of behavior is

considered. In fact, a rule-based response is typically executed by NPP operators for

mainly two reasons: unknown situations are very unlikely to happen because of the high

level of operator expertise due to exercises in simulators; on the other hand operators

do not immediately respond to cues coming from the plant but they use a controlled

mechanism before taking actions.

The modeling of a rule-based response is done by using a direct matching mechanism

where a certain operator response (execution) is activated based on rules (Figure 3.3).

The input from the plant activates a certain rule (Rule 2 in Figure 3.3). Based on the

instructions in the selected rule, a certain execution is done. For instance, if the operators

perceive that the subcooling margin in the plant is reaching zero, the execution could be

to activate or increase the injection of water. The input-execution process is coded in the

rule.
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Fig. 3.3: Representation of the activation mechanism of rules. The perceived input activates a
certain rule (Rule 2) and the execution is performed.

In general, rules are based on experience or can be based on mental procedures. Men-

tal procedures are procedures which are memorized by operator due to their training.

This means that operators know what they have to do following the procedure but not

physically opening it but relying on their memory.

3.1.3 Crew model response

In this work, the crew model is composed by three operators:

• the decision maker (representing the shift supervisor). The decision maker is the

operator who reads the procedure, manages the incoming information from the

plant, and handles the response;

• the action taker (representing both the reactor operator and the auxiliary reactor

operator). The action taker is the person who executes actions based on the input

from the decision maker. The action taker is also able to process particular infor-

mation in the same way as the decision maker (i.e., mainly checking the system

information by himself/herself); and
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• the safety engineer. The safety engineer is in charge of controlling the safety func-

tions.

The flow of communication between decision maker, action taker, and plant is a loop as

follow: decision maker –> action taker –> plant –> action taker –> decision maker (there

is not the decision maker in case is the action taker who check the system information).

The inclusion of the safety engineer in the crew model allows the control of the safety

functions which are important for the transfer to the Severe Accident Management Guide-

lines (SAMG). In fact, during the scenario evolution after IEs, the safety engineer has to

continuously monitor the safety functions which have high priority. This means that as

soon as they are violated according to plant-specific criteria, the operators have to stop

the EOPs and they have to transfer to the SAMG. Even if the scope of this PhD work

was the Level 1 PRA, this feature would allow the modeling of the operator response for

Level 2 PRA extending the capability of the model.

The features introduced or further developed in the current crew model focus on the

procedure-guided operator response model. The focus for the model development is the

capability of using the ADS tool and the embedded crew model as a mean for obtaining

HRA insights, i.e., how to use dynamic HRA models to improve the HRA as opposed to

classical models, through a specific case study.

In order to explore different types of operator behaviors, a mechanism for crew vari-

ability has been developed. In particular, variability can be considered on the type of the

operator response (start either one or two trains of a system), on the procedure steps to

be followed, or on the response time. The crew model has a decision mechanism accord-

ing to which strategies are decided based on the perceived information. This modeling

of different decisions can be directly implemented in a DDET framework where different

outcomes of an event can be followed.
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3.1.4 Crew timing variability

In this PhD work an approach to deal with timing variability has been developed. In

particular the approach is based on the concept of crew "tendency" which will be described

in the next sections and it has been verified against a set of data from a NPP simulator

study [Lois et al., 2008].

Performance time in DDETs

In a Monte Carlo framework, the time to perform a series of tasks is obtained by sampling

from each of the distributions. The implementation of this approach in the DDET needs

to address two related issues. The first is the appropriate discretization of the task dis-

tributions. Increasing the number of bins for each task distribution increases the number

of branches, and by this the computation time. The second issue is whether there is an

adequate representation of the "tails" of the distribution for a series of tasks or the overall

task. Typically, there is interest in the probability of slow performances (long overall task

durations) that may be "too late". However, fast performances may also be of interest

because these crews may face (and/or contribute to) different scenario conditions; the

corresponding scenarios may diverge from the typical scenario conditions and need to be

analyzed.

Ensuring coverage of the tails requires that the Discrete Probability Distributions

(DPDs) for task durations include bins towards the outliers (slow or fast values). More-

over, the scenarios involving slow (or fast) performance on several tasks may be truncated

due to their low probability. Indeed, very slow and very fast overall performances are

expected to be outliers. The challenge is to adequately represent these performances that

are significantly faster or slower than the average, due to their relevance for safety.
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Performance time data

To determine the appropriate number of DPD bins for the performance time distributions

of individual tasks and to evaluate the coverage of the time performances for the overall

task, data from a NPP simulator study were used. The performance time values for two

tasks were extracted and (continuous) probability distributions were fitted to this data.

Individual task distributions Similar to [Coyne and Mosleh, 2008] a Weibull dis-

tribution with scale parameter α and shape parameter β is used to represent the time

performance for each task. The Weibull distribution has been chosen because it is defined

only for positive values and changing α and β produces many shapes of distributions which

can be used to fit the available data. For tasks defined at a level of detail appropriate for

the analysis of NPP scenarios, a minimum value of the response time is suggested by the

data and is consistent with realistic performance conditions and crew task loads. This

minimum, which will depend on the task and context, can be modeled as an offset value.

Table 3.1 summarizes the α, β and the offset values calculated from the available data.

The Cumulative Distribution Function (CDF) for the Weibull fit for Task 1 of the two

tasks is shown in Figure 3.4, with and without the offset representing the minimum value.

It can be seen that, without the offset, the distribution is shifted as a whole to the left

and tends (in this case) to underestimate the probability of the longer performance times.

Table 3.1: α and β parameters from the two task distributions.

α β Offset
Task 1 351s 1.4 200s
Task 2 301s 1.7 200s
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Fig. 3.4: Weibull fit of Task 1 performance time data. Empirical data from [Lois et al., 2008].

Distribution for the overall or joint task The DDET modeling of performance

time variability includes the selection of the number of bins and the probability of the

bins (equal probability bins or other alternatives). To verify that the DDET modeling

is appropriate, a distribution for the performance time of the joint task is needed. The

DDET treatment of time variability should reproduce this joint task distribution.

A distribution for the performance time of the joint task can be obtained empirically

by adding the performance times of each crew for Task 1 and Task 2. An alternative

is to generate the joint task distribution using the distributions of the individual tasks,

since the number of performances (crews) is quite small. The MC approach was used to

generate a joint task distribution. In this MC-based task simulation, only the distribution

function of the crew response without considering the response of the plant is considered.

The results plotted in Figure 3.5 show that the joint distribution obtained in this way

significantly underestimates the probability of large performance times compared to the
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empirical data.

Fig. 3.5: CDF for the performance time of the joint task obtained using MC (dotted line) and
empirical data (o) [Lois et al., 2008].

To determine whether the two outlier performances in the empirical data, shown in

Figure 3.5, could be due to a correlation between the performance time of the first task

and the second task, the empirical data were analyzed in terms of correlation. The data

were first normalized using the Formula (3.1):

xn =
x− µX
σX

(3.1)

where, xn = normalized data, µX = mean of the data set (X), and σX = standard

deviation of the data set. The correlation coefficient ρX,Y of 0.61 supports that there

is some correlation. In Figure 3.6, where the correlation between Task 1 and Task 2 is

shown, it can be seen that this was particularly strong for the slow performances. In other

words, the same crews produced the slowest performances.
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Fig. 3.6: Correlation plot between crew timing performance data of Task 1 and Task 2.

This cannot be generalized to conclude that those crews that are slow on the first

task will always produce the slower performances on subsequent tasks (and conversely for

the faster crews). On the other hand, sampling the performance times of the individual

tasks independently ignores the correlation in the data. Independent sampling would

tend to regress to the mean and underestimate the values towards the ends of the joint

task distribution. Obtaining a correct distribution of the performance time for the joint

task (or a series of tasks) requires that the correlation among the task performances is

considered.

Modeling the correlation in terms of crew tendencies

To represent the correlation, the time performance distribution for a single task was

postulated to be a combination of sub-distributions, representing groups of crews.

To determine the parameters of the sub-distributions, the performance data were
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analyzed further. First, the performance of each crew has been expressed as a percentile

of the CDF for each task. This gives an idea about how each crew performs with respect

to the other crews in the single task. These percentiles of the CDF for the two tasks

were plotted, with the crews ordered based on the average of their percentiles on the two

tasks, as shown in Figure 3.7. As was already seen in Figure 3.6, the two slowest crews

produced the slowest performances for all tasks. However, this cannot be generalized,

especially when the fast crew performances are considered. Many crews (4th, 5th and

6th) that are among the fastest on one task have a value significantly above the median

on the other task.

Due to the correlation, the sub-distributions cannot be obtained by partitioning the

data for individual tasks in terms of subgroups. Instead, the performances of the crews

across the tasks have to be considered. The crews have to be grouped in terms of their

overall performance (on all tasks) and task distributions are obtained for these groups.

Although the correlation among the fast performers is not as marked as it is among the

slow performers, a group of fast crews was defined with the aim to have a general approach

to treating the tendencies. In other cases, for instance, the fast crew performances may

be correlated more strongly than the slow crew performances. In this case, the first three

crews have been defined to define the fast tendency or group of crews and the last three

as the slow group. The remainders have been considered as intermediate.
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Fig. 3.7: Crew time performance on the two tasks, as percentiles of the CDFs for the individual
tasks.

Task time performance tendencies and sub-distributions The sub-distributions

for the three groups of crews or crew tendencies are obtained by fitting Weibull distri-

butions to their task data. To obtain the sub-distributions, the performance data is

partitioned according to the crew groups and fit separately. For instance, to get the α

and β for the fast distributions, data from the three fast crews have been used for each

task. The same applies for the intermediate and slow distributions.

Figure 3.8 shows the resulting distributions for the tendencies compared with the

overall distribution in terms of probability densities for Task 1. It can be observed that

all three sub-distributions have substantial mass on the lower values, although the fast

and intermediate groups of course have more mass there. Also, the slow group has a

significant mass in the low end of the range whereas the fast and intermediate groups

have no mass at the high end of the range.
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Fig. 3.8: Probability density functions (Weibull) for Task 1: overall distribution (thin full line)
and decomposed into three sub-distributions representing the group tendencies.

The calculated α and β parameters are shown in Table 3.2.

To verify that defining group tendencies and obtaining sub-distributions for the group,

the performance of the overall task was simulated using the Monte Carlo task simulation

approach at first.

To consider the tendencies in the MC task simulation, the performance of each group

of crews on each task is separately sampled, analogous to a stratified sampling approach.

In other words, the time performance distribution of the overall task is obtained for

each group of crews (each tendency) separately, and the samples or results are weighted

according to the distribution of the tendencies. The distribution of the tendencies (their

weights) are the fraction of the crews assigned to the fast (0.214), intermediate (0.571),

and slow (0.214) groups, respectively.
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Table 3.2: Weibull parameters of the group sub-distributions for task 1 and task 2.

Task 1 α β Offset
Fast group 200 2.0 200s
Intermediate group 320 2.0 200s
Slow group 650 2.0 200s
Task 2
Fast group 250 2.5 200s
Intermediate group 220 2.0 200s
Slow group 600 3.0 200s

The sampling scheme based on crew tendencies and using the sub-distributions and

group weights treats the correlation between the first and second tasks. Figure 3.9 shows

the CDF for performance of both tasks obtained in this way and denoted "MC correlated".

It can be seen that this treatment of the correlation between the tasks reproduces the

data much better, throughout the range but especially in the upper tail. For comparison,

the "MC uncorrelated" result, using a single distribution for each of the two tasks, is also

shown (this is the result shown earlier in Figure 3.5).
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Fig. 3.9: Comparison between MC uncorrelated (dotted line) and MC correlated (full line)
against empirical data (o).

Treatment of the tendencies in the Dynamic Event Tree The concept of grouping

the crews in terms of tendencies can also be used in the DDET. In this case, the sub-

distributions are discretized and represented as DPDs.

For each distribution, three equal-probability bins have been used. The mean perfor-

mance time of the bin has been used as the characteristic value, i.e., the branching times.

Table 3.3 summarizes the values for the "uncorrelated" approach that does not account

for tendencies while Table 3.4 provides the characteristic values of the bins for the groups

based on tendencies (the branch probabilities are always 0.33 for 3 equal-probability bins).

An excerpt of the tree is represented in Figure 3.10. Only a few branches related to the

fast, intermediate, and small tendency and the probability of each branch, the timing (not

in scale), and the sequence probability are shown.
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Table 3.3: Overall performance time distributions: characteristic values for the discretized
probability distribution.

Branching Point (BP) Timing(s) Branching probability
Task 1 BP1 104 0.33

BP2 270 0.33
BP3 532 0.33

Task 2 BP1 111 0.33
BP2 243 0.33
BP3 425 0.33

Table 3.4: Discretized performance time distribution characteristic values for Tasks 1 and 2.

Group Characteristic values
Task 1 Fast 85 167 268

Intermediate 137 266 428
Slow 278 541 870

Task 2 Fast 94 184 294
Intermediate 127 216 316
Slow 340 530 729

The results obtained considering the uncorrelated and correlated distributions are

shown in Figure 3.11. The results are compared with the related results obtained by using

a Monte Carlo approach. As one can see, the DDET-based task simulation results follow

the same pattern as the MC-based task simulation results. The three discretized sub-

distributions, (correlated distributions) approximate the MC correlated result quite well.

This is also shown in Table 3.5 in terms of some of the key percentiles. In fact, comparing

the percentile values between MC correlated and DDET correlated and between MC

uncorrelated and DDET uncorrelated their values do not differ considerably.

In addition, when comparing the correlated results with the uncorrelated results the

difference is quite important in particular at the 90th and 95th percentiles (slow perfor-

mances). In fact, the difference between uncorrelated and correlated at the 90th percentile

is about 250 seconds and increases to about 380 seconds at the 95th percentile. This means

that in case of uncorrelated cases the underestimation of the slow crew performance is
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quite important. Some difference can also be seen at the fast performances (about 50

seconds) even if not as high as in the slow performance part of the curves.

Since the distributions are discretized in three parts in case of DDET with uncorrelated

distribution there are 32 dots (Figure 3.11, ’2’) whereas in case of DDET with correlated

distributions there are 3 · 32 dots (Figure 3.11, ’x’). It is worth noting that the 27 points

in a DDET framework reproduce the overall crew performance.

Fig. 3.10: Discrete Dynamic Event Tree based on fast, intermediate, and slow tendencies (ex-
cerpt).
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Fig. 3.11: MC-based uncorrelated simulation (dotted line), MC-based correlated simulation
(full line), DDET-based uncorrelated simulation (2), and DDET-based correlated
simulation (x).

Table 3.5: Set of percentiles for the uncorrelated and correlated MC and DDET approach.

10th 50th 90th 95th

MC uncorrelated 628 912 1205 1285
DDET uncorrelated 604 920 1193 1275
MC correlated 676 879 1435 1662
DDET correlated 664 883 1459 1663

The results obtained so far demonstrate that the DDET-based task simulation method-

ology is able to represent the correlation between series of tasks and to generate the tail,

i.e., extreme crew behaviors. In addition, it does so with far fewer samples than a MC

approach. This methodology has been tested in the DDET framework in Section 3.3.
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3.2 Implementation of the crew model

The crew model described in Section 3.1 has been implemented in ADS. ADS is a sim-

ulation environment whose main component is a DDET scheduler and where different

operators or crew models can be embedded.

The ADS had been developed and improved since 1993. The first reference to ADS

can be found in [Hsueh and Mosleh, 1993]. Then, in [Sheng and Mosleh, 1996], [Chang

and Mosleh, 1999], and [Chang and Mosleh, 2006a,b,c,d,e] some developments of the

conceptual model of ADS can be found. Finally, additional developments and application

of the tool for safety analysis can be found in [Coyne and Mosleh, 2008].

The framework that the ADS tool implements is the DDET as described in Section

1.4.1. The ADS tool consists of six modules: Crew Module (modeling the response of the

crew), System Module (modeling the plant response), Control Panel Module (modeling

the control panel in the NPP control room), Hardware Reliability Module (modeling

the component success/failure), Scheduler Module (monitoring the simulation evolution),

User Interface Module (for the input setup and output analysis). A description of each

module can be found in [Chang and Mosleh, 2006d].

Figure 3.12 shows the modules and the connection between them. The crew model

can interact with the system model changing the boundary conditions through the control

panel. Vice versa, the system model calculates the plant evolution which is an input to

the crew model (i.e., it generates alarms, it changes control variables and parameter

behaviors). The hardware reliability model generates hardware failures which can impact

both the crew model and the plant model. The user model interface allows the interaction

between the user and the simulation environment.
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Fig. 3.12: High-level ADS framework.

The DDET simulation is performed and controlled by a scheduler (left hand side of

Figure 3.13). The scheduler controls the module balances and the solution completeness

with computational effort by focusing on certain sequences. During the simulation, com-

ponent and operator state changes are permitted to occur at discrete branching points.

State changes are modeled by generating one or more sequence branches at each branching

point. Specific branching points and the number of branches generated at each branching

point are defined by a set of analyst-supplied branching rules. Branching rules can be

constructed to include sequence initiators, hardware and process variables, operatorsŠ

actions, and software. A set of sequence termination rules are also identified to prevent

excessive expansion of the DDET. The output of the ADS simulation is a DDET (right

hand side of Figure 3.13).
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Fig. 3.13: DDET scheduler. The scheduler controls the simulation, i.e., interaction between
physical model, crew model, and equipment model (left hand side), and produces a
DDET (right hand side).

The System Module in ADS could be any thermal-hydraulic model. Currently, since

the focus of the analysis is the Level 1 PRA and in particular the beginning of the

scenarios, the thermal-hydraulic part is modeled by RELAP [RELAP5/MOD3.3, 2001].

The System Module of ADS can be adapted to a more versatile thermal-hydraulic engine,

such as the TRACE or MELCOR code. A detailed description of the thermal-hydraulic

of the case study will be described in Chapter 5.

A new structure of the input and output data was introduced to simplify the entry of

input and to provide syntax-checking of the data. This has result in a big effort to make

the tool easy to handle by the users and to reduce the possibility to make errors in defining

the input parameters. In particular, a data structure based on the eXtensible Markup

Language (XML) has been implemented. The representation of the input with the XML

structure has introduced a high level of flexibility of the computerization process, a good

capability of input visualization, and a capability of input control based on a validation
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mechanism within the language.

The implemented crew model is based on four main parts in order to model the

procedure-guided operator response behavior: procedures, rules-of-behavior, time vari-

ability, and branching point generation.

3.2.1 Implementation of procedures

The main structure of the use of procedures by the operators is based on the following

model of procedures. The procedures can be activated by alarms, predefined rules, or from

the cognitive model. Usually, the emergency procedures are the first activated and they

could be for example activated by the alarm of low pressurizer level. Once the procedures

are activated, the operator starts to read the first procedure, analyzes the procedure step,

and checks whether is an action, an action sequence, or an if-struct. In case of action, the

operator executes the action based on the available time (given as input). If there is a

sequence of actions the operator executes them sequentially. In case of if-struct, first the

operator checks whether the conditions (expectations) are verified and then performs the

"then". Conditions are verified by checking parameters or alarms. If the conditions are

verified, the "then" part which could be an action or a sequence of actions is executed.

If the conditions are not verified a transfer to another procedure step is done. Usually,

the last instruction of the procedure step is an action on the plant. Once the action is

executed, the operator waits the response from the plant and then the next procedure

step is selected.

The procedure execution continues until the time windows for the simulation is achieved

or the last procedure is performed.

The previously described structure has been embedded into the ADS tool. The ad-

vantages of this procedure representation and structure can be summarized as:

• user friendly interface in adding procedures and procedure steps,;
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• validation and control of the added procedures and procedure steps (due to the

XML structure);

• flexibility in adding new procedures and procedure steps; and

• possibility to add different types of procedures beyond the EOPs, like normal pro-

cedures, abnormal procedures, SAMG, and safety functions (the latter have been

implemented in the case study).

3.2.2 Implementation of the rules-of-behavior

Following the pattern developed for the procedure representation, also the rules-of-behavior

structure has been modified and merged to the previous one. The rules-of-behavior are a

direct matching between cues and actions. As soon as a certain number of rules (defined

by the user) are activated the action is executed.

The main elements of a rule-of-behavior are: an activation time, a reset time, a branch-

ing probability, a set of rules, and a m-out-of-n structure for the rules. The activation

time tells the code the timing for the operator to check the rules. The reset time tells

the tool the amount of time that the rule-of-behavior must be activated. The branching

probability can be set less than one if the user wants to model the fact that the oper-

ator follows o not the rule-of-behavior (success and failure paths). The set of rules are

conditions that the operator has to verify in order to see whether they are true or not.

For example, if the condition is "primary temperature less than 100 ◦C", the operator

has to check whether it is true or not. If m-out-of-n rules are true, the rule-of-behavior

is activated and the execution is performed. The latter is integrated in the m-out-of-n

structure.
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3.2.3 Time variability

The time variability method is used for the identification and calculation of the character-

istic points of the task distributions where there is timing variability in the crew response.

For example, different crews execute the same task in the procedure in different times.

The distribution of the crew response can be handled with the time variability method.

The identification of the characteristic values is done based on the distribution of

the duration of the task to be analyzed. The calculation is done outside the DDET-

framework and it will be used during the post simulation phase for the calculation of

the probabilities. In ADS basically, only the duration of the times is given for the three

selected characteristic points and the propagation of the probabilities in the tree is done

after the simulation.

The analyst therefore, based on the task duration, identifies three characteristic times

when the action can be taken based on the time variability method (Section 3.1.4). Then,

the post-processing analysis recalculate the probabilities (4).

3.2.4 Branching generation

In the current crew model, branches can be generated due to procedure step skipping. The

probability of skipping procedures and/or procedure steps was based on an input value

of probability judged by the analyst. The feature was then improved by the University

of Maryland adding the calculation of the probability based on a Beta distribution. A

similar mechanism of branching generation has been also included in the current crew

model.

With regard to the procedure-guided response, the possibility to generate branches due

to procedure action time has been included. In this way, the analyst can select the number

of branches (usually three) to follow based on different times to perform the procedure

step within the task. This allows the variability in the crew response. In fact, for certain
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important procedure steps or tasks different crews perform in different way in terms of

timing. The timing and probability of the crew response is given considering available

data. The user inputs the time to perform the procedure step and the probability (based

on HRA data).

With respect to hardware components, an additional way to generate branches has

been added. The new way allows the possibility to generate branches when considering

components that can have different levels of operations. For instance, some valves can be

opened at 100%, 50% or at any other level. The analyst can select the levels of operation

that the component can work and the respective probability and ADS generates branches

as soon as the criterion is met.

In addition branches can be generated as soon as an expectation within the procedure

is met. When performing procedure steps, sometimes the operators have to meet some

criteria in order to perform the action(s) according to the procedure step. In the latest

version of ADS branches can be generated introducing different criteria for performing

actions. For example, if the procedure step says that they have to stop the compo-

nent A if the level of the water in another component is greater than X, then we can

generate branches having other values in addition to X. This permits to add a model of

interpretation of procedure step based on current understanding on the scenario evolution.

3.3 Test of the timing variability for the current crew

model

The methodology so far described has been applied in the ADS in order to represent

the timing variability of the crew response. The basic idea is to identify the three sub-

distributions related to the fast, slow, and intermediate behavior of the crews from the

available data on the crew performances to achieve different tasks.

The methodology is applied in three steps. First, before running the simulation, the
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tasks considered for modeling the crew variability must be identified incorporating the

importance of the tasks. For example, in tasks where checking and monitoring are the

main actions, no timing variability is considered; it is assumed that all the crews perform

the same due to the easiness of the task. However tasks where operators have to take ac-

tions on the plant or make procedure transfers timing variability is considered. Generally,

the variability is considered only at the last procedure step in the task. Then, still before

running the simulation, the estimation of the timings and probabilities based on available

data and expert judgment is done. This means that the analyst identifies the distribu-

tion function, i.e., a global Weibull distribution which is able to fit the available data.

Once identified the distribution, the analyst calculates the timings and the probabilities

depending on the number of branches to be generated.

Second, the simulation is run considering the branching probabilities equal to 1 and the

timings calculated in the first phase. In this way, the simulation is able to explore all the

possible paths due to the different branching points. The correct branching probabilities

will be calculated in the next phase. Probabilities equal to 1 allow avoiding truncations

which can happen if the original distribution is used (since the correspondent branching

point probability is less than one). On the other hand, it is necessary to recalculate the

branching point probabilities after the simulation (next step) in order to consider the type

of crew, i.e., fast, slow, or intermediate.

The third step is performed after the simulation. In this phase, the correct distribution

function is applied to the calculated event tree. In this phase, the three sub-distributions

are applied in the previous calculated branching points in order to get the results of

the fast, intermediate, and slow crew behavior. The resulting probability distribution

functions are then combined to obtain the global distribution function according to the

developed methodology.

The last two steps will be better described in Section 4.1 where the way to handle the

probabilities in the DDET of ADS will be presented.

This methodology has been applied for a simplified small LOCA scenario for a three-
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loop Pressurized Water Reactor. During the scenario, the crew model has been imple-

mented. In particular, operators are instructed to monitor and take actions according

to the procedures and their experience. If all the systems and components are available,

the main actions they have to perform to handle the scenario are: cooldown the plant at

100 K/h, control the steam generator levels with the emergency feedwater pumps, start

the spray to increase the level of the pressurizer, stop the pressurizer sprays as soon as

a certain pressurizer level is reached, and stop one by one the High Pressure Injection

pumps (HPIs) if there is enough subcooling margin.

In this test of the methodology, only a few branches have been considered. In particular

timing variability in transfer from the post accident procedures to small LOCA procedures

(in 10s, 300s, 600s, and 1200s), variability in stopping the last high pressure injection

pump (400s and 1200s), and pressurizer level value to stop the first time the sprays (3,

5, and 9 meters) have been modeled. The simulation has been stopped after the first

12000 (about 2.5 hours) seconds or when the plant reaches low pressure conditions (10

bars) and the Low Pressure Injection pumps start. Table 3.6 summarizes the numerical

values which have been used in the construction of the probability functions for the two

timing variability branching points. With regard to the last branching points, i.e., stop

the pressurizer spray at 3, 5, and 9 meters the three probabilities used are: 0.2, 0.6, and

0.2.

Table 3.6: Values of Branching Point (BP) times and probabilities used in this case study for
timing variability.

Intermediate Crew Slow Crew Fast Crew
Time Probability Time Probability Time Probability

BP1a 10 0.5 10 0.2 10 0.01
300 0.39 300 0.3 300 0.1
600 0.1 600 0.3 600 0.39
1200 0.01 1200 0.2 1200 0.5

BP2b 100 0.8 100 0.5 100 0.2
1000 0.2 1000 0.5 1000 0.8

aTransfer from the post accident procedures to small LOCA procedures.
bStop the last high pressure injection pump.
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Two examples of outputs, the cumulative probability distribution function when the

flow of the HPIs is zero and when the accumulators start have been calculated. These

distributions have been compared with the probability distribution functions in case of

considering only the original distribution function. In latter case, the branching proba-

bilities used for the transfer to the small LOCA procedure is 0.25 for each of the four

branches, whereas the branching probability of stopping the last HPI pump is 0.5 for each

of the two branches. Finally, the probability of stopping the first time the pressurizer

sprays is like in the other case 0.2, 0.6, and 0.2 for each of the three branches. Figure 3.14

and Figure 3.15 shows the results of the two cumulative distribution functions in case of

original distribution (2) and in case of calculated distribution function (o).

The results follow the same pattern as in the MC-based and DET-based task sim-

ulations. The calculated CDFs have a higher value at the beginning and lower value

at the end in both cases. The approach of dividing the original distribution in three

sub-distributions, i.e., fast, intermediate, and slow allows better represent the tails in par-

ticular to model those behaviors which are outliers in term of performance. In addition,

considering this way of sampling, the correlation between series of tasks is considered;

with the idea of tendency, if the crew has performed in the previous one as fast it will

most likely perform as fast in the subsequent task. Without considering the correlation

between tasks, the information about the type of crew is lost because each time the crew

is considered performing always as intermediate crew.

One of the advantages of the developed methodology is a better representation of the

typical crews’ response during accidents. In fact, as the HRA data have demonstrated,

there is some correlation between series of tasks which somehow must be incorporated

into the DDET framework when modeling the crew-system interaction. The methodology

developed in this PhD work is able to model and to better represent the crew response

and in particular the variability of the responses of different crews.
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Fig. 3.14: Cumulative distribution functions of when operators stop last HPI pump: original
distribution (2) and calculated distribution function (o).

Fig. 3.15: Cumulative distribution functions of when operators start the accumulators: original
distribution (2) and calculated distribution function (o).
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3.4 Summary

In this Chapter, the model of crew response has been presented. Developing a crew

model is an important step for a correct and realistic representation of the crew response

during accidents in a NNP. Especially, the crew model will be used for the assessment

of the human errors during accidents, the evaluation of the effects on plant behavior

parameters, and as a tool to obtain HRA insights through the dynamic simulation and

comparison with classical static risk assessment methods.

