
DISS. ETH NO. 19517

Capturing and Synthesizing
Hand-Object Interaction

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences (Dr. sc. ETH Zürich)
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Abstract

Humans use their hands for interacting with their environment. In particu-
lar the ability of hands to manipulate objects dominates our daily life. As a
consequence, there are many useful digital applications in the context of hand-
object interaction. Realizing such applications requires both knowledge about
the manipulating hand and knowledge regarding the manipulated object. The
proposed thesis is concerned with the extraction of such information by means
of computer vision methods. It also explores interdependencies between object
and hand: the manipulation of a specific object implicates appropriate execut-
ing hand poses. This ultimately leads to a method to synthesize static grasps as
well as dynamic hand motion for object manipulation: the knowledge gained
with a camera system is used to ease the generation process of computer ani-
mations containing hand-object interaction.

To gather information about the manipulating hand, we first develop a marker-
less method for tracking the articulated pose of a hand interacting with an ob-
ject. The scenario implies the challenge of severe self-occlusions of the hand
as well as occlusions by the object. We approach the task by belief propaga-
tion and use range and color data as input. This data is delivered by a real-time
structured-light system.

Next, the manipulated object is not only considered as an occluder but plays
an active role. We introduce an object-dependent hand pose prior. The prior
represents knowledge regarding the manipulation of a certain object by a cer-
tain hand. It can be generalized towards new hands and new objects of the
same object class (e.g., from one cup to another). We present two applications
of this: improved 3d hand tracking, and grasp synthesis for unobserved hands
and objects. Grasp synthesis is highly relevant in the fields of robotics and
computer graphics.

Finally, we examine temporal aspects of hand pose generation and extend static
grasp synthesis to dynamic hand motion synthesis. The idea is to generate
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computer animations containing hand-object interaction solely by animating
the object. The corresponding hand information is derived from observation.
While animating an object can be easily done by a 3d artist, manually ani-
mating a hand is substantially more complicated due to the many degrees of
freedom. Our method requires training once for an object of interest. After
that, arbitrary manipulation sequences can be realized in 3d modeling software
like Autodesk Maya.



Zusammenfassung

Menschen gebrauchen ihre Hände für die Interaktion mit ihrer Umgebung.
Besonders die Möglichkeit, mit Händen Objekte zu manipulieren, beherrscht
unseren Alltag. Aus dieser Tatsache ergibt sich eine Vielzahl von nützlichen
digitalen Anwendungen im Bereich der Hand-Objekt-Interaktion. Die Reali-
sierung solcher Anwendungen erfordert einerseits Wissen über die manipulie-
rende Hand selbst und andererseits Wissen über das manipulierte Objekt. Die
vorgelegte Dissertation befasst sich mit der Gewinnung solchen Wissens mit-
tels Computer Vision Methoden. Darüber hinaus werden Abhängigkeiten zwi-
schen dem Objekt und der Hand erforscht: die Manipulation eines speziellen
Objekts impliziert entsprechende ausführende Handposen. Dies führt schließ-
lich zu einer Methode zur Erzeugung von sowohl statischen als auch dynami-
schen Handposen: das Wissen, welches mit einem Kamerasystem gewonnen
wird, dient der erleichterten Generierung von Animationen mit Hand-Objekt-
Interaktion.

Um Informationen über die manipulierende Hand zu erhalten, entwickeln wir
zunächst eine Methode ohne Marker zum Tracken der artikulierten Pose einer
Hand, welche mit einem Objekt interagiert. Dieses Szenario bringt Schwierig-
keiten mit sich, die durch starke Selbstverdeckungen der Hand und Verdeckun-
gen durch das Objekt bedingt sind. Wir begegnen den Problemen mit dem
Belief-Propagation Algorithmus und verwenden sowohl Tiefen- als auch Far-
binformationen. Diese Daten werden in Echtzeit von einem Structured-Light-
System geliefert.

Danach fungiert das manipulierte Objekt nicht mehr nur als Verdecker son-
dern nimmt eine aktive Rolle ein. Wir stellen einen objekt-spezifischen Hand-
posenprior vor. Dieser Prior repräsentiert Wissen bezüglich der Manipulation
eines bestimmten Objekts durch eine bestimmte Hand, und er ist generalisier-
bar bezüglich neuer Hände und neuer Objekte der gleichen Objektklasse (zum
Beispiel von einer Tasse zu einer anderen). Wir präsentieren zwei Anwendun-
gen hiervon: erstens verbessertes 3d Handtracking und zweitens Griffsynthese
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für zuvor nicht beobachtete Hände und Objekte. Die Griffsynthese hat große
Relevanz in den Feldern der Robotik und der Computergraphik.

Schließlich untersuchen wir die zeitlichen Aspekte der Handposenerzeugung
und erweitern die statische Griffsynthese hin zur Synthese von dynamischen
Handbewegungen. Die Grundidee ist die Erzeugung von Computeranimatio-
nen, die Hand-Objekt-Interaktion enthalten, allein durch die Animation des
Objekts. Die entsprechende Handinformation wird von Beobachtungen abge-
leitet. Während es für einen 3d-Animationskünstler relativ einfach ist, ein Ob-
jekt zu animieren, ist die direkte Animation einer Hand wegen der vielen Frei-
heitsgrade deutlich schwieriger. Unsere Methode benötigt eine einmalige Trai-
ningsprozedur für ein gewünschtes Objekt. Danach können beliebige Mani-
pulationssequenzen in 3d Modellierungssoftware, wie zum Beispiel Autodesk
Maya, realisiert werden.
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1
Introduction

The scope of this work is hand-object interaction. As a starting point, we
observe hands manipulating objects and derive information based on computer
vision methods. After considering hands and objects in isolation, we focus on
the inherent interdependencies. One application of the gained knowledge is the
synthesis of interactive hand motion for animated sequences. However, there
are many more as we describe below.

The need to study the interaction of human hands and manipulated objects has
already been recognized in 1956 by the primatologist, and physician John R.
Napier. The driving motivation for this research at that time was the ”eval-
uation of disability of the hand in connection with industrial and insurance
work” [Napier 1956]. The relevance of such research for the medical appli-
cation field has significantly increased since then due to the great advances in
biomedical engineering. Furthermore, new possibilities for innovative appli-
cations in the context of hand-object interaction have also opened up in other
fields. The following list introduces some motivating scenarios.

• The topic of hand disability touched upon in [Napier 1956] and rehabil-
itation has new significance because of the recent development of high
tech hand prostheses [Light and Chappell 2000, Warwick et al. 2003,
Pons et al. 2004, Schulz et al. 2005, Carrozza et al. 2006, Cipriani et al.
2009]. Such devices imitate the anatomy of the human hand and some
can be linked to the central nervous system of a patient. First prototypes
allow for both the control of the device by the brain as well as sensory
feedback delivered in the same way.

• In augmented reality, an interaction scenario may be observed. Hand
and/or object can then be replaced by virtual surrogates. For example in
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[Harders et al. 2009], a haptic effector is replaced by a digital scalpel for
surgery simulation. In [Seo et al. 2008], the manipulated object (e.g., a
tea pot) itself is virtual.

• In robotics, artificial end-effectors interact with objects. In many cases
the design of such end-effectors is inspired by the human hand. While
there are some approaches to let a robot explore objects autonomously,
another promising concept is programming by demonstration (PbD): real
hand-object interaction is observed and either directly transferred to a
grasping device or even learned by an intelligent robot.

• In computer graphics, the hands of virtual characters are animated. Even
without object interaction, this is not a trivial task because of the com-
plexity of realistic looking hand models. Interdependencies between
hand and object during object manipulation are even harder to model.
Incorporating the knowledge derived from the observation of real hand-
object manipulation has great potential to ease the animation process.

A promising concept with respect to these applications is to use the knowledge
derived from observing real hands performing some kind of object manipula-
tion. In general we need two types of information: 1) information about the
manipulating hand itself, and 2) information about the manipulated object and
the stable grasps it offers.

First we go into information about the hand. We are interested in the artic-
ulated pose of a hand during manipulation, i.e., the posture of every revolute
joint within the hand. An X-ray of a human hand is shown in Figure 1.1(a).
The degrees of freedom (DOFs) between hand segments are constrained by the
joints: hinge joints between finger phalanges allow only for bending within
a certain range; saddle joints connecting the fingers to the palm additionally
allow for spreading the fingers. The wrist has 6 DOFs (translation and rota-
tion). Depending on the exact hand model, at least 26 parameters have to be
determined.

One approach to estimate these joint angles is to use a data glove (Figure 1.1(b)).
The problem with this technique is its invasiveness, which means the user
might be disturbed in her/his natural hand movements. To avoid this issue,
we focus on non-invasive vision-based methods in this work.

Visual hand pose estimation has, yet without objects being involved, several
important applications. Examples include motion capture, sign language recog-
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(a) Human hand (b) CyberGlove II c©

Figure 1.1: a) An X-ray of a human hand. b) An invasive data glove used to
capture the articulated hand pose of the user.

nition, intuitive human computer interaction, human behavior and emotion
analysis, and safety and process integrity control on the work-floor. Not sur-
prisingly, much research has already gone into computer algorithms for hand
pose estimation. A summary of state-of-the-art methods can be found in [Erol
et al. 2007].

Even when only considering free hands, hand pose estimation is a challenging
problem. Common difficulties encountered are the ”The Curse of Dimension-
ality”, self-occlusions of the hand, and rapid hand motions. In addition, the
presence of objects has a significant impact on the complexity and generality
of the task. Firstly, the manipulated objects will frequently occlude parts of the
hand, and hand poses occurring during the process of grabbing or holding will
aggravate the problem of self-occlusion. Secondly, the hand structure itself is
less constrained in the presence of objects: when in contact with an object,
forces are exerted on the hand, resulting in poses which cannot be achieved
with the bare hand (e.g., bending fingers backwards when pressing against a
rigid surface). Tracking hands visually under these less favorable conditions is
pretty much uncharted terrain.

Next we turn to information about the object and how to capture it. The
objects discussed in this work are either rigid, or consist of several rigid parts
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Figure 1.2: Some of the objects considered in this work: a cup, a pair of pliers,
a camera, and a clamshell phone.

that are attached to each other (these objects are from now on called articulated
objects). See Figure 1.2 for some examples. To be able to relate hand and
object to each other at a later stage, we are looking for the exact shape (a 3d
model) of the object together with its translation and rotation (6 DOFs). For
articulated objects, we seek the shape of the object in its different extreme
articulations.

A common approach to obtain the model of an object is to scan the object in
3d. In general, 3d scanning consists of three steps: 1) acquiring a set of 3d
range images of the object, 2) aligning the individual surface patches, and 3)
integrating these patches into one coherent mesh. In the past, this used to be
a time-consuming and costly process. However, an efficient, low cost in-hand
modeling solution was recently presented in [Weise 2009]. The user presents
all sides of the object to be scanned in front of a structured-light system. The
structured-light system delivers dense depth data in real-time. While the object
is being reconstructed online, the user can interactively fill in any remaining
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holes by offering views of the missing object parts to the scanner. This makes
the scanning process fast, intuitive, and ideally suited for our purposes.

Object manipulation is an inherently 3-dimensional phenomenon, whereas 3d
pose estimation in monocular video is seriously under-constrained. We there-
fore choose the structured-light system introduced in [Weise 2009] as our input
device, and we derive both information about the hand and the object from this
data. The camera-setup delivers not only dense depth but also color informa-
tion. This is essential for separating hand and object by means of skin color
segmentation.

After considering the extraction of hand and object knowledge independently,
we now elaborate on interdependencies. Most obviously, the hand exerts
forces on the object via contact points and vice versa. On the one side, this
may result in hand poses which would be unnatural without object contact. On
the other side, forces acting on the object can affect the object’s 6d pose, i.e
the object is translated and/or rotated. In case of an articulated object, forces
applied by the hand can cause the transition from one articulated object state
to another, for example when a clamshell phone is opened or closed.

Besides physical interaction, there are semantic dependencies. A specific grasp
implicitly indicates the handled object (e.g., a hand seems to hold a pen). Vice
versa, objects have affordances [Gibson 1979], that is they suggest certain hand
poses for their manipulation (e.g., a cup is held by its handle). Some effort has
been made within the vision community to use these causalities for action and
object interpretation [Mann et al. 1996, Kjellström et al. 2008], but there has
hardly been any work exploiting the strong relation between the detailed 3d
shape of an object and the corresponding articulated hand poses.

A key point regarding some of the applications suggested earlier is the ability
to generalize interaction knowledge towards new hands and new objects of
the same kind. Humans master this task very well: by watching another person
handle a single instance of an unknown object class, they can easily imitate the
observed hand poses to manipulate other instances of the same object class.
Coming back to the PbD scenario in robotics, it would be useful to demonstrate
to a robot how to handle a cup, but it would be even better if the robot could
use this knowledge to interact with a variety of different cups. In computer
graphics a 3d artist could load the model of a previously unobserved cup into
the system. She/He could then generate a grasp for this cup and a hand with
desired anatomical proportions.
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So far we have neglected the temporal nature of hand-object interaction.
Although the correct grasps are crucial for object manipulation, it is hand mo-
tion that actually changes the state of an object. Temporal considerations bring
up new issues, like possible delays between manipulating hand poses and the
effect on the object (e.g., the zoom of the camera in Figure 1.2 emerges shortly
after a button has been pressed). The application example we adopt in this work
is the automatic generation of animated 3d sequences containing hand-object
interaction. To this end, we exploit observed object affordances. As stated be-
fore, the manual animation of hands manipulating objects is hard. Besides the
many DOFs of hands, unnatural looking contacts between hand and object are
major problems. Again, as a way out marker-based motion capture systems
are used in industry to track the hand and the object. However, it is difficult
to alter the performance of an actor retroactively to produce new animations in
our context [Kry and Pai 2006]. Innovative solutions to create such animations
have high value. For example, we believe there is a great demand for virtual
video tutorials demonstrating the usage of tools and devices.

1.1 Contributions

This work contributes to the state of the art regarding the vision-based obser-
vation and synthesis of hand-object interaction in three different ways.

First, we present a method for tracking a hand, while it is interacting with an
object. To achieve robustness to occlusions, we use an individual local tracker
for each segment of the articulated structure. The segments are connected in
a pairwise Markov random field (MRF), which enforces the anatomical hand
structure by putting soft constraints on the joints between neighboring seg-
ments. The best hand configuration is found with belief propagation (BP).
Both range and color data are used as input. Experiments are presented for
synthetic data with ground truth and for real data of people manipulating ob-
jects.

Next, we turn to the object, and propose an object-dependent hand pose prior
that integrates the direct relation between a manipulating hand and a 3d object.
Inspired by the ability of humans to learn the handling of an object from a sin-
gle example, our focus lies on very sparse training data. We express estimated
hand poses in local object coordinates, and extract for each individual hand
segment the relative position and orientation as well as contact points on the
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object. The prior is then modeled as a spatial distribution conditioned on the
object. Given a new object of the same object class and new hand dimensions,
we can transfer the prior by a procedure involving a geometric warp. In our
experiments, we demonstrate that the prior may be used to improve the robust-
ness of the 3d hand tracker and to synthesize a new hand grasping a new object.
For this, we integrate the prior into a unified belief propagation framework for
tracking and synthesis.

Finally, we introduce a new technique for the synthesis of animated 3d se-
quences containing hand-object interaction. Objects suggest certain hand poses
and motions for their manipulation. This causality between object state and
hand motion is first observed and then exploited for a simplified animation
procedure: our method takes an animation of an object as input and generates
the corresponding hand motion automatically. The approach is data-driven;
sequences of hands manipulating objects are captured with the structured-light
setup. The training data is then combined with a new animation of the object in
order to generate a plausible animation featuring hand-object interaction. Such
an animation can optionally be further processed with a commercial animation
tool.

1.2 Organization

The remainder of this work is structured as follows.

In Chapter 2, we first discuss related literature. The presented work is related
not only to computer vision, but also to many other areas of research. Medical
studies of human physiology are fundamental. Insights gained from neuro-
science with respect to the control of human hands by the brain bear potential
to improve technical systems like ours. Furthermore, there are many connec-
tions to fields like robotics, artificial intelligence, and action recognition.

Methods that are important for this work are the topic of Chapter 3. To be-
gin with, a general description of our input system, a real-time structured-light
system, is given. Besides range data, the system also provides color informa-
tion. We employ skin color segmentation to separate the hand from the object,
and concisely describe how this works. Further, an important technique we
use to align 3d data obtained by the scanner is the iterative closest point (ICP)
method. We introduce the main idea of the method and scanner-specific adap-
tations. On the basis of the above methods, we touch on the concept of in-hand
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scanning, a technique to obtain mesh representations of objects demonstrated
to the scanner. Thereafter, we present one of our two hand models, namely the
synthetic hand often used for the generation of 3d hand data in the course of
this work. Lastly, when we infer articulated hand poses, we do so by belief
propagation. Hence, we summarize this algorithm.

In Chapter 4 we develop our method for tracking a hand which is manipulat-
ing an object. Special focus lies on robustness to self-occlusions and occlusions
caused by the object. After a short overview of the matter, we introduce our
second hand model, the local model used for hand pose estimation. Then, the
central issue is the tracking method itself, i.e., how we sequentially estimate
hand poses by processing recorded manipulation sequences using belief prop-
agation. More precisely, we explain how we compare the hand model to the
range data, the way we approach the problem of occlusions, and how we en-
force anatomical constraints of the hand. Implementation details are provided
for reproducibility. Finally, we present results on both artificial and real data.

In Chapter 5 we introduce the object-dependent hand pose prior. After mo-
tivating statistical priors in general, a formal definition of the proposed prior
is given: a spatial distribution over hand poses conditioned on the object. We
then show how object and hand information are related to each other in prac-
tice. The following sections of that chapter are concerned with the transfer of
manipulation knowledge specific to some hand and some object to new hands
and new objects of the same object class. In the result section we demonstrate
how the prior improves the hand tracking from Chapter 4 and how it can be
used to make the synthetic hand (Chapter 3) grasp previously unobserved ob-
jects.

Chapter 6 is dedicated to our method to generate 3d animations containing
hand-object interaction, based on 1) an animation of the involved object and 2)
object affordances derived by observation. It is first explained how the method
can alleviate the work of 3d animation artists. We then focus on the training
procedure required once for a new object. In more detail, we identify 1) the
various states of the object during manipulation, 2) the hand configurations
that cause object state transitions, and 3) the spatio-temporal correlations be-
tween key hand poses and key object poses. After that, we turn to the testing
stage. In this stage, new animations of an observed object can be realized with
little effort. Results feature animations containing rigid as well as articulated
objects.
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Finally, we summarize and discuss our work in Chapter 7. First, the individ-
ual contributions are reviewed retrospectively, and conceptual differences with
regard to other works are highlighted. Then, we consider the presented differ-
ent building blocks on a more abstract level, and classify our methods in the
greater context of hand-object interaction. This naturally leads to a discussion
of current limitations that should be addressed, and to an outlook on possi-
ble opportunities for the future. We then conclude our work by discussing the
meaning and significance of the proposed thesis.





2
Related Work

2.1 Human Physiology

The earliest research related to ours originates from the field of medical sci-
ence. Most obviously, anatomical studies of the human hand are fundamental
since many methods discussed in this work require adequate hand models. Al-
ready in 1858, Henry Gray published anatomical studies on hands and other
body parts in the first edition of Gray’s Anatomy, as stated in the newest edi-
tion [Standring and Borley 2008]. Since then countless studies have followed.
Regarding our work the biomechanical works [Buchholz and Armstrong 1992]
and [Hamilton and Dunsmuir 2002] have special significance. They touch on
dependencies between individual hand segments, and these dependencies have
high relevance for the hand models presented in the course of this work. When
modeling the human hand, the thumb is the most difficult part, and many med-
ical studies are concerned with the mechanisms within the thumb [Cooney et
al. 1981, Buchholz and Armstrong 1992, Hollister et al. 1992, McDonald et
al. 2001]. More information on the structure of hands is provided when we
detail our hand models.

