Entwurf von Zustandsregelungen für hochdynamische Werkzeugmaschinen

Author(s):
Jaeger, Christian

Publication Date:
2010

Permanent Link:
https://doi.org/10.3929/ethz-a-006507435

Rights / License:
In Copyright - Non-Commercial Use Permitted
Entwurf von Zustandsregelungen für hochdynamische Werkzeugmaschinen

ABHANDLUNG
zur Erlangung des Titels

DOKTOR DER WISSENSCHAFTEN

der

ETH ZÜRICH
vorgelegt von

CHRISTIAN JAEGGER
DIPL. MATH. ETHZ

geboren am
17. Nov. 1970

von
Luzern

Angenommen auf Antrag von

Prof. Dr. Konrad Wegener
Prof. Dr. Oliver Zirn

2010
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung, Stand der Technik und Motivation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.1 Einleitung</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.2 Stand der Technik</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.3 Aufgabenstellung und Aufbau der Arbeit</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Aufgabenstellung</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Aufbau der Arbeit</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Modellierung</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1 Einleitung und Notation</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Modellbegriff</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Anwendungsbereich und Art der Modellierung</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Modelltypen</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Notation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2 Modelle ohne geometrische Bindungen</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Kinetische Energie</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Potentielle Energie</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Dämpfungen</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Stellgrössen und externe Kräfte</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Bewegungsgleichungen nach Lagrange</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2.6 Implementierung</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.3 Linearisierung nichtlinearer Modelle</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Lokale Linearisierungen</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.4 Modelle mit geometrischen Bindungen</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.5 Lineare Modelle: Aufbau der Systemmatrix</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Herleitung der allgemeinen Zustandsraumdarstellung</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Identifikation der Parameter</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Bewegungsgleichung und physikalische Bedeutung der Parameter</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.5.4 Dämpfung</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.5.5 Verhalten am TCP</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.5.6 Allgemeiner Aufbau der Systemmatrix</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.6 Lineare Modelle: Modellaufbereitung</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Minimale und balancierte Zustandsraumdarstellung</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.7 Identifikation von Übertragungsfunktionen</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Beschreibung der Heuristik</td>
<td>42</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Unterkapitel</td>
<td>Seite</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>2.8</td>
<td>Abbildung der Reglerstruktur in Simulink</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Beispiele</td>
<td>48</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Dreiachs-Prüfstand</td>
<td>48</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Hexaglide</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Klassische Kaskadenregelung</td>
<td>66</td>
</tr>
<tr>
<td>3.1</td>
<td>Frequenzbereiche und Regelkreise</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Sollwertfilter</td>
<td>69</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Einsatzbereich von Filten</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Filtertypen</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Geschwindigkeitsregelkreis</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Proportionale Geschwindigkeitsreglerverstärkung</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Integralanteil und Referenzmodell</td>
<td>71</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Geschwindigkeitssollwertfilter</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>Lageregelkreis</td>
<td>74</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Direkte und indirekte Lagemessung</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>Vorsteuerungen in P/PI-Reglern</td>
<td>75</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Symmetrierfilter</td>
<td>75</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Strukturanregung</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>Inbetriebnahmebeispiel</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Konzepte der Zustandsregelung</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Einleitung und Überblick</td>
<td>86</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Grundsätzliche Varianten der Regelung</td>
<td>86</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Robustheit</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Polvorgabe für ein System mit einer dominanten Nachgiebigkeit</td>
<td>92</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Dämpfende Polvorgabe</td>
<td>93</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Eingangssättigung in Abhängigkeit der Pollagen</td>
<td>98</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Folgeverhalten in Abhängigkeit der Pollagen</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Komplexere Systeme: Auswirkungen von Modellvereinfachungen</td>
<td>100</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Vernachlässigung höherer Eigenfrequenzen</td>
<td>100</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Vernachlässigung der Ersatzzeitkonstante</td>
<td>103</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Schwierigkeiten korrekter Identifikation</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Zustandsvorsteuerung</td>
<td>109</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Motivation</td>
<td>109</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Prinzip der Zustandsvorsteuerung</td>
<td>111</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Realisierbare Sollwerte</td>
<td>113</td>
</tr>
<tr>
<td>4.5</td>
<td>H-\infty Reglung</td>
<td>115</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Kurze Erklärung des H-\infty - Ansatzes</td>
<td>115</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Loop-shaping H-\infty</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>Anwendung Zweimassenschwinger</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Zweimassenschwinger Prüfstand</td>
<td>121</td>
</tr>
<tr>
<td>5.2</td>
<td>Eingliederung in eine kaskadierte Reglerstruktur</td>
<td>123</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Eingliederung in den Geschwindigkeitsregelkreis</td>
<td>123</td>
</tr>
<tr>
<td>5.2.2 Eingliederung in den Lageregelkreis</td>
<td>125</td>
</tr>
<tr>
<td>5.3 Polvorgabe: Compile-Zyklus CCEX</td>
<td>125</td>
</tr>
<tr>
<td>5.3.1 Umsetzung</td>
<td>125</td>
</tr>
<tr>
<td>5.3.2 Ergebnisse</td>
<td>127</td>
</tr>
<tr>
<td>5.4 Zustandsvorsteuerung: Compile-Zyklus CCFF</td>
<td>129</td>
</tr>
<tr>
<td>5.4.1 Umsetzung</td>
<td>129</td>
</tr>
<tr>
<td>5.4.2 Ergebnisse</td>
<td>133</td>
</tr>
<tr>
<td>5.5 H-∞-Regelung: Compile-Zyklus CCHI</td>
<td>138</td>
</tr>
<tr>
<td>5.5.1 Umsetzung</td>
<td>138</td>
</tr>
<tr>
<td>5.5.2 Ergebnisse</td>
<td>139</td>
</tr>
<tr>
<td>6 Anwendung Werkzeugmaschine</td>
<td>142</td>
</tr>
<tr>
<td>6.1 Dynamische Wechselwirkung X/B</td>
<td>142</td>
</tr>
<tr>
<td>6.2 Kombination von CCEX und CCCTC</td>
<td>143</td>
</tr>
<tr>
<td>6.3 Polvorgabe im Lageregelkreis</td>
<td>147</td>
</tr>
<tr>
<td>6.3.1 Zustanderfassung</td>
<td>148</td>
</tr>
<tr>
<td>6.4 Invertierender Regler</td>
<td>159</td>
</tr>
<tr>
<td>6.4.1 Grenzen der Dämpfung</td>
<td>159</td>
</tr>
<tr>
<td>6.4.2 Invertierende Vorsteuerung</td>
<td>160</td>
</tr>
<tr>
<td>6.4.3 Ergebnisse</td>
<td>163</td>
</tr>
<tr>
<td>6.5 H-∞-Regelung für den Dreiachs-Prüfstand</td>
<td>165</td>
</tr>
<tr>
<td>6.5.1 Umsetzung</td>
<td>165</td>
</tr>
<tr>
<td>6.5.2 Ergebnisse</td>
<td>166</td>
</tr>
<tr>
<td>7 Hexaglide</td>
<td>169</td>
</tr>
<tr>
<td>7.1 Inbetriebnahme Kaskadenregelung</td>
<td>169</td>
</tr>
<tr>
<td>7.2 CTC</td>
<td>170</td>
</tr>
<tr>
<td>7.2.1 Umsetzung</td>
<td>171</td>
</tr>
<tr>
<td>7.2.2 Ergebnisse</td>
<td>173</td>
</tr>
<tr>
<td>7.3 Strukturschwingungen</td>
<td>177</td>
</tr>
<tr>
<td>7.3.1 Geschwindigkeitssollwertfilter</td>
<td>178</td>
</tr>
<tr>
<td>8 Schlussfolgerungen</td>
<td>180</td>
</tr>
<tr>
<td>8.1 Zusammenfassung der Ergebnisse</td>
<td>180</td>
</tr>
<tr>
<td>8.2 Diskussion und Ausblick</td>
<td>181</td>
</tr>
<tr>
<td>A Erläuterungen</td>
<td>183</td>
</tr>
<tr>
<td>A.1 Symbolverzeichnis</td>
<td>183</td>
</tr>
<tr>
<td>A.2 Glossar</td>
<td>185</td>
</tr>
<tr>
<td>A.3 Grundbegriffe der Regelungstechnik</td>
<td>189</td>
</tr>
</tbody>
</table>
Danksagung

Die vorliegende Arbeit entstand während meiner Zeit als Doktorand am Institut für Werkzeugmaschinen und Fertigung (IWF) der ETH Zürich.

Mein Dank geht zuerst an meinen Doktorvater, den Institutsvorsteher Herrn Prof. Dr. Konrad Wegener, ohne den es weder das IWF in seiner heutigen Form, noch diese Arbeit geben würde. Er hat mir zuerst das Vertrauen entgegengebracht, die Regelungsstrategie für den Hexaglie umzusetzen, und mir im Anschluss die weitgehend selbständige Erarbeitung der vorliegenden Resultate ermöglicht.

Besonderer Dank gilt auch meinem Korreferenten, Herrn Prof. Dr. Oliver Zirn. Ihm und seiner tiefen Sachkenntnis auf dem Gebiet der Regelung, an der er mich in vielen Diskussionen teilhaben liess, verdanke ich ein Grossteil der Ideen, die in dieser Arbeit umgesetzt wurden. Darüber hinaus haben er und seine Arbeitsgruppe mir die Durchführung von Experimenten auf ihrem Prüfstand ermöglicht. Auch ohne ihn wäre diese Arbeit in der vorliegenden Form nicht möglich gewesen.

Wesentlichen Anteil am Erfolg dieser Arbeit hatten meine Arbeitskollegen am IWF, die ich nicht sämtlich mit Namen erwähnen kann. Die inspirierende und durchwegs angenehme und kollegiale Atmosphäre am Institut hat wesentlich zur Entstehung der Arbeit beigetragen. Mein besonderer Dank geht an Dr. Michael Hadorn und Markus Steinlin aus der Steuerungsgruppe des IWF, an Dr. Sascha Weikert und Dr. Sergio Bossoni, die Spezialisten für Simulation, sowie an Dr. Bernhard Bringmann, der über Messtechnik nahezu alles weiss.

Die hier vorgestellten Ergebnisse wurden teils im Rahmen eines KTI-geförderten Projektes, unter anderem mit Beteiligung der Siemens AG erarbeitet. Dieser bin ich für die Bereitstellung der Steuerung sowie der Software-Schnittstelle, ebenso wie für die fachliche Unterstützung in Steuerungsfragen zu grossem Dank verpflichtet.

Schliesslich danke ich meiner Frau Célia, sowie meinen beiden Töchtern Chloé und Carmen für ihre Geduld.
Kurzfassung

In Kapitel 3 wird die klassische P/PI-Regelung, wie sie auf den weitaus meisten Werkzeugmaschinen angewandt wird erläutert. Die Inbetriebnahmeregelung zur Kaskadenregelung nach [69], sowie weitere Regeln zur Inbetriebnahme der Regelung und der Anpassung dynamischer Grenzen für die Sollgrößengenerierung bei Verwendung von Vorsteuerungen werden diskutiert.

Die Kapitel 5 sowie 6 beschreiben Experimente mit den zuvor vorgestellten Konzepten auf zwei Prüfständen, einmal auf einem System mit einer dominanten Nachgiebigkeit und einmal auf einem mehrachsigen System.

Kapitel 7 diskutiert schliesslich die Möglichkeiten einer angepassten modellbasierten Regelung für eine 6-achsige Werkzeugmaschine mit nichtlinearer Kinematik und ausgeprägten Übersprecheffekten.
Abstract

This text is about modelling and model based control of multi-axis machine-tools. The processing of a given trajectory in a numerically-controlled machine-tool can be arranged in two units: the setpoint generation interprets the trajectory data, calculates the course of velocity and finally the position setpoints. The latter serve as input values for the second unit, the feedback control, which calculates the course of the forces to be supplied by the drives from the setpoints and from real-time position measurements on the machine axes.

Chapter 1 gives an overview over the considered subject and reviews the state of the art of model-based control strategies for machine tools. The chapter closes with todays central challenges in the field, particularly the need for control-structures adapted to mastering the excitations of a compliant machine structure in highly dynamic applications.

Chapter 2 discusses modelling of mechatronic systems with regard to model-based control. Different modelling approaches are discussed. Further an algorithm to generate a model from a dynamic compliance measurement is proposed. The general state-space model as per [69] is discussed. This model is particularly useful, since it allows a formally identical description of many systems with seemingly diverse properties. It is shown, how that description can be generalised to a wider class of systems.

Chapter 3 discusses the classical P/PI control in use on most of todays machine-tools. The commissioning rules according to [69] are discussed as well as modifications of these rules when used in combination with feed-forward control.

Chapter 4 discusses the theory for model-based control. Emphasis is placed on robustness, particularly in connection with model simplifications. The possibilities of including additional measurements to capture the machine state corresponding to the model are discussed and compared to the use of state-observers in the model.

Chapters 5 and 6 describe experiments with the previously discussed control concepts on two testbed-setups, once on a one-axis system with one predominant compliance and once on a multi axis system with multiple compliances.

Chapter 7 discusses the application of a specifically designed model based control for a 6-axis machine tool with nonlinear kinematics and pronounced dynamic cross-over.
Kapitel 1

Einleitung, Stand der Technik und Motivation

1.1 Einleitung

Im folgenden werden die Anforderungen an eine Werkzeugmaschine und ihre Steuerung grob umrissen und die Aufgabenstellung dieser Arbeit darin eingeordnet. Diese Anforderungen sind mannigfach und enthalten wenigstens die folgenden, für diese Arbeit relevanten Punkte [59]:

2. Dynamik: Schnelle Antwort auf Sollwertänderungen und hohe Beschleunigungsfähigkeit

3. Störsteifigkeit: Fähigkeit, den bei der Bearbeitung eines Werkstücks entstehenden Störkräften zu widerstehen

Die geforderte Genauigkeit, Dynamik und Störsteifigkeit variieren mit der Anwendung. Es können zur Zeit insbesondere zwei Anwendungen ausgemacht werden, die neue Herausforderungen darstellen und deren Anforderungen sich unterscheiden [29]:

- **High Speed Milling**: Der Fräsprozess wird mit erhöhter Spindelumlaufzahl von bis zu 40000 U/min ausgeführt. Dies bedingt eine proportional zu der höheren Spindelgeschwindigkeit erhöhte Vorschubgeschwindigkeit im Prozess [57]. Insbesondere bei Bearbeitungen, die die rasche Wiederholung kurzer Verfahrbewegungen bedingen, führt dies zu Strukturnregungen durch Beschleunigungen, die 10 m/s² weit übertreffen können.

- **High Precision Machining**: Die geforderten Genauigkeiten liegen hier im Bereich von unter einem Mikrometer, bei geringerer Dynamik. Herausforderungen in diesem Bereich liegen einerseits in der höheren geometrischen Genauigkeit, sowie in den bei diesen Geschwindigkeiten und bei den geforderten Genauigkeiten verstärkt hervortretenden nicht-linearen Phänomenen wie Reibung und Hysterese.

- **Die übergeordnete Kontrollstruktur** reagiert auf Echtzeiteingriffe des Benutzers, sowie auf Signale von Sensoren, die zur Prozessüberwachung in die Maschine eingebracht sind, wie beispielsweise Leistungs-, Temperatur- oder Kraftsensorik und passt die geforderten Maschinenbewegungen an - beispielsweise zur Vermeidung von Ratterschwingungen - oder löst Alarmreaktionen aus.

- **Die Interpolation** bestimmt aus den Daten des NC-Programms unter Berücksichtigung maschinenspezifischer Parameter wie Kraft- und Leistungsdaten sowie Begrenzungen von Ruck, Beschleunigung und Geschwindigkeit die Lage- und Geschwindigkeitssollwerte der Achsen und Spindeln, die sie an die *Achsregelung* weitergibt. Üblich ist, dass diese Übergabe in einer festen Taktrate, der *Interpolatortaktzeit* erfolgt, die typischerweise einen Faktor 2 bis 4 langsamer ist, als die Abtastzeit der Achsregelung\(^1\). Sie ist in erster Linie für die sollwertseitige Koordinaten interpolierender Achsen, gegebenenfalls unter Einhaltung einer definierten Toleranz verantwortlich. Allfällige geometrische Korrekturen oder kinematische Transformationen zwischen Koordinatensystemen sind ebenfalls hier angesiedelt. Der Wahl dynamischer Grenzwerte, sowie deren Einhaltung in der Interpolation, die im Gegensatz zur Achsregelung auch vorausschauend auf Grund der gesamten verlangten Bahn agieren kann, fällt eine wesentliche Rolle für die sollwertseitige

\(^1\)Es existieren andere Umsetzungen, die die Rasterung der Sollwerte innerhalb der Achsregelung ansiedeln.
1.2 STAND DER TECHNIK

Begrenzung der Strukturanregung in der Maschine zu [17, 25]. Nicht vorhersehbare Anregungen, wie beispielsweise durch Prozesskräfte sind hingegen auf dieser Ebene nicht behandelbar.

- Die Achsregelung erzeugt einerseits aus den vorgegebenen Sollwerten sowie andererseits aus den von den Messsystemen der Maschine zurückgemeldeten Istwerten die Stellgrössen, die über die Antriebe an die Maschine weitergegeben werden. Die Achsregelung bildet damit die direkte Schnittstelle zwischen den Sollwerten und der Mechanik. Sie reagiert mit möglichst geringer Verzögerung - üblich sind Abtastzeiten im Bereich von 0.1ms bis 1ms - auf die gemessenen Signale. Der Achsregelung fällt damit die Rolle zu, die von der Interpolation geforderten Sollwerte möglichst genau auf der Maschine umzusetzen. Sie agiert dabei im Gegensatz zu der Interpolation zeitlich lokal, nur auf Grund der im aktuellen Takt geforderten Sollwerte, dafür aber unter Einbezug der aktuell auf der Maschine gemessenen Istwerte. Ihr obliegt im Idealfall die Unterdrückung oder mindestens die Dämpfung von Strukturschwingungen in Gegenwart von deren Anregung durch die umzusetzende Sollbewegung ebenso wie durch Prozesskräfte.

- Die Mechanik schliesslich setzt die geforderten Sollwerte mittels der Antriebsmotoren in Bewegungen um. Von ihr wird einerseits geometrische Genauigkeit, sowie hohe mechanische Steifigkeit gefordert. Die in Diskussionen mit Industriepartnern ab und an aufstauende Frage, ob preiswerte mechanische Konstruktionen, die diese Anforderungen nur ungenügend erfüllen durch geeignete Kompensationen in Steuerung und Regelung in hochwertige Werkzeugmaschinen verwandelt werden könnten, wird in den Schlussfolgerungen am Ende dieser Arbeit auf Grund der gewonnen Erkenntnisse diskutiert.

1.2 Stand der Technik

Der folgende Abschnitt fasst den Stand der universitären Forschung zusammen. Auf die auch bei Verwendung von Zustandsreglern notwendige Inbetriebnahme eines klassisch aufgebauten Reglers, wie sie zum überwiegenden Teil in Werkzeugmaschinen eingesetzt werden, wird in Kapitel 3 ausführlich eingegangen.

Auf Polvorgabe basierende Zustandsregler für verschiedene Applikationen im Bereich Werkzeugmaschinen sind von verschiedenen Autoren, e.g. [18, 26] entworfen worden, und werden teilweise auch in Lehrbüchern behandelt [51]. Die geringe Anzahl geeigneter Anwendungen,
Abbildung 1.2: Signalflussbild der Zustandsregelung, aus [15]

In [2], [1] werden H-\(\infty\) und \(l_1\) Regler untersucht und auf ein System mit Linearantrieben angewandt. Sie stellen eine deutliche Steigerung (um bis zu 46\%) der Steifigkeit gegenüber P/PI-Reglern und eine Reduktion des mittleren Folgefehlers um über 50\% fest. Es wird auch festgestellt, dass die erste Eigenfrequenz auch bei Verwendung der getesteten Zustandsregler für die erreichbare Bandbreite des Regelsystems limitierend bleibt.

Ein systematischer Ansatz zur Auslegung von Reglern für Antriebe hochdynamischer Werk-
\[\frac{y}{u} = \frac{b}{s(s+a)} \tag{1.1} \]
berücksichtigt keinerlei Nachgiebigkeiten der Mechanik und die beiden Freiheitsgrade (Lage und Geschwindigkeit) werden durch die Messsysteme direkt erfasst. Experimentell wurde eine geringe maximale Konturabweichung von ca. 10\(\mu m\) bei hohem Vorschub von 170\(mm/s\) beim Abfahren eines rechten Winkels festgestellt. Der Wert bezieht sich auf Messungen der internen Messsysteme. Das vorgeschlagene Regelschema ist sehr umfassend und dient als Inspiration für den Entwurf eines invertierenden Regelschemas in den Abschnitten 4.4 und 6.4, s. Abschnitt 1.3. Die Autoren selber scheinen den Sinn dieses Schemas für komplexere Systeme zu bezweifeln, Zitat aus [15]:

"Furthermore, the extension of this design scheme to more complex systems would require a certain level of theoretical proficiency. Hence the feed drive research by the authors is currently being continued in developing simpler solutions which provide equivalent or better tracking performance [3]."

Abbildung 1.3: Signallflussbild der Zustandsregelung aus [63]. Der äussere \textit{High authority controller HAC} ist ein lead-lag controller und bestimmt das Folgeverhalten, der innere \textit{Low authority controller LAC} ist ein H-\infty-Regler, der zur Schwingungs-\dämpfung eingesetzt wird.

Damit werden die Spezifikationsmöglichkeiten eines H-\infty-Reglers ausgenutzt, um einen dämpfenden Regler zu erzeugen, ohne das Folgeverhalten negativ zu beeinflussen. Als Nachteil des Schemas wird von den Autoren vor allem eine deutliche Reduktion der erreichten \textit{Bandbreite} des Folgereglers C von ursprünglich $25\,Hz$ auf ca. $10\,Hz$ erwähnt, der eine Folge des vom H-\infty-Regler zusätzlich erzeugten Phasenverlust ist. Die Bandbreite von $25\,Hz$ ohne die H-\infty-Erweiterung entspricht dabei etwa der dämpfungsoptimalen Einstellung gemäss den Inbetrieb-
1.3 Aufgabenstellung und Aufbau der Arbeit

1.3.1 Aufgabenstellung

Bei der Auslegung von Zustandsreglern für Werkzeugmaschinen wird in der Literatur häufig, e.g. [3,49,61,67,68], von starren Systemen etwa gemäß (1.1) ausgegangen, deren Zustand sich durch die internen Messsysteme vollständig erfassen lässt. Diese Vorstellung ist nicht realistisch.

Dabei soll insbesondere Wert auf die Untersuchung der Robustheit solcher Regelschemata gelegt und die Abhängigkeit zwischen Robustheit und der Art der Zustandserfassung diskutiert werden.

Als Bewertungsgrösse für die Regelung wird dabei grundsätzlich das Verhalten am TCP und nicht das interne Messsystem einer Achse herangezogen.

Es ist ein weiteres Ziel dieser Arbeit, die Anwendbarkeit von Zustandsregelungen auf mehrachsige Werkzeugmaschinen zumindest exemplarisch an einem Prüfstand zu untersuchen.

1.3.2 Aufbau der Arbeit

Kapitel 2

Modellierung

2.1 Einleitung und Notation

Für eine modellbasierte Regelung müssen Modelle verfügbar sein, die einerseits hinreichend genau, andererseits hinreichend einfach sind, um in Echtzeit ausgewertet zu werden. Im folgenden Kapitel wird in einiger Detaillierung auf die Art, Herleitung und Implementierung der verwendeten Modelle eingegangen. Zunächst ist festzuhalten, was unter einem Modell verstanden wird.

2.1.1 Modellbegriff

Modell In dieser Arbeit wird ein Modell als eine Rechenvorschrift aufgefasst, die es erlaubt, die messbare Reaktion des modellierten Systems auf eine Eingangsgröße, sowie das Systemverhalten bei gegebenem Anfangszustand mit für den jeweiligen Zweck hinreichender Genauigkeit vorherzusagen.

KAPITEL 2. MODELLIERUNG

2.1.2 Anwendungsbereich und Art der Modellierung

Die vorliegende Arbeit interessiert sich hauptsächlich für zweierlei: Einmal für die Abbildung struktureller Resonanzen im Frequenzbereich bis ungefähr 100 Hz, sowie zum andern für die Abhängigkeit des Systemverhaltens von der Arbeitsraumposition, auch einfach Lageabhängigkeit genannt. Bei den erstgenannten Effekten handelt es sich um schnelle (Frequenzen ≥ 10 Hz) und kleinräumige (Auslenkungen ≤ 1 mm), gut als linear zu approximierende Effekte, bei den zweiten um großräumige, langsame, nichtlineare Effekte. Schwingungen im genannten Bereich können mit den heute üblichen Taktraten der Regelung noch korrekt erfasst und damit theoretisch auch beherrscht werden.

Diese Überlagerung von Effekten auf verschiedenen zeitlichen und räumlichen Skalen ist mindestens numerisch schwierig: Wenn beide Skalen gleichzeitig in einem einzigen Modell zusammengefasst werden, was im Sinne einer möglichst vollständigen Modellierung manchmal gewünscht wird, so entstehen nichtlineare, steife Differentialgleichungen, die numerisch anspruchsvoll zu integrieren sind. Wenngleich Programme zur numerischen Integration für solche Problemklassen seit längerer Zeit zur Verfügung stehen und auch in kommerzielle Softwarepakete (wie Matlab) integriert sind, so äußert sich die durch die Nichtlinearität entstehende zusätzliche Komplexität dennoch in wesentlich langsameren Berechnungen. Zusätzlich handelt es sich bei den Solvern in aller Regel um Multistep-Algorithmen mit variablen Schrittweiten, die für online-Integrationen in harter Echtzeit (d.h. in einem von der Steuerungshardware vorgegebenen Zeitraster) ungeeignet sind. Analytische Lösungen werden gar nicht erst in Erwägung gezogen.

Etwas überspitzt lässt sich behaupten, dass die Robotik überwiegend mit großräumigen Eigenschaften mechanischer Systeme konfrontiert ist, und sich auch damit in erster Linie beschäftigt. Die Werkzeugmaschinenindustrie ist auf Genauigkeit angewiesen und spezialisiert sich überwiegend auf Betrachtung der kleinräumigen Eigenschaften.

Strukturelle Resonanzen

Gemäß [65] sind im interessierenden Frequenzbereich primär Nachgiebigkeiten an Koppelstellen, wie Führungen und Lagern für die auftretenden Deformationen verantwortlich. Es werden im folgenden ausschließlich sogenannte Starrkörpermodelle verwendet, die Nachgiebigkeiten nur an diesen Stellen berücksichtigen. Die Modelle sind wie folgt strukturiert (Abb. [2.1]):

- Das Modellsystem besteht aus einer Anzahl starrer Körper mit bekannten Massen und Trägheitsmomenten
- Die Körper sind untereinander an bekannten Bindungsstellen durch gedämpfte Federn verbunden
- Die Federn funktionieren als rein lineare, linear gedämpfte Zug- Druckfedern mit bekannten translatorischen und rotatorischen Steifigkeiten
Einige der Körper sind über ebensolche Federn mit einem Inertialsystem verbunden

An einigen Körpern wirken zusätzlich externe Kräfte, die an definierten Punkten angreifen und Momente (Stell- und Störgrössen).

Die Dimension des Zustandsraums eines derartigen Modells ist gering im Vergleich zu demjenigen anderer möglicher Arten der Modellierung, beispielsweise durch Modellierung der Körper als elastische Kontinua und Diskretisierung über Finite Elemente. Die Starrkörpermodellierung wird häufig im Entwurfsprozess einer Maschine angewendet, um früh Varianten verwerfen zu können und nur die aussichtsreichen Kandidaten einer genaueren Prüfung unterziehen zu müssen [66]. Werden die Modelle zusätzlich linear ausgeführt, so ist die Integration der Differentialgleichung in Echtzeit möglich, was grundsätzlich eine Implementation auf einer Steuerung und Verwendung in einem Zustandsregler zulässt. Im Hinblick auf die einfache und flexible Parametrierbarkeit einer Zustandsregelung ist es wünschenswert, Modelle möglichst automatisiert erstellen zu können. Da bei der Parametrierung der Regelung die Maschine in aller Regel bereits existiert, kann davon Gebrauch gemacht werden, dass die messbare Übertragungsfunktion einem linearen Zustandsraummodell äquivalent ist (s. Anhang A.3).

2.1.3 Modelltypen

In diesem Kapitel werden die folgenden Modelltypen unterschieden:

- nichtlineare Starrkörpermodelle ohne geometrische Bindungen
- lineare Starrkörpermodelle ohne geometrische Bindungen
- nichtlineare Starrkörpermodelle mit geometrischen Bindungen
KAPITEL 2. MODELLIERUNG

Nichtlineare Starrkörpermodelle ohne geometrische Bindungen

Die Erfahrungen mit dem Versuch, ein Modell einer parallelkinematischen Werkzeugmaschine mit Hilfe eines Computer-Algebra Systems (Mathematica) zu erstellen, zeigen, dass die Komplexität eines solchen Modells rasch einen beträchtlichen Umfang annehmen kann, wenn die Bewegungsgleichung als expliziter Funktionsausdruck dargestellt werden soll. und sind kaum mehr in vernünftiger Zeit auswertbar [45]. Die hier gewählte Form einer Implementation in Matlab verzichtet darauf, die Bewegungsgleichungen als Formeln aufzuschreiben und das Programm bleibt dadurch recht kompakt. Der Unterschied in der zur Integration einer solchen Bewegungsgleichung benötigten Zeit im Vergleich zur Integration einer linearen Bewegungsgleichung ist allerdings dennoch beträchtlich, s.u.

Direkt auf derartigen nichtlinearen Modellen basierende Regler, die die numerische Integration der Bewegungsgleichung in Echtzeit (zur Zustandsbeobachtung) ebenso wie die symbolische Manipulation der Bewegungsgleichungen (zur Herleitung des Reglerkonzepts) erfordern, sind auf Grund der erhöhten Komplexität derartiger Modelle zur Zeit äusserst schwierig umzusetzen.

Lineare Starrkörpermodelle ohne geometrische Bindungen

Ein möglicher Ansatz besteht darin, die kleinräumigen Effekte von den grossräumigen Effekten abzukoppeln, in dem das allgemeine Modell aufgespalten wird in eine lokale Linearisierung des Modells um einen definierten Arbeitspunkt einerseits und ein nichtlineares, starres Modell andererseits, oder allgemeiner in die von der Bahnplanung vorgegebene Sollbewegung und die Abweichungen davon.