The development of the conceptual crew model has been presented focusing on the type

of operator response, i.e., procedure-guided response and on the main features included

(procedures and rules-of-behavior). Then, the crew has been introduced. The crew is

based on a decision maker, an action taker, and a safety engineer who has high priority in

the decision and execution. Next, during the development of the crew model, an approach

to deal with the crew timing variability in the DDET framework has been developed. The

approach, based on the concept of tendency, is based on the assessment of the probability

density functions to be used for the calculation of the branching point timings and for the

calculation of the DDET branching point probabilities. The validation of the tendency

approach has been done through a comparison between MC and DDET results.

The conceptual model is the basis for its implementation in the ADS tool. First, a

short description of the ADS tool has been introduced along with the implementation

of the conceptual crew model. Then, the development of the current crew model has

been presented focusing of the new features and capabilities introduced with this PhD

work. In the new crew model, based on a procedure-guided operator response, a new

procedure and rules-of-behavior concept and representation have been developed. In

addition, new branching generation channels have been added in order to enhance the

crew model capacity, i.e., a procedure step skipping mechanism, the procedure step timing

variability (executing the action in the procedure at different times), different level of

operations of hardware components (e.g., open a valve at 50%, 90%, or 100%), and
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different expectations within procedures.

Finally, a trial SLOCA test case study has been performed to test the model and the

timing approach.
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In this Chapter, a new way of calculating DDET probability is presented in Section

4.1. Then, in Section 4.2, an approach to identify and classify scenarios generated in

a DDET analysis is described. The tools for the classification of DDET scenarios are

presented in Section 4.3. Afterward, the approach for the output analysis is described in

Section 4.4. Next, Section 4.5 deals with the problem of stratification of the input due to

the amount of simulation data to be processed. Finally, Section 4.6 provides a summary

of the arguments presented.

4.1 Calculation of probabilities in DDETs

In the DDET framework of ADS, the calculation of the probabilities has been shifted

after the simulation of the crew-system interaction. The basic idea is to allow the tool to

model any type of crew (in terms of performance) using only one DDET simulation. In

this way, the approach developed during this PhD for the probability calculation in the

DDET allows reducing the computational effort since only one time the simulation is run.

This allows also the possibility of easily updating the probabilities as soon as new HRA

data are available without re-running the DDET.

The approach consists of setting to 1 the branching probabilities due to human events,

like for example crew timing variability. In this way, ADS can follow and model all the

possible paths due to human events avoiding truncation problems. Then, after the simula-

tion, the probabilities of each sequence are recalculated depending on the type of crew the

analyst wants to consider. In case of slow crews, the calculated branching probabilities

will be skewed towards slow behaviors while in case of fast crews the branching proba-

bilities will be skewed towards fast behaviors. The branching probabilities are calculated

after the simulation according to the approach described in Section 3.1.4.

A tool that automatically calculates the branching probabilities has been developed

and first tested on the test case study (Section 3.3) and then applied to the case study

described in Chapter 5. Figure 4.1 visualizes the way in which the probabilities are
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calculated in ADS. As an example, only one task and two crews (slow and fast) are

considered. The timing branches for the task are three, i.e., fast response, intermediate

response, and slow response. The simulation is run once using some predefined timings

for each branch and probabilities equal to 1. Then, after the simulation, the probability

of each sequence is recalculated considering the fact that each considered sequence comes

from a fast crew (sub-DDET 1 in Figure 4.1) or a slow crew (sub-DDET 2). As one can

see, for the sub-DDET 1 the probability of a fast response is higher than intermediate

which is higher than slow (0.7, 0.2, and 0.1 respectively). Whereas for the DDET 2 the

probability of a slow response is higher than intermediate which is higher than fast (0.6,

0.3, and 0.1 respectively). In order to calculate the total probability of each sequence, the

previously calculated probabilities must be multiply by the fraction of fast and slow crews.

That is, the resulting sequence of the DDET is the weighted sum of each corresponding

sequence in each sub-tree. For instance, the probability of sequences 1 is equal to wf ·Pseq1
+ ws·Pseq1. The same applies for the other sequences. The resulting probabilities for

each sequence (labeled SP in Figure 4.1) are then the correct probabilities that take into

account the distribution of the operator response in time and the fraction of each type of

crew.

Fig. 4.1: Example of two DDETs based on fast (upper side) and slow crews (lower side).
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4.2 Classification approach

A challenge arising from dynamic approaches to PSA is that the number of scenarios to

be analyzed is much larger than that of the classical fault/event tree approaches, so that

the a posteriori information retrieval can become quite burdensome and difficult [Labeau

et al., 2000]. Additionally, since no minimal cut sets are generated, it is impractical to

acquire information on dominant scenarios and important systems, components, or human

actions. In order to overcome these difficulties, a method to identifying and grouping the

scenarios of a dynamic safety assessment, with the aim of finding the principal patterns

of system evolutions towards failure [Mercurio et al., 2008] and [Podofillini et al., 2010]

is proposed. The scenarios are grouped combining information of the end state, events

sequence and process variables evolutions. A classification algorithm is the basis of the

grouping approach and it is mathematically described in Appendix B.

Dynamic approaches bring some clear advantages from the point of view of the com-

pleteness of the analysis and of the information content made available. First, there is

potential for the identification of accident scenarios which may have been overlooked by

the analyst when building the accident sequence models at the basis of the fault/event

trees. Second, conservative simplifying assumptions made by the analyst, for example on

the evolution of some process parameters, can be relaxed as the process evolution is sim-

ulated directly by the underlying dynamic models. Third, the identification and grouping

of scenarios of failure or close to failure can give insights for HRA analyses. Finally, ad-

ditional informative content becomes available as a result of the dynamic analysis, in the

form of time-dependent probability density functions of components states and process

parameters values. In this respect, the amount of information retrievable from dynamic

methodologies, in terms of number of scenarios and probability distributions, can be over-

whelming and generally calls for a significant effort in the post-processing phase [Labeau

et al., 2000].

Indeed, while the typical outcome of the dynamic safety analysis is the time evolution
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of the probability of the process variables exceeding pre-defined safety threshold, the focus

is mainly on the system and process states at the end of the scenarios, with limited use of

the information contained in the actual evolution towards these states. On the contrary,

proper use of the information on the evolution of the scenarios can provide significant

safety insights on the dominant scenarios with respect to the criticality and efficiency

of the protections designed to counteract them. In this context, some performance risk

metrics may be computed and in addition some dynamic contributions to the end state

can be characterized like events and dominant contributors to the end state, causes and

mechanisms which are relevant to the end state. This framework is a first step towards

the quantification of important events leading to a particular end state or in other words

prime implicants.

The problem of identifying critical scenarios in dynamic reliability studies has been

recently studied in [Demmou et al., 2004], where the stochastic aspects of the system

evolution are represented by means of Petri nets. The method proposed in [Demmou

et al., 2004] is based on the identification of the transitions through which a final state

of interest can be reached. It is a qualitative method: the scenario probability does not

enter in the search scheme. In addition, the problem of grouping similar sequences with

respect to the process variables evolution is not addressed.

Within a DDET simulation framework for dynamic safety analysis, the information on

the evolution of the system is hidden in the simulated branches. Among these branches,

there are sequences that reproduce qualitatively similar behaviors in terms of the evolution

of the physical parameters and of the sequences of events, mainly differing for the actual

timing at which these occur. Other sequences may instead differ in behavior, because

characterized by different combinations of occurred events, and still reach the same final

outcome state. Hence, the difficulty in identifying and grouping similar scenarios is in the

fact that sequences composed of similar events can correspond to rather different process

parameters evolutions and, possibly, end states, depending on the events timing or order

of occurrence. Therefore, grouping the scenarios only on the basis of the occurred events
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and end states may be misleading and accountancy of the physical behavior of the process

variables ought to be included [Labeau et al., 2000].

4.3 Post-simulation data analysis tools

The ADS tool, generates as output a DDET as described in Section 1.4.1. In particular,

the main component of the output is a set of accident scenarios composed by the time

evolution of events that have occurred during the scenario evolution. These events can

be grouped into three types as summarized in Table 4.1.

Table 4.1: Typical output events from dynamic analysis

Type of output Events
Plant behavior - parameters

- rates
- signals
- control variables

Operator actions - cognitive states
- rules-of-behavior
- mental belief
- actions in procedure steps
- conclusions/decisions/strategies

Plant events - alarms
- automatic system actions
- component states

All these events make up the data set that can be used for the output analysis. It is

worth to mention that the amount of DDET-generated data can be very large because of

the level of modeling of the human-system interactions. This has been the main motivation

of the development of tools and strategies for the output analysis. The analysis is done

with a classifier and parser described in the following sections.
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4.3.1 The scenario classification approach

The classification tool is based on a clustering algorithm which takes into account not only

the final system states but also the timing of the events and the process evolution. The

classifier is a tool able to identify the geometric partition of the patters1 to be classified

based on some training scenarios or data given to the tool. The training of the tool is done

considering a set of known scenarios from previous analysis, generally from databases, or

form expert judgment. The idea is therefore to use these scenarios to build up groups in

a n-dimensional space and to classify new scenarios in the identified groups. In addition,

scenarios not belonging to the identified groups are labeled as unknown or unforeseen

and they are further analyzed to identify the reasons of not belonging to any group. It is

worthwhile to mention that the number of training patterns is not fixed but the analysts,

based on his/her experience, can identify the minimum number of patterns necessary for

the training phase. In general, at least two patterns per group are necessary to train the

tool even if a number larger than two would help the identification and construction of a

better partition.

The underlying idea of the approach proposed in [Mercurio et al., 2008] is to group the

DET-generated scenarios in classes or groups2 of "similarity", by combining information

from both the event sequences and the patterns of evolution of the process variables.

In all generality, this leads to a task of pattern classification, i.e., the partitioning of

objects into classes. Often in engineering, the complexity of the problems forces one to

resort to empirical pattern classification techniques in which an algorithm is built through

a process of learning based on a set of patterns labeled with the class they belong to. This

kind of techniques is termed "supervised" and the available pre-classified data are termed

"training" data [Zio and Baraldi, 2005a]. In the case here considered, the objects to be

1A pattern is any variable which could represent some characteristics of the considered component
or system. In this context a pattern is a n-dimensional signal whose components are the parameters’
evolutions at a fixed time. For example, if a scenario is based on Temperature1, Pressure1, and Pressure2
behaviors (3-D signal), the pattern is a 3-D point whose components are Temperature1, Pressure1, and
Pressure2 at a given time.

2In the context of scenario classification, class and group have the same meaning.
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classified are the DET scenarios and the basic steps for their classification are sketched

in Figure 4.2.

The first step is the a priori identification of the anticipated scenario classes for the

system under analysis and of the relevant classification features. The scenarios will even-

tually be classified as belonging to a particular class based on the affinity of their features

to those characteristic of the class. Scenario classes should distinguish different reference

scenarios that the system is expected to follow in its evolution. They must be defined a

priori on the basis of available knowledge on the system operation. For example, in the

system presented in Section 4.3.2, three classes of scenarios are expected: 1) the nominal

operative scenarios; 2) scenarios involving the non-automatic startup of the High Pres-

sure Injection (HPI) system; and 3) scenarios involving both the non-automatic startup

of HPI pumps and the failure of a Turbine Bypass Valve (TBV). The identification of the

features relevant to the classification is necessary to condense the scenario description into

an object vector ~x, i.e., the pattern to be fed to the classification function. The features

can be either binary or continuous variables. Binary variables characterize the scenarios

based on the occurrence or not of certain events, for example the intervention or failure

of a safety system; continuous variables characterize the scenario based on the evolution

of the process variables.

The successive steps of the procedure are typical of a supervised classification scheme:

training of the classifier on patterns of known classes and test of the classifier on new

patterns. As for the classification technique, an evolutionary possibilistic FCM classifier

paradigm is used in this work. An important asset of this technique is related to the

use of the possibilistic classifier for recognizing unanticipated scenarios, referred to in the

following as "unknown", i.e., patterns of evolution that were not foreseen as reference

in the a priori analysis and thus do not fall in any scenario group. The evolutionary

possibilistic FCM classifier filters them out avoiding that they be misclassified as known

scenarios and, more importantly, revealing new dynamic failure patterns that were not

identified in the a priori analysis. The identification of new, unforeseen evolutionary
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patterns completes the analyst knowledge on the system with information on unexpected

failure scenarios and may aid to suggest additional and more effective safety-oriented

improvements of the system.

The procedure for constructing the evolutionary possibilistic clustering algorithm is

composed by a possibilistic clustering algorithm that finds the geometric clustering in

the feature space based on a Mahalanobis metrics. Then, if the obtained clustering

partitions are not close to the physical classes, the Mahalanobis matrix is updated using

an evolutionary fuzzy C-Means algorithm [Zio and Baraldi, 2005a]. The optimal metrics

thereby obtained are then used for the classification problem [Yuan and Klir, 1997]. Once

the scenarios are classified properly, the probability of each class can be estimated and the

dominant evolutionary patterns identified, in terms of both failure events sequences and

process variables evolutions. A description of the algorithm can be found in Appendix B

and in [Mercurio et al., 2008].
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Fig. 4.2: The scenario classification approach.

4.3.2 Test case study - SGTR event

The classification approach has been tested on a test case. The scenario analyzed is a

SGTR of a two-loop Pressurized Water Reactor (PWR) as described in Appendix E.

Branching generation

The ADS is used to generate the DET that develop from the SGTR initiating event. The

frequency of the IE is 0.005/y. The simulation covers the first 2000 seconds (about 33
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minutes) after the IE. The branching points and the corresponding branching probabilities

are listed in Table 4.2. Branching points correspond to hardware failure events as well as

to human failure events.

Concerning the hardware failure events, the failure on demand of the HPI automatic

start up and the failure on demand of the TBV of loop A (TBVA) are modeled. Concerning

human action events, the following types of interactions are modeled: cognitive actions

(i.e., failure to perceive that the pressurizer level is below the lower threshold and failure

to manually start up HPI pumps); delay in following a mental procedure (turn HPI pumps

on when the pressurizer level is below the lower threshold) as well as a written procedure

(SGTR procedure step 7.4); checks on the status of a system (i.e., check if the HPI pump

is automatically started and in the negative case manually re-start it).

Except for the human actions listed in Table 4.2, the outcome of all the other human

actions mentioned previously is assumed to guarantee success. Similarly, all other compo-

nents and systems involved in the SGTR event except for the HPI pumps and the TBV

are assumed to work as designed.

As already described, during the simulation of each branch, the branches probabilities

are updated based on the branching point probabilities. The branches are truncated (i.e.,

the simulation of the branch is interrupted and the ADS moves on to simulate the next

branch) when their probability is below a threshold value of 1.0 ·10−9.

At the end of the simulation, ADS generated a total of 60 branches (i.e., scenarios to

be classified).
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Table 4.2: Branching points considered in the SGTR event model.

Branching point Probability1

Hardware Failure Events - Non-automatic start up of HPI 0.01
- TBVA failure 0.01

Human Failure Events - Failure to perceive that pressurizer
level is below the lower threshold

0.2

- Failure to manually start up HPI 0.4
- Delay (40 s) to turn on HPI when the
pressurizer level < 200"

0.3

- Delay (20 s) to carry out SGTR pro-
cedure step 7.4 (maintain pressurizer
level > 80")

0.3

- Failure to check if HPI has automat-
ically started and in the negative case
manually start it

0.2

A priori identification of the anticipated scenarios and relevant classification

features

Three classes of scenarios are identified a priori:

• class 1: nominal scenarios, with all components and operators’ actions successful;

• class 2: scenarios with HPI failure to start on demand and success of the TBV of

loop A; and

• class 3: scenarios with HPI failure to start and stuck open TBV of loop A.

Figure 4.3, Figure 4.4, and Figure 4.5 show the behaviors of three relevant process

variables (the reactor cooling system pressure, the steam line pressure, and the steam

generator level) representative of the three scenario classes. The HPI activation signal

is generated on low RCS pressure. At around 115 seconds, the reactor trips and the

RCS pressure immediately decreases. In case of successful HPI start (class 1 in Figure
1Although the probability values have not been validated, in practice they are regarded as credible

values which can be used to apply the proposed classification methodology.
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4.3), the RCS pressure recovers until the operators reach the depressurization step in the

corresponding EOP and perform it accordingly (around 900 seconds), using the pressurizer

spray system. The level in SG A increases (Figure 4.5) due to the RCS-to-secondary

side leak (note that the uncontrollable rise in the level in one SG is one of the cues for

diagnosing the SGTR event).

In case the HPI fails to start (classes 2 and 3), the operators are directed by the EOPs

to start it manually. In case the operators succeed to manually start the HPI, the scenario

evolves as class 1; in case of failure, the RCS pressure continues to decrease (Figure 4.3,

classes 2 and 3). The pressure decrement in the RCS is faster in case of the stuck open

failure of the TBV (class 3), which also causes the drop in the secondary side pressure

(Figure 4.4).

In case of HPI failure, the level in the ruptured SG remains lower than in case of HPI

success (classes 2 and 3 compared to class 1 in Figure 4.5). It is also interesting to notice

the saw-tooth behavior of the SG level in Figure 4.5, which results from the intermittent

functioning of the emergency FW system for SG level control. Scenarios are classified

based on the instantaneous values of the triplet of process variables:

1. RCS pressure

2. Loop A Steam Line (SL) pressure

3. Loop A SG level

As previously mentioned, the DET generated 60 scenarios. The patterns to be clas-

sified are triplets of values of the mentioned variables, taken every 5 seconds along the

evolution. Therefore, every scenario is converted into 400 patterns (if the simulation is

not interrupted earlier than 2000 seconds because the truncation probability threshold

is reached). This entails that the classification of the scenarios, which is made on the

instantaneous pattern, is time-dependent. It can be foreseen that at early stages in the

transient, the classification will be poor since the scenarios belonging to the three classes
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have similar characteristics (note that up to the HPI branching point all scenarios are

perfectly overlapped). On the other hand, it is expected that the scenario classification

will be more solid as the transient progresses and the scenarios features become distinct.

Fig. 4.3: Behavior of the RCS pressure for class 1, 2 and 3 scenarios.
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Fig. 4.4: Behavior of the steam line pressure for class 1, 2 and 3 scenarios.

Fig. 4.5: Behavior of the steam generator A level for class 1, 2 and 3 scenarios.
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Scenario classification and scenario analysis

The main outcome of this step is the grouping of the sampled scenarios in the three a priori

defined classes and the identification of unanticipated scenario classes that were possibly

left out in the a priori identification of relevant scenarios. These latter unanticipated

scenario classes will be referred to as "unknown".

This procedure can be subdivided into two steps:

1. Training of the possibilistic evolutionary FCM classifier on the basis of a set of the

nine labeled scenarios (three evolutions for each one of the three process variables)

representative of the three classes. This amounts to a set of 9*400 labeled patterns,

each one constituted by a triplet of values of RCS pressure, SL pressure and SG

level at a given time, and the integer label of the corresponding scenario class.

2. Use of the possibilistic and fuzzy classifiers to classify the 60 DET-generated sce-

narios. The search of the optimal membership functions has been done setting the

value of the degree of fuzziness rm to 2.0, which means a low degree of fuzziness in

the resulting partition. The possibilistic evolutionary FCM procedures are fed with

the above labeled patterns to identify the centers and metrics of the clusters in the

three-dimensional space.

The second step of the procedure entails that the 60 DET-generated scenarios be fed

into the possibilistic evolutionary FCM classifier for the scenario classification. Results

are shown in Figure 4.6, Figure 4.7, and Figure 4.8. The upper part of the Figures

shows the membership values assigned to the scenarios of a given class (e.g., class 1 for

Figure 4.6) to that specific class (i.e., the correct class 1), as a function of time. The

lower part of the Figures shows the membership values assigned to the other two classes

(i.e., the incorrect classes 2 and 3). The Figures confirm the good performance of the

classifier, which produces high values of membership to the correct class and low values

of membership to the incorrect classes.
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Figure 4.6, Figure 4.7, and Figure 4.8 show that in all the three cases the possibilistic

evolutionary FCM classifier is able to recognize the correct class in the mid-late part of the

scenario. In fact, at the beginning of the scenario (until about 100 seconds) the process

behavior is in practice the same for the three classes (Figure 4.3, Figure 4.4, and Figure

4.5), therefore the classifier has no elements to classify the scenarios into the correct class.

The early stage of any scenario is usually assigned to class 1 (upper part of Figure 4.6, and

lower part of Figure 4.7, and Figure 4.8) because this class covers better the features of

the early scenarios, i.e., "high" values of RCS pressure, SL pressure and SG level (Figure

4.9). After about 100 seconds the correct scenario classes start to be identified, as their

characteristic features become distinguishable.

It is interesting to note that a number of class 1 scenarios have low membership value

at the beginning of the scenario, around 500 seconds (Figure 4.6, upper part). These are

scenarios in which the HPI failed to start up on demand and the operators were successful

to start it manually, as they are instructed to do by procedures. The behavior of the RCS

temperature for this type of scenarios is shown in Figure 4.10. The earlier stage of the

scenario is similar to class 2 scenarios (HPI failed), thus explaining the rather high values

of membership to class 2 (lower part of Figure 4.6). After the operators have recovered

the HPI, the scenarios proceed as those of class 1 (Figure 4.10). Accordingly, they are

recognized as such by the classifier (the membership to class 1 returns high and that to

class 2 drops to zero).

Figure 4.8 shows that the membership values of class 3 scenarios drop between about

800 and 1000 seconds, then restoring back to high values. This can be understood by

looking at the behavior of the SG level for class 3 scenarios in Figure 4.5. In the mentioned

800-1000 seconds time window there is a rise in the SG level before the Emergency Feed

Water (EFW) control brings the level down to below 50". The level increment carries the

patterns away from the cluster centers, thus making the classification more problematic.

These patterns can be identified in the far right side of Figure 4.13, which shows the

projections of the clusters onto the features planes.
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Fig. 4.6: Performance of the classifier on class 1 scenarios. Upper plot: membership to the
correct class 1; Lower plot: membership to the wrong classes 2 and 3.

Fig. 4.7: Performance of the classifier on class 2 scenarios. Upper plot: membership to the
correct class 2; Lower plot: membership to the wrong classes 1 and 3.
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Fig. 4.8: Performance of the classifier on class 3 scenarios. Upper plot: membership to the
correct class 3; Lower plot: membership to the wrong classes 1 and 2.

Fig. 4.9: Position of the patterns belonging to class 1 (+), class 2 ([]), class 3 (x) and position
of the corresponding cluster centers (+).
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Fig. 4.10: Evolution of the RCS pressure: effect of manual HPI start on class 1 scenarios.

Analysis of the "unknown" scenarios

The possibilistic evolutionary FCM classifier identified 18 scenarios as unknown. Their

membership values are shown in Figure 4.11. It can be seen that these values are not

large for any of the available classes: membership to class 3 has the highest values, ranging

within 0.2 and 0.5, while those to the other classes are in practice zero.

The events that lead to these scenarios have been analyzed a posteriori and it was

found that they are characterized by failure of the loop A TBV, with correct functioning

of the HPI. Figure 4.12 shows the behavior of the RCS pressure for these scenarios. The

evolution is rather similar to that of class 3 scenarios, and in practice coincident up to

about 600 seconds after the IE. This explains the large values of membership to class 3 up

to about 600 seconds and why these scenarios still maintain some degree of membership

to class 3 at later times. Figure 4.13 shows the position of the unknown patterns as

compared to class 3 patterns, further confirming that the features of class 3 and unknown
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patterns are rather similar.

Fig. 4.11: Performance of the classifier on "unknown" scenarios: (-) membership to class 1, (–)
membership to class 2, (.-) membership to class 3.

Fig. 4.12: Evolution of the RCS pressure for classes 1, 2, 3 and "unknown" scenarios).
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Fig. 4.13: Position of the patterns belonging to class 3 (x) and unknown (.) and position of
the cluster centers (+).

4.3.3 DDET parser

Within the scope of this PhD work, a DDET parser has been developed in order to

better handle the DDET-generated output scenarios. The main idea behind the DDET-

parser is the reduction of the amount of information to be handled by the analysis. In

fact, the output of ADS is a series of DDET sequences where all the information about

the events occurred during the scenario evolution are saved as displayed in Figure 4.14.

This makes the analysis and the understanding of the DDET extremely difficult and

complicated. Therefore, a tool able to parse and reduce the information in the DDET has

been considered important and necessary for the output analysis of the DDET-generated

scenarios.

In Figure 4.14 a snapshot of a DDET sequence is depicted. In particular, for the

beginning of the sequence 1 only four elements ("Hardware Reliability", "Alarm", "Goal",

and "Alarm") are shown with their respective characteristics like, the identifier ID, the

time when the event has happened, and some features of the event. For example, for
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the "Hardware Reliability" element, the sender and the receiver of the events are shown,

the component and control name, the functional state, and the probability are included.

For the other elements, some other information is included. Notice that also the current

probability is shown.

Fig. 4.14: Example of DDET-generated sequences.

In general in a DDET, events can be either hardware (component and system fail-

ure, generated alarms, etc.) or human events (human failure events, timing of actions,

procedures, etc.). All these events can arise during the scenario’s evolutions depending

on the interaction between hardware or humans and system. Consequently in the gen-

erated DDET all this events result mixed together making the resulting DDET hard to

understand. In particular, when many scenarios are generated by the tool, with all this

amount of information it is easy to lose the progression of a particular type of event in

the overall DDET, e.g., the procedure step evolution over time. Therefore, the power of

the DDET-parser is to generate different views of the same DDET based on some input
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parameters (types of events) allowing a simplification of the DDET that can be explored

and studied by the analyst.

Basically, the DDET parser works like a filter in which the information that are not

relevant for the analysis are filtered out. This allows the analyst to focus his/her analysis

on a particular type of event. A generic DDET is shown in the left hand side of Figure 4.15

where three types of events has happened during the evolution of the DDET, i.e., type A,

B, and C. Then, if the analyst is interested only on type A events occurred in the DDET,

the visualization of the DDET generated by the parser will be only a type-A DDET as

shown in the Figure 4.15 on the right hand side. In principle, more than one type of event

can be shown in the tree (e.g., type A and B) and in the generated visualization of the

DDET there are only events related to A and B. Note that the generated DDETs are not

in scale in terms of timing of events but each event in the DDET has associated the time

along with the probability when that particular event has occurred.

Fig. 4.15: Generic DDET where only types of events A, B, and C are shown (left hand side)
and parsed DDET where only types of events A are visualized (right hand side).

The DDET parser is a tool able to read DDETs written in XML format in which each

event has a particular tag that identifies the type of event. For instance, typical tags

are "Procedure step", "Alarm", and "Hardware reliability" which corresponds to when

the operators enter into a particular procedure step, when there is an alarm and which

is its characteristic, and when there is an hardware event respectively. Once interest-

ing/relevant types of events have been identified, the parser filters out "unimportant"
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events and the resulting DDET is produced and could be shown using any XML editor.

An example of generated visualization of DDET is shown in Figure 4.16 where only events

related on when operators enter in the procedure steps are shown. In particular, in the

visualized DDET, information about the timing of events, probability of events, and type

of branches ("Timing variability" in Figure 4.16) are shown.

In is worthwhile to mention that actually two types of visualization of the DDET are

produced by the parser. The first one, as shown in Figure 4.16 it a visualization of a

typical event tree as usually done for any tree. It is based on the Scalable Vector Graphic

(SVG) language3 and the tree can be visualized by using any browser. Whereas, the

second one is essentially a DDET written in XML in which instead on having the typical

structure of event tree there is a structure based on series of sequences (Figure 4.17). For

each event, some characteristics of the event and the time when the event has occurred is

shown.

The DDET-parser is a tool which has been widely used for the analysis of the DDET-

generated scenario in Chapter 6. It is one of the basic tools used in the developed approach

for DDET output analysis as further described in Section 4.4. It is also worth to mention

that since the DDETs generated are very large, it is difficult to have an entire plot of them

on figures in this document. Therefore, only some small snapshots have been shown.

3SVG is a language for describing two-dimensional graphics in XML. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images, and
text. In the DDET-parser, vector graphic shapes are used.
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Fig. 4.16: Example of parsed DDET where only the timing of entering in procedure steps are
visualized. Proc = procedure, S. = step.
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Fig. 4.17: Example of parsed DDET where the visualization of series of sequences is shown.
In this case, events related to hardware events, procedure steps, and branches are
visualized.

4.4 DDET output analysis approach

In Section 4.3.1 the scenario classification approach and a first application of the DDET-

generated scenario classification has been presented. A step forward is the application of

the classifier to DDET-generated scenarios to inform HRA. The structure of the classifier

has been kept as described in Section 4.3.1 but the focus of the application is different.