A driving force in biomedical engineering for studies of hand-object interaction
is the development of progressive transradial prostheses, i.e., hand prostheses
attached to the forearm. A main purpose of such devices lies in the regained
ability of disabled persons to manipulate objects. For this, hand prostheses
need to be dexterous (allowing an arbitrary change of the location and rotation
of a manipulated object) and prehensile (suited for grasping). To assess these
properties for new prostheses, grasp taxonomies with respect to certain object
classes have been suggested. Research in this area ranges from work in the
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early twentieth century by Schlesinger [Schlesinger 1919] over the pioneer-
ing work of Napier [Napier 1956] to more recent extensions like [Cutkosky
and Wright 1986]. [Schlesinger 1919] introduced the basic idea of classifying
hand poses with respect to manipulated objects, considering the hand as a tool.
Grasps were categorized regarding cylindrical and spherical objects of differ-
ent sizes. Identified grasps involve palmar prehension, tip prehension, lateral
prehension, hook prehension, nippers prehension, as well as certain pinches.
In [Napier 1956], the trade-off between power and precision requirements for
grasping is addressed. While power grasps are appropriate for applying great
forces, precision grasps are more suitable when small adjustments of posture
are needed for better control. [Cutkosky and Wright 1986] later divided power
and precision grasps into more sub-categories, again with respect to different
manipulated objects. A comprehensive overview of grasp taxonomies can be
found in [Iberall 1997].

Just as anatomical research of hands is important for the mechanical design
of hand prostheses, studies of the human brain are relevant to derive better
control mechanisms for such devices. As an introduction to the topic consider
Figure 2.1. The manikin in this figure illustrates how much of the human cortex
is used for the motor control of the different body parts. Early work indicating
the great relative portion necessary for hand control was already presented in
[Penfield and Rasmussen 1950].

Despite the great relative proportion of the brain dedicated to the control of
hands, there is strong evidence that humans usually only use a small subspace
of all anatomical possible hand configurations. Grasp taxonomies can be seen
as a first attempt to address this issue. Beyond that, researchers try to identify
synergies in recorded hand data, seeking lower dimensional representations for
a set of high dimensional hand poses. This is typically done by applying princi-
pal component analysis (PCA) to identify linear subspaces termed eigengrasps
in [Ciocarlie et al. 2007]. The various works differ in the selection of the
considered hand poses. In the experiment described in [Santello et al. 1998]
test persons wore a data-glove and were asked to shape their hand appropri-
ately to grasp one of 57 familiar objects. More than 80% of the grasp variance
could be covered by the first two principal components. According to [Mason
et al. 2001], the true dimensionality of hand poses during reaching is even
lower than the one of grasp poses. [Todorov and Ghahramani 2004] showed
that the set of principal components varies depending on the proposed manip-
ulation task, and that more principal components than stated in [Santello et al.
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Figure 2.1: Motor Homununculus, the size of each body part of the figure
reflects the proportion of the cortex dedicated to the control of the body part.
Image courtesy of the National History Museum, London.

1998] are required to represent complex manipulations like flipping pages or
crumbling paper. The authors of [Thakur et al. 2008] focus on the even less
constrained scenario of object exploration. In that work, the first seven prin-
cipal components capture more than 90% of the variance in hand posture. In
contrast to linear PCA, non-linear manifolds are identified in [Tsoli and Jenkins
2007], which allows for a better separation of task-specific subspaces. A re-
cent discussion on the matter of dimensionality reduction with regard to hands
is provided in [Ciocarlie and Allen 2009].

The value of the research motivated by the necessity of artificial limbs is demon-
strated by impressive modern hand prostheses [Light and Chappell 2000, War-
wick et al. 2003, Pons et al. 2004, Schulz et al. 2005, Carrozza et al. 2006,
Cipriani et al. 2009]. See Figure 2.2 for some examples. Myoelectric prosthe-
ses [Light and Chappell 2000, Pons et al. 2004, Schulz et al. 2005] are con-
trolled by the voltage generated when flexing the large muscles in the forearm.
This technique requires no surgery of the patient but permits only limited con-
trol of the artificial hand. Another approach is to connect a neural interface to
the central nervous system (CNS) [Warwick et al. 2003, Carrozza et al. 2006,
Cipriani et al. 2009]. This allows more control as well as feedback from sen-
sors of the artificial hand to the human brain. Though neural interfaces open
up great possibilities, implants are currently not suited for long-term use.



14 2. RELATED WORK

(a) Southampton hand (b) CYBERHAND (c) SNAVE hand

Figure 2.2: Some examples of recently developed hand prostheses: the
Southampton hand, the CYBERHAND, and the SNAVE hand.

Besides biomedical engineers, researchers from the robotics community take
an active part in studying hand-object interaction. Designing high-tech pros-
theses and robotic hands are very related tasks. However, before going into the
issue of robotic grasping, we will first discuss methods for vision-based hand
pose estimation.

2.2 Vision-Based Hand Pose Estimation

The pose of a hand is defined in diverse ways in the computer vision literature.
In the most basic case, the term refers to the 2d location of the hand in an
image (hand localization). In hand pose recognition, the space of all possible
configurations of the hand is discretized into a set of examples or classes, and
the pose of a hand expresses its class assignment. Finally, in model-based
hand pose estimation, the pose of a hand covers all continuous parameters of
an articulated 3d hand model (e.g., the position of the wrist and the angles of
revolute joints).

Tracking a hand means to estimate its pose in each frame of a continuous se-
quence. In most works, hand tracking is limited to free hands without object
interaction, but we will also describe some exceptions.
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2.2.1 Hand Localization

Hand localization is the task of finding the position of a hand in an image. Hand
localization in continuous image sequences is crucial for the application area
of gesture recognition, i.e., the recognition of signs encoded in human hand
motion. Consequently a variety of approaches for hand localization have been
developed over the last years. Reviews can be found in [Pavlovic et al. 1997,
Wu and Huang 1999, Wu and Huang 2001].

One fundamental technique is to find hands via their skin color. The tone of
skin is quite characteristic and usually lies somewhere between brown and red.
Some approaches dynamically adapt skin color segmentation to the current
skin and lighting conditions. For instance in [Van Den Bergh et al. 2009],
the skin model is updated online based on color information from the face,
found with a cascaded classifier [Viola and Jones 2004]. Examples of methods
for gesture recognition seeking skin colored blobs include [Krahnstoever et al.
2002, Argyros and Lourakis 2004, Cooper and Bowden 2007, Farhadi et al.
2007, Starner et al. 1998].

Another approach explored early is based on shape matching. In these works,
typically the silhouette of a hand (e.g., detected by skin color) is compared
to some kind of template. One of the first representatives of this approach
was the system of Cipolla and Hollinghurs [Cipolla et al. 1994, Cipolla and
Hollinghurst 1996], which tracks a pointing hand by fitting an active contour
as a 2D shape model. [Freeman and Weissman 1995] realized a vision-based
television remote control by matching a template via local edge orientation.

Given the success of the method introduced in [Viola and Jones 2004] with
respect to face detection, some authors have attempted to detect hands using
cascaded classifiers and rectangular 2d haarlets [Kolsch and Turk 2004, Ong
and Bowden 2004, Micilotta et al. 2005]. However, the appearance of hands is
more variable than that of faces. To cope with this, more training examples are
commonly added, but this also increases the chances of falsely detecting hands
in cluttered background.

Two state-of-the-art systems for gesture recognition are described in [Cooper
and Bowden 2007] and [Buehler et al. 2008]. In [Cooper and Bowden 2007],
a method is presented which avoids tracking for reasons of robustness and in-
stead performs skin-color-based detection in each frame. A set of classifiers
is then first used to detect units of activity considering the placement, motion,
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and arrangement of the hands. Thereafter, these units are assembled into words
via Markov chains. Results are presented for the data-set of Kadir et al. [Kadir
et al. 2004]. The authors of [Buehler et al. 2008] focus on long sequences
(more than one hour in length) and try to detect hands robustly by modeling
their connection to the human upper body by a pictorial structure.

2.2.2 Hand Pose Recognition

While gesture recognition often focuses on hand location and hand motion,
hand pose recognition is explicitly concerned with the different hand configura-
tions that can be adopted by a human hand. Hand localization is often required
as a pre-processing step for pose recognition.

Techniques for hand pose recognition are typically example-based. In a train-
ing stage, a representative set of hand configurations is presented to such a
system, so that a discrete representation of the high DOF state space of the
hand can be learned. Then, during testing, new hand configurations can be
classified with respect to the examples encountered during training.

The advantage of the example-based approach is that it often works well on
a per-frame basis and therefore can achieve high robustness. On the down-
side, discretization of the state space means loss of information, i.e., when
presenting an arbitrary hand configuration to the system, the output is always
constrained to the observed training examples.

Many methods for hand pose recognition are based on eigenspace methods,
i.e., on PCA. A pioneering system of this kind was presented in [Starner et al.
1998]. To recognize American sign language, skin colored blobs are tracked
through sequences. Examples presented to the system are encoded in a 16-
element feature vector, characterizing skin blob shape via area, angle of the
axis of least inertia defined by the first eigenvector, length of this eigenvector,
and eccentricity of a bounding ellipse. Complete sentences are recognized with
a hidden Markov model (HMM). In [Black and Jepson 1998], images of hands
are interpreted as 1d vectors. For a set of 100 images containing four differ-
ent hand configurations, the first 25 eigenvectors are computed to create a 25d
feature space. Using the Euclidean distance within this 25d space, new images
can then be recognized, i.e., assigned to one of the four learned configurations.
A similar method exploits 3d data and was introduced in [Sato et al. 2002].
In that work, voxel data of hands is interpreted as 1d vectors and projected
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to a lower-dimensional eigenspace in order to recognize the hand configura-
tion. Recently, another related method was presented in [Van Den Bergh et al.
2009]. To reduce the dimensionality of the feature space, 2d training examples
are expressed with respect to 2d haarlets instead of eigenvectors. The best set
of haarlets is found via linear discriminant analysis (LDA). While PCA tries
to maximize the variance of training examples, LDA is specifically designed
to maximize separability. An issue of all approaches of this kind is normal-
ization: recognition only works well when training and testing examples are
comparable. For example, depending on the presence of short or long sleeves,
skin color segmentation will deliver different bounding boxes. When normal-
izing hands with respect to such bounding boxes, the input to the system will
be inconsistent. In this case, pose recognition will fail, e.g., when training is
performed with long sleeves and testing is not.

A different approach to hand pose recognition is to fit templates associated
with some hand configuration to testing examples. The method described in
[Triesch and Malsburg 2002] performs such fitting by elastic 2d graph match-
ing. For each of ten different hand postures, a bunch graph encodes 1) in nodes
the variety of local image information at certain positions and 2) in edges the
distances between nodes. For a new 2d gray-value image, the best fitting graph
is found after several seconds. A real-time recognition system is presented in
[Lockton and Fitzgibbon 2002]. In that work, 46 different hand poses (includ-
ing American sign language letters) are recognized by deterministic boosting.
For testing, a collection of weak classifiers is used to evaluate the fit of a new
image to cluster centers of the training set. There is one weak classifier for
each pixel labeled as skin or background. A wrist band is used to register the
data.

Recently, some fast techniques have been proposed that aim at the implemen-
tation of vision-based remote controls. In contrast to sign language recogni-
tion, this application does not require the ability to recognize a great variety
of different hand configurations. Instead, focus lies on the speed and robust-
ness necessary for commercial products. To this end, several fast classifiers are
used in parallel or in cascades. For example, in [Ike et al. 2007] three cascaded
classifiers [Viola and Jones 2004] are used in parallel on a multi-core proces-
sor. There is one classifier for each hand pose to be detected (pointing hand,
fist, and open hand). Similarly, the method presented in [Stenger et al. 2010]
specializes on the detection of a fist pose, an open hand pose, and a thumb up
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pose. In that work, a different state-of-the-art classifier is employed for each
hand pose to be recognized.

Many more interesting methods with respect to hand pose recognition have
been proposed over the last couple of years. For comprehensive overviews, see
[Ong and Ranganath 2005] and [Stenger et al. 2010].

2.2.3 Model-Based Hand Pose Estimation

In contrast to example-based hand pose recognition, the idea of model-based
hand pose estimation is to approximate an observed hand by a parametric
model. The optimal parameters of this model have to be derived from the ob-
servation. A common procedure is to initialize the model in the first frame of
a sequence manually or by some recognition mechanism. Thereafter, the hand
is tracked throughout the sequence, with some temporal model encoding a re-
lation between subsequent frames. The advantage of model-based approaches
is that their precision is not limited to a set of examples. On the negative side,
hand models have many parameters which have to be estimated. Further, the
temporal procedure involves the danger of ”loosing track”, meaning when pa-
rameter estimation goes wrong at some point, subsequent frames will seldom
be tracked successfully.

An early representative of model-based methods is called DigitEyes and was
presented in [Rehg and Kanade 1994]. The hand is modeled as a collection
of 16 rigid bodies: three phalanges for each of the five fingers, and a palm.
A comparison between the modeled phalanges and the image observation is
performed as follows. Every phalanx is associated with a cylinder representing
skin. The axis of the cylinder is projected into the image. Then, the two en-
closing contour lines are found considering the image gradient perpendicular
to the projected axis. Based on this comparison, an error function is defined.
The best hand configuration is then found by minimizing the error with the
Levenburg-Marquardt algorithm [Dennis Jr and Schnabel 1996]. In [Stenger
et al. 2001], the skin of a skeleton-based model is approximated by truncated
quadrics, which allows for more elegant projection techniques. Pose estima-
tion is achieved with an unscented Kalman filter, but only 7 of the 27 DOFs
are considered. Although skeleton-based models like the one in [Rehg and
Kanade 1994] and [Stenger et al. 2001] are most commonly used, different
types of models have been explored. For example in [Heap and Hogg 2002], a
3d point model of a hand is fitted to 2d data.
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A main issue of model-based hand tracking approaches are the many DOFs that
have to be estimated. Common ideas to deal with the high dimensionality are
1) to exploit synergies of human hand configurations like for example done in
[Wu et al. 2001] and 2) to apply efficient sampling strategies to better approx-
imate the state space. With respect to the latter point, particle filters [Isard and
Blake 1998] have been used to focus on the most relevant portion of the space.
In [MacCormick and Isard 2000], an extension has been presented that addi-
tionally partitions the state space exploiting the hierarchical nature of structures
like hands. These sampling strategies are applied in [Isard and Blake 1998,
MacCormick and Isard 2000] to track in real-time the fist, the index finger, and
the thumb of a hand using a shape model based on B-splines. In [Bray et al.
2004], a fully articulated hand is tracked in 3d data. To be able to process 12.5

frames per second, the authors combine the optimization method stochastic
meta descent with a particle filter to form smart particles.

A different way to deal with the high dimensionality problem is presented in
[Sudderth et al. 2004b]. In that work, the DOFs are actually increased by in-
troducing a highly redundant representation: each of the 16 hand segment lives
in its own 6d space (translation and rotation). However, in this representation
hand poses can be estimated by efficient inference algorithms. Sudderth et al.
apply nonparametric belief propagation (NBP) [Sudderth et al. 2003], i.e be-
lief propagation combined with particle filter methods to represent the local 6d
spaces. An extension of [Sudderth et al. 2004b] is [Sudderth et al. 2004a].
That work proposed a method to deal with self-occlusions in the context of
NBP.

Given the advantages and disadvantages of both example-based and model-
based hand pose estimation, some researches have suggested hybrid systems.
For example in [Athitsos and Sclaroff 2003, Athitsos and Sclaroff 2004] an
articulated hand model is employed, but the parameters of this model are esti-
mated based on example-based recognition. In a preprocessing step, a database
is created that contains a uniform sampling of all possible views of the hand
shapes to be recognized. Given a new image, the most similar database views
are retrieved, and the parameters of these views determine the parameters for
the current frame. In [Stenger et al. 2003, Stenger et al. 2006] a hierarchical
detection method is used for tree-based filtering. The hierarchical scheme ac-
celerates detection and helps to focus on the relevant portion of the state space.
In a probabilistic framework, the probability of a given hand configuration is
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defined by the matching scores of the image with respect to the examples in
the detection tree.

A recent summary of state-of-the-art methods for hand pose estimation can be
found in [Erol et al. 2007].

2.3 Robotic Grasping

Robots have become an inherent part of our world, and a key feature of many
robots is the ability to interact with their environment via robotic arms. Such
arms are crucial for tasks at assembly lines, for surgery assistance, and in sce-
narios where manipulation tasks cannot be performed by humans (e.g., robots
explore the deep sea or diffuse bombs). Classical robotic arms are serial links
with a jaw-gripper as an end effector. According to [Bicchi and Kumar 2000],
these devices have three major draw-backs. 1) They are only suited to grasp
planar surfaces. 2) Small reorientations of a grasped object can only be realized
via the whole robotic arm. 3) Structural properties of the grasped object cannot
be inferred. To solve these issues, researchers have developed multi-fingered
robotic hands, imitating the anatomy of human hands. Examples of such hands
include the Utah/MIT dextrous hand [Jacobsen et al. 2002], the PUMA/RAL
hand [Kim et al. 1987], the Robonaut hand [Lovchik and Diftler 1999], the
Barret hand [Townsend 2000], the DLR-Hand II [Butterfass et al. 2006], the
Gifu hand II [Kawasaki et al. 1999], the Shadow hand [Walker 2004], and the
NAIST-Hand [Ishida et al. 2005]. See Figure 2.3 for examples.

In the following we discuss two different concepts to determine grasps for the
control of such humanoid robotic hands: 1) autonomous grasp synthesis of a
robot and 2) the control by a human hand.

2.3.1 Autonomous Grasp Synthesis

For a long time there have been significant efforts to let robots grasp objects
autonomously. Two major approaches to reach this goal have evolved in liter-
ature. The analytical approach and the biologically motivated approach.

The analytical approach is the classic one. The basic idea is to define grasps
by a set of contact points through which the hand applies forces on the ob-
ject. Grasping, i.e., choosing appropriate contact points and forces, can then be
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(a) DLR-Hand II (b) NAIST hand (c) Shadow hand

Figure 2.3: Some examples of modern robotic hands: the DLR-Hand II, the
NAIST hand, and the Shadow hand.

expressed as an optimization problem that takes into account some measures
for the quality of a grasp. According to [Shimoga 1996], the commonly used
quality measures are essentially dexterity (”How should grasping fingers be
configured?”), equilibrium (”How hard to squeeze the grasped object?”), sta-
bility (”How to remain unaffected by external disturbances?”), and dynamic
behavior (”How soft a grasp should be for a given task?”). Desirable proper-
ties of resulting grasps are force closure (the grasp can resist forces acting on
the object) and the more restrictive form closure (force closure that holds for
arbitrarily slippery objects). A review of methods for force-closure analysis is
provided in [Mishra and Silver 1989].

Analytical grasp synthesis has recently been criticized for at least three rea-
sons. 1) It is computationally expensive [Ritter et al. 2009], though great
speed-ups have been achieved in [Borst et al. 2005] by formulating the task
as a semi-definite optimization problem and by efficient sampling strategies.
Computation time is an issue especially when extending contact points to con-
tact areas to account for the deformable finger tips. 2) Detailed knowledge
about the geometry of the manipulated objects is required. This information
is not always available. 3) The ideal contact points and forces are often not
realizable by real robotic hands [Roethling 2007].

In contrast to the analytical approach to grasp synthesis, the biologically mo-
tived approach explicitly considers the structure and proportions of the respec-
tive grasping device. An important tool for biological approaches is the open
simulation engine GraspIt! [Miller and Allen 2004]. Given a full 3d model of
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an object and a grasping pose for some hand model, for instance, the quality of
the grasping can be evaluated based on pre-computed grasp primitives [Miller
et al. 2003].

For biological approaches, research regarding the reduced dimensionality of
hand poses during object manipulation is highly relevant. For example, [Cio-
carlie et al. 2007] build on the insight from [Santello et al. 1998] that the
first two principal components cover more than 80% of the variance in hand
posture. They optimize in an 8-dimensional space with simulated annealing to
assure that key points on the hand model are close to the object. 6 DOFs cor-
respond to translation/rotation of the hand, the remaining 2 DOFs refer to the
principal axes identified in [Santello et al. 1998]. Using GraspIt!, the authors
evaluate their method with respect to models of a simple gripper, the Barret
hand, the DLR Hand, the Robonaut hand, and a human hand model. Because
the synergy information from [Santello et al. 1998] applies only to human
hands, the authors try to transfer those principal axes to the other models man-
ually.