2.1.4 Notation

Es werden einige Notationen eingeführt, um die Schreibweise zu verkürzen. Vektoren in mitbewegten (raumfesten) Koordinatensystemen werden durch kleine, fette griechische (lateinische) Buchstaben, Matrizen im mitbewegten (raumfesten) Koordinatensystemen durch grosse griechische (lateinische) Buchstaben bezeichnet. Für Vektoren und Matrizen ist zusätzlich der Index des Koordinatensystems durch einen dem Vektor oder der Matrix vorangestellten Index gekennzeichnet: \(\mathbf{v} \) bezeichnet einen Vektor im mitbewegten Koordinatensystem mit Index \(i \). Vektoren und Matrizen im raumfesten Koordinatensystem haben keinen vorangestellten Index. Wenn Komponentenschreibweise verwendet wird, dann (und nur dann) wird die \textit{Einsteinische Summenkonvention} verwendet, wonach über repetierte stumme Indices zu summieren ist. Alle Indices in Komponentendarstellungen sind tiefgestellt geschrieben.

Für Ableitungen von Funktionen \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) werden die folgenden Schreibweisen verwendet:

\[
f'(x_0) \quad \text{für die erste Ableitung}
\]

\[
\left. \frac{\partial f}{\partial x} \right|_{x_0} = \left(\left. \frac{\partial f_i}{\partial x_j} \right|_{x_0} \right)_{i,j} \quad (2.1)
\]

\[
f''(x_0) \quad \text{für die zweite Ableitung}
\]

\[
\left. \frac{\partial^2 f}{\partial x^2} \right|_{x_0} = \left(\left. \frac{\partial^2 f_i}{\partial x_j \partial x_k} \right|_{x_0} \right)_{i,j,k} \quad (2.2)
\]

Für matrixwertige Funktionen \(F : \mathbb{R}^n \rightarrow \text{Mat}(n, n) \) schreibt man analog

\[
F'(x_0) \quad \text{für die erste Ableitung}
\]

\[
\left. \frac{\partial F}{\partial x} \right|_{x_0} = \left(\left. \frac{\partial F_{ij}}{\partial x_k} \right|_{x_0} \right)_{i,j,k} \quad (2.3)
\]

Für Multiplikationen eines Ausdrucks der Form (2.3) mit einem Vektor wird zusätzlich die folgende Schreibweise eingeführt:

\[
\langle F'(x_0) \mathbf{v} \rangle = \left[\left. \frac{\partial F}{\partial x_1} \mathbf{v} \right| \left. \frac{\partial F}{\partial x_2} \mathbf{v} \right| \ldots \left. \frac{\partial F}{\partial x_n} \mathbf{v} \right| \right] \in \text{Mat}(n, n) \quad (2.4)
\]

Des weiteren kommen die Christoffelsymbole \([11]\) vor, definiert durch
KAPITEL 2. MODELLIERUNG

Abbildung 2.2: Intertialsystem \mathcal{K}_0 und lokales System eines Körpers \mathcal{K}_1

\[
\Gamma_{ikm}(M) = \frac{\partial M_{mk}}{\partial q_i} + \frac{\partial M_{im}}{\partial q_k} - \frac{\partial M_{ik}}{\partial q_m}
\] (2.5)

und die dazugehörige bilineare Abbildung

\[
\tilde{\Gamma}(M)(v, w) := (\Gamma_{ikm}(M) v_i w_k)_m
\] (2.6)

wobei in der letzten Gleichung die Summenkonvention verwendet wurde.

2.2 Modelle ohne geometrische Bindungen

Jedem Körper wird ein lokales Koordinatensystem \mathcal{K}_i (kein Inertialsystem) mit Ursprung im Schwerpunkt des Körpers zugeordnet. Die Lage des Körpers mit Index i wird dann zu jedem Zeitpunkt durch die Angabe von 6 Koordinaten q_i in einem Inertialsystem \mathcal{K}_0 definiert, nämlich der Position x_i des Schwerpunktes relativ zum Nullpunkt von \mathcal{K}_0, sowie der Orientierung a_i von \mathcal{K}_i relativ zu \mathcal{K}_0. Man benötigt demnach 6n Koordinaten zur Beschreibung eines Systems von n Starrkörpern

\[
q_i = (x_i, y_i, z_i, \alpha_i, \beta_i, \gamma_i) =: (x_i, a_i)
\] (2.7)

Die Transformationsvorschrift von \mathcal{K}_i nach \mathcal{K}_0 lautet damit (s. Abb. 2.2):

\[
i\nu \mapsto v := x_i + R(a_i)i\nu
\] (2.8)

mit der Rotationsmatrix.
\[R(\alpha) := R_{e_1}(\alpha)R_{e_2}(\beta)R_{e_3}(\gamma) = R_{e_3'}(\gamma)R_{e_2}(\beta)R_{e_1}(\alpha) \] (2.9)

die sich aus den bekannten Rotationsmatrizen um drei in der ersten Darstellung raumfeste, orthogonale, in der zweiten Darstellung jeweils mitrotierte Achsen \(e_1, e_2, e_3 \) zusammensetzt. Die Äquivalenz der beiden Darstellungen ist wohlbekannt und folgt leicht aus den Transformationsgesetzen für Matrizen. Die Wahl der Orientierungsdarstellung ist nicht die einzig mögliche, entspricht aber in natürlicher Weise der Festlegung, wie sie beispielsweise bei einer Werkzeugmaschine mit (in dieser Reihenfolge) seriell angeordneten A, B und C Achsen auftritt. Diese Orientierungsdarstellung hat eine Singularität bei \(\beta = \pm \pi/2 \), (wo die \(x \)- und die mitrotierte \(z \)-Achse zusammenfallen) in dem Sinne, dass \(R(\alpha, \pi/2, \gamma) = R(0, \pi/2, \alpha + \gamma) \) und \(R(\alpha, -\pi/2, \gamma) = R(0, -\pi/2, \gamma - \alpha) \) für beliebige \(\alpha, \gamma \) ist.

Damit lassen sich die Bewegungsgleichungen nach Lagrange [4] in einer Form aufschreiben, die sie für numerische Berechnung und Simulation eines allgemeinen Modellaufbaus zugänglich macht:

2.2.1 Kinetische Energie
Man unterteilt die kinetische Energie in einen Translationsanteil \(E_{\text{trans}} \) und einen Rotationsanteil \(E_{\text{rot}} \).

Translationsenergie
\[
E_{\text{trans}} = \frac{1}{2} \sum_i m_i \dot{x}_i^T \ddot{x}_i
\] (2.10)

wobei \(m_i \) die Masse des Körpers mit Index \(i \) bezeichnet. Gemäß der Regel im einleitenden Abschnitt wurde hier die Summationskonvention nicht verwendet (keine Komponentenschreibweise).

Rotationsenergie
Die Rotation eines Starrkörpers wird wie üblich beschrieben durch den Vektor \(\omega \) (im Inertialsystem) bzw. \(\dot{\omega} \) (im lokalen Koordinatensystem des Starrkörpers \(i \)) der momentanen Winkelgeschwindigkeit [12]. Für die Rotationsgeschwindigkeit \(\dot{\nu} \) eines Punktes im Starrkörper mit Orstvektor \(\nu \) gilt:

\[
\dot{\nu}(t) = \dot{R}(t)\nu \quad \text{und} \\
\ddot{\nu}(t) = \ddot{R}(t)\nu + \dot{R}(t)R^T(t)\dot{\nu}(t) =: w(t) \times \nu(t)
\] (2.11, 2.12)

Die Rotationsenergie ist damit – mit Rücktransformation der Winkelgeschwindigkeit nach \(K_i \):
KAPITEL 2. MODELLIERUNG

Abbildung 2.3: Dehnung d eines Federelements zwischen zwei Körpern

\[\mathcal{E}_{\text{rot}} = \frac{1}{2} \sum_i w_i^T T_i w_i = \frac{1}{2} \sum_i w_i^T R R^T T_i R R^T w_i \]
\[= \frac{1}{2} \sum_i (R^T w_i)^T (R^T T_i R) (R^T w_i) = \frac{1}{2} \sum_i \omega_i^T \Theta_i \omega_i \]

(2.13)

Wobei T_i in \mathcal{K}_0 bzw. Θ_i in \mathcal{K}_i den Trägheitstensor des Körpers darstellt. Die Darstellung im lokalen Koordinatensystem \mathcal{K}_i hat den Vorteil, dass der Trägheitstensor Θ_i zeitunabhängig ist. Mit der Darstellung (2.9) der Rotation gewinnt man noch die zur Berechnung nützliche explizite Darstellung für die Winkelgeschwindigkeit ω_i

\[\omega_i = \begin{bmatrix} \cos \beta \cos \gamma & \sin \gamma & 0 \\ -\cos \beta \sin \gamma & \cos \gamma & 0 \\ \sin \beta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} =: \Omega(a) \dot{a} \]

(2.14)

in Abhängigkeit von den Koordinaten. Die hiedurch definierte Matrix Ω der Ableitung der Winkelgeschwindigkeit nach den verallgemeinerten Winkelgeschwindigkeiten $\dot{\alpha}, \dot{\beta}, \dot{\gamma}$ wird auch „Jacobimatrix der Rotation“ genannt. Die eingangs erwähnte Singularität der Rotationsdarstellung äußert sich darin, dass $\Omega(\alpha, \pm \pi/2, \gamma)$ singulär ist: Eine Koordinaten-Geschwindigkeit der Form $\dot{a} = (1, 0, \pm 1)^T$ bewirkt an dieser Stelle keine physikalische Winkelgeschwindigkeit.

2.2.2 Potentielle Energie

Die potentielle Energie stammt aus den Dehnungen der angenommenen Federelemente an den Bindungsstellen. Bezeichnet man die Menge aller Paare von Körperindices (i, j) von Körpern, die durch eine Bindung gekoppelt sind mit B und deren Elemente mit b, so findet man für die Zweikörper-Bindungen (s. Abb. 2.3):

\[\mathcal{U}_K = \frac{1}{2} \sum_B d_b^T K_b d_b \]

(2.15)
2.2. MODELLE OHNE GEOMETRISCHE BINDUNGEN

mit den Vektoren \mathbf{d}_b, die die translatorische und rotatorische Dehnung der Feder der Bindung b angeben:

$$\mathbf{d}_b = \left(x_{ib} + R(a_{ib})_b \nu_{ib} - x_{jb} - R(a_{jb})_b \nu_{jb} \right)$$ \hspace{1cm} (2.16)

Die auftretenden Vektoren ν_{ib} bzw. ν_{jb} bezeichnen die Vektoren vom Schwerpunkt der durch die Bindung verbundenen Körper i_b und j_b in den jeweiligen lokalen Koordinatensystemen, die diagonalen Matrizen $K_b \in \text{Mat}(6,6)$ die Steifigkeit (Kraft bzw. Moment pro lineare bzw. rotative Auslenkung) der Bindung. Für die Bewegungsgleichungen sind die Ableitungen des Potentials nach den Koordinaten relevant. Es gilt für eine Bindung b:

$$\left[\frac{\partial U_K}{\partial \mathbf{q}_{ib}} \frac{\partial U_K}{\partial \mathbf{q}_{jb}} \right] = \mathbf{d}_b^T K_b \mathbf{d}_b$$ \hspace{1cm} (2.17)

Mit der Ableitung \mathbf{d}_b' des Differenzvektors \mathbf{d}_b nach den Koordinaten:

$$\mathbf{d}_b' = \begin{bmatrix} 1_3 & \langle R'(q_{ib}) \nu_{ib} \rangle & -1_3 & -\langle R'(q_{jb}) \nu_{jb} \rangle \\ 0_3 & 1_3 & 0_3 & -1_3 \end{bmatrix} \begin{bmatrix} N_{ib}(\nu_{ib}) \\ N_{ib}(\nu_{jb}) \end{bmatrix}$$ \hspace{1cm} (2.18)

Wobei für eine Bindung b die Ableitungen nach den Koordinaten für die zwei beteiligten Körper zusammengefasst sind und die nichtlinearen Bezugsmatrizen $N_{i_b}(\nu)$ eingeführt wurden. \hspace{1cm} (2.18) ergibt sich aus der Ableitung von \hspace{1cm} (2.15) unter Berücksichtigung von \hspace{1cm} (2.16). Für die Bindungen gegen das Inertialsystem ergibt sich ein ähnlicher Ausdruck.

2.2.3 Dämpfungen

In analoger Weise erhält man durch die Einführung des geschwindigkeitsabhängigen Pseudopotentials U_D:

$$U_D := \frac{1}{2} \sum_{\mathcal{B}} \mathbf{d}_b^T D_b \dot{\mathbf{d}}_b$$ \hspace{1cm} (2.19)

Mit der zeitlichen Ableitung $\dot{\mathbf{d}}_b$ des Differenzvektors \mathbf{d}_b:

$$\dot{\mathbf{d}}_b = \left(\dot{x}_{ib} + \langle R'(a_{ib}) \nu_{ib} \rangle \dot{a}_{ib} - \dot{x}_{jb} - \langle R'(a_{jb}) \nu_{jb} \rangle \dot{a}_{jb} \right)$$ \hspace{1cm} (2.20)

$$= N_{ib} \left(\dot{x}_{ib} \dot{a}_{ib} \right) - N_{jb} \left(\dot{x}_{jb} \dot{a}_{jb} \right)$$ \hspace{1cm} (2.21)
2.2.4 Stellgrössen und externe Kräfte

Gemäss den üblichen Regeln findet man für die am Körper mit Index i angreifende verallgemeinerte Kraft F_i:

$$ F_i = \sum_k f_{ik}^TN_i(i\mu_{ik}) $$

wobei die Summe über alle am Körper angreifende Kräfte $f_{ik} \in \mathbb{R}^6$ verläuft, und die Vektoren f_{ik} in den ersten drei Komponenten die lineare Kraft, und in den letzten drei Komponenten das Moment jeweils in K_0 enthält. Der Vektor $i\mu_{ik}$ bezeichnet den Angriffspunkt der linearen Kraft mit Index k am Starrkörper, ausgedrückt im Koordinatensystem K_i.

2.2.5 Bewegungsgleichungen nach Lagrange

Damit lassen sich für jeden Starrkörper die Bewegungsgleichungen nach Lagrange

$$ \frac{d}{dt} \frac{\partial \mathcal{E}_{\text{trans}}}{\partial \dot{q}_i} - \frac{\partial \mathcal{E}_{\text{trans}}}{\partial q_i} + \frac{\partial \mathcal{U}_K}{\partial q_i} + \frac{\partial \mathcal{U}_D}{\partial \dot{q}_i} = F_i $$

darstellen. Man findet für die einzelnen Termen durch direkte Rechnung:

$$ \frac{d}{dt} \frac{\partial \mathcal{E}_{\text{trans}}}{\partial \dot{x}_i} = m_i \ddot{x}_i $$

$$ \frac{d}{dt} \frac{\partial \mathcal{E}_{\text{rot}}}{\partial \dot{a}_i} - \frac{\partial \mathcal{E}_{\text{rot}}}{\partial a_i} = \Omega^T(a_i) \Theta_i \Omega(a_i) \ddot{a}_i + \hat{\Gamma}(M)(\dot{\dot{a}}_i, \dot{a}_i) $$

$$ \left[\frac{\partial \mathcal{U}_K}{\partial q_{ib}}, \frac{\partial \mathcal{U}_K}{\partial q_{jb}} \right] = \sum_b d_b^T(q_{ib}, q_{jb})^T K_b(d_b(q_{ib}, q_{jb})) $$

$$ \left[\frac{\partial \mathcal{U}_D}{\partial \dot{q}_{ib}}, \frac{\partial \mathcal{U}_D}{\partial \dot{q}_{jb}} \right] = \sum_b d_b^T(q_{ib}, q_{jb})^T D_b(\dot{d}_b(q_{ib}, q_{jb})) $$

Der zu der Rotation eines Starrkörpers gehörende Teil der Massenmatrix M wird an den Singularstellen von R ebenfalls singulär, und damit (2.23) nicht mehr nach \dot{q} auflösnbar oder mehrdeutig. Letzteres ist im vorliegenden Fall kein Problem: Da die Koordinaten sich immer auf einen Starrkörper beziehen, ist bei $\beta = \pm \pi/2$ eine Rotation um a oder $\pm c$ gleichbedeutend, und zwangsläufig immer $\dot{\alpha} = \pm \dot{\gamma}$, ebenso wie $\ddot{\alpha} = \pm \ddot{\gamma}$. Mit dieser Einschränkung wird die Gleichung auch an dieser Stelle - wenn überhaupt - dann eindeutig lösbar.

Für alle in dieser Formulierung auftauchenden Ausdrücke liefert die Koordinatendarstellung (2.8) arithmetische Ausdrücke von überschaubarer Komplexität. Die Jacobimatrix der Rotation wurde bereits in (2.14) beschrieben, für den Christoffelmetr C in (2.25) findet man, wenn man abkürzend den Index i des Körpers unterdrückt:
\[C_m = \dot{\alpha}_l\dot{\alpha}_k \left\{ \left[\Omega^T \Theta \right]_{ms} \frac{\partial \Omega_{ek}}{\partial \alpha_l} + \left[\Omega^T \Theta \right]_{ls} \frac{\partial \Omega_{sm}}{\partial \alpha_k} - \left[\Omega^T \Theta \right]_{ls} \frac{\partial \Omega_{ek}}{\partial \alpha_m} \right\} \] (2.28)

Die Ableitungen der Jacobimatrix nach den drei Winkelvariablen können ebenso explizit berechnet werden.