The idea is to develop an approach using the described classifier and parser to analyze

the DDET-generated scenarios of failure or close to failure. In particular, the grouping of

scenarios based on some similarity and its quantification in terms of probability is used

for the identification of events leading to the particular group (in general the ones with

highest probabilities or unsafe scenarios).
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In this Section, a description on how to use the classifier for the DDET-generated

scenario analysis is provided. The approach will extensively be further used Section 6.2.2

for the identification and analysis of failure scenarios and in Section 6.2.2 to analyze the

control of the plant by different crews.

This approach is based on a structured guideline which would help the analyst to deal

with the problem of the analysis of DDET-scenarios. The following steps must be followed

in order to analyze the output scenarios of a DDET.

1. Define the type of analysis to do,

2. Identify groups based on some similarity,

3. Train the classifier with an appropriate number of scenarios,

4. Classify all the DDET-generated scenarios,

5. Calculate the group probability based on the scenario probabilities, and

6. Analyze the group with the highest probabilities identifying the main contributors

to the cluster.

In addition to the analysis of the highest probability scenarios, a very interesting point

is the identification and analysis of failure scenarios even if in principle, their associated

probability might not be the highest.

Information about both the highest probability scenarios and the failure (or close to

failure) scenarios, are of interest for our purposes. The first ones give an indication on

how the plant likely behaves after a certain initiating event and on the most likely actions

taken by the operators whereas the second is important for the calculation of the Core

Damage (CD) frequency and the identification of actions and events leading to failure.

As mentioned before, in the first step the analyst has to define the type of analysis to

do, i.e., an interesting "issue" must be identified. For instance, one can be interested in
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analyzing and understanding why different sequences lead to different amount of water

lost through the leak. This is an indication on how the crew is good or not in handling

the accident and also, from an economic point of view, how expensive the consequences of

the scenario evolution after the IE might be. In fact, the smaller the water lost through

the leak is, the better the crew in handling the accident and less expensive the treatment

of the consequences (e.g., purification of the lost water) is. In this case the feature to be

analyzed is the amount of water through the leak in time. This allows to focus the analysis

on a particular issue that the analyst is interested in. Other issues must be identified by

the analyst and for each one the developed approach can be applied.

The second step entails the identification of similarity in the DDET-generated sce-

narios. The analyst, based on experience, has to identify prototypes of groups looking

at the parameter(s) behaviors. There might be scenarios with the parameter behavior

the analyst is interested in, has particular evolutions which differ from the others. Those

particular and interesting behaviors must be identified by hand and used in the third step

for the training of the classifier with an appropriate number of scenarios.

In the third step, the analyst has to train the classifier in order to find the optimal

geometric partition to be used for the classification of the DDET-generated scenarios. The

number of scenarios that must be included in the classifier is not really defined. There

are not guidelines or criteria on the number of scenarios but roughly about 10-20 % of

scenarios are used in the training phase. The training scenarios has an important meaning

from an applicative point of view. In fact, they represent those scenarios that are already

known and available and represent the knowledge that the analyst has about the plant

behavior.

The fourth step is the classification of all DDET-generated scenarios. The classifier

already described has been used to identify the scenarios belonging to the groups identified

in the second step of this approach.

The fifth step deals with the calculation of the group probabilities. Each DDET-

generated scenario has a conditional probability calculated using the method described in
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Section 4.1. Therefore, the probability of each group is just the sum of the probability of

all scenarios belonging to the group.

The sixth step is the analysis of the groups with highest probabilities. In principle

there could be several groups with high and similar probability and then more than one

group might be considered and evaluated. Since those groups are the highest contributors

to the total probability, they are the most interesting to be analyzed. In this context,

analysis means identification of the main contributors to the group in terms of events.

For instance, if the highest probability is the one of the group in which the larger amount

of water is lost through the leak, the related events are the ones to be identified and

characterized. This gives an idea on which are the contributors to the highest probability

group and therefore on events that have a larger impact on the plant behavior. In order to

identify the events leading to the group under analysis, the DDET parser is a very useful

tool which extrapolates only information we are interested in from the entire DDET. In

addition, groups with failure or close to failure must be analyzed in this step even if their

associated probability is not the highest. This is done in order to identify which are

the events that lead the plant behaving towards failure. The goal is to inform the HRA

analyst on hardware and in particular human events leading to failure in order to develop

new HFEs that must be analyzed in further analyses.

The added value of this approach is that not all the scenarios must be analyzed but only

a small and interesting set identified in a structured way will be analyzed in detail. For

instance failure scenarios, scenarios closed to failure, scenarios whose behavior might lead

the operators to take a wrong decision. In addition each group and set of events leading to

the group is characterized with its conditional probability. Moreover, the identification of

scenarios leading to failure or close to failure consequence is an important matter from an

HRA prospective. This approach is a first step toward the development and quantification

of importance measures for dynamic PRA.
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4.5 Stratified sampling of the input

Stratified sampling is a statistical method of sampling from a population or better from

a sub-population independently in general when the sub-populations vary considerably.

The idea of using this concept for the implementation of the input in ADS has been

guided by the fact that the requirement in terms of memory are extremely expensive

and therefore it is not difficult to run out of memory during the simulation losing all

the information and data about the current run. Therefore, splitting the input in small

parts in a particular way using the concept of stratified sampling and running different

simulations, would bypass the problem of memory requirement.

In this Section, some issues about the memory requirements during the run time in

the ADS tool are described. Running a DDET simulation with ADS means to run and

save on local memory several times the thermal-hydraulic of the system. In particular,

saving at each branching point the thermal-hydraulic process variables in the restart file

[RELAP5/MOD3.3, 2001] implies saving on memory information like all the continuous

and discrete state variables defined in the thermal-hydraulic model, which can became

easily unmanageable from any personal computer. The real bottleneck of the tool is the

thermal-hydraulic part of the ADS tool.

Different solutions have been identified in the last years. For example, a multi-

processor simulation approach can be adopted [Catalyurek et al., 2006] and actually has

been implemented in ADS [Zhu et al., 2008]. Another approach which is currently under

study is the possibility to run the tool on cluster computers. Clusters are usually deployed

to improve performance and/or availability over that of a single computer, while typically

being much more cost-effective than single computers of comparable speed or availability

[Bader and Pennington, 1996].

During this PhD work, a different approach has been adopted, i.e., a stratified strategy.

The idea is to run a simulation with part of the input which generates a small DDET

and save the simulation on hard memory. Then, run another simulation with another
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part of the input and again save the generated small DDET on memory. The process

continues until all the input is given to the ADS tool and all the input possibilities are

explored. Afterwards, all the generated DDETs are merged together in order to have the

total DDET; a tool able to merge DDETs has also been developed .

4.6 Summary

A new method for the calculation of the probabilities in a DDET is presented. The

method consists of calculating the probabilities in the post-simulation phase and setting

them equal to 1 during the simulation. The advantages are that the risk of eliminating

interesting sequences is avoided and updating the DDET probabilities when new data are

available can be done without re-running the model.

Then, the main issue arising from a dynamic approach is that the amount of output

information to be considered and evaluated could be in principle impractical to handle

due to both the number of DDET-sequences and the number of events in each sequence.

An approach for DDET-generated scenarios analysis based on a scenario classification

tool and a DDET-parser has been developed in order to i) simplify and reduce the effort

to analyze the DDET-generated scenarios; and ii) acquire an instrument for obtaining

HRA insights through the DDET-scenario analysis.

The scenario classification tool is able to group scenarios based on "similarity" identi-

fied by the analyst looking at the DDET-generated scenarios. The tool has been applied

in a test case study in order to demonstrate its capability and the its usability for clas-

sification issues. In addition, a DDET-parser has been presented. The parser is able

to reduce the amount of information from the global DDET on a small set the user is

interested at.

The two tools are the frame for the developed approach of DDET-generated scenario

analysis. The approach consists of a series of guidelines to be followed for grouping similar

scenarios and characterizing their probabilities. The goal is to inform the HRA analyst
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on groups of events leading failure and to calculate the failure probabilities.

Finally, a methodology for input stratified sampling has been developed and introduced

in ADS for dealing with large DDETs. The idea is to split the entire input in different

pieces and to run different DDET simulations for each part of input. Then, after all the

DDETs are simulated, the tool is able to combine all together in a unique DDET.

The output analysis for DDET-generated scenarios has been used and applied in the

case study described in Chapter 5 for the demonstration of its capability.
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This chapter describes the case study selected for this work. After the main tasks

for the development of the case study in Section 5.1, an overview of a generic PWR is

given in Section 5.2. The focus will be on the typical structure of a PWR and the most

important safety systems available in a PWR. Then, the modeling of the case study is

presented in Section 5.3. Then, in Section 6.1 the general features of the case study results

will be given. This gives a clear idea of the response of the plant for each sequence in

terms of plant parameters’ behavior. The high level overview of the results highlights

the challenges to process the results. These outcomes will be used in Chapter 6 for the

analysis of the results to obtain insights for HRA. Finally, in Section 5.4 a summary of

the chapter is described.

5.1 Main analysis tasks for the development of the case

study

In order to develop the case study, it is important to "tackle the problem" in a structured

way following guidelines which help the user to focus and to implement all the elements

needed for a complete analysis. The main analysis tasks defined for the development of

the case study can be summarized as follow:

• development of a thermal-hydraulic plant model;

• selection of a scenario to be modeled;

• analysis of the operators’ tasks to be performed (task analysis);

• preparation of the input; and

• definition of the branching point rules.
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In fact, once selected the plant (in this case a PWR), a specific thermal-hydraulic

plant model must be chosen depending on the type of analysis. In this study, a RELAP

plant model has been selected as suitable for the scope of a PRA level 1. In the thermal-

hydraulic plant model the geometry, the physics, and the controls of the plant are built.

In this specific case study, an available basic plant model has been used and additional

components and controls have been added with the aim of making it more realistic and

usable in ADS. The plant model has then been linked to ADS through the interface a new

control panel has been built.

As further described in Section 5.2 several criteria have been taken into consideration

for the scenario selection. The most important are its contribution to the total core

damage frequency, an important role of control room operators, and of course a scenario

which has already been modeled in the plant PRA. The scenario here selected is a SLOCA.

The first two points are strictly related because depending on the scenario selected in

the second point, other controls, components, or systems might be added to the thermal-

hydraulic part of the model. In fact, they have been developed in strict iterative way:

once the thermal-hydraulic of the model is selected, the scenario selection guides the

systems, components, and controls that must be added which, in turn, they influence the

development of the thermal-hydraulic of the plant.

Next, a task analysis has been performed with focus on human actions that must be

modeled for the selected scenario. This task analysis has been done considering the plant

PRA and in particular the HRA. Several actions (some of them implemented in the plant

procedures) have been selected and included in the input of the plant.

The main input to ADS are the procedures, the rules-of-behavior, and the hardware

reliability. A review of the plant procedures is necessary for the identification of the

correct procedures to be implemented in the considered case study. In order to identify

and understand the connection between procedures and procedure steps, a database has

been developed as further described in Section 5.3.1. The database has been built to

simplify the understanding of the procedures’ configuration and connection. The identified
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procedures have then been implemented in the ADS framework in the new developed

procedure structure (3.2.1) for modeling the response of the operator based on procedures.

In addition, a set of rules-of-behavior have been implemented. The rules are based on the

identification of actions during the task analysis that are not within the procedures and

are based on the operator’s knowledge and training. Finally, the input for the hardware

reliability has been set to model component and system success and failure in the hardware

reliability module.

Branching points can be generated due to variabilities in the crew response or hardware

success and failure. Several criteria has been used for the identification of branching points

to be modeled in ADS and they are described in Section 5.3.2.

5.2 Thermal-hydraulic model of Pressurized Water Re-

actors

Pressurized Water Reactors (PWRs) are generation II nuclear power plants that use light

water as coolant and neutron moderator [Glasstone and Sesonske, 1994]. A generic scheme

of a PWR is shown in Figure 5.1. A PWR can be basically described by means of two

loops (primary and secondary loop) which convert the nuclear heat produced by the core

into electrical power. The primary loop includes the reactor vessel where the nuclear fuel

composed by nuclear rods is located and the coolant and neutron moderator are kept under

high pressure by the pressurizer to prevent the boiling of the water. The heat produced

by the fission reaction in the core is removed by the coolant. In order to monitor the

nuclear reaction several rods in the core are made of boron which absorbs neutrons and

keeps the reaction under control. The coolant transfers the heat to the steam generators

through the steam line which connect the primary system to the secondary system and

then the coolant is pumped back to the core by the coolant pumps through the cold leg.

The heat is transferred to the secondary side through the bundle tubes walls so that there

is not mix between primary (radioactive) and secondary (non radioactive) coolant. The
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main roles of the steam generators are the production of steam in the secondary side and

barrier between primary and secondary side to avoid radioactive contamination of the

steam. The steam produced in the steam generators goes into the turbine where it is

converted into electricity. After passing in the turbine the steam flows into the condenser

where it condensates to water. The resulting water is pumped out of the condenser and

back to the steam generators by the main feedwater pumps. For a detailed description of

a generic plant see [Todreas and Kazimi, 2001], [Todreas and Kazimi, 1990].

In addition to the previously described systems and components, other safety-related

systems and components are present in any PWR. The most important system is the

Emergency Core Cooling System (ECCS) [USNRC, 2003]. A typical ECCS is shown in

5.2. There are two purposes of the ECCS. The first is to provide core cooling to minimize

fuel damage following a loss of coolant accident. This is accomplished by the injection

of large amounts of cool, borated water into the reactor coolant system. The second is

to provide extra neutron poisons to ensure the reactor remains shutdown following the

cooldown associated with a main steam line rupture, which is accomplished by the use

of the same borated water source. This water source is called the refueling water storage

tank.

To perform this function of injection of large quantities of borated water, the ECCS

consists of four separate systems: the high pressure injection (or charging) system, the

intermediate pressure injection system, the cold leg accumulators, and the low pressure

injection system (residual heat removal).

Another important system which has several functions is the Chemical and Volume

Control System (CVCS). This system is used to a) maintain the amount of coolant in

the primary system, b) control the chemical properties of the coolant, e.g., the chemical

neutron absorber concentration (boron concentration), c) fill or empty the primary system,

d) purify the coolant using filters and demineralisers, and e) maintain the level of the

pressurizer at the desired set point. During the normal operation of the reactor, a small

amount of water is inserted in the RCS and another similar amount of coolant is removed
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from the system. These two flows are controlled by the CVCS. The so called purge water

exits the RCS and after passing through heat exchangers and filters is demineralised to

prevent from ionic impurities. Afterwards this water is driven to the volume control tank

and can be reused as coolant.

In this study, the simulation of the plant process is performed by a RELAP thermal-

hydraulic transient model [RELAP5/MOD3.3, 2001]. The thermal power production is

about 3000 MWth. Figure 5.3 shows the primary side of the plant. The reactor has

three coolant pumps (one for each loop), a pressurizer working at 153 bar and 344 ◦C

connected to the first cold leg, and three steam generators. The pressurizer has two safety

valves which release in the containment and a Power Operated Relief Valve (PORV) which

releases in the condenser. The spray line is connected to the pressurizer from the cold leg

of the first loop. There are also six accumulators, three connected to the three hot legs

and three to the three cold legs. Furthermore, there are the three high and low pressure

injection systems (one per loop) and a chemical volume control system connected to the

cold leg of the first loop for a makeup and letdown system. As further explained, the

initiating event considered in this case study is a SLOCA located in the cold leg of the

second loop before the admission to the reactor.

The secondary side of the plant (Figure 5.4) has three loops which lead the steam to

turbine through the steam line. The main steam at the outlet of the steam generators is

at 64.5 bar and 280.3 ◦C. The steam dump valve releases the steam to the condenser if

the steam line valve closes. Each steam generator has a Main Feedwater (MFW) system

and an Emergency Feedwater (EFW) system. In order to control the secondary pressure,

there are for each loop a PORV valve releasing steam to the condenser and a safety valve

releasing steam to the containment. There is also one Main Steam Isolation Valve (MSIV)

per loop in order to stop the steam going to the steam line if needed.
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Fig. 5.1: Scheme of a generic PWR (source http://www.nrc.gov/reactors/pwrs.html).
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Fig. 5.2: Scheme of a generic ECCS for a PWR (source: USNRC).

5.2.1 Implementation of the control room panel

The starting point of the implementation of the systems and controls needed for coupling

RELAP with ADS was an existing available input deck in which several basic compo-

nents and systems were already been employed like the pressurizer safety valves (two),

main coolant system, main feedwater system, steam generators (three), secondary and

primary loops, and the core. In addition to the already modeled systems and compo-

nents, several controls and indications and additional systems and components have been

added for the purpose of the current case study. In particular: accumulator liquid levels

and pressures indications, average temperature primary side indication, pressurizer level
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Fig. 5.3: Primary side schema.

control, pressurizer spray valve and PORV, ECCS system, i.e., HPI and LPI systems,

charging system, main steam isolation valves, steam generator PORV valves, main feed

water valves, emergency feedwater system, steam dump valve, turbine governor valve,

and point kinetic model (to model the feedback of the temperature on the core power).

In order to connect the plant with ADS, a new control panel has been built to model

the interaction between the thermal-hydraulic part of the model and human/hardware

model. In particular, about 140 displays, 60 controls, and 80 alarms have been added.

The operators have a direct access to the control panel, which is the interface between

the plant model and the human-machine and hardware model. Appendix D shows the

control panel implemented in the case study.
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Fig. 5.4: Secondary side schema.

5.3 Modeling a small LOCA in ADS

In a typical PRA, several scenarios are considered and modeled to make safety and risk

analyses of the plant. Any scenario differs to the others because of the type and position of

IE, the phenomenology induced by the IE, and the accident progression. Typical scenarios

considered in PRAs are anticipated transient without scram, any type of LOCA like small

LOCA, medium LOCA, large LOCA, excessive LOCA, letdown LOCA, SGTRs, etc. All

of them are important for the calculation of the core damage frequency.

In this work, only one scenario has been considered. Several criteria have been con-

sidered in order to choose the one to be modeled in this work. In particular they were:

• significant role of operator actions, in particular in the control room;

• scenario currently modeled in the plant PRA; and

• risk significant in typical PRA.
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To test the capability of the ADS tool, in particular concerning the human model, the

scenario must have a significant role of the human actions in terms of i) cognitive response

of the operator to perceived malfunctioning of the system (alarms, incorrect behavior of

key parameters, etc.); and ii) procedure-guided human action response during the accident

behavior. In addition, the scenario has to be interesting in terms of contribution to the

total core damage frequencies.

With the aim of covering the previous issues, the scenario which has been chosen was

SLOCA event. The reasons which lead the selection of a SLOCA were:

• the contribution to the core damage failure is one of the highest in the current PRA;

• LOCAs are accidents generally well known, in particular the Large LOCA;

• Large LOCA has been demonstrated to be not likely from different PRAs; and

• in the SLOCA the break is not large enough to take away the heat, therefore the

control room operators manually have to take actions to cooldown the system (as

described in the procedures), i.e., there is significant role of the operator actions.

5.3.1 Operator actions during a SLOCA - task analysis

The sequences are assumed to be initiated by a two-inch break in one of the cold legs of the

primary system (Figure 5.3). After the SLOCA initiating event, signals for the automatic

reactor trip and high pressure injection are generated. The reactor can trip due to different

criteria like low steam generator levels, high power production, low pressurizer pressure,

containment isolation signal, and high pressurizer pressure. The reactor trip causes the

automatic turbine trip, the start of the ECCS (high pressure injection), and the trip of

the primary coolant pumps. The steam generator main feedwater pumps are isolated

after the reactor trip and the emergency (auxiliary) feedwater is supplied when the steam

generator low level signal is actuated. The automatic turbine trip causes the shut off the

steam line valves and the steam flows directly to condenser since the steam dump valve
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opens. Depending on the peak pressure reached in the secondary side after the reactor

and turbine trips, the steam generator atmospheric relief valves or the steam generator

safety valves open maintaining the secondary pressure approximately around 80 bars.

The success criteria for a SLOCA event are that the high pressure injection maintains

the reactor coolant inventory during the rector cooling down to low pressure conditions

(below 10 bars) and the steam generator cooling for core decay heat removal.

According to the emergency procedures, the main goals for the operators is to cooldown

at 100 K per hour through the turbine bypass valves or the steam generator atmospheric

relief valves, control and maintain the steam generator levels above 8 meters using the

emergency feedwater valves, start the pressurizer sprays to increase the pressurizer level

to 9 meters, shut down the HPI pumps one at a time if there is enough SubCooling Margin

(SCM), start the charging pumps to maintain the pressurizer level, and when the pressure

is below 10 bar start the LPI for low pressure recirculation cooling. Depending on the

evolution of the scenario the operators are instructed to perform other actions in addition

to the previous ones. For instance, they can rapidly cooldown the system increasing the

secondary cooldown if the HPIs are not available or manually open the steam generator

relief valves and reduce the pressure to approximately 80-85 bars if the MSIVs close

spuriously or other hardware failures prevent steam relief to the main condenser. Table

5.1 summarizes several potential human actions which could be required during a SLOCA

scenario depending on the plant evolution. In the first column there are the action name

whereas in the second a short description of the action. The human actions actually

implemented in this work are shown in bold italics.

118



5.3. Modeling a small LOCA in ADS

Table 5.1: List of the potential human actions during a SLOCA scenario with the corresponding
description (in bold italics human modeled actions).

Human action name Description

Start the emergency

feedwater pump to con-

trol the SG level above

8m

If in any steam generator the level drops below 8m, start

the emergency feedwater pump of the affected steam

generator

Cooldown the reactor

coolant system below

180 ◦C

Initiate a cooldown at 100K/h or 45 K/h if the leak has

been identified in the secondary side

Reset charging isolation Reset the charging isolation signal before the HPI tank

run out of water after the plant has been stabilized on

a low pressure recirculation cooling or closed-loop RHR

flow

Restart charging isolation Restart at least one charging pump after the reset of the

charging isolation signal

Start the auxiliary pres-

surizer sprays

Start at least one of the two auxiliary pressurizer spray

lines to increase the level of the pressurizer above 5m or

to reduce the coolant system pressure

Reset the injection signal Reset the automatic high pressure injection signals after

the flood tank level is below 0.6m and the automatic

switchover to the containment sump recirculation flow

has been occurred

cont’d on next page
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Table 5.1 – cont’d from previous page

Human action name Description

Control the high pres-

sure injection flow

Adjust the high pressure injection flow and allow the re-

actor coolant system pressure to fall below 10 bar before

the flood tanks are drained and the automatic signals are

produced for switchover to containment sump recircula-

tion flow

Open the residual heat re-

moval hot leg suction valves

Align at least one of low pressure injection pump trains

for closed-loop RHR operation

Start high pressure in-

jection

Start at least one HPI pump before the core starts to

uncover

Close main steam isolation

valves

Manually close the MSIVs and stop the main feedwater

flow

Open steam generator relief

valve

Manually open the steam generator relief valves and re-

duce the pressure if the MSIVs close spuriously or other

hardware failures prevent steam relief to the main con-

denser

Start the feedwater pumps Manually start the main feedwater pumps if they are

not started automatically

Isolate stuck-open relief

valve

Identify the stuck-open valve and close its pilot-operated

isolation valve before the level of the steam generator

drops below 7m and its pressure is 15 bar lower that the

unaffected steam generators

Align sump recirculation Align at least one low pressure injection pump train

for containment sump recirculation flow before the flood

tanks are drained to the automatic suction transfer level

120



5.3. Modeling a small LOCA in ADS

Overview of the emergency procedures

The emergency procedures are structured instructions that must be followed by the control

room operators in order to control and act on the plant during emergency situations.

Actually, in any nuclear power plant there are other procedures like normal operating

procedures (used in normal plant conditions and during the startup and shutdown of the

plant), abnormal procedures (used when abnormal but not emergency situations occur),

emergency procedures, and Severe Accident Management Guidance (used when severe

situations occur in the plant). All these procedures are interconnected and linked together

and transferring from one procedure to another depends on some criteria that must be

met. In addition, within each procedure, there are procedure steps interconnected within

the same procedures or connected to other procedures/procedure steps in other procedures

based again on different criteria.

With the purpose of implementing these structures of procedures into ADS a database

has been developed for the considered plant specific procedures. With the database the

user can insert all the procedures and procedure steps of the plant with the criteria of

connection to other procedures/procedure steps and the database is able to show all

the connections in a table form. This approach has been considered necessary for the

understanding of the framework in which the procedures of the plant work.

In this Section, an overview of the emergency procedures for the analyzed NPP will be

given focusing in particular on the post trip procedure and on the LOCA procedures, which

have been implemented in this study. When the reactor is no longer running in normal

conditions, i.e., abnormal conditions or particular alarms have occurred the operator is

required to perform recovery actions or to look at the abnormal procedures. Then, if there

is a reactor trip, the operators have to start to perform the post trip procedures in which

the main tasks are: immediate actions, criteria for emergency cooling, diagnosis (in order

to transfer to other procedures), continue inspections, and late diagnosis. Typically in the

first task the operators are required to verify the reactor and turbine trip, the availability

of the electrical power supply, the secondary cooldown, and check the steam generator
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levels. In the second task, the procedure steps instruct the operator to verify if they

should start a cooldown. In the third task there is the transfer to other procedures. For

example, there is a check of the secondary radiation to transfer to the Steam Generator

Tube Rupture (SGTR) procedure or the check of the primary pressure to transfer to the

LOCA procedure, and so forth. If no transfer criteria are identified in this task of the

procedure, there is again the possibility to transfer in the fifth task, i.e., the late diagnosis

task, after the continue inspections where the operators have to monitor the plant. Once

a leak has been identified during the post trip procedures, (either within the diagnosis or

the late diagnosis task), the operator is instructed to start the LOCA procedure.

In the plant considered, the LOCA procedure is divided in different procedures: Loss

of coolant from primary or secondary side, Normalization after the emergency cooling

criteria clearing, Small leak inside the containment, and Primary depressurization with

pressure difference between the inside containment and atmosphere greater than 30 mbar.

The procedures are interconnected by different criteria depending on the size of the leak,

the position of the leak, the availability of plant components, and the plant evolution.

The first LOCA procedure is the Loss of coolant from primary or secondary side. In

this procedure after a first phase of diagnosis (ensure cooldown and diagnosis task) where

the operators are instructed to cooldown the system and to check the SG, the pressurizer,

and low pressure system, the operators have to perform the emergency pumps shut off

task where they have to check whether the pumps must be shut off if there is enough

SCM and the pressurizer level is above 5 m. In the third task (identification of cooldown

instructions) the operators have to cooldown the system through the steam valves and

then transfer to the Small leak inside containment procedure if the low pressure is not yet

reached.

Within the Small leak inside containment procedure the operators have to perform

several tasks. One is to stop one by one the HPI pumps if there is enough SCM and

the pressurizer level is above 5 meters. If there is enough level and SCM they shut off

one pump, they wait until the pressurizer pressure is stable and they restart the process
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for the second pump and so forth. Then, they have to start the charging system to

increase and keep the pressurizer level at 9 meters and wait until the pressurizer pressure

decreases below 32 bar where the accumulators start. The next procedure step instructs

the operators to stop the accumulators. The primary pressure drops below 10 bar where

the LPIs can start for low pressure recirculation cooling (the temperature drops below 90
◦C).

During the overall process, the operators must be able to decrease the primary tem-

perature below 180 ◦C using the SG PORVs (or safety valves) and at the same time to

keep the SG levels around 8 meters using the EFW pumps. Figure 5.5 summarizes part

of the tasks which must be performed during a small LOCA event and which have been

implemented in this study.

Fig. 5.5: Tasks within the post trip and LOCA procedures implemented in this work.
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Implementation of the procedures

The procedures implemented in this work are the post-trip procedure, and the LOCA

in primary or secondary side procedure, and the SLOCA procedure. In this case study,

about 80 procedure steps have been implemented considering both formal and mental

procedures. A list of them is summarized in Table 5.2, Table 5.3, and Table 5.4. Within

the ADS code, the user can decide whether to use a three-parameter Weibull distribution

to model the time to perform a single action within a procedure step and the respective

probability or to give in input the time and probability calculated before starting the

simulation. In the first case, the three parameters are t0 the location parameter, α the scale

parameter, and β the shape parameter. In general, a two-parameter Weibull distribution

is enough to describe the timing to perform the procedure step. In the second case, the

analyst calculates the time and the probability to perform a certain procedure step based

on available data or based on experience. In this case study, the second type has been

chosen. In order to simplify the problem, the variability in time has been assumed only at

the identified as the most important procedure step within the task or set of tasks whereas

the other steps have a single time. Notice that the effective procedure step timing depends

on the availability of the operators to perform the procedure step. There are situations

in which while performing the procedure step, the operator has to perform also a manual

control of other parameters like for example the cooldown rate. Table 5.2, Table 5.3,

and Table 5.4 show for each implemented procedure, the task, the step name, and the

timing given by the analyst. In particular, in Table 5.2 the step Check whether there is a

LOCA event (transfer) is the transfer to the Loss of coolant from primary or secondary

side procedures and some timing variability is modeled.