Other non-analytical methods focus on grasping in the absence of a 3d model
of the object. In [Saxena et al. 2008], the 3d grasp position is estimated from
two images where grasp locations are identified. For this, a 2d grasp point
detector is trained on synthetic images. The authors of [Morales et al. 2006]
obtain a top view of the object with a camera, extract curvature and location,
and then look for graspable regions based on curvature. An omni-directional
camera mounted to the robotic hand is used for the extraction of graspable
regions in [Yoshikawa et al. 2008].

For more details with respect to autonomous robotic grasping the reader is
referred to the surveys in [Shimoga 1996, Bicchi and Kumar 2000, Okamura
et al. 2000]. Where [Roethling 2007] offers a comparison of analytical and
biologically motivated approaches. We did not touch here on the matter of
tactile feedback retrieved by robotic hands. A summary of methods concerned
with tactile feedback can be found in [Argall and Billard 2010].

2.3.2 Control by a Human Hand

One approach to drive anthropomorphic robotic hands is particularly related to
our work: controlling a robotic hand via an observed human hand. Observa-
tions of the human hand are typically obtained by a data glove [Fischer et al.
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1998, Voyles and Khosla 2001, Turner et al. 2000] or a vision system [Hueser
and Baier 2006]. Such observations can then be used in two different ways.
Either 1) directly to control the robotic hand instantly by motion transfer or 2)
to derive policies in the context of programming by demonstration.

Motion Transfer

During motion transfer, human hand gestures are transferred to a robotic grasp-
ing device instantly. The motivation for this technique is that humans can ben-
efit from their experience in object manipulation without using their physical
hands/arms. This makes sense when handling hazardous items or when acting
in environments that are hostile for humans (e.g., the deep sea or space) via
tele-manipulation.

A major issue in tele-manipulation is that the anatomy of human hands and
anthropomorphic robot hands is still quite different. For example, most robotic
hands have three to four fingers. Hence a mapping function is required to trans-
fer hand postures. [Fischer et al. 1998] provides a calibration and mapping
method for the four-fingered DLR hand. To obtain an accurate mapping from
joint angles delivered by a data glove to the positions of the human finger tips,
a marker-based vision system is first employed. Thereafter, a second mapping
translates the workspace of the human into the workspace of the robot. In [Hu
et al. 2004] the setup is very similar (the DLR hand and a hand model are cali-
brated by vision), but a different human-to-robot mapping prevents overlapping
workspaces of the fingertips.

In the same context, the two-fingered, planar grasping device dexter is con-
trolled by the index finger and the thumb of a human operator wearing a data
glove in [Griffin et al. 2000]. The operator manipulates a virtual object and the
robot acts on a scaled version of this virtual object. To calibrate the system, a
new user has to move the index finger and the thumb while preserving rolling
contact at the tips. Given this closed kinematic chain and fixed anatomical
relationships an angular mapping is derived. Human-to-robot mapping then
consists of two step. 1) Point-to-point mapping maps the 3d positions of the
human fingertips to the fingertips of the robot within its planar working space.
2) Virtual object-based mapping then transfers the human manipulation per-
formed on the virtual object to the coordinate frame of the scaled version of
the virtual object. The setting in [Turner et al. 2000] is the same as in [Griffin
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et al. 2000], and the same calibration and mapping techniques are used. The
difference is that in [Turner et al. 2000] the dexter hand manipulates real ob-
jects instead of virtual surrogates. The user still acts on a virtual object, but
feedback sensed by the robotic hand is transmitted back to the user via the hap-
tic data glove. Surprisingly, the authors state that the addition of force feedback
to the user did not improve the speed of task execution.

Programming by Demonstration

In programming by demonstration (PbD), human performance is not neces-
sarily mapped instantly to a robotic device. Instead, a systems learns from
demonstration. For example, in [Hueser and Baier 2006] a service robot is
taught grasping skills by a human instructor who demonstrates a grasping ac-
tion in front of a camera. Several objects are placed on a table. These ob-
jects are trained for recognition in advance and offline. For demonstration the
teacher says ”start”, performs some grasping skill with the hand, and then says
”stop”. The robot observes the performed action several times to collect suf-
ficient data. Thereafter, it attempts to grasp the objects on the table, imitating
the human performance.

The general goal of PbD is to derive policies that encode the relationship be-
tween the state of the world and possible actions [Argall et al. 2009]. Spe-
cial techniques have been developed to derive the set of possible actions for
a robotic hand from human demonstration. In [Jo et al. 1998], manipulative
hand gestures are visually recognized with the aid of a state transition diagram.
The diagram encapsulates task knowledge, e.g., an object has to be grasped
before it can be moved. Visual feature extraction is based on thresholding the
hue value, so that the person has to wear special gloves. Gestures are only
simulated, without a real object being involved. In [Ekvall and Kragı́c 2005],
grasps are recognized with respect to the taxonomy defined in [Cutkosky and
Wright 1986]. Hidden Markov models are used to model the hand posture se-
quence during grasping. As a result it is possible to recognize a sequence even
before it is completed. Real objects are handled, a data glove provides the hand
pose. In [Kjellström et al. 2008], the correlation between a manipulating hand
and the manipulated object is exploited for both better hand pose and object
recognition. The action-object correlation over time is modeled using condi-
tional random fields. An example-based method for hand pose recognition in
the context of hand-object interaction is presented in [Romero et al. 2010].
Observed hand poses are compared to a large database containing hands ma-
nipulating objects.
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In the field of PbD, a variety of methods has been suggested to learn and encode
dependencies between the perceived state of the world and suitable actions.
To give just one example, in [Chella et al. 2004] the authors model several
cognitive hierarchies. In this way they can teach a robotic hand the rock-paper-
scissors game. A comprehensive review of PbD techniques can be found in
[Krüger et al. 2007].

PbD methods are strongly interwoven with works from the research areas of
scene interpretation and action recognition, so to complete this section we
touch on some of these works. In [Mann et al. 1996], video sequences are
processed with the goal of a computational perception of scene dynamics. The
sequences contain some object (e.g., a coke can) and a human hand manipu-
lating the object. The 2d position and rotation of hand and object are tracked
using optical flow and 2d template matching. For each frame of the sequence,
multiple hypotheses are then evaluated to explain the scene. To this end, possi-
ble relationships between hand and object (like an attachment or a contact) are
considered.

In action recognition, a common task is to divide observed sequences into ac-
tion units. In [Rao et al. 2002], sequences containing hand-object interaction
are analyzed. The hand is tracked in 2d by skin color detection and with the
mean-shift technique [Comaniciu et al. 2000]. Action units are then identified
with respect to the velocity changes of the hand. For task analysis, the authors
of [Sato et al. 2002] consider not only the speed of a hand, but also its speed in
relation to the velocity of a manipulated object. For this, hand and object are
tracked in 3d data delivered by a range sensor. For a general review of methods
for action recognition, please refer to [Krüger et al. 2007].





3
Materials and Methods

3.1 Structured-Light System

Figure 3.1: The structured-light setup we use to capture hand-object interac-
tion data. The system consists of two monochrome cameras, one color camera,
one DLP projector, and one micro-controller.

In this work we make use of range data. One well-known approach to ob-
tain such data is the passive stereo method: given the images of two calibrated
cameras and correspondence pairs between these two images, depth informa-
tion can be inferred by triangulation. However, the depth accuracy of real-time
systems of this type is very limited, in particular for homogeneous regions of
the scene.
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Figure 3.2: Depth data of a hand delivered by the structured-light system. The
top row illustrates the case when the hand is located ≈ 1.5 meters away from
the projector and does not move (left: front view, right: side view). The bottom
row shows artifacts caused by fast lateral movement of the fingers.

In contrast to passive stereo systems, structured-light systems replace one of
the two cameras by an active light source, projecting some kind of patterns.
Those patterns can be detected with the remaining camera to again perform
triangulation. A popular method to encode information in the patterns is the
phase-shift method: for a high accuracy of the delivered range data, three or
more phase-shifted cosine patterns are projected into the scene in fast succes-
sion. The main problem with this technique is its inability to handle dynamic
scenes.

Our system is a combination of the two approaches: the temporal phase-shift
technique is combined with stereo-based decoding of the patterns. The method
was developed in [Weise 2009] and a picture of the hardware setup can be seen
in Figure 3.1. The components are two high-speed monochrome cameras (Al-
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Figure 3.3: Range data captured with a Swissranger SR4000 time-of-flight
camera. The image resolution is 176 × 144, and depth precision lies within a
few centimeters. We included the arm for better interpretability of the data.

lied Vision Tec PIKE F-032B, 640 × 480), one color camera (Allied Vision
Tec STINGRAY F-046C, 780× 580), a standard DLP projector (InFocus IM38,
1024× 768), and a micro-controller for synchronization (Microchip PICDEM
HPC Explorer Board). To produce the phase-shifted signal, the color wheel
of the projector has been modified. The scanning system captures dense high-
quality depth maps at 30 fps and a resolution of 640 × 480 pixels, achieving
sub-millimeter accuracy for a working volume of 603cm3.

The average quality of our data is illustrated in the top row of Figure 3.2. The
hand in this example is located ≈ 1.5 meters in front of the cameras. Quality
improves as the hand approaches the setup. Also, we usually smooth the data
with a Gaussian kernel. Because the backside of the scene is missing, such 3d
data is also referred to as 2.5d data. One issue of the system is demonstrated by
the bottom row of Figure 3.2. Fast lateral movement of fine structures causes
artifacts. In this example, the edges of the fingers are strongly corrupted.

A competing technique to capture 2.5d data is to use a time-of-flight camera.
With this technique, impulses of light are sent into the observed scene, and
a camera measures for each pixel the time until the impulses return due to
reflection. For an impression of such data, we captured a hand holding a cup
with a state-of-the-art Swissranger SR4000 time-of-flight camera (see Figure
3.3). The image resolution is only 176 × 144, and depth precision lies in the
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range of a few centimeters. Hence, the quality of such data is inferior to ours
and not sufficient for our purposes.

Most of our data has been published as the Hand-Object Interaction (HOI) data-
set 2010. The data-set features 10 different objects and 9 different subjects.
Range and color information is available at http://www.vision.ee.
ethz.ch/˜hhamer/hand_object_interaction_10/ . We hope that
this data encourages further research with respect to hand-object interaction.

Figure 3.4: Some frames from the HOI data-set 2010, featuring 10 different
objects and 9 different subjects performing object manipulation. Both range
and color information is available.

http://www.vision.ee.ethz.ch/~hhamer/hand_object_interaction_10/
http://www.vision.ee.ethz.ch/~hhamer/hand_object_interaction_10/
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3.2 Skin Color Segmentation

The image from the color camera of the structured-light setup is mapped to the
range data, assigning an RGB color value to each depth point. To separate the
depth data of a manipulating hand from that of the manipulated object we apply
skin color detection to each of the depth points. The detection mechanism is
based on the method proposed in [Jones and Rehg 2002] and will be discussed
next.

Given a large amount of images containing skin-colored pixels and a manual
labeling, two Gaussian mixture models (GMMs) were learned by expectation
maximization (EM) [Jones and Rehg 2002]. These two models express the
probability of some color c to occur in a skin region p(c|skin) or non-skin
region p(c|¬skin). Using Bayes’ rule and ignoring the prior p(skin), we can
compute

p(skin|c) =
p(c|skin)

p(c|skin) + p(c|¬skin)
(3.1)

Depending on wether p(skin|c) is greater or smaller than a threshold θskin
that lies between 0 and 1, the respective depth point is classified as skin or non-
skin. For better robustness to changes in illumination, color c is defined in the
rg color space, i.e.,

r =
R

R+G+B
(3.2)

g =
G

R+G+B
(3.3)

where R,G and B define c in RGB space. Since there is only a limited amount
of possible combinations of r and g, p(skin|c) can be stored in a lookup table
for fast access. After labeling each depth point as skin or non-skin, a binary
median filter is applied across the labels for a more robust final segmentation.

In practice, colors between red and brown are typically detected as skin. For
a better intuition of the detector, we computed receiver operating character-
istic (ROC) curves for different homogeneously colored objects, namely a red
candle, a green candle, a blue candle, and a brownish pot (see Figure 3.5). A
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lower threshold θskin causes a higher true positive rate, i.e., more pixels of the
hand are detected as skin. However, a lower threshold also causes more pixels
of the objects to be classified as skin (false positives). This is a problem espe-
cially with respect to the brown and the red object. Figure 3.5 also shows the
segmentation result for a scene in which a hand holds the red candle.
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Figure 3.5: ROC curves for objects with different colors: a red candle, a green
candle, a blue candle, and a brown pot. The y-axis shows the true positive rate
(percentage of skin pixels classified as skin), and the x-axis provides the false
positive rate (percentage of object pixels classified as skin). To obtain positive
and negative samples, the hand and the individual objects were captured in
isolation. The threshold for skin detection is decreased from bottom-left to
top-right. The smaller the threshold θskin, the more pixels of the hand and
the object are detected as skin (higher true/false positive rate). Some (almost
black) skin pixels are never classified as skin because their p(skin|c) = 0. A
segmentation result for the red candle with favor of a low false-positive rate is
shown in the bottom-right of the figure: pixels detected as skin are drawn in
blue.
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3.3 Iterative Closest Point Method

The iterative closest point (ICP) method introduced in [Chen and Medioni
1992, Besl and McKay 1992] is a popular technique for the alignment of two
3d surfaces. We use it at several occasions for the alignment of observed hands
and objects, respectively. The iterative algorithm assumes an initial coarse reg-
istration of the surfaces and performs two fundamental steps in each iteration.

1. In the first step, closest-point correspondence pairs between the vertices
pi of the first surface and the vertices qi of the second surface are found.
The closest-point search has a complexity of O(log n).

2. Given the correspondence pairs, the rigid transformation that minimizes
an error metric with respect to the corresponding vertices is estimated
and applied.

The algorithm terminates after a defined number of iterations or as soon as
some convergence criterion is reached. As an error metric, [Besl and McKay
1992] suggested minimizing

N∑
i=1

||wi(T k+1
pq pi − q′i)||2, (3.4)

where wi is a correspondence specific weighting term, q′i is the vertex on the
second surface that is closest to pi, and T k+1

pq is the transformation minimizing
the error metric after k + 1 iterations using the closed-form solution by [Horn
1987]. For better movement tangential to the surface, in [Chen and Medioni
1992] the term

N∑
i=1

||win(q′i)(T k+1
pq pi − q′i)||2, (3.5)

is minimized. n(q′i) is the normal at q′i. No closed-form solution exists for this,
but the expression can be linearized. A number of efficient variants of the ICP
methods have been suggested. A comparison is provided in [Rusinkiewicz and
Levoy 2001]. We use the method presented in [Jaeggli and Van Gool 2003].
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Correspondence pairs are found along the line of sight of the projector with a
constant complexity of O(1), and the error metric in Equation 3.5 is minimized.
Also, we sample correspondence pairs uniformly for better performance. The
correspondence weight wi is used to discard invalid correspondence pairs: if
the distance between two points is too large, or if their normals are not consis-
tent wi is changed from 1 to 0.

3.4 In-hand Scanning

Some of the methods we propose in this work are based on 3d models of the
manipulated objects. We acquire such models by in-hand scanning as de-
scribed in [Weise et al. 2008]. During in-hand scanning, a human demonstrator
rotates an object by hand in front of a system like our structured-light setup (see
Section 3.1). The object is reconstructed in real-time and the user can control
the process online. This allows the user to fill in holes in the preliminary model
in a selective and very intuitive way.

In [Weise et al. 2008], skin-colored depth points are detected (see Section 3.2)
and removed in each frame. The subsequent range scans of the object are then
registered with ICP (see Section 3.3). To initialize the ICP algorithm, texture
information is exploited: in two subsequent frames, interest points are detected
using Harris corners [Harris and Stephens 1988] and their SURF descriptors
[Bay et al. 2008] are computed. Correspondences between these features in the
first and the second frame are used to derive an initial coarse registration. By
aligning the individual range scans, inconsistent depth points can be removed,
and one complete model is obtained.

In practice there are some limitations to the in-hand scanner. 1) When an ob-
ject is skin-colored, the demonstrator has to wear black gloves to allow for the
separation of hand and object. 2) Highly specular surfaces cannot be recon-
structed, because the structured-light setup fails to provide depth data. 3) If an
object is symmetric and has uniform color, registration fails and obtaining a
complete model is difficult if not impossible.

For our purposes, partial object models often suffice. In Figure 3.6, examples
of such partial models are shown.
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(a) Camera (b) Clamshell phone (c) Cup

Figure 3.6: Partial meshes of a camera with a zoom, a clamshell phone, and a
cup.

3.5 Synthetic Hand

We use two different hand models in the course of this work. The first one is
based on a 3d hand scan which was bound to a forward-kinematics skeleton
in Maya. We call this model the synthetic hand. The second model (called
tracking model) consists of one geometric primitive per hand segment. Since
the second model is used for hand tracking in Chapter 4, it will be discussed in
detail there. We now describe the anatomy of human hands in general and then
explain how this anatomy is approximated by the synthetic hand.

3.5.1 Hand Anatomy

A human hand is shown in Figure 3.7. The main components are the wrist,
the palm, the thumb (1st), and the four fingers: index (2nd), middle (3rd),
ring (4th), pinky/little finger (5th). There are 27 bones in total. Eight of these
are located within the wrist (carpals), four make up the palm, the others belong
to the fingers and the thumb. Each finger has three phalanges: a proximal
phalanx (PP), an intermediary phalanx (IP), and a distal phalanx (DP).

1University of Washington, http://uwmsk.org/RadAnat
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Figure 3.7: An X-ray of a human hand. The main components are the wrist,
the palm, the thumb, and the four fingers: index, middle, ring, and pinky/little
finger. Image courtesy of M. L. Richardson1.

The palm is formed by the four meta carpals (MCs) of the fingers (2nd-5th).
It is actually not a completely rigid body but allows for some deformation. In
particular, the 4th and the 5th MC contribute to this deformation [McDonald et
al. 2001].

Articulation of the fingers is possible due to revolute joints. Metacarpal pha-
langeal joints (MCP joints) connect MCs to PPs, proximal interphalangeal
joints (PIP joints) connect PPs to IPs, and distal interphalangeal joints (DIP
joints) connect IPs to DPs. There are different types of joints. PIP and DIP
joints are hinge joints and permit only one DOF (flexion, extension). MCP
joints are of the saddle/condyloid kind. They also allow for spreading of the
finger (adduction, abduction), so they have 2 mayor DOFs. Additionally, [Cail-
liet and Davis 1972] show that spreading automatically causes a few degrees
of twist around the bone axis within the MCP joints.

The anatomy of the thumb is more complex. The carpal supporting the thumb
is called trapezium. The joint connecting the trapezium to the 1st MC is the
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trapeziometacarpal joint (TM joint). Like in the case of the four fingers, the
1st MCP joint connects the MC to the PP, but the 1st IP joint connects the
PP directly to the DP - there is no 1st IP. The motion range of the 1st MCP
joint is rather small compared to that of the other four. The great variability
of the thumb arises from the TM joint, which has been studied extensively
[Cooney et al. 1981, Buchholz and Armstrong 1992, Hollister et al. 1992,
McDonald et al. 2001]. According to [Hollister et al. 1992], this joint has two
non-orthogonal and non-intersecting rotation axes. Additionally, [Buchholz
and Armstrong 1992, McDonald et al. 2001] argue that there is a third DOF
within the TM joint: a minor twist, possible due to the loose connection of
trapezium and 1st MC.

Besides limitations on hand motion resulting from the individual joints there
are also constraining dependencies between different joints, both within the
same finger (intra-finger constraints) as well as between fingers (inter-finger
constraints). Such causalities arise from the tendons in the hand that cause
hand motion. One intra-finger dependency commonly assumed is the ”2/3
rule”: the flex angle of the DIP joint equals roughly 2/3 of the angle of the
corresponding PIP joint [Rijpkema and Girard 1991]. An example of an inter-
finger dependency can be observed when the little finger of a hand flexes: the
ring finger will usually also bend a little. However, such dependencies between
joints are no longer guaranteed when the hand is in contact with an object.
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Figure 3.8: Synthetic hand: a 3d scan of a hand (top) bound to a forward-
kinematics skeleton (middle) in Maya. The weights (bottom) define the binding
of the skin to the bones. Image taken from [Bray 2004].