2.2.6 Implementierung

Auf der oben beschriebenen Formulierung aufbauend lässt sich die Bewegungsgleichung als Rechenprogramm (hier in Matlab umgesetzt) implementieren, das die zur Modelldefinition benötigten Angaben liest und an einen Algorithmus zur Lösung gewöhnlicher Differentialgleichungen übergibt. Die zu Definition von Körperrn und Verbindungen benötigten Angaben sind in dem unten dargestellten Template zusammengefasst. Die Implementierung lässt zusätzlich die Definition geometrischer Bindungen zu.

```matlab
Koerperl = struct( ...
    'ID', 0, ... % ID, wird von Simulator vergeben
    'Name', 'K1', ... % Name, beliebig aber innerhalb des Modells eindeutig
    'masse', 0, ... % Masse
    'Theta', [], ... % Rotationsträgheit, bezogen auf KOS_K, 3 * 3
    'nExt', 0, ... % Anzahl externe Federn (skalar)
    'KPExt', [], ... % Befestigungspunkte, KOS_K, nExt * 3
    'PosExt', [], ... % Befestigungspunkte, KOS_0, nExt * 3
    'KEext', [], ... % Steifigkeiten, externe Federn, 6 * nExt
    'nExtC', 0, ... % Anzahl externe, konstante Kräfte
    'KPEextC', [], ... % Wirkungspunkte externe, konstante Kräfte, KOS_K
    'KPEextF', [], ... % Richtungen externe, konstante Kräfte, KOS_0
    'nExtU', 0, ... % Anzahl Stellkräfte
    'KPEextU', [], ... % Richtungen Stellkräfte, KOS_K
    'KPEextUF', [], ... % Richtungen Stellkräfte, KOS_0, nExtU * 3
    'IndexU', [], ... % Indexliste Stellkräfte, 1 * nExtU
    'nPar', 0, ... % Anzahl Paarkräfte (Federn)
    'KPPar', [], ... % Befestigungspunkte, KOS_K, nPar * 3
    'DLin', [], ... % Dämpfungen linear, [x y z]
    'DRot', [], ... % Dämpfungen, rotativ [a b c]
    'nLDerLin', 0, ... % Anzahl gesperrte lineare Freiheitsgrade
    'nLDerRot', 0, ... % Anzahl gesperrte rotative Freiheitsgrade
    'DLinRot', [], ... % Richtungen gesperrter linearer FG, KOS_0,
    'DLinRot', [], ... % Richtungen gesperrter rotations FG, KOS_0
    'Pos', []); % Anfangsbedingung, [X,Xd,...,A,Ad,...,C,Cd]

verbindung1 = struct( ...
    'K1', Koerperl, ... % Verbindung zwischen Körpern ...
    'K2', Koerperl2, ...
    'PK1', 1, ... % an den Punkten ...
    'PK2', 1, ...
    'K', [], ... % Steifigkeit, Diagonale (6x1)
    'D', [] ); % Dämpfung, Diagonale (6x1)

Abb. Definition Benutzerschnittstelle Modellimplementierung in Matlab
KAPITEL 2. MODELLIERUNG

2.3 Linearisierung nichtlinearer Modelle


2.3.1 Lokale Linearisierungen

Eine Linearisierung eines nichtlinearen Modells

\[ \dot{x} = f(x, u) \] (2.29)

bezieht sich entweder auf einen definierten Arbeitspunkt \((x_0, u_0)\), der einen Fixpunkt des nichtlinearen Modells darstellt, d.h. \(f(x_0, u_0) = 0\), oder auf eine vorgegebene Trajektorie \((x_t, u_t)\), mit \(\dot{x}_t = f(x_t, u_t)\). Der erste Fall ist offenbar ein Spezialfall des zweiten. Im zweiten Fall gilt die Linearisierung für Punkte nahe der Bahn, also falls \(|x - x_t| \ll 1\) und \(|u - u_t| \ll 1\) und kann geschrieben werden als

\[
\begin{align*}
\frac{d}{dt}(x - x_t) &= f(x_t, u_t) + \frac{\partial f}{\partial x}(x - x_t) + \frac{\partial f}{\partial u}(u - u_t) \\
&= f(x_t, u_t) + A(x - x_t) + B(u - u_t) \\
&=: f(x_t, u_t) + A(x - x_t) + B(u - u_t)
\end{align*}
\] (2.30)

Sie beschreibt damit den linearen Zusammenhang der Abweichung zwischen \(x\) und \(x_t\):

\[
\frac{d}{dt}(x - x_t) = \frac{\partial f}{\partial x}(x - x_t) + \frac{\partial f}{\partial u}(u - u_t) \\
= A(x - x_t) + B(u - u_t)
\] (2.31)

Wenn immer derartige Linearisierungen verwendet werden, wird zunächst eine unter Umständen zeitabhängige Koordinatenverschiebung vorgenommen, so dass \(x_t = 0\) und \(u_t = 0\) wird. Um den eingangs erwähnten Zusammenhang herzustellen, werden die nichtlinearen Terme der Bewegungsgleichung (2.23) untersucht. Dabei werden die Approximationen erster Ordnung

\[
\begin{align*}
\sin(X) &\Rightarrow X \\
\cos(X) &\Rightarrow 1 \\
X^2 &\Rightarrow 0
\end{align*}
\] (2.32)

für Ausdrücke \(X\) mit \(|X| \ll 1\) verwendet.
2.3. LINEARISIERUNG NICHTLINEARER MODELLE

- **Lageabhängigkeit der Massenmatrix, (2.25)** Die Massenmatrix geht mit den obigen Substitutionen über in die konstante Diagonalmatrix der Massen der beteiligten Körper

- **Christoffelterme, (2.25)** Diese verschwinden mit den obigen Substitutionen

- **Potentielle Energie, (2.26)** Der lageabhängige Ausdruck lässt sich wie folgt linearisieren: Die Rotationsmatrix (2.9) geht für $a \rightarrow 0$ mit den Substitutionen (2.35) - (2.37) über in

$$ R_0(a) = \begin{bmatrix} 1 & -\gamma & \beta \\ -\gamma & 1 & -\alpha \\ -\beta & \alpha & 1 \end{bmatrix} $$

Damit wird die Abhängigkeit zwischen den Koordinaten $a$ und der zugehörigen Rotationsmatrix linear. Führt man nun nach [65] für jede Bindung mit Bindungsvektor $\nu$ die Bezugsmatrix

$$ N_{b} := \begin{bmatrix} 1_3 & N_{\nu} \\ 0_3 & 1_3 \end{bmatrix}, \text{ mit } N_{i\nu} := \begin{bmatrix} 0 & \nu_3 & -\nu_2 \\ -\nu_3 & 0 & \nu_1 \\ \nu_2 & -\nu_1 & 0 \end{bmatrix} $$

ein, so folgt zunächst $N_{b}\,a = (R_0(a) - 1_3)\,\nu$ und daraus unter der Annahme, dass $x_{ib,0} + \nu_{ib} - (x_{jb,0} + \nu_{jb}) = 0$, welche ausdrückt, dass die Federelemente beim Linearisierungspunkt entspannt sind, der linearisierte Zusammenhang zwischen den Koordinaten $q_i$ und der potentiellen Energie zu

$$ d_{b,lin} = (x_{ib} - x_{ib,0}) - (x_{jb} - x_{jb,0}) + (R_0(a_{ib}) - 1_3)\nu_{ib} - (R_0(a_{jb}) - 1_3)\nu_{jb} $$

wobei die Bezeichnung $\hat{x} := x_{ib} - x_{ib,0}$ verwendet wurde.

- **Dämpfungen, (2.27)** Diese werden auf die selbe Art wie die Potentiale linearisiert. Es ergibt sich als Ergebnis der Ausdruck aus Gleichung (2.41), worin die Vektoren für Position und Rotationslage durch ihre zeitlichen Ableitungen ersetzt sind:

$$ \dot{d}_{b,lin} = N_{ib} \left( \hat{x}_{ib} \right) - N_{jb} \left( \hat{x}_{jb} \right) $$

2.4 Modelle mit geometrischen Bindungen

Es werden nur holonome, sklernome Bindungen betrachtet. Man definiert wieder für jeden Körper ein mitbewegtes Koordinatensystem $k_i$, wie in Abschnitt 2.2. Die Einführung geometrischer Bindungen reduziert die Anzahl Freiheitsgrade des Systems. Diese Reduktion wird durch die Einführung eines Systems $q$ verallgemeinerner Koordinaten ausgedrückt, die das System vollständig beschreiben, in dem Sinne, dass für jedes der mitbewegten Koordinatensysteme Funktionen $f_i$ und $g_i$ existieren, so dass

$$
\begin{pmatrix}
  x_i \\
  a_i
\end{pmatrix} = \begin{pmatrix}
  f_i(q) \\
  g_i(q)
\end{pmatrix}.
$$

(2.43)

Kenntnis der Minimalkoordinaten erlaubt damit die Rekonstruktion der Lage aller Körper durch (2.43). Die Bewegungsgleichungen werden im folgenden direkt im Minimalkoordinatensystem erstellt. Die Transformation von einem bewegten Koordinatensystem in das Inertialsystem ist gegeben durch die Abbildungen

$$
i \nu \mapsto v := f_i(q) + R_i(g_i(q)).i \nu,$$

(2.44)

Diese entsprechen der Koordinatenabbildung aus (2.8). Folglich ist diese Art der Modellierung als Verallgemeinerung der Modellierung in Abschnitt 2.2 aufzufassen, in dem selben Sinne, wie (2.44) eine Verallgemeinerung von (2.8) ist, wo die Abbildungen $f_i(q) := q_{1..3}$ und $g_i(q) := q_{4..6}$ Projektionen von $\mathbb{R}^6$ auf $\mathbb{R}^3$ waren. Die Herleitung der Lagrange-Gleichungen vollzieht sich analog zum Fall ohne geometrische Bindungen. Durch die zusätzlich in den Ableitungen auftauchenden $f_i$ und $g_i$ werden die Terme allerdings komplexer. Das Ziel hier ist es, die Bewegungsgleichung in einer Form auszudrücken, die eine einfache, möglichst allgemeine Implementierung in einer numerischen Rechenumgebung, wie MATLAB, zulässt, sobald die Koordinatenabbildungen $f_i$ und $g_i$ mit ihren ersten und zweiten Ableitungen gegeben sind. Es wird dazu wie oben direkt von der Formulierung nach Lagrange ausgegangen, indem die entstehenden Ausdrücke mit Hilfe der Kettenregel zerlegt werden. An dieser Stelle ist nur die Herleitung des aus der Rotation stammenden Anteils am Christoffel-Term beschrieben, der in den meisten Fällen den grössten Rechenaufwand verursacht. Man betrachtet dazu zunächst einen Starrkörper, für das Mehrkörpermodell ist dann über alle Körper zu summieren. Der Index $i$ des betrachteten Körpers ist im folgenden weggelassen.

Die kinetische Energie der Rotation bestimmt sich wie in (2.13) durch die Winkelgeschwindigkeiten $\omega$ der Starrkörper, deren Zusammenhang zu den Koordinaten $q$ jetzt nach der Kettenregel gegeben ist durch

$$
i \omega = \Omega(g(q))g'(q)q,$$

(2.45)

mit der Jacobimatrix der Rotation $\Omega$ aus (2.14). Damit wird nach elementarer aber längerer Rechnung für einen Körper, dessen Index wiederum weggelassen wird:
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

\[
\frac{d}{dt} \left( \frac{\partial E_{\text{trans}}}{\partial \dot{\mathbf{q}}} \right) = m f'(\mathbf{q})^T f'(\mathbf{q}) \dot{\mathbf{q}} + \\
m \left\{ \frac{\partial^2 f_j}{\partial q_h \partial q_k} \frac{\partial f_j}{\partial q_l} + \frac{\partial^2 f_j}{\partial q_j \partial q_k} \frac{\partial f_j}{\partial q_l} - \frac{\partial^2 f_j}{\partial q_h \partial q_l} \frac{\partial f_j}{\partial q_k} \right\} \ddot{q}_k \ddot{q}_l 
\]

(2.46)

\[
\frac{d}{dt} \left( \frac{\partial E_{\text{rot}}}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial E_{\text{rot}}}{\partial \mathbf{q}} = \left[ g'(\mathbf{q})^T \Theta(\mathbf{g}(\mathbf{q}))^T \Omega(\mathbf{g}(\mathbf{q})) g'(\mathbf{q}) \right]_{\mathbf{q}} \ddot{\mathbf{q}} + \dot{\mathbf{q}} \Theta_{rs} \Omega_{rf} \ddot{\mathbf{q}} \cdot \\
\left[ \frac{\partial^2 g_j}{\partial q_h \partial q_k} \Omega_{sl} \frac{\partial g_l}{\partial q_m} + \frac{\partial g_n}{\partial q_h} \frac{\partial g_{sn}}{\partial q_k} \frac{\partial g_j}{\partial q_l} + \frac{\partial g_j}{\partial q_h} \frac{\partial g_{sl}}{\partial q_n} \frac{\partial g_j}{\partial q_m} - \frac{\partial g_j}{\partial q_h} \frac{\partial g_{sn}}{\partial q_k} \frac{\partial g_j}{\partial q_m} \right] 
\]

(2.47)

was dem Transformationsverhalten der Christoffelsymbole unter Koordinatentransformationen entspricht [11]. Die Terme, insbesondere (2.47) sind zwar umständlich, aber durchaus berechenbar, sobald die Abbildungen \( g_i \) und ihre ersten beiden Ableitungen – beispielsweise als aufrufbare Funktionen – zur Verfügung stehen.

2.5 Lineare Modelle: Aufbau der Systemmatrix


**Notation** \( \alpha \) bezeichnet die antriebsseitig gemessene Position, \( \epsilon \) die Auslenkung auf Grund der Nachgiebigkeit, \( \beta \) die geeignet skalierte (s.u.) Auslenkung und \( \gamma \) die Differenz \( \alpha - \beta \)
2.5.1 Herleitung der allgemeinen Zustandsraumdarstellung

Gemäß [69] lassen sich die wichtigsten bei Werkzeugmaschinen auftretenden Nachgiebigkeiten in die in Tab. 2.4 dargestellten Fälle unterteilen. Alle in dieser Tabelle dargestellten Systeme lassen sich bei Vernachlässigung der mechanischen Dämpfung durch ihre gemeinsame Übertragungsfunktion zwischen der Stellgröße \( u \) und der gemessenen Geschwindigkeit \( \dot{\alpha} \)

\[
\frac{\dot{\alpha}}{u} = \frac{1}{s} \frac{1}{\Theta \lambda} \frac{s^2 + \omega_0^2 \lambda}{s^2 + \omega_0^2}
\]

(2.48)

mit den drei Parametern \( \Theta, \lambda, \omega_0 \), die direkt aus einer Frequenzgangmessung von Geschwindigkeit gegen Kraft ablesbar sind, darstellen [69]. Die Stellgröße \( u \) ist in Tab. 2.4 mit \( M \) bezeichnet, wenn sie als Drehmoment, bzw. mit \( F \), wenn sie als lineare Kraft ausgeprägt ist.

Im Folgenden wird zunächst die allgemeine Form dieser Darstellung hergeleitet, im nächsten Abschnitt 2.5.3 folgen dann die physikalischen Interpretationen von \( \Theta, \lambda, \omega_0 \) für die vier Fälle der Tab. 2.4.

Jedes der Systeme aus Tab. 2.4 besitzt eine innere Bindung in Form einer Feder mit Federkonstante \( k \), die ein Moment oder eine Kraft \( F_k := -k \epsilon \) in linearer Abhängigkeit ihrer Auslenkung \( \epsilon \) ausübt. Die für Werkzeugmaschinen meist schwache Dämpfung kann in erster Näherung ignoriert werden [69]. Weiter besitzt jedes der Systemen einen gemessenen Ausgang \( \alpha \). Wird die Bewegungsgleichung in den Koordinaten \( \alpha, \epsilon \) aufgestellt, so ergibt sich durch direkte Anwendung der Newtonschen Gesetze [69] in jedem Fall eine Bewegungsgleichung der Form

\[
\frac{d^2}{dt^2} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} = \begin{bmatrix} 0 & a_{12} \\ 0 & -\omega_0^2 \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} + \begin{pmatrix} \tilde{b}_1 \\ \tilde{b}_2 \end{pmatrix} u
\]

(2.49)

mit den erkennbaren Eigenwerten 0 und \(-\omega_0^2\). Durch die Koordinatentransformation

\[
T : \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} \mapsto \begin{pmatrix} \beta \\ \gamma \end{pmatrix} := \begin{bmatrix} 0 & -a_{12} \\ 1 & \frac{a_{12}}{\omega_0^2} \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix}
\]

(2.50)

sowie den Übergang auf ein System erster Ordnung mit der zusätzlichen Koordinate \( \dot{\beta} \) wird die Darstellung bezüglich des Zustandsvektors

\[
x := \begin{pmatrix} \dot{\beta} \\ \beta \\ \dot{\gamma} \end{pmatrix}
\]

(2.51)

auf die Form
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

Fall 1: elastische Lastkopplung
Messgrösse: \( \alpha = \phi_1 \)
Federauslenkung: \( \varepsilon = \phi_1 - \phi_2 \)

Fall 2: elastische Aufstellung
Messgrösse: \( \alpha = \phi_2 - \phi_1 \)
Federauslenkung: \( \varepsilon = \phi_1 \)

Fall 3: asymmetrische Krafteinleitung
Messgrösse: \( \alpha = x + r \phi \)
Federauslenkung: \( \varepsilon = \phi \)

Fall 4: seitliche Nachgiebigkeit
Messgrösse: \( \alpha = \phi \)
Federauslenkung: \( \varepsilon = x + r \phi \)

Abbildung 2.4: Systeme mit einer dominanten Nachgiebigkeit nach [69]. Alle abgebildeten Systeme lassen sich mit der allgemeinen Zustandsraumdarstellung beschreiben.
gebracht. Die Koordinate $\gamma$ ist gemäß (2.52) bei Abwesenheit äusserer Kräfte keinen Beschleunigungen unterworfen und kann demnach als Schwerpunktskoordinate interpretiert werden. Dies lässt eine Interpretation des letzten Eintrags des Steuervektors, der hier mit $1/\Theta$ bezeichnet wurde, als Gesamtmasse zu: Die Beschleunigung des Schwerpunkts entspricht der mit der inversen Gesamtmasse skalierten Steuergrösse.

Die Berechnung der Tilgerfrequenz $\omega_N$ gemäss (A.25) liefert

$$\omega_N^2 = \frac{\omega_0^2}{1 + b_1 \Theta} =: \omega_0^2 \lambda \rightarrow b_1 = \frac{1}{\Theta} \left( 1 - \lambda \right) \lambda$$

und damit für alle betrachteten Systeme die allgemeine Zustandsraumdarstellung in der Form (2.52) mit den Parametern $\Theta$, $\omega_0$, $\lambda$.

Durch Übergang zu einer Darstellung als Übertragungsfunktion gemäss Anhang A.3 erhält man daraus die Darstellung (2.48).

### 2.5.2 Identifikation der Parameter

Der gemessene Frequenzgang der Übertragungsfunktion (2.48) ist in Abb. 2.5 wiedergegeben. Die Pol- und Tilgerfrequenz $\omega_0$ und $\omega_N$ sind sofort ablesbar. Daraus ergibt sich $\lambda$ nach (2.53). Die Übertragungsfunktion verhält sich asymptotisch wie folgt:

$$\frac{\dot{\alpha}}{u} \approx \frac{1}{\Theta} \frac{1}{s} \left( s \rightarrow 0 \right)$$

$$\frac{\dot{\alpha}}{u} \approx \frac{1}{\Theta \lambda} \frac{1}{s} \left( s \rightarrow \infty \right)$$

Das System verhält sich also für niedere Frequenzen wie ein starres System mit Gesamtmasse $\Theta$ und für hohe Frequenzen wie ein starres System der Gesamtmasse $\Theta \lambda$. Dies erlaubt im Prinzip die Identifikation von $\Theta$, indem eine der Asymptoten geometrisch bestimmt wird. In praktischen Fällen ist $\Theta$ allerdings meist leichter direkt den bekannten Parametern der Maschine zu entnehmen. Weiter kann $\Theta \lambda$ als Eigentragheit des Antriebs und $(1 - \lambda) \Theta$ als Last- oder Fremdträgheit interpretiert werden.

### 2.5.3 Bewegungsgleichung und physikalische Bedeutung der Parameter

Im Folgenden werden für jeden der vier Fälle aus Tab. 2.4 die Bewegungsgleichung, die sich aus der Anwendung der Newtonschen Bewegungsgesetze ergibt, in den Koordinaten $\alpha$ und $\epsilon$,
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

Abbildung 2.5: Frequenzgang eines Zweimassenschwingers mit Eigenfrequenz $\omega_0$ und Tilgerfrequenz $\omega_N$, Messung an realem System und Modell

sowie die Skalierung der Koordinate $\beta$ und die drei Systemparameter der allgemeinen Übertragungsfunktion dargestellt.

Elastische Lastkopplung

Newtonscbe Bewegungsgleichung

$$\frac{d^2}{dt^2} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} = \begin{bmatrix} 0 & -\frac{k}{m_1} \\ 0 & -k\frac{m_1 + m_2}{m_1 m_2} \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} + \left( \frac{1}{m_1} \right) u$$ \hspace{1cm} (2.56)

Skalierte Federauslenkung

$$\beta = \frac{m_2}{m_1 + m_2} \epsilon$$ \hspace{1cm} (2.57)

Parameter

$$\Theta = m_1 + m_2 \quad \lambda = \frac{m_1}{m_1 + m_2} \quad \omega_0^2 = k\frac{m_1 + m_2}{m_1 m_2}$$ \hspace{1cm} (2.58)
Elastische Aufstellung

Newtonische Bewegungsgleichung

\[
\frac{d^2}{dt^2} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} = \begin{bmatrix} 0 & k/m_1 \\ 0 & -k/m_1 \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} + \begin{pmatrix} m_1 + m_2 \\ m_1 m_2 \end{pmatrix} u \tag{2.59}
\]

Skalierte Federauslenkung

\[
\beta = -\epsilon \tag{2.60}
\]

Parameter

\[
\Theta = m_2 \quad \lambda = \frac{m_1}{m_1 + m_2} \quad \omega_0^2 = \frac{k}{m_1} \tag{2.62}
\]

Asymmetrische Krafteinleitung

Newtonische Bewegungsgleichung

\[
\frac{d^2}{dt^2} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} = \begin{bmatrix} 0 & -kr/J \\ 0 & -k/J \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} + \begin{pmatrix} J + mr^2 \\ J \end{pmatrix} u \tag{2.63}
\]

Skalierte Federauslenkung

\[
\beta = re \tag{2.64}
\]

Parameter

\[
\Theta = m \quad \lambda = \frac{J}{J + mr^2} \quad \omega_0^2 = \frac{k}{J} \tag{2.65}
\]

Seitliche Nachgiebigkeit

Newtonische Bewegungsgleichung

\[
\frac{d^2}{dt^2} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} = \begin{bmatrix} 0 & -kr/J \\ 0 & -k(J + mr^2)/mJ \end{bmatrix} \begin{pmatrix} \alpha \\ \epsilon \end{pmatrix} + \begin{pmatrix} 1/J \\ r/J \end{pmatrix} u \tag{2.66}
\]

Skalierte Federauslenkung

\[
\beta = \frac{mr}{J + mr^2} \epsilon \tag{2.67}
\]
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

Parameter

\[ \Theta = J + mr^2 \quad \lambda = \frac{J}{J + mr^2} \quad \omega_0^2 = \frac{k(J + mr^2)}{mJ} \] (2.68)

2.5.4 Dämpfung

Wird zusätzlich eine der zeitlichen Änderung der Federspannung proportionale Dämpfung, die eine Kraft \( F_d := -d \dot{\epsilon} \) ausübt in die einzelnen Modelle eingefügt, so erhält man mit der zusätzlichen Bezeichnung \( \xi := -\frac{d}{2\omega_0} \), die **relative Dämpfung** genannt wird, die Übertragungsfunktion

\[
T_{ZMS}(s) := \frac{\dot{\alpha}}{u} = \frac{1}{\Theta \lambda} \frac{1}{s} \frac{s^2 + 2 \xi \omega_0 \lambda s + \omega_0^2 \lambda s^2 + 2 \xi \omega_0 s + \omega_0^2}{s^2 + 2 \xi \omega_0 s + \omega_0^2}
\] (2.69)

die bezüglich der Koordinaten (2.51) auf die Zustandsraumdarstellung

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix}
-\xi \omega_0 & -\omega_0^2 (1 - \xi^2) & 0 & \frac{1-\lambda}{\Theta \lambda} \\
1 & -\xi \omega_0 & 0 & \frac{1-\lambda}{\Theta \lambda} \frac{\xi}{\omega_0 (1-\xi^2)} \\
0 & 0 & 0 & \frac{1}{\xi} \\
1 & 0 & 1 & 0
\end{bmatrix}
\] (2.70)

führt. Die Identifikation von \( \Theta, \lambda, \omega_0 \) und des zusätzlichen Parameters \( \xi \) aus einem gemessenen Frequenzgang ist Inhalt des Abschnitts 2.7.

2.5.5 Verhalten am TCP

Da die Regelgüte nicht am Antrieb, sondern an einem unter Umständen weit vom Antrieb entfernten Bearbeitungspunkt, dem TCP interessiert, soll der Zusammenhang zwischen TCP und Antrieb für die vier Fälle diskutiert werden. Es ist natürlich nicht allgemein festzulegen, wo der TCP in Relation zum Antrieb liegt. Zu einem grossen Teil wird die Grösse der Abweichung am TCP bei gegebener Abweichung am Antrieb ganz einfach durch die Geometrie, d.h. die Hebelverhältnisse bestimmt sein. Es gibt jedoch in den vier Fällen einige prinzipielle Unterschiede auch im dynamischen Verhalten, die im folgenden kurz diskutiert werden. Dabei wird jeweils die Übertragungsfunktion \( \frac{\dot{\alpha}}{u} \) zwischen Stellgrösse am Antrieb und Lastgeschwindigkeit betrachtet. Es geht hauptsächlich darum, zu zeigen, dass das Verhalten am TCP trotz einheitlicher Übertragungsfunktion am Antrieb für die vier Fälle der Tabelle 2.4 unterschiedlich ist, und dass darunter auch **nichtminimalphasige Regelstrecken** (s. Glossar A.2) sind, die keine ideale Steuerung und Regelung am TCP zulassen: die Invertierung eines nichtminimalphasigen Systems \( G \) führt auf ein instabiles System \( G^{-1} \), obschon \( G \) asymptotisch stabil sein kann. Es ist damit nicht möglich, für gegebene Ausgangswerte, zugehörige, nicht-divergente – und damit physikalisch realisierbare – Stellgrössen zu definieren.

Elastisch gekoppelte Last  Die Position der TCP ist hier die Position der Last. Dies deckt den Fall ab, dass ein Werkstück elastisch mit einem Antrieb verbunden ist. Die Übertragungsfunktionen von Stellgröße $u$ am Antrieb und Geschwindigkeit $v_L$ des TCP, sowie die Übertragungsfunktion $T_{AL}$ zwischen der Geschwindigkeit $v_A$ des Antriebs und der Geschwindigkeit $v_L$ der Last sind dann

\[
\frac{v_L}{u} = \frac{1}{\Theta s} \frac{\omega_0^2}{s^2 + \omega_0^2} \tag{2.71}
\]

\[
T_{AL} := \frac{v_L}{v_A} = \frac{\omega_0^2}{s^2 + \omega_0^2} \lambda \tag{2.72}
\]

Das Übertragungsverhalten zwischen Antriebsposition und Lastposition hat also einen relativen Grad von 2, d.h. die angekoppelte Last reagiert auf einen Beschleunigungssprung am Antrieb mit einem Zuck-Sprung. Die Übertragung von Antrieb zu Last, (2.72) weist keine Nullstelle auf. In der Literatur ist vielfach dieses Verhalten gemeint, wenn von „elastischer Struktur“ die Rede ist. Es handelt sich allerdings in Wirklichkeit lediglich um einen Grenzfall, wie die folgende Betrachtung zeigt.

Asymmetrische Krafteinleitung  Die Übertragungsfunktion wird an Hand des mechanischen Beispiels in Abb. 2.6 betrachtet. Die vertikale Position TCP wird mit $\rho$, diejenige des Schwerpunktes mit $r$ bezeichnet. Das Übertragungsverhalten vom Antrieb zu diesem TCP ist dann:

\[
\frac{v_L}{u} = \frac{1}{\Theta s} \frac{[\lambda^{-1} + (1 - \lambda^{-1}) \rho/r] s^2 + \omega_0^2}{s^2 + \omega_0^2} \tag{2.73}
\]
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

Das Übertragungsverhalten zwischen Stellgröße und TCP unterscheidet sich offensichtlich von demjenigen für die elastisch gekoppelte Last. Für den Fall, dass der TCP im Schwerpunkt liegt, ergibt sich das Verhalten eines Einmassen-Systems. Die Übertragungsfunktion einer elastisch gekoppelten Last hingegen erhält man, falls

\[ \rho = \frac{r}{1 - \lambda} = \frac{J + mr^2}{mr} =: \rho_\ast \]  

(2.74)

Physikalisch handelt es sich bei der TCP-Position \( \rho_\ast \) um das momentane Drehzentrum, also um den Punkt, der bei Krafteinleitung über den Antrieb augenblicklich keine Beschleunigung erfährt. Für \( \rho > \rho_\ast \) wird der TCP zunächst entgegen der Krafrichtung beschleunigt und das Übertragungsverhalten von der Stellgröße zum TCP weist eine instabile Nullstelle auf. Die Regelstrecke ist also nicht invertierbar und es kann kein ideales Verhalten am TCP erreicht werden [56]. Das Auftreten dieses nichtminimalphasigen Übertragungsverhaltens lässt sich konstruktiv vermeiden, indem eine Konstruktion gewählt wird, wo \( \rho_\ast \) ausserhalb des Verfahrens liegt.

**Drehgelenk**

\[ \frac{v_L}{u} = \frac{1}{\Theta} \frac{\lambda^{-1}(r - \rho)s^2 - \rho \omega_0^2}{(s^2 + \omega_0^2)} \]  

(2.75)

Die Übertragungsfunktion unterscheidet sich von derjenigen für die asymmetrische Krafteinleitung im wesentlichen durch die Vorzeichen des Zählers. Hier tritt Nichtminimalphasigkeit auf, wenn der TCP nahe beim Drehzentrum liegt.

### 2.5.6 Allgemeiner Aufbau der Systemmatrix


**Notation:** Im Folgenden werden die Bezeichnungen \( V_{1...2n,l} \) für den Spaltenvektor der \( l \)-ten Spalte einer \( 2n \times 2n \) Matrix \( V \) und \( V_{1...2n,r} \) für den Zeilenvektor der \( r \)-ten Zeile von \( V \) verwendet, ebenso wie \( e_{r...l} \) für den Vektor, der aus den Einträgen \( r \) bis \( l \) eines Zeilen- oder Spaltenvektors \( e \) gebildet ist.
Man geht davon aus, dass das zu modellierende System eine Reihe komplex konjugierter Eigenwertpaare, sowie einen doppelten reellen Eigenwert bei 0, den freien Integrator, besitzt, und weiter, dass die Durchgriffsmatrix verschwindet. Dies stellt für mechanische Systeme mit schwach gedämpften Eigenschwingungen keine Einschränkung dar. Es wird zunächst vom Aufbau der Systemmatrix ausgegangen, der in [65] für alle Modelle verwendet wird:

\[
\begin{bmatrix}
A_0 & b_0 \\
e_0 & d_0
\end{bmatrix}
= \begin{bmatrix}
0 & 1_n & 0 \\
K & D & \hat{b}_0 \\
0 & \hat{e}_0 & 0
\end{bmatrix}
\tag{2.76}
\]

Die \(2n \times 2n\) Zustandsmatrix \(A_0\) zerfällt dabei auf natürliche Art in vier \(n \times n\) Teilmatrizen, gemäß (2.76). \(K\) und \(D\) sind die negativ semidefiniten, mit der Inversen der diagonalen Massenmatrix skalierten Steifigkeits- und Dämpfungsmatrizen. Die jeweils ersten \(n\) Einträge von Steuervektor \(b_0\) und Ausgangsvektor \(e_0\) verschwinden. Erstere, weil die Stellgrössen keinen direkten Einfluss auf die Änderung der Position haben und letztere, weil nicht Positionen sondern Geschwindigkeiten gemessen werden. Für den jeweils verbleibenden Anteil wurden in (2.76) die Bezeichnungen \(\hat{b}_0\) und \(\hat{e}_0\) eingeführt.