Table 5.2: Set of implemented post trip procedure steps

Task Step Timing

Immediate actions Check the reactor shut down 30s

cont’d on next page
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Table 5.2 – cont’d from previous page

Task Step Timing

Check the turbine shut down 30s

Check whether the buses are

energized

10s

Check the three SG pressures 30s

Criteria for emergency cooling Cool down at 100 K/h if needed 30s

Diagnosis Check the main steam pressure 30s

Check the main steam pressure

rate

30s

Check whether there is sec-

ondary leak

10s

Check whether there is a

LOCA event (transfer)

100s

1500s

Check the secondary side activ-

ity

100s

Check whether there is a leak

in any steam generator

100s

Stop cooldown at 100 K/h 50s

Check whether the main feed-

water must be stopped

50s

Continue inspections Continue to control the plant 50s

Late diagnosis Check whether there is a

LOCA event

50s
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Table 5.3: Set of implemented steps for the loss of coolant from primary or secondary side
procedures.

Task Step Timing

Ensure cooldown and diagnosis Check whether the leak is in the

secondary side

10s

Cooldown at 100 K/h using the

steam dump valve

30s

Check all SG levels 90s

Check the pressurizer level 20s

Check the low pressure signal 30s

Emergency pumps shut off Check the total safety injection

flow

20s

Close steam dump valves if

needed

60s

Check whether the safety injec-

tion can be stopped

10s

Identification of cooldown in-

structions

Cooldown at 100 K/h using the

steam dump valves

60s

Check whether the buses are

energized

10s

Check the low pressure injec-

tion signal (transfer)

30s

Low pressure actions Start pressurizer sprays 20s
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Table 5.4: Set of implemented steps for the small leak inside containment procedure.

Task Step Timing

Control the cooling loop and the

charging system

Continue to cooldown through

the steam dumps

50s

Check the SG levels 30s

Check the charging system 10s

Check the ECCS pumps 10s

Decide if the SI pumps must be

stopped

Check the emergency cooling

signal

20s

Shut down the SI pumps Check whether start up of the

pressurizer sprays

20s

Control the spray flow 20s

Stop the pressurizer sprays 5s

Stop one by one all HPI pumps 20s

Stabilize the plant after the SI

pump shut down

Check whether to start the

charging system

10s

Check whether start up of the

pressurizer sprays

20s

Control the spray flow 20s

Stop the pressurizer sprays 5s

Reduce the primary temperature

below 180 ◦C

Check the primary pressure 20s

Check the sump 20s

Stop the accumulators 20s
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Rules-of-behavior

In addition to the formal procedures, a set of rules-of-behavior has been implemented in

order to model the operator’s knowledge and training. This set of rules have been chosen

based on the task analysis performed in Section 5.3.1. In fact, not all the actions described

in the PRA are covered by the procedures and it is assumed that the operators act also

based on knowledge and training beyond the procedures. This knowledge and training

is modeled in ADS with a set of rules-of-behavior. These rules are activated depending

on the type and the number of information perceived by the operator and they remain

activated until the reset time is reached. In particular, the goals implemented in this work

are:

• control the steam generator levels;

• control the cooldown rate;

• control the charging flow;

• start/stop the pressurizer sprays in the late phase of the scenario;

• stop two HPIs instead of one if there is enough SCM; and

• increase cooldown rate if no HPIs are available.

In the last item there is branching generation as further explain in Section 5.3.2. Table

5.5 summarizes the rules-of-behavior implemented in the case study. There is the name of

the rule, the conditions and the number of conditions to activate the rule, the action (s) to

be taken, and the reset time, i.e., the amount of time in which the rule remains activated.

In principle, there could also be a branching generation when a rule is activated, i.e.,

activation and not activation (this has not been implemented in this case study).
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Table 5.5: List of rules-of-behavior implemented in the case study. N = 1, 2, or 3.

Name Conditions True con-

ditions

Action(s) Time ac-

tivated

SG-N high

level control

-Alarm High SG-N

level

-Reactor trip

-EFW pump N on

3-out-of-3 Reduce EFW-N

flow

60s

SG-N low

level control

-Alarm low SG levels

-Reactor trip

-EFW pump N on

3-out-of-3 Increase EFW-N

flow

60s

Increase

cooldown in

loop N

-Reactor trip

-Rate loop N

cooldown < 100

K/h

2-out-of-2 Increase SG-N

PORV flow

60s

Decrease

cooldown in

loop N

-Reactor trip

-Rate loop N

cooldown > 100

K/h

2-out-of-2 Decrease SG-N

PORV flow

60

Increase

charging flow

to control

pressurizer

level

-Reactor trip

-Make up flow avail-

able

-pressurizer level <

9m

3-out-of-3 Increase the

injection of the

water through

the charging

system

60s

cont’d on next page
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Table 5.5 – cont’d from previous page

Name Conditions True con-

ditions

Action(s) Time ac-

tivated

Decrease

charging flow

to control

pressurizer

level

-Reactor trip

-Make up flow avail-

able

-pressurizer level >

9m

3-out-of-3 Decrease the

injection of the

water through

the charging

system

60s

Start late

prays

-Reactor trip

-Late phase of sce-

nario

-pressurizer level <

3m

3-out-of-3 Start the pres-

surizer spray

60s

Stop late

prays

-Reactor trip

-Late phase of sce-

nario

-pressurizer level >

9m

3-out-of-3 Stop the spray 60s

Stop 2 HPIs -Reactor trip

-HPI Loop 1 flow = 0

-HPI Loop 2 flow > 0

-HPI Loop 2 flow > 0

-pressurizer level <

3m

4-out-of-4 Stop the HPI

loop 3

Forever

cont’d on next page
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Table 5.5 – cont’d from previous page

Name Conditions True con-

ditions

Action(s) Time ac-

tivated

Increase

cooldown

rate

-Reactor trip

-HPI loop 1 pump

failed

-HPI loop 2 pump

failed

-HPI loop 3 pump

failed

3-out-of-3 Open all three

SG PORVs

Forever

5.3.2 Branching point events

In this case study, branching events have been generated due to human actions and

hardware events. In principle, a branching point can be generated as soon as any human

action or hardware component is required. Unfortunately, if an approach of modeling any

actions or hardware events with branches is applied, the number of generated scenarios

will be difficult to analyze due to the combinatorial explosion. Therefore, a selection of

only a small set of branching points must be done in order to keep the size of the generated

tree reasonably small.

The choice of the branching points to be modeled depends on the type of analysis that

the analyst is expected to do. In this case study, the main interest was on the variability in

time of the operator response and on the variability in the execution of actions within the

procedure. In addition, also hardware success and failure has been considered important

to see the operator response and behavior during component failure paths.
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Based on the task analysis and the expected evolution of the plant the following

branching points have been considered in this case study:

• timing variability in transfer to the Loss of coolant from primary or secondary side

procedure;

• timing variability in stopping the last HPI;

• stop the pressurizer spray the first time (several times the pressurizer must be started

up and stopped) at 5 meters (as said in the procedures), 3 meters, and 8 meters;

• stop one or two HPIs if there is enough SCM;

• success and failure of one HPI; and

• success and failure of the steam dump.

The timing variability in transferring to the Loss of coolant from primary or secondary

side procedure and in stopping the HPI pumps has been considered because these are

critical points for the subsequent evolution of the accident.

With regard to the stop the pressurizer spray the first time at 5 meters (as said in

the procedures), 3 meters, and 8 meters different strategies in performing this actions,

influence the workload in the future evolution of the scenario as well as the dynamics of

the crew-plant interactions.

The stop one or two HPIs if there is enough SCM has been chosen because there might

be situations in which during the SLOCA evolution there are not problems of SCM like

in a large LOCA event for example, and the operators can have the feeling that even two

HPIs can be stopped and the SCM remains enough. The effect of this type of action has

been judged as interesting for the plant evolution.

The two hardware failures have been chosen because the HPI failure may influence

the management of the accident by the operators since the HPIs are quite important to

maintain the coolant inventory and they are used a lot in the procedures. The failure
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steam dump influences the cooldown of the plant and the control of the SG PORVs used

to cooldown the plant, since some additional heat is lost through the steam dump open.

The name of the branching point events, the corresponding number of branches, and

the parameter values of each branch is summarized in Table 5.6.

Table 5.6: Event name, number of branches of the event and relative parameter values.

Event name Number of
branches

Parameter value

Timing variability of transfer to
the Loss of coolant from primary
or secondary side procedure

3 Time: 100s and 1500s

Timing variability in stopping the
last HPI

3 Time: 100s and 1000s

Stop the pressurizer spray the
first time

3 pressurizer level: 5m, 3m, and
9m

Stop 1 or 2 HPIs 2 Num. of HPIs: 1 or 2
HPI Success/failure 2 HPI state: success or failure
Recovery HPI 2 HPI state: recovered or not
Steam dump Success/failure 2 Steam dump state: success or

failure

In order to model also an operator action described in the current plant PRA, an

additional failure has been implemented. The considered action is a fast cooldown during

a SLOCA initiating event with no HPIs. If no HPIs are available, the operator has to

cooldown at a higher than the planned 100 K/h rate to reduce the primary temperature

below 225◦C and pressure below 26 bar for the start of the accumulators. If the accumu-

lators are not available the goal is to reduce the pressure below 10 bars for low pressure

injection before the core damage begins. Therefore, in addition to the previous branch-

ing point rules, an additional branching point rule where no HPIs are available has been

added. If no HPIs are available, a branching point is generated and a rule to increase the

cooldown rate is activated. These types of scenarios will be analyzed in the last part of

Chapter 6.
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5.3.3 Implementation of the input

As already described in Section 4.5 the input of ADS must be divided (stratified) in

different parts in order to be able to run the ADS code without having problems of

running out of memory. In this case, a set of nine simulations has been performed and

consequently the input of each simulation has been chosen in order to cover the entire

input of the case study. Afterwards, once all the simulations have been run, the output

of each simulation has been merged using the developed tool introduced in Section 4.5.

5.3.4 Example of scenario modeled in ADS

In this section, an example of the sequences of events that occur after an IE as modeled in

ADS is presented. The IE is a small leak in one cold leg of a PWR (SLOCA conditions).

As soon as the IE occurs, the plant starts to deviate from a nominal condition behavior.

In fact, both the pressurizer level and pressure decrease, there is signal of containment

isolation and main steam isolation, and the emergency feedwater pumps start running.

Due to the low pressurizer level, the reactor and the turbine trip. The operators start to

monitor the plant in order to understand what happened. After a while they decide to

start the emergency operating procedures due to the critical behaviors of several param-

eters. At the beginning they check several parameters in the post trip procedure with

the aim of identifying the correct initiating event and transfer to the correct procedure.

In particular they transfer to the SLOCA procedure (Loss of coolant from primary or

secondary side) because the containment pressure is larger than nominal and it is an indi-

cation of a leak in the plant (it is one of the criteria to transfer to the SLOCA procedure).

At the same time the operators are able to control the SG levels using the emergency

feedwater pumps. Once transferred to the SLOCA procedure the operators, besides sev-

eral checks, have to cooldown the system using the PORVs, start the pressurizer sprays,

stop one by one HPI pump, and start the charging system. During the scenario evolution,

they have to control the cooldown rate, control the charging flow, and control the sprays.
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Performing the previous actions, the operators are able to depressurize and cooldown the

system to low pressure conditions.

5.4 Summary

In this chapter, the case study implemented and analyzed in ADS has been presented

and the methodology used for the definition and development of the case study has been

described. The methodology is based on the following:

• development of the thermal-hydraulic plant model;

• selection of the scenario to be modeled;

• analysis of the operators’ tasks to be performed (task analysis);

• preparation of the input; and

• definition of the branching points.

At the beginning, a high level overview of a generic PWR has been given focusing

mainly on the typical structure of the plant and on the most important safety systems

available in PWRs plants. Then, the thermal-hydraulic plant model and the implemented

control room panel has been described. The starting point of the thermal-hydraulic model

was an available simple model in which the geometry and several components were already

available. During this work, additional components and in particular controls have been

added to make it more realistic and functional for ADS and for the modeling of the

SLOCA. Furthermore, the thermal-hydraulic plant model has been connected to ADS

through the interface including also a new control panel.

The selection of the scenario to be modeled in ADS has been also described point-

ing out mainly the criteria for the scenario selection and the motivation of the selected

scenario, i.e., the SLOCA. Considering the selected scenario, a task analysis has been
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performed with the intention of identifying important human actions to model in ADS.

The main contribution of the task analysis was the study and analysis of the plant-specific

procedures. In fact, a database able to map and show the connection between procedures

and procedure steps has been developed. The database has helped the understanding

of the procedures which have been further implemented in ADS. In addition, following

the task analysis, human actions not modeled in the procedures but based on the knowl-

edge and training of the operator has been identified and implemented in the so-called

rules-of-behavior. Finally, the input needed for the simulation in ADS has been built and

in particular the definition of the hardware reliability elements have been set to model

component and system success and failure.

The last step was the definition of the branching points. Branching points can be

generated due to variabilities in the crew response or due to hardware success and failure.

The criteria and motivations for the selection of the branching points have been presented

and described.

The stratification of the input is an important strategy used to bypass the problem of

extensive memory requirement of the thermal-hydraulic calculations.
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Case study analysis and results
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In this Chapter the results obtained from the analysis of the simulation data of the

case study described in Chapter 5 will be presented. At a high level, these results can

be summarized as: a) insights about the scenarios and operator actions in the scenarios;

b) dynamic vs. classical HRA insights; and c) demonstration through post-simulation

data analysis techniques on how to support HRA. In Section 6.1, the general features of

the case study results are presented focusing mainly on the time evolution of the plant

process parameters and the calculation of the DDET probabilities. Then, in Section 6.2

the simulation data are analyzed using the developed post-simulation strategy in order to

obtain insights for a dynamic approach to support an HRA through the information of

Performance Shaping Factors (PSFs). In this Section, two case studies are analyzed: the

first one is a SLOCA with all the HPI systems available and the second a SLOCA without

any HPI system available. Then, in Section 6.3 the methodology for HRA characterization

in the dynamic PRA context will be presented. The focus will be on how one can use

this tool to obtain information about the scenario and potential errors that operators can

have during the accident scenario evolution, and how to use dynamic approaches to help

the calculation of the HEPs.

6.1 General features of the case study

In the first case study analyzed a total of 81 DDET sequences has been generated by the

tool. In the second case study, an additional set of 22 sequences were generated. The

results in this section refer only to the first set of 81 sequences. The simulation has been

stopped after about 2 hours or when the plant reaches about low pressure conditions (10

bars) and the LPI pumps start. In fact, when low pressure conditions are reached, the LPI

system is able to remove the residual heat from the core then the plant can be considered

in safe conditions. The aim of this section is to present how the response of the plant

appears for each sequence in terms of plant behavior.

In Figure 6.1 an excerpt of the generated DDET in the case study is presented. The
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diagram represents only a few sequences where only the main events are shown since

representing the entire DDET is not feasible. In particular, after the initiating event

(SLOCA), the reactor trips (Rx trip event). After about 5 minutes, the operators have

to start cooling. At this point in time there is a branching point representing timing

variability to start cooling. Therefore, the different outputs of the decision to start cooling

are explored making three branches in the tree (branch 1, branch 2, and branch 3). Then,

in the course of the evolution of the plant, operators have to decide whether to stop the

HPI pumps one-by-one or to stop the first time 2 pumps. The decision is based on the

amount of SCM available. In the DDET we can explore both situations where they stop

one pump (branch 4) or two pumps (branch 5). The same applies for branches 6 and

7. The final DDET generated by the software contains all the paths explored during the

simulation.

Fig. 6.1: Excerpt of sequences of the generated DDET where only the main events are shown.

In the output of the DDET there are also the evolutions of the parameters included

in the control panel module. A description of the main parameter evolutions is now

presented.

Immediately after the occurrence of the break, the primary pressure drops quickly

from 152 bars to about 80 bars. Control rods fall inside the core and the power decreases.
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The reactor coolant pumps are tripped due to loss of subcooling and natural circulation

is maintained because of the heat still generated in the core. The decay power that

still remains in the core is removed via the secondary system. There is a brief rise of

secondary pressure until primary and secondary pressures reach similar values (Figure

6.2), afterwards the primary pressure is kept always above the secondary pressure. The

operations performed in the secondary side are meant to slowly cooldown the secondary

system and the heat in the primary system is removed through the secondary.

In all scenarios the operators have been able to cooldown the plant. In fact, the model

predicts that the crews respond successfully in the case study scenario. This means that

the type of crews simulated have the capability to control the system to safe conditions

even if some scenarios near unsafe regions have been identified and further analyzed.

Right at the beginning of the scenario the decrease of temperature is fast but after

30 minutes the operators, responding according to the procedures, are able to control the

cooldown rate. Scenarios in which the control of the cooldown is not performed are not

present in this case study. It is assumed that the operators are always able to control the

cooldown rate in order to meet the 100 K per hour criterion of cooling.

The effect of starting at different timings the cooldown (due to the associated branching

point), is visible in Figure 6.3 where the pressurizer levels are plotted. In fact, the later

the operators start the cooldown in the corresponding procedure step, the later the other

procedure steps are performed and in particular the ones related to the starting of the

sprays. The main visible effect of starting spraying is the increase of the pressurizer level

as shown in Figure 6.3. After a few minutes from the start of the sprays (to increase the

pressurizer level), the pressure decreases but it comes back to almost the same level just

after they stop the sprays (see the primary side pressure behavior around 60 min in Figure

6.2). The pressure does not decrease because the HPIs keep injecting high pressure water.

The pressure decreases as soon as the operators stop the HPIs (responding according to

the procedures since there is enough subcooling margin). As shown in Figure 6.2, when

a HPI is stopped there is a sharp drop in the pressure behavior. This is due to the fact
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that fewer pumps are running and the inventory of water decreases due to the loss of

water through the break. The effect of the pressurizer sprays and HPIs is also shown in

Figure 6.4 where there are the behaviors of the break mass flow. When the operators

spray, the pressure is reduced and there is a contraction of the volume which reduces the

flow through the break. Also when one-by-one the HPIs are stopped, the amount of water

outside the break decreases. Notice that as further explained, when the operators take

some time to stop the last HPI, the mass through the break increases (late phase of some

scenarios in Figure 6.4). This is due to the fact that the amount of water injected by the

last HPI still running increases the inventory of the water in the primary loop which flows

through the break.

In Figure 6.5 the subcooling margin behavior for all scenarios is shown. The minimum

subcooling margin is calculated considering the difference between the current tempera-

ture and the saturation temperature of any loop and taking the minimum value. As one

can see in Figure 6.5, the subcooling margin in all of these sequences is positive. This

means that saturation conditions are never reached during the evolution of the considered

scenarios, even if for some of them the subcooling margin becomes close to zero. This is

mainly due to the fact that the injection flow provided by the three HPI pumps and the

charging system is much larger than the break flow.
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Fig. 6.2: Example of primary and secondary pressures for a sequence.

Fig. 6.3: Pressurizer levels (all scenarios).
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Fig. 6.4: Break mass flows (all scenarios).

Fig. 6.5: Subcooling margins (all scenarios).

With regard to the secondary side, the operators are instructed to control the SG
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levels using the emergency feedwater pumps. Figure 6.6 shows as an example the steam

generator level behaviors in the first loop. In the other two loops the behavior is similar.

As one can see, the SG levels are maintained in the 85-90% range. This is accomplished

by the use of the EFW pumps as described in the procedures. In this way, the operators

satisfy the goal of avoiding an overfilling of the SGs.

The turbine trip after the reactor trip, causes the closure of the main steam isolation

valves and the steam can no longer flows to the turbine but it flows to the condenser.

Right after the initiating event, the PORVs automatically open as shown in Figure 6.7.

Then the operators manually control of the cooldown by acting on the PORVs. For

scenarios where the operators start to cooldown late, there is a gap in the plot right after

the starting of the manual control (after about 30 minutes). This is due to the fact that,

with the automatic opening of the valves, the cooldown rate is larger than 100 K/h since

is not controlled. In order to meet the criterion for the cooldown rate, the operators have

to reduce the PORVs flow to establish the 100 K/h. This does not happen in case of

nominal transfer since the operators are able to take manual control early in the scenario

and the cooldown rate at that time is smaller.

Fig. 6.6: Steam generator levels (all scenarios).

144



6.1. General features of the case study

Fig. 6.7: PORV flows (all scenarios).

6.1.1 DDET-generated scenario probabilities

In this Section, the DDET-generated scenarios probabilities are calculated in order to

characterize the probability of each sequence. It is important to note that the traces of

the plots presented in the previous section, do not indicate the probability of occurrence of

the associated scenarios (i.e., the probability of each sequence) which can vary by several

orders of magnitude.

As already mentioned in Section 6.1 a set of 81 scenarios have been generated. In

Table 5.6 the branching points considered in this case study have been listed and the

corresponding probabilities for intermediate crews are allocated in Table 6.1. The proba-

bility of each scenario is automatically calculated based on the conditional probability of

the branches.

It is worthwhile to mention that the probability of the single scenario is actually

a conditional probability even if for convenience it is referred to in this work as only

probability. To obtain the frequency of the sequence after the SLOCA, those probabilities
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must be multiplied by the frequency of occurrence of the SLOCA.

The calculation of the DDET-generated scenario probability has been done according

to the methodology described in Section 4.1; the branching probability associated to the

timing of human events are set to one and the overall probabilities are recalculated in the

post-simulation phase to include information about the type of crews under consideration.

Then, for each considered crew, a sub-DDET is built and afterwards all of the generated

sub-DDETs are merged considering the respective weight of probability of the crew type.

According to the reference PRA, the frequency of SLOCA is 1.07·10−4/year. Some

representative values have been estimated for the branching point probabilities (see Table

6.1 for the numerical values). Note that for the timing variability branches, the probability

values are not real probabilities but are those used during the simulation. The real

probabilities of each scenario are calculated in the post-simulation phase.

Table 6.1: Event name and corresponding probabilities for intermediate crews.

Event name Number of
branches

Branching
point proba-
bilities

Description

Timing variability of trans-
fer to the Loss of coolant
from primary or secondary
side procedure

3 (1.0, 1.0, 1.0) Procedure step timing vari-
ability

Timing variability in stop-
ping the last HPI

3 (1.0, 1.0, 1.0) Procedure step timing vari-
ability

Stop the pressurizer spray
the first time

3 (0.2, 0.6, 0.2) Stop spraying at 3, 5, or 8
m

Stop 1 or 2 HPIs 2 (0.8, 0.2) Operator decides to stop 2
HPIs if enough SCM

HPI success/failure 2 (9·10−4, 1·10−3) Hardware failure
Recovery HPI 2 (0.7, 0.3) Operator recovery action
Steam dump success/failure 2 (9·10−4, 1·10−3) Hardware failure

The Probability Distribution Functions (PDFs) of the timing variability of the crew

response are calculated based on the concept of "crew tendency". If the crews are "fast"

the corresponding PDFs are skewed towards fast performances, if they are "slow" they
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are skewed towards slow performances, and if they are "intermediate" the corresponding

PDFs are almost symmetric.

In this case study all three types of crews have been considered. For each associated

timing action, three branches are generated, therefore only three representative points for

distribution are considered. Table 6.2 summarizes the branching probabilities used for

each type of crew and the fraction of the corresponding type of crew.

Table 6.2: Type of crew, fraction of type of crews, and branching point probabilities BP (BP1:
transfer to the Loss of coolant from primary or secondary side procedure. BP2:
variability in stopping the last HPI.

Type of crew Fraction of types of crew BP1 BP2
Fast 0.3 (0.7, 0.2, 0.1) (0.7, 0.2, 0.1)
Intermediate 0.4 (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)
Slow 0.3 (0.1, 0.2, 0.7) (0.1, 0.2, 0.7)

Figure 6.8 shows the resulting overall probability for all three type of crews whereas

the detailed of the calculation of the probabilities for the fast, intermediate, and slow crew

tendencies can be found in Appendix F.

In all the type of crews, the probability of the first 24 scenarios of each of the types

of crews are larger compared to the others. This is due to the fact that the scenario after

the 24th are related to the failure of either HPI, steam dump valve, or both. Since their

probability of failure is low, the scenario probability results low. Notice that since the

values of the probability can vary of several orders of magnitude, the vertical axis is in

logarithmic scale. The overall event tree is built up considering the fraction of types of

crew shown in the second column of Table 6.2.
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Fig. 6.8: Overall scenario probability for all three types of crews.

The overall scenario probabilities is represented in Figure 6.8. Those probabilities are

the sum of the fast, intermediate, and slow type of crew probabilities weighted by the

corresponding weights (or fraction of types of crews) listed in Table 6.2. In each sequence

there is the contribution of the three types of crews therefore also extremely fast or slow

behaviors can be observed.

The added value of calculating the scenario probabilities in the post-simulation phase

is that the simulation is run only one time to explore all the possible scenarios due

to human timing variability.The probabilities are set to 1 initially; then in the post-

simulation phase real probabilities are recalculated and normalized considering as many

types of crews as one wants. This allows the running of the thermal-hydraulic of the code

only for one tree which, as already said, is the main bottleneck of the tool. In addition, the

methodology allows a straightforward way of updating the DDET output probabilities in

case new data are available. Finally, if one did not consider the concept of crew tendency

only an average behavior would be modeled, which would tend to overlook some of the

performance outcomes.
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High probability scenarios

In this section, the twelve scenarios with the highest probabilities are analyzed, in order

to identify the main events contributing to those scenarios. Only the top twelve scenarios

have been included in this analysis since they dominate the DDET-generated scenario

probabilities, i.e., the probabilities of the subsequent scenarios are lower by one to two

orders of magnitude. Table 6.3 shows the twelve high probability scenarios (notice that

in all these sequences the HPI and steam dump valve did not fail).

The two highest probability scenarios are the ones including is the stop of the pres-

surizer spray at 5 m in addition to, first, the early transfer to SLOCA and, second, early

stop of the last spray and late transfer to SLOCA and late stop of the spray.

Then, in the second group (the next four scenarios), there is the stop at 5 m of the

pressurizer spray in addition with all the combinations of early and late for the two timing

variability transfers. Next, the third group (the following four scenarios) are related to

the stop of the pressurizer spray at 3 and 8 m in addition to early or late T1 and T2

transfers. Finally, the last group (last two scenarios) have the stop op the pressurizer

spray at 5 m in addition to the stop of 2 HPIs with an early T1 and T2 transfers and

stop of 1 HPI with early and late T1 and T2 transfers.

As a general result, one can say that the events leading to the highest probability

scenarios are the stop of the pressurizer spray at 5 m, the stop of 1 HPI, and the early

and early or late and late transfer for the two timing variability transfers.
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Table 6.3: First twelve high probability scenarios for all crews. T1 = Timing variability in
transfer to the SLOCA procedure. T2 = Timing variability in stopping the last
HPI.

Sc. Num Prob. Description
11 0.0903 Stop spray at 5 m, stop 1 HPI, early T1, and early T2
16 0.0903 Stop spray at 5 m, stop 1 HPI, late T1, and late T2
12 0.0470 Stop spray at 5 m, stop 1 HPI, early T1, and early T2
15 0.0470 Stop spray at 5 m, stop 1 HPI, late T1, and early T2
3 0.0470 Stop spray at 3 m, stop 1 HPI, early T1, and early T2
8 0.0470 Stop spray at 3 m, stop 1 HPI, late T1, and late T2
19 0.0301 Stop spray at 8 m, stop 1 HPI, late T1, and late T2
24 0.0301 Stop spray at 8 m, stop 1 HPI, early T1, and early T2
9 0.0301 Stop spray at 5 m, stop 2 HPIs, early T1, and early T2
14 0.0301 Stop spray at 5 m, stop 2 HPIs, late T1, and late T2
4 0.02258 Stop spray at 3 m, stop 2 HPIs, early T1, and late T2
7 0.02258 Stop spray at 3 m, stop 1 HPI, late T1, and early T2

6.1.2 High-level scenario analysis

In this section, scenarios that have their end states close to failure are identified and

analyzed. An example of undesired end state scenario is shown in Figure 6.5 where the

subcooling margin (SCM) of all DDET-generated scenarios is plotted. As one can see, all

scenarios have positive SCM, therefore saturation states are not reached. Nevertheless,

there are some scenarios which have the SCM close to zero. An example is scenario 33

(Figure 6.9) where 90 minutes after the IE, the SCM margin starts to be below 5◦C, i.e.,

close to saturation. Even if such scenarios do not lead to any system failure, for an HRA

analyst they are interesting because one can identify a point in some scenarios where the

crews may take an action to increase the subcooling margin. For instance, they may start

injection and repressurize the system, thereby depleting the available injection water and

delaying low-pressure conditions.