3.5.2 Model of the Synthetic Hand

The synthetic hand described in [Bray 2004] is illustrated in Figure 3.8. Es-
sentially, this is a 3d scan of a hand (top of the figure) bound to a forward-
kinematics skeleton (middle of the figure) in Maya. The weights shown at the
bottom of the figure define the binding of the skin to the phalanges.

The skeleton of this model contains 16 joints. In total there are 30 DOFs. The
wrist (the root joint) has 6 DOFs (3 for translation and 3 for rotation). The
MCP joints of the fingers permit 3 DOFs to account for flexion/extension, ad-
duction/abduction, and also for a small amount of possible twist. PIP and DIP
joints of the fingers are modeled with 1 DOF. Regarding the thumb, the TM
joint is approximated with only 2 DOFs because the potential twist is consid-
ered to be negligible. The 1st MCP joint as well as the 1st IP joint both have
one DOF. To reduce the dimensionality from 30 to 26, the DIP joints of the
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fingers are defined by the respective PIP joints in [Bray 2004], exploiting the
”2/3 rule”.

An important work with respect to the dimensions of the bones within the syn-
thetic hand is [Buchholz et al. 1992]. In their anthropometric studies the au-
thors identified various dependencies between the size of individual hand com-
ponents. For example, it is stated that there is a relationship between the total
length of a hand and the length of the different phalanges. These ratios where
respected when designing the kinematic structure.

The advantage of the synthetic hand lies in its realistic looks. In [Bray 2004],
this model was used for tracking a hand in 3d data. This might be problematic
when the tracked hand is not the one that was originally scanned: adapting the
polygonal mesh to a hand with different anatomical dimensions is not trivial.
Another problem we encountered is that the control of the thumb in Maya is
rather unintuitive: when trying to reach a certain thumb pose, it is not always
clear how to set joint angles appropriately.

While we do not track with this model, we use it for the visualization of es-
timated hand poses and for the generation of artificial depth data with ground
truth. To generate artificial data, we employ a C++ version of the model that
can be rendered using OpenGL. OpenGL commands usually draw 3d objects
to a frame buffer which is then displayed on the screen. However, it is also
possible to render into a depth texture on the GPU. By mimicking the external
and internal camera parameters of the structured-light setup described in Sec-
tion 3.1, we obtain range data of the synthetic hand. Intuitively, the synthetic
hand is observed by our camera setup. For an example of such artificial data
see Figure 3.9.

3.6 Belief Propagation

In Chapter 4 we estimate hand poses by belief propagation (BP), as suggested
in [Sudderth et al. 2004b, Sudderth et al. 2004a]. While the application of BP
to hand tracking will be addressed in that Chapter, we now provide a general
introduction to the algorithm first presented in [Pearl 1982].

BP is a message passing algorithm used for inference on graphical models,
i.e., on probabilistic models for which a graph denotes the conditional inde-
pendence structure between random variables. Many interesting problems can
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Figure 3.9: Simulated range data produced by rendering the synthetic hand on
the GPU. The used external and internal camera parameters correspond to the
parameters of the structured-light system.

be expressed in the form of such a graphical model, e.g., medical diagnosis on
the basis of a number of given symptoms, stereo reconstruction in computer
vision, and error-correcting codes in signal processing.

There are different types of graphical models, for example Bayesian networks,
Markov random fields (MRFs), and factor graphs. However, it is shown in
[Yedidia et al. 2003] that conversion between each of these models is possible,
thus it is sufficient to formulate BP with respect to one model type. We follow
here [Yedidia et al. 2003] and consider the case of MRFs.

A MRF has a set of nodes, each of which corresponds to a variable or a group
of variables, as well as a set of edges each of which connects a pair of nodes.
Nodes can be either observed or unobserved. In the case of an observed node,
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Figure 3.10: A square lattice MRF. The filled-in circles represent observed
nodes, while empty circles stand for hidden nodes. The hidden nodes are pair-
wise connected in a grid.

the associated random variable is set to a specific observed value. In contrast,
no observation is available for unobserved or hidden nodes. An example of a
MRF is given in Figure 3.10.

BP calculates the marginal distribution for each unobserved node xs, condi-
tional on any observed nodes ys. In computer vision, the index s often rep-
resents pixel positions, for example when inferring the depth of each pixel
for stereo-reconstruction. It is assumed that there is a statistical dependency
between xs and ys at each position s, expressed by a data term φs(xs, ys).
In addition, a compatibility term ψst(xs, xt) defines the dependency between
neighboring nodes. Considering the observed nodes to be fixed we can write
φs(xs) as a short-hand for φs(xs, ys). The joint probability distribution for the
unknown variables {x} is then given by

p({x}) =
1

Z

∏
st

ψst(xs, xt)
∏
s

φs(xs), (3.6)

where Z is a normalizing constant.

BP estimates marginals with the aid of messages. A message from node t to
neighboring node s can intuitively be understood as the opinion of node t about
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what state node s should be in. According to the BP algorithm, the belief at
node s is proportional to the product of the local observation and all messages
coming in to node s. The distribution of xs is hence defined as

p(xs) = φ(xs)
∏

t∈N (s)

mt→s(xs) . (3.7)

Messages are determined by the message update rule. According to this rule,
a message from node s to node t assigns a probability to each realization xit of
xt as follows:

ms→t(x
i
t) =

∑
xs

φ(xs) ·ψ(xs, x
i
t)
∏

t∗∈N (s)\t

mt∗→s(xs) . (3.8)

N (s) \ t contains all neighboring nodes of s except t. The product combines
the incoming messages, the sum marginalizes over xs.

The basic procedure of the algorithm is that a node s sends a message to neigh-
bor t as soon as the messages from all neighbors (except t) have arrived. In this
way, the available information is distributed throughout the complete graph.
The algorithm terminates when some convergence criterion with respect to the
estimated marginals has been reached.

The example in Figure 3.10 is actually not trivial in terms of inference since the
MRF contains loops. In the case of loops the BP algorithm is not guaranteed to
converge, although good results have been reported in practice. However, in the
case of tree structured graphs without loops the algorithm converges quickly to
the exact marginals: messages are ideally first sent from the leaves towards
the root, and then back from the root to all the leaves. For a more detailed
description of BP and possible generalizations of the algorithm, please refer
to [Yedidia et al. 2003].



4
Occlusion Robust Hand Tracking

In this chapter we present a method to track a hand manipulating an object.
Special focus lies on robustness to self-occlusions and occlusions caused by
the object. Experiments are presented for synthetic data with ground truth and
for real data of people manipulating objects. The work in this chapter was
also presented at the IEEE International Conference on Computer Vision 2009
[Hamer et al. 2009].

4.1 Overview

Visual hand tracking has several important applications, including sign lan-
guage recognition, intuitive human-computer interaction, human behavior and
emotion analysis, safety and process integrity control on the work-floor, re-
habilitation, and motion capture. Not surprisingly, much research has already
gone into computer algorithms for hand tracking. Yet, the majority of con-
tributions have only considered free hands, whereas in many applications the
hands will actually be manipulating objects. In this chapter, we present a sys-
tem which can track the articulated 3d pose of a hand, while the hand interacts
with an object (such as depicted in Figure 4.1).

The presence of objects has a significant impact on the complexity and gener-
ality of the task. First, the manipulated objects will frequently occlude parts of
the hand, and hand poses occurring during the process of grabbing or holding
will aggravate the problem of self-occlusion (e.g., in Figure 4.1 parts of the
fingers are partially or even fully occluded). Second, the hand structure itself
is less constrained in the presence of objects: parameter ranges have to be re-
considered and some simplifying assumptions derived from human anatomy
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Figure 4.1: The goal of our hand tracker: recovering the articulated 3d struc-
ture of a hand during object manipulation.

no longer hold. When in contact with an object, forces are exerted on the hand,
resulting in poses which cannot be achieved with the bare hand (e.g., bending
fingers backwards when pressing against a rigid surface, breaching the “2/3-
rule” between the joints of a finger when pushing a button, etc.). Tracking
hands under these less favorable conditions is the topic of this chapter. To
the best of our knowledge, visual hand tracking in the presence of objects is
uncharted terrain.

As argued in Chapter 1, object manipulation is an inherently 3-dimensional
phenomenon, where 3d pose estimation in monocular video is seriously under-
constrained. We therefore track hands using not only color information but
also range data, delivered by the structured-light system introduced in Section
3.1.

Our approach was motivated by an established trend in object recognition and
detection. Occlusion is a frequent and not reliably solved problem in these ap-
plications. Models are split into local parts, and each part separately contributes
evidence about the complete model. In this way robustness to partial occlusion
is achieved and the estimation relies only on observable parts, e.g., [Lowe 1999,
Leibe et al. 2004, Felzenszwalb and Huttenlocher 2005]. The underlying
global configuration can then be used to infer information regarding the oc-
cluded parts. In much the same way, we intentionally refrain from employing
a single high dimensional model, but use local 6 DOF trackers for individual
hand segments. We then exploit anatomic constraints between adjacent seg-
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ments to enforce the hand structure. The constraints are represented by a first
order Markov random field (MRF). Each of the local trackers corresponds to
one rigid hand segment, and independently recovers a pdf over the segment
pose from local evidence. Then, a valid hand structure is enforced by belief
propagation (see Section 3.6) on the hand graph. An explicit occlusion model
makes sure that missing local observations do not corrupt the estimation.

The tracker we present has also been inspired by [Sudderth et al. 2004b], which
introduced the idea of belief propagation on a graph consisting of local hand
parts. Although the approach has been extended in [Sudderth et al. 2004a] to
incorporate self-occlusion between hand-parts, their method targets only bare
hands. In our work, we consider not only self-occlusion but also occlusion by
an object, which is handled explicitly with an occlusion model.

In [Sudderth et al. 2004b, Sudderth et al. 2004a] sampling is performed along
the kinematic chain. For example, given the pose of the proximal phalanges,
samples of the intermediary phalanges are generated within assumed joint lim-
its. We refrain from this for two reasons: firstly, the observation of the palm
is important in such an approach, but the palm is often occluded during ob-
ject handling; secondly, such a sampling imposes hard constrains on the joints,
since samples even slightly violating anatomical assumptions are never drawn.
However, some anatomical constraints no longer hold strictly when contact
with an object is involved. As a remedy one could try to widen angle intervals,
but this would in turn question the guidance provided by this sampling strategy.

Instead of sampling along the kinematic chain, we focus on the independence
of the local trackers and sample from local proposal functions. To cover the
state space appropriately we proceed hierarchically. To avoid impossible con-
figuration, we impose soft constraints by penalizing a sample’s deviation from
a valid hand shape.

Finally, in contrast to [Sudderth et al. 2004b, Sudderth et al. 2004a] we model
the hand as a collection of surface patches, rather then only silhouette edges,
which allows for a richer representation. The observation likelihood of these
patches is measured using a modified 3d distance transform.

4.2 Hand Model

1University of Washington, http://uwmsk.org/RadAnat
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Figure 4.2: An X-ray picture of a human hand shows the 27 bones. Image
courtesy of M. L. Richardson1.

We now introduce the hand model used for tracking. Human hand anatomy (see
Figure 4.2 for an X-ray) is discussed in detail in Section 3.5.1. For tractability
our model makes some assumptions with regard to this anatomy.

• The palm is assumed to be a rigid body. While this is not entirely true for
real hands [McDonald et al. 2001] the amount of achievable deformation
is quite small. We therefore choose to neglect it, and represent the palm
as a single segment in our model, following [Wu and Huang 2001]. The
geometry of the palm is bounded by the center of the wrist, the trapezium
connecting wrist and thumb, and the 4 MCP joints of the fingers.

• As the wrist itself is irrelevant in terms of object grasping [Cutkosky
and Wright 1986], we do not model it explicitly. The wrist is however
represented implicitly as part of the palm.

• Referring to [Hamilton and Dunsmuir 2002] we assume the following
relationships between phalanges. For all the fingers, there is a ratio of 1
for the distance between the MCP and PIP joint and the distance between
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the PIP joint and the finger tip. The ratio for the distance between the
PIP and DIP joints and the distance between the DIP joint and the tip
approximates to 1.3 for the index, middle and ring fingers and to 1.0 for
the little finger.

• The thumb is structurally treated like a fifth finger, connected to the
trapezium by the TM joint. Though it is difficult to model the com-
plicated anatomy of the thumb precisely [Cooney et al. 1981, Buchholz
and Armstrong 1992, Hollister et al. 1992, McDonald et al. 2001] ex-
periments show that our simple model achieves good results.

• The PIP and DIP joints of the fingers have one DOF (flexion/extension).
MCP joints have two (flexion/extension and adduction/abduction). Fi-
nally, we allow for a limited amount of twist for all joints. Regarding
PIP and DIP joints this twist accounts for a small rotation around the
bone axis possible due to a little slack within the joints. In the case of
MCP joints, spreading the fingers automatically implies a few degrees of
twist [Cailliet and Davis 1972]. The following joint limits are assumed
by our model:

0◦ ≤ ΘFLX
TM ≤ 50◦

−20◦ ≤ ΘABD
TM ≤ 20◦

−5◦ ≤ ΘTWS
TM ≤ 5◦

0◦ ≤ ΘFLX
MCP ≤ 70◦

−15◦ ≤ ΘABD
MCP ≤ 15◦

−5◦ ≤ ΘTWS
MCP ≤ 5◦

0◦ ≤ ΘFLX
PIP,DIP ≤ 70◦

0◦ ≤ ΘABD
PIP,DIP ≤ 0◦

−5◦ ≤ ΘTWS
PIP,DIP ≤ 5◦.

FLX stands for flexion/extension, ABD for abduction/adduction, and TWS
for twist. For example, the FLX angles of a straight finger are 0.

In contrast to the model of the synthetic hand discussed in Section 3.5.2 we do
not describe the hand as a whole but split it up into local segments. Conse-
quently, we consider 3× 5 = 15 phalanges for the fingers and the thumb, plus
the palm.
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(a) Hand model (b) Hand graph

Figure 4.3: (a) The complete hand model consisting of a skeleton and ruled
surfaces for the skin. Each hand segment contributes a part of the stick-model
forming the skeleton. A sphere indicates the end point of each phalanx. (b)
The graph encoding the structure of a hand.

4.2.1 Local Hand Segments

In our model, each hand segment (either phalanx or palm) has its own six
dimensional state space, with three dimensions corresponding to the position
of the segment and the other three to its orientation (16 × 6 = 96 DOFs for
the whole hand). The state of a segment is represented by a local coordinate
system aligned with the segment. To complete the model, we associate every
phalanx with a mesh approximating the skin. Each mesh is a composition of
shape primitives like cylinders and spheres, with the exception of the more
detailed thumb tip.

The local hand model is visualized in Figure 4.3(a). Each hand segments con-
tributes a part of the stick-model forming the skeleton. A sphere indicates the
end point of each phalanx. Meshes corresponding to individual segments are
drawn in red.
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4.2.2 Adaptability to Different Anatomies

One advantage of the presented model compared to the synthetic hand (Section
3.5.2) with respect to tracking is its adaptability to new hand anatomies.

• The meshes representing skin are modeled in Maya. As the example
of the thumb tip demonstrates there is no restriction to a set of shape
primitives. Any arbitrary shape can be created in a 3d modeling software
to approximate the respective hand segment better.

• The length of the phalanges can be adapted to fit new hand anatomies.
We currently define the pose of a hand to be tracked manually in the first
frame of the sequence for initialization. The user performs some mouse
clicks at the depth data to indicate the position of the center of the wrist,
the trapezium, the joints, and the finger tips. Depending on the normal
of a selected depth point and the diameter of the respective segment, the
wrist/trapezium/joint/tip is placed shortly behind the observed skin in
3d. This provides us not only with an initial hand pose but also with a
measure of the length of each phalanx. We rectify the manual input with
respect to the anthropometric data of [Hamilton and Dunsmuir 2002] and
elongate or shorten each phalanx and the associated mesh.

• The scale of a mesh includes not only its elongation but also its thickness
(from front to back) and its broadness (from side to side). These addi-
tional parameters can be used to fit a given hand anatomy even better.
However, in practice the same settings worked well for many different
hands.

4.2.3 Anatomical Constraints

The individual hand segments are connected within a graph representing the
structure of a hand. The graph is shown in Figure 4.3(b). Since each segment
has its own pose, constraints are required to ensure that neighboring segments
stay connected at the joints, and that their respective orientations result in a
valid configuration.

Note that in the chosen parameterization the constraints obey the first order
Markov property (i.e., they apply only to adjacent segments), and that the hand
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Figure 4.4: Hand segment samples. Color encodes relative observation likeli-
hood: green is highest, red is lowest. The palm has no model, hence uniform
observation likelihood. The arrow indicates the viewing direction of the cam-
era.

graph is a tree with the root at the palm and leaves at the fingertips. The con-
straints can therefore be efficiently optimized with belief propagation. A gen-
eral introduction to belief propagation can be found in Section 3.6.

We use soft constraints: to make sure hand segments stay (nearly) connected,
we employ proximity constraints, meaning that we penalize configurations of
neighboring segments proportionally to the distance between their endpoints.
To ensure valid joint angles, we use angle constraints. As already argued, the
traditional anatomical limits for the free hand are no longer valid in contact
with objects, so soft constraints are well suited. Details about the penalty func-
tion and how it exploits the constraints are given in Section 4.3.3.

4.3 Tracking Method

Every segment of the hand model has its own local tracker. In each computa-
tion step, the local tracker draws a number of samples from a local proposal
function. The sample space is 6d – three parameters for the position of the
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Figure 4.5: Top row: examples of model patches – one rendered sample for
each finger tip (from left to right: little, ring, middle, index, thumb). Brighter
pixels are closer to the camera than darker ones. Bottom row: the correspond-
ing data patches. Often, parts of more than one finger are contained. Black
areas represent background (unknown/infinite depth).

segment, and three rotation angles. Figure 4.4 shows examples of hand seg-
ment samples. We sample each parameter uniformly, within a different range
to account for the kinematics of the human hand (e.g., it is easy to check that
we can bend our fingers faster than we can spread them). For each sample,
the likelihood is computed by comparing it locally to the observation (Section
4.3.1), taking into account occlusion information (Section 4.3.2). Then, belief
propagation (see Section 3.6) is applied to combine the evidence of the local
trackers (Section 4.3.3). The resulting weights, together with the correspond-
ing samples of a hand segment, are a discrete representation of the posterior
pdf over the segment’s pose. The posterior pdf is then transformed to the next
time step with a dynamic prediction to yield the new proposal function.

4.3.1 Observation Model

The input for our method is the range data provided by the structured-light
system introduced in Section 3.1. The color information delivered by the sys-
tem is exploited in a preprocessing step to locate the hand and to detect object
occlusion (see Section 4.3.2) via skin color segmentation.

The local observation of a phalanx consists of a rectangular patch of range data
D (the “data patch”) around the predicted position. We do not consider here
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(c) Depth of Closest Observation

Figure 4.6: Extended model-to-data distance. (a) Depth observation of the
thumb tip. (b) Distance transform showing for each pixel the 2d-distance (ig-
noring depth) to the nearest skin point in (a). (c) Extended distance transform
visualizing for each location the depth of the nearest skin point.

the observation of the palm, which is often completely occluded during object
handling.

To compare a pose sample for a given phalanx to the data, its local surface
mesh is rendered into a depth image, using the known camera calibration. This
projection yields a depth image M (the “model patch”), which is in point-wise
correspondence with the range data for that segment, so that the two patches are
directly comparable. Figure 4.5 provides examples of model and data patches.
The patches {M} for the entire set of samples can be computed efficiently by
rendering all samples as one big texture on the GPU.

To evaluate the likelihood of a sample x, we compare its rendered depth im-
age M to the corresponding data patch D with a simple distance measure du,
computed for all pixels uM of the hand surface in the model patch. If a pixel
uM = (u1,M , u2,M , u3,M ) belongs to the surface in both the model and the
data patch, we directly use the depth difference, du = ‖u3,M − u3,D‖. If the
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hand pixel in the model at location uM does not belong to the hand according
to the data, then we use a distance to the nearest hand pixel ūD:

du =
√

(u1,M − ū1,D)2 + (u2,M − ū2,D)2 + (u3,M − ū3,D)2 . (4.1)

The distance between uM and ūD can be computed efficiently using an ex-
tended 3d distance transform. The extended distance transform is illustrated in
Figures 4.6(a)–4.6(c).