Aus der Eigenwertzerlegung der Zustandsmatrix \(A_0 V = V \Sigma\) mit der Matrix \(V\) der Eigenvektoren von \(A_0\) und der diagonalen Matrix \(\Sigma\) der Eigenwerte gewinnt man durch die Transformation \(A_0 \mapsto \Sigma := T_1 A_0 V\) erst die diagonale Darstellung in komplexen modalen Koordinaten, wobei man annimmt, dass \(V\) invertierbar sei, mit \(V^{-1} =: T_1\). Die Annahme schwacher mechanischer Dämpfung besagt, dass \(V\) zwei reelle Eigenvektoren zum Eigenwert 0 und ansonsten komplex konjugierte Paare von Eigenvektoren enthält. Es wird ohne Einschränkung der Allgemeinheit angenommen, dass die Eigenvektoren in der Matrix \(V\) derart sortiert sind, dass für \(1 \leq k \leq n\) gilt: \(V_{1...2n,2k} = \bar{V}_{1...2n,2k-1}\).

Durch die weitere Koordinatentransformation mit der blockdiagonalen Transformationsmatrix

\[
T_2 := \text{diag} \left( \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}, \ldots, \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}, 1 \right) \tag{2.77}
\]

wird die komplexe Diagonalmatrix \(\Sigma\) in eine reelle, blockdiagonale Form konvertiert und man erhält damit zunächst die Darstellung in reellen modalen Koordinaten:
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

\[
\begin{bmatrix}
A_m & b_m \\
c_m & d_m
\end{bmatrix} =
\begin{bmatrix}
-d_1 & f_1 \\
-f_1 & -d_1
\end{bmatrix}
\begin{bmatrix}
-d_2 & f_2 \\
-f_2 & -d_2
\end{bmatrix}
\cdots
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\begin{bmatrix}
b_3 \\
b_4
\end{bmatrix}
\cdots
\begin{bmatrix}
0 \\
b_{2n}
\end{bmatrix}
\begin{bmatrix}
c_1 & c_2 & c_3 & c_4 \cdots & c_{2n} & 0
\end{bmatrix}
\] (2.78)

Die Darstellung in reellen modalen Koordinaten ist nicht eindeutig. \(T_2\) kann mit einer beliebigen weiteren blockdiagonalen Koordinatentransformation der Form

\[
\hat{T}_2 := \text{diag}\left(\begin{bmatrix}
a_1 & b_1 \\
-b_1 & a_1
\end{bmatrix}, \ldots, \begin{bmatrix}
a_n & b_n \\
-b_n & a_n
\end{bmatrix}, 1\right)
\] (2.79)

kombiniert werden. Auf das weitere hat die jeweilige Wahl der Transformation jedoch keinen Einfluss. Unabhängig von der Wahl von \(\hat{T}_2\) ist \(-d_i\) der Realteil und \(\pm f_i\) sind die Imaginärteile eines komplex konjugierten Eigenwertpaares der ursprünglichen Matrix. Diese Transformationen lassen sich immer durchführen, unabhängig davon, wie die ursprüngliche Systemmatrix aussah. Um eine Zustandsraumdarstellung zu erhalten, die an die allgemeine Zustandsraumdarstellung gemäß [69] angelehnt ist, verwendet man die weitere Koordinatentransformation

\[
T_3 := \text{diag}\left(\begin{bmatrix}
c_1 & c_2 \\
-c_2/f_1 & c_1/f_1
\end{bmatrix}, \ldots, \begin{bmatrix}
c_{2k-1} & c_{2k} \\
-c_{2k}/f_k & c_{2k-1}/f_k
\end{bmatrix}, c_{2k+1}\right)
\] (2.80)

und gewinnt daraus die Systemmatrix in Submatrizenform:
Diese Darstellung, die im folgenden Abschnitt noch zu rechtfertigen sein wird, erlaubt eine Interpretation der Einträge der Steuer- und Ausgangsvektoren, und ermöglicht damit die Anpassung eines Modells oder den automatisierten Entwurf eines Zustandsreglers auch höherer Ordnung, analog zu der Zustandsregler-Ergänzung aus [69]. Wie eingangs erwähnt, ist sie hingegen für numerische Berechnungen ungeeignet.

Dabei wurden Bezeichnungen für die Einträge der Zustandsmatrix $A$ in Anlehnung an die allgemeine Zustandsraumdarstellung eingeführt:

\[ f_k =: \omega_k \sqrt{1 - \xi_k^2} \quad (1 \leq k \leq n) \]  
\[ d_k =: \xi_k \omega_k \quad (1 \leq k \leq n) \]  

Weiter wurde eine Bezeichnung für den letzten nicht verschwindenden Eintrag im Steuervektor $b$ eingeführt:

\[ b_{2n-1} =: \frac{1}{\Theta} \]  

Die Interpretation von $\Theta$ als Gesamtträgheit bleibt gerechtfertigt, da für die der Submatrizenform entsprechende Übertragungsfunktion $T$ gilt, dass $\lim_{s \to 0} s T(s) = 1/\Theta$: Im Grenzfall
2.5. LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX

einer konstanten Anregung verhält sich das System wie ein System bestehend aus einer Masse oder Trägheit $\Theta$

Diese Bezeichnungen enthalten noch keinerlei Behauptungen über die in der Systemmatrix auftretenden Einträge. Die restlichen Einträge des Steuervektors

$$b_{2k-1} =: \frac{1 - \lambda_k}{\Theta \lambda_k}$$ (2.85)

$$b_{2k} =? \frac{1 - \lambda_k}{\Theta \lambda_k} \frac{\xi_k}{\omega_k} (\xi_k^2 - 1)$$ (2.86)

implizieren hingegen, dass in jeder möglichen Form der Darstellung (2.78) gilt:

$$(- \frac{c_{2k}}{f_k} b_{2k-1} + \frac{c_{2k-1}}{f_k} b_{2k}) f_k^2 = (c_{2k-1} b_{2k-1} + c_{2k} b_{2k}) d_k$$ (2.87)

Die Beziehung ist nur näherungsweise gültig. Es wird im folgenden gezeigt, dass sie immer dann streng gilt, wenn die Dämpfung proportional zur Steifigkeit ist ($D = r K$), für eine nicht-negative reelle Konstante $r$. Dies bedeutet, dass zu jeder Steifigkeit eine - möglicherweise verschwindende - Dämpfung existiert, und dass die relative Dämpfung aller Eigenformen die selbe ist. Dies ist für die meisten Anwendungen im Bereich von Werkzeugmaschinen mit geringer physikalischer Dämpfung eine gute Nähерung.

Es folgt der Nachweis der behaupteten Beziehung (2.87).

Umformulierung der Behauptung (2.87) kann mit der Matrix

$$M := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$ (2.88)

auch als

$$c_{2k-1...2k} M b_{2k-1...2k} = c_{2k-1...2k} b_{2k-1...2k} \frac{d_k}{f_k}$$ (2.89)

geschrieben werden. Vgl. die oben eingeführte Notation: $c_{2k-1...2k}$ ist ein Zeilenvektor, gebildet aus den Einträgen $2k - 1$, und $2k$ des Ausgangsvektors $c$.

Durch einsetzen der Definitionen von $b$, $c$ mit Hilfe der ursprünglichen Ein- und Ausgangsvektoren $b_0$ und $c_0$ erhält man daraus:

$$(c_0 T_1^{-1})_{2k-1...2k} T_2^{-1} M T_2 (T_1 b_0)_{2k-1...2k} = (c_0)_{2k-1...2k} (b_0)_{2k-1...2k} \frac{d_k}{f_k}$$ (2.90)
und daraus nach Umformung und mit der oben bereits verwendeten Bezeichnung $V := T_1^{-1}$ für die Matrix der Eigenvektoren von $A_0$:

\[
\begin{align*}
  c_0 \begin{bmatrix} V_{1...2n,2k-1} & V_{1...2n,2k} \end{bmatrix} T_2^{-1} MT_2 \begin{bmatrix} T_{2k-1,1...2n} \\ T_{2k,1...2n} \end{bmatrix} b_0 &= c_0 \begin{bmatrix} V_{1...2n,2k-1} & V_{1...2n,2k} \end{bmatrix} \begin{bmatrix} T_{2k-1,1...2n} \\ T_{2k,1...2n} \end{bmatrix} b_0 \frac{d_k}{f_k} 
\end{align*}
\]  

(2.91)

**Eigenvektoren der Zustandsmatrix**

Es wird gezeigt, dass die behauptete Beziehung (2.91) für Zustandsmatrizen der Form

\[
A_0 = \begin{bmatrix} 0 & 1 \\ r & K \end{bmatrix}
\]  

(2.92)

tatsächlich gilt. Dazu werden die Eigenvektoren der Matrix (2.5.6) untersucht. Ein Rechtseigenvektor $e_R \in \mathbb{R}^{2n}$ zu einem Eigenwert $\sigma \in \mathbb{C}$ von $A_0$ wird entsprechend der Größe der Teilmatrizen von $A$ aufgeteilt in

\[
e_R = \begin{pmatrix} x \\ y \end{pmatrix}
\]  

(2.93)

Damit folgt aus $A_0 e_R = \sigma e_R$, dass

\[
y = \sigma x
\]  

(2.94)

\[
K x = \frac{\sigma^2}{1 + r \sigma} x =: \lambda x
\]  

(2.95)

$x$ ist also ein Eigenvektor der symmetrischen, reellen Matrix $K$, und damit ebenfalls reell. Folglich können die Vektoren $x$ durch Skalierung der Eigenvektoren $e_R$ orthonormal gewählt werden, was im folgenden vorausgesetzt wird. $\lambda$ ist demnach ebenfalls reell und die Eigenwerte $\sigma_k$ der Zustandsmatrix $A_0$ erfüllen die Gleichung

\[
\sigma_k^2 + r m_k \sigma_k + m_k = 0
\]  

(2.96)

für geeignete $m_k \leq 0$.

Zur Bestimmung der Form der inversen Matrix $T := V^{-1}$ wird der Linkseigenvektor $e_L^T$ zum selben Eigenwert $\sigma$ aufgeteilt in

\[
e_L^T = \begin{pmatrix} u^T, v^T \end{pmatrix}
\]  

(2.97)
2.5. **LINEARE MODELLE: AUFBAU DER SYSTEMMATRIX**

Damit folgt aus $e_{1}^{T}A = \sigma e_{1}^{T}$, dass

\[
\begin{align*}
v^{T}K &= \frac{\sigma^{2}}{1 + r\sigma}v^{T} \quad (2.98) \\
u^{T} &= \frac{1}{\sigma}v^{T}K = \frac{\sigma}{1 + r\sigma}v^{T} \quad (2.99)
\end{align*}
\]

$v^{T}$ ist also ebenfalls ein Eigenvektor von $K$ zum Eigenwert $\sigma$ und damit entsprechen sich $v$ und $x$ bis auf Skalierung: $v = \rho x$, für eine geeignete komplexe Konstante $\rho$. Zusammengefasst ergibt sich für die Form der Matrizen $V$ und $T$:

\[
V = \begin{bmatrix}
x_{1} & x_{1} & x_{2} & \ldots & x_{n} & x_{n} \\
\sigma_{1}x_{1} & \bar{\sigma}_{1}x_{1} & \sigma_{2}x_{2} & \ldots & \sigma_{n}x_{n} & \bar{\sigma}_{n}x_{n}
\end{bmatrix}
\]  

(2.100)

\[
T = \begin{bmatrix}
\mu_{1}\rho_{1}x_{1}^{T} & \rho_{1}x_{1}^{T} \\
\bar{\mu}_{1}\bar{\rho}_{1}x_{1}^{T} & \bar{\rho}_{1}x_{1}^{T} \\
\mu_{2}\rho_{2}x_{2}^{T} & \rho_{2}x_{2}^{T} \\
\vdots & \vdots \\
\mu_{n}\rho_{n}x_{n}^{T} & \rho_{n}x_{n}^{T} \\
\bar{\mu}_{n}\bar{\rho}_{n}x_{n}^{T} & \bar{\rho}_{n}x_{n}^{T}
\end{bmatrix}
\]  

(2.101)

wobei zur Abkürzung $\frac{\sigma_{k}}{1 + r\sigma_{k}} =: \mu_{k}$ gesetzt wurde.

Aus $TV = 1_{2n}$ folgt weiter

\[
\rho_{k} = \frac{1}{\frac{\sigma_{k}}{2 + r\sigma_{k}}} \quad (k = 1 \ldots n) \quad (2.102)
\]

**Nachweis der Behauptung (2.91)** Einsetzen der Matrizen (2.100) und (2.101) in (2.91) ergibt, dass (2.91) gleichbedeutend ist mit

\[
\mathcal{R}\left(\frac{1 + r\sigma}{2 + r\sigma}\right)\mathcal{R}(\sigma) = \mathcal{I}\left(\frac{1 + r\sigma}{2 + r\sigma}\right)\mathcal{I}(\sigma) \quad (2.103)
\]

für alle Eigenwerte $\sigma$ der Zustandsmatrix $A$. (2.103) lässt sich schliesslich durch Einsetzen von $\sigma$ in der durch (2.96) gegebenen Form verifizieren. Damit ist die Herleitung der allgemeinen Form der Zustandsraumdarstellung abgeschlossen.
2.6 Lineare Modelle: Modellaufbereitung

2.6.1 Minimale und balancierte Zustandsraumdarstellung


Für numerische Berechnungen ist die Darstellung in Submatrizenform kaum geeignet. Eine numerisch besser konditionierte Darstellung ist die balancierte Zustandsraumdarstellung [56], die in dieser Arbeit immer für die Berechnungen verwendet wird, s. Anhang A.3. Die Darstellung in Submatrizenform wird hingegen häufig für die Systemanalyse herangezogen.

2.7 Identifikation von Übertragungsfunktionen

Gemäß Anhang A.3 ist die Zustandsraumdarstellung einem gemessenen Frequenzgang äquivalent. Ein lineares Modell kann folglich aus einem gemessenen Frequenzgang hergeleitet werden. Im Folgenden wird eine Methode vorgeschlagen, die Parameter einer Zustandsraumdarstellung in der in Abschnitt 2.5.6 hergeleiteten Form aus einem Frequenzgang zu bestimmen. Die Identifikation von Systemparametern ist ein nichtlineares Optimierungsproblem, für das in der Literatur verschiedene Ansätze existieren, e. g. [10, 42]. Diese Ansätze sind allgemeine Algorithmen zur Identifikation der Zähler- und Nennerpolynome gebrochenrationaler Funktionen anhand eines least-squares Fehlerkriteriums, die keinerlei weiteren Voraussetzungen über diese Funktionen machen. Der hier vorgeschlagene Ansatz basiert hingegen auf der Form (2.81) der Systemmatrix und approximiert direkt die darin auftretenden Parameter \( \omega_i, \xi_i, \lambda_i, \Theta \). Er erzeugt insbesondere immer das richtige asymptotische Verhalten für \( s \to 0 \) und \( s \to \infty \) der ermittelten Zustandsraumdarstellung.

Die Möglichkeit, Modelle direkt aus Messungen zu erzeugen erlaubt insbesondere eine sehr rasche Modellerstellung. Ein solches Modell gibt allerdings keine Auskünfte über Crosstalk oder Schwingformen. Der Algorithmus ist überdies ebenso wie die Darstellung (2.81) nur für antriebsseitig gemessene Frequenzgänge konzipiert.

2.7.1 Beschreibung der Heuristik

Der gemessene Frequenzgang wird mit \( T_{\text{Messung}} \) bezeichnet. Das zu bestimmende Modell wird in der Submatrizenform gemäß (2.81) angesetzt. Die Parameter \( \xi_k, \omega_k, \lambda_k \) für \( 1 \leq k \leq n \) sowie \( \Theta \) sind zu bestimmen. Man schreibt zur Abkürzung für die gemessene Polstellen-Frequenz \( \omega_k^2 (1 - \xi_k^2) =: f_{P, k}^2 \) wie in (2.78). Diese Frequenzen \( f_{P, k} \), ebenso wie die Nullstellenfrequenzen \( f_{N, k} \), können direkt als Maximal- und Minimalstellen aus dem Betrag des gemessenen Frequenzgangs abgelesen werden. Für die \( \xi_k \) werden Startwerte \( \xi_{0, k} \) angenommen, die in
2.8. ABBILDUNG DER REGLERSTRUKTUR IN SIMULINK

der Größenordnung der für Werkzeugmaschinen typischen relativen Dämpfungswerte – im
Bereich $0.01 \leq \xi \leq 0.03$ – liegen [14, 23]. Die Bestimmung von $\lambda_k$ und $\xi_k$ erfolgt iterativ
nach dem unten angegebenen Schema. Die zu Grunde liegenden Gleichungen sind aus dem
Zweimassenschwinger-Fall übernommen. Die Behauptung, dass sie gleichermassen für Mehr-
massenschwingern gelten, sind ein Postulat, das durch die Erfahrung an den untersuchten Achsen
gestützt wird und macht den Kern der Heuristik aus. Der Algorithmus ist in Tabelle 2.7.1
dargestellt, es folgen die Überlegungen, die dazu führen.

Aus direkter Rechnung ergibt sich, dass für den mechanisch gedämpften Zweimassenschwinger
mit Übertragungsfunktion $T_{ZMS}$ gemäß (2.69)

$$\frac{T_{ZMS}(f_P)}{T_{ZMS}(f_N)} = \alpha \xi^2 + O(\xi^5) \quad (2.104)$$

für eine geeignete Konstante $\alpha$, also in erster und zweiter Näherung $\xi \propto \sqrt{T_{ZMS}(f_P)/T_{ZMS}(f_N)}$
gilt. Dabei bezeichnen $f_P$ und $f_N$ die Pol- bzw. Nullstellenfrequenz des Zweimassenschwingers. Zur iterativen Anpassung von $\xi_k$ wird im $n$-ten Iterationsschritt

$$\xi_k^{(n)} := \xi_k^{(n-1)} \frac{T_{\text{Modell}}(f_{P,k})}{T_{\text{Messung}}(f_{P,k})} \frac{T_{\text{Messung}}(f_{N,k})}{T_{\text{Modell}}(f_{N,k})} \quad (2.105)$$

gesetzt.

Aus dem Verhältnis zwischen Pol- und Nullstellen-Frequenz des Zweimassenschwingers, (2.70)
findet man weiter, dass $\lambda$ der Gleichung

$$\lambda (1 - \xi \lambda) (1 + \xi \lambda) = (1 - \xi^2) \left(\frac{f_N}{f_0}\right)^2 \quad (2.106)$$
genügt. Der Spezialfall $\xi = 0$, der in [69] betrachtet wird, ist darin enthalten. Für $0 < \xi < 1$
liegt genau eine der drei Lösungen von (2.106) zwischen 0 und 1. Man bezeichnet diese Lösung
mit $\lambda(\xi)$.

Die Zustandsraumdarstellung in der Form (2.81) bei gegebenen Parametern $\omega_{1...n}$, $\lambda_{1...n}$, $\xi_{1...n}$
und $\Theta$ wird in der Beschreibung des Algorithmus mit Modell$(\omega_{1...n}, \lambda_{1...n}, \xi_{1...n}, \Theta)$
bezeichnet. Die Iteration ist abzubrechen, falls der gemessene Frequenzgang hinreichend gut mit dem Fre-
quenzgang des Modells übereinstimmt.

2.8 Abbildung der Reglerstruktur in Simulink

Die Siemens 840D-Steuerung wurde auf Grund ihrer offenen Architektur für alle Versuche der
vorliegenden Arbeit zur Steuerung der Prüfstände verwendet. Jeder Versuch ist von Simula-
tionen begleitet, an Hand derer die Ergebnisse der Versuche erklärt werden. Der folgende Ab-
schnitt erläutert die Nachbildung der Reglerstruktur der Steuerung in Simulink, die für die-
se Simulationen verwendet wurde. Diese Nachbildung gehört inhaltlich zur Modellierung und
Algorithm 1 Algorithmus zur Bestimmung eines Modells aus gemessenem Frequenzgang

\[ \begin{aligned} \Theta & \leftarrow 1 \\ \text{for } k := 1 \text{ to } n \text{ do} & \\ \xi_k & \leftarrow \xi_{0,k} \\ F_k & \leftarrow 1 \\ \text{end for} \\ \{ \text{Iteration} \} & \\ \text{repeat} & \\ \text{for } k := 1 \text{ to } n \text{ do} & \\ \lambda_k & \leftarrow \lambda(\xi_k) \cdot F_k \\ \omega_k & \leftarrow \frac{f_k}{\sqrt{1-\xi_k^2}} \\ \text{end for} & \\ \text{Modell} & \leftarrow \text{Modell}(\omega_{1...n}, \lambda_{1...n}, \xi_{1...n}, \Theta) \\ T_{\text{Modell}} & \leftarrow \text{Frequenzgang aus aktualisiertem Modell} \\ \text{for } k := 1 \text{ to } n \text{ do} & \\ F_k & \leftarrow F_k \cdot \frac{f_{N,k,\text{Messung}}}{f_{N,k,\text{Modell}}} \\ \xi_k & \leftarrow \xi_k \cdot \sqrt{\frac{T_{\text{Modell}}(f_P,k)}{T_{\text{Messung}}(f_N,k)} \frac{T_{\text{Messung}}(f_P,k)}{T_{\text{Messung}}(f_N,k)}} \\ \text{end for} & \\ \text{until Konvergenz ok} & \\ \text{return Modell} & 
\end{aligned} \]

wird deshalb hier beschrieben. Die Beschreibung der Funktionalität der Reglerstruktur folgt in Kapitel 3. Die modellierte Struktur ist in Abb. 2.7 dargestellt und entspricht der Darstellung aus Abb. 3.12.

Lage- und Geschwindigkeitsregler sind jeweils als echte Teilsysteme mit ihren jeweiligen Taktraten von $10^{-3}\text{s}$ bzw. $6.25 \times 10^{-5}\text{s}$ realisiert. Matlab erlaubt es, mehrere Taktraten in einem zeitdiskreten Simulationsmodell zu verwenden. Der Wechsel zwischen unterschiedlichen Taktraten ist in Abb. 2.7 durch die Rate Transition Blöcke mit Beschriftung $dt_X \rightarrow dt_V$ oder $dt_V \rightarrow dt_X$ erkennbar. Die Rate-Transition Blöcke arbeiten als lineare Interpolatoren bei Übergang von langsameren zu schnelleren Taktraten, bzw. als zero-order-hold für den Übergang von schnelleren zu langsameren Taktraten.

Der Block „Lageregler“ ist bei Verwendung sogenannter Compile-Zyklen frei programmierbar. Immer, wenn in späteren Kapiteln bei den Implementationen der Zustandsregler eine Umsetzung in Form einer Simulink-Implementierung dargestellt ist, handelt es sich dabei um das Innere dieses Blocks. Solange keine Compile-Zyklen verwendet werden, handelt es sich um
einen Proportionalregler mit der Möglichkeit, die resultierenden Geschwindigkeitssollwerte zu filtern. Dieser Block ist in Abb. 2.8 detailliert.

Der Geschwindigkeitsregler, ist in Abb. 2.9 detailliert. Er ist als PI-Regler mit der Möglichkeit der Verwendung eines Referenzmodells gemäß [24] ausgeführt. Der Stromregler, s. Abb. 2.9, ist nicht als eigenständiger Regelkreis, sondern als PT2-Glied, das das Verhalten des Stromreglers ohne Sollwertfilter darstellt, zusammen mit den von der 840D zur Verfügung gestellten Stromsollwertfiltern ausgeführt. Für den typischen Betriebsbereich von Servomotoren an Vorschubachsen mit elastischer Struktur hat sich die Nachbildung der verzögerten Stellgrößengenerierung des stromgeregelten Motors als $PT_1$ Glied mit einer Zeitkonstante $T$ zwischen 1ms und 3ms als hinreichend genau erwiesen [69].

Die Mechanik schliesslich wird als mit der Taktrate des Geschwindigkeitsreglers diskretisiertes state-space-Modell dargestellt.
Abbildung 2.7: Darstellung des Sinumerik 840D-Regelschemas als Simulink-Modell, wie es für Simulationen in dieser Arbeit verwendet wurde.
2.8. Abbildung der Reglerstruktur in Simulink

Abbildung 2.8: Lageregler in Simulink-Darstellung, mit Proportionalanteil und Filtern. Letztere sind als zeitdiskrete Übertragungsfunktionen abgebildet.

Abbildung 2.9: Geschwindigkeits- und Stromregler in Simulink-Darstellung, mit Integral- und Proportionalanteil, Filtern, sowie dem als zeitdiskrete Übertragungsfunktion abgebildeten Referenzmodell.
KAPITEL 2. MODELLIERUNG

Abbildung 2.10: Prüfstand Dreh- Schwenkeinheit mit zusätzlichem DBB-Messsystem

2.9 Beispiele

Im folgenden wird die Modellierung an Hand zweier Beispiele illustriert, einmal für eine dreiachsige Konfiguration und einmal für eine sechsachsige, parallelkinematische Werkzeugmaschine. Die zu Grunde liegenden Maschinen standen auch als Prüfstände zur Verfügung und die entworfenen Modelle werden in den entsprechenden Kapiteln verwendet. Die jeweils angewandte Art der Modellierung richtet sich nach der späteren Verwendung der Modelle.

2.9.1 Dreiachs-Prüfstand

Der Prüfstand ist in Abb. 2.10 gezeigt. Er besteht aus einer X-Achse mit Lineardirektantrieb, einem darauf aufgesetzten Turm mit Schwenktisch (B-Achse, Torque-Antrieb), sowie einem auf dem Schwenktisch angeordneten Drehtisch (C-Achse, Torque-Antrieb). Die wesentlichen Eigenschaften des Prüfstandes sind in Tab. 2.1 zusammengefasst. Abb. 2.12, die [70] entnommen ist, zeigt einen Überblick über das dynamische Verhalten gemäß experimenteller Modalanalyse, sowie gemäß dem unten vorgestellten linearen Modell.

Es wurden für diesen Prüfstand je ein lineares und ein nichtlineares Mehrkörpermodell gemäß den in Abschnitt 2.2 und Abschnitt 2.3 beschriebenen Vorgehensweisen erstellt. Eine schematische Darstellung der Konfiguration ist in Abb. 2.11 gezeigt. Das Modell besteht aus drei als starr angenommenen Körpers Basis, X-Achse und B/C-Achse. Für die Erstellung des Modells sind die dynamischen Parameter (Masse und Trägheiten), die relevanten geometrischen Parameter

Zustandsraumdarstellung

Das lineare Modell enthält für jeden der drei Körper die Lage des Schwerpunkts und den Rotationszustand, also sechs räumliche Freiheitsgrade gemäß Abschnitt 2.2. Die Zustandsraumdarstellung als System von Gleichungen erster Ordnung enthält demnach zunächst \(2 \times 3 \times 6 = 36\) Zustände. Werden als Eingänge die beiden Stellgrößen auf die Antriebe und als Ausgang die gemessenen Lageistwerte verwendet, so sind von diesen Zuständen deren 18 beobachtbar und steuerbar, die übrigen 18 sind weder beobachtbar noch steuerbar. Ein Modell in minimaler Darstellung enthält also noch 18 Zustände. Die nicht beobachtbaren und nicht steuerbaren Eigenschwingformen sind diejenigen, die entweder

- orthogonal zu den Mess- und Antriebsrichtungen verlaufen oder
- Schwingungen des gesamten Aufbaus gegenüber dem Inertialsystem ohne Relativverlagerungen der Körper darstellen

Die letztergenannten sind nicht beobachtbar, da die Messsysteme stets Relativlagen zwischen zwei Körpern messen und nicht steuerbar, da die Antriebe Kräfte stets auf zwei Körper absetzen.

\(^1\)S. Anhang A.3 für die Definitionen von steuerbar und beobachtbar
Abbildung 2.12: Eigenformen des Prüfstandes gemäß Starrkörpermodell (SKM, linke Spalte) und experimenteller Modalanalyse (EMA, rechte Spalte), nach [70]
2.9. BEISPIELE

<table>
<thead>
<tr>
<th>Massen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basis Masse</strong></td>
<td>( m = 650\text{kg} )</td>
</tr>
<tr>
<td>Trägheiten (x,y,z)</td>
<td>((70, 100, 145) \text{kgm}^2)</td>
</tr>
<tr>
<td><strong>Turm Masse</strong></td>
<td>( m = 500\text{kg} )</td>
</tr>
<tr>
<td>Trägheiten (x,y,z)</td>
<td>((55, 36, 28) \text{kgm}^2)</td>
</tr>
<tr>
<td><strong>Schwenktisch Masse</strong></td>
<td>( m = 310\text{kg} )</td>
</tr>
<tr>
<td>Trägheiten (x,y,z)</td>
<td>((16,13,45) \text{kgm}^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antriebe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Achse ( F_{\text{max}} )</td>
<td>2500N</td>
</tr>
<tr>
<td>B-Achse ( N_{\text{max}} )</td>
<td>1000Nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regelung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abtastzeit Lagerregelung</td>
<td>( dt_X = 1\text{ms} )</td>
</tr>
<tr>
<td>Abtastzeit Geschwindigkeitsregelung</td>
<td>( dt_V = 62.5\mu\text{s} )</td>
</tr>
<tr>
<td>Stromregler Zeitkonstante (beide)</td>
<td>( T_c = 3\text{ms} )</td>
</tr>
<tr>
<td>Nachstellzeit (beide)</td>
<td>( T_n = 30\text{ms} )</td>
</tr>
<tr>
<td>Geschwindigkeitsregelung X</td>
<td>( K_{pX} = 100000\text{Nms/m} )</td>
</tr>
<tr>
<td>Geschwindigkeitsregelung B</td>
<td>( K_{pB} = 7200\text{Nms/rad} )</td>
</tr>
<tr>
<td>Lageregelung beide</td>
<td>( K_v = 50\text{Hz} )</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Eigenschaften des Prüfstandes mit Regelung


**Stellgrössenübertragung**

Für beide Modelle wurde die Übertragungsfunktion von Krafteingang der X-Achse auf das zugehörige Lagemesssignal mit einem Pseudozufälligen binären Rauschsignal, PRBS gemessen, siehe Abb. 2.13. Die beiden Modelle stimmen folglich im Bereich der dabei entstehenden kleinen Auslenkungen (\(< 1\text{mm}\)) gut überein, allerdings ist das Ergebnis des nichtlinearen Modells stärker verrauscht. Ursache dafür sind vermutlich Artefakte aus der numerischen Integration. Die Signallänge beträgt dabei 131071 Werte, was einer Messdauer von ca. 8 Sekunden bei einem Geschwindigkeitsregeltakt von 62.5\mu s entsprechen würde. Dies ist eine typische Taktrate für die in den Experimenten verwendete Steuerung. Die Rechenzeit für die Auswertung der beiden Modelle ist allerdings stark unterschiedlich.
Abbildung 2.13: Vergleich einer simulierten lokalen Messung zwischen dem linearen und dem nichtlinearen Modell
2.9. BEISPIELE

Abbildung 2.14: Vergleich Messung - Modell (oben) und Identifikation der Übertragungsfunktion (unten)


Abb. 2.14(a) zeigt links den mechanischen Frequenzgang der X-Achse gemäß Messung und gemäß Modell. Die Übereinstimmung ist im Frequenzbereich bis ca. 100 Hz sehr gut und wird im höheren Frequenzbereich schlechter: Das Modell zeigt einen ausgeprägten Mode bei ca. 175Hz, der in Wirklichkeit nicht vorhanden ist. Abb. 2.14(b) zeigt die Sprungantwort der geschwindigkeitsgeregelten X-Achse gemäß Messung und gemäß Modell. Die Abbildung ent-

2.9.2 Hexaglide


Notation:

Die folgenden Bezeichnungen werden in diesem Abschnitt verwendet, s. Abb 2.15: $l_j$ bezeichnet die Länge des Verbindungsstabes zwischen Plattform und dem Antrieb der Nummer $j$, $s_j$ den Vektor vom Koordinatenursprung zum Nullpunkt des Messsystems von Antrieb $j$, $r_j$ ist ein Einheitsvektor entlang dieser Führung. Nominell ist $s_j$ parallel zum Einheitsvektor in y-Richtung $e_y$ und $r_j = e_x$. $\rho_j$ bezeichnet die Position des Antriebs $j$, $\nu_j$ den Verbindungsvektor vom TCP zum plattformseitigen Befestigungspunkt des Stabes zwischen Plattform und Antrieb $j$.

Vereinfachtes starres Modell ohne Stabträgheiten

Abbildung 2.15: (a) kinematischer Aufbau des Hexaglide, mit den 6 Antrieben $Q_1, \ldots, Q_6$ und der TCP-Plattform. (b) Detail eines Antriebs- und Plattformgelenks (Kardangelenk mit zwei bzw. drei Freiheitsgraden)

Signalrauschen führen, vermieden werden kann. Die Antriebe weisen keine Rotationsfreiheitsgrade auf. Es wird die TCP-Position $x$ und -Orientierung, angegeben durch Winkelkoordinaten $a$ als Minimalkoordinatensystem gewählt. Werden dann die Körper von 1-7 nummeriert, wobei 1...6 die Antriebe in der Reihenfolge von Abb. 2.15 und 7 die Plattform bezeichnen, so ist mit den Bezeichnungen aus (2.44) $g_i = 0$ ($i = 1..6$), $f_7 = g_7 = \text{id}$, und die Abbildungen
$f_1 \ldots f_6$ - die die Antriebspositionen aus der TCP-Position $x$ und -orientierung $a$ bestimmen - sind gegeben durch:

$$f_j(q) = \rho_j(q) r_j + s_j$$  \hspace{1cm} (2.107)

wobei die Antriebskoordinate $\rho_j(q)$ aus der quadratischen Gleichung

$$|x + R(a) \nu_j - (s_j + \rho_j(q) r_j)|^2 = L_j^2$$  \hspace{1cm} (2.108)