Scenario 33 is an interesting scenario because as further explained, it leads also to the

minimum upper plenum mass with regard to the others. This scenario is characterized

by the failure of one HPI, the stop of the pressurizer sprays at 3 meters, the late transfer
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to the SLOCA procedures, and the stop of 2 HPIs. This means that after the stop of the

2 HPIs no HPIs are running since one is failed and two are manually stopped. Therefore,

the pressure level quickly decreases but not to the level of the accumulators and LPI start

and also the SCM follows the reduction of pressure. Due to the fact that it is a scenario

with late transfer to the SLOCA procedures, the timing when the operators start to spray

to reduce again the pressure to low pressure conditions is long and therefore, the SCM

remains close to zero for a long time before the operators spray and the LPI system starts

and then the inventory of the water makes the SCM no longer close to zero.

The probability associated to this scenario is 1.98·10−4. Albeit in terms of probability

this sequence has not a large weight, the associated consequence could have some impact

for the safety of the system due to the possible creation of voids in the stream which can

lead to pump cavitation. Therefore, from an HRA it is important to understand why low

SCM is reached and how the crew must respond to avoid low SCM.

Fig. 6.9: Subcooling margin behavior of sequence 33.

In the same scenario 33, the amount of upper plenum water in the late phase of the
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scenario, is the lowest of all the scenarios generated by the DDET tool (Figure 6.10). Also

scenario 46 has a low amount of upper plenum water in the late phase of the scenario,

as shown in Figure 6.10. Scenario 46 has similar occurring events as scenario 33. The

difference is that the stop of the pressurizer sprays is at 5 meters and the dynamics of the

system are faster in scenario 46 which lead the operators to spray before the scenario 33,

slightly increasing the amount of water in the upper plenum. It is worthwhile to mention

that again, these two scenarios do not lead any system to failure but if no actions are

taken by the operators uncovery of the core might be reached.

The small amount of water of the upper plenum is mainly due to the fact that the

three HPI pumps are not injecting water, combined with the slow crew dynamic which

reduces the inventory of water and the delays in reaching the conditions for accumulators

and LPIs.

The probability of scenario 46 is 1.63·10−4. Also in this case the probability is low

with regard to the others but the scenario is of interest due to the potential consequences.

Fig. 6.10: Integral upper plenum mass for all scenarios (above) and for two selected scenarios.
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6.2 Analysis of the results

In this section, the results achieved during this PhD are presented. Through the SLOCA

case study, the following results have been obtained and will be described in detail in the

following sections:

• the crew-plant simulation generates a distribution of the crew time response that

account for crew tendencies;

• the analysis of scenarios from DDET-generated data provides a means to char-

acterize the context for the success of critical actions, i.e., critical points in the

procedures, dynamic constraints on operator actions, different strategies permissible

in the procedures, and effect of concurring goals; and

• the dynamic results can be effectively used to inform HRA and to help the estimation

of the human error probabilities.

6.2.1 Distribution of the crew response

The evolution of any plant parameter depends on the events that have occurred along

the development of the accident scenario. Figure 6.11 shows as an example the behavior

of the primary side pressure of a generic scenario and highlights several events that have

occurred during the scenario evolution. In particular, there is a visible change in the

pressure behavior when operators start the pressurizer spray and when they stop the

HPI pumps. Those events, in addition to other not shown in Figure 6.11, guide the

depressurization of the plant for that specific scenario.
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Fig. 6.11: Pressure history of one selected scenario with instants of the start of spraying and
stop of high-pressure injection.

In the DDET, each sequence differs in terms of the events that occur in their timing,

as shown in Figure 6.12.

Fig. 6.12: Primary side pressure evolution of the DDET-generated scenarios.
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As shown in Figure 6.12, each crew starts the depressurization of the system at different

times (and thus also the cooldown) and is able to depressurize and cooldown the system at

different times. Therefore, a distribution of depressurization or cooldown time is generated

that mainly depends on the timing of the occurrence of the events.

Figure 6.13 shows the distribution of the crew time cooldown; in the vertical axis the

cooldown time is shown (i.e., the delta time from when the operators start to cooldown

until they reach 180◦C) and in the horizontal axis the time in minutes. As one can see in

Figure 6.13, the crews take from 60 to 100 minutes to cooldown the system. An interesting

point is that both fast and slow behaviors can been observed due to the tendency method

implemented in the DDET model. Those crew, which are observed in reality according

to the studies in simulators, would have been truncated by the simulation as it has been

described in Section 3.1.4 where the crew time model has been compared against empirical

data.

Fig. 6.13: Distribution of the cooldown crew responses.

One conclusion from this analysis, one can say that the events occurring along the

scenario evolution will affect the behavior of the system and the timing when these events

occurred will generate a range of responses. Due to the tendency method, a distribution
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response where extreme behaviors can be observed is produced.

In the next Section, the scenarios are analyzed using the post-simulation techniques.

6.2.2 Insights from a dynamic HRA

The post-simulation strategy has been applied to the DDET-generated scenarios in or-

der to analyze a PRA action against the reference PRA and to describe what makes the

distribution of the crew response like the one identified in Section 6.2.1 for the charac-

terization of the context. In particular, groups of scenarios based on similarities have

been identified to obtain insights for HRA through the identification of failure or close to

failure scenarios. The purpose is to demonstrate how the crew-plant modeling provides a

tool to characterize the operator tasks, context, and challenges the operators are faced to

during the accident scenario evolution.

The action analyzed in this section is the depressurization of the plant. From the

reference PRA the main challenges of the operators are: a) depressurization of the system

before losing makeup from the HPI tanks, i.e., fast depressurization; b) avoid boiling of

water in the primary system, i.e., maintain SCM; and c) maintain the pressurizer level

avoiding dryout and overfill. In addition, from the task analysis (analysis of procedures),

the operators have to cooldown through the SG PORVs and shutdown the HPI pumps in

order to reduce the pressure and minimize the break flow, and spray with the pressurizer

sprays to increase the pressurizer level to compensate for the pressurizer level decrease

during the cooldown. Therefore, three features are considered for the analysis of the

results: primary pressure, subcooling margin, and pressurizer level.

Analysis of depressurization action against reference PRA

In classical PRAs, plant-specific, transient thermal-hydraulic calculations are usually per-

formed for each type of accident initiating event. For certain types of initiating events,

a few calculations are performed for each proposed success criterion to demonstrate its
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validity over the entire range of conditions the initiating event is intended to represent.

In addition to the comprehensive assessment of system success criteria, calculations are

performed to evaluate the time available for plant operators to perform certain manual

actions represented in the PRA. These actions generally represent manual actuation of

key safety systems if, for some reason, automatic safety system response(s) fails to oc-

cur. Some of this information could be derived from the baseline system success criteria

calculations from design basis accidents. But separate calculations are performed for this

specific purpose to refine the available time frames for operator actions, and provide a

rigorous technical basis for them.

Based on thermal-hydraulic calculations from the reference PRA, the operators have

to depressurize the system in 90 minutes. This time was calculated based on deterministic

calculations.

This action, in combination to all the actions taken by the operators in NPPs, can

be identified in the simulated data from the DDET outcomes. After the generation

of the DDET with the ADS tool, the following step is to identify prototypes of the

action based on expert judgment for the groups of similarities. For example, we can

assume three groups, i.e., fast, intermediate, and slow depressurization. Most interesting

are slow depressurization scenarios which might not meet the criterion of 90 minutes

of depressurization time which has been chosen according to the reference PRA model

timing.

Then, the classifier must be trained with a small set of scenarios (for instance 3 for

each class, see Section 4.3.1) and the test of all scenarios can be performed. The pattern

considered for this type of analysis is the sampling of the pressurizer level at certain time

points (every 100 seconds) after half an hour of simulation.

Table 6.4 summarizes the results of the classification and Figure 6.14 the corresponding

pressurizer pressure behavior traces for each class.

As shown in Table 6.4 the classifier has been able to identify scenarios belonging to
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the three foreseen groups plus several unforeseen scenarios. The unforeseen scenarios are

scenarios which are near the boundary between two classes (green sequences in Figure

6.14). They cannot be classified as ambiguous. Those scenarios have a very low probabil-

ity, i.e., 0.0014 they will not contribute that much to the scenarios that do not meet the

depressurization criterion.

The probabilities of all the generated scenarios are calculated based on the values

in Table 6.1 and they represent the probability of occurrence of the scenarios based on

branching probability events.

From Table 6.4, the probability of class 1 is two times higher than the probability of

class 2 even if the number of scenarios for each class is similar. This tells that the weight

in terms of probability of the red and blue traces in Figure 6.14 are different and the red

trace weights (class 1) are bigger that the blue ones (i.e., class 2).

Table 6.4: Results of the classification of the DDET-generated scenarios based on pressurizer
pressure.

Class 1 Class 2 Class 3 Ambiguous
Probability 0.64 0.32 0.04 0.0014
Number of scenarios 90 108 27 18

From an HRA, the most interesting scenarios are those of class 3, where the criterion

of depressurization in 90 minutes is not met. This is shown in Figure 6.14 by the scenarios

with black traces. In addition, also some of the ambiguous scenarios should contribute

to not meeting the criterion that are scenarios between class 2 and 3 where the operators

are not able to depressurize the system in 90 minutes. Since their probability is very low

compared to class 3, their contribution to the failure scenarios is effectively negligible.

A further step in the analysis is the identification of the contributors to the class 3

scenarios looking at the DDET. From the review of the DDET using the DDET-parser,

the main contributors identified to class 3 are: late transfer for the SLOCA procedure,

late stop of HPI, stopping of the HPIs one per time, and all HPIs working or 1 HPI failed

plus steam dump failed. These information help the HRA in identifying the combination
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of events that lead to failure.

Furthermore, the pressurizer pressure behaviors have been cross-compared with the

SCM behaviors considering the classes identified by the pressurizer pressure behavior

analysis. The goal is to identify whether there are scenarios belonging to class 1 or 2

which are failure scenarios in the SCM feature. The SCM has been chosen because it is

one of the safety parameters that must be controlled by the operators during accidents. In

other words, the three foreseen classes and the ambiguous class have been matched with

the SCM behavior. The resulting classification in the SCM feature is shown in Figure

6.15.

It is interesting to note that in the SCM feature, class 3 scenarios (i.e., failure scenarios

with respect to the depressurization in 90 minutes) are scenarios where there is enough

SCM margin. Notice that enough subcooling is an indication that in the reactor there is

no boiling.

With regard to the achievement of the depressurization of the system, class 3 scenarios

are the worst in the primary pressure feature but with regard to the SCM, class 3 is the

best. Therefore, it is important to underline that success or failure of an action is relative

to a particular goal that must be achieved and it is not a global result.

The subset of scenarios that do not meet the criterion of the low SCM level belonging

to class 1 and 2 have been identified and quantified in terms of probability. The main

contributors to the unsafe scenarios from the analysis of the DDET with the DDET-parser

are the stop of the pressurizer spray at 3 and 5 m and the stop of 2 HPIs when enough

SCM. This tells that the combination of these two main types of events lead to low SCM

margin.

In addition, the pressurizer level behavior have been analyzed in order to identify

scenarios that can lead to overfill of the primary side and eventually leak through the

pressurizer PORVs. In fact, as shown in Figure 6.3, there are some scenarios where the

pressurizer level is close to overfill.
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Figure 6.16 shows the behavior of the class 3 pressurizer level. The scenarios we are

interested in are highlighted in red. Those scenarios are the ones close to failure, i.e.,

close to 100% of level. The main contributors to them are the stop of pressurizer spray

at 8 m in addition with a late transfer to the SLOCA procedure. As one can see, the

contribution of these sequences is very low in terms of probability but the consequence

can be important for the plant safety.

Fig. 6.14: Primary side pressure traces.
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Fig. 6.15: Subcooling margin traces (red = class 1, blue = class 2, black = class 3, and green
= ambiguous).

Fig. 6.16: Pressurizer level traces. The red traces correspond to scenarios close to pressurizer
overfill.
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In this analysis, it has been demonstrated that by using a dynamic approach, it is

possible to model a spectrum of scenarios based on different strategies in executing actions.

Additionally, one can directly see the effect of actions on the plant parameters. The timing

in execution of actions and therefore the performance of the crew, may impact the next

phase of the scenario and the following criterion or criteria that can be met. For example,

if the next criterion to be analyzed is the success of the LPI, the fact that the operators

did a fast or slow depressurization is relevant. In fact, if the operators were fast to

depressurize and there is LPI failure, they would have more time to take recovery actions

(like starting the firewater system) with regard to slow crews. Once again, the timing

in executing actions and the strategy utilized impact the system response but also the

dynamic execution of the next series of operator actions.

Safety insights from failure scenarios Safety insights can be drawn from the identifi-

cation of failure scenarios in the three features, i.e., primary pressure, subcooling margin,

and pressurizer level. In fact, by combining scenarios leading to failure in the three

features, a list of events or type of events leading to undesired situations can be made.

Figure 6.17 presents the combination of events leading to failure in the three features.

They are represented in a tree logic in order to see the type of relationship between

different events.

From this dynamic analysis, some conclusions can be drawn for the specific depres-

surization action.

The 90-minute criterion taken in isolation may be not a bounding criterion for the

safety of the system as stated in the reference PRA. The fact that the operators are not

able to meet the 90 minute for the depressurization, does not mean that the system goes

in an unsafe region. On the other hand, there are situations where the criterion is met

but the system goes in unsafe regions if other features (the SCM feature for instance)

are considered. When considering the operator action for depressurization or any other

action, one should consider also other important failure modes like the failure to main-
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tain subcooling margin and overfilling of the pressurizer. This shows that the dynamic

approach allows safety to be assessed in terms of multiple interacting criteria.

Using a 90-minute time window as a model of failure does not reflect the context where

the action is taken and other important insights about what makes this action difficult.

The characterization of the context due to the variability in dealing with the scenario

gives insights to be taken into account for a comprehensive analysis of the human actions

as it will be shown in the next Section.

As a general conclusion, the depressurization of the system appears more challenging

than expected in classical HRA, which did not address important features of the action.

The main difficulties identified are:

• if there is enough SCM and the operators decide to stop two HPIs but the spray

has been stopped at 3 or 5 meters, the system goes to an unsafe region;

• in case of failure of steam dump, at the most 1 HPI working, and the operators are

too late to transfer to the SLOCA procedures, it is better to be fast in stopping the

HPI in order to have safe conditions; and

• a slow transfer to the LOCA procedure combined with slow stopping of the HPI

pumps leads to system failure.
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Fig. 6.17: Combination of events leading to failure in a fault tree format.

164



6.2. Analysis of the results

Characterization of the context of the operator actions

The analysis of the DDET-generated results from the previous Section, has demonstrated

that the 90-minute rule for the depressurization action may not be a sufficient indicator

of safety. The context which the operator actions takes place, is relevant for the success

of the operator action and was not identified as a significant factor in the reference PRA.

The analysis of the fast crew behaviors, shows that those crews are mainly character-

ized by the fast time to start depressurization and by the stop of two HPI pumps instead

of one. For some of them, these actions have generated a loss of SCM (with a probability

of occurrence of 0.0014) with the risk of having boiling in the primary system. This situ-

ation will influence the next task: in such a situation, the operators may restart one HPI

pump in order to increase the SCM; this will lead the crews to behave overall like slow

crews with the risk of delaying the completion of the depressurization.

On the other hand, slow crews are characterized mainly by the stopping of one HPI

pump at a time (since at the point in the procedure when they have to stop the HPI

system operators have decided to stop only one HPI pump because of low SCM); they pri-

oritize keeping the PZR level and hesitate to stop the last HPI. Therefore, these dynamic

constraints will delay the completion of the depressurization.

From the analysis of the results the following issues related to the depressurization

action have been identified:

• the dynamic constraints influence the crew response, i.e., operators cannot shut

down two HPI pumps when there is not enough SCM and they will behave as slow

crews;

• different crews may privilege different strategies. For instance fast crews give prece-

dence to the fast depressurization (with the risk for some of them to lose SCM) as

opposed to slow crews that concentrate on maintaining SCM; and

• the crews during the scenario evolution have to deal with competing goals. In
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particular, they would like to depressurize as fast as possible, maintain SCM, and

maintain the pressurizer level; but in order to accomplish these goals they have

to perform competing actions: shut down to pumps (reducing pressure but losing

SCM), stop one pump per time (maintain SCM but slowing the depressurization and

losing more mass through the break), and spray long (maintaining the pressurizer

level but losing SCM).

All these issues highlighted in the dynamic analysis were not addressed in the reference

PRA and may make the scenarios more challenging than anticipated.

Furthermore, the variability of the scenarios as represented in Figure 6.13 depends on

the timing of occurrence of events in addition to dynamic constraints, different strategies,

and competing goals provided by the crew-plant dynamic integrations.

All of these results have an impact on the HRA results as will be demonstrated in

Section 6.2.3.

Other important results from a dynamic approach

Other results important to inform HRA is the understanding of the performance of the

operators to control the plant. Especially, the timing of performing procedure steps by

different crews will be explored. The classifier developed in Section 4.4 has been used to

help the analysis of the DDET-generated scenarios. This will also inform HRA on the

factors that make the scenario more complex than expected.

The control of the plant by control room operators is an important aspect because

depending on the plant control there might be situations where the context leads the

operators in different directions than expected. This does not mean that failure scenar-

ios necessarily follow but different performance conditions may arise, which need to be

considered in the PSFs.

In this analysis, the classifier has been applied to identify scenarios which are similar

in terms of procedure step timing. This explains how different crews are able to perform

166



6.2. Analysis of the results

the procedure steps and the impact of their performance on the plant control.

In this analysis the timing of entering into nine procedure steps has been considered.

The actions in the steps are: start the cooldown, start spraying, stop spraying, stop first

HPI, stop second HPI, stop third HPI, start charging, start spraying again, and stop

spraying. These steps have been chosen because they comprise the main actions that

operators must take during the scenario evolution. In Figure 6.18 the timing for the

different steps is shown.

In Figure 6.19 four main characteristic types of behavior are shown which are used as

prototype for the classification. There are crews that start fast and keep performing fast

(class A), others that start fast and slow down later (class B), crews that start slow and

keep performing slow (class C), and crews that start slow and later speed up (class D).

In order to give an idea of the crew speed, the plot shows the distance between the

procedure steps in time. The larger the vertical distance and the slope of the lines, the

slower the crew is.

The two classes of crews A and B perform the first steps rather quickly (until the start

charging step and start spraying) then in the late phase their speed decreases quite fast

with regard to the two other classes C and D. This is an indication of the workload of

the different crews. In case of crews C and D, in the beginning of the scenario they start

rather slow in entering the procedures; this means that they have more time to control

other parameters like the cooldown rate and the SG levels. In contrast, the A and B

crews control those parameters in the late phase of the scenario (then they have to slow

down the performance of the procedures).
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Fig. 6.18: Procedure step timing.

Fig. 6.19: Procedure step timing for the four identified prototypes of classes A, B, C, and D
(marked lines).
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Using the classifier, the crews that have behaviors like class A, B, C, D, or none of

them have been identified. In the training phase a set of 12 patterns have been given.

Then the 81 DDET-generated sequences have been tested in order to identify the four

classes A, B, C, and D and also unknown scenarios (i.e., scenarios not belonging to any

of the four classes). The classifier recognizes 11 class-A scenarios, 16 class-B scenarios,

12 class-C scenarios, and 21 class-D scenarios. The remaining 21 scenarios have been

classified as unknown.

The unknown scenarios are scenarios that have an intermediate behavior. In fact,

12 of them start belonging to the class D (they are slow crews initially) and then they

became class B (they speed up more than the average speed of the late phase of the class

D crews). Six of them perform in the other way around (they start fast and slow down in

the late phase of the scenario). The other remaining two are behaviors between class A

and B and between class C and D. They are basically in the edge of the two classes (A-B

and C-D).

In Table 6.5 the relative probability of each class are reported with also the number

of scenario per class and the sequence number belonging to the class. As one can see,

the contribution in term of probability of occurrence of the class C crews is very low

(0.283 %) even if the number of scenarios of that class is comparable to the number of

scenarios of the other classes. This means that there are a few crews that perform for

the entire scenario evolution as very slow crews in performing procedures. Vice versa the

probability of the class A crew is the highest, that is many crews start the scenarios fast

and they finish fast in performing procedures. It is worthwhile to underline again that

the plots which have been shown in Section 6.1 do not take into account the probability

of occurrence; this means that the probabilities associated to the traces are different.

The scenarios belonging to the classes A and D are the ones with highest conditional

probability. Scenarios belonging to these two classes are further analyzed to identify the

main contributors. In particular, for class A scenarios one of the main contributors is

the timing in performing the two steps where time variability is modeled, i.e., transfer
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to the SLOCA procedures and stopping the last HPI pump. The opposite is not true

meaning that the fact that the operators perform as fast does not imply that they perform

procedure steps quickly, i.e., they do not belong to class A scenario. There are definitely

other factors to be taken into consideration that lead the scenario to belonging to another

class and not to the class A. In fact, scenarios where the operators perform fast but there

is failure of one HPI are classified to other classes than class A (even in scenario where

there is recovery of the HPI). Those scenarios are mainly classified as class B, i.e., fast

at the beginning but slow in the second phase of the scenarios. This is due to the fact

that when the operators responding according to the procedures have to stop the HPI

(which is failed), they try to restart or recover it, delaying the execution of the subsequent

procedure steps.

With regard to the class D scenarios, the main contributor to that group is a slow

timing performance in executing the procedure steps, i.e., all the class D scenario have a

slow timing performance in executing the procedures pattern. As in the case of class A,

the reverse does not apply. There are several scenarios belonging to this class that are

particular in the sense that it is not the timing variability that lead them to the class but

the fact that one HPI is failed (e.g., sequence number 26). As in the previous case, the

failure of the HPI influences the timing in the following phase of scenario leading it to

class D.

The same type of analysis can be done also for the class B scenarios even if the

associated probability is lower than the other two classes. The class B has not been

considered because the associated probability is very low.

Based on this classification the main contributors to the different classes are the timing

of executing procedure steps and the success or failure of one HPI system. This give some

information about what must be taken into consideration when performing an HRA, i.e.,

the time to perform a task is not only a function of the crews but can also be strongly

influenced by the scenario.
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Table 6.5: Probability of each class, number of scenarios belonging to the class, and sequence
number.

Class A Class B Class C Class D Unknown
Probability 0.301 0.166 0.00283 0.303 0.227
Number of scenarios 33 48 36 63 63
Sequence number 1, 3, 9, 11,

17, 19, 58,
59, 70, 74,
78

2, 10, 12,
18, 20, 29,
30, 42, 43,
54, 55, 60,
61, 71, 75,
79

27, 28, 36,
37, 40, 41,
46, 47, 48,
49, 52, 53

6, 8, 14,
16, 22, 24,
25, 26, 33,
34, 35, 38,
39, 50, 51,
65, 68, 69,
73, 77, 81

4, 5, 7, 13,
15, 21, 23,
31, 32, 44,
45, 56, 57,
62, 63, 64,
66, 67, 72,
76, 80

6.2.3 Input to HRA

The analysis of the results from Section 6.2.2 will be used in this section for the calculation

of the HEP for the depressurization. In particular, the issues identified based on the

dynamic analysis about the dynamic constraints, different crew strategies, and competing

goals are used to inform the HRA analyst on the evaluation of the factors that influence

the human performance, i.e., the so called Performance Shaping Factors (PSFs).

PSFs are factors that influence the human performance in complex systems. Table 6.6

presents a set of representative PSFs for post-interaction human failure events; these are

used in the SPAT-H HRA method [NUREG/CR-6883, 2005]. The rating of the PSF is

a multiplier where a multiplier less than one has a positive effect on the operator action

whereas a multiplier larger than one has a negative effect.
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Table 6.6: List of Performance Shaping Factors for HFEs.

Performance Shaping
Factors

Description of the PSF

Adequacy of time Measure of time required to act compared with the time
available

Stress and workload Rate the impact of the environment on the performance of
the operator in doing the action

Task complexity Rate the effect of multiple requirements on task success
Training and experience Measure the effect of the familiarity and confidence of the

operators with the action
Procedural guidance Rate the plant procedures to enhance the operator’s ability

to perform the action
Plant interface and indi-
cations of conditions

Rate the impact of the man-machine interface on the like-
lihood of success

Fitness for Duty Measure whether the individual performing the task is
physically and mentally fit to perform the task at the time

Work Processes Refer to aspects of doing work, including inter-
organizational, safety culture, work planning, communica-
tion, and management support and policies.

The action chosen for the calculation of its HEP is the cooldown (and therefore

the depressurization) of the system and it will be analyzed with the SPAR-H method

[NUREG/CR-6883, 2005]. The method is briefly described in Appendix G where also

the detail of the calculation of the PSFs and the HEPs with a classical approach and a

dynamic approach are presented. In the SPAR-H method, the operator action is divided

in diagnosis and execution and an HEP for both the diagnosis and the execution is calcu-

lated. The HEP for the action (HEPACTION) is the sum of the diagnosis HEP (HEPdiag)

and the execution HEP (HEPexec):

HEPACTION = HEPdiag +HEPexec = f(PSFs)diag + f(PSFs)exec (6.1)

The reference PRA states that operators have about 10 minutes for the decision to

cooldown and about 80 minutes to execute the relative actions to cooldown. Based on this

input and on the knowledge of the HRA analyst on the plant behavior, on the procedures,
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and on the PRA, the multiplier to the PSF can be assigned.

Table 6.7 summarizes the HEP values identified using the classical SPAR-H method

(second column) and with dynamic insights (third column). In particular, the value

calculated with the classical SPAR-H is 3.5 ·10−2 whereas the HEP with dynamic insights

is 7.5 ·10−2, i.e., about two times higher than the one predicted by the classical HRA.

The difference between the two approaches comes from the value of the PSF complexity

multiplier. In fact, based on the results of Section 6.2.2 about the dynamic constraints,

different strategies, and competing goals, the PSF related to complexity in the execution

phase increases, which makes the HEPexec about two times higher than the one from the

classical SPAR-H.

Notice that the results from Section 6.2.2 will inform only the execution HEP and

not the diagnosis. In fact, the main issues the operators are faced to are not problems

in the diagnosis of the accident but in the execution of the system cooldown and the

depressurization which is more challenging than stated in the reference PRA according to

the analysis of dynamic results.

The details of the calculations can be found in Appendix G.

Table 6.7: HEP values calculated with the classical SPAR-H method and the SPAR-H method
with safety insights.

classical SPAR-H SPAR-H with dynamic insights
HEPdiagosis 2.5 ·10−2 2.5 ·10−2

HEPexecution 1.0 ·10−2 5.0 ·10−2

HEPACTION 3.5 ·10−2 7.5 ·10−2

With regard to how to use the results from the calculation of the HEP, the two

approaches give different important results in this specific case study. If one calculates

the HEP based on the classical SPAR-H method, the diagnosis part of the HEP is more

important than the execution (2.5 ·10−2 vs. 1.0 ·10−2). This suggests that to decrease the

probability of failure for this specific HFE, improvement on the diagnosis of the accident

must be done; for instance, improve the alarm systems or the aids to the operators to
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diagnose the SLOCA. On the contrary, based on the dynamic simulation of the scenario,

the main issues for the operators are related to the execution of the action (5.0 ·10−2 vs.

2.5 ·10−2). This means that in order to decrease the probability of failure of this specific

action, the execution of the action must be improved; for instance, the procedures can be

improved or additional automatic controls must be added.

The better characterization of the context of the action will help the HRA analyst on

the estimation of the HEP through the information on the PSF.

6.2.4 Analysis of a second PRA action to obtain HRA insights

In this Section, other results from a dynamic approach about a second PRA action from

the reference PRA are analyzed to obtain HRA insights. This addresses the actions

to cooldown the RCS, in SLOCA scenarios with HPIs and accumulators not available.

This analysis refers to an additional 22 sequences generated by the DDET tool. These

sequences differ from the already described 81 sequences because in this case the HPIs

and accumulators are guaranteed failed, meaning that they do not inject water into the

reactor. Thus, the goal is to reduce the pressure as fast as possible to allow injection from

the accumulators (at 26 bars).

In this case, the required actions and success criteria are, in contrast to the sequences

with HPI discussed in Section 6.2.2, that the operators have cooldown at the maximum

cool down rate rather than at 100K per hour. The maximum cooldown rate is limited

by the secondary pressure rate of -4 bar/minute. If the secondary pressure decreases at a

rate exceeding 4 bar/minute (an indication of a possible steam line break), a steam line

isolation signal will isolate the steam generators, causing the loss of heat removal through

the secondary side.