In comparing the data with the model, we do not consider the situation where
there is a hand pixel in D, but not in M (unexplained observation): it can-
not be decided locally, whether the data is observed by another hand segment,
since the local tracker has no information from other parts of the hand. The
likelihood of a sample x with patch M is hence defined as

L(D|x) =
1

Z
e
−
(

d̂
σobs

)2

, (4.2)

where σobs is a user parameter which specifies the accuracy of the range data.
Z is a normalization factor, which assures probability distributions integrate to
1, and will from now on be omitted for brevity. d̂ is the mean value over all T
considered distances, d̂ = 1

T

∑
uM∈M du.

We prefer to use the average error for the sample, rather than computing an
individual likelihood L(D|uM ) for each pixel and multiplying them together.
This choice is motivated by the nature of range scanners: the point density of
such systems depends on the surface orientation. Furthermore, there are oc-
casionally missing depth values, and these tend to be clustered, forming holes
in the observed surface. These two properties may cause a heavy bias in error
measures that depend on the number of observed pixels.

4.3.2 Occlusion Model

Given the large amount of occlusion during object manipulation, an explicit
occlusion model is required to achieve robustness.

After obtaining the observation patch of a hand segment, we label self-occlusion
within the patch. Accurate detection of self-occluded pixels requires the global
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Figure 4.7: Illustration of the occlusion model. If the model is moved away
from its correct position (offset 0), its likelihood decreases. However, with
increasing occlusion the difference in likelihood becomes smaller, as less and
less evidence supports it.

hand configuration. Locally, the only way to detect self-occlusions is to find re-
gions where the data is substantially closer to the camera than predicted by the
model. We do this by applying a distance threshold of 10 mm (approximately
the diameter of a finger). Object points (depth observations inconsistent with
the skin color model) are also regarded as occluders, if they are closer to the
camera than the skin mesh of a sample.

When computing the mean depth error d̂ as explained in Section 4.3.1, we do
not count the occluded model pixels as part of the model, which is equivalent
to assigning the average error of the visible pixels to the occluded ones. Such
a definition does not penalize hand samples for moving into occlusion, but
attracts them to the data, as soon as they move out of the occlusion. This
behavior has proved to be desirable in our experiments.

As explained above, we do not take into account the number of observed points
on a hand segment, because it would bias the estimation from range data. How-
ever, in the presence of occlusion the amount of visible surface does matter:
if a hand segment is completely occluded, the pdf from the observation model
should be uniform, since there is no information available about its pose. More-
over, if it is partially occluded, there are observations about the pose of the
segment, but they should not carry the same weight as for an unoccluded seg-
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ment, both due to the smaller number of observations and to the narrower field
of view. We introduce a smooth dependence on the amount of occlusion by
introducing an additional factor α in the exponent of Equation 4.2 as follows:

L(D|x) = e
−α ·

(
d̂

σobs

)2

, (4.3)

where α is the fraction of unoccluded pixels, estimated from the predicted state.
Intuitively, this definition produces peakier distributions for unoccluded seg-
ments, and gradually flatter distributions as the degree of occlusion increases.
In the extreme case of total occlusion, the exponent in (4.3) vanishes. All sam-
ples are assigned an equal likelihood, and the pose is entirely determined by
the structural constraints. Figure 4.7 graphically illustrates this definition.

4.3.3 Enforcing Constraints

As already discussed, the (soft) constraints modeling the structure of the hand
can be divided into two categories, those acting on the position of neighboring
segments (proximity constraints), and those acting on their orientation (angle
constraints). The constraint network is a tree obeying the first-order Markov
property, hence constraint enforcement by belief propagation will yield a glob-
ally optimal configuration.

A general introduction to belief propagation can be found in Section 3.6. In
that section, the joint probability distribution of a set of random variables {x}
connected in a MRF is defined as

p({x}) =
1

Z

∏
st

ψst(xs, xt)
∏
s

φs(xs), (4.4)

where Z is a normalizing constant. This definition is now applied to the hand
graph in Figure 4.3(b). The data term is defined by the likelihood term de-
scribed in Section 4.3.1 and Section 4.3.2: φs(xs) = L(xs|D) = L(D|xs),
assuming for now a uniform prior of xs and D, although we will define an
object-dependent prior for xs in Chapter 5.

We now focus on the compatibility term ψst(xs, xt) that defines the depen-
dency between two nodes s and t connected by an edge. Sending a message
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from node s to node t (in this case hand segments), requires aN×N constraint
matrix, N being the amount of samples at each node. The matrix is computed
considering all possible combinations of samples of the two nodes s and t, and
defined by

ψ(xs, xt) = pprox(xs, xt) · pang(xs, xt) , (4.5)

with pprox, pang the two types of constraints.

Proximity constraints make sure the hand segments stay connected. We define
the proximity error εprox—the degree to which adjacent segments violate the
constraint—as the Euclidean distance between the corresponding endpoints,

pprox = e
−
(
εprox
σprox

)2

. (4.6)

The parameter σprox specifies the importance of the observed error, and also
the relative weight of this error against those of the angle constraint errors to
be defined next. We set σprox to 5 mm.

Angle constraints are defined in a similar way. In analogy to the segments of the
hand model, each sample has a local coordinate system. Consider the angles
(flexion, abduction, twist) rotating the local coordinate system of a sample of
node s into the local coordinate system of a sample of node t. We compare
these angles to anatomically valid angles for the connecting joint and compute
error values εflex, εabd and εtwist such that

pang = e
−
(
εflex
σflex

)2

· e−
(
εabd
σabd

)2

· e−
(
εtwist
σtwist

)2

. (4.7)

Again, σflex, σabd and σtwist encode the relative importance of the different
constraints, and their importance compared to the other observed errors. In our
case, σflex = σabd = σtwist = 10 degrees. Figure 4.8 gives an example for
the first term of the equation.

Once all samples have been generated and their likelihoods with respect to the
observations have been computed, belief propagation is used to propagate the
local probabilities through the graphical model.

An obvious constraint, which we have not used so far, is that fingers cannot in-
tersect. The reason for not using it is that in our experiments, we have seldom
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Figure 4.8: Soft constraints on the flexion of a joint. These probabilities are
assigned when assuming a motion range from 0 to 70 degrees and a σflex of 10

degrees. Angles outside the assumed range are less probable but still possible.

observed such problems. This testifies to the robustness of the proposed tech-
nique, but it also prevents the graphical model from including loops (see Figure
4.3(b)). This is important as loop-free belief propagation delivers an exact so-
lution – all available information is distributed throughout the entire graph –
and is guaranteed to yield the optimum. Moreover, computational efficiency is
better than with loopy belief propagation, which would be the fall-back strat-
egy in case loops need to be included [Sudderth et al. 2004b]. Hence, including
non-intersection of fingers is feasible without major alterations to the system.

4.3.4 Hierarchical Computation

The local trackers discretize their state space by sampling. The computational
cost of evaluating the compatibility functions within the belief propagation
scales quadratically with the amount of samples drawn by the local trackers
(see Section 4.3.3). To guarantee a sufficiently fine discretization of the state
space and an acceptable computation time, we proceed hierarchically. For each
frame of the input data, pose sampling, observation evaluation and belief prop-
agation (i.e., one complete computation step) are performed several times. At
first we sample in a large region of the state space in order to cover the required
portion of the space. The S′ samples with the highest weights are selected (in
our implementation S′ = 5), and uniform kernels are placed at their positions,
as new local proposal functions for the next step. We have experimentally
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(a) 001 (b) 015 (c) 030 (d) 045 (e) 060

(f) 080 (g) 095 (h) 110 (i) 125 (j) 140 (k) 160

Figure 4.9: An artificial sequence of 160 frames demonstrating the hand
tracker’s robustness to strong self-occlusions. The hand forms a fist and opens
up again twice. The first time all fingers are straight, the second time fingers
are spread. Tracking results are indicated by the stick model skeleton. Little
blue spheres represent end points of phalanges. The number below each image
identifies the respective frame.

found that the number of modes in the state space is usually ≤ 3, so that no
important samples are lost by the intermediate hard decisions.

We use 10 hierarchy levels, i.e., we sample, observe, and infer 10 times per
frame. When the last level is completed and the transition to the next frame
occurs, it has proved beneficial in practice to include a simple dynamic model
in the proposal function. In our implementation we use ICP (see Section 3.3)
to predict large global hand motion, and a linear (constant velocity) prediction
for the motion of individual hand segments. With the prediction step, sampling
can focus on deviations from the dynamic model.



4.4. RESULTS 59

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

frame

er
ro

r

Figure 4.10: Tracking error of the sequence with strong self-occlusion.

4.4 Results

We have conducted experiments with both synthetic and real data. Synthetic
data serves for quantitative evaluation, while the real data confirms that the
proposed method is applicable to the input delivered by our structured-light
setup. Computation time of our C++/Cg implementation is ≈ 6.2 sec/frame,
with a 3GHz CPU and a GeForce 8800 Ultra.

4.4.1 Artificial Data

Artificial data was generated by rendering the synthetic hand into a depth tex-
ture on the GPU as described in Section 3.5.2. The advantage of this kind of
data is that we have ground truth, i.e., we know the hand poses that produced
the data. This allows for a quantitative evaluation. Two experiments are pre-
sented with respect to artificial data.

Strong self-occlusion. The artificial hand has been tracked over a period of
160 frames, taken at normal video rate. The hand forms a fist twice, producing
extreme self-occlusion, once starting with joined fingers and once after spread-
ing them. The sequence and tracking results are illustrated in Figure 4.9. The
anatomy of the hand model for tracking (Section 4.2) was adapted to fit the
anatomy of the synthetic hand. For initialization the hand pose of the first
frame was taken directly from the ground truth. As an error measure, we de-
fine the error of a phalanx as the mean distance of its two endpoints from those
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(a) 01 (b) 11 (c) 21 (d) 34 (e) 44

Figure 4.11: (top) Artificial sequence used to evaluate the robustness to object
occlusion. Fingers are spread, then joined again. The number below each
image identifies the respective frame. (bottom) Different levels of occlusion,
ranging from 0% to 100% occlusion of the fingers.

of the ground truth given by the kinematic hand model, and the frame error as
the mean over all segments in that frame. Frame errors for the whole sequence
are plotted in Figure 4.10 and lie in the range [0.24. . . 2.77] mm (mean 1.04,
median 0.92). For comparison, the distance from the base of the palm to the
tip of the extended middle finger is 230 mm.

Occlusion by an object. To verify the robustness of our method in the presence
of an occluding object, we have introduced artificial occluders into a sequence
of 45 frames. The hand first spreads, rests for 3 frames, and then returns to
its initial pose (see the top row of Figure 4.11 for illustration). Figure 4.11
(bottom) demonstrates the seven tested degrees of occlusion, ranging from no
occlusion to full occlusion. The error over all hand segments in the different
occlusion scenarios is plotted in Figure 4.12. Up to occlusion level four there
is almost no increase of the error. At higher levels fingers are fully occluded so
their state has to be hallucinated, based only on the anatomic constraints.
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Figure 4.12: Seven occlusion levels. Occlusion ranges from 0% to 100% oc-
clusion of the fingers. For each level, the median error (red), the lower/upper
quartile (box) and the entire error range (whiskers) are displayed.

4.4.2 Real Data

To assess the validity of our hand tracking method with respect to real ob-
ject manipulation observed by an actual 2.5d camera, we now focus on the
manipulation of three different everyday objects recorded with our real-time
structured-light system. All three sequences contain severe occlusions. In or-
der to represent different aspects of object handling, each of the sequences
features a different grasp type with respect to the grasp taxonomy defined
in [Cutkosky and Wright 1986]. The three objects considered are a cup/mug, a
tennis ball, and a pair of pliers (see Figure 4.13). In the following we discuss
the tracking results visualized in Figure 4.15, Figure 4.16, and Figure 4.17. In
these figures, estimated hand poses are again visualized by a stick model skele-
ton. Little blue spheres represent distal endpoints of the phalanges. There may
be a small gap between segments due to our soft constraints. The mean gap of
all three sequences is 1.0042 mm (deviation:0.6049 mm).

In all experiments, the initial state of the hand was determined by manual ini-
tialization in the first frame. Initialization, while not the topic of this work,
could be automated by using a standardized pose, comparable to the “T-pose”
in commercial motion capture systems. It may even be possible to initialize the
hand pose on the fly, while the hand is not in contact with an object.
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Figure 4.13: We present results regarding the tracking of a hand manipulating
three different everyday objects: a cup, a tennis ball, and a pair of pliers.

The first sequence (Figure 4.15) shows a hand which approaches a cup, grasps
it by the handle (precision grasp), lifts it up, then places it back on the table
and releases the grip. Of particular interest are the moments at which parts
of the index and middle fingers are occluded and disoccluded as they grasp
the handle. The finger tips smoothly move into the occlusion, since occluded
model pixels do not decrease the likelihood of a pose (Section 4.3.2). While
occluded, the fingertips continue to move with the rest of the hand, as their
local prediction and the proximity constraints at the joints push them forward.
As soon as the skin is observed again inside the handle, the model is pulled
towards the new observation by the extended distance function du (Section
4.3.1), because of the increased penalty for samples far away from the observed
skin pixels.

The second sequence (Figure 4.16) shows a hand manipulating a tennis ball.
The ball is gripped from behind with a power grasp, then lifted up, lowered,
and released. A critical moment is shown in frame 030. The palm is largely oc-
cluded by the ball, and the intermediary phalanges of the fingers are occluded
by the finger tips and are about to reappear above them. These segments now
have to reattach to the skin. The sequence illustrates a limitation of our cur-
rent tracker. Figure 4.14 shows that the reattachment of the ring finger lags
behind several frames. The finger thus continues in an anatomically valid, but
inaccurate position, until enough evidence is available for it to recover.

The third sequence (Figure 4.17) is the most complex one. The handled object
is a pair of pliers, which is not only lifted with a hook grasp, but also pressed
together. Note how the hand constraints ensure correct tracking of the fingers
in spite of long occlusions and scarce ambiguous evidence (e.g., the little finger
in the fourth image).
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Figure 4.14: Failure and recovery of a local tracker. The structured-light sys-
tem looks at the scene from the right. The rendered side-views show how the
ring finger initially fails to reattach to the back of the finger after reappear-
ing from behind the tip, but as soon as enough evidence is available, the local
tracker recovers.

4.5 Conclusion

In this chapter we have presented a method to track the articulated pose of a
hand in 2.5d range data. In particular, the method handles self-occlusions and
occlusions by an object within the hand. Therefore it can be applied success-
fully in hand-object interaction scenarios.

In more detail, we first introduced the hand model used for tracking. The model
consists of 16 local segments. Each hand segment has a six dimensional state
space, and every phalanx is associated with a mesh representing skin. The hand
model can be adapted to suit new hand anatomies. To enforce soft kinematic
constraints (proximity and angle constraints) the local hand segments are con-
nected in a MRF, which encodes the structure of a human hand. Due to the
Markov property the graph can be optimized efficiently by belief propagation.

Next, the actual tracking method was presented. Each hand segment has its
own local tracker that draws samples from a local 6d proposal function. The
samples are then evaluated with regard to our observation model. According
to this model the observation of a segment corresponds to a local depth data
patch around the predicted position. This patch is compared to a rendered
2.5d version of the respective segment’s surface model. The basic idea for this
comparison is an extended, fast-to-compute distance transform.

Unexplained depth data is disregarded in the observation model because of the
local nature of the model. However, in the presence of occlusion the amount of
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visible surface has an important impact within the presented occlusion model.
The less data supports the likelihood of a segment, the less impact has the
respective segment on the global configuration/ the global hand pose.

After elaborating on the occlusion model we discussed the issue of enforcing
kinematic constraints. Before a global hand configuration can be found by be-
lief propagation it is necessary to consider proximity and angle constraints by
means of compatibility matrices. We explained how to compute such matri-
ces based on products of negative log-likelihoods, admitting slight anatomical
violations possibly caused by hand-object interaction.

For reproducibility of our method we further gave some implementation de-
tails. In particular, we went into our hierarchical computation scheme. This
scheme involves performing belief propagation several times per frame to cover
the hand’s state space with a sufficiently fine granularity.

Finally, we presented results on artificial and real data. While the results on
artificial data served for quantitative evaluation, those on real data show that
we can successfully track the articulated pose of a hand manipulating objects.
This achievement contributes to the state of the art in the field of marker-less
hand tracking.

Our system offers the information a classical data glove provides. Therefore,
previous work based on the output of data gloves can be applied on top of
our method - e.g., different grasp types like precision and power grasps can be
recognized [Ekvall and Kragı́c 2005] and associated with the grasped object.

There are limitations to our method. When the articulation of a hand changes
too rapidly hand segments might detach from their range data, despite our hi-
erarchical computation scheme. The same might occur when the hand obser-
vation is too corrupted by the occluding object, e.g., when the object fully
occludes the hand. Figure 4.14 shows a case in which the system recovers and
the affected phalanx reattaches to the observation. However, this is not always
possible and the system sometimes looses track. Loosing track is an inherent
problem of model-based hand tracking approaches like ours, as opposed to the
(less precise) discriminative systems that work on a per frame basis. One rem-
edy might be to (re-)initialize our hand tracking system with a discriminative
approach like the one recently proposed in [Romero et al. 2010] after failure.
[Romero et al. 2010] is also concerned with hand-object interaction, so the
method might be a perfect fit.
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We emphasize that the method introduced in this chapter does not depend on
knowledge about the manipulated objects. However, when the object geometry
is known (e.g., from CAD-models or range scans), then this delivers valuable
additional constraints. To give just one example: hand segments cannot pen-
etrate the object. Therefore in the remainder of this work we do not focus on
isolated hand tracking but explore possible benefits of object knowledge in our
setting.



66 4. OCCLUSION ROBUST HAND TRACKING

(a) frame 003 (b) frame 021 (c) frame 041 (d) frame 048

(e) frame 055

(f) frame 063 (g) frame 071 (h) frame 086 (i) frame 101

Figure 4.15: In this sequence a hand approaches a cup, grasps it by the handle,
lifts it up, then places it back on the table and releases the grip. The hand is
tracked successfully throughout the sequence. Tracking results are indicated by
the stick model skeleton. Little blue spheres represent end points of phalanges.
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(a) frame 003 (b) frame 021 (c) frame 030 (d) frame 057

(e) frame 061

(f) frame 71 (g) frame 101 (h) frame 123 (i) frame 131

Figure 4.16: A tennis ball is gripped from behind, then lifted up, lowered,
and released. To give a better impression of the three dimensionality of data
and estimated hand poses, frame 061 is illustrated with three different views:
a frontal view (center), looking at the scene from the left (left), and looking at
the scene from the right (right).
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(a) frame 003 (b) frame 017 (c) frame 034

(d) frame 045

(e) frame 062 (f) frame 081 (g) frame 114 (h) frame 154

Figure 4.17: A pair of pliers is seized, lifted, pinched together, opened, and
put down again. Two different views visualize frame 045: a top view (top) and
a frontal view (bottom).



5
Hand-Object Interdependency

In Chapter 4 we discussed the tracking of a hand manipulating an object. How-
ever, the object plays only a passive role as an occluder. The hand is treated
more or less in isolation and the inherent dependencies between hand and ob-
ject are not accounted for.

In this chapter we go one step further and explicitly consider such dependencies
during hand-object interaction. More precisely we encode the influence of
a manipulated object on the manipulating hand in an object-dependent hand
pose prior, which is derived from sparse training data. Intuitively, this prior
represents information of how a certain object is to be grasped by a certain
hand.

Starting point for the techniques proposed in this chapter is the acquisition
of knowledge about the manipulated object, i.e., detailed information regard-
ing the shape and the pose of a (rigid) object. For this purpose we use the
structured-light scanning setup.