bestimmt wird. $L_j$ ist gemäß der Annahme einer starren Maschine fest vorgegeben. Damit sind alle benötigten Abbildungen für die Erstellung des Modells gemäß Abschnitt 2.4 bekannt. Die benötigten Ableitungen werden mit Vorteil analytisch berechnet: Dies ist nicht nur schneller, sondern vor allem weniger rauschbehaftet. Es werden hier exemplarisch die ersten Ableitungen bestimmt. Mit der Abkürzung $x + R(a) \nu - s =: v$ ergibt sich:

$$\rho = v^T r + \sqrt{L^2 + (v^T r)^2 - v^T v} =: v^T r + W$$  \hspace{1cm} (2.109)

$$\frac{\partial \rho}{\partial x} = r^T + \frac{1}{W} \left((v^T r)r^T + x^T + \nu R(a)^T\right)$$  \hspace{1cm} (2.110)

$$\frac{\partial \rho}{\partial a} = r^T \langle R'(a) \nu \rangle + \frac{1}{W} \left(\left[(v^T r)r^T + x^T\right] \langle R'(a) \nu \rangle - \nu^T \langle R'(a) s \rangle\right)$$  \hspace{1cm} (2.111)

Die zweiten Ableitungen, die ebenfalls benötigt werden, können ebenso - mit etwas mehr Aufwand - analytisch oder numerisch berechnet werden. Die Christoffelterme der Rotation nehmen in diesem Koordinatensystem die vergleichsweise einfache Form von Gl. (2.28) an. Damit kann ein Modell gemäß Abschnitt 2.4 implementiert werden.


**Starres Modell mit Berücksichtigung der Stabträgheiten**

Das Modell kann verfeinert werden, indem die Stabträgheiten mit berücksichtigt werden. Dies vergrößert allerdings den Rechenaufwand. Die Berechnung der entsprechenden Christoffelterme gemäß (2.47) belegen den grössten Anteil in der benötigten Rechenzeit. Die Kardangelenke des Hexaglide lassen keine Stabrotationen um die Symmetrieachse $z'$ des Stabes zu. (s Abb. 2.15). Die Winkel um die $x$ und $y$ Achse lassen sich aus der durch die verallgemeinerten Koordinaten gegebenen Gelenkpositionen an Antrieb und Plattform bestimmen, woraus sich die
Abbildung 2.16: Vergleich gemessener und berechneter Kraftwerte für den Hexaglide beim Durchfahren der unten abgebildeten Kontur aus Gerade-Kreis Übergängen mit einer Geschwindigkeit von 5m/min.
Abbildung 2.17: Linearisiertes Modell Hexaglide, bestehend aus Antrieben, Verbindungsstäben und der Plattform


Vereinfachtes lineares Modell mit Nachgiebigkeiten


Modellaufbau Der Aufbau des Modells ist schematisch in Abb. 2.17 gezeigt. Es enthält 13 Körper, nämlich die sechs Antriebe, die sechs Verbindungsstäbe sowie die Plattform. Man geht davon aus, dass die Gelenke die Schwachpunkte der Steifigkeit darstellen und vernachlässigt da-
gegen die Biegenachgiebigkeit der Stäbe sowie Nachgiebigkeiten der Führungen. Weiter wird
davon ausgegangen, dass Kräfte nur in Stabrichtung übertragen werden. Steifigkeiten in Form
linearer Feder/Dämpferelemente sind eindimensional in Stabrichtung jeweils an der Plattform
und an den Antrieben platziert. Das Modell besitzt damit 18 räumliche Freiheitsgrade, nämlich
die Antriebspositionen \( \rho := (\rho_1 \ldots \rho_6) \), die Verschiebungen der Stäbe in deren Längsrichtung
\( p := (p_1 \ldots p_6) \) und alle sechs Freiheitsgrade \( x \in \mathbb{R}^3 \) und \( a \in \mathbb{R}^3 \) der Plattform. Die winkelabhängigen Gelenksteifigkeiten wurden von Cobet \[8\] gemessen. Die für deren Verwendung
benötigte Berechnung der Gelenkwinkel aus den verallgemeinerten Koordinaten folgt \[6\]. All-
fällige Modellanpassungen anhand von Messungen sind auf Grund der Wechselwirkungen für
dieses MIMO-Modell erheblich schwieriger, als für SISO-Modelle. In diesem Fall wurden die
gelenksteifigkeiten gegenüber der Messung manuell leicht angepasst und Dämpfungen propor-
tional zu den Steifigkeiten angenommen.

Das Modell benötigt zur Berechnung der aus relativen Verschiebungen der Körper resultierenden
Kraft die entsprechenden Dehnungen der Federelemente. Abb.2.18 veranschaulicht die fol-
gende Berechnung dieser Dehnungen, die sich auch daraus durch Betrachtung ähnlicher Dreiecke
nachvollziehen lässt: Mit der Abkürzung \( l_j \) für den Verbindungsvektor von Antrieb \( j \)
zu dessen plattformseitigem Stabgelenk:

\[ l_j := x + R(a) v_j - (s_j + \rho r_j) \]

wird, wenn zur Abkürzung der Index \( j \) weggelassen wird:

\[ l^2 = l^T l \]
\[ \frac{\partial l}{\partial x} = \frac{\partial (l^2)}{\partial x} \frac{1}{2l} = \frac{1}{l} l^T \frac{\partial q}{\partial x} = \frac{1}{l} l^T \]
\[ \frac{\partial l}{\partial a} = \frac{\partial (l^2)}{\partial a} \frac{1}{2l} = \frac{1}{l} l^T \frac{\partial l}{\partial a} = \frac{1}{l} l^T \langle R'(a) p \rangle \]
\[ \frac{\partial l}{\partial \rho} = \frac{1}{l} l^T \]
\[ \frac{\partial l}{\partial p} = 1_6 \]

Werden dann die Dehnungen der antriebs- und plattformseitigen Federn angesetzt als

\[ \Delta l_A = \left[ \frac{\partial l}{\partial \rho} \frac{\partial l}{\partial \rho} \right] \begin{pmatrix} \delta_\rho \\ \delta_\rho \end{pmatrix} \]
\[ \Delta l_P = \left[ -\frac{\partial l}{\partial \rho} \frac{\partial l}{\partial x} \frac{\partial l}{\partial a} \right] \begin{pmatrix} \delta_\rho \\ \delta_x \\ \delta_a \end{pmatrix} \]
so ergibt sich daraus mit den Steifigkeitsmatrizen \( K_P \) und \( K_A \) für die Plattform- bzw. antriebsseitigen Federn die globale Steifigkeitsmatrix \( K \) zu

\[
K = \begin{bmatrix}
\frac{\partial l}{\partial \rho} & 0 & -\frac{\partial l}{\partial x} & -\frac{\partial l}{\partial a} \\
0 & \frac{\partial l}{\partial \rho} & 0 & -\frac{\partial l}{\partial a} \\
-\frac{\partial l}{\partial x} & 0 & \frac{\partial l}{\partial \rho} & -\frac{\partial l}{\partial a} \\
-\frac{\partial l}{\partial a} & 0 & 0 & \frac{\partial l}{\partial \rho}
\end{bmatrix}^T \begin{bmatrix}
K_A & 0 & 0 & 0 \\
0 & K_A & 0 & 0 \\
0 & 0 & K_A & 0 \\
0 & 0 & 0 & K_A
\end{bmatrix}^T
\]

(2.120)

Aus Abb. 2.18 wird insbesondere wird deutlich, dass flacher liegende Stäbe steifer wirken, als steilere, da hier eine Antriebsabweichung \( \delta q \) die größere Längenabweichung \( \delta L \) bewirkt, und der Antrieb damit bezogen auf die Antriebsauslenkung eine höhere Federkonstante wahrnimmt. Dies drückt den intuitiven Sachverhalt aus, dass die Maschine steifer ist, wenn sie breitbeiniger steht. Im Fall des Hexaglide „sehen“ die kürzeren Stäbe 4...6 zudem eine größere Masse als die beiden längeren Stäbe 1, 2, wie die Massenmatrizen gemäß (2.121) – aus dem starren Modell – und (2.122) – aus dem nachgiebigen Modell – sowie auch die Messungen bestätigen. Die beiden Effekte kumulieren sich zu den erheblichen Unterschieden in den Steifigkeiten der Achsen, die in Abb. 2.19 sichtbar sind.

**Modellergebnisse** Die Massenmatrix des Modells gemäß Abschnitt 2.9.2 lässt sich auch aus dem linearisierten Modell gewinnen, in dem die Frequenzgänge von den Stellgrößeneingängen zu den Antriebsbeschleunigungen bei der Frequenz 0Hz betrachtet werden. Es ergeben sich aus dem starren und dem linearisierten Modell in Arbeitsraummitte, bei der TCP-Position und -Orientierung \([X,Y,Z,A,B,C] = [0m, 0m, -0.95m, 0°, 0°, 0°]\) die beiden folgenden Massenmatrizen:

\[
M_{starr} = \begin{bmatrix}
113 & -4 & -41 & 28 & 19 & -21 \\
-4 & 112 & 28 & -40 & -21 & 18 \\
-41 & 28 & 229 & -79 & -131 & 34 \\
28 & -40 & -79 & 228 & 33 & -131 \\
19 & -21 & -131 & 33 & 221 & 16 \\
-21 & 18 & 34 & -131 & 16 & 222
\end{bmatrix}
\]

(2.121)
Die beiden Matrizen stimmen also im wesentlichen überein. Die Diagonalterme stimmen auch mit den Frequenzgangmessungen gut überein. Die Ausserdiagonalterme der Massenmatrix sind schwierig direkt zu messen.

Abb. 2.19 zeigt in der linken Spalte die gemessenen Frequenzgänge der einzelnen Antriebe im Vergleich mit den aus dem Modell berechneten Frequenzgängen. Es sind nur die Achsen $Q_2, Q_4, Q_6$ abgebildet, die Frequenzgänge der Achsen $Q_3, Q_5, Q_7$ sind aus Symmetriegründen damit identisch. Es ist gut erkennbar, dass die Drehzahlregelstrecke des Antriebs $Q_2$, der an einem längeren, also flacher stehenden Stab angebracht ist, steifer ist, als diejenigen der Achsen $Q_4$ und $Q_6$, die ausgeprägte Eigenfrequenzen deutlich unter $30\,\text{Hz}$ zeigen. Die Abweichungen zwischen Modell und Messung sind geringfügig grösser, als bei dem Modell des Dreiachs-Prüfstandes, was auf die höhere Schwierigkeit bei der Parameteranpassung zurückzuführen ist.

In der rechten Spalte der Abb. 2.19 ist erkennbar, dass sich das Verhalten im Zeitbereich der einzelnen Achsen gut abgebildet lässt. Es sind die Sprungantworten der geregelten Antriebe auf einen Geschwindigkeitssollwertsprung jeweils gemessen und mit Hilfe des Modells simuliert dargestellt. Dem Modell wurde dazu ein Modell des Regelkreises gemäss Abschnitt 2.8 hinzugefügt. Die Sprungantworten bestätigen deutlich die Aussage der Frequenzgangmessung, dass die dominante Eigenfrequenz der Achsen $Q_3$ und $Q_5$ tiefer liegt, als diejenige der Achse $Q_1$. Von den Messungen der rechten Spalte wurde jeweils eine in positiver, die andere in negativer Richtung durchgeführt und die Ergebnisse übereinandergezeichnet. Die gute Übereinstimmung zeigt, dass für die Linearisierung Effekte der Schwerkraft gegenüber anderen Modellierungsfehlern vernachlässigt werden darf.

Die Lageabhängigkeit bedingt, dass ein Modell an mehreren Punkten des Arbeitsraums zu validieren ist. Abb. 2.20 zeigt Sprungantworten bei $X = 0\,\text{m}, Y = 0.2\,\text{m}, Z = -0.95\,\text{m}, A = 15^\circ, B = 5^\circ, C = 10^\circ$. An diesem Punkt sind alle sechs Achsen separat zu betrachten, da keine Symmetrien mehr gegeben sind. Das linearisierte Modell für diesen Arbeitspunkt lässt sich ohne weiteres durch die selbe Berechnung wie für das Modell in Arbeitsraum-mitte unter Anpassung der Koordinaten erstellen. Es wurde keine separate Anpassung der Modellparameter an den Arbeitspunkt vorgenommen. Die Übereinstimmung zwischen Simulation und Messung ist an dieser Stelle aber geringer, als für das Modell in Arbeitsraummitte. Dies deutet darauf hin, dass die Modellparameter an verschiedenen Punkten des Arbeitsraumes anzupassen wären, sollte eine bessere Übereinstimmung erreicht werden.

Die Abb. 2.21 schliesslich zeigt die Anwendung des in Abschnitt 2.7 hergeleiteten Verfahrens zur Anpassung eines Modells an eine gemessene Übertragungsfunktion auf den Frequenzgang der Achse Q5 des Hexaglide. Das Verfahren zeigt offenbar auch in diesem Fall gute Ergebnis-
Abbildung 2.19: Frequenzgänge und Sprungantworten des Geschwindigkeitsreglers in der Arbeitsraummitte für die Achsen 2, 4, 6 des Hexaglide. Die drei übrigen Achsen verhalten sich aus Symmetriegründen identisch.
Abbildung 2.20: Sprungantworten des Geschwindigkeitsreglers des Hexaglide bei der kartesischen Position \([X, Y, Z, A, B, C] = [0 \text{m}, 0.2 \text{m}, -0.95 \text{m}, 15^\circ, 5^\circ, 10^\circ]\)
Abbildung 2.21: Identifikationsalgorithmus für Frequenzgänge, (a) gemessene Pol- und Nullstellen des Frequenzgangs und Startlösung, (b) Approximation der Übertragungsfunktion nach 50 Iterationen des Algorithmus und (c) Vergleich zwischen InvFreqS (matlab) und dem Algorithmus.
2.9. **BEISPIELE**

se. Zum Vergleich ist in Abb. 2.21(c) die Anwendung des Identifikationsalgorithmus nach [42] dargestellt, der in Matlab als Funktion `InvFreqS` implementiert ist. Das asymptotische Verhalten für $s \to 0$ und $s \to \infty$ des letzteren weicht offenbar vom korrekten asymptotischen Verhalten ab, da es sich dabei um eine rein mathematische Identifikation von Koeffizienten rationaler Funktionen handelt, der keinerlei Modellvorstellung einer Klasse physikalischer Systeme hinterlegt ist.
Kapitel 3
Klassische Kaskadenregelung


3.1 Frequenzbereiche und Regelkreise

Die Betrachtung der Übertragungsfunktion eines linearen Regelkreises führt auf eine gebrochen rationale Übertragungsfunktion gemäss Anhang mit Zähler- und Nennerpolynomen, die von den Streckeneigenschaften sowie von den Reglerparametern abhängen. Die Charakterisierung des Verhaltens ist damit durch Polynome definiert, die wiederum durch ihre Nullstellen bestimmt sind. Da die Bestimmung der Nullstellen von Polynomen nicht allgemein geschlossen lösbar ist, ist man entweder auf numerische Optimierungen, auf Faustregeln, wie die Methode der Doppelverhältnisse oder auf Vereinfachungen angewiesen. In dieser Arbeit wird der Methode gemäss gefolgt, die darauf beruht, die inneren, auch unterlagert ge-
3.1. FREQUENZBEREICHE UND REGELKREISE

Abbildung 3.1: Ein- und Ausgangsgrössen in einer kaskadierten Regelung

nannten Regelkreise sukzessive durch einfache Modelle zu ersetzen. Daraus ergeben sich Inbetriebnahmeregeln, die sich einfach und ohne aufwändige Optimierungen direkt an der Maschine anwenden lassen. Das grundlegende Schema ist wie folgt, s. Abb. 3.2:

1. Sollwertfilter für den innersten Regelkreis definieren
2. Den Proportionalanteil des innersten Regelkreises in Betrieb nehmen
3. Falls vorhanden den Integralanteil des innersten Regelkreises in Betrieb nehmen.
4. den geschlossenen innersten Regelkreis durch ein PT1-Glied mit Integrator approximieren
5. Schritte 1 - 3 wiederholen mit dem nächsten überlagerten Regelkreis

Bei Werkzeugmaschinen handelt es sich dabei um die drei Regelkreise Stromregler, Geschwindigkeitsregler und Lageregler, s. Abb. 3.1, die typischerweise als reine Proportional- („P-“) oder Proportional-Integral („PI-“) -Regler ausgeführt sind. In jedem Fall ist die Eingangsgröße des überlagerten Regelkreises durch ein Übertragungsglied mit relativem Grad 1 mit seiner Ausgangsgröße verknüpft.

Die Bandbreite eines PI-Reglers ist in erster Linie durch den Proportionalanteil bestimmt [14]. Hier wird folglich nur der Proportionalanteil für die Bestimmung der Bandbreite herangezogen. Wird ein unterlagerter Regelkreis (mit Index \( j \), in der Bezeichnung der Abb. 3.2), oder im Fall des innersten Regelkreises die mechanische Regelstrecke (mit Index 1, in der Bezeichnung der Abb. 3.2), gemäß [69] in erster Näherung durch ein \( PT1 \)-Glied mit geeignet gewählter Eckfrequenz \( \omega_{k+1} \) mit einem zusätzlichen Integrator, also durch die Übertragungsfunktion

\[
\frac{y_j}{r_j} = \frac{1}{s} \frac{\omega_j}{s + \omega_j}
\]  

zwischen gemessenem Ausgang \( y_j \) und Eingang \( r_j \) ersetzt, und durch einen Proportionalregler mit Verstärkung \( k_j \) geregelt, so folgt aus der Übertragungsfunktion des geschlossenen Regelkreises vom Sollwert \( r_{j+1} \) zum gemessenen Ausgangswert \( y_j \):

\[
\frac{y_j}{r_{j+1}} = \frac{\omega_j}{s^2 + \omega_j s + k_j \omega_j}
\]  

und der konservativen Forderung, dass durch die Regelung keine periodischen Pole eingeführt werden sollen offenbar, dass \( k_j \leq \omega/4 \) sein muss [69]. Der für \( k_j = \omega/4 \) entstehende Regelkreis hat die Übertragungsfunktion
Abbildung 3.2: Approximation innerer Regelkreise durch PT1-Glieder

\[ \frac{y_j}{r_{j+1}} = \frac{(\omega_j/2)^2}{(s + \omega_j/2)^2} \]  

Diese Übertragungsfunktion lässt sich im Frequenzbereich bis ca. \( \omega_j/2 \) durch ein PT1-Glied mit Eckfrequenz \( \hat{\omega}_j := \omega_j/4 \) approximieren:

\[ \frac{y_j}{r_{j+1}} = \frac{1}{(s/\omega_j)^2 + 4 (s/\omega_j) + 1} = \frac{\omega_j/4}{s + \omega_j/4} \]

Als Faustregel kann demnach gelten, dass jeder überlagerte Regelkreis 75% der Bandbreite seines unterlagerten Regelkreises verliert. Das Inbetriebnahmeschema kann damit auch als Inbetriebnahme von hohen (innere Regelkreise) zu tiefen (äussere Regelkreise) Frequenzbereichen interpretiert werden [14]. Sinngemäß gilt nach Abschnitt 3.3.2 das selbe für den Integralanteil eines PI-Reglers. Dies ist als grobe Faustregel zu verstehen: Einerseits können je nach Anwendung im Strom- und Geschwindigkeitsregelkreis gut gedämpfte periodische Pole auch toleriert werden, womit sich die Bandbreite erhöht. Andrerseits ist die Bandbreite oft durch mechanische Eigenfrequenzen auf deutlich geringere Werte limitiert. Die Faustregel gibt aber einen brauchbaren Hinweis zur Parametrierung und wird in dieser Arbeit im Folgenden als die „1/4-Regel“ referenziert. Mit der Faustregel kann man eine Aufteilung der Regelung in Frequenzbereiche etwa wie folgt vornehmen:
3.2 SOLLWERTFILTER

<table>
<thead>
<tr>
<th>Regelkreis</th>
<th>Frequenzbereich</th>
<th>dominante Effekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromregler, inklusive Stromsollwertfilter</td>
<td>$\geq 700 \text{ Hz}$</td>
<td>Messsystemquantisierung, zeitliche Quantisierung, Messrauschen, Wicklungsinduktivität</td>
</tr>
<tr>
<td>Proportionale Geschwindigkeitsregelung</td>
<td>$\leq 150 \text{ Hz}$</td>
<td>mechanische Eigenfrequenzen, zeitliche Quantisierung, Stromreglerbandbreite</td>
</tr>
<tr>
<td>Integralanteil Geschwindigkeitsregelung und Proportionalanteil Lageregulation</td>
<td>$\leq 50 \text{ Hz}$</td>
<td>Geschwindigkeitsreglerbandbreite</td>
</tr>
</tbody>
</table>

Dies erklärt die Notwendigkeit einer möglichst hohen Bandbreite des innersten Regelkreises, der bei einer steifen Maschine sonst schnell zum limitierenden Faktor der Lagereglerbandbreite werden kann, s. dazu auch das Inbetriebnahmebeispiel in Abschnitt 3.6. Insbesondere ist dazu ein hochauflösendes und möglichst starr angekoppeltes Messsystem nötig [69]. Im folgenden werden die einzelnen Regelkreise in absteigender Reihenfolge der zugehörigen Frequenzbereiche besprochen.

3.2 Sollwertfilter

3.2.1 Einsatzbereich von Filtern

KAPITEL 3. KLASSISCHE KASKADENREGELUNG

3.2.2 Filtertypen

Unterschieden wird zwischen Tiefpassfilters, die die Amplitude in einem Frequenzbereich oberhalb einer Grenzfrequenz \( w_0 \) des Filters um einen gewissen Betrag absenken und Bandsperren, die die Amplitude in einem Frequenzband absenken. Die gebräuchlichsten Filtertypen sind:

- Tiefpassfilter, die als \( PT_1 \) oder \( PT_2 \) Glieder ausgeführt sein können, mit Übertragungsfunktion von der ungefilterten Stellgröße \( u_r \) zur gefilterten Stellgröße \( u \)

\[
\frac{u}{u_r} = \frac{\omega}{s + \omega} \quad \text{bzw.} \quad \frac{u}{u_r} = \frac{\omega^2}{s^2 + 2\xi\omega s + \omega^2} \tag{3.5}
\]

- Notchfilter, die als Bandsperren eingesetzt werden bzw. allgemeine \textit{biquadratische Filter} mit Übertragungsfunktion

\[
\frac{u}{u_r} = \frac{\omega_n^2}{s^2 + 2\xi_n\omega_n s + \omega_n^2} \tag{3.6}
\]

Um ein Notchfilter zu erhalten, setzt man \( \xi_n = 0 \), \( \omega_d = \omega_N \). In der 840D Steuerung werden eine grosse und mit jedem Softwarestand wachsende Anzahl biquadratischer Filter als Stromsollwertfilter zur Verfügung gestellt. In Abschnitt 3.6 wird exemplarisch die Inbetriebnahme einer Achse mit biquadratischen Filtern gezeigt. \textit{Biquadratische Filter} gemäss (3.6) erlauben, die Dämpfung \( \xi_d \) der Pol- und Nullstellen \( \xi_n \) und \( \xi_d \) explizit vorzugeben. Damit lässt sich eine gut gedämpfte Sprungantwort einstellen. Für \( \omega_d < \omega_n \) erhält man ein Tiefpassfilter mit einer Amplitudenabsenkung um \( \omega_d/\omega_n \) im Frequenzbereich \( \omega > \omega_n \). Für die Inbetriebnahme der Achsen der in dieser Arbeit verwendeten Prüfstände wurden Reihenschaltungen derartiger Filter verwendet.

3.3 Geschwindigkeitsregelkreis

3.3.1 Proportionale Geschwindigkeitsreglerverstärkung

Grundsätzlich sind einige Fälle zu unterscheiden, insbesondere nach dem dominanten Effekt, typischerweise einer der folgenden:

- dominante mechanische \textit{Eigenfrequenz}
- elastische Messsystemankopplung
- Stromregler-Zeitkonstante

Die vorliegende Arbeit konzentriert sich einzig auf den ersten Fall, wo eine mechanische \textit{Eigenfrequenz} im Bereich von unter 50Hz das Verhalten dominiert. Für die beiden anderen Fälle
3.3. **GESCHWINDIGKEITSREGELKREIS**

Abbildung 3.3: Maximalwert einer Antwort eines PI-geregelten Integrators auf einen Einheits-Sollwertsprung, in Abhängigkeit des Verhältnisses von Proportional- und Integratorverstärkung \( \rho \)

wird auf [69] verwiesen. Gemäß [69] erreicht der Geschwindigkeitsregelkreis für alle Fälle in der Tabelle 2.4 die maximale Dämpfung der periodischen Polstellen \( p, \bar{p} \) für die Wahl

\[
K_p := \frac{1}{2} \Theta \omega_0 \sqrt{\lambda} (1 + \lambda) =: \Theta \kappa
\]  

(3.7)

Diese Einstellung heisst im folgenden in Anlehnung an [23] „dämpfungsoptimal“[1]. Die Polstellen eines derart dämpfungsoptimal geregelten Systems der Form aus (2.48) lassen sich explizit angeben:

\[
p_r = -\omega_0 \sqrt{\lambda} = -\omega_N
\]  

(3.8)

\[
p_c, \bar{p}_c = \frac{\omega_0}{4 \sqrt{\lambda}} \left( \lambda - 1 \pm \sqrt{-7\lambda^2 - 10\lambda + 1} \right)
\]  

(3.9)

Die erreichbare Dämpfung hängt also nur von der Massenverteilung \( \lambda \) ab. Die aperiodische Polstelle entspricht genau der Tilgerfrequenz \( \omega_N \), also der *Eigenfrequenz* der nachgiebig gekoppelten Last als Einmassensystem.

### 3.3.2 Integralanteil und Referenzmodell

Es wird die Übertragungsfunktion eines Integrators mit idealer Stromregelung unter PI-Regelung mit Nachstellzeit \( T_n \) betrachtet, also der Fall eines PI-Reglers, der ein ideales, starres System mit

\[1\] Die Bezeichnung ist nicht mit dem Schröderschen Dämpfungsoptimum [51] zu verwechseln.
Einheitsmasse regelt. Dies führt auf die Übertragungsfunktion des geschlossenen Regelkreises vom Sollwert \( r \) zur gemessenen Geschwindigkeit \( y \)

\[
\frac{y}{r} = \frac{(1 + T_n s) \kappa}{T_n s^2 + \kappa T_n s + \kappa}
\]  \( (3.10) \)

mit den Polstellen

\[
p_{\pm} = \frac{1}{2} \left( -\kappa \pm \sqrt{\kappa \frac{\kappa}{T_n} \sqrt{\kappa T_n - 4}} \right)
\]  \( (3.11) \)

und der Nullstelle

\[
z = -\frac{1}{T_n}
\]  \( (3.12) \)

Die Bedingung für rein reelle, also aperiodische Polstellen lautet gemäß \( (3.11) \) \( \kappa T_n \geq 4 \), was das selbe ist, wie in \( 3.1 \) für den überlagerten Regelkreis gefunden wurde, wenn in \( (3.2) \) als Eckfrequenz \( \omega := 1/T_n \) gesetzt wird. Die Wahl \( \kappa := 4/T_n \), führt auf die Übertragungsfunktion des geschlossenen Regelkreises

\[
\frac{y}{r} = \kappa \frac{s + \kappa/4}{(s + \kappa/2)^2}
\]  \( (3.13) \)

Diese weist keine periodischen Polstellen auf. Dennoch zeigt die Sprungantwort einen Überschwinger von etwa 14%. Wird die Sprungantwort der Übertragungsfunktion in den Zeitbereich übertragen, so ergibt sich, dass der Maximalwert der Sprungantwort nur von \( \rho := \kappa T_n / 4 \) abhängt. Dieser berechnete Maximalwert der Sprungantwort ist in \( 3.3 \) als Funktion von \( \rho \) aufgetragen. Die Rechnungen lassen sich in geschlossener Form durchführen, die entstehenden Ausdrücke sind jedoch unübersichtlich und werden hier nicht explizit hingeschrieben. Die Inbetriebnahme eines PI-Reglers mit aperiodischen Polstellen ist gemäß Abb. Abb. \( 3.3 \) nicht überschwингfrei möglich. Man nimmt zur Kenntnis, dass es sich bei diesem Überschwinger nicht um die Auswirkung einer Polstelle allein handelt, denn diese sind ebenso wie die Nullstelle aperiodisch, sondern um ein Zusammenspiel von Postelle und Nullstelle. Dieser Überschwinger auf einen Sollwertsprung ist solange tolerierbar, als keine Vorsteuerungen verwendet werden, da der überlagerte Lageregel keine Sollwertsprüge überträgt. Die Antwort \( y \) auf ein mit einer Frequenz \( \omega_L \) tiefpassgefiltertes Eingangssignal \( r \) ergibt sich dann aus der Übertragungsfunktion

\[
\frac{y}{r} = \kappa \frac{\omega_L}{s + \omega_L} \frac{s + \kappa/4}{(s + \kappa/2)^2} \rightarrow \omega_L = \kappa/4 \quad \frac{(\kappa/2)^2}{(s + \kappa/2)^2}
\]  \( (3.14) \)

Der Überschwinger verschwindet demnach, sobald \( \omega_L \leq \kappa/4 \). Der Wert \( \omega_L = \kappa/4 \) stellt den gemäß Abschnitt \( 3.4 \) bzw. gemäss der „1/4-Regel“ korrekten Wert für die Lageregel-Bandbreite
3.3. GESCHWINDIGKEITSREGELKREIS

dar. Der Überschwinger ist allerdings kaum mehr tolerierbar, sobald eine Geschwindigkeitsvorsteuerung verwendet wird, die Sollwerte mit höherfrequenten Anteilen übertragen kann. Der Überschwinger kann in diesem Fall vermieden werden, in dem der Integralanteil wie in Abb. 3.12 dargestellt über ein Referenzmodell \( T_r \) gezogen wird, das dem Verhalten der durch den proportionalen Anteil des Geschwindigkeitsreglers alleine geregelten Strecke entspricht \[23\].

Für eine beliebige Regelstrecke \( G \) ergibt sich mit geeigneter Wahl von \( T_r \) die überschwingfreie Sollgrößenübertragung des PI-geregelten Systems

\[
\frac{y}{r} = \frac{\kappa G (T_r + T_n s)}{(T_n s + \kappa G + \kappa G T_n s)} \quad \rightarrow \quad T_r = \frac{\kappa G}{1 + \kappa G}
\]

(3.15)

Die Vorteile des Integralanteils bei der Störgrößenerunterdrückung bleiben hingegen erhalten \[23\]. Intuitiv ist die Idee des Referenzmodells diejenige, dass der Integralanteil inaktiv bleiben kann, solange das Verhalten des proportionalen Geschwindigkeitsregelkreises dem Referenzmodell \( T_r \) entspricht, auch wenn der Geschwindigkeitsregelkreis dem Eingangssignal nicht strikt folgen kann, wie dies beispielsweise im Fall einer Anregung durch einen Sollwertsprung der Fall ist. Damit bleibt das Verhalten des Geschwindigkeitsreglers in der Sollgrößenübertragung dasjenige eines rein proportionalen Geschwindigkeitsreglers. In der Praxis wird in der Definition von \( T_r \) anstelle eines Modells der Regelstrecke \( G \) meist die Approximation von \( G \) durch ein \( PT_1 \)-Glied gewählt. Der Überschwinger ist im übrigen ein Hauptgrund dafür, den Lageregler als reinen Proportionalregler ohne Integralanteil auszuführen \[14\].

3.3.3 Geschwindigkeitssollwertfilter

Filter werden in erster Linie als Stromsollwertfilter eingesetzt. Es besteht allerdings grundsätzlich die Möglichkeit, mit Hilfe von Bandsperren als Geschwindigkeitssollwertfilter auch auf niederfrequente Strukturschwingungen Einfluss zu nehmen, \[27\]. Die Methode beruht darauf, die Polstellen durch die Nullstellen eines Filters zu überdecken, und stattdessen neue - gut gedämpfte - Polstellen einzuführen. Auf die Unzulänglichkeiten derartiger Filtertechniken wurde in Abschnitt 3.2 hingewiesen.

Prinzip

Ausgehend vom Modell gemäß (2.48) für ein Zweimassensystem können die Polstellen \( p_r, p_c, \bar{p}_c \) des mit \( K_p = \kappa \Theta \) geschlossenen Geschwindigkeitsreglers von der Sollgeschwindigkeit \( r \) zur gemessenen Istgeschwindigkeit \( y \)

\[