Classical PRA calculations are made in order to identify the cognitive time window

available for operators to take the decision to start the fast cooldown. If the operators

start the rapid cooldown within the maximum time window, the primary temperature of
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the system can be reduced to 180 ◦C and the primary pressure to 10 bar avoiding core

uncovery.

The classical PRA approach is to identify the maximum Tmax time necessary to

cooldown the plant to safe conditions, meaning that the isolation signal and core un-

covery are both not reached. The time is calculated considering that the operators are

able to depressurize the system exactly at -4 bar/min. Based on that maximum time,

the available cognitive time Tcog is therefore calculated. The Tmax is calculated based

on thermal-hydraulic calculations and it is fixed. The Tmax is associated with maximum

point where the criteria for the actual operator action are met (e.g., no significant core

uncovery and secondary pressure reduction less than 4 bar/min when reaching the target

pressure Ptarget). Therefore, following the criterion of -4 bar/min backward, the point

where the action starts is identified and then also the available time to take the decision

to cooldown, i.e., the cognitive time Tcog, is characterized.

According to the reference PRA model, the maximum time to reach 10 bars of primary

pressure (Tmax) is 30 minutes with no core uncovery and activation of the steam line signal.

The calculations show also that the cognitive time (Tcog) is 10 minutes since it takes 20

minutes to cooldown at the maximum possible rate.

The dynamic analysis of the operator action has been divided in three parts: first the

correct aperture of the PORVs has been identified for the nominal scenario, second the

effect of the timing variability in starting the cooldown has been analyzed, and third HRA

insights are derived from the analysis.

Identification of the correct cooldown rate

According to the operating procedures, the control room operators are instructed to nor-

mally cooldown the system at a rate of 100 K/h through the steam dump valves or the

safety valves. In case the HPIs are not available, the operators must increase the cooldown

rate. In the PRA the rate is not specified but it says that the operators must initiate a
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rapid cooldown for low pressure injection (10 bar) or to 26 bar when the accumulators

are available. The cooldown rate must be equivalent to a secondary pressure reduction

of about 3.5 bar/min in order to avoid the steam line isolation signal (-4 bar/min). The

second criterion that must be met is that there should not be a significant core uncovery.

This first analysis is the identification of the correct aperture of the steam dump valves

(PORVs) to meet the -4 bar/min of secondary pressure reduction criterion. In this case

study, during the accident it has been assumed that the operators do not actuate a manual

control of the cooldown rate continuously monitoring the secondary pressure reduction.

Therefore, a manual control of this parameter has not been added in the analysis but

within the DDET framework only the identification of the correct aperture of the valves

has been performed.

Using the current plant model, the three steam dump valves (one per secondary side

loop) have been opened at 0.5%, 5%, 10%, 20%, 50%, and 100% of the total capacity. As

soon as those valves are required, i.e., at the procedure step to start the cooldown, six

branches are generated. The idea of this run is to identify to correct opening of the valves

for a correct cooldown rate to be further used for modeling the crew timing variability in

starting the cooldown rate.

Figure 6.20 and Figure 6.21 show the behavior of the primary and secondary side

pressures for the different scenarios due to different apertures of the steam dumps. As

one can see, different apertures of the valves lead to different behaviors. For example,

if the valves are opened at 0.5% there is no way to depressurize the system whereas if

they are fully opened, the decreasing of the pressure is quite fast and the constrain of -4

bar/min is not fulfilled (Figure 6.21). The same applies for apertures of 10%, 20%, and

50%. In these situations, due to extreme plant parameter behaviors, the plant model is

not properly working and the sequences are truncated by the tool.

Therefore, the correct aperture of the valves has been identified as 5%. With these

apertures, the operators are able to cooldown the plant in safe conditions with the con-

strain of -4 bar/min for the secondary side cooldown. This opening of the valves is then
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further used to model the timing variability in starting the cooldown.

Fig. 6.20: Primary side pressures.

Fig. 6.21: Secondary side pressures.
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Figure 6.22 shows the behavior of the temperature in the primary side. In case of 0.5%

the decreasing of the temperature is almost zero whereas if the aperture of the valves is

too large the gradient of the temperature is too large and problems in the structure of

the components may occur. In all the other sequences the operators are able to cooldown

the system below 225 ◦C according to the PRA action.

In a classical PRA analysis, the calculation of the amount of time available for the

operator to take the decision to start the cooldown is based on the assumption that the

operator is actually following the cooldown rate that correspond to the -3.5 bar/h of

depressurization in the secondary side. As one can see in the previous plots, the system

is not able to be depressurized at -3.5 bar/h as said in the classical PRA but in the late

phase of the scenario, the depressurization decreases due to the dynamics of the system.

Therefore, the calculation of the available time for the operators to take the decision and

in particular the time to cooldown the system must consider the dynamic behavior of the

system.

Fig. 6.22: Primary side temperatures.
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Timing variability in starting the cooldown

The second part of this work has been the modeling of the variability in the starting of the

fast cooldown by the operators. The considered operator response has been chosen to be a

Weibull distribution with shape parameter 500 and scale parameter 1.5. This distribution

with the previous parameters have been chosen because the average of the distribution

is about 7.5 minutes, i.e., a value of time slightly lower than the time identified by the

classical HRA. Using a value less than the one calculated from the classical HRA the mass

of the distribution is in the area covered by the classical HRA but at the same time, some

variability of the response is given considering also extreme slow behaviors.

In this case study, 16 branching points due to the timing have been considered. The

16 modeled timings corresponding to 16 branches when the operators start the cooldown

after they enter in the corresponding procedure step and the probabilities calculated by

the given distribution are shown in Table 6.8. As one can see, the nominal scenario

number, that is the highest probability scenario is the number 4.

Table 6.8: Scenarios number, timing, and probabilities for the fast cooldown rate.

Scenario Number Timing (s) Probability
1 50 0.0311
2 100 0.0545
3 200 0.1379
4 300 0.1482
5 400 0.1394
6 500 0.121
7 600 0.0993
8 700 0.0778
9 800 0.0587
10 900 0.0427
11 1000 0.0303
12 1100 0.0208
13 1200 0.014
14 1300 0.0092
15 1400 0.0059
16 1500 0.0037
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Figure 6.23 shows the behavior of the primary side pressures for the generated five

sequences. In several sequences, the pressure can be reduced to around 20 bar where the

accumulators start. In several others, the simulations are truncated before reaching the

desired pressure level because of extreme dynamic behaviors due to the fast cooldown

rate.

Fig. 6.23: Primary side pressures.

Figure 6.24 shows the behavior of the secondary side pressure. As one can see, there

are two groups of sequences. The first one (blue traces) are scenarios where the criterion

of -4 bar/min of depressurization is met whereas the second one (red traces) are scenario

where the same criterion is not met. Therefore, for red scenarios the steam line isolation

signal is triggered, which will delay the completion of the depressurization. The operator

will have to reopen the steam line to continue cooling one of the steam generators or align

alternative means for cooldown.
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Those failure scenarios are the scenarios numbered 8 to 16. The probability of having

a failure for the considered operator action is the sum of the probability of each red

scenario, which is 0.2631. This probability can be interpreted as the error probability in

the execution of the considered PRA operator action.

Fig. 6.24: Secondary side pressures.

According to this analysis, the system can be depressurized to about 20 bar until the

operators take around 17 min to start the cooldown (sequence number 7). After that, due

to the dynamic of the system, the depressurization becomes faster and the criterion of -4

bar/min cannot be met. These results show also that the time to depressurize the system

is about 40 min in nominal conditions and 50 min at maximum (when the operators take

about 17 minutes to start the cooldown). These results are less conservative than classical

results where the available time to start the cooldown is 10 minutes.

In a dynamic approach, a better interaction between system and operators can be
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modeled giving also a variability in the execution the PRA action. From this dynamic

PRA approach there are mainly two results. The first one is that due to the dynamics of

the plant, it is not possible to depressurize the system strictly following the -3.5 bar/min

criterion because, as shown in Figure 6.24, after about 20 minutes, the depressurization

rate decreases. This is because a fixed aperture of the steam dump valves is used. This

assumption underscores that the operators need to adjust the steam dump valves during

cooldown which could be a contributor to the HFE. The following insights can obtained:

the operators have to start with a small aperture of the steam dump valves (above 5%

it results in isolation of the steam dump valves and they risk to isolate the steam lines,

thereby aggravating the scenario) then the operators need to open the dump valves later

in the scenario, as the depressurization rate of the secondary decreases. If they delay in

doing so, the cooldown takes longer. This means that the classical HRA has to consider

that the operators start the cooldown within Tcog but fail to depressurize at a sufficient

rate overall (which means a steam dump valve aperture that does not trigger isolation,

then a larger aperture later). So there is a possibility of omission.

A second result is the failure probability of this PRA action can be calculated as

shown in the next section. The added value of a dynamic approach is the capacity to

directly simulate the human-machine system interaction and then the response of the

operator without the need of using studies available in literature based on other scenarios

or generic scenarios. Therefore, the HEP for the specific action can change based on the

direct simulation of the operator response in the context of DDET.

Many HRA methods focus on time constraint. Operators have only 10 minutes to take

the decision to start the cooldown. This time constraints leads to a high value for the

probability of failure. Using a dynamic approach, the context is better characterized and

the direct effect of the variability of the operator actions on the plant can be seen and

quantified. In addition, various allocations of time to decision and execution, respectively,

may be accounted for.
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Analysis of the action to obtain HRA insights

From the analysis if the PRA action modeled in a dynamic framework performed in the

previous Sections, an HRA can be done using the SPAR-H method. In particular, some

PSFs are informed by the analysis results and will be used for the estimation of the HEP.

Table 6.9 shows the results from a classical SPAR-H analysis and a SPAR-H analysis

with dynamic insights. The details of the calculations can be found in Appendix G. In

particular, both the diagnosis and execution HEPs decrease with the dynamic insights

than the classical SPAR-H method. This reduces the final HEP of about three times,

from 0.34 to 0.1.

Table 6.9: HEP values calculated with the classical SPAR-H method and the SPAR-H method
with safety insights.

classical SPAR-H SPAR-H with dynamic insights
HEPdiagosis 0.25 0.05
HEPexecution 0.09 0.048
HEPACTION 0.34 0.10

The dynamic insights used to support the HRA analysis are the complexity of the

action and the available time for diagnosis and execution. The complexity the cooldown

at the maximum allowed rate is higher than the one considered in the reference PRA.

Therefore, the complexity PSF is evaluated more negatively in the case of SPAR-H with

dynamic insights. On the contrary, both the available time for the execution and the

complexity of the action is higher in a dynamic framework which make the diagnosis and

execution PSFs related to the time lower that the classical PRA. The overall result is

that the final HEP with dynamic insights based on the increase of the PSF of complexity

in the execution and the available time in diagnosis and execution is lower than classical

SPAR-H.

Therefore, in this specific case study, the HEP of the fast depressurization actions is

decreased compared to the HEP based on the assumptions of the reference PRA.

The fact that an HEP increases or decreases with dynamic insights depends on the
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specific case study and on the specific action. The DDET tool helps only the analyst to

evaluate the PSF multipliers.

6.3 Methodology for HRA characterization

It has been demonstrated in the previous sections and chapters that the approach and

methodologies developed during this PhD work can be used for a dynamic HRA. In

particular, the ADS software tool with an operator or crew model can be used to model

the mutual interaction between operators and systems in a NPP. This is done developing

scenarios following any human-machine system interaction that could lead to different

outcomes. The output is a DDET where several sequences are generated based on different

interactions between operators and plant at discrete points in time.

Several issues arise from this mutual interaction and have been handled and solved

during this PhD work: the crew timing variability, the probability calculation in DDET,

and the grouping of DDET-generated scenarios to identify events making the most im-

portant groups for HRA. The latter is a step towards the development of importance

measures for dynamic PRA.

The dynamic approach in addition with the post-simulation strategy, are important

for the identification and characterization of failure scenarios and the context. In fact,

failure scenarios or scenarios close to failure might show up during the evolution of the

simulation based on the mutual human-plant interaction. Those scenarios, difficult to

capture without a systematic approach, can be easily identified with a post-simulation

approach. Once identified, they are subject of a further analysis whose scope is to identify

the most important contributor to the scenarios and quantify their probability of occur-

rence. The probability of occurrence is strictly related to the HEP for a given action.

Then using the developed methods, the HEPs for the actions modeled in the PRA can be

estimated by applying an HRA method informed by the dynamic results.

It is worth to underline that groups of failure scenarios in one feature might not be

184



6.3. Methodology for HRA characterization

failed scenarios in others. This means that focusing on one success criterion does not

represent very well a given HFE. The dynamic analysis helps to evaluate multiple criteria

at once.

The approach developed during this PhD work can also be used for the characterization

of the control of the plant by crews and the context for the assessment of the PSFs. This is

based on a quantitative analysis of the DDET-generated scenarios in terms of probability.

Groups of responses have been identified and probabilistically quantified based on their

similarity in terms of different plant behaviors. The highest group probability has been

therefore analyzed in details to understand and identify the main events leading to the

highest probability groups. In particular, groups based on different timing on performing

procedure steps have been labeled and probabilistically quantified. Groups based on

particular parameter behaviors have also been identified and quantified. These results, can

be used as a support to the HRA analyst in the assessment of some PSFs like complexity

or timing of actions.

The approach based on many tools developed during this PhD thesis can be used for

a human reliability analysis. In particular, a qualitative analysis for the identification of

undesired situation and a quantitative analysis for the calculation of the failure probability

for a given action can be done. Furthermore, a characterization of the context where the

operators have to work can be done with this dynamic approach and conclusion about how

the operators have to deal in handling the accident scenario can be drawn. For example

how different actions impact the evolution of the next scenarios or the effect of the timing

in executing particularly important actions.

Additionally, a dynamic approach can lead to a complete modeling of the crew-system

interaction since what the operators see and what are their response can be directly

simulated. Direct simulations of the crew-system interaction can lead to a reevaluation

of success criteria and in some cases, to a reduction of some of the conservatism in the

modeling of operator actions. The strength of a dynamic approach is to better characterize

the context of operator actions especially when several factors and their interactions need
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to be taken into account at the same time.

Through the analysis of the DDET simulation data of the current case study, the

added value of a dynamic approach can be summarized as: i) reliable representation of the

crew-system responses with respect to classical HRA because of the direct modeling of the

operator behavior response at the level of plant interactions (based on both procedures

and the training underlying the operators’ responses) and the effect of their responses

directly on the plant, i.e., on-line simulation; ii) usability of tools and methodologies for

obtaining insights from NPP accident scenario simulations in DDETs; and iii) ability to

inform HRA on several PSFs and calculation of HEPs.

The strategy used for obtaining these goals, after the scenario identification and input

preparation, consists in the a) running of the DDET software tools; b) grouping accident

sequences that are similar in terms of plant response and/or events; c) identifying the

critical events that are key to the sequences with undesired outcomes or low safety level;

and d) screening out events that lead to variability without affecting the outcome.

In order to demonstrate the capability of dynamic approaches, tools, techniques, and

methodologies have been developed for obtaining a strategy for the analysis of scenarios

of the human-machine system interaction. The main goals of the analysis of scenarios are:

• identification of the characteristics of the sequences that lead to failure based on

plant evolution, hardware events, and operator actions;

• characterization of the causes that lead the operators to perform actions in the

way they do within groups of similar scenarios. This focuses on what is causing

the operators to perform actions or omit actions in the failure scenarios in the

procedures, trained rules, and variability in trained rules;

• quantification of failure situations in the dynamic framework as opposed to classical

approaches; and

• analysis of operator time window for operator actions from a dynamic point of view.
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This PhD work is a further step towards dynamic PRAs in which the dynamic of

the system is directly simulated along with the operator response The application of the

developed techniques and strategy in the case study will demonstrate different ways in

which operator-plant simulations can support HRA.
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7.1 General conclusions

Classical Probabilistic Risk Assessments (PRAs) and in particular Human Reliability

Analyses (HRAs), treat accident sequence dynamics using quasi-static models. In addi-

tion, the interactions between crew and plant are treated considering only a small set of

scenarios and the representation of the variability of the crew response is therefore lim-

ited. These are weaknesses of classical approaches than can be addressed with dynamic

approaches.

Dynamic scenario analysis models that explicitly account for these crew-system inter-

actions, are appropriate tools to help understanding the performance conditions under

which human actions are required. Understanding these conditions is a fundamental in-

put to HRA in particular with regard to the identification and quantification of failure

scenarios, identification of events contributing to these failure scenarios, assessment of

the Performance Shaping Factors (PSFs), estimation of the human error probabilities. In

other words, this understanding is relevant to the prediction of how operators can fail in

the situation assessment and of the likelihood of these failures.

The problems which have been addressed during this work are: a) identification of

the key features of the crew response and implementation of a crew model in the DDET

framework; b) development of an approach for time variability; c) improvement of a

classification tool to address the post-simulation analysis; d) development of a method

for biasing the DDET probabilities for avoiding the truncation of evolutions of potential

interest; and e) application of the model in a case study for the evaluation of its impact

and comparison with HRA.

As a result of this research project, the following has been learned:

1. Dynamic operator modeling provides the analyst a tool to characterize the perfor-

mance of context and issues relevant to success of critical operator actions in NPP

scenarios. In the case study performed in this work, the application of the tools led

to the identification of the following types of issues:
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• the variability in reaching critical points in the procedures which depends on

how fast operators work, what are the scenario characteristics, and what is the

current status of the plant;

• the dynamic constraints on operator actions;

• the different strategies that are permissible within procedures; and

• the effect of competing goals on the operator response.

2. The previous issues can be reflected in the HRA and can change the estimated

failure probabilities.

• Such issues were not identified in the PRA/HRA analysis of the case study

scenario. Accounting for these issues in the HRA had a significant impact on

the failure probabilities.

3. Some HRA data support the ’tendency’ model for the representation of the crew

response.

• a few characteristic values of the response distribution are adequately to rep-

resent a wide spectrum of crew variabilities through the sequences;

• the model is able to represent extreme behaviors, i.e., fast and slow crew

responses, which would have been truncated by the DDET tool due to the

regression to average behaviors.

4. For the analysis of DDET results, scenario diagnosis techniques, i.e., techniques for

fault classification, can be adapted for DDET output data classification.

• similar crew responses can be identified in the DDET output data; and

• the output analysis can be substantially reduced due to the approach of group-

ing the sequences and analyzing only the prototype of the group.
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5. An approach to prevent the truncation of potentially interesting scenarios is to boost

the probabilities of crew-variability-related events. The actual sequence probabilities

can be calculated in the post-simulation phase.

• An approach to calculate the sequence probabilities during post-simulation was

implemented by combining the classifier with a DDET parser; and

• this can be useful if new information which leads to modifications of the

stochastic event probabilities becomes available.

7.2 Significance and contribution of this research

The main objective of this study was to model and analyze the crew-plant interactions

during accident scenarios in a Nuclear Power Plant. This study provides tools and method-

ologies for the treatment and analysis of the dynamic interactions between control room

operators and plant and for the use of the dynamic approaches as a technique to inform

the HRA. The NPP and the control room crew responses are simulated jointly through

the ADS model. The novel aspect of the crew model in ADS is that it is based on a

procedure-guided operator response, i.e., a combination between procedure-following and

training-based responses.

For safety assessment, predicting and assessing crew performance involves understand-

ing the indications available to the operators, and the procedures and training that support

decision-making and performance in a given situation. In order to obtain a comprehensive

understanding of the impact of the variability in the crew response and of the timing of

the operator actions in a range of scenarios, dynamic simulation models where the oper-

ator response and the plant and its systems are jointly simulated like ADS are needed as

demonstrated in this work.

The integrated modeling of the plant-operator response achieved in this study provides

new capabilities to obtain insights by identifying interactions between the operators’ re-
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sponse and the system response as well as between procedure instructions and trained

knowledge and rules. The understanding of these interactions provides an improved basis

for HRA, by supporting the analysis of tasks and performance contexts, the quantification

of HEPs, and the evaluation of PSFs for given actions.

The significance of this work is that with the use of dynamic tools such as ADS in

addition with post-simulation tools, the response of the control room crews can be modeled

giving some variability in the crew performance and evaluating the safety of the system

due to hardware events and operator actions. Besides the simulation of different crews

and the analysis of the impact on the safety of the plant, another strength of a dynamic

approach is the use of the output scenarios analysis for informing HRA concerning the

events leading to failure and also as an input for the quantification of PSFs and HEPs.

7.3 Outlook

Although this project demonstrated the practicability of using a dynamic simulation-

based approach with a crew model in support of human reliability analysis, there are

areas of potential further developments.

The crew model as currently implemented in ADS can support the HRA for the

calculation of the HEPs. A step forward would be to improve the capability of the

crew model adding the possibility to obtain as output the actual value of the HEP;

this could be done including in the input of the model some parameters that take into

consideration other variables like the level of training of the operators, the type of the

available indications, the type of procedures in use, etc. In addition, a new feature of the

model could be the calculation of the dependence level and therefore the probability of

failure of two or more actions.

Currently, the model is able to identify events leading to failure from the DDET-

generated data. A further step could be the development and implementation of a tool

able to quantify the contribution of the events to the final state. This would open up an
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interesting research branch in the direction of importance measures for dynamic HRA,

i.e., prime implicants.

Moreover, extending the capability of the model to handle accident scenarios subse-

quent to core damage (level 2 PRA) is another issue. The main problem is to couple to

ADS a thermal-hydraulic code able to model scenarios for level 2 PRA like MELCOR

or MAAP. From a point of view of the crew modeling in ADS this is straightforward

since the procedure framework developed in this work considered with the model of for

rule-based actions should be adequate for the simulation of crew responses guided by the

Severe Accident Management Guidelines (SAMGs).

Nevertheless, it must be underlined that the simulation requirements in terms of mem-

ory and CPU are an issue for this type of simulation. As already stressed, the main

bottleneck is the thermal-hydraulic part of the model. Parallel computing or cluster

computers can allow a more detailed and precise analysis increasing the number and the

length of the generated scenarios due to the higher speed of calculation. With additional

speed, more characteristic values of continuous stochastic variables (task durations, sys-

tem responses) can be considered and impact of the number of trains of a system that are

available can be examined.
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List of operator models

A summary of several operator models with the main characteristics is listed below.

Task simulation. It is based on tasks which have to be performed in certain available

time. It models only the human part in the human-machine system interactions [Siegel

and Wolf, 1969].

MICROCREWS. It has been derived from task simulation and it simulates the flow

actions across time. It is the first direct application of task simulation to NPP [Gertman

and Blackman, 1993].

PROCRU (Procedure Oriented Crew Model). It is directly based on task simulation

but the machine is explicitly modeled in a human-machine system interaction. It models

the knowledge-based of the operator. It contains four elements: monitoring process,

assessment on the current situation, procedure selection, and action execution [Baron

et al., 1982].

INTEROPS. It is a conceptual model based on task simulation. It includes a knowledge-

based models for fault diagnosis, situation assessment, decision-making, and procedure

generation. The operator may respond by selecting or identifying a procedure from a

procedural knowledge base or generating procedure [Schryver, 1982].

TBNM (Team Behavior Network Model). It analyzes the cognitive process of a crew
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in complex dynamic context. The cognitive process of the crew consists in: identification

of the symptoms, decision making, planning, and execution [Shu et al., 2002].

CES (Cognitive Environmental Simulation). It treats mainly knowledge-based cog-

nitive behavior addressing: situation assessment, diagnosis, formation of information-

seeking interactions. The machine system is not fully integrated in the human-machine

system model [Woods et al., 1987].

COSIMO (COgnitive Simulation Model). It is a model of a single operator that sim-

ulates situation assessment, response generation, and execution [P. C. Cacciabue, 1992].

NPPCREW. It models a NPP operating crew. It is based on the knowledge-based

assessment. Each operator generates ands reviews expectations concerning the plant

response and the response of other operators [Dang et al., 1992].

JACOS. It models both the knowledge-based behavior and the rule-based behavior. A

multilevel flow model represents the operator’s cognitive activities [Yoshida et al., 1996].

IDAC-2006 (Information, Diagnosis/Decision, Action and Crew). It is based on a

cognitive simulation developed to predict the response of a crew in a control room of a

NPP during an accident [Chang and Mosleh, 1999].

OPSIM (operator-plant dynamic simulator). It is a cognitive model of an individual

operator. The cognitive model considers rule-based cognitive behavior in the following

procedure as well as in responses based on the operator’s knowledge-based [Dang, 1996].

DETAM (Dynamic Event Tree Analysis Method). It is based on the dynamic event

tree approach in which branches are stochastically generated. It includes, as an integral

part of the approach, an operator crew that also stochastically generates branches. An

important feature is that the past states could affect the likelihood of a future state

[Acosta, 1991].

SYBORG (Simulation sYstem for the Behavior of an OpeRating Group). It simu-

lates the behavior of a crew during an accident scenario. In particular, it studies severe

accidents involving human factors. The operator behavior model within SYBORG has
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no learning mechanism and the knowledge about a plant is fixed; therefore it cannot

take suitable actions when unknown situations occur, nor can it learn anything from the

experience [Yoshimura and Takayanagi, 1999].
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Appendix B

The supervised evolutionary

possibilistic clustering algorithm for

classification

This Appendix describes the classification technique adopted in the work. The combi-

nation of the fuzzy clustering classification with a possibilistic clustering for recognizing

unknown patterns has been recently introduced by some of the authors in connection

with the classification of nuclear plants transients, in an effort to aid the plant operators

in diagnosing the causes of the transients [Zio and Baraldi, 2005a,b, Zio et al., 2005].

The approach was developed to avoid misclassification of scenarios that were possibly

overlooked in the a priori identification step. As a result of the introduced approach,

the unknown transients are labeled as unknown by the evolutionary possibilistic FCM

clustering algorithm.

B.1 Fuzzy and possibilistic clustering

Fuzzy clustering algorithms have been widely studied and applied in various domains

such as taxonomy, medicine, geology, business, engineering, image processing and others
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[Yang, 1993].

Fuzzy clustering classification is based on the fuzzy partition of each pattern ~xk, k =

1, 2,...N, into c available classes:

0 ≤ µik ≤ 1, i = 1, 2, ..., c, k = 1, 2, ..., N (B.1)

c∑
i=1

µik = 1, k = 1, 2, , N (B.2)

In particular, the "probabilistic" constraint B.2, that the memberships µik of a given

pattern must sum up to 1, is a generalization of the condition which ensures that in a

"hard" (crisp) partition a pattern is a member of one class only and avoids the trivial

solution of all memberships equal to 0. As a result of this constraint, the membership of a

pattern to a cluster depends on the memberships to all other clusters, i.e., geometrically

speaking, it depends on where the pattern is located with respect to not only that cluster

but also the others. Hence, in the framework of fuzzy clustering the membership functions

take the meaning of degrees of sharing, i.e., they measure how much a pattern belongs to

a cluster relatively to the others.

The values of the found memberships can serve as a confidence measure in the classi-

fication [Keller et al., 1985]: for example, if a pattern is assigned 0.9 membership in one

class and 0.05 membership in two other classes we can be reasonably sure that the class

of 0.9 membership is the class to which it belongs. On the other hand, if a pattern is

assigned 0.55 membership in class A, 0.44 membership in class B, and 0.01 membership

in class C, then we should be hesitant to assign it to a specific class based on these results.

Under these conditions, two major drawbacks arise [Dubois and Prade, 1988]:

1. The constrained memberships cannot distinguish between "equal evidence" and "ig-

norance" or, in other words, between "equally likely" and "unknown" membership

to a cluster.
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B.1. Fuzzy and possibilistic clustering

2. Since most distance functions used in fuzzy clustering are geometric in nature,

"noisy" patterns, i.e., lying far from the clusters, can drastically influence the es-

timates of the clusters prototypes and, hence, the final partition and the resulting

classification.

In this situation, an "unknown", atypical pattern not belonging to any cluster would

still belong more to one cluster than to the others, relatively speaking, even if it lies far

from all clusters in the feature space and thus it may receive high membership values to

some clusters. On the contrary, in our application it is required that unknown, atypical

patterns be recognized as such, i.e., bear low membership to all clusters. In this respect,

thus, the "conservation of total membership" constraint B.2 is too restrictive since it gives

rise to relative membership values, dependent on the number of clusters.

To overcome the above limitations, the clustering problem can be recast into the

framework of possibility theory [Dubois and Prade, 1988], [Klir and Folger, 1988]. In this

view, the memberships of representative (typical) patterns are high, while unrepresenta-

tive (atypical) points bear low memberships to all clusters. In this interpretation, the

membership function µik represents the degree of compatibility of the pattern ~xk with

the prototypical member vi, i.e., the center, of cluster i. If the classes represented by the

clusters are thought of as a set of fuzzy sets defined over the Universe of Discourse (UOD),

then there should be no constraint on the sum of the memberships. The only constraint

is that the membership values do represent degrees of compatibility, or possibility, i.e.,

they must lie in [0,1]. This is achieved by substituting the fuzzy clustering constraints

B.1 B.2 with the following [Krishnapuram and Keller, 1993]:

0 ≤ µik ≤ 1, i = 1, 2, ..., c, k = 1, 2, ..., N (B.3)

max
i

µik > 0, k = 1, 2, ..., N (B.4)
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where constraint B.4 simply ensures that the set of fuzzy clusters covers the entire

UOD.