A key feature of the prior is that it can be generalized towards new hands and
new objects of the same object class. This opens up new possibilities for a va-
riety of interesting applications. We use the prior to improve the hand tracker
introduced in Chapter 4, and to let the synthetic hand (Section 3.5) grasp pre-
viously unobserved objects. The work in this chapter has also been presented
at the IEEE Conference on Computer Vision and Pattern Recognition 2010
[Hamer et al. 2010].
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5.1 Overview

Humans are accustomed to using their hands for the manipulation of objects
and their eyes for observing such manipulation. By watching another person
handle a single instance of an unknown object class, humans can easily imi-
tate the observed hand poses to manipulate other instances of the same class.
Although the strong correlation between the nature/shape of an object and the
hand poses for its manipulation is obvious, only little work has been done so
far to exploit this information for vision-based hand pose acquisition.

Hand tracking approaches either focus on freely moving hands for gesture
recognition or regard a grasped object only as an occluder [Rehg and Kanade
1994, MacCormick and Isard 2000, Wu et al. 2001, Stenger et al. 2001,
Athitsos and Sclaroff 2003, Sudderth et al. 2004b, Stenger et al. 2006, Hamer
et al. 2009]. For object handling, however, the degree of occlusion can be so
large, that occlusion robustness alone is not sufficient. Due to missing observa-
tions, many spatial ambiguities for the phalanges occur that cannot be resolved
without additional knowledge.

In the context of marker-less human motion capture, this issue has been ad-
dressed by introducing priors on motion patterns [Sidenbladh et al. 2002,
Moon and Pavlovic 2006, Urtasun et al. 2006, Baak et al. 2009] that are
learned from a motion database. Regarding the interaction of the tracked
human bodies with their environment, basic constraints like contact with the
ground plane have been used in [Rosenhahn et al. 2008, Vondrak et al. 2008].

For hands, the only priors that have been used so far in this context rely on the
static or dynamic space of hand poses. To obtain these priors a large data-set of
hand poses has been acquired by synthesizing hands or with data gloves [Athit-
sos and Sclaroff 2003, Stenger et al. 2006]. Since these works focus on gesture
recognition, they consider only freely moving hands. None of these priors cap-
ture the interaction with objects.

Here a prior is proposed which integrates such relation. We proceed in three
steps:

1. A specific hand is tracked in 3d while it manipulates a specific object of a
certain object class. We map the captured poses, i.e., the 3d position and
rotation of each hand segment (like a phalanx), into the local coordinate
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system of the object. Then, contact points on the object are detected. For
illustration see Figure 5.1.

2. The knowledge coming from several observed manipulations - performed
by different hands on different class members - forms the prior, i.e., a
spatial distribution of the pose samples.

3. The prior is generalized towards expected manipulations of new objects
from that class, possibly by new hands, based on a geometric warp.

The adapted, object-dependent prior can be used both to improve hand tracking
and to synthesize grasps. Both tasks are embedded in the same belief propa-
gation framework as described in the course of this chapter. A hand pose’s
probability can then be defined with respect to the prior, contact points, object
intersection constraints, anatomical constraints of the hand, and data likeli-
hood.

The synthesis of grasps and manipulating hand motion has been addressed in
the field of computer graphics. Most similar to our approach are data-driven
approaches like [Pollard and Zordan 2005, Kry and Pai 2006, Li et al. 2007].
[Pollard and Zordan 2005] and [Kry and Pai 2006] both target physically-based
grasp synthesis and recorded object manipulation with a marker-based Vicon
system to train grasp controllers. New interactions are synthesized by running
physically-based simulations, taking into account the knowledge encoded in
the controllers and contact forces estimated during collisions. The controller
in [Pollard and Zordan 2005] compensates for arm movement. The authors of
[Kry and Pai 2006] also recorded real contact forces to integrate the stiffness
of hands into their controller. In [Li et al. 2007], grasp candidates are found in
a database for a given object by matching contact points and surface normals.
The most stable grasp is then selected considering gravity.

Grasps have also been studied in robotics [Bicchi and Kumar 2000]. Given a
full 3d model and a grasp pose, for instance, the quality of the grasping can be
evaluated based on pre-computed grasp primitives [Miller et al. 2003]. In [Sax-
ena et al. 2008], the 3d grasp position is estimated from two images where
grasp locations are identified. For this, a 2d grasp point detector is trained
on synthetic images. Other approaches are based on learning by demonstra-
tion and imitate human behavior. For instance in [Hueser and Baier 2006], a
very small set of task relevant hand poses is selected and used to build a low
dimensional hand model for grasp pose detection.
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Figure 5.1: Captured object manipulation in a simplified illustration. An el-
lipse stands for a set of center points observed for some hand segment. Each
finger has its own color. On the meshes obtained by in-hand scanning, contact
points of the individual hand segments are visualized as little dots. Intuitively,
the images can be considered as automatically generated instruction manuals.

Inspired by the ability of humans to learn the interaction with an object from a
single example, we focus on sparse training data, i.e., we can already build the
prior by seeing only one instance of an object class being manipulated by one
person.
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(a) Hand model (b) Graph

Figure 5.2: (a) Hand model with a skeleton and ruled surfaces for the skin.
(b) Graphical model for inference.

5.2 Prior

Statistical priors on hand poses are useful since they constrain the search space
for tracking and allow for the prediction of hand poses when combined with
additional constraints. The first property is important to overcome ambiguities
due to missing data or occlusions and thus to improve tracking. The second
property is important as well. In robotics, unseen instances of an object class
need to be grasped. In computer graphics, the hand of an animated character
should snap to a virtual object automatically. Since in both scenarios hand
poses occurring during object interaction are the most interesting ones, we aim
to model a prior for the hand that depends on the object, i.e., we model the
probability of a hand pose P conditioned on an instance O of a known object
class and a hand sizeH: pprior (P|O,H).

We introduced our hand model consisting of local parts (Figure 5.2(a)) in Sec-
tion 4.2. Hand pose P is here defined with respect to the state space of that
model. Because of the direct relation of the hand model and the nature of the
proposed prior, we shortly repeat the most important properties of this model.
Afterwards we describe the prior in detail.
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Figure 5.3: Hand segment sample in object coordinates. The local coordinate
system of the depicted DP sample of the middle finger is now expressed in the
coordinate system of the manipulated object. The origin of the object is defined
by its geometric center, the axes were manually aligned.

5.2.1 Hand Model

Each hand segment has its own 6-dimensional state space: three dimensions
correspond to the position of the segment, three to its orientation (hand pose
P has 16 · 6 = 96 DOFs). The state of a segment xs ∈ R6 is represented by
a local coordinate system, which is now defined with respect to the coordinate
system of the manipulated object (see Figure 5.3). In addition, every phalanx
is associated with a mesh approximating its skin for tracking. Each mesh is a
composition of shape primitives like cylinders and spheres, with the exception
of the more detailed thumb tip.

When modeling the hand by a set of individual segments, the likelihood of each
segment s can be estimated independently with respect to simple local terms.
The connections between segments (Figure 5.2(b)) are then used to enforce
anatomical correctness.
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5.2.2 Prior Model

Consistent with the hand model, pprior (P|O,H) is defined by a product of
local 6d hand segment distributions:

pprior (P|O,H) =
∏
s

pprior (xs| O,H) . (5.1)

We learn the hand segment distributions from a finite set of hand segment sam-
ples xis, observed for instancesOk of the object class manipulated by the hands
Hl. For density estimation, we use a Parzen-Rosenblatt estimator with a 6d
Gaussian kernel, defining pprior (xs| O,H) by

1

(2π σ2)6/2N

N∑
i=1

exp

(
−
∥∥xs − f(O,H)(x

i
s)
∥∥2

2σ2

)
, (5.2)

where N denotes the number of training samples xis. In our experiments we
first computed σ with the maximum nearest neighbor heuristic, but as this value
turned out to be too restrictive we applied a fixed scaling factor of 10. Since
we estimate the probability of xs conditioned on (O,H), we have to map the
samples xis, observed conditioned on (Ok,Hl), to hand H (retargeting) and
into the coordinate system of object O by a mapping function f(O,H). When
retargeting we preserve finger tip positions. Mapping to the coordinate system
of a new object involves a geometric warp. Details on f(O,H) are given in
Section 5.4.

In analogy to Chapter 4, we model the overall probability of hand pose P as

p(P) =
1

Z

∏
st

ψst(xs, xt)
∏
s

φs(xs), (5.3)

where the compatibility term ψst(xs, xt) enforces anatomical constraints be-
tween adjacent hand segments, φs(xs) contains the data term with respect to
the observation, and Z is a normalizing constant. The integration of the prior
into φs(xs), and our unified framework for tracking and synthesis are the topic
of Section 5.5.

5.3 Data Acquisition

As stated before, we require information about both the hand (the articulated
hand pose) as well as information about the object (object shape and pose) for



76 5. HAND-OBJECT INTERDEPENDENCY

our purposes. Chapter 4 explained how to gather hand knowledge from the
data delivered by the structured-light setup. The great advantage of that setup
is that it also provides the necessary raw data to derive object knowledge.

Hand Pose In the learning phase of the method presented in this chapter we
track the hands in training sequences with the principles of Chapter 4. As
described in the limitation paragraph at the end of Chapter 4, the tracker some-
times fails when the data is too corrupted. As a way out, we label the position of
the finger tips in some key frames, making the training process semi-automatic.
In those frames, finger tips are attracted by the labels instead of the local data.
This said, one motivation of the proposed prior is to improve tracking and to
eliminate the need for such manual intervention.

Object Shape and Pose As range scans of the object are captured contin-
uously, we register these scans online and build up a coherent mesh of the
already observed parts of the surface by in-hand scanning. In-hand scanning is
the topic of Section 3.4. Examples of meshes obtained by this procedure are
shown in Figure 5.1. With the mesh of the object available, we determine in an
offline process the object’s 6d pose (translation and orientation) for each frame
of a training sequence containing the object and some manipulation. This is
done by fitting the mesh to the observation with ICP (see Section 3.3).

Temporal Segmentation At this point, temporal segmentation is required to
select the frames of interest. In action recognition, [Rao et al. 2002] identify
action components with respect to global velocity changes of a manipulating
hand. Inspired by [Sato et al. 2002], we instead consider the hand’s velocity in
relation to the object’s velocity. Another interesting approach could be to use
the velocity of individual hand segments. Consider Figure 5.4 for a motivation.

5.4 Mapping to New Hands and Objects

After having observed some hands manipulate some objects of a class, we can
transfer the prior to another hand grasping another object of that class. We
first retarget the acquired training examples xis to the new hand size H, and
then warp them into the coordinate system of our newly observed object. The
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Figure 5.4: (a) Captured hand segment centers and contact points. The thumb
clearly is the most active finger and touches the dialing area at various posi-
tions. Considering the speed of the thumb tip plotted in (b), one could recog-
nize the dialed phone number: when the thumb rests it is most likely to press
on a digit.

adapted prior (Eq. (5.1)) can be evaluated efficiently. We now describe the two
steps of the mapping process.

5.4.1 Hand Retargeting H

Hand retargeting maps the samples to a new hand anatomy, i.e., adapts the
length of the phalanges and the proportions of the palm. We preserve the po-
sitions of the finger tips in space and elongate or shorten the finger segments,
from farthest to closest to the palm, respecting joint angles (see Figure 5.5).
After this, the proportions of the palm (i.e., the relative positions of the at-
tachment points of the four fingers and the thumb) are set. Finger and palm
adaptation may create gaps between the fingers and the palm. We therefore
apply the rigid motion to the palm that minimizes these gaps.
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tip

Figure 5.5: Retargeting of a finger. The smaller (black) finger stands for the
original one and the bigger (red) one is a scaled version. The position of the
finger tip and the joint angles are preserved but the translation of the segments
changes.

5.4.2 Object Warping O

To map the prior from one object to a different one, we first warp the geometry
of the corresponding meshes. For this, we use the method proposed in [Zhang
et al. 2004]. Initially, corresponding points on the geometry have to be de-
termined (see Figure 5.6 for an example). We currently do this manually but
a fully-automatic mechanism based on 3d features like spin images [Johnson
1997] could be realized. The output of mesh warping is an offset for each
vertex of the original mesh that yields a point on the target mesh.

To apply the geometry warp to a hand segment sample, we need to map three
points in 3d space (e.g., for a phalanx sample, the center, one end point, and
one point fixing rotation around the roll-axis). This is necessary to fully de-
fine the warped 6d sample with respect to the coordinate system of O. One
approach to map a point in 3d space (outside the mesh) is to find the closest
vertex of the original object’s mesh and to choose the offset assigned to that
vertex. While this might work in some cases, the accuracy was insufficient in
our experiments. Instead, we use radial basis functions (RBFs) [Botsch and
Kobbelt 2005] to extrapolate the warp field outside the mesh and move the
hand segments with respect to this warp field.

5.5 Framework for Synthesis and Tracking

Since we have modeled our hand pose prior as a product of hand segment distri-
butions (Eq. (5.1)), it is consistent with the hand tracking framework described
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Figure 5.6: Correspondence pairs serving as a starting point for object warp-
ing. We currently define the pairs manually.

in Chapter 4. This simplifies the integration of the prior to improve tracking.
We use the same belief propagation framework not only for tracking but also
for synthesis. Eq. (5.3) specifies the probability of hand pose P . We define
φ(xs) = p(xs|I,O,H), where I is a depth image, O an instance of an object
with a pose and observed contact points, and H stands for the hand anatomy.
According to Bayes’ theorem,

p(xs|I,O,H) =
p(I|xs,O,H) · p(xs|O,H)

p(I|O,H)
. (5.4)

The denominator can be considered a normalization factor as it does not con-
tain xs. p(xs|O,H) is defined by the object-dependent prior and augmented
with two additional factors that enforce contact point attraction and intersection
constraints:

pprior(xs|O,H) · pcontact(xs|O,H) · pinter(xs|O,H).

Because the likelihood with respect to depth data is modeled as an exponential,
we write

φ(xs) =
1

Z
exp

− 4∑
f=1

Vf (xs)

 , (5.5)
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For a detailed description of the data likelihood exp(−V1(x)), we refer to
Chapter 4. The other terms are described next.

Hand Pose Prior The hand pose prior can be integrated in a straight-forward
manner by taking the negative log probability of a sample with respect to the
prior:

V2 (xs) = − log (pprior (xs| O,H)) . (5.6)

Since the training samples are acquired from sequences of varying length, we
weight the samples within the Parzen estimate (Eq. (5.2)) such that the se-
quences contribute equally to the prior.

Contact Point Attraction Although RBFs yield good results regarding warp
extrapolation, small inaccuracies still occur when warping hand segment sam-
ples. Because of this, finger tips in contact with the original mesh do not always
touch the mesh after warping. To yield stable grasps, we use contact points cis
observed for segment s on the original mesh. Since these contact points lie on
the mesh they can be warped accurately without extrapolation. After warping,
we proceed with 3d contact points as we did with 6d hand segment samples
above and build a kernel estimate. The likelihood term V3 (xs) of the distal
phalanges with respect to the Nc contact points is then given by

− log

(
1

(2π σ2
c )

3
2 Nc

Nc∑
i=1

exp

(
−
∥∥xs − fO(cis)

∥∥2

2σ2
c

))
, (5.7)

where fO is the geometric warp. We again compute σc based on the maximum
nearest neighbor distance between training samples.

Intersection Constraints Intersection constraints concern hand segment sam-
ples that penetrate the mesh of the object after warping. We compute the (un-
signed) distances between each sample and all vertices of the mesh using the
Hessian normal form. Because of the computational complexity, this is done
for all samples in parallel on the GPU. For each sample, the smallest distance
dmin is selected. Then, the degree of intersection of a sample is given by
dinter = max(0,−(dmin − d)), where d corresponds to the diameter of the
respective hand segment. We define

V4 (xs) = − log

(
1

Z
exp

(
−dinter

2

σinter2

))
. (5.8)
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σinter is a user parameter, in our case set to 0.5. Note that there is no need to
compute the normalizing constant Z, since it has no effect on belief propaga-
tion.

Synthesis and Tracking In our experiments, we demonstrate that the prior
can be used within the proposed framework to improve tracking and to syn-
thesize hand poses for a given object. Tracking is performed as described in
Chapter 4 but with the additional term of the pose prior. Grasp synthesis is
realized within the same framework. For initialization, we consider all warped
samples and choose one sample for each hand segment by belief propagation.
Warped samples do not necessarily result in anatomically valid hand configura-
tions. Because of this, we then perform local sampling and belief propagation
several times. Within this belief propagation, anatomical constraints are en-
forced in the same way as during tracking.

5.6 Results

To evaluate our method, we have tracked the hand of seven different persons
(one female) grasping, lifting, and putting down three different kinds of cups
(Figure 5.7). Based on the criterion regarding the temporal correlation of hand
and object velocity (see Section 5.3 and Figure 5.8), we selected those frames
from the 21 sequences in which the hand firmly grasps the handle of the re-
spective cup.

(a) Cup 1 (b) Cup 2 (c) Cup 3

Figure 5.7: Partial meshes of three different cups. The meshes were created
by in-hand scanning.
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Figure 5.8: Speed of a cup and the manipulating hand. For temporal segmen-
tation, we select the frames from about 40 to 80.

In the following we present two types of results to address the two application
examples of our method: improved hand tracking and grasp synthesis.

5.6.1 Improved Hand Tracking

We first elaborate on results showing that a prior observed for one hand and one
cup can improve the tracking of a different hand manipulating a different cup.
Figure 5.9 contains four frames of one of the 21 sequences. The handled object
is cup 1 and the hand is the one of test person 2 (with a rather large hand). The
prior we used in this experiment was observed on cup 3 with the manipulating
hand belonging to test person 5 (an average sized hand). Without the labeling
described in Section 5.3, tracking of the sequence fails due to ambiguity of the
observation (see Figure 5.10(b)). The pose of the distal phalanx of the middle
finger significantly differs from the labeled ground truth and the data. The
red curve in Figure 5.11 documents this. When we introduce the prior (Fig
5.10(a)) the middle finger remains in place (Figure 5.10(c)) and we can track
the sequence without any labels. The reduced error curve is also plotted in
Figure 5.11. Tracking with the prior and the hardware indicated above takes
less than 10 seconds per frame.
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Figure 5.9: Four frames of the sequence showing person 2 grasping and lifting
cup 1.
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(a) prior

(b) failure (c) correct

Figure 5.10: (a) The prior obtained from cup 3 and person 5. (b) While the
cup is lifted, tracking fails due to ambiguities in the observation: the distal
phalanx of the middle finger looses track. (c) The same frame as shown in
(b), successfully tracked due to the prior, which stabilizes the tips within the
handle.
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Figure 5.11: Tracking error of the distal phalanx of the middle finger. Without
the prior obtained on the basis of a different cup and a different anatomy the
error is significant. With the prior, the hand segment remains in place.
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5.6.2 Grasp Synthesis

In Section 5.5 we introduced three factors influencing the probability of a sam-
ple: consistency with the prior, contact point attraction, and intersection con-
straints. The prior is visualized in Figure 5.12 (a)-(c) for the different cup
types. In these figures, the information of all seven tracked sequences is con-
tained. With a 3GHz CPU and a GeForce 8800 Ultra, it takes ≈ 35 seconds
to obtain each prior: 25 seconds to load in the database and to adapt hand
anatomy, 10 seconds to transfer the prior to the target cup by warping.

(a) Cup 1 (b) Cup 2 (c) Cup 3

Figure 5.12: Prior for the three cup types. All seven test persons contribute to
each prior. The variety of grasping is largest for cup 1 (two or three fingers in
the handle), less for cup 3 (mostly two fingers in the handle) and least for cup
2 (anatomically, only one finger fits into the handle). The color of each sample
encodes the probability with respect to the density defined by the prior itself
(Eq. (5.6)). Red stands for a low and green for a high probability.

Figure 5.13 gives examples with regard to the contact and intersection proba-
bilities. In Figure 5.14 and Figure 5.15 we show the process of synthesizing
a grasp for a given cup and for a hand with a given anatomy (in this case the
anatomy of the synthetic hand introduced in Section 3.5.2). The first image in
each figure shows the cup on which a grasp was actually observed. Contact
points of the individual fingers are indicated as colored dots on the mesh. The
rest of the figures illustrate the collected frames (adapted to the required hand
anatomy), the transformed prior, and the synthesized grasp (once rendered to
visualize the 6d hand segment space and once using the synthetic hand to allow
for a better intuition of the results). Grasp synthesis based on a prior requires
≈ 30 seconds.