\frac{y}{r} = \frac{s^2 + \omega_0^2 \lambda}{\lambda s^3 + \kappa s^2 + \lambda \omega_0^2 s + \kappa \lambda \omega_0^2}
\]

(3.16)

(numerisch) bestimmt werden. Die Strukturschwingungen können dann durch ein biquadratisches Filter der Form

\[
\frac{u}{u_r} = \frac{\omega_d^2}{\omega_n^2} \times \frac{s^2 + 2\xi_n \omega_n s + \omega_n^2}{s^2 + 2\xi_d \omega_d s + \omega_d^2} = \frac{\omega_d^2}{|p|^2} \times \frac{s^2 - 2\Re(p)s + |p|^2}{s^2 + 2\xi_d \omega_d s + \omega_d^2}
\]

(3.17)
KAPITEL 3. KLASSISCHE KASKADENREGELUNG

Abbildung 3.4: Kaskadenregelung mit als Bandsperrre ausgewähltem Geschwindigkeitssollwertfilter, wie es zur Vermeidung von Resonanzen im Einflussbereich des Geschwindigkeitsreglers verwendet wurde.

Das Ausgangssignal des Proportionalreglers filtriert (s. Abb. 3.4) teilweise unterdrückt werden. Im letzten Ausdruck der Gleichung (3.17) ist für \( p \) die periodische Polstelle des geschlossenen Regelkreises, deren Anregung unterdrückt werden soll, einzusetzen. Abb. 3.4 zeigt, wie das Filter in die Kaskadenregelung eingefügt wird. Für komplexere Systeme können prinzipiell die Polstelle des geschlossenen Geschwindigkeitsregelkreises einem Modell entnommen und die selbe Filtertechnik angewandt werden.

Als Parameter stehen die Eigenfrequenz und Dämpfung des Filters zur Verfügung. Man wählt Pollagen mit guter Dämpfung (z.B. \( \xi_d = 0.5 \)) und in den meisten Fällen \( \omega_d = \omega_n \). Dies entspricht der Wahl der Pollagen, für die Zustandsregelung nach Zirn [70]. Wird \( \omega_d \neq \omega_n \) gewählt, so wirkt das Filter zusätzlich als Hoch- bzw. Tiefpassfilter, wie aus (3.6) ersichtlich ist. Die hauptsächliche Gefahr bei dieser Art von Filtern besteht darin, dass - im Gegensatz zu einer Nullstellenverschiebung - bei einer Modellunsicherheit die Nullstelle ebenso wie die Polstelle erhalten bleiben. Der überlagerte Lageregler wird dann unter Umständen destabilisiert [48].

3.4 Lageregelkreis

3.4.1 Direkte und indirekte Lagemessung

Bei indirekter Lagemessung ergibt die Forderung nach aperiodischen Polstelle des geregelten Systems die Regel [69]

\[
K_v \leq \frac{\kappa}{4} \quad (3.18)
\]

Für ein ideales Einmassen-System ergibt sich mit \( K_v := \frac{\kappa}{4} \) die Übertragungsfunktion von Lagesollwert \( r \) zu Lageistwert \( y \) zu

\[
\frac{y}{r} = \frac{(\kappa/2)^2}{(s + \kappa/2)^2} \quad (3.19)
\]

mit der doppelten, aperiodischen Polstelle bei \( -\kappa/2 \).
3.5 Vorsteuerungen in P/PI-Reglern

Die Auswirkungen der Geschwindigkeitsvorsteuerung und die Parametrierung des zugehörigen Lagesollwertfilters, des sogenannten Symmetrierfilters sind in [69] beschrieben. Es sei hier dazu nur angemerkt, dass ein Kaskadenregler mit Geschwindigkeitsvorsteuerung und proportionaler Geschwindigkeits- und Lageregelung äquivalent zu einem PI-Regler mit Nachstellzeit \( \frac{1}{K_v} \) für die Geschwindigkeit ist, s. Abb. 3.5: die Stellgröß e \( u \) wird aus der Sollgeschwindigkeit \( v_s \) und der Istgeschwindigkeit \( v \) durch den Regler bestimmt zu

\[
u = K_p \left( 1 + \frac{K_v}{s} \right) (v_s - v) \tag{3.20}\]


Im folgenden wird die Kombination von Geschwindigkeits- und Beschleunigungsvorsteuerung insbesondere auch im Zusammenhang mit strukturellen Nachgiebigkeiten diskutiert, die insbesondere für die Regelung nachgiebiger Maschinen, die nicht ohne Vorsteuerung betrieben werden können von Bedeutung sind, dies ist auf Grund der ausgeprägten Nichtlinearität der Kinematik e.g. für den Hexaglide, s. Abschnitt 2.9.2, der Fall.

3.5.1 Symmetrierfilter

Wird eine beschleunigungsproportionale Kraftvorsteuerung, auch Beschleunigungsvorsteuerung, mit einem der als konstant angenommenen, bewegten Masse \( \Theta \) entsprechenden Aufschaltfaktor

\[
F_{ffw} := \Theta \ddot{x}_s \tag{3.21}
\]
Abbildung 3.6: Schema der Regelung mit Geschwindigkeits- und Kraftvorsteuerung. Die beiden Blöcke $F_1$ und $F_2$ bezeichnen die Symmetrierfilter.

verwendet, so ergibt sich gemäß [14], bei Vernachlässigung der elektrischen Ersatzzeitkonstante und der Störgrößen worunter auch Rückwirkungen elastisch gekoppelter Lasten fallen, zwischen Antriebslagesollwert $r$ und Antriebslageistwert $y$ eine Übertragungsfunktion von

$$
\frac{y}{r} = 1
$$

(3.22)


Die Übertragungsfunktion des Schemas aus Abb. 3.6 zwischen Geschwindigkeitssollwert $v_s$ und Geschwindigkeitsistwert $v$ ergibt sich durch direkte Rechnung (am einfachsten mit der Methode von Mason [14]).

$$
\frac{v}{v_s} = \frac{G \Theta \left(F_2 \left(s + F_1 K_v\right) \kappa + s^2\right)}{\Theta G \left(s + K_p F_2\right) \kappa + s}
$$

(3.23)

Wobei $K_p := \kappa \Theta$ gesetzt wurde. Approximiert man nun die Strecke $G$ durch ein PT1-Glied mit Integrator

$$
G := \frac{\omega_G}{s + \omega_G} \frac{1}{\Theta s}
$$

(3.24)
3.5. VORSTEUERUNGEN IN P/PI-REGLERN

und einer dem effektiven Streckenverhalten entsprechenden Bandbreite \( \omega_G \) und nimmt die beiden Filter \( F_1 \) und \( F_2 \) ebenfalls als PT1-Glieder mit Eckfrequenzen \( \omega_1 \), bzw. \( \omega_2 \) an, so wird

\[
\frac{v}{v_s} = \frac{s^4 + (\omega_2 + \omega_1) s^3 + \omega_2 (\kappa + \omega_1) s^2 + \omega_2 \kappa \omega_1 s + \frac{1}{4} \omega_1 \kappa^2 \omega_2}{s^4 + (\omega_G + \omega_2) s^3 + \omega_G (\kappa + \omega_2) s^2 + \kappa \omega_G \omega_2 s + \frac{1}{4} \kappa^2 \omega_2 \omega_G \frac{\omega_G}{s + \omega_1}}
\]  

(3.25)

wobei zusätzlich \( K_v := \kappa/4 \) entsprechend den Einstellregeln gewählt wurde. Der letzte Ausdruck lässt sich dann mit der Wahl

\[
\omega_1 = \omega_2 = \omega_G
\]  

(3.26)
zum PT1-Verhalten

\[
\frac{v}{v_s} = \frac{\omega_G}{s + \omega_G}
\]  

(3.27)

reduzieren, was dem natürlichen Verhalten der ursprünglichen Strecke gemäß (3.24) entspricht. Die Filter sind also identisch und auf die dominante Zeitkonstante der Strecke \( G \) auszulegen, womit man das gewohnte PT1-Verhalten des geschlossenen Regelkreises erhält. Die Reaktionsgeschwindigkeit der Achse auf einen Sollwertsprung wird damit im Vergleich zu kaskadiertem Regelung ohne Vorsteuerungen deutlich gesteigert. Die Approximation von \( G \) durch ein Tiefpassfilter erster Ordnung ist natürlich ungenau, und um optimale Ergebnisse zu erhalten müssen die Filter in der Regel an der Maschine optimiert werden. Die hier hergeleitete Regel ist als vernünftiger Startwert zu interpretieren.

Sind strukturelle Nachgiebigkeiten im Spiel, so ist die zulässige Reaktionsgeschwindigkeit durch die Anregung der Struktur limitiert, und die Dynamik muss sollwerteitig wieder gebremst werden, siehe den folgenden Abschnitt 3.5.2.

3.5.2 Strukturanregung

Die Vorsteuerung ist ausschließlich auf den Antrieb bezogen, das Verhalten einer nachgiebig angekoppelten Last, die auf eine Eigenfrequenz \( \omega_0 \) führt, ist darin nicht berücksichtigt. In der Übertragungsfunktion (3.22), die anstelle von (3.27) herangezogen werden darf, wenn \( \omega_G \gg \omega_0 \), fehlt die Tiefpassfilterwirkung der Kaskadenregelung, die durch Ruckbegrenzung oder Lagesollwertfilter zu ersetzen ist. Bei einachsiger Betrachtungsweise ist also durch die Vorsteuerung kein Vorteil zu erwarten: der potentielle Gewinn an Dynamik lässt sich auf Grund der strukturellen Nachgiebigkeit nicht ausnutzen. Bei mehrachsiger Betrachtungsweise und der Verwendung ruckbegrenzter Sollwerte ist die Situation anders: da der Interpolator im Gegensatz zu einem Filter in der Lage ist, die sollwerteitige Bahn treue zu garantieren, entfällt bei Verwendung einer Vorsteuerung der durch Schleppfehler der Maschinenachsen entstehende Kon turverzug, der insbesondere für nichtlineare Kinematiken ansonsten kaum zu kontrollieren ist. Dies macht eine Vorsteuerung bei Parallelkinematiken unverzichtbar. Optimierte Einstellungen

Im Folgenden wird eine einfache Regel hergeleitet, die eine Abschätzung dafür liefert, wie die Ruckgrenze sich ändert, wenn eine Vorsteuerung verwendet wird. Es wird davon ausgegangen, dass entweder ein sinnvoller Ruckwert für das Verfahren ohne Vorsteuerung bereits bestimmt wurde, oder dass die Achse ohne Vorsteuerung auch ohne Ruckbegrenzung betrieben werden kann.

**Notation:** Im folgenden bezeichnen $a_{\text{max}}$ den eingestellten Beschleunigungsgrenzwert, $r_{\text{max},\text{vs}=0}$ bzw. $r_{\text{max},\text{vs}}$ den Ruckgrenzwert ohne bzw. mit Vorsteuerung. $F(s)$ bezeichnet die durch (3.19) definierte Übertragungsfunktion des geschlossenen Lageregelkreises.

Die Tiefpassfilterwirkung der Kaskadenregelung ohne Vorsteuerung wird durch die Übertragungsfunktion (3.19) dargestellt. Dieser gegenüber steht die Übertragungsfunktion (3.22) bei Verwendung einer Geschwindigkeits- und Kraftvorsteuerung. Für eine Achse, deren Reglerverstärkungen so gewählt sind, dass sie ohne Vorsteuerung auch ohne Ruckbegrenzung gefahren werden kann, will man mit der Ruckbegrenzung den Wegfall des Tiefpassfilters (3.19) kompensieren. Als Einganggröße ohne Ruckbegrenzung wird ein Lagesollwertverlauf $x_s$, der einem Beschleunigungssprung um $a_{\text{max}}$ entspricht betrachtet:
\[ x_a = \frac{a_{\text{max}}}{s^2} \]  
\[ (3.28) \]

Die Ruckbegrenzung kann den Wegfall des Tiefpassfilters (3.19) nicht für alle Frequenzen ausgleichen, da das Filter mit relativem Grad 2 im Bereich hoher Frequenzen rascher abfällt, als der Unterschied zwischen Ruck- und Beschleunigungs begrenzung, die vom Grad 1 ist, wettmachen kann. Der Unterschied zwischen Zuck- und Beschleunigungs begrenzung wäre vom Grad 2, aber zuckbegrenzte Sollwerte sind in den seltensten Fällen verfügbar. Im Bereich niederer Frequenzen lässt sich immerhin fordern, dass

\[ r_{\text{max,vs}} \leq a_{\text{max}} |s_0^{-2}F(s_0)|, \]
\[ (3.29) \]

woraus die gesuchte Ruckgrenze \( r_{\text{max,vs}} \) bei gegebener Grenzfrequenz \( s_0 \) bestimmt werden kann. Zweckmässigerweise wählt man für \( s_0 \) die Frequenz, wo die Anregung am meisten stört, also die dominante \textit{Eigenfrequenz}, \( s = i \omega_0 \), oder konservativer einen etwas höheren Wert. Für eine Achse, die auch mit Kaskadenregelung nur mit Ruckbegrenzung gefahren werden kann, entfällt der Faktor \( s_0 \) aus (3.29) und man fordert stattdessen

\[ r_{\text{max,vs}} \leq r_{\text{max,vs}=0}|F(s_0)| \]
\[ (3.30) \]

Wird jetzt die dämpfungsoptimale Reglereinstellung (3.7) für ein System mit einer dominanten \textit{Eigenfrequenz} in den Ausdruck (3.19) eingesetzt und der Ausdruck vereinfacht, so resultiert die folgende Faustregel für die Reduktion des Rucks, die ausschliesslich vom Massenverhältnis \( \lambda \) abhängt:

\[ r_{\text{max,vs}=0} \geq \frac{\lambda (1 + \lambda)^2}{\lambda + 2\lambda^2 + \lambda^3 + 16} \]
\[ (3.31) \]

Sie ist für alle Werte von \( \lambda \) recht bedeutend, s. Abb\( 3.7 \). Die Dynamik der Achse wird dadurch im Vergleich zur Kaskadenregelung ohne Vorsteuerung nicht verringert, sondern es wird lediglich das Tiefpassverhalten des Kaskaden reglers durch die Ruckbegrenzung übernommen. Numerische Simulationen bestätigen, dass das Verhalten einer Achse mit einer dominanten \textit{Eigenfrequenz} und dem reduzierten Ruck mit Vorsteuerung etwa demjenigen ohne Vorsteuerung und mit härterem Ruck bzw. ohne Begrenzung des Rucks entspricht. Das Verhalten ist illustriert in Abbildung\( 3.11(a,b,c) \) für eine Achse mit einer \textit{Eigenfrequenz} von \( \omega_0 = 100 \text{Hz} \), die ohne Vorsteuerung auch ohne Ruckbegrenzung gefahren werden kann und in\( 3.11(d,e,f) \) für eine Achse mit einer \textit{Eigenfrequenz} \( \omega_0 = 27 \text{Hz} \), \( \lambda = 0.7 \) die ohne Vorsteuerung mit einer Rückgrenze gemäss\( [69] \) betrieben wird. Letzteres entspricht etwa der beim Hexaglide, s. Abschnitt 2.9.2, angetroffenen Situation. Die Regelung ist dämpfungsoptimal ausgelegt. Die Regelung wurde in\( 3.11(d,e,f) \) von ursprünglich \( r_{\text{max vs}=0} = 190 m/s^3 \) auf \( r_{\text{max vs}} = 12 m/s^3 \) zurückgesetzt, also auf weniger als 1/15 des ursprünglichen Wertes reduziert. Die Sollwerte und damit die Strukturanregung mit Vorsteuerung und reduziertem Ruck entsprechen ungefähr der Strukturanregung mit höherem Ruck und ohne Vorsteuerung. Die Strukturanregung bei Verwendung einer Vorsteuerung ohne Anpassung der Rückgrenze in Abb\( 3.11(b,e) \) ist deutlich erkennbar. In Abschnitt 7.3 findet sich eine der Abb\( 3.11 \) entsprechende Messung, s. Abb\, 7.6.
KAPITEL 3. KLASSEISCHE KASKADENREGELUNG

3.6 Inbetriebnahmebeispiel


Reglerverstärkungen nach Zirn
Zunächst werden die mechanischen Eigenfrequenzen vermessen und daraus die den Inbetriebnahmeregeln entsprechenden Verstärkungen für Geschwindigkeitsregelung und Lageregelung bestimmt. Abb. 3.8 zeigt links den gemessenen Frequenzgang der Achse im Frequenzbereich bis 400 Hz und im rechten Teil den gemessenen Frequenzgang im Bereich bis 2500 Hz, überlagert mit dem Frequenzgang des identifizierten Modells. Offenbar ist die Achse deutlich steifer, als die X-Achse des Prüfstands (s. Abb. 2.13) und die meisten Eigenfrequenzen sind höher als 100 Hz. In diesem Frequenzbereich werden Modelle gemäß Abschnitt 2.3 schwierig mit hinreichender Genauigkeit zu erstellen, und man wendet zweckmäßig die Methode der Modellanpassung an Hand eines identifizierten Frequenzgangs gemäß Abschnitt 2.7 an. Die Achse weist eine erste Eigenfrequenz mit den folgenden Parametern auf:

\[
\omega_0 = 96 \text{ Hz} \quad \lambda = 0.95 \quad \Theta = 16 \text{kgm}^2
\]  

(3.32)
3.6. INBETRIEBNAHMEBEISPIEL


Daraus ergeben sich nach den Inbetriebnahmeregeln dieses Kapitels die folgenden Reglererstellungen:

\[
\kappa = \frac{90}{s} \quad (3.33)
\]

\[
K_{p}^{opt} = 9000 \text{Nms}/\text{rad} \quad (3.34)
\]

\[
T_n \geq 7 \text{ ms} \quad (3.35)
\]

\[
K_v \leq 22 \frac{1}{s} \quad (3.36)
\]

Die tatsächlich erreichbare Verstärkung des Geschwindigkeitsreglers ist - bedingt durch die Resonanzspitzen, die den Amplitudengang im Frequenzbereich mit Phasenverlust grösser als 180° über die 0 db-Grenze anheben - zunächst auf Werte deutlich unter \( K_{p}^{opt} \) begrenzt.

Stromregler und Stromsollwertfilter  

Die Übertragungsfunktion des Stromregelkreises ohne Filter lässt sich gut durch ein PT2-Glied mit Eckfrequenz 2000Hz darstellen, s. Abb. 3.9. Die Resonanzspitzen werden nun durch Stromsollwertfilter (s. Abb. 3.12) geglättet: Zunächst wird der Frequenzgang im Bereich über 1000Hz durch ein als Tiefpassfilter ausgelegtes biquadrisches Filter um 20db abgesenkt. Damit ist eine Proportionalverstärkung im Geschwindigkeitsregler von \( K_p = 4000 \text{Nms}/\text{rad} \) ohne Stabilitätsprobleme erreichbar. Abb. 3.10 (a) zeigt die Sprungantwort des Geschwindigkeitsreglers mit dieser Verstärkung und zunächst ausgeschaltetem Integralanteil. Zudem ist der gewünschte Verlauf der Sprungantwort, die der Proportional-
verstärkung $K_p^{opt}$ entspricht eingetragen, in der Legende als $PT1$ bezeichnet. Abb. 3.10(b) zeigt den zu Abb. 3.10(a) gehörigen Momentenistwert. Dieser weist eine deutlich sichtbare Schwungung bei ca. 500 Hz auf. Diese Frequenz entspricht zwar einer Eigenfrequenz des Systems, die Anregung ist jedoch im Modell kaum mehr vorhanden, sobald die Messsystemquantisierung vernachlässigt wird (nicht abgebildet). Daher wird diese Schwingung in erster Linie der Quantisierung zugeordnet. Eine weitere Bandsperre bei 500 Hz behebt den Effekt weitestgehend. Das Verhalten kann weiter verbessert werden durch Bandsperren, die Resonanzspitzen der Eigenfrequenzen bei 1300 Hz und 2100 Hz absenken. Insgesamt ergibt sich ein Filter aus vier hintereinander geschalteten biquadratischen Stromsollwertfiltern, das eine Geschwindigkeitsreglerverstärkung von $K_p^{opt}$ ohne merkliches Quantisierungsbrummen zulässt und gleichzeitig eine Bandbreite des Stromregelkreises inklusive Stromsollwertfilter von knapp 350 Hz aufweist, womit die dämpfungsoptimale Reglereinstellung gemäss Zimm und der „1/4“-Regel für den Geschwindigkeitsregelkreis gerade noch erreichbar ist. Abb. 3.10(c) zeigt die Sprungantwort bei der Proportionalverstärkung $K_p^{opt}$ und der Nachstellzeit $T_n = 7$ ms. Deutlich erkennbar ist der durch den Integralanteil verursachte Überschwinger des PI-Geschwindigkeitsregelkreises, des-
3.6. INBETRIEBNAHMEBEISPIEL

ten Höhe gut der Behauptung in Abschnitt 3.3.2 von 14% \( \approx 0.07 \text{U/min} \) entspricht. Die Verwendung eines Referenzmodells gemäß Abschnitt 3.3.2 für den Integralanteil des Geschwindigkeitsreglers mit Eckfrequenz \( \omega = 90 \text{Hz} \) und relativer Dämpfung \( \xi = 0.6 \), das am identifizierten Modell optimiert wurde, vermeidet schließlich auch diesen Überschwinger. Das Ergebnis der Optimierung ist schließlich in Abb. 3.10(d) dargestellt. Die gedämpfte Anregung der Eigenfrequenz bei ca. 100 Hz ist in der gemessenen Sprungantworten erkennbar. Im angepassten Modell ist diese Frequenz nicht vorhanden, da nur im Frequenzbereich über 200 Hz angepasst wurde. Das Rauschen der Istgeschwindigkeit - das der Messsystemquantisierung zugeordnet wird - verstärkt sich naturgemäß geringfügig mit Erhöhung der proportionalen Geschwindigkeitsreglerverstärkung.

Die Lageregelung kann nun nahezu schwingungsfrei auf ihren nominellen Wert von \( K_v = 22 \text{Hz} \) gesetzt werden. Auf die Verwendung von Geschwindigkeitssollwertfiltern wurde verzichtet.
KAPITEL 3. KLASSEISCHE KASKADENREGELUNG

Abbildung 3.11: Vorsteuerung und Ruckbegrenzung
Abbildung 3.12: Regelschema 840D
Kapitel 4

Konzepte der Zustandsregelung

4.1 Einleitung und Überblick

Das folgende Kapitel beschäftigt sich mit verschiedenen Varianten von Zustandsreglern in Werkzeugmaschinen. Es werden dabei keine neuen Reglerkonzepte erfunden, sondern bestehende Konzepte, die für die Anwendung an Werkzeugmaschinen geeignet erscheinen, umgesetzt und die Ergebnisse verglichen. In diesem Kapitel wird immer davon ausgegangen, dass sich die zu regelnde Mechanik als lineares System in hinreichender Näherung beschreiben lässt. Da Modelle in jedem Fall mit Unsicherheiten behaftet sind, wird einiger Wert darauf gelegt, die Robustheit der Konzepte gegenüber Variationen der Regelstrecke zu untersuchen und zu bewerten.

4.1.1 Grundsätzliche Varianten der Regelung

In einer von der konkreten Situation abstrahierten Betrachtungsweise stehen dem Regler zwei unter Umständen vektorielle Eingänge, nämlich Sollwerte $r$ und gemessene Istwerte $y_m$, sowie ein unter Umständen vektorieller Ausgang, die Stellgrösse $u$ zur Verfügung. Regler, die diese beiden Eingänge gleich zu Beginn in einen Differenzeingang $r - y_m$ zusammenfassen, werden gemeinhin Regler mit einem Freiheitsgrad, oder kurz „1dof“-Regler genannt, Regler, die die beiden Eingänge separat verarbeiten heissen entsprechend Regler mit zwei Freiheitsgraden, oder „2dof-Regler“. Die klassische P/PI-Regelung ist demnach mit Ausnahme der Verwendung eines Referenzmodells im Integralanteil des Geschwindigkeitsregelkreises 1-dof. Die Aufgabe des Reglers für Werkzeugmaschinen ist dann in jedem Fall, eine Stellgrösse $u$ derart zu bestimmen, dass ein gewisser „Performance“-Ausgang $y_t$ der Regelstrecke, hier: Position oder Geschwindigkeit des TCP, der meist nicht mit dem gemessenen Ausgang zusammenfällt, so gut als möglich der Sollwertvorgabe folgt. Abb. 4.1 repräsentiert den Sachverhalt in zwei für die meisten Zwecke äquivalenten Darstellungen.

Es ist für die Regelung von Werkzeugmaschinen typisch, dass $y_t \neq y_m$. Es genügt insbesondere bei nachgiebigen Strukturen nicht, die Übertragungsfunktion von $r$ nach $y_m$ zu optimieren und die Rückwirkung der umgebenden Struktur als Störeinfluss zu betrachten, sondern das Übertragungsverhalten von $r$ nach $y_t$ muss bei der Auslegung des Reglers berücksichtigt werden, wie das folgende Beispiel exemplarisch an Hand des Geschwindigkeitsregelkreises für den Zwei-
massenschwinger mit elastischer Lastkopplung, Fall 1 in der Tabelle der Tab. 2.4 illustriert. Die relevanten Übertragungsfunktionen zwischen Stellgröße $u$ (Kraft oder Moment), Messgröße $y_m$ (Antriebsgeschwindigkeit) und Performance-Größe $y_t$ (Lastgeschwindigkeit) lauten:

\[
\frac{y_m}{u} = \frac{1}{\Theta} \frac{1}{s} \frac{s^2 + \omega_0^2}{s^2 + \omega_0^2 + \lambda} \\
\frac{y_t}{u} = \frac{1}{\Theta} \frac{1}{s} \frac{\omega_0^2}{s^2 + \omega_0^2} \\
\frac{y_t}{y_m} = \frac{\omega_0^2}{s^2 + \omega_0^2 + \lambda}
\]

Optimale Bedingungen, das heisst: ideale Stromregelung, keine Totzeiten, ideale Messung von $y_m$ vorausgesetzt, ist es durchaus möglich, einen Regler zu finden, der ein ideales Antriebsverhalten erzeugt, beispielsweise der auf Invertierung der Regelstrecke beruhende in Abb. 4.2, der unter Auslassung des ebenfalls auf Streckeninvertierung beruhenden Störgrößenbeobachters aus [67]) übernommen ist.

Die Übertragungsfunktion des mit dem Regler gemäß Abb. 4.2(a) mit der Übertragungsfunktion $K(s)$ geregelt Systems ist, wie durch direkte Rechnung verifiziert werden kann, $y_m = M r$. Das Verhalten am Antrieb wird also vom Inbetriebnehmer durch die Übertragungsfunktion $M$ exakt spezifiziert. Das Vorfilter oder Referenzmodell $M$ sorgt dafür, dass der Regler nicht differenzierend wirkt, wie in Abschnitt 6.4 näher erläutert wird. Für Systeme mit Nachgiebigkeit ist das in der vorliegenden Form nicht brauchbar, wie aus der Sprungantwort in der selben Abbildung rechts ersichtlich ist: folgt der Antrieb exakt dem Sollwert, so vollführt die elastisch angekoppelte Last die freie und ungedämpfte Bewegung eines Einmassen-Schwingers, die durch die Positionierung des Antriebs angeregt ist. Dies legt jedenfalls nahe, dass die Qualität einer Regelung für ein nachgiebiges System nicht ausschliesslich aus Messungen des Antriebsverhaltens abgeleitet werden kann, sondern ganz im Gegenteil: um die Schwingung der Last zu dämpfen, muss der Antrieb von der Führungsgröße abweichen, oder die Führungsgröße für den Antrieb muss darauf ausgelegt sein, dass die Last bei Abschluss der Bewegung nicht angeregt ist. Der zweitgenannte Gedanke liegt einigen Einstellregeln für Maximalruck und Maximalbeschleunigung zu Grunde, [23, 69], der erstgenannte liegt dem in Abschnitt 5.4 implementierten invertierenden Regler zu Grunde. Die ausschliessliche Betrachtung der Folgegüte am Antrieb ist höchstens für sehr steife Systeme zulässig, die in der vorliegenden Arbeit
Abbildung 4.2: invertierender Regler nach [67]. (a) Regelschema und (b) Sprungantwort an Antrieb und Last bei Anwendung auf einen Zweimassenchwinger mit Inversion der Regelstrecke zum gemessenen Ausgang $y_m$ am Antrieb nicht vorkommen. Hier werden die folgenden Ansätze getestet, um das Folgeverhalten einer nachgiebig gekoppelten Last zu verbessern:

**Antriebsregelung** Die Regelung wird als Folgeregulation, unter Umständen mit Vorsteuerungen auf den gemessenen Ausgang ausgelegt, d.h. man fordert $y_m \equiv r$. Die Regelung kann sich in diesem Fall auf genaue Messsignale verlassen und auf Zustandsbeobachter kann verzichtet werden. Das Verhalten des TCP ist aber nicht direkt kontrolliert. In diesem Fall sind die Sollwerte so anzupassen, dass die Anregung der Struktur in einem tolerierbaren Bereich bleibt. Gegebenenfalls können flankierende Massnahmen in Form von Filtern ergriffen werden, wie in Kapitel [7] exemplarisch ausgeführt. In dieser Arbeit sind dies die CTC Regler bzw. die Koppelkraftkompensation für den Hexaglide bzw. den Dreiachs-Prüfstand, s. Abschnitt 2.9.1. Insbesondere beim Hexaglide ist auf Grund der Komplexität und der Kopplungen des Systems allein dafür schon ein erheblicher Aufwand zu betreiben, s. Kapitel [7].


**Tracking-Regelung / Vorsteuerung** Man fordert von der Regelung: $y_t \equiv r$, also dass der meist nicht gemessene TCP-Ausgang den Sollwerten folge. Dazu sind die vom Interpolator vorgegebenen Sollwerte als Sollwerte für den TCP zu verstehen und entsprechende Sollwerte für den Messausgang $y_m$, der dann geregelt wird, oder sogar für den gesamten Systemzustand unter
4.1. EINLEITUNG UND ÜBERBLICK


**H-\( \infty \) (oder robuste) Regelung** Die Regelung wird ausgelegt auf die Minimierung des Maximums einer festzulegenden Übertragungsfunktion des geschlossenen Regelkreises zwischen einem in aller Regel vektoriellen Eingang \( w \), der unter anderem die Sollgrösse aber auch antizipierte Störgrössen enthält und einem *Performance*-Ausgang \( y_p \), der unter anderem eine „Regeldifferenz“, beispielsweise \( |r - y_k| \), oder \( |r - y_m| \) enthält. Es wird also nicht wie bei den obigen Reglern Gleichheit, sondern lediglich eine Beschränkung des Maximums der Übertragungsfunktion – oder eben deren H-\( \infty \) -Norm, daher der Name – verlangt. Dadurch werden die Reglerspezifikationen etwas undurchsichtiger, man gewinnt jedoch den grossen Vorteil, mehrere Eingangs- und Ausgangsgrössen berücksichtigen zu können. Die Kunst bei der Auslegung eines H-\( \infty \) -Reglers besteht darin, passende Ein- und Ausgänge festzulegen, die die gewünschte Kombination aus Folgegüte und Robustheit ergeben. S. Abschnitt 4.5 für ausführlichere Erklärungen. Für die Zwecke der vorliegenden Arbeit hat sich die „loop-shaping“-Variante des H-\( \infty \) Reglers als besonders erfolgreich erwiesen, die im Compile-Zyklus CCHI, Abschnitt 5.5 sowie in der H-\( \infty \) -Zustandsregler-Ergänzung für den Dreiachs-Prüfstand, Abschnitt 6.5 umgesetzt sind.

4.1.2 Robustheit

Die Unsicherheiten in der Modellbildung lassen - nebst der Regelgüte - die Robustheit zum bedeutendsten Kriterium bei einer Zustandsregler-Ergänzung werden. Es wird daher kurz diskutiert, was im folgenden unter dem Begriff verstanden wird.

**Definitionen zur Robustheit**

Ein Regler wird für eine modellierte Strecke \( G \) ausgelegt. Er kann dann als robust bezeichnet werden, wenn er auch Systeme befriedigend regelt, die nur ungefähr \( G \) entsprechen, oder wenn er zumindest für solche Systeme nicht instabil wird. Zuerst sind die Begriffe der Stabilität und Modellunsicherheit zu definieren. Die Stabilität wird hier nur für autonome Systeme beurteilt; es ist immer möglich, ein stabiles System durch divergente Stellgrössen ins Unendliche zu treiben; dies soll hier aber nicht beurteilt werden.