A possibilistic distributions (and the corresponding fuzzy subsets) over the UOD [Kr-

ishnapuram and Keller, 1993].

B.2 The evolutionary possibilistic FCM clustering

The traditional, unsupervised possibilistic algorithm based on a Euclidean metric to mea-

sure compatibility leads to spherical clusters that rarely are adequate to represent the data

partition in practice. A significant improvement in classification performance is achieved

by considering a different Mahalanobis metric for each cluster, thus obtaining different

ellipsoidal shapes and orientations of the clusters that more adequately fit the a priori

known data partition [Zio and Baraldi, 2005b], [Yuan and Klir, 1997].

The information on the membership of the available patterns ~xk, k=1, 2,..., N, to the

c a priori known classes, can be used to supervise the algorithm for finding the optimal

Mahalanobis metrics such as to achieve geometric clusters as close as possible to the a

priori known physical classes. Correspondingly, the possibilistic clustering algorithm is

said to be constructed through an iterative procedure of "training" based on a set of avail-

able patterns, pre-labeled with their possibilistic memberships to the a priori classes. The

training procedure for the optimization of the metrics is carried out via an evolutionary

procedure, presented in the literature within a supervised fuzzy clustering scheme [Yuan

et al., 1995] and further extended to diagnostic applications [Zio and Baraldi, 2005a].

Here, the procedure is employed within the possibilistic clustering scheme.

To this purpose, the distance D(Γti,Γ
∗
i ) between the set Γti (t = true) of memberships

of the N available patterns to the a priori known class i and the corresponding set Γ∗
i of

the possibilistic memberships to cluster i=1, 2,..., c, is computed by:
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B.2. The evolutionary possibilistic FCM clustering

D(Γti,Γ
∗
i ) =

N∑
i=1

|µtik − µ∗
ik|

N
(B.5)

where 0 ≤ µtik ≤ 1 is the a priori known (possibilistic) membership of the k-th pat-

tern to the i-th physical class and 0 ≤ µ∗
ik ≤ 1 is the possibilistic membership to the

corresponding geometric cluster in the feature space.

The target of the supervised optimization is the minimization of the distance D(Γti,Γ
∗
i )

between the a priori known physical class partition Γti ≡ (Γt1,Γ
t
1, ...,Γ

∗
c) and the obtained

geometric cluster partition Γ∗
i ≡ (Γ∗

1,Γ
∗
1, ...,Γ

∗
c):

D(Γt,Γ∗) =
c∑
i=1

D(Γti,Γ
∗
i )

c
=

c∑
i=1

N∑
i=1

|µtik − µ∗
ik|

N · c
(B.6)

The optimal membership functions µ∗
ik, i = 1, 2,..., c, k = 1, 2,..., N, result from the

minimization of the objective function:

Jm(Γ, ~v) =
c∑
i=1

N∑
k=1

(µik)
rmsik +

c∑
i=1

ηi

N∑
k=1

(1− µik)rm (B.7)

where ηi are suitable positive numbers and rm is an index that determines the fuzziness

of the final possibilistic partition and the shape of the possibility distribution (rm → 1,

the membership functions are hard, rm → ∞ they are maximally possibilistic).

The distance sik ≡ si( ~xk, ~v∗i ) in Equation B.3 between the pattern ~xk and the optimal

cluster center ~v∗i is computed by:

si( ~xk, ~v∗i ) = ( ~xk, ~v∗i )
T ·Mi · ( ~xk, ~v∗i ) (B.8)

Mi being the metric for the cluster i proposed by the evolutionary supervised procedure

and T denoting the transpose operator.
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The classification algorithm

When fed with a new pattern ~x the classification algorithm provides the values of the

membership functions µ∗
i (~x), i=1, 2,..., c, to the possibilistic clusters:

µ∗
ik =

1

1 +
(
sik
ηi

) 1
rm−1

(B.9)

These values give the degree of compatibility or "typicality" of ~x to the c clusters. In

practice, three situations may arise (Figure B.1):

1. ~x does not belong to any cluster with enough membership, i.e., all the membership

values are below a given threshold εf (degree of ignorance): this means that ~x is an

unanticipated (unknown) pattern with respect to the training patterns.

2. at least two membership values are above the threshold εc (degree of confidence): ~x

is thus ambiguous. In this case, the ambiguity must be regarded as "equal evidence",

i.e., the pattern is typical of more than one class and thus cannot be assigned to a

class with enough confidence. This situation occurs if ~x is at the boundary between

two classes.

3. ~x belongs only to a cluster with a membership value greater than the threshold εc:

in this case, it is assigned to the corresponding class.

Fig. B.1: Classification of pattern ~x.
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Appendix C

Summary of work developed for this

PhD work

This appendix summarizes the work that has been done during the PhD thesis. In par-

ticular, work the pure research in addition with development of tools, methodologies, and

approaches to achieve the research goals introduced in Section 1.3. The following tables

condensate the topics that have been developed and a short discussion about them. They

are divided in five main groups: operator/crew model, plant model, accident dynamic

simulator software tool, DDET modeling, and output analysis.
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Table C.1: Operator and crew model topics and description.

Topic Description
Literature review of existing operator
models

- A review of all the existing operator models and
in addition the typical control room operator be-
havior has been also review in order to relate and
compare the developed model with the existing one
in literature.

Conceptual model - A conceptual model ha been developed and inte-
grated with the existing one in the ADS tool

Procedure-guided response - A new procedure-guided model has been inte-
grated into the operator model.

New crew operator - A new operator has been added in the model,
i.e., the supervisor who checks the safety functions
to transfer to the SAMGs

HRA data handling and modeling - HRA data has been used to validate the model
developed in 3.1.4 for handling data related to crew
performances.

Crew timing variability - The crew timing variability issue has been con-
sidered and analyzed as explained in Section 3.1.4

Table C.2: Plant model topics and description.

Topic Description
Add new components, systems, and
controls in the input deck

- In order to construct the case study an existing
input deck has been used and many new compo-
nents, systems, and controls have been introduced.

Modeling of the case study - In order to decide which scenario to model, a re-
view of the existing PRA documentation has been
done. Then, the SLOCA event has been modeled
based on some criteria described in Section 5.3.
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Table C.3: ADS tool topics and description.

Topic Description
Study of C++ programming lan-
guage

- Self tutorial in studying the C++ programming lan-
guage, i.e., the programming language of ADS

Analysis and study of the ADS
code without operator model

- In order to understand the structure of the ADS code,
the existing operator model has been removed and the
framework of ADS code has been analyzed.

New input and output structure
based on XML

- The input and output data structure has been rebuilt
based on XML programming language. This language
allows validation mechanisms reducing the likelihood of
input errors and making the code more user friendly.

Debugging of the code - An big effort has been done in debugging the code
and solving a lot of existing bugs in the previous model.
In particular part of the code has been reengineered to
allow the integration with the new data structure a also
lots of code conflicts has been solved.

Compiled RELAP with the Intel
Visual Fortran compiler

- The RELAP thermal-hydraulic code has been compiled
with the new Intel Fortran compile on window platform.

Compiled ADS with Microsoft
Visual C++ 2005 and 2008

- The compiler of ADS has been upgraded to the new Mi-
crosoft Visual C++ 2005 and 2008 in order to keep the
code updated with the evolution of software compilers.
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Table C.4: DDET topics and description.

Topic Description
Literature review of DDETs - In order to get familiar with the DDET concept a

literature review of existing DDET model and also
on dynamic models in general has been performed.

Branching generation due to expecta-
tions in the procedures

- Branching generation due to expectation within
procedure steps has been added. This allow the
operator to expect different values and to generate
branches due to different expectations.

Branching generations due to skipping
of procedure steps

- The possibility to skip procedure steps or entire
procedures generating branching has been added
into the model.

Branching generation due to different
level of component level

- In the model, branches can be also generated if
the operator for instance decides to open a valve
at different levels.

Probability handling in the DDET - A new approach and methodology to calculate
the DDET probabilities at the end of the simula-
tion has been implemented and validated.

DDET generation - In ADS, a new way to generate the DDET based
on XML has been introduced. This allows the
possibility to parse the code with the developed
DDET-parser.

Table C.5: Output related topics and description.

Topic Description
Approach for output analysis - An approach for the analysis of DDET-generated

scenarios has been developed and applied in for the
case study of this work.

DDET-parser - A DDET-parser has been developed. The
DDET-parser allows the possibility to visualize the
DDET in different way, acting like a filter which
extracts only information important for the ana-
lyst.

Output data analysis - The analysis of the data has been dune using
the approach developed in this work in addition
with a classifier able to group scenarios based on
similarity.
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Appendix D

Control Panel

This appendix shows the control panel implemented in the SLOCA case study.
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file:/Users/davidem1980/PhD/toDurga/%2301/Input/Indicators/ControlPanel.xml 1 of 6
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...version="1.0" encoding="UTF-8"

...href="ControlPanelStyles.xsl" type="text/xsl" 
......http://www.w3.org/2001/XMLSchema-instance
...file:/C:/XMLSchema/ADSSchemaFiles/ControlPanel.xsd

...DisplayParameterValue ...
...

DisplayName SystemName ParameterName CheckTime ValueWhenFail
1 Waiting CV_020 Value 20.0 0.0
2 Time CV_020 Value 20.0 0.0
3 Watchdog_Timer CV_019 Value 20.0 0.0
4 Core_Power CV_009 Value 20.0 0.0
5 SUR CV_008 Value 20.0 0.0
6 del_k CV_744 Value 20.0 0.0
7 Clad_Temp_Max CV_121 Value 20.0 0.0
8 Fuel_Temp_Max CV_122 Value 20.0 0.0
9 RCS_T_Max CV_731 Value 20.0 0.0
10 RATE_RCS_T_Max CV_731 Value 20.0 0.0
11 Level_Core_Channel

_Med
CV_114 Value 20.0 0.0

12 Level_Core_Channel
_Hot

CV_115 Value 20.0 0.0

13 Level_Core_Channel
_Side

CV_116 Value 20.0 0.0

14 Level_Core_Channel
_Min

CV_120 Value 20.0 0.0

15 Loop_1_Thot HV_201 Liquid_Temperat
ure

20.0 0.0

16 Loop_1_Tcold HV_245 Liquid_Temperat
ure

20.0 0.0

17 Loop_1_Tav CV_200 Value 20.0 0.0
18 RATE_Loop_1_Tav CV_204 Value 20.0 0.0
19 Loop_2_Thot HV_301 Liquid_Temperat

ure
20.0 0.0

20 Loop_2_Tcold HV_345 Liquid_Temperat
ure

20.0 0.0

21 Loop_2_Tav CV_300 Value 20.0 0.0
22 RATE_Loop_2_Tav CV_304 Value 20.0 0.0
23 Loop_3_Thot HV_401 Liquid_Temperat

ure
20.0 0.0

24 Loop_3_Tcold HV_445 Liquid_Temperat
ure

20.0 0.0

25 Loop_3_Tav CV_400 Value 20.0 0.0
26 RATE_Loop_3_Tav CV_404 Value 20.0 0.0
27 SCM_Min CV_725 Value 20.0 0.0
28 Containment_Pressu

re
HV_950 Pressure 20.0 0.0

29 PZR_Pressure HV_540 Pressure 20.0 0.0
30 RATE_PZR_Pressure HV_540 Pressure 20.0 0.0
31 PZR_Level_Meters CV_512 Value 20.0 0.0
32 PZR_Level CV_511 Value 20.0 0.0
33 RATE_PZR_Level CV_511 Value 20.0 0.0
34 PZR_Fluid_Mass CV_501 Value 20.0 0.0
35 PZR_Level_Setpoint CV_833 Value 20.0 0.0
36 PZR_PORV_VPI CV_921 Value 20.0 0.0
37 PZR_Spray_Mass_FLo

w
CV_561 Value 20.0 0.0

38 PZR_Spray_FLow_VPI CV_563 Value 20.0 0.0
39 Total_ECCS_Loop_1_

Flow
CV_278 Value 20.0 0.0

40 Total_ECCS_Loop_2_
Flow

CV_378 Value 20.0 0.0

41 Total_ECCS_Loop_3_
Flow

CV_478 Value 20.0 0.0

42 Total_ECCS_Flow CV_275 Value 20.0 0.0
43 Total_ECCS_Loop_1_

Fluid_Mass
CV_279 Value 20.0 0.0

44 Total_ECCS_Loop_2_
Fluid_Mass

CV_379 Value 20.0 0.0

45 Total_ECCS_Loop_3_
Fluid_Mass

CV_379 Value 20.0 0.0

46 HPI_Loop_1_Flow CV_267 Value 20.0 0.0
47 HPI_Loop_2_Flow CV_367 Value 20.0 0.0
48 HPI_Loop_3_Flow CV_467 Value 20.0 0.0
49 LPI_Loop_1_Flow CV_277 Value 20.0 0.0
50 LPI_Loop_2_Flow CV_377 Value 20.0 0.0
51 LPI_Loop_3_Flow CV_477 Value 20.0 0.0
52 ACC_1_HL_Pressure HV_295 Pressure 20.0 0.0
53 ACC_1_CL_Pressure HV_285 Pressure 20.0 0.0
54 ACC_2_HL_Pressure HV_395 Pressure 20.0 0.0
55 ACC_2_CL_Pressure HV_385 Pressure 20.0 0.0
56 ACC_3_HL_Pressure HV_495 Pressure 20.0 0.0
57 ACC_3_CL_Pressure HV_485 Pressure 20.0 0.0
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57 ACC_3_CL_Pressure HV_485 Pressure 20.0 0.0
58 ACC_1_HL_Level CV_295 Value 20.0 0.0
59 ACC_1_CL_Level CV_285 Value 20.0 0.0
60 ACC_2_HL_Level CV_395 Value 20.0 0.0
61 ACC_2_CL_Level CV_385 Value 20.0 0.0
62 ACC_3_HL_Level CV_495 Value 20.0 0.0
63 ACC_3_CL_Level CV_485 Value 20.0 0.0
64 Steam_Pressure HV_900 Pressure 20.0 0.0
65 RATE_Steam_Pressur

e
HV_900 Pressure 20.0 0.0

66 SG_Level_Setpoint CV_010 Value 20.0 0.0
67 SG_1_Level CV_605 Value 20.0 0.0
68 SG_2_Level CV_705 Value 20.0 0.0
69 SG_3_Level CV_805 Value 20.0 0.0
70 RATE_SG_1_Level CV_605 Value 20.0 0.0
71 RATE_SG_2_Level CV_705 Value 20.0 0.0
72 RATE_SG_3_Level CV_805 Value 20.0 0.0
73 SG_1_Level_Deviati

on
CV_842 Value 20.0 0.0

74 SG_2_Level_Deviati
on

CV_843 Value 20.0 0.0

75 SG_3_Level_Deviati
on

CV_844 Value 20.0 0.0

76 Air_Ejector_Rad_Mo
nitor

CV_847 Value 20.0 0.0

77 SG_1_Pressure HV_650 Pressure 20.0 0.0
78 SG_2_Pressure HV_750 Pressure 20.0 0.0
79 SG_3_Pressure HV_850 Pressure 20.0 0.0
80 RATE_SG_1_Pressure HV_650 Pressure 20.0 0.0
81 RATE_SG_2_Pressure HV_750 Pressure 20.0 0.0
82 RATE_SG_3_Pressure HV_850 Pressure 20.0 0.0
83 SG_1_Main_FW_Flow CV_694 Value 20.0 0.0
84 SG_1_FW_Flow CV_620 Value 20.0 0.0
85 SG_2_Main_FW_Flow CV_794 Value 20.0 0.0
86 SG_2_FW_Flow CV_720 Value 20.0 0.0
87 SG_3_Main_FW_Flow CV_894 Value 20.0 0.0
88 SG_3_FW_Flow CV_820 Value 20.0 0.0
89 SG_1_Steam_Flow CV_665 Value 20.0 0.0
90 SG_2_Steam_Flow CV_765 Value 20.0 0.0
91 SG_3_Steam_Flow CV_865 Value 20.0 0.0
92 SG_1_PORV_Flow CV_666 Value 20.0 0.0
93 SG_2_PORV_Flow CV_766 Value 20.0 0.0
94 SG_3_PORV_Flow CV_866 Value 20.0 0.0
95 SG_1_Safety_Valve_

Flow
CV_667 Value 20.0 0.0

96 SG_2_Safety_Valve_
Flow

CV_767 Value 20.0 0.0

97 SG_3_Safety_Valve_
Flow

CV_867 Value 20.0 0.0

98 SG_1_PORV_VPI CV_977 Value 20.0 0.0
99 SG_2_PORV_VPI CV_987 Value 20.0 0.0
100 SG_3_PORV_VPI CV_997 Value 20.0 0.0
101 SG_1_MSIV_VPI CV_634 Value 20.0 0.0
102 SG_2_MSIV_VPI CV_644 Value 20.0 0.0
103 SG_3_MSIV_VPI CV_654 Value 20.0 0.0
104 SG_1_FWRV_VPI CV_695 Value 20.0 0.0
105 SG_2_FWRV_VPI CV_795 Value 20.0 0.0
106 SG_3_FWRV_VPI CV_895 Value 20.0 0.0
107 SG_1_EFWV_VPI CV_687 Value 20.0 0.0
108 SG_2_EFWV_VPI CV_787 Value 20.0 0.0
109 SG_3_EFWV_VPI CV_887 Value 20.0 0.0
110 Steam_Dump_VPI CV_937 Value 20.0 0.0
111 Total_FW_Flow CV_286 Value 20.0 0.0
112 Turbine_Governor_V

PI
CV_912 Value 20.0 0.0

113 CL_Break_Mass_Flow CV_960 Mass_Flow_Rate 20.0 0.0
114 CL_HL_and_Safety_M

ass_Flow
CV_962 Mass_Flow_Rate 20.0 0.0

115 CL_HL_and_Safety_I
ntegral_Mass

CV_963 Value 20.0 0.0

116 CTP_ON_OFF CV_550 Value 20.0 0.0
117 PZR_Heaters CV_562 Value 20.0 0.0
118 CTP CV_560 Value 20.0 0.0
119 Makeup_Flow CV_251 Value 20.0 0.0
120 Tot_Loop_1_Mass_Fl

ow
CV_250 Value 20.0 0.0

121 Tot_Loop_2_Mass_Fl
ow

CV_350 Value 20.0 0.0

122 Tot_Loop_3_Mass_Fl
ow

CV_450 Value 20.0 0.0
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122 Tot_Loop_3_Mass_Fl
ow

CV_450 Value 20.0 0.0

123 Upper_Plenum_Mass CV_101 Value 20.0 0.0
124 Downcomer_1_Mass CV_102 Value 20.0 0.0
125 Downcomer_2_Mass CV_103 Value 20.0 0.0
126 Downcomer_3_Mass CV_104 Value 20.0 0.0
127 Lower_Plenum_Mass CV_105 Value 20.0 0.0
128 Medium_Channel_Mas

s
CV_106 Value 20.0 0.0

129 Hot_Channel_Mass CV_107 Value 20.0 0.0
130 Side_Channel_Mass CV_108 Value 20.0 0.0
131 Bypass_Channel_Mas

s
CV_109 Value 20.0 0.0

DisplayComponentState ...
...

DisplayName SystemName ParameterName CheckTime StateWhenFail ActivationOperator ActivationTh...
1 Main_Steam_Isolati
on

LT_1514 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

2 Turbine_Trip LT_1618 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
3 Reactor_Trip LT_1616 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
4 Containment_Isolat
ion

LT_1614 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

5 Safety_Injection LT_1614 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
6 SG_1_EFW_Pump_On LT_1685 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
7 SG_2_EFW_Pump_On LT_1686 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
8 SG_3_EFW_Pump_On LT_1687 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
9 Low_SG_1_Level_Tri
p

VT_0301 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

10 Low_SG_2_Level_Tri
p

VT_0302 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

11 Low_SG_3_Level_Tri
p

VT_0303 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

12 Low_SG_Pressure_Is
olation

LT_1511 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

13 High_Reactor_Power
_Trip

VT_0304 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

14 Lo_PZR_Pressure_Tr
ip

VT_0451 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

15 Hi_PZR_Pressure_Tr
ip

VT_0459 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

16 Lo_PZR_Level_SI VT_0455 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
17 Hi_Cont_Pressure_S

I
VT_0456 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5

18 Lo_PZR_Pressure_SI VT_0453 Trip_Time 20.0 ON GREATER_THAN_ON 1.0E-5
19 HPI_Pump_1_On LT_1760 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
20 HPI_Pump_2_On LT_1775 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
21 HPI_Pump_3_On LT_1782 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
22 LPI_Pump_1_On LT_1756 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
23 LPI_Pump_2_On LT_1778 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
24 LPI_Pump_3_On LT_1793 Trip_Time 20.0 OFF GREATER_THAN_ON 1.0E-5
25 FLAG_SGTR_SG_1 VT_0951 Trip_Time 1.0 ON GREATER_THAN_ON 1.0E-5
26 FLAG_SGTR_SG_2 VT_0952 Trip_Time 1.0 ON GREATER_THAN_ON 1.0E-5
27 FLAG_SGTR_SG_3 VT_0953 Trip_Time 1.0 ON GREATER_THAN_ON 1.0E-5

...ControlValue ...
...

ControlName IndicatorName CheckTime OnOrOpen... OffOrCloseValue NeutralStateValue DisplayValue...
1 X_ACC_1_CL IC_852 1.0 1.0 0.0 -1.0 0.0
2 X_ACC_1_HL IC_853 1.0 1.0 0.0 -1.0 0.0
3 X_ACC_2_CL IC_856 1.0 1.0 0.0 -1.0 0.0
4 X_ACC_2_HL IC_857 1.0 1.0 0.0 -1.0 0.0
5 X_ACC_3_CL IC_860 1.0 1.0 0.0 -1.0 0.0
6 X_ACC_3_HL IC_861 1.0 1.0 0.0 -1.0 0.0
7 X_SG_1_FWRV IC_843 1.0 1.0 0.0 -1.0 0.0
8 X_SG_2_FWRV IC_845 1.0 1.0 0.0 -1.0 0.0
9 X_SG_3_FWRV IC_847 1.0 1.0 0.0 -1.0 0.0
10 X_SG_1_MSIV IC_842 1.0 1.0 0.0 -1.0 0.0
11 X_SG_2_MSIV IC_844 1.0 1.0 0.0 -1.0 0.0
12 X_SG_3_MSIV IC_845 1.0 1.0 0.0 -1.0 0.0
13 X_PZR_Spray_Valve IC_823 1.0 1.0 0.0 -1.0 0.0
14 X_PZR_Spray_Valve1 IC_823 1.0 1.0 0.0 -1.0 0.0
15 X_Watchdog_Timer IC_950 1.0 9999. 0.0 -1. 0.0
16 X_Stm_Dump IC_818 1.0 1.0 0.0 -1.0 0.0
17 X_Stm_Dump_Pressur

e_Setpoint
IC_819 1.0 6.9e6 0.0 6.9e6 6.9e6

18 X_SG_1_PORV IC_824 1.0 1.0 0.0 -1.0 0.0
19 X_SG_2_PORV IC_826 1.0 1.0 0.0 -1.0 0.0
20 X_SG_3_PORV IC_828 1.0 1.0 0.0 -1.0 0.0
21 X_SG_1_PORV_Setpoi

nt
IC_825 1.0 7.07e6 0.0 7.07e6 7.07e6

22 X_SG_2_PORV_Setpoi
nt

IC_827 1.0 7.07e6 0.0 7.07e6 7.07e6

23 X_SG_3_PORV_Setpoi
nt

IC_829 1.0 7.07e6 0.0 7.07e6 7.07e6

24 X_PZR_PORV IC_835 1.0 0.33 0.0 -1.0 0.0
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24 X_PZR_PORV IC_835 1.0 0.33 0.0 -1.0 0.0
25 X_PZR_PORV_Setpoin

t
IC_836 1.0 16.5e6 0.0 -1.0 0.0

26 X_SG_1_EFW_Pump IC_870 1.0 1.0 0.0 -1.0 0.0
27 X_SG_1_EFWV_Thrott

le
IC_871 1.0 1.0 0.0 -1.0 0.0

28 X_SG_2_EFW_Pump IC_872 1.0 1.0 0.0 -1.0 0.0
29 X_SG_2_EFWV_Thrott

le
IC_873 1.0 1.0 0.0 -1.0 0.0

30 X_SG_3_EFW_Pump IC_874 1.0 1.0 0.0 -1.0 0.0
31 X_SG_3_EFWV_Thrott

le
IC_875 1.0 1.0 0.0 -1.0 0.0

32 X_HPI_Loop_1_Throt
tle

IC_881 1.0 1.0 0.0 -1.0 0.0

33 X_HPI_Loop_2_Throt
tle

IC_883 1.0 1.0 0.0 -1.0 0.0

34 X_HPI_Loop_3_Throt
tle

IC_885 1.0 1.0 0.0 -1.0 0.0

35 X_HPI_Loop_1_Pump IC_880 1.0 1.0 0.0 -1.0 0.0
36 X_HPI_Loop_2_Pump IC_882 1.0 1.0 0.0 -1.0 0.0
37 X_HPI_Loop_3_Pump IC_884 1.0 1.0 0.0 -1.0 0.0
38 X_LPI_Loop_1_Throt

tle
IC_891 1.0 1.0 0.0 -1.0 0.0

39 X_LPI_Loop_2_Throt
tle

IC_893 1.0 1.0 0.0 -1.0 0.0

40 X_LPI_Loop_3_Throt
tle

IC_895 1.0 1.0 0.0 -1.0 0.0

41 X_LPI_Loop_1_Pump IC_890 1.0 1.0 0.0 -1.0 0.0
42 X_LPI_Loop_2_Pump IC_892 1.0 1.0 0.0 -1.0 0.0
43 X_LPI_Loop_3_Pump IC_894 1.0 1.0 0.0 -1.0 0.0
44 X_Charging IC_899 1.0 1.0 0.0 -1.0 0.0

ControlState ...
...

ControlName IndicatorName CheckTime OnOrOpen... OffOrCloseValue NeutralStateValue DisplayState...
1 X_RCP_1 IC_831 1.0 1.0 -1.0 -1.0 ON
2 X_RCP_2 IC_832 1.0 1.0 -1.0 -1.0 ON
3 X_RCP_3 IC_833 1.0 1.0 -1.0 -1.0 ON
4 X_Control_Rods_In IC_814 1.0 1.0 -1.0 -1.0 ON
5 X_Control_Rods_Out IC_815 1.0 1.0 -1.0 -1.0 ON
6 X_Turb_Trip IC_840 1.0 1.0 0.0 -1.0 ON
7 X_Increase_Turbine
_Load

IC_816 1.0 1.0 -1.0 -1.0 ON

8 X_Decrease_Turbine
_Load

IC_817 1.0 1.0 -1.0 -1.0 ON

9 X_SCRAM IC_820 1.0 1.0 0.0 -1.0 OFF
10 X_PZR_Safety_Valve

_1
IC_821 1.0 1.0 0.0 -1.0 OFF

11 X_PZR_Safety_Valve
_2

IC_822 1.0 1.0 0.0 -1.0 OFF

12 X_LOCA_Cold_Leg IC_811 1.0 1.0 -1.0 -1.0 ON
13 X_LOCA_Hot_Leg IC_812 1.0 1.0 -1.0 -1.0 ON
14 X_SGTR_1 IC_898 1.0 1.0 -1.0 -1.0 ON
15 X_Steam_Line_Break IC_813 1.0 1.0 -1.0 -1.0 ON
16 X_SIAS IC_830 1.0 1.0 -1.0 -1.0 ON
17 X_Letdown IC_896 1.0 1.0 0.0 -1.0 ON
18 X_Makeup IC_897 1.0 1.0 0.0 -1.0 ON
19 X_MSIV_Isolation_B

lock
IC_848 1.0 1.0 0.0 -1.0 ON

20 X_FLAG_SGTR_1 IC_951 1.0 1.0 -1.0 -1.0 ON
21 X_FLAG_SGTR_2 IC_952 1.0 1.0 -1.0 -1.0 ON
22 X_FLAG_SGTR_3 IC_953 1.0 1.0 -1.0 -1.0 ON

...AlarmParameter ...
...