Figure 5.16 shows the warp of a prior consisting of only six of the seven se-
quences from cup 3 to cup 2. The figure demonstrates well the nature of our
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(a) Contact point attraction (b) Intersection avoidance

Figure 5.13: Probability terms favoring contact and avoiding object intersec-
tion. Colors are normalized from red (low probability) to green (high proba-
bility), therefore all samples of hand segments without contact/intersection are
drawn in red.

data-driven system: in all six sequences the test persons grasped the handle
with two fingers. As a result, the hand synthesized for cup 3 exposes strong
self-intersection of two fingers in the tiny handle (violating intersection con-
straints). However, the situation is resolved correctly by the system as soon as
the seventh sequence is added to the prior (Figure 5.17).
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(a) Contact

(b) Prior (c) Warped prior

(d) Synthesized grasp (e) Synthetic hand

Figure 5.14: Synthesized grasp, derived on the basis of the observation of
only one person grasping a different cup. Grasp of cup 3, using the observation
of person 2 grasping cup 1. (a) Originally observed contact points. (b) The
derived prior. (c) The transferred prior. (d) The selected grasp (visualizing the
6d hand segment space). (e) The selected grasp (rendered using the synthetic
hand).
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(a) Contact

(b) Prior (c) Warped prior

(d) Synthesized grasp (e) Synthetic hand

Figure 5.15: Synthesized grasp, derived on the basis of the observation of
only one person grasping a different cup. Grasp of cup 1, using the observation
of person 1 grasping cup 3. (a) Originally observed contact points. (b) The
derived prior. (c) The transferred prior. (d) The selected grasp (visualizing the
6d hand segment space). (e) The selected grasp (rendered using the synthetic
hand).
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(a) Contact

(b) Prior (c) Warped prior

(d) Synthesized grasp (e) Bad grasp

Figure 5.16: Erroneous grasp synthesized for cup 2 using only six of the seven
sequences observed on cup 3. (a) Originally observed contact points. (b) A
prior considering only six of the seven sequences. All six test persons grasped
the handle with two fingers. (c) The warped prior. (d,e) The selected grasp.
Intersection constraints are strongly violated since there is not enough room
for two fingers in the small handle.
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(a) Prior (b) Additional samples

(c) Final grasp (d) Result

Figure 5.17: Grasp synthesized for cup 2 using all seven sequences observed
on cup 3. (a) The prior considering only six of the seven test persons. All
six persons put two fingers into the handle. (b) Hand poses from the seventh
sequence used to augment the prior. The observed person has a rather large
hand and hence used only one finger to grasp the handle. (c,d) The selected
grasp.
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5.7 Conclusion

In this chapter we have presented an object-dependent hand pose prior, which
is useful even when derived from sparse training data. A key feature of the prior
is that it can be generalized towards new hands and new objects. Therefore it
has high relevance for many interesting applications.

After repeating some key properties of the employed hand model we first in-
troduced the prior model. In analogy to the hand model, the prior is defined by
a product of local hand segment distributions. These distributions are learned
from training sequences and with a Parzen-Rosenblatt estimator.

Next we discussed the raw data that is necessary to produce a prior and how
we acquire this data with our structured-light system. Required information
includes hand poses, object shape, object poses, and temporal segmentation.

Focus then lay on the transfer of the prior from observed hands and objects
to hands with unseen anatomies and to novel objects of the same class. The
transfer involves 1) hand retargeting, which maps observed hand segment sam-
ples to new hand anatomies, and 2) object warping, mapping the samples in
accordance with the respective geometry warp from one cup to another.

The next section was dedicated to the integration of the prior into the belief
propagation framework presented in Chapter 4. The prior is introduced via the
data term of each node in the hand graph, together with contact point attraction
and intersection constraints. As a result we obtain a unified framework for both
hand tracking and grasp synthesis.

The result section finally provided experiments with respect to the two appli-
cations we targeted: improved hand tracking and grasp synthesis. 21 training
sequences containing 7 different hands manipulating 3 different cups served as
input for qualitative and quantitative evaluation.

There are some limitations with respect to the geometry warping. Firstly, we
stated that we currently define correspondences between the initial and the tar-
get mesh manually, although there may be methods to do this automatically.
Another issue is the following: if the geometry of the two meshes is too dif-
ferent (like the big handle of cup 1 and the tiny one of cup 3) the warp field
has strong discontinuities. This is reflected in the extrapolated warp field and
warped hands strongly violating anatomical constraints.
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In contrast to Chapter 4, we have dealt here with true hand-object interaction
by modeling implications of a manipulated object for the manipulating hand.
However, regarding synthesis we have somehow neglected the inherent tempo-
ral nature of object manipulation. While grasps are an essential intermediary
step, it is the change of hand states that causes changes in the object state. In the
next chapter we make an effort to synthesize computer animations containing
not only static grasps but also manipulations of non-rigid objects.





6
Data-Driven Animation of
Hand-Object Interactions

Like Chapter 5, this Chapter is concerned with the synthesis of manipulating
hand poses. However, in Chapter 5 temporal considerations were limited to the
segmentation of observed actions. In contrast, we now introduce the temporal
component into synthesis, and extend static grasp synthesis to dynamic hand
motion synthesis. In particular, we also account for possible temporal offsets
between manipulating hand poses and the effect on the object. Another exten-
sion to the previously presented methods is that we treat not only rigid objects
but also articulated objects, i.e., objects consisting of more than one connected
rigid parts.

Our goal is to generate animated sequences containing hand-object interaction,
solely by animating the involved object. Animating the many DOFs of a ma-
nipulating hand manually is the more difficult part in the context of hand-object
interaction. However, animating an object can easily be done by a 3d artist with
the aid of 3d modeling software, if there are only a few DOFs to control or if the
DOFs are largely independent. Based on such an object animation and causal-
ities derived from observations of real object manipulations, the corresponding
hand motion can be synthesized automatically. The described method was ac-
cepted for publication at the IEEE International Conference on Automatic Face
and Gesture Recognition 2011 [Hamer et al. in press].

6.1 Overview

When humans interact with objects, hand and object motions are strongly cor-
related. Moreover, a hand manipulates an object usually with a purpose, chang-
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Figure 6.1: Clamshell phone. The phone has to be opened before a number
can be dialed.

ing the state of the object. Vice versa, an object has certain affordances [Gibson
1979], i.e., it suggests a certain functionality. Consider the clamshell phone in
Figure 6.1 as an introductory example. Physical forces are applied to pick up
such a phone and to open it. Once the phone is opened, the keys with the digits
suggest dialing a number.

The affordances of an object have the potential to ease hand animation in the
context of hand-object interaction, e.g., given the clamshell phone and a num-
ber to dial, the necessary hand motions to make a call can be synthesized.
This is particularly interesting when the object has fewer degrees of freedom
(DOFs) than the hand (e.g., opening the phone requires just a one-dimensional
rotation) or when the DOFs are largely independent (like in the case of the sep-
arate digits of the phone). Animating such an object is easier for an artist than
animating the hand or both. Ideally, simple scripting of object state changes
infers a complete hand animation to carry out these changes.

Inspired by these considerations, we present a method to animate a manipulat-
ing hand conditioned on an animation of the manipulated object. The approach
is data-driven, so we require that the object has previously been observed dur-
ing manipulation. This training phase involves a semi-automatic acquisition
of hand poses and object poses from the structured-light data. The pose of an
object always comprises its translation and rotation. In case of articulated ob-
jects, the object’s pose also includes information regarding the arrangement of
its parts. Based on the tracked hand and the tracked object, we infer 1) the var-
ious states of the object during manipulation, 2) the hand configurations that
cause object state transitions, and 3) the spatio-temporal correlations between
key hand poses and key object poses. For instance, the state of the clamshell
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phone can be either closed or open and a specific temporal hand movement is
required for opening and closing. Data acquisition and training is required only
once for a new object.

For animation, the object pose and contact points optionally created by the
artist are used to generate hand poses for key frames. The hand pose transi-
tions that have been observed during training then form the basis for hand pose
interpolation to obtain a plausible hand-object animation. With this technique
an artist can quickly produce a great variety of different animations without the
need of acquiring new data.

Many approaches in computer graphics are concerned with realistic hand ani-
mations. For example, in [Albrecht et al. 2003] an anatomically-based model
is animated by means of muscle contraction. However, there has been less work
with respect to hand-object interaction. Some approaches address the synthe-
sis of realistic static grasps on objects [Li et al. 2007] or grasp-related hand
motion [Pollard and Zordan 2005, Kry and Pai 2006, Liu 2008, Liu 2009].
Li et al. [Li et al. 2007] treat grasp synthesis as a 3d shape matching prob-
lem: grasp candidates are selected from a large database by matching contact
points and surface normals of hands and objects. Pollard and Zordan [Pollard
and Zordan 2005] propose a grasp controller for a physically-based simula-
tion system. To obtain realistic behavior, the parameters of the controller are
estimated from motion sequences captured with markers. A similar method
is used by Kry and Pai [Kry and Pai 2006] where hand motion and contact
forces are captured to estimate joint compliances. Recently, Liu [Liu 2008,
Liu 2009] formulated the synthesis of hand manipulations as an optimization
problem where an initial grasping pose and the motion of the object are given.
Besides grasping motions, hand motions for musical instruments have also
been modeled [Kim et al. 2000, ElKoura and Singh 2003]. In these works,
a hand plays a specific musical instrument, e.g., violin or guitar.

We now classify our approach and at the same time point out differences to the
other works.

1. Our approach is data-driven as we exploit observations of real manipula-
tions to ease the synthesis of new animations. This is a common strategy
with regard to the animation of manipulating hand motion, since manual
modeling of hand-object interaction does not achieve realistic results.
However, in contrast to our method most data-driven systems use in-
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vasive techniques like markers or gloves [Li et al. 2007, Pollard and
Zordan 2005, Kry and Pai 2006].

2. We consider not only grasping but also manipulations where contact
points change dramatically during hand-object interaction. Works like [Kim
et al. 2000, ElKoura and Singh 2003] in which musical instruments are
played are other notable exceptions.

3. The hand is controlled by the state of the manipulated object. In [Liu
2008, Liu 2009] a hand is also controlled by means of the manipulated
object, but their objects are not articulated and typically only grasped.
Moreover, an initial grasp has to be defined which is not necessary with
our method. In [Kim et al. 2000, ElKoura and Singh 2003], a hand plays
violin or guitar. The hand is somehow controlled by the object (a certain
musical score is requested), but in those works the object state does not
involve a significant geometric deformation of the object. [Pollard and
Zordan 2005] also do not deal with articulated objects, and the hand state
is determined by a learned grasp controller and not by a manipulated
object.

6.2 Learning by Human Demonstration

Our goal is to generate animations of a hand manipulating an object by ani-
mating the object only. To this end, we fuse several types of information. On
the one side, there is the object animation created for example in Maya. On
the other side, we use information regarding the manipulation of the respective
object (e.g., hand poses in relation to the object, possible articulations of the
object, and timing information). The latter is obtained from human demonstra-
tion.

6.2.1 Capturing Object Manipulation

Again, all our observations are retrieved by the structured-light setup. We ob-
serve the manipulation of a specific object by a human hand and gather infor-
mation regarding a) the fully articulated hand pose and b) the object’s surface
geometry and the object pose. The pose of a rigid object is 6 dimensional
(translation + rotation). In case of an articulated object there are additional
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DOFs. For example, the clamshell phone has one extra DOF representing the
angle between the main body and the display.

Hand poses are captured as described before (see Chapter 4) with the hand
model consisting of local parts (Figure 6.2(a)) connected in a hand graph (Fig-
ure 6.2(b)). Samples are drawn (Figure 6.2(c)) and belief propagation is per-
formed to find the best estimate.

(a) Hand model (b) Graph (c) Local samples

Figure 6.2: Hand tracking. (a) Hand model with a skeleton and ruled surfaces
for the skin. (b) Graphical model for inference. (c) Depth data and hand seg-
ment samples. Color encodes relative observation likelihood: green is highest,
red is lowest. The palm has uniform observation likelihood. An arrow indicates
the viewing direction of the camera.

In analogy with Chapter 5 we perform in-hand scanning (Section 3.4) to obtain
partial meshes of objects (see examples in Figure 6.3). With the partial mesh
of an object available, we determine in an offline process the object’s 6d pose
(translation and orientation) for each frame of a sequence containing the object
and some manipulation. For this, we again use ICP to fit the respective mesh
to the observation.

For articulated objects we produce a separate mesh for each extreme articu-
lation. In the example of the clamshell phone one mesh represents the phone
closed state and a second one the phone open state. We then fit the respec-
tive mesh to the data, depending on the object’s state. However, this leaves us
without a registration during object state transitions from one state to the other.
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(a) Camera (b) Clamshell phone (c) Cup

Figure 6.3: Partial meshes of a camera with a zoom, a clamshell phone, and a
cup. The meshes were created by integrating several range scans.

6.2.2 Identifying Articulated Object States

There is a strong dependency between the state of an articulated object and its
usage. We will consider the camera and clamshell phone examples of Figure
6.3. A closed clamshell phone is treated differently than an open one. Identi-
fying the articulated states of an object manipulated in front of the structured-
light setup is key to extracting manipulation knowledge. We approach the issue
with a distance matrix for all frames of an observed sequence. To measure the
distance between two range scans S1 and S2, we first remove all 3d points that
have skin color. For each remaining point p of scan S1, the closest point qp
in S2 is found after global ICP alignment. To obtain a symmetric measure,
we compute the smallest distances in both directions and take the sum as the
distance:

d(S1, S2) =
∑
p∈S1

‖p− qp‖+
∑
q∈S2

‖q − pq‖. (6.1)

Figure 6.4(a) shows the distance matrix for a sequence of 177 frames in which
the camera is manipulated. The lens of the camera first emerges and then re-
turns to the original position. The two different states - lens completely moved
in or out - are visible. To obtain a significant measure for frame segmentation,
we compute the standard deviation for each column of the distance matrix (Fig-
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ure 6.4(b)). High values indicate frames in which the object is in one of the two
binary states.
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Figure 6.4: Detecting object states in observed data. (a) Distance matrix for
a sequence of 177 frames in which the camera is manipulated. Dark means
similar. (b) Standard deviation of the columns of the distance matrix.

6.2.3 Transition Intervals of Object and Hand

A manipulating hand is typically most active when it causes the object to pass
from one state to another (object state transition). In order to find the hand
poses that produce a certain object transition, we look for corresponding hand
transition intervals. In the easiest case, hand transition intervals are temporally
identical with object transition intervals. This is usually the case when the ob-
ject is physically forced into the new state, e.g., the clamshell phone is opened
by a push. However, hand transition intervals can also differ temporally from
the object transitions.

Figure 6.5 shows three frames of the camera sequence analyzed in Section 6.2.2.
The tracked hand pushes an activation button on the camera, and thereby causes
the first object state transition visible in Figure 6.4(b). All three frames are rel-
evant and should be reflected in the animation. The camera has a time delay,
and by the time the lens state changes the finger already starts to move upwards
again.

More generally speaking, hand motion performed for object manipulation can
be approximated by a sequence of characteristic key poses, each with some
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Figure 6.5: Three frames showing an observed hand that pushes an activation
button on the camera. The black stick-model skeleton illustrates the estimated
hand pose. The registered mesh of the camera is drawn in red. In this case,
we excluded the lens so that the same mesh can be registered throughout the
complete sequence.

temporal offset with respect to the object state transition. We assume that sig-
nificant hand poses are those surrounding intervals of rapid change in hand
state space (excluding wrist translation and rotation). To reduce noise from
this high dimensional state space, we apply principal component analysis.

Figure 6.6(a) shows the projection of the hand poses of the camera sequence
to the first principal component. The two relevant hand states are visible at
−30 and 30. The figure can be interpreted as follows: the index finger of the
manipulating (right) hand is extended in the beginning of the sequence. It then
approaches the activation button of the camera, presses the button, and then
raises again. This causes the lens of the camera to emerge (zoom). This hand
motion is shortly after repeated, this time with the purpose to make the lens go
back. Figure 6.6(b) focuses on frames 0 to 100 of the sequence and the first
object state transition. The beginning and end of each transition interval of the
hand are expressed relative to the middle of the object state transition, i.e., the
lens is in the middle of emersion (Figure 6.4(b)). Finally, the tracked sequence
is divided into a series of hand transition intervals indicated by the arrows in
Figure 6.6(b).

6.3 Animation Framework

Figure 6.7 gives an overview of our method. The previous section shows how
to acquire and process training examples (left of Figure 6.7 - training). We now
describe how to create a new animation. First, the artist chooses a hand to be



6.3. ANIMATION FRAMEWORK 103

0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

frame

pr
oj

ec
tio

n

(a) Hand PCA

−40 −20 0 20 40
0

1

2

frame

ha
nd

 s
ta

te

(b) Hand Transitions

Figure 6.6: (a) The two states of the hand are indicated by the values −30

(index finger extended) and 30 (index finger flexed). The sequence starts with
the extended index finger (frame 0). Around frame 20, the finger flexes to press
the activation button on the camera, causing the lens to emerge. After frame
50, the index finger begins to extend again. The same hand motion is repeated,
starting near frame 90, to make the lens go back again. (b) The beginning and
end of each transition interval of the hand are expressed relative to the middle
of the object state transition, i.e., the lens is in the middle of emersion. Red
arrows indicate the transition from extended to flexed index finger and vice
versa.

animated, and hand retargeting is performed. Then the artist defines an object
animation (right of Figure 6.7 - animation). Finally, the training information
and the artist’s input are combined to generate a new animation (bottom of
Figure 6.7).

6.3.1 Hand Retargeting

All hand poses estimated from real data exhibit the anatomical dimensions of
the demonstrating hand. Since we seek an animation of the synthetic hand
(Section 3.5) we adapt the hand anatomy as described in Section 5.4.1, pre-
serving finger tip positions. Further we convert the resulting hand poses from
the state space of the tracking model to the state space of the synthetic hand.
On the one side, we discard some information (e.g., little gaps between fingers
possible due to soft constraints). On the other side we sometimes violate the
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Observation Artist

hand pose
object pose
object state

object transformation
object state
contact points

object transitionshand transitions
object transitions

key frames animation

Training Animation

Figure 6.7: Animation procedure. The observations are processed only once
for training (left). A new object animation can be created in Maya where the
object transitions are automatically extracted (right) to obtain key frames. The
training data is then used to generate a corresponding hand animation.

anatomical constraints of the synthetic hand to allow for a wider range of hand
poses.

6.3.2 Object Animation

Figure 6.8: Rough object models created in Maya on the basis of the partial
meshes. The clamshell phone contains a joint controlling the angle between
main body and display. For the camera a cylinder was added to represent the
lens. The mesh of the cup was created by mirroring and is almost closed.



6.3. ANIMATION FRAMEWORK 105

Based on partial meshes created by integrating several range scans (Figure 6.3),
we created three Maya models (Figure 6.8). In the case of the clamshell phone,
a joint was added to enable the animation of the opening and closing process.
For the camera, a polygonal cylinder represents the lens. As input to our sys-
tem, the artist creates an animation of the object, varying translation, rotation,
and the object’s articulation over time. Articulation is represented by continu-
ous parameters, e.g., the translation of the lens of the camera or the angle of the
joint of the clamshell phone. In addition, the artist can optionally specify con-
tact points between the hand and the model in desired key frames, e.g., when
the animated hand should dial a specific digit.

6.3.3 Combining Information

At this point, the information from the training data and the artist can be com-
bined. Contact points defined by the artist are used to compute hand key
poses. These key poses are derived taking into consideration the desired con-
tact points, as well as all hand poses observed for a certain articulated pose of
the object. Figure 6.9 shows all hand poses of a training sequence observed
while the clamshell phone is open.

In more detail, we seek the hand pose which is 1) close to the observed hand
poses, 2) realizes the contact best, and 3) does not intersect with the object’s
geometry. We perform inference by running belief propagation on the hand
graph. Note that this is the very procedure described in Section 5.5, i.e., the
observed hand poses form an object-dependent hand pose prior.