**Stabilität** Ein Fixpunkt \( x_s \) eines autonomen dynamischen Systems

\[
\begin{align*}
\dot{x} &= f(x) \quad (4.4) \\
x(0) &= x_0 \quad (4.5) \\
f(x_s) &= 0 \quad (4.6)
\end{align*}
\]
heisst asymptotisch stabil, wenn eine Umgebung $U$ von $x_s$ existiert, so dass für alle Anfangsbedingungen $x_0 \in U$ gilt, dass $x(t) \to x_s \ (t \to \infty)$ [41].

Der Fixpunkt 0 eines linearen Systems mit Zustandsmatrix $A$ ist bekanntlich genau dann asymptotisch stabil im obigen Sinne, wenn alle Eigenwerte der Zustandsmatrix $A$ negativen Realteil besitzen [20]. 0 ist dann der einzige Fixpunkt des Systems und die asymptotische Stabilität ist global, in dem Sinne, dass der Systemzustand für alle Anfangsbedingungen $x_0 \in \mathbb{R}^n$ gegen 0 konvergiert. Im linearen Fall lässt sich ein System als ganzes als stabil oder instabil erweisen. Zudem ist die Stabilität eines gegebenen Modells einfach durch Bestimmung der Eigenwerte der Zustandsmatrix zu überprüfen. Stabilität allgemeiner, nichtlinearer Systeme ist hingegen eine Fragestellung, die für jeden Arbeitspunkt bzw. jede Trajektorie einzeln zu betrachten ist. Wenngleich dazu theoretische Werkzeuge vorhanden sind, bleibt der Nachweis der Stabilität im gegebenen Einzelfall - beispielsweise durch Bestimmung einer Lyapunov-Funktion - ein notorisch schwieriges Problem, für das kein allgemein gültiger Lösungsansatz existiert. Stabilität entlang einer Trajektorie im Zustandsraum wäre noch separat zu definieren, der Begriff wird im folgenden aber nicht gebraucht.

**Modellunsicherheit** Unsicherheit kann in die drei folgenden Kategorien aufgeteilt werden:

1. Parameterunsicherheit: Die Struktur des Modells ist bekannt, aber die Parameter unterliegen Variationen. Beispiel: Zweimassenschwinger mit unsicherer Masse, Federkonstante, Dämpfung


3. Unsicherheit in den Anfangsbedingungen

Nach obigem kann die letztgenannte Unsicherheit für lineare Modelle vernachlässigt werden: Stabilität ist eine Eigenschaft des Systems, nicht eines Arbeitspunktes. Parameterunsicherheit und Strukturelle Unsicherheit können gemeinsam durch die folgenden Begriffe quantitativ fassbar gemacht werden: Für ein MIMO-System $M$ bezeichnet

$$\bar{\sigma}(M(i\omega))$$

(4.7)

den maximalen Singulärwert der Übertragungsmatrix von $M$ bei der Frequenz $i\omega$. Für die Definition von Singulärwerten und die Zweckmässigkeit der Verallgemeinerung von SISO- zu MIMO-Übertragungsfunktionen mittels Singulärwerten wird wiederum auf die Literatur, insbesondere [56] verwiesen. Die Maximum-Norm $\|M\|_{\infty}$ eines Systems $M$ bezeichnet

$$\|M\|_{\infty} := \sup_{\omega \in \mathbb{R}} |M(i\omega)|$$

(4.8)
4.1. EINLEITUNG UND ÜBERBLICK

Abbildung 4.3: Kreisschaltung, bestehend aus nomineller Regelstrecke $M$ sowie Unsicherheit $\Delta$

- im Falle einer MIMO-übertragungsfunktion $M$ das Supremum des größten Singularwerts $\bar{\sigma}(M(i\omega))$ der Übertragungsmatrix $M$

\[
\|M\|_\infty := \sup_{\omega \in \mathbb{R}} \bar{\sigma}(M(i\omega))
\]  

(4.9)

Der Sinn dieser Definition wird bei der Formulierung des small gain Theorems im folgenden Abschnitt klar.

**Robustheit** Zur Untersuchung der Robustheit ist eine geeignete Menge von Strecken zu definieren, für die der Regler zumindest noch stabil bleiben muss. Dazu wird das geregelte System, das als linear angenommen ist, in seinen nominellen Anteil $M$ und die Unsicherheit $\Delta$ in Form einer Kreisschaltung, einer sogenannten $M-\Delta$-Struktur, wie in Abb. 4.3 unterteilt. Die Menge der zulässigen $\Delta$-parametriert dann die Systeme, für die Stabilität garantiert bleibt. Mit $\Delta = 0$ enthält sie insbesondere das nominelle System. Gemäß obigem können externe Einflüsse wie Stell- oder Störgrößen, die in Abb. 4.3 durch den Eingang $\text{in}$ angedeutet sind, keine Instabilität erzeugen, sondern nur eine Rückkopplung, wie sie durch das zusätzliche System $\Delta$ eingeführt wird, s. auch [56].

Für die Modellierung konkret gegebener Unsicherheiten, wie beispielsweise unsicherer Parameter in dieser Form wird auf die Lehrbuchliteratur zur Regelungstechnik verwiesen. Um die Robustheit des Systems zu beurteilen, ist nun zu prüfen, für welche Störungen $\Delta$ das System aus Abb. 4.3 stabil bleibt. Dies geschieht üblicherweise durch Anwendung des small gain theorems [56]:

**Small gain theorem (I)** Die Kreisschaltung in Abb. 4.3 ist asymptotisch stabil, wenn beide Systeme $M$ und $\Delta$ asymptotisch stabil sind, und $\bar{\sigma}(M(i\omega)) \bar{\sigma}(\Delta(i\omega)) < 1$, für alle Frequenzen $\omega$ und umgekehrt: es gibt eine Störung $\Delta$ mit $\bar{\sigma}(\Delta(i\omega)) = \bar{\sigma}(M(i\omega))^{-1}$ für mindestens eine Frequenz $\omega$, die die Kreisschaltung destabilisiert.

Robustheit einer Übertragungsfunktion $M$ lässt sich damit frequenzabhängig durch $\bar{\sigma}(M(i\omega))$ charakterisieren. Für eine globale Charakterisierung über alle Frequenzen wird meist die folgende, konservativere Version des small gain theorems verwendet:
Small gain theorem (II) Die Kreisschaltung in Abb. 4.3 ist asymptotisch stabil, wenn beide Systeme $M$ und $\Delta$ asymptotisch stabil sind, und $\|M\|_\infty \|\Delta\|_\infty < 1$, und umgekehrt: es gibt eine Störung $\Delta$ mit $\|\Delta\|_\infty = \|M\|_\infty^{-1}$, die die Kreisschaltung destabilisiert.

Die Definitionen und Aussagen gelten sinngemäß auch für nicht-quadratische Systeme, wobei an Stelle der Inversen $M^{-1}$ jederzeit die Pseudoinsverse herangezogen werden kann [56].

### 4.2 Polvorgabe für ein System mit einer dominanten Nachgiebigkeit

Der ganze Abschnitt bezieht sich auf Systeme, die durch die allgemeine Übertragungsfunktion (2.48), bzw. die äquivalente Zustandsraumdarstellung (2.70) darstellbar sind. Es wird der Geschwindigkeitsregelkreis betrachtet, der gemäß Abschnitt 3.1 hauptsächlich durch strukturelle Nachgiebigkeiten bestimmt ist. Auf Grund der gemeinsamen Zustandsraumdarstellung ist eine einheitliche Polvorgabe durch Zustandsrückführung im Prinzip für jedes System mit einer dominanten Nachgiebigkeit möglich. Die auf Einheitsmasse bezogenen benötigten Reglerverstärkungen für die Zustände $\dot{\alpha}, \dot{\beta}, \ddot{\beta}$ der allgemeinen Zustandsraumdarstellung (s. (2.51)) bei vorgegebenen Pollagen $p_r, p_c$ und $\bar{p}_c$ bestimmt man durch Koeffizientenvergleich im charakteristischen Polynom der allgemeinen Zustandsraumdarstellung, vgl. [69] zu

\[
\kappa_\alpha = - \frac{p_r |p_c|^2}{\omega_0^2} \quad (4.10)
\]

\[
\kappa_\beta = \frac{\lambda (2p_r R(p_c) + |p_c|^2 - \omega_0^2)}{1 - \lambda} \quad (4.11)
\]

\[
\kappa_{\beta} = \frac{p_r |p_c|^2 \omega_0^{-2} - \lambda (p_r + 2R(p_c))}{1 - \lambda} \quad (4.12)
\]

Sind die Zustände bekannt, können die Systempole durch Rückführung der Zustände mit den Verstärkungsfaktoren gemäß (4.10) - (4.12) folglich beliebig vorgegeben werden. Die resultierende Übertragungsfunktion von Sollgeschwindigkeitseingang $y_s$ zur gemessenen Antriebsgeschwindigkeit $y_m$ ist dann, ausgedrückt durch die gewählten Polstellen:

\[
\frac{y_m}{y_s} = \frac{-p_r |p_c|^2 (s^2 + \omega_0^2 \lambda)}{\omega_0^3 \lambda (s - p_r)(-\bar{p}_c + s)(-s + p_c)} \quad (4.13)
\]

Die folgenden Fragen drängen sich zunächst auf

1. Wie sind die Pollagen zu wählen
2. Wie werden die Zustände erfasst
3. Wie kann eine Polvorgabe in ein kaskadiertes Steuerungskonzept eingegliedert werden
4. Wo liegen die Möglichkeiten und Grenzen der Polvorgabe
4.2. POLVORGABE FÜR EIN SYSTEM MIT EINER DOMINANTEN NACHGIEBIGKEIT


5. Wie beeinflussen zusätzlich vorhandene Moden die effektiven Pollagen


4.2.1 Dämpfende Polvorgabe

Es zeigt sich, dass die Wahl gemäss [52], [69] in jedem der drei Aspekte gute Eigenschaften aufweist. Diese Wahl der Pollagen wird hier kurz dargestellt. Die Proportionalregelung wird zunächst gemäss (3.7) dämpfungsoptimal eingestellt. Daraus ergeben sich die drei Pole des geschlossenen Regelkreises gemäss (3.9). Die Pole werden durch die Zustandsregler-Ergänzung gemäss Abb. 4.4 verschoben: Der reelle Pol bleibt unverändert, das komplexe-konjugierte Polpaar wird entlang einer Kreislinie in der komplexen Ebene zu der in der Abbildung angegebenen Winkellage verschoben. Gemäss (4.10) bleibt dadurch die Rückführung von \( \dot{\alpha} \), die nur von den Beträgen der Polstellen abhängt unverändert, was eine Eingliederung der Zustandsregler-Ergänzung in die kaskadierte Regelung gewährleistet. Eine bereits in Betrieb genommene Kaskadenregelung braucht bei Zuschaltung einer Zustandsregler-Ergänzung nicht verändert zu wer-
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

Abbildung 4.5: Modellierung der Unsicherheit als multiplikative Unsicherheit $\Delta$ am Streckenausgang der Regelstrecke $G$, (a) für vollständige Zustandsmessung und (b) für Zustandsbeobachtung auf Grund der gemessenen Antriebsgeschwindigkeit

den. Diese im folgenden verwendete Polvorgabe weicht geringfügig von der in [69] vorgeschlagenen ab, wo allen drei Polen derselbe Betrag $\Omega \approx \omega_0$ zugewiesen wird. Unterschiede bezüglich Systemverhalten im Zeitbereich oder Robustheit sind dabei allerdings gering.

Robustheit der Polvorgabe für den Zweimassenschwinger

Wird von einem jederzeit bekannten Zustand, d.h. von vollständiger und idealer Zustandsmessung ausgegangen, so hat der Regler einen Ausgang, nämlich die Stellgröße und die Regelstrecke deren drei, nämlich die Zustände des allgemeinen Zustandsraummodells (2.70). Bei Zustandsbeobachtung hat auch die Regelstrecke nur einen Ausgang, nämlich die im Encoder gemessene Geschwindigkeit $\dot{\alpha}$.

Anwendung des small gain Theorems Um das small gain Theorem aus Abschnitt 4.1.2 auf die dämpfende Zustandsregler-Ergänzung anzuwenden, wird die Unsicherheit als multiplikative Unsicherheit modelliert, s. [20]. Bei Betrachtung der Zustandsmessung ist es dabei nicht dasselbe, ob die Unsicherheit am Streckeneingang oder Ausgang modelliert wird - beispielsweise ist eine versehentliche Ver tauschung der Ausgangssignale nicht am Streckeneingang modellierbar. Die entstehende Kreisschaltung bei Modellierung am Streckenausgang ist in Abb. 4.5(a) für den Fall der vollständigen Zustandsmessung und in 4.5(b) für den Fall der Zustandsbeobachtung
Abbildung 4.6: Exemplarische Darstellung der Robustheit bei Zustandsmessung und Zustandsbeobachtung, (a) bei festem Betrag, in Abhängigkeit der Winkellage und (b) bei fester Winkellage in Abhängigkeit des Betrags
dargestellt. $G$ bezeichnet darin die zu regelnde Strecke, hier also einen Zweimassenschwinger in allgemeiner Zustandsraumdarstellung gemäß (2.70), $K$ bezeichnet die Zustandsrückführung und $\text{Obs}$ den Zustandsbeobachter. Für die Übertragungsfunktion vom Ausgang zum Eingang der Störung $\Delta$ gilt nun

$$M := \frac{y_\Delta}{u_\Delta} = G (1 + K G)^{-1} K \quad (4.14)$$

Dabei wurde auf Grund der Dimensionen der Ein- und Ausgänge für den Fall der Zustandsmessung der loop breaking point zwischen Regleraus- und Streckeneingang gewählt. Zur Anwendung des small-gain Theorems ist nun der maximale Singulärwert der Übertragungsfunktion $M$ zu bestimmen. Dieser hängt stark von den gewählten Pollagen ab. In Abb. 4.6 ist der exemplarisch der Verlauf des maximalen Singulärwerts der Übertragungsfunktion $M$ für Zustandsmessung und Zustandsbeobachtung dargestellt. Abb. 4.6a zeigt dabei den Verlauf in Abhängigkeit der Steifigkeit der Pollagen bei einer konstant gehaltenen Dämpfung von $120\,^\circ$. Die auf der Abszisse eingetragene Steifigkeit bezeichnet den Faktor, um den die Pollagen im Vergleich zu den Pollagen des P/PI-Reglers steifer oder weicher gemacht wurden, Abb. 4.6b die Abhängigkeit bei Variation der Dämpfung bei konstant gehaltener Steifigkeit, d.h. die Beträge der Pollagen in Abb. 4.6b sind diejenigen des P/PI-Reglers. Die Ergebnisse der numerischen Untersuchung lassen die Aussage zu, dass im Sinne der Robustheit erstens die Wahl der Pollagen nach Zirn/Schröder vorteilhaft ist und dass zweitens die Zustandsmessung der Zustandsbeobachtung überlegen ist. Auf die Zustandsbeobachtung wird im Abschnitt 4.2.1 noch einmal separat eingegangen.
Abbildung 4.7: Polverschiebung des durch Polvorgabe geschlossenen Geschwindigkeitsregelkreises bei Variation von \( \lambda \) für mehrere vorgegebene Pollagen

Untersuchung durch Variation von Streckenparametern  
Die Ergebnisse der Anwendung des small gain Theorems werden hier an Hand der Variation eines Streckenparameters illustriert. Nach obigem kann die Robustheit eines linearen Systems beurteilt werden, in dem die Verschiebung der Eigenwerte der Zustandsmatrix unter Parametervariationen betrachtet wird. Derartige Betrachtungen haben einerseits eher anekdotischen Charakter, da Voraussetzungen über die Art der Streckenvariationen gemacht werden. Stabilität gegenüber der Variation eines oder mehrerer Parameter garantiert nicht notwendigerweise Stabilität gegenüber allen möglichen Streckenvariationen oder auch nur Variationen bestimmter Parameterkombinationen. Andererseits kann an Hand der Untersuchung mittels Parametervariationen untersucht werden, wie sich das Verhalten des geregelten Systems verändert, wenn die Strecke von der nominellen Strecke abweicht: Das small gain theorem beurteilt nur die Stabilität, nicht die Veränderung des Verhaltens, bevor das System instabil wird. Numerische Simulationen zeigen, dass die Stabilität der Pollagen gegenüber Streckenvariationen stark von \( T_2 := \frac{|p|^2}{\omega^2_0} \) abhängt, und dann am besten ist, wenn \( T_2 \approx 1 \) ist. Exemplarisch ist in Abb. 4.7 die Verschiebung der Pollagen bei Variation des Systemparameters \( \lambda \) gezeigt. Das für eine Versteifung der Achse um einen Faktor 4 (\(|p| = 2\omega_0\)) auftretende kritische \( \lambda \) von 0.67 entspricht einer Verringerung der Lastmasse um 50%, was bei einigen Zerspanungsanwendungen durchaus realistisch ist. Interessant dabei ist, dass nicht nur eine Erhöhung der Dynamik (\(|p| > \omega_0\)), sondern auch die vermeintlich konservativere Wahl \(|p| < \omega_0\) die Robustheit verringert.
4.2. POLVORGABE FÜR EIN SYSTEM MIT EINER DOMINANTEN NACHGIEBIGKEIT

Zustandsbeobachtung


Man geht davon aus, dass die Pole der Rückführung gemäss Abschnitt 4.2.1 gesetzt werden, da diese Wahl sich im erwähnten Abschnitt als besonders robust erwiesen hat. Die Frage ist damit, wie die Zustandsbeobachtung im Vergleich zu Zustandsmessung die Robustheit beeinflusst, und wie in diesem Fall die Pole des Beobachters zu platzieren sind.

Der Zustandsbeobachter für ein System mit Systemmatrizen $A, B, C, D$ mit Zustandsbeobachttermatrix $L$ und Rückführmatrix $K$ ist nach [20] gegeben durch

\[
\dot{\hat{x}} = (A - LC - BK)\hat{x} + Ly
\]

\[
u = -K\hat{x}
\]

Das Signalfussbild dafür ist die Abb. 4.5(b). Die Robustheitsbetrachtung kann analog zum Fall gemessener Zustände erfolgen, ist hier - für ein SISO-System - aber einfacher. Es ist intuitiv in jedem Fall zu erwarten, dass Zustandsbeobachtung im Vergleich zur Zustandsmessung weniger robust ist, da mit der Zustandsschätzung eine zusätzliche Fehlerquelle eingeführt wird.

Um Stabilität der Beobachter-Systemmatrix $A - LC - BK$ zu gewährleisten, müssen jedenfalls die Beobachterpole $\Omega_L$, also die Eigenwerte von $A - LC$ schneller sein, als die Pole $\Omega_K$ der Polvorgabe, also die Eigenwerte von $A - BK$. Zirn [69] schlägt auf Grund von Erfahrungen an realen Systemen vor, die Beobachterpole aperiodisch und mit

\[
3 \, |\Omega_K| \leq |\Omega_L| \leq 5 \, |\Omega_K|
\]

zu wählen. Dieser Vorschlag steht zumindest scheinbar etwas im Widerspruch zu der Robustheitsanalyse durch Betrachtung der Übertragungsfunktion $y_\Delta/u_\Delta$ (s. Abb. 4.8).

Die Wahl schneller Beobachterpollarren ($\Omega_L = 3 \, \Omega_K$) führt im Beispiel zu einer Resonanzüberhöhung von 20db, also um einen Faktor 10, was nach dem small gain Theorem nur eine Modellunsicherheit von unter 0.1 zulässt. Der genaue Betrag dieser Resonanzüberhöhung ist allerdings noch von $\lambda$ abhängig. Zur Destabilisierung des Regelsystems genügt beispielsweise für $\Delta$ einen statischen Fehler von 12% zu verwenden, der in der Praxis beispielsweise einer bei Zerspanungsanwendungen nicht unüblichen Massenreduktion entsprechen kann. Ebenso würde eine - auch gut gedämpfte - zusätzliche Eigenfrequenz im Bereich der Resonanzüberhöhung
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

10
0
10
1
10
2
10
3−40
−30
−20
−10
0
10
20
Frequenz [Hz]
mag [db]
ΩL = 3 ΩK
ΩL = 1.7 ΩK
Bodediagramm y∆/u∆

Abbildung 4.8: Robustheit mit Zustandsbeobachtung: Übertragungsfunktion zwischen Aus- und Eingang der Unsicherheit ∆ in einer Kreisschaltung.


4.2.2 Eingangssättigung in Abhängigkeit der Pollagen

In diesem und dem folgenden Abschnitt wird die Robustheit ausgeklammert, man geht also davon aus, dass die vorgegebenen Pollagen am System tatsächlich realisiert wurden. Demnach dürfen die Übertragungsfunktionen hier durch die gewählten Pollagen ausgedrückt werden. Batzies und Zirn [69] haben die Problematik der Eingangssättigung, also die Frage nach der Auslastung des Kraftsollwerterzeugers bei gegebenem Eingangssignal für ein durch Polvorgabe geregeltes System untersucht. Sie gelangen durch numerische Simulation auf die Empfehlung,
4.2. POLVORGABE FÜR EIN SYSTEM MIT EINER DOMINANTEN NACHGIEBIGKEIT

Abbildung 4.9: (a) Bandbreite des geschlossenen Regelkreises des Zweimassenschwingers in Abhängigkeit der Pollagen und (b) maximaler Wert der Sensitivität $S$ desselben Regelkreises. Abgebildet sind auch die mit P/PI-Regelung mit dämpfungsoptimaler Einstellung erreichten Pollagen in Abhängigkeit des Massenverhältnisses $\lambda$.

Dass der Realteil $\delta_1$ des periodischen Polpaares die Bedingung

$$\delta_1 \leq -0.2\omega_0$$

erfüllen sollte, um die Aktuatoren eines Systems mit Parametern $\Theta, \lambda, \omega_0$ bei einer rampenartigen Beschleunigung (Rucksollwertsprung) nicht stärker als mit $2\Theta_a$ zu belasten. Da die Pollagen nach [69] diese Bedingung erfüllen, kann geschlossen werden, dass sie die Aktuatorauslastung durch die dämpfende Polvorgabe nicht erhöht.

### 4.2.3 Folgeverhalten in Abhängigkeit der Pollagen

Es wird die Sensitivität $S$ der Übertragungsfunktion von Soll- zu Istgeschwindigkeit des durch Polvorgabe geschlossenen Geschwindigkeitsregelkreises für den Zweimassenschwinger gemäß (4.13) betrachtet.

$$S := 1 - \frac{y_m}{y_s}$$

mit der durch (4.13) gegebenen Übertragungsfunktion $y_m/y_s$. Abb. 4.9 zeigt die Bandbreite des geschlossenen Regelkreises, also die erste Frequenz $\omega$, mit $|S| \leq -3\text{dB}$, sowie die maximale
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

Resonanzüberhöhung $\max_\omega |S|$. Die Darstellung ist in dieser Form unabhängig von $\omega_0$ und $\lambda$. Es wird einerseits deutlich, dass die Bandbreite sich durch Polvorgabe nur mittels Erhöhung der Beträge sowohl des reellen Pols, wie auch des komplexen Polstellenpaares erhöhen lässt (Abb. 4.9(a)), sowie, dass diese Erhöhung der Bandbreite immer mit einer unerwünschten Resonanzüberhöhung verbunden ist.

Im Abschnitt 5.4 wird illustriert, dass ein gutes Folgeverhalten auch bei aggressiver Polvorgabe, also bei der Vorgabe von Polstellen, die schneller sind, als diejenigen nach 6.9 erhalten bleiben kann, wenn eine Vorsteuerung verwendet wird. Die Aussagen über den Verlust an Robustheit bei aggressiver Polvorgabe bleiben jedoch unabhängig von der Verwendung einer Vorsteuerung gültig.

4.3 Komplexere Systeme: Auswirkungen von Modellvereinfachungen

Der Abschnitt bezieht sich auf beliebige, lineare Systeme, vorausgesetzt, sie lassen sich in hinreichender Näherung in Submatrizenform nach (2.81) gemäß Abschnitt 2.5.6 darstellen.

4.3.1 Vernachlässigung höherer Eigenfrequenzen

Es ist gängige Praxis und, da ein Modell nie vollständig der Realität entspricht, auch gar nicht anders machbar, vereinfachte Teilmodelle für die Reglerauslegung aus einem komplexeren Gesamtmesskasten auszukoppeln. Ist der Zustand des derart reduzierten Systems jederzeit bekannt, so ist dies auch problemlos möglich, s.u. Wird hingegen der reduzierte Zustand durch einen Zustandsbeobachter geschätzt, so ergeben sich Schwierigkeiten mit der Anwendung von Zustandsreglern, wie die beiden folgenden Abschnitte belegen. Diese Herleitungen gelten für alle Systeme, die sich in hinreichender Näherung durch eine lineare Zustandsraumdarstellung darstellen lassen. Es werden dazu die Systemmatrizen des geschlossenen Regelkreises betrachtet, einmal bei Rückführung eines bekannten Zustands und einmal bei Rückführung eines geschätzten Zustands.

Rückführung bei bekanntem Zustand  Man betrachtet die Zustandsraumdarstellung eines Systems in reellen modalen Koordinaten gemäß (2.78) mit zwei Eigenfrequenzen, von denen in der Zustandsrückführung eine vernachlässigt wird:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \Omega_2 & 0 & 0 & b_{1,2} \\ 0 & \Omega_1 & 0 & b_{3,4} \\ 0 & 0 & c_{3,4} & b_5 \\ c_{1,2} & 0 & 0 & 0 \end{bmatrix}$$

Dabei steht $\Omega_k$ für ein $2 \times 2$ Kästchen, das einen Mode repräsentiert:
4.3. KOMPLEXERE SYSTEME: AUSWIRKUNGEN VON MODELLVEREINFACHUNGEN

\[ \Omega_k = \begin{bmatrix} -d_k & f_k \\ -f_k & -d_k \end{bmatrix} \] (4.22)

Das vereinfachte Modell bildet nur einen der beiden Moden ab:

\[
\begin{bmatrix} A_{\text{red}} & B_{\text{red}} \\ C_{\text{red}} & D_{\text{red}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \Omega_3 & 0 & b_{3,4} \\ 0 & 0 & 0 & b_5 \\ 0 & c_{3,4} & c_5 & 0 \end{bmatrix}
\] (4.23)

Die Rückführung des reduzierten Zustands \( x_{\text{red}} := (x_3 \ldots x_5) \) durch eine Zustandsrückführung \( K_{\text{red}} := (K_3 \ldots K_5) \) führt dann auf die Zustandsmatrix des geschlossenen Regelkreises

\[
\begin{bmatrix} A_{\text{cl}} & B_{\text{cl}} \\ C_{\text{cl}} & D_{\text{cl}} \end{bmatrix} = \begin{bmatrix} \Omega_2 & X \\ 0 & A_{\text{red}} - B_{\text{red}} K_{\text{red}} \end{bmatrix}
\] (4.24)

Der mit \( X \) bezeichnete Bereich der Matrix ist für die Eigenwerte nicht relevant. Die Eigenwerte entsprechen also den vorgegebenen Pollagen, nämlich den Eigenwerten von \( A_{\text{red}} - B_{\text{red}} K_{\text{red}} \), die in der Modellierung vernachlässigt wurden, also die Eigenwerte von \( \Omega_2 \) bleiben unbeeinflusst. Die auf einer reduzierten Darstellung basierende Zustandsrückführung hat keinerlei negative Auswirkungen.

**Rückführung mit Zustandsbeobachter**  Der postulierte „reduzierte Zustand“ ist natürlich kaum wirklich zu bestimmen, da die Messungen in der Regel Anteile aller Zustände des Systems enthalten werden. Wenn man statt der Annahme, der reduzierte Zustand sei bekannt, eine Zustandsbeobachtung mit Beobachterverstärkung \( L \) auf Grund des Messausgangs \( y_m = C x \) zu Grunde legt, und die Bezeichnungen

\[
\begin{align*}
A &= A_{\text{red}} + A_\delta \\
B &= B_{\text{red}} + B_\delta \\
C &= C_{\text{red}} + C_\delta
\end{align*}
\] (4.25-4.27)

eingeführt, wobei \( A, B, C \) und \( A_{\text{red}}, B_{\text{red}}, C_{\text{red}} \) wie in (4.23) und (4.24) definiert sind, so erhält man für die zeitliche Entwicklung des Beobachterschätzfehlers:

\[
\frac{d}{dt}(x - \hat{x}) = (A_{\text{red}} + A_\delta)x + (B_{\text{red}} + B_\delta)u - A_{\text{red}}\hat{x} - B_{\text{red}}u - L((C_{\text{red}} + C_\delta)x - C_{\text{red}}\hat{x})
\] (4.29)

\[
= (A_{\text{red}} - LC_{\text{red}})(x - \hat{x}) + A_\delta x + B_\delta u - LC_\delta x
\] (4.30)

\[
= (A_{\text{red}} - LC_{\text{red}})(x - \hat{x}) + A_\delta x - B_\delta K_\delta \hat{x} - LC_\delta x
\] (4.31)
und weiter bei Rückführung des geschätzten Zustands durch eine Rückführmatrix $K$:

$$\dot{x} = Ax - BK \hat{x} \quad (4.33)$$

$$= (A_{\text{red}} + A_\delta)x - BK \hat{x} \quad (4.34)$$

$$= (A_{\text{red}} + A_\delta - BK)x + BK(x - \hat{x}) \quad (4.35)$$

Wobei für die Zustandsschätzung und die Rückführung gelten:

$$LC = \begin{bmatrix} 0 & \hat{C}_{\delta} \\
\hat{L} \end{bmatrix} \quad C_{\text{red}} = \begin{bmatrix} 0 & \hat{C}_{\text{red}} \end{bmatrix} \quad (4.36)$$

$$BK = \begin{bmatrix} B_\delta & \hat{B} \\
B_{\text{red}} \end{bmatrix} \quad \hat{K} = \begin{bmatrix} 0 & \hat{B} \hat{K} \\
0 & B_{\text{red}} \hat{K} \end{bmatrix} \quad (4.37)$$

Und damit für das Gesamtsystem mit Zustandsbeobachter und Rückführung:

$$\frac{d}{dt} \begin{bmatrix} x \\
x - \hat{x} \end{bmatrix} = \begin{bmatrix} A_{\text{red}} + A_\delta - BK & BK \\
A_\delta - LC_\delta - B_\delta \hat{K} & A_{\text{red}} - LC_{\text{red}} + B_\delta \hat{K} \end{bmatrix} \quad (4.38)$$

$$= \begin{bmatrix} \Omega_2 & -B_\delta \hat{K} & 0 & B_\delta \hat{K} \\
0 & A_{\text{red}} - B_{\text{red}} \hat{K} & 0 & B_{\text{red}} \hat{K} \\
\hat{L}C_\delta & 0 & 0 & A_{\text{red}} - \hat{L}C_{\text{red}} \end{bmatrix} \quad (4.39)$$

Die Zustandsmatrix hat die selben Eigenwerte, wie die folgende ihr ähnliche Matrix:

$$\begin{bmatrix} \Omega_2 & -B_\delta \hat{K} & B_\delta \hat{K} \\
0 & A_{\text{red}} - B_{\text{red}} \hat{K} & B_{\text{red}} \hat{K} \\
\hat{L}C_\delta & 0 & A_{\text{red}} - \hat{L}C_{\text{red}} \end{bmatrix} \quad (4.40)$$

Die $4 \times 4$ Matrix entsteht aus der $2 \times 2$ Matrix durch Aufspaltung in die Anteile $x_{\text{red}}$ und $x_\delta$. Folglich ist in diesem Fall einzig die fehlerhafte Zustandsbeobachtung, d.h. der Term $-LC_\delta$ für die Verschiebung der Pole aus der vorgegebenen Lage verantwortlich (vgl. auch [48]). Zustandsbeobachtung auf Grund eines vereinfachten Systems in Kombination mit Polvorgabe verfälscht also die vorgegebenen Pollagen. Dies macht sich nur bemerkbar, wenn die im Modell vernachlässigten Moden auch angeregt sind. Daraus ist ersichtlich, dass eine Polvorgabe basierend auf Zustandsbeobachtung mit einem reduzierten Modell besser funktionieren wird, wenn die Frequenz der vernachlässigten Pole deutlich höher liegt, als diejenige der modellierten Pole. Eine Polvorgabe auf einem reduzierten System ist hingegen möglich, wenn der reduzierte Zustand bekannt ist. Dies legt es nahe, an einer Stelle zu messen, die die in der Zustandsrückführung berücksichtigten Mode(n), und möglichst nur diese, gut sichtbar macht. Wenn die standardmässig eingebauten Lagemesssysteme diese Bedingung nicht erfüllen, bleiben grundsätzlich drei Möglichkeiten:
4.3. **KOMPLEXERE SYSTEME: AUSWIRKUNGEN VON MODELLVEREINFACHUNGEN**

1. Man verzichtet auf Vereinfachungen und entwirft Zustandsregler für das gesamte Modell, das aus den in Abschnitt 4.3.2 genannten Gründen dann auch eine genaue Nachbildung aller in der Regelung vorhandenen Totzeiten etc. zu enthalten hat. Dies dürfte allerdings aus Gründen des Inbetriebnahmeaufwandes zur in der Praxis kaum praktikabel sein.


3. Man verwendet zusätzliche Messsysteme. Da man in der Regel diejenigen Moden bedämpfen will, die sich am TCP am stärksten äußern, empfiehlt sich wenn immer möglich eine Messung in der Nähe des TCP, was natürlich nicht in jedem Fall möglich ist.


4.3.2 **Vernachlässigung der Ersatzzeitkonstante**

Gemäss dominiert der Effekt der durch ein PT1-Glied approximierten Verzögerung durch die Stromregelung mit Ersatzzeitkonstante \( T_{elc} \) die strukturelle Nachgiebigkeit in der P/PI-Regelung, sobald

\[
\omega_0 \sqrt{\lambda (1 + \lambda)} \geq \frac{1}{T_{elc}} \quad (4.41)
\]

Im Folgenden wird argumentiert, dass man im Zusammenhang mit Zustandsregelung noch konserativer sein sollte, wenn man die Verzögerung der Stellgrössengenerierung durch die Stromregelung vernachlässigigen will. Es besteht grundsätzlich die Möglichkeit, diese nachzubilden, allerdings geht damit etwas von der Flexibilität und einfachen Inbetriebnahme der Zustandsregler-Ergänzung verloren.

**Stromregler am Streckeneingang**

Zunächst empfiehlt es sich in der Zustandsbeobachtung wenn immer möglich, die effektive Stellgröße nach Durchgang durch den Umrichter zu messen und für die Zustandsbeobachtung
zu verwenden, wie die folgende Überlegung zeigt:

Die Strecke wird durch ein lineares Zustandsraummodell modelliert:

\[
\dot{x} = Ax + Bu \quad (4.42)
\]
\[
y = Cx \quad (4.43)
\]

Die entsprechende Gleichung des Zustandsbeobachters ist:

\[
\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) \quad (4.44)
\]

Wobei \( u = -B\hat{x} \) die aus dem Zustandsregler vorgegebene Stellgröße ohne Berücksichtigung einer Umrichtertotzeit ist. Die reale Strecke mit dem zusätzlichen PT1-Glied mit Eckfrequenz \( \omega := 1/T_{elc} \) und dem zusätzlichen Zustand \( z \), der die effektive Stellgröße bezeichnet, wird beschrieben durch:

\[
\frac{d}{dt} \begin{pmatrix} x \\ z \end{pmatrix} = \begin{bmatrix} A & B \\ 0 & -\omega \end{bmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ \omega \end{pmatrix} u \quad (4.45)
\]

Der Beobachterfehler: \( e := (x - \hat{x}, z) \) entwickelt sich also gemäß

\[
\dot{e} = \left( A\hat{x} + Bz - A\hat{x} - Bu - L(y - C\hat{x}) \right) \omega(u - z) \quad (4.46)
\]
\[
= \left( A(x - \hat{x}) - LC(x - \hat{x}) + B(z - u) \right) \omega(u - z) \quad (4.47)
\]
\[
= \begin{bmatrix} A - LC & B \\ 0 & -\omega \end{bmatrix} \begin{pmatrix} x - \hat{x} \\ z - \hat{z} \end{pmatrix} + \begin{pmatrix} -B \\ \omega \end{pmatrix} u \quad (4.48)
\]

Der Beobachterfehler wird demnach inhomogen mit einem von \( u \) getriebenen Fehler. Der homogene Anteil des Beobachterfehlers bleibt asymptotisch stabil, mit den vorgegebenen Polstellen und einer zusätzlichen bei \( -\omega \). Dies macht einen derartigen Zustandsbeobachter für die Praxis schnell unbrauchbar, wie in Abschnitt 5.4 deutlich wird. Qualitativ ergibt sich das selbe Ergebnis, wenn ein Zustandsbeobachter für einen geschlossenen, kaskadierten Regelkreis eingesetzt wird, der eine in der Zustandsbeobachtung ignorierte Verzögerung enthält.

Falls der Zustand \( z \) gemessen und für die Zustandsbeobachtung verwendet wird, so wird

\[
\dot{\hat{x}} = A\hat{x} + Bz + L(y - C\hat{x}) \quad (4.49)
\]
\[
\dot{e} = \left( (A - LC)(x - \hat{x}) \right) \omega(u - z) \quad (4.50)
\]
4.3. KOMPLEXERE SYSTEME: AUSWIRKUNGEN VON MODELLVEREINFACHUNGEN

![Diagramm](image)

Abbildung 4.10: Verschiebung der vorgegebenen Pollagen in Abhängigkeit von $T_{elec}$ und $\lambda$, (a) Beispiel für $\lambda = 0.8$ mit Pollagen in der komplexen Ebene, und (b) Grenzwerte für $T_{elec} \kappa$ für aperiodische bzw. gut gedämpfte Pollagen

Wird der beobachtete Zustand nun zurückgeführt ($u = -K\dot{x}$), so ergibt sich nach einer zusätzlichen Koordinatentransformation

\[
\frac{d}{dt} \begin{pmatrix}
    x \\
    z + Kx \\
    x - \dot{x}
\end{pmatrix} = \begin{pmatrix}
    A - BK & B & 0 \\
    K(A - BK) & KB - \omega & \omega K \\
    0 & 0 & A - LC
\end{pmatrix} \begin{pmatrix}
    x \\
    z + Kx \\
    x - \dot{x}
\end{pmatrix}
\]

(4.51)

(4.52)

Der inhomogene Anteil verschwindet also, die Beobachterpole entsprechen den Vorgaben, aber die vorgegebenen Systempole werden verschoben. Es ist schwierig, quantitative Aussagen über diese Verschiebung zu machen. Eine direkte Rechnung bestätigt immerhin, dass diese im Fall von Polvorgabe gemäß Abschnitt 4.2.1 nur von $\lambda$ und vom Verhältnis zwischen $\omega_0$ und $\omega$ abhängig. Dies rechtfertigt für diesen Fall eine numerische Simulation, s. Abb. 4.10, aus der man das Verhältnis von $\kappa$ und $T_{elec}$ abliest.

**Vernachlässigung der Verzögerung bei Beobachtung eines geschlossenen Regelkreises**

Es wird angenommen, dass die Mechanik durch ein lineares Modell mit Zustandsmatrizen $(A, B, C, D)$, die Stromregelung durch ein $PT_1$ Glied mit Eckfrequenz $\omega$ und die Regelung durch eine Proportionalregelung mit Verstärkung $K$ beschrieben werden kann. Dies ist die Situation, bei der die Beobachtung eines proportional geregelten Geschwindigkeitsregelkreises wie in Abschnitt 5.4 auftritt. Damit wird die reale Regelstrecke aus Abb. 4.11(a) vom Sollwerteingang $r$ zum Messausgang $y$ mit der vom Regler geforderten Stellgröße $u_s$ in Zustandsraumdarstellung:
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

Abbildung 4.11: Reale (a) und modellierte Strecke (b) bei der Beobachtung eines geschlossenen Regelkreises und Vernachlässigung der Stromreglertotzeit

\[
\frac{d}{dt} \begin{pmatrix} x \\ u \end{pmatrix} = \begin{bmatrix} A & B \\ 0 & -\omega \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix} + \begin{pmatrix} 0 \\ \omega \end{pmatrix} u_s \\
= \begin{bmatrix} A & B \\ -\omega k C & -\omega \end{bmatrix} \begin{pmatrix} x \\ u \end{pmatrix} + \begin{pmatrix} 0 \\ k \omega \end{pmatrix} r \quad (4.53)
\]

wobei für die Soll-Stellgröße \( u_s \) im zweiten Ausdruck \( u_s := k (r - C x) \) gesetzt wurde.

Die Zustandsraumdarstellung des Zustandsbeobachters mit der modellierten Strecke aus Abb. 4.11(b) und mit der Beobachterverstärkung \( L \) lautet:

\[
\frac{d}{dt} \hat{x} = [A - k C - L C] \hat{x} + L C x + k B r \quad (4.55)
\]

Der Zustandsbeobachter nimmt also \( u_s = u \) an. Das resultierende Verhalten des Beobachterzustandes \( \hat{x} \), hier ohne Zustandsrückführung hat die folgende Zustandsraumdarstellung:

\[
\frac{d}{dt} \begin{pmatrix} x - \hat{x} \\ x \\ u \end{pmatrix} = \begin{bmatrix} A - L C & L C - k B C & B \\ 0 & A & B \\ 0 & -\omega k C & -\omega \end{bmatrix} + \begin{pmatrix} -k B \\ 0 \\ k \omega \end{pmatrix} r \quad (4.56)
\]

Die Blockmatrix im rechten unteren Teil der Zustandsmatrix ist dabei die Zustandsmatrix des geschlossenen Regelkreises wie in (4.54), dessen Pole nicht verändert werden. Der Zustandsbeobachter bleibt asymptotisch stabil und der Beobachterfehler wird wie in (4.48) inhomogen. Im Unterschied zu (4.48) ist hier aber die Entwicklung des Beobachterfehlers durch den Term \( L C - k B C \) an den Zustand \( [x, u] \) des beobachteten Regelkreises gekoppelt. Es ist auf Grund der schlechten Dämpfungseigenschaften der P/PI-Regelung Regelkreise anzunehmen, dass dieser schlecht gedämpfte Polstellen enthält, die durch diese Kopplung direkt im Beobachterfehler sichtbar werden. Dies kann den Zustandsbeobachtung sehr rasch unbrauchbar machen, s. den Versuch in Abschnitt 5.4.1.
Abbildung 4.12: Modellaufbau und Datensatz, der Unterschied zwischen den beiden Verhaltensweisen stammt von den unterschiedlichen Schwerpunktlagen $d_{1,0}$

### 4.3.3 Schwierigkeiten korrekter Identifikation


Es wird das folgende zweidimensionale Modellsystem einer Ständermaschine betrachtet: Das Modell besteht aus einem Grundkörper der Masse $m_0$ und Trägheit $J_0$, der über zwei nachgiebige Aufstellungen mit einem Inertialsystem verbunden ist, mit einem darauf angebrachten Turm der Masse $m_1$ und Trägheiten $J_1$ um die C-Achse. Aus dem entstehenden Gesamtmödell wurde ein dritter, höherer Mode vernachlässigt. Die Steifigkeiten $k_{1,2}$ der Bindungsstellen sind jeweils in x- und y-Richtung angegeben. Die Dämpfungsmatrix wurde proportional zur globalen Steifigkeitsmatrix angenommen: $D = 10^{-4} K$. Das Messsystem und die als Direktantrieb modellierte Krafeinleitung befinden sich an der Verbindungsstelle zwischen Turm und Grundkörper.
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

Abbildung 4.13: Frequenzgänge und Wurzelortskurve bei Proportionalregelung für die beiden Systeme. Zu System 1 gehört die linke Spalte \( b_1 \) der Systemmatrix

Basis. Der Geschwindigkeitsregelung steht die gemessene Geschwindigkeitsdifferenz der beiden Körper zur Verfügung. Nun wird für die Lage des Schwerpunktes des Turmes \( d_{10} \) einmal ein Wert von \( d_{10} = 0.6m \) und einmal ein Wert von \( d_{10} = 0.8m \) angenommen. Eine derartige Verschiebung des Schwerpunktes kann beispielsweise durch die Verschiebung einer auf dem Turm angebrachten, hier nicht separat modellierten \( y \)-Achse entstehen. Mit diesen Annahmen ergeben sich die beiden folgenden Modelle in Submatrizenform, die sich nur in ihren Eingangsvektoren unterscheiden:

\[
\begin{bmatrix}
  A & b_1 & b_2 \\
  C & d_1 & d_2
\end{bmatrix} =
\begin{bmatrix}
  -10 & 200 & 0 & 0 & 0 & 0.003 & 0.002 \\
  -200 & -10 & 0 & 0 & 0 & 0 \\
  0 & 0 & -2 & 140 & 0 & 0.0004 & 0.0007 \\
  0 & 0 & -140 & -2 & 0 & 0 \\
  0 & 0 & 0 & 0 & 0 & 0.0018 & 0.0018 \\
  1 & 0 & 1 & 0 & 1 & 0 & 0
\end{bmatrix}
\] (4.57)

Der linke der beiden Eingangsvektoren gehört zu \( d_{10} = 0.6m \). Der Unterschied der Systemmatrizen (4.57) ist gering und die Frequenzgänge der Systeme sind von Auge schwer unterscheidbar. Das Verhalten der Pollagen unter proportionaler Geschwindigkeitsregelung unterscheidet sich hingegen deutlich, wie Abb. 4.13 zeigt.

Im vorliegenden Beispiel wird eine auf die falsche Variante ausgelegte Zustandsregler-Ergänzung für einen Mode bei angenommener idealer Messung des reduzierten Zustands zwar nicht instabil, aber weitgehend nutzlos, das heisst: die Pole des geregelten Systems sind äusserst schlecht gedämpft (Fehler 1 in der Legende der Abb. 4.14). Wird hingegen eine dämpfende Zustandsregler-Ergänzung für beide Pole auf das falsche Modell ausgelegt, so wird das geregelte System instabil (Fehler 2 in der Legende der Abb. 4.14).
4.4. Zustandsvorsteuerung

4.4.1 Motivation

Vorsteuerungen, die zur Optimierung des Antriebsverhaltens bestimmt werden, wurden bereits in Abschnitt 3.1 besprochen. Wie dort erwähnt, können sie das Folgeverhalten des Antriebs deutlich verbessern, was jedoch nicht zwingend eine Verbesserung des Verhaltens an der Last bedeutet. Im Unterschied dazu ist die Vorsteuerung und Regelung in diesem Abschnitt darauf ausgelegt, dass eine elastisch an den Antrieb gekoppelte Last den vorgegebenen Sollwerten folgt. Die aus dem Interpolator gelieferten Sollwerte werden also nicht als Antriebs- sondern als Lastsollwerte interpretiert - letztlich ist es das, was der Benutzer intendiert hat. Es folgen drei Beobachtungen, die als Argumente für die Verwendung einer Vorsteuerung gewertet werden können:

Abbildung 4.14: Ergebnisse der Polvorgabe, auf falschen Modellanahmen beruhend: die effektiven Pollagen des geschlossenen Regelkreises weichen stark von den vorgegebenen Pollagen ab
KAPITEL 4. KONZEPTE DER ZUSTANDSREGELUNG

Abbildung 4.15: Radiusabweichung durch Strukturanregung und Schleppfehler bei Kreisfahrt mit Kreuztisch

Vorsteuerung als vollständige Sollwertvorgabe

Die zur Bedämpfung der Polstellen zusätzlich zurückgeführten Zustände $\beta$ und $\dot{\beta}$ der allgemeinen Zustandsraumdarstellung, s. (2.51), sind bis auf Skalierung die Istbeschleunigung und der Istruck der Last. Die entsprechenden Sollwerte werden dadurch implizit als 0 angenommen. Soll die Last jedoch beschleunigen, so wird die Bewegung durch die Polvorgabe unnötigerweise gebremst. Dies zeigt sich beispielsweise wenn mit einer nachgiebigen $x-y$-Achsanordnung eine Kreisbahn gefahren wird, wie exemplarisch in Abb. 4.15 gezeigt: Die Abweichung von Soll- zu Istradius des Kreises im eingeschwungenen Zustand des Systems wird bei Polvorgabe im Vergleich zu Proportionalregelung fast verdoppelt. Es liegt daher nahe, auch für diese Zustandsgrössen Sollwertvorgaben machen zu können.

Beeinflussung der Nullstellen durch Vorsteuerung

4.4. ZUSTANDSVORSTEUERUNG

Wird der mechanisch gedämpfte Zweimassenschwinger mit einem Proportionalregler mit dämpfungsoptimaler Reglerverstärkung geregelt, so resultiert ein System mit gedämpften Pol- und Nullstellen, mit der Übertragungsfunktion von Sollgeschwindigkeit \( \dot{\alpha}_s \) zu resultierender Antriebsgeschwindigkeit \( \dot{\alpha} \): 

\[
\frac{\dot{\alpha}}{\dot{\alpha}_s} = - p_r p_c \bar{p}_c \frac{1}{\omega_0^2 \lambda (s - p_c)(s - \bar{p}_c)(s - p_r)} s^2 + 2\xi \omega_0 s + \omega_0^2 \lambda
\]  
(4.58)

Ausgedrückt mit Hilfe der drei Polstellen \( p_r, p_c, \bar{p}_c \). Eine Polvorgabe derselben Polstellen auf dem (2.69) entsprechenden, aber mechanisch ungedämpften System (\( \xi = 0 \)), erzeugt ein System mit ungedämpften Nullstellen:

\[
\frac{\dot{\alpha}}{\dot{\alpha}_s} = - p_r p_c \bar{p}_c \frac{1}{\omega_0^2 \lambda (s - p_c)(s - \bar{p}_c)(s - p_r)} s^2 + \omega_0^2 \lambda
\]  
(4.59)

Das Führungsverhalten der beiden Systeme ist unterschiedlich, wie exemplarisch aus Abb. 4.16 ersichtlich ist. Da die Pollagen der beiden Systeme identisch sind, kann das Verhalten des mechanisch gedämpften Systems nicht durch dämpfende Zustandsrückführung erreicht werden sondern stammt von den unterschiedlichen Nullstellen der jeweiligen geschlossenen Regelkreise, die in Abb. 4.16(c) ersichtlich sind.

Verschiebung mechanischer Grenzen durch Vorsteuerung


4.4.2 Prinzip der Zustandsvorsteuerung

Die Idee der Zustandsvorsteuerung besteht darin, auf Grund vorgegebener Sollwerte den Zustand eines Streckenmodells in Echtzeit zu bestimmen, dessen TCP diesen Sollwerten folgt. Dieser Zustand wird als Sollzustand eines Zustandsraummodells mit dem beobachteten oder gemessenen Istzustand verglichen und die Differenz über eine Zustandsregelung zurückgeführt. Das entsprechende Schema ist in Abb 4.17 dargestellt und wird im folgenden erklärt:

- **Trafo**: Das Schema nimmt als Eingangsgrösse die aus dem Interpolator \( \text{Ipo} \) stammenden Antriebsnullwerte, die gegebenenfalls durch eine kinematische Transformation \( \text{Trafo} \) auf Last-, d.h. TCP-Sollwerte umgerechnet werden. An dieser Stelle wird noch keine Dynamik berücksichtigt.
Abbildung 4.16: Führungsverhalten, Vergleich mechanisch gedämpftes System mit Dämpfung durch Polvorgabe, (a) Sollwertsprungantwort am Antrieb, (b) Sollwertsprungantwort an der Last und (c) Pol- und Nullstellen der geschlossenen Regelkreise.

Abbildung 4.17: Regelschema für Regler mit Zustandsvorsteuerung. Es wird eine Vorsteuer-Stellgrösse $u_{fw}$ und daraus ein Sollzustand "x ideal" bestimmt, der zur Zustandsrückführung mit dem gemessenen oder beobachteten Istzustand verglichen werden kann.
4.4. ZUSTANDSVORSTEUERUNG

- FFW: Die eigentliche Vorsteuerung FFW bestimmt daraus eine Vorsteuer-Stellgrösse $u_{ffw}$, die als Vorsteuerwert für die Regelstrecke $G$ verwendet wird. Die Vorsteuergrössen ist dabei darauf ausgelegt, dass der Tracking-Ausgang der mit $u_{ffw}$ angeregten Strecke $G$ den Sollwerten entspricht. Da $G$ typischerweise integrierenden Charakter hat, müssen die Sollwerte in der Regel geeignet gefiltert werden. Ein Ansatz, wie ein solches Filter für den Fall einer nachgiebig an einen Antrieb gekoppelten Last konstruiert werden kann, wird im folgenden Abschnitt betrachtet.

- Gmod: Parallel dazu wird aus der Vorsteuerung durch ein Modell Gmod der Regelstrecke ein Zustandssollwert $x_{ideal}$ bestimmt, dessen Differenz zum beobachteten oder gemessenen Systemzustand $x_{ist}$ vermöge der Zustandsrückführung RF als korrigierende Steuergrösse zurückgeführt wird.

4.4.3 Realisierbare Sollwerte


Es wird die Übertragungsfunktion $T_{AL}$ betrachtet, die das Verhalten des Antriebs (Antriebsposition $x_A$) bei gegebenem Verhalten der Last (Lastposition $x_L$) im Frequenzbereich beschreibt. Sie berechnet sich gemäss (2.72) zu:

$$T_{AL} := \frac{x_A}{x_L} = \frac{s^2 + \omega_N^2}{\omega_N^2} = 1 + \frac{s^2}{\omega_N^2}$$

(4.60)

$T_{AL}$ weist offenbar einen relativen Grad von $-2$ auf, d.h. die Lastposition ist zweimal öfter nach der Zeit differenzierbar, als die Antriebsposition. Die selbe Übertragungsfunktion gilt offensichtlich auf zwischen den Beschleunigungen $a_A$ am Antrieb und $a_L$ an der Last. Es gilt demnach:

$$a_A = a_L + \omega_N^{-2} y_L$$

(4.61)

Wobei $y_L$ für den Zuck an der Last steht. Folglich können höchstens Zuck-Sollwertsprüinge an der Last verlangt werden, dies unter der Voraussetzung, dass der Antrieb mit einem Beschleunigungssprung belastet werden soll. Durch Transformation in den Zeitbereich ergibt sich
am Antrieb ein anfänglicher Beschleunigungssollwertsprung der Höhe $\omega_N^2$ für einen Einheits-Zuck-Sollwertsprung an der Last. Zuckbegrenzte Sollwerte stehen in der Praxis selten zur Verfügung, eine Ausweichmöglichkeit besteht in der Verwendung eines Sollwertfilters (wie es von „jeder“ Steuerung zur Verfügung gestellt wird). Wird dieses als $PT^2$-Glied $T_f$ mit Übertragungsfunktion angenommen, so folgt für die am Antrieb zu verlangende Beschleunigung $a_A$ bei einem gefilterten Rucksollwertsprung $r_L(s)$ um den Betrag $r_m$ an der Last der Form

$$T_f := \frac{\omega_f^2}{s^2 + 2 \omega_f s + \omega_f^2}$$

(4.62)

Durch Übertragung in den Zeitbereich ergibt sich daraus

$$a_A(t) = r_m \left( \left( \lambda (\omega t + 2) \omega_0^2 + \omega_f^2 t \right) \exp(-\omega t) + \omega_0^2 \lambda (\omega t - 2) \right) \frac{\omega_f}{\omega_0 \lambda}$$

(4.67)

was dem Antrieb bei $t = 0$ einen Rucksprung von

$$r_A(t = 0) = r_m \frac{\omega_f^2}{\omega_N^2}$$

(4.68)

auferlegt. Die Beschleunigung der Last folgt dem durch das Filter $T_f$ gemäß (4.63) vorgegebenen Verlauf. Abb. 4.18 zeigt typische Verläufe der Beschleunigungen an Last und Antrieb.

Um realisierbare Sollwerte zu erhalten, kann zunächst der zulässige Ruckwert $r_m$ in Abhängigkeit der Filterfrequenz $\omega_f$ bestimmt werden, der die Einhaltung der Grenze der Antriebsbeschleunigung $a_{\text{max}}$ garantiert, und anschließend eine Filterfrequenz $\omega_f$, die die Zeitverzögerung bis zum Erreichen der geforderten Sollbeschleunigung an der Last minimiert. Die Gleichungen sind symbolisch schwierig auszuwerten, numerische Analysen zeigen, dass die folgende Wahl für die Filterfrequenz $\omega_f$ und für den maximalen Ruck $r_{\text{max}}$ in guter Näherung das gewünschte leistet:
4.5. H-∞ REGELUNG

4.5.1 Kurze Erklärung des H-∞ - Ansatzes


\[
\omega_f := 4 \omega_N \quad (4.69)
\]

\[
r_{\text{max}} := \frac{2}{3} \omega_N a_{\text{max}} \quad (4.70)
\]


Abbildung 4.18: Beschleunigungsverläufe an Antrieb (gestrichelt) und Last (durchgezogen) für drei Werte von λ, bei einer Beschleunigungsgrenze des Antriebs von 10 m/s²
Abbildung 4.19: Schema H-∞. Dargestellt ist die erweiterte Regelstrecke mit einer Unsicherheit \( \Delta \)

herangezogen werden können. Die Definition dieser Ausgänge ist Bestandteil des Reglerentwurfs. Entsprechend dieser Unterteilung sind Eingangs- Ausgangs- und Durchgriffsmatrix unterteilt: \( D_{zw} \) beispielsweise bezeichnet die Durchgriffsmatrix von Eingang \( w \) zu Ausgang \( z \). Die Größen \( w, u, y \) und \( z \) brauchen nicht disjunkt zu sein, d.h. auch Messgrößen sind als Performancegrößen zulässig, ebenso wie die vom Regler erzeugte Stellgröße: beispielsweise kann \( z \) die vom Regler generierte Stellgröße \( u \) enthalten, um Stellgrößenbeschränkungen zu realisieren. Die Modellunsicherheit \( \Delta \) hat dieselbe Bedeutung, wie die Unsicherheit in Abb. 4.3 aus Abschnitt 4.1.2. Während dort die Struktur des Reglers bereits vorgegeben war und \( \Delta \) nur zur Beurteilung der Robustheit mit Hilfe des small-gain Theorems für die Wahl der Pollagen herangezogen wurde, wird sie im Fall der H-∞-Regelung gleich vom Beginn weg zur Definition des Reglers verwendet: der H-∞-Regler wird als die Lösung eines Optimierungsproblems bestimmt, derart, dass

\[
\| \frac{z}{w} \|_\infty =: \| T_{zw} \|_\infty \leq \gamma
\]

(4.71)
gilt. S. (4.9) für die Definition der Supremumsnorm \( \| . \|_\infty \). Das Optimierungsproblem besteht demnach in der Minimierung des Einflusses des Systemeingangs \( w \) auf den Systemausgang \( z \) im Sinne der Supremumsnorm, wobei die Optimierung abgebrochen wird, sobald das Kriterium (4.71) erfüllt ist. Der Parameter \( \gamma \) ist dabei eine vom Inbetriebnehmer festzulegende Konstante. Durch Skalierung und Gewichtungen kann in den meisten Fällen \( \gamma = 1 \) angenommen werden [20]. Es zeigt sich, dass ein Regler in Form einer linearen Zustandsrückführung existiert, der (4.71) erfüllt, falls der Systemzustand der Regelstrecke jederzeit bekannt ist, und ansonsten in Form einer linearen Rückführung eines durch einen linearen Zustandsbeobachter geschätzten Zustandes, falls einige technische Voraussetzungen erfüllt sind, s. [20]. Von dieser Lösung des Optimierungsproblems ist der angewandte Regelungstechniker in den seltensten Fällen direkt betroffen, da robuste Implementationen der numerischen Algorithmen bestehen. Der kreative Part des Regelungstechnikers besteht in erster Linie darin, die Regelstrecke und die Eingänge
4.5. H-\(\infty\) REGELUNG

Abbildung 4.20: Signalflussbild des loopshaping H-\(\infty\) Reglers mit Regelstrecke \(N M^{-1}\) und Modellunsicherheit \(\Delta N (\Delta M)^{-1}\). Der Regler besteht aus dem Feedforward-Anteil \(K_1\), dem Feedback-Anteil \(K_2\) sowie einem Referenzmodell \(T_r\). \(\phi\) bezeichnet die aus dem Modellfehler resultierende Störung.

\(w\) und die Ausgänge \(z\) und, falls die Möglichkeit zusätzlicher Sensorik besteht, \(y\) festzulegen. H-\(\infty\) erlaubt damit die direkte Optimierung von Frequenzgängen zwischen externen Eingängen und Performancegrössen. Im Gegenzug ist es aber nicht möglich, direkt diejenigen Grössen als Optimierungskriterien zu verwenden, an denen dem Regelungstechniker zumal im Maschinenbau typischerweise am meisten gelegen ist, allen voran wohl die Dämpfung der strukturellen Schwingungen.

In dieser Arbeit wurde ein H-\(\infty\) -Schema gewählt, das die Erzeugung des Reglers verhältnismässig einfach macht, insbesondere ist die Parametrierung des Reglers auf einer Steuerung implementierbar, dies wurde im Rahmen der Arbeit aber nicht durchgeführt. Es wird nicht weiter auf die Berechnungen zur Reglerdefinition eingegangen, aber das verwendete Schema wird im folgenden Abschnitt erläutert.

4.5.2 Loop-shaping H-\(\infty\)

Die Loop-shaping-H-\(\infty\) Methode \([21, 64]\) besteht in einer spezifischen Wahl der Ein- und Ausgänge einer Regelstrecke. Unter den betrachteten H-\(\infty\) -Schemata hat sie sich für die hier betrachteten Zwecke am besten bewährt. Insbesondere die folgenden Gründe sprechen für die Verwendung des Schemas:

- **Inbetriebnahmeregeln:** In den vorangegangenen Abschnitten wurde argumentiert, dass die Faustregeln nach \([69]\) einen guten Kompromiss zwischen Performance und Robustheit aufweisen. Die Loopshaping-H-\(\infty\) Methode erlaubt es, diese Inbetriebnahmeregeln direkt zu verwenden: Der \(K_v\) Faktor der P/PI-Regelung definiert eine gewünschte Bandbreite der Folgeregelung, die direkt als Bandbreite eines als Tiefpassfilters ausgelegten Referenzmodells, s.u., herangezogen werden kann. Die Form der Spezifikation des Reglers entspricht zudem eher derjenigen, die auch bei einem Kaskadenregler Anwendung findet.
Zusätzliche Sensorik
Das Schema erlaubt es leicht, zusätzliche Sensorik, die nicht direkt mit der Performance verknüpft ist, sondern beispielsweise die Zustandsbeobachtung unterstützen soll, mit einzubeziehen, s.u.

Gain-scheduling
Im Hinblick auf eine Erweiterung auf nichtlineare Regelstrecken kann das Schema in Verbindung mit gain-scheduling verwendet werden [56].

Inbetriebnahme
Die Entwurfsmethode ähnelt derjenigen der Inbetriebnahme eines PID oder kaskadierten P/PI Regelkreises. Die Regelstrecke des Schemas ist in Abb. 4.20 wiedergegeben. Der hellgrau hinterlegte Anteil, bestehend aus den drei Blöcken $K_1, K_2, T_r$, bezeichnet den zu entwerfenden Regler. $K_1$ ist ein Vorsteuer-Anteil, der aus der mit $\rho$, s.u., skalierten Sollgrösse eine Vorsteuer-Stellgrösse bestimmt. $K_2$ ist der Feedback-Anteil des Reglers. Das Referenzmodell $T_r$ spezifiziert das gewünschte Verhalten des geregelteren Systems zwischen Sollwerteingang $r$ und Performanceausgang $y$. Der dunkler hinterlegte Anteil bestehend aus dem Produkt der Blöcke $N M^{-1} = G_s$ bezeichnet die Regelstrecke, die in zwei koprime Faktoren zerlegt ist [56]. Die Unsicherheit