AlarmName IndicatorName AlarmImportance CheckTime ActivationOperator ActivationThreshold
1 A_HPI_Loop_1_Flow HPI_Loop_1_Flow 0.5 20.0 GT 0.01
2 A_HPI_Loop_2_Flow HPI_Loop_2_Flow 0.5 20.0 GT 0.01
3 A_HPI_Loop_3_Flow HPI_Loop_3_Flow 0.5 20.0 GT 0.01
4 A_PZR_Lo_Level PZR_Level 0.5 20.0 LT 10.0
5 A_PZR_Hi_Level PZR_Level 0.5 20.0 GT 80.0
6 A_PZR_Level_Lo_Dev PZR_Level 0.5 20.0 LT 45.0
7 A_PZR_Level_Hi_Dev PZR_Level 0.5 20.0 GT 60.0
8 A_PZR_Spray_FLow PZR_Spray_FLow_

VPI
0.5 20.0 GT 0.01

9 A_SG_1_Lo_Level SG_1_Level 0.5 20.0 LT 25.0
10 A_SG_2_Lo_Level SG_2_Level 0.5 20.0 LT 25.0
11 A_SG_3_Lo_Level SG_3_Level 0.5 20.0 LT 25.0
12 A_SG_1_Hi_Level SG_1_Level 0.5 20.0 GT 90.0
13 A_SG_2_Hi_Level SG_2_Level 0.5 20.0 GT 90.0
14 A_SG_3_HI_Level SG_3_Level 0.5 20.0 GT 90.0
15 A_SG_1_Lo_Pressure SG_1_Pressure 0.5 20.0 LT 5500000.0
16 A_SG_2_Lo_Pressure SG_2_Pressure 0.5 20.0 LT 5500000.0
17 A_SG_3_Lo_Pressure SG_3_Pressure 0.5 20.0 LT 5500000.0
18 A_SG_1_Hi_Pressure SG_1_Pressure 0.5 20.0 GT 6700000.0
19 A_SG_2_Hi_Pressure SG_2_Pressure 0.5 20.0 GT 6700000.0
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19 A_SG_2_Hi_Pressure SG_2_Pressure 0.5 20.0 GT 6700000.0
20 A_SG_3_Hi_Pressure SG_3_Pressure 0.5 20.0 GT 6700000.0
21 A_ENDSEQ_PZR_Prima

ry_Pressure_LOW
PZR_Pressure 0.5 20.0 LT 1500000.0

22 A_PZR_Pressure_Lo_
Dev

PZR_Pressure 0.5 20.0 LT 15000000.0

23 A_PZR_Pressure_Hi_
Dev

PZR_Pressure 0.5 20.0 GT 15754000.0

24 A_PZR_Lo_Pressure PZR_Pressure 0.5 20.0 LT 14479000.0
25 A_PZR_Hi_Pressure PZR_Pressure 0.5 20.0 GT 15858000.0
26 A_ACC_1_CL_Lo_Pres

sure
ACC_1_CL_Pressu
re

0.5 20.0 LT 2413000.0

27 A_ACC_1_CL_Hi_Pres
sure

ACC_1_CL_Pressu
re

0.5 20.0 GT 2758000.0

28 A_ACC_1_HL_Lo_Pres
sure

ACC_1_HL_Pressu
re

0.5 20.0 LT 2413000.0

29 A_ACC_1_HL_Hi_Pres
sure

ACC_1_HL_Pressu
re

0.5 20.0 GT 2758000.0

30 A_ACC_2_CL_Lo_Pres
sure

ACC_2_CL_Pressu
re

0.5 20.0 LT 2413000.0

31 A_ACC_2_CL_Hi_Pres
sure

ACC_2_CL_Pressu
re

0.5 20.0 GT 2758000.0

32 A_ACC_2_HL_Lo_Pres
sure

ACC_2_HL_Pressu
re

0.5 20.0 LT 2413000.0

33 A_ACC_2_HL_Hi_Pres
sure

ACC_2_HL_Pressu
re

0.5 20.0 GT 2758000.0

34 A_ACC_3_CL_Lo_Pres
sure

ACC_3_CL_Pressu
re

0.5 20.0 LT 2413000.0

35 A_ACC_3_CL_Hi_Pres
sure

ACC_3_CL_Pressu
re

0.5 20.0 GT 2758000.0

36 A_ACC_3_HL_Lo_Pres
sure

ACC_3_HL_Pressu
re

0.5 20.0 LT 2413000.0

37 A_ACC_3_HL_Hi_Pres
sure

ACC_3_HL_Pressu
re

0.5 20.0 GT 2758000.0

38 A_ACC_1_CL_Lo_Leve
l

ACC_1_CL_Level 0.5 20.0 LT 70.0

39 A_ACC_1_CL_LoLo_Le
vel

ACC_1_CL_Level 0.5 20.0 LT 10.0

40 A_ACC_1_HL_Lo_Leve
l

ACC_1_HL_Level 0.5 20.0 LT 70.0

41 A_ACC_1_HL_LoLo_Le
vel

ACC_1_HL_Level 0.5 20.0 LT 10.0

42 A_ACC_2_CL_Lo_Leve
l

ACC_2_CL_Level 0.5 20.0 LT 70.0

43 A_ACC_2_CL_LoLo_Le
vel

ACC_2_CL_Level 0.5 20.0 LT 10.0

44 A_ACC_2_HL_Lo_Leve
l

ACC_2_HL_Level 0.5 20.0 LT 70.0

45 A_ACC_2_HL_LoLo_Le
vel

ACC_2_HL_Level 0.5 20.0 LT 10.0

46 A_ACC_3_CL_Lo_Leve
l

ACC_3_CL_Level 0.5 20.0 LT 70.0

47 A_ACC_3_CL_LoLo_Le
vel

ACC_3_CL_Level 0.5 20.0 LT 10.0

48 A_ACC_3_HL_Lo_Leve
l

ACC_3_HL_Level 0.5 20.0 LT 70.0

49 A_ACC_3_HL_LoLo_Le
vel

ACC_3_HL_Level 0.5 20.0 LT 10.0

50 A_Air_Ejector_Rad_
Monitor

Air_Ejector_Rad
_Monitor

0.5 20.0 GT 25000.0

51 A_SCM_Low SCM_Min 0.5 20.0 LT 10.0
52 A_SCM_High SCM_Min 0.5 20.0 GT 30.0
53 A_SG_1_MFW_Off SG_1_Main_FW_Fl

ow
0.5 20.0 LT 0.1

54 A_SG_2_MFW_Off SG_2_Main_FW_Fl
ow

0.5 20.0 LT 0.1

55 A_SG_3_MFW_Off SG_3_Main_FW_Fl
ow

0.5 20.0 LT 0.1

56 A_SG_1_PORV_VPI_Op
en

SG_1_PORV_VPI 0.5 20.0 GT 0.01

57 A_SG_2_PORV_VPI_Op
en

SG_2_PORV_VPI 0.5 20.0 GT 0.01

58 A_SG_3_PORV_VPI_Op
en

SG_3_PORV_VPI 0.5 20.0 GT 0.01

AlarmComponent ...
...

AlarmName IndicatorName AlarmImportance CheckTime ActivationState
1 A_Main_Steam_Isola
tion

Main_Steam_Isol
ation

0.5 1.0 ON

2 A_Turbine_Trip Turbine_Trip 0.5 1.0 ON
3 A_Reactor_Trip Reactor_Trip 0.5 1.0 ON
4 A_Containment_Isol
ation

Containment_Iso
lation

0.5 1.0 ON

5 A_Safety_Injection Safety_Injectio
n

0.5 1.0 ON

6 A_SG_1_EFW_Pump_On SG_1_EFW_Pump_O
n

0.5 1.0 ON

7 A_SG_2_EFW_Pump_On SG_2_EFW_Pump_O
n

0.5 1.0 ON



file:/Users/davidem1980/PhD/toDurga/%2301/Input/Indicators/ControlPanel.xml 6 of 6

Continue on page 5

...

...

AlarmComponent ...
...

7 A_SG_2_EFW_Pump_On SG_2_EFW_Pump_O
n

0.5 1.0 ON

8 A_SG_3_EFW_Pump_On SG_3_EFW_Pump_O
n

0.5 1.0 ON

9 A_Low_SG_1_Level_T
rip

Low_SG_1_Level_
Trip

0.5 1.0 ON

10 A_Low_SG_2_Level_T
rip

Low_SG_2_Level_
Trip

0.5 1.0 ON

11 A_Low_SG_3_Level_T
rip

Low_SG_3_Level_
Trip

0.5 1.0 ON

12 A_High_Reactor_Pow
er_Trip

High_Reactor_Po
wer_Trip

0.5 1.0 ON

13 A_Lo_PZR_Pressure_
Trip

Lo_PZR_Pressure
_Trip

0.5 1.0 ON

14 A_Hi_PZR_Pressure_
Trip

Hi_PZR_Pressure
_Trip

0.5 1.0 ON

15 A_Lo_PZR_Level_SI Lo_PZR_Level_SI 0.5 1.0 ON
16 A_Hi_Cont_Pressure

_SI
Hi_Cont_Pressur
e_SI

0.5 1.0 ON

17 A_Lo_PZR_Pressure_
SI

Lo_PZR_Pressure
_SI

0.5 1.0 ON

AlarmTwoParameterDifference ...
...

AlarmName IndicatorName AlarmImportance CheckTime SecondIndicator... ActivationThreshold
1 A_SG_1_Level_Lo_De
v

SG_Level_Setpoi
nt

0.5 20.0 SG_1_Level 10.0

2 A_SG_2_Level_Lo_De
v

SG_Level_Setpoi
nt

0.5 20.0 SG_2_Level 10.0

3 A_SG_3_Level_Lo_De
v

SG_Level_Setpoi
nt

0.5 20.0 SG_3_Level 10.0

4 A_SG_1_Level_Hi_De
v

SG_1_Level 0.5 20.0 SG_Level_Setpoint 10.0

5 A_SG_2_Level_Hi_De
v

SG_2_Level 0.5 20.0 SG_Level_Setpoint 10.0

6 A_SG_3_Level_Hi_De
v

SG_3_Level 0.5 20.0 SG_Level_Setpoint 10.0
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Appendix E

Test case study - SGTR event

The Steam Generator (SG) is an important component of a NPP not only because it

transfers heat from the Reactor Coolant System (RCS) to the secondary steam system,

but also because it is a barrier against the release of radioactive material to the secondary

side, which in turn presents potential leakage paths outside the containment. In a SGTR

accident this barrier is broken due to the rupture of one or more SG tubes.

In this study we consider a SGTR event in loop A of a two-loop Pressurized Water

Reactor (PWR). The SGTR event is an accident Initiating Event (IE) which induces a

number of abnormal conditions (e.g., low RCS pressure, high radiation in the secondary

steam line, etc.), which automatically command: 1) the actuation of the High Pressure

Injection (HPI) system (after about 80 seconds) to inject cool water to cooldown the RCS

and provide RCS inventory make-up; and 2) trip of the reactor and of the Main Feed

Water (MFW) system (after about 115 seconds). Upon the reactor trip, the turbine trips

as well, the core power rapidly decreases, and the TBVs open to control the secondary

side pressure.

The response of the control room operators is guided by the Emergency Operating

Procedures (EOPs) and conditioned by their training. Upon the IE, the operators enter

into EOP immediate and subsequent manual actions. The first steps entail checking the

behavior of the key plant parameters and the status of the key plant safety systems.
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Test case study - SGTR event

Then, the operators must go through a number of decision points that would direct them

to initiator-specific EOPs: the loss of subcooling margin EOP, the excessive heat transfer

EOP, the steam generator tube leak EOP. In particular, the entry criteria for the steam

generator tube leak EOP are: high radiation levels in the secondary side, incontrollable

level increase in one SG, and mismatch in the FWs to the SGs.

Once the operators have entered the steam generator tube leak procedures, their main

goals are to:

• maintain the pressurizer (pressurizer) level,

• maintain the subcooling margin,

• depressurize and cooldown the RCS (so as to minimize the leak from the RCS to

the secondary side),

• isolate the ruptured SG,

• control and maintain key plant parameters.

The crew model implemented in the ADS includes three types of actions, in an effort

to reproduce the operators behavior as realistically as possible: actions guided by the

EOPs, actions guided by the so-called mental procedures, and cognitive actions.

The actions of the first type are directly taken from the EOPs and are intended to

model the crew’s following the procedures. Actions belonging to immediate and subse-

quent manual actions and steam generator tube leak EOPs have been implemented in

this work (Table E.1). The second type of actions is carried out following the so-called

mental procedures. These are plant operating procedures memorized by the operator and

are based on formal procedures. Mental procedures are task-oriented, i.e., each mental

procedure corresponds to a specific task. Table E.2 lists the modeled actions of this type.

Rule-based actions comprise a third type [Carvalho, 2006a]. These are intended to

model the fact that, although during an accident (as well as during normal operations)
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the typical control room operators’ response is mainly guided by procedures, in many

situations it has been observed that operators do not follow the procedure by rote. In

other words, they do not apply these "mechanically" or without judgment. Even when

guided by procedures, situation assessment and response planning based on the knowledge

and training of the operators continue to be important for successful operator performance

[Roth et al., 1994]. In this work, rule-based actions model this assessment or planning.

These rules are instructions acquired by the operator through training, e.g., provided by

supervisors. These are listed in Table E.3.

Table E.1: Crew actions directed by the Emergency Operating Procedures (EOPs) modeled in
the SGTR scenario.

EOP Modeled actions
IMMEDIATE AND - Manually trip the reactor
SUBSEQUENT MANUAL - Verify reactor shut down
ACTIONS - If emergency system is not required, maintain

pressurizer level above 100 inches
- If any subcooling margin = 0 ◦F, go to LOSS OF
SUBCOOLING procedures
- If the heat transfer is or has been excessive, go
to EXCESSIVE HEAT TRANSFER procedures
- If any of the radiation alarms start, go to STEAM
GENERATOR TUBE LEAK procedures

STEAM GENERATOR - Identify the SG with the leak
TUBE LEAK - Maintain the pressurizer level > 80 inches

- Adjust the turbine bypass valves to maintain the
steam pressure below 950 psig
- Depressurize the reactor coolant system to mini-
mize the core subcooling margin
- Depressurize and cool down the RCS
-When the RCS is below 532 ◦F and if more than
one RCP loop is operating then secure RCPs for
one RCP/loop operation
- Check any subcooling margins
- If pressurizer level is above 375 inches reduce
RCP pressure below 2000 psig and open the pres-
surizer relief block
- Isolate the SG with the larger tube leak
- Control the secondary side contamination
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Test case study - SGTR event

Table E.2: Crew actions directed by the mental procedures.

Mental procedure Action
Pressurizer level < 100 inches Maintain pressurizer level to 110 inches by manual

control
Subcooling margin (SCM) less
than 5 ◦F

Maintain SCM to 50 ◦F by manual control

Table E.3: Rule-base cognitive actions.

Perceived information Action
Rate of power > 1 (or < -1) Trip the reactor
Rate of the loop 1 (or 2) hot leg temperature is < -1 (or 1) Trip the reactor
Pressurizer level > 320 inches and the rate of pressurizer level
> 1

Trip the reactor

Pressurizer level < 200 inches and the rate of pressurizer level
< 1

Trip the reactor

RCS pressure > 2350 psig and the RCS rate > 0.25 Trip the reactor
RCS pressure < 2000 psig and the RCS rate < -0.25 Trip the reactor
All the RCPs are not working Trip the reactor
The SG operating range levels > 70 and alarm flow imbalance
on

Trip the reactor

The SG operating range levels < 40, alarm flow imbalance on
and MFWs has been tripped

Trip the reactor

Alarm flow imbalance on Trip the reactor
The SG operating range levels > 80 Trip the reactor
The SG operating range levels < 30 Trip the reactor
The SG pressure < 900 psig Trip the reactor
Pressurizer level < 200 inches Turn on HPI
SCM less than 5 ◦F Trip all RCPs
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Appendix F

DDET-generated scenario probabilities

In the following Figure F.1, F.2, and F.3, the resulting probabilities for each type of crew,

i.e., fast, intermediate, and slow (which correspond to three sub-DDETs) are shown.

Fig. F.1: Scenario probabilities for fast type of crews.
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DDET-generated scenario probabilities

Fig. F.2: Scenario probabilities for intermediate type of crews.

Fig. F.3: Scenario probabilities for slow type of crews.

As one can see, in all the type of crews, the probability of the first 24 scenarios of

each of the types of crews are larger compared to the others. This is due to the fact that

the scenario after the 24th are related to the failure of either HPI, steam dump valve, or
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both. Since their probability of failure is low, the scenario probability results low.

In general, looking at the results of the first 24 scenarios related to the intermediate

type of crews, the associated scenario probabilities are more flat than the fast and slow

types. This is an expected result because the intermediate crew behavior in the single task

(almost symmetric distribution) affects the final distribution of the scenario probabilities

making them symmetric. Whereas in the first 24 scenarios of fast and slow type of crews

the distribution is not symmetric because the original timing distributions are skewed

towards fast or slow crew behaviors.

In Figure F.1 for the fast type of crews, there are mainly three scenarios whose prob-

abilities are clearly higher than the others (scenarios 3, 11, and 19). Those scenario

probabilities are related to the crews that perform the timing variability steps with a fast

tendency and the probability of the associated scenario is high. In addition, since the

probability of not performing as fast is different than zero (in case of fast crew tendency

is equal to 0.2), the scenario probability associated with non-fast crew type is different

than zero (e.g., scenario 7).

The same pattern applies to the slow type of crews (Figure F.3). In that case, scenario

16 is the one where the crews perform as slow in the timing tasks. Since slow type of crews

are considered in this case, the probability of performing as slow crew in the single task

is higher than non-slow crew and therefore the associated scenario probability is high.

The first twelve high probability scenarios for each type of crew are analyzed, in

order to identify the main events of those scenarios. Only the first twelve scenarios

have been included in this analysis since they dominate the DDET-generated scenario

probabilities, i.e., the following scenario probabilities decrease roughly by a couple of

order of magnitudes. Table F.1, F.2, and F.3 show for each type of crew the first twelve

high probability scenarios (notice that in all these sequences the HPI and steam dump

valve did not fail).

With regard to the fast crews (Table F.1), number 11 is the highest probability scenario
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DDET-generated scenario probabilities

with a rather high probability of 0.3. That scenario is characterized by a stop of the

pressurizer spray at 5 m, an early transfer to the SLOCA procedure, and early stop of

last HPI.

In the second position there are scenarios similar to the number 11 but with the stop

of spray at 3 and 8 m (scenarios 3 and 19) with 0.1 of probability each. Then, in the next

positions there are scenarios with the stop of the spray at 5 m and the stop of 2 HPIs,

with early transfer for both the two timing variability transfers and then combination of

early and late with the stop of 1 HPI. The same pattern applies for the stop of 3 and 8

m.

Looking at the results of fast crew behavior, one can say that the main events leading to

high probability scenarios are the early transfer in case of both the two timing variability

events in addition to the stop of HPI at 5 m as said in the procedure.

It is interesting to note that the variation of the probability between the first scenario

and the twelfth scenario is about one order of magnitude. Therefore scenario 11 dominates

the other scenarios in the DDET.

Table F.1: First twelve high probability scenarios for fast crews. (T1 = Timing variability in
transfer to the SLOCA procedure. T2 = Timing variability in stopping the last
HPI)

Sc.
Num

Prob. Description

11 0.301 Stop spray at 5 m, stop 1 HPI, early T1, early T2
3 0.100 Stop spray at 3 m, stop 1 HPI, early T1, and early T2
19 0.100 Stop spray at 8 m, stop 1 HPI, early T1, and early T2
9 0.075 Stop spray at 5 m, stop 2 HPIs, early T1, and early T2
12 0.075 Stop spray at 5 m, stop 1 HPI, early T1, and late T2
15 0.075 Stop spray at 5 m, stop 1 HPI, late T1, and early T2
1 0.025 Stop spray at 3 m, stop 2 HPIs, early T1, and early T2
4 0.025 Stop spray at 3 m, stop 1 HPI, early T1, and late T2
7 0.025 Stop spray at 3 m, stop 1 HPI, late T1, and early T2
17 0.025 Stop spray at 8 m, stop 2 HPIs, early T1, and early T2
20 0.025 Stop spray at 8 m, stop 1 HPI, early T1, and late T2
23 0.025 Stop spray at 8 m, stop 1 HPI, late T1, and early T2
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In case of intermediate crews (Table F.2), the first twelve scenarios are divided in two

parts in terms of probability, the first four scenarios with probability of 0.118 and the

next eight scenarios with probability of 0.0392. This means that the resulting probability

distribution of the DDET-generated scenarios is more symmetric than the case of fast

crews since the original probability distribution functions of the branching points are

symmetric. For example for the two timing variability branching points the probability

is 0.5 for early behavior and 0.5 for late behavior, i.e., the probability of being early or

late is the same.

In case of intermediate crews, what affects the end probability is only the stopping

of the spray. In fact, in case of stop of spraying at 5m, the associated branching proba-

bility is higher that the other and therefore the scenarios probability results higher (first

four scenarios). Whereas, with regard to the stop at 3 and 8 meters, since their asso-

ciated probability is the same the resulting scenario probability results equal (last eight

scenarios).

Table F.2: First twelve high probability scenarios for intermediate crews. (T1 = Timing vari-
ability in transfer to the SLOCA procedure. T2 = Timing variability in stopping
the last HPI)

Sc.
Num

Prob. Description

11 0.118 Stop spray at 5 m, stop 1 HPI, early T1, early T2
12 0.118 Stop spray at 5 m, stop 1 HPI, early T1, and late T2
15 0.118 Stop spray at 5 m, stop 1 HPI, late T1, and early T2
16 0.118 Stop spray at 5 m, stop 1 HPI, late T1, and late T2
3 0.0392 Stop spray at 3 m, stop 1 HPI, early T1, and early T2
4 0.0392 Stop spray at 3 m, stop 1 HPI, early T1, and late T2
7 0.0392 Stop spray at 3 m, stop 1 HPI, late T1, and early T2
8 0.0392 Stop spray at 3 m, stop 1 HPI, late T1, and late T2
19 0.0392 Stop spray at 8 m, stop 1 HPI, early T1, and early T2
20 0.0392 Stop spray at 8 m, stop 1 HPI, early T1, and late T2
23 0.0392 Stop spray at 8 m, stop 1 HPI, late T1, and early T2
24 0.0392 Stop spray at 8 m, stop 1 HPI, late T1, and late T2

In case of slow crews (Table F.3), the same patter as the fast crews can be applied. The
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DDET-generated scenario probabilities

only difference is that the dominating event is the late transfer to the SLOCA procedure

and late stop of last HPI.

It is interesting to note that the scenario 11 which was the first one for the fast crews

and in the first group in the intermediate crews, it is not in the first twelve of slow

crews. This is due to the fact that in the scenario 11 the main events that contribute

to the probability are the early transfer for the two timing variability transfers which

have low probability in case of slow crews. In this case, the the main events leading to

high probability scenarios are the early transfer in case of both the two timing variability

events in addition to the stop of HPI at 5m as said in the procedure.

Table F.3: First twelve high probability scenarios for slow crews. (T1 = Timing variability in
transfer to the SLOCA procedure. T2 = Timing variability in stopping the last
HPI)

Sc.
Num

Prob. Description

16 0.301 Stop spray at 5 m, stop 1 HPI, late T1, and late T2
8 0.100 Stop spray at 3 m, stop 1 HPI, late T1, and late T2
24 0.100 Stop spray at 8 m, stop 1 HPI, late T1, and late T2
12 0.075 Stop spray at 5 m, stop 1 HPI, early T1, and late T2
14 0.075 Stop spray at 5 m, stop 2 HPI, late T1, and late T2
15 0.075 Stop spray at 5 m, stop 1 HPI, late T1, and early T2
4 0.025 Stop spray at 3 m, stop 1 HPI, early T1, and late T2
6 0.025 Stop spray at 3 m, stop 2 HPI, late T1, and late T2
7 0.025 Stop spray at 3 m, stop 1 HPI, late T1, and early T2
20 0.025 Stop spray at 8 m, stop 1 HPI, early T1, and late T2
22 0.025 Stop spray at 8 m, stop 2 HPI, late T1, and late T2
23 0.025 Stop spray at 8 m, stop 1 HPI, late T1, and early T2

It is also interesting to note that with regard to the single type of crews (fast, interme-

diate, and slow), the difference of the probabilities between a group and another is lower.

This is due to the recalculation of the probabilities multiplying the type of crew to the

relative fraction. This means that actually there is not a dominant scenario (or group of

scenarios) on the others but the most probable scenarios are less dominant on the others

giving more variability on the differentiation of scenarios due to probabilities.
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Appendix G

Performance shaping factors estimation

to support HRA

G.1 Overview of the SPAR-H method

The Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H) is an HRA

method for estimating the human error probabilities (HEPs) associated with operator

and crew actions and decisions in response to initiating events in NPPs. In the SPAR-H

method, the HEP is calculated considering the probability of failure in the diagnosis and

in the execution. The HEP of the action is therefore the sum of the HEP for the diagnosis

and the HEP for the execution.

The SPAR-H method is built on an explicit information-processing model of human

performance derived from the behavioral sciences literature that was then interpreted in

light of activities at NPPs [Blackman and Byers, 1994]. In 1999, further research identified

eight PSFs capable of influencing human performance. These PSFs are accounted for in

the SPAR-H quantification process. These factors include:

• Available time

• Stress and stressors
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Performance shaping factors estimation to support HRA

• Experience and training

• Complexity

• Ergonomics (including the human-machine interface)

• Procedures

• Fitness for duty

• Work processes.

For each of this PSFs the HRA analyst has to assign a specific multiplier where a low

multiplier has a positive effect on the operator action whereas a high multiplier has a

negative effect.

Figure G.1 and Figure G.2 show an excerpt of the PSFs to be assigned for the calcu-

lation of the diagnosis HEP with the SPAR-H method [NUREG/CR-6883, 2005] and the

final calculation of the HEP. In particular, for both the diagnosis and execution part of

the HEP a table with PSFs and multiplier must be filled out by the analyst and the final

HEP for both the execution and the diagnosis is a function of the multiplier of the PSFs

[NUREG/CR-6883, 2005].
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G.1. Overview of the SPAR-H method

Fig. G.1: Example of table for the calculation of the HEP for diagnosis based on PSFs.
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Performance shaping factors estimation to support HRA

Fig. G.2: Example of table for the final calculation of the HEP for diagnosis.

G.2 Calculation of the HEPs with the SPAR-H method

The following two tables summarize the PSF multipliers used for the calculation of the

HEP for the case study 1, i.e., SLOCA with the HPI systems available (Table G.1), and

for the case study 2, i.e., SLOCA without any HPI system available (Table G.2).
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G.2. Calculation of the HEPs with the SPAR-H method

Table G.1: Evaluation of PSFs for diagnosis and execution with classical SPAR-H and SPAR-H
with dynamic insights. Case study 1 - SLOCA with HPI systems available.

Classical SPAR-H SPAR-H with dynamic insights
PSF Diagnosis Execution Diagnosis Execution
Available time 10 10 10 10
Stress 1.0 1.0 1.0 1.0
Complexity 1.0 2 1.0 5
Training 0.5 0.5 0.5 1.0
Procedures 1.0 1.0 1.0 1.0
Ergonomics 0.5 1.0 0.5 1.0
Fitness for duty 1.0 1.0 1.0 1.0
Work processes 1.0 1.0 1.0 1.0
Total 2.5 ·10−2 1.0 ·10−2 2.5 ·10−2 5.0 ·10−2

The final HEP calculated with the classical SPAR-H is given by:

HEP = HEPdiagnosis +HEPexecution = 2.5 · 10−2 + 1.0 · 10−2 = 3.5 · 10−2 (G.1)

The final HEP calculated with SPAR-H with dynamic insights is given by:

HEP = HEPdiagnosis +HEPexecution = 2.5 · 10−2 + 5.0 · 10−2 = 7.5 · 10−2 (G.2)
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Performance shaping factors estimation to support HRA

Table G.2: Evaluation of PSFs for diagnosis and execution with classical SPAR-H and SPAR-H
with dynamic insights. Case study 2 - SLOCA without any HPI system available.

Classical SPAR-H SPAR-H with dynamic insights
PSF Diagnosis Execution Diagnosis Execution
Available time 10 10 1 1
Stress 1 2 1 2
Complexity 1 1 2 5
Training 0.5 1 0.5 1
Procedures 5 5 5 5
Ergonomics 1 1 1 1
Fitness for duty 1 1 1 1
Work processes 1 1 1 1
Total 0.25 0.09 0.05 0.0476

The final HEP calculated with the classical SPAR-H is given by:

HEP = HEPdiagnosis +HEPexecution = 0.25 + 0.09 = 0.34 (G.3)

The final HEP calculated with SPAR-H with dynamic insights is given by:

HEP = HEPdiagnosis +HEPexecution = 0.05 + 0.0476 = 0.10 (G.4)
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