Other key frames result from the defined object state transitions (Section 6.3.2).
Their midpoints determine the timing of the corresponding hand pose transi-
tions observed in Section 6.2.3. Hand pose interpolation between key frames
of the hand is performed as follows:

• If the animator wants to pause in a certain object state this leads to a
simple freeze.

• Between key frames specified via contact points, a linear interpolation
regarding the joint angles of the animated hand is applied. The time
warping is non-linear and reflects the assumption that human hands at
first approach their targets fast but slow down in the end [Rao et al.
2002]. We transfer this observation to individual hand segments. The
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Figure 6.9: Hand poses observed in a training sequence while the clamshell
phone is opened. All poses are expressed in local object coordinates.

duration of the transition is normalized to t = [0, 1]. The angle vector θ
contains three angles with respect to the rotation of a certain joint and is
defined by

θt = θt=0 +
√
t · (θt=1 − θt=0). (6.2)

The square root of t causes a decrease of the speed as t approaches 1.

• For hand transitions between key frames caused by object state transi-
tions, we follow a two-stage procedure. Initially, we temporally scale the
observed hand transition, to synchronize it with the artist’s prescription.
However, this is more or less a replay and does not suffice. Observed
transitions are characterized by a key frame at their start and end. An
ending key frame and the subsequent starting key frame may be quite
different, hence, the final hand animation has to blend out such abrupt
changes. We formulate this as an optimization problem that strikes a bal-
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ances between staying close to the observed transitions, while producing
good blends between their boundaries:

argmin
dΘt

∑
t

‖dΘt − dΘ̃t‖2 + α · ‖Θ0 +
∑
t

dΘt −Θ1‖2.

A transition is split into increments dΘt, and dΘ̃t represents the corre-
sponding increments of the stretched replay. Hence, the first term en-
forces compliance with the replay. The second term ensures the blend-
ing. Θ0 and Θ1 are the joint angles at the start of two subsequent transi-
tions. α is a user parameter and controls the trade-off between compli-
ance with the stretched replay and smooth blending. In our experiments
we set α to 10.

6.4 Results

We now present results of the proposed method with respect to the three objects
introduced earlier: the camera, the cup, and the clamshell phone. We also dis-
cuss the additional example of a mortar and the appendant pestle. Tracking is
required only once for training. The artist can then create animated sequences
by only defining the (articulated) state of the object. Our models are quite
rough, but they suffice for illustration and could be replaced by high quality
ones.

The example of the mortar and the pestle is the most basic one, but illustrates
well how animated sequences can clarify the intended usage of tools. The ani-
mation depicted in Figure 6.10 (top) is based on a single observed frame show-
ing a hand holding the pestle (see Figure 6.10 (bottom,left)). The estimated
hand pose in that frame is expressed in the coordinate system of the pestle, and
the crushing movement of the pestle was defined in Maya. The mortar itself
plays only a passive role.

The example of the camera (Figure 6.11) is more advanced because the lens
can be in or out, and temporal dependencies have to be considered: the index
finger approaches the button and starts to flex again before the lens comes out.
In the tracked sequence (top row, left), the demonstrator presses a button on
the camera twice, causing the lens of the camera to emerge and then to retract
again. In the object animation created in Maya, the zoom emerges and retracts
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twice, triggering the respective hand movements to create the final animation
(two cycles of the bottom row).

The case of the cup is a little different. Since the cup consists of a single rigid
body, the artist can only animate its translation and rotation in Maya. However,
to model the grasping process, we augment the cup’s state space with a binary
flag indicating whether the animated cup is moving or not. When it does move,
a firm grasp of the hand on the handle must already be established, to suggest
it is the hand moving the cup. Consequently, the process of grasping must
be initiated before the artist wants to change the position of the cup. This
temporal offset, the key hand poses, and the hand pose transitions between key
poses are again obtained from the observation. Figure 6.12 is dedicated to the
cup example. In the tracked sequence (top row), the cup is grasped, lifted, put
down, and released. In contrast, in the animation (middle row), the cup is not
only lifted but also poured out. Two close-ups (bottom rows) illustrate this
difference. The cup model was created by mirroring the corresponding mesh
and only has a few holes.

Finally, we come to the clamshell phone. The artist controls its translation and
rotation, as well as the articulated state (phone closed or open). In addition, ob-
ject contact can be enforced in desired frames in order to let the animated hand
dial an arbitrary number. The tracked sequence is shown in the top row of Fig-
ure 6.13. To track the object, we registered the respective mesh (phone closed
or open) with the data. The tracked hand initially holds the closed phone. The
phone is then opened and the digits from one to nine are dialed in order. There-
after the phone is closed again. In the animation (middle row), the phone is
first picked up. This results from a simple rigid transformation of the phone in
its closed state. Then, the phone is swung open. In this case the timing of the
animation is different than that of the observed demonstration, so the observed
hand pose transition has to be stretched. While the phone is open, the animated
hand dials a number defined by the artist. Finally, the phone is closed again,
and a rigid transformation is applied to lay the phone down. Some texture
information was added to the model in Maya. Close-ups are provided in the
bottom row.
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Figure 6.10: Generating a sequence with a mortar and a pestle used for crush-
ing. The animation (top) is based on a single observed frame showing a hand
holding the pestle (bottom,left). The estimated hand pose in that frame is ex-
pressed in the coordinate system of the pestle, and the crushing movement of
the pestle was defined in Maya. (bottom,right) Close-up of one of the animated
frames.
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Figure 6.11: Generating a sequence involving manipulation of the camera.
(top,left) Three frames of an observed sequence in which the hand and the
camera was tracked. The estimated hand pose is indicated by the black stick-
model skeleton, the partial mesh of the camera registered with the data is drawn
in red. In the observed sequence, the lens of the camera emerges and goes back
once. (top,right) Close-up of the rendered model of the camera, once with
retracted lens and once with emerged lens. (middle) Frames of the animated
sequence. In the complete sequence, the zoom emerges and retracts twice,
triggering the respective hand motions with the temporal offsets observed in
real data. (bottom) Close-up of one of the animated frames.
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Figure 6.12: Generating a sequence involving manipulation of the cup. (top)
The tracked sequence. Hand poses are drawn in black, the registered mesh
of the cup in red. The cup is grasped, lifted up, put down, and released. No
pouring is demonstrated. (middle) An animated sequence in which the cup
is not only lifted but also poured. The movement of the cup and the pouring
together with the corresponding hand motion results from the object animation
in Maya. (third and fourth row) Close-up of one tracked and one animated
frame.
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Figure 6.13: Generating a sequence involving the clamshell phone. (top) The
tracked sequence. Hand poses are drawn in black, the registered mesh of the
phone in red. The phone is opened, the digit from 1..9,0 are dialed in order,
and the phone is closed again. (middle) In the animated sequence the phone
is first picked up (which was never observed) and then opened. The thumb
movement during opening is interpolated based on the observation, resulting
in a kind of flicking motion. After opening the phone, the animation artist can
dial an arbitrary number via the definition of contact points. The interpolation
between dialing poses is fast in the beginning and slower in the end, to create
a realistic impression. Finally, the phone is closed and put down. (bottom)
Close-up of some frames.
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6.5 Conclusion

We presented in this Chapter a method to automatically synthesize the mo-
tion of a hand manipulating an object, given 1) observations of a human hand
interacting with the object and 2) an animation of the manipulated object. An-
imating the hand directly is very hard because of the many DOFs. Instead, the
artist has full control of the object for creating an initial object animation.

First, we introduced the concept of combining an object animation created in a
3d modeling software with manipulation knowledge derived from observation.
On the observation part we referred to the mechanisms for hand and object
tracking introduced earlier in this work. With respect to object tracking we
discussed the extensions to support articulated objects.

Then we described how to identify discrete object states of observed, artic-
ulated objects. In more detail, a distance matrix referring to the individual
frames of a manipulation sequence was introduced. Based on this matrix, a
metric for frame segmentation with respect to object articulation was proposed.

The discrete object states lead naturally to object state transition intervals, i.e.,
intervals in which the object changes from one articulated state to another. We
then show how we find associated hand transition intervals and explain that
object and hand transition intervals are not always in direct temporal corre-
spondence.

We further demonstrated how combining the 3d artist’s object animation with
observed hand and object state transition intervals delivers key frames for the
hand in the output animation. Our data-driven approach to interpolate between
those key frames includes an optimization step and we gave details on that
matter.

In the result section we presented four animated sequences containing hand-
object interaction that were produced by our method. The manipulation per-
formed by the synthetic hand on each of the four objects differs significantly
from the observed manipulation, which illustrates the freedom of the 3d artist.

Summarizing, we contributed to the state of the art in this field by a method
that eases the generation process of animated sequences containing hand-object
interaction. We can encode temporal aspect like the delay between a manip-
ulating hand motion and the effect on the object. The involved objects may
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optionally exhibit articulation. In addition to animating the object’s pose, an
animation artist can enforce contact points in desired key frames.

The most significant limitation of our system is that the observed and the ani-
mated objects are currently the same. In the future we imagine a system which
allows the artist to load an arbitrary, unobserved object mesh. Based on ob-
ject recognition techniques (maybe exploiting 3d features like spin images), a
similar object for which interaction was observed, could be loaded from a data
base. Regarding the transfer of manipulation knowledge from the observed ob-
ject to the new one, we consider the warping techniques proposed in Chapter 5
as a first step.



7
Discussion

The content of this work shall now be recapitulated and discussed. We begin
with a short summary of our contributions, and for each contribution we point
out the difference to previous methods. Our work will then be considered on a
more abstract level, and we will arrange it with respect to the diagram in Figure
7.1. Thereafter, we elaborate on issues not addressed in this work and highlight
future opportunities. This will then lead us to the conclusion of this work.

7.1 Contributions

First, we introduced a marker-less method to track a hand which interacts with
an object. For better robustness, each hand segment has its own local tracker.
The local trackers are connected in a pairwise Markov random field which en-
codes the structure of the manipulating hand. In each frame, the best hand
pose estimate is found by belief propagation. For tracking, we use not only
color information but also range data delivered by a structured-light system.
To this end we developed a special observation model, comparing local sur-
face patches rendered on the GPU to the depth data. In contrast to previous
hand pose estimation techniques, we handle explicitly not only severe self-
occlusions but also occlusion of the hand by a manipulated object. The method
was validated on artificial data with ground truth as well as on real data ob-
tained by the structured-light setup.

Second, we encoded observed manipulation knowledge in an object-dependent
hand pose prior. After tracking hands and objects, the estimated hand poses are
expressed in local object coordinates. The prior is then modeled as a spatial
distribution conditioned on the object. The probability of a hand pose can then
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be computed with respect to the prior, contact point attraction, and intersection
constraints. A key feature of the prior is that it can be generalized, i.e., trans-
ferred to other objects of the same object class and to new hands. We presented
two applications of this: 1) improved hand tracking and 2) grasp synthesis for
unobserved hands and objects. Compared to other approaches analyzing in-
terdependencies during hand-object interaction, we address the relationships
between the hand and the detailed shape of the manipulated object.

Third, a data-driven method to animate hand-object interaction was presented.
The method takes as input an animation of an (articulated) object and gener-
ates the corresponding hand motion automatically. For this, training data of
real object manipulation performed in front of the structured-light system is
exploited: for a new object, we infer from training data 1) the various states
of the object during manipulation, 2) the hand configurations that cause object
state transitions, and 3) the spatio-temporal correlations between key object
poses and key hand poses. Training is only required once. After that, an artist
can quickly produce a great variety of different animations without the need
of acquiring new data. Other approaches to animate hands conditioned on a
manipulated object do not support articulated objects, significantly changing
contact points, and temporal dependencies.

Having summarized the individual building blocks of this work, we will now
consider them in the greater context of modeling hand-object interaction. Cre-
ating simplifying models for the subject of interest is a common procedure in
science. Modeling hands and objects bears many challenges. However, the task
is somehow concrete for such physical matters. In contrast, the correlations and
interdependencies between a manipulating hand and the manipulated object are
less clearly defined: a great variety of different factors have an impact on the
scenario. Examples of such factors include the anatomy and strength of the
hand, personal preferences of the acting human, shape and surface properties
of the object, and physical quantities like gravity.

Despite the complexity of the setting we have suggested methods that address
certain aspects of hand-object interaction. We will now arrange these methods
with respect to the diagram in Figure 7.1. In the center of the diagram stands
the model encoding hand-object interaction. Hand information is divided into
the actual state of the hand (ground truth) and the hand observation. Object
information is split likewise. In the following text we refer to the different
arrows within the diagram by their number (1-8).
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Figure 7.1: A diagram illustrating the interplay of our hand-object interac-
tion model and the ground truth/observation of hands/objects. Numbers at the
arrows serve for reference and imply no temporal sequence.

The ground truth state of a hand in front of a 3d acquisition setup is reflected
in the observation, i.e., the range data of the hand (1). Vice versa, the true
hand pose can be inferred from observation by hand pose estimation (7,3). For
this purpose, we have developed our hand tracking method in Chapter 4. Hand
tracking delivers estimates of the ground truth hand poses, and these contribute
to our model (2).

We track not only the hand but also the object. Like in case of the hand, the
ground truth object generates the object observation (6), and tracking the ob-
ject (8,4) augments our model of hand-object interaction (5). Since we obtain
not only the pose of the object but also detailed shape information, it is now
possible to compute hand-object contact points and to evaluate intersection
constraints. To go one step further, we developed the object-dependent hand
pose prior in Chapter 5 and presented two different applications. First, the prior
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can improve hand tracking (3). Secondly, we use the prior to synthesize grasps
for novel objects. i.e., based on a novel object (5) and hand-object interaction
knowledge encoded in the model, ground truth hand poses are defined (3). For
visualization, observations of the novel object and the synthesized grasp can
be obtained by rendering (1,6), for example in Maya.

Grasp synthesis was extended to motion synthesis in Chapter 6. For training,
we again acquired the poses of hands (1,7,3) and objects (6,8,4), but this time
an object’s pose could also comprise its articulation. Based on the estimated
poses, additional types of information were introduced (2,5) into the model of
hand-object-interaction: temporal correlations between key hand poses and key
object poses. An object animation (5) of an artist can then be used to synthesize
the motion of a hand (3). Again, rendering (1,6) is necessary to visualize the
results.

7.2 Limitations and Future Work

While we contributed to the state of the art with respect to the analysis of hand-
object interaction, there is still room for improvement, and we see many op-
portunities. In some cases, direct extensions of the developed methods suggest
themselves. In other cases, our work led us to completely new ideas.

The development of the hand tracker described in Chapter 4 was an essential
step for our research as it lay the foundation for all results presented in this
work. Regarding visual hand pose estimation, we have the following sugges-
tions for interesting enhancements.

• Extension of the hand model with respect to the wrist and the palm. Ini-
tially, our model consisting of local surface patches (see Figure 4.3(a))
ignored both the wrist and the palm. Later we added a simple sphere
to represent the wrist. This already increased robustness. However, a
sphere is a rather poor approximation of the highly non-rigid wrist. Bet-
ter representations of the wrist and the also non-rigid palm could be very
beneficial.

• Integration of global synergies into the local model. The local nature of
our hand-tracking method has many advantages. However, the integra-
tion of global hand pose priors is not straight forward, i.e., it is not clear
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how to enforce constraints on the hand as a whole. We state in Chapter
2 that many researchers have identified strong synergies in hand motion
[Santello et al. 1998, Mason et al. 2001, Todorov and Ghahramani 2004,
Ciocarlie et al. 2007, Tsoli and Jenkins 2007, Thakur et al. 2008,
Ciocarlie and Allen 2009]. These synergies can improve hand track-
ing, like for examples demonstrated in [Wu et al. 2001]. Experimenting
with a combined method which estimates likelihood terms locally but
also considers global synergies would be interesting.

• Combination with example-based hand pose recognition. Our approach
to hand tracking is model-based. On the positive side, model-based
approaches are not constrained to a set of examples (see Chapter 2).
On the down-side, model-based trackers require initialization and run
the risk of loosing track. Both issues could be approached by com-
bining our method with an example-based recognition technique. At-
tempts in this direction have been made in [Athitsos and Sclaroff 2003,
Stenger et al. 2003]. A recognition approach with regard to manipulat-
ing hand motion was recently introduced in [Romero et al. 2010]. We
think that combining such a system and ours has high potential.

The object-dependent hand pose prior and the related techniques presented in
Chapter 5 also provide opportunities for improvement. Again we present and
discuss some of our ideas.

• Finding a good trade-off between the prior and the observation. We have
demonstrated that the prior observed for some hand and some object can
ease the tracking of a sequence with a different hand and a different
object. However, we did not dedicate much time to tuning the trade-
off between conformity with the prior and compliance with the depth
data. This trade-off is a standard issue with respect to priors [Willoughby
1979, Poggio and Smale 2005] and should be addressed.

• Automatic detection of correspondence pairs for warping. To generalize
the prior from one object to another we apply a warp which is initial-
ized by a set of correspondence pairs. These correspondence pairs relate
the two object meshes to each other and are at the moment determined
manually. While we did not explore this matter, automatic correspon-
dence determination seems possible. 3d image features like spin images
[Johnson 1997] might serve as a starting point.



120 7. DISCUSSION

• Generalizing towards objects of other classes. In Chapter 5, we gener-
alized the prior within the same object class, i.e., we chose the example
of cups. While this is an important first step, it would be interesting to
generalize across different object classes. Staying with the examples in
this work, imagine how to dial a number not on a phone but on a cup.
One could picture a dialing thumb and fingers performing a typical grasp
on the cup’s handle. While dialing on a cup is senseless, it is often the
extreme examples that provide new insights.

Finally, we touch on unaddressed issues and future work with respect to the
animation method presented in Chapter 6.

• Registration of subsequent range scans during object state transitions.
We express the observed hand poses for the manipulation of an object
in the coordinate system of the object. During object state transitions
of articulated objects, this coordinate system is currently undefined be-
cause we cannot register a mesh. One remedy could be to compute the
increments between frames by registering subsequent range scans. The
coordinate system can then be defined at any time, considering the coor-
dinate system before the transition and a number of incremental offsets.

• Incorporating several demonstrations of the same manipulation. We cur-
rently create animations based on single demonstrations of the respec-
tive object manipulation. We consider it as an advantage of our method
that such sparse data is sufficient to produce good results. However, ob-
serving several persons manipulate the same object, and maybe offering
different manipulation styles to the animation artist could provide a valu-
able extension of our system.

• Animating unobserved objects. We demonstrated that our method can
produce animations for objects that have been previously observed dur-
ing manipulation. We did not attempt to animate an object based on
the manipulation knowledge observed on a different object. But we did
show how to generalize the object-dependent hand pose prior in Chapter
5. In addition to that, great progress has recently been made in the field
of object recognition. We envision a system in which one can load an
arbitrary object model. Based on object recognition techniques, similar
objects could be found in a database, and the associated manipulation
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knowledge would be transferred to the object of interest. Such a system
would be highly relevant not only for animating hand-object interaction
but also for a variety of other tasks, for example in the field of robotics.

7.3 Conclusion

In this work we have been concerned with the topic of hand-object interaction.
Analyzing such interaction is a complex matter, but we contributed to the state
of the art by focusing on certain aspects. In particular, it was demonstrated
that manipulation knowledge can be 1) extracted from depth data, 2) encoded
in an object-dependent hand pose prior, 3) transferred to unobserved objects,
and 4) used to ease the animation process of sequences containing hand-object
interaction.

More concretely, we presented a method to track a hand manipulating an ob-
ject, an object-dependent hand pose prior, and a method to animate hands con-
ditioned on a manipulated object. Each of these three components introduced
new ideas and concepts. The significance of 3d techniques like ours will con-
tinue to increase in the future due to the rapid development of new 3d sensing
devices, like the recently released Microsoft Kinect R©.

While developing our methods, a non-invasive end-to-end pipeline was cre-
ated. We started off by capturing hands with a structured-light system, and
concluded with a useful method for the animation of hand-object interaction,
which has the potential to ease the work of 3d animation artist. This applica-
tion is highly relevant, e.g., for the production of 3d movies or digital video
tutorials demonstrating the usage of tools. In addition, other applications like
the control of robotic hands suggest themselves.

To conclude this work, we hope that the methods and results collected in the
proposed thesis encourage other researchers across fields to advance work re-
lated to hand-object interaction.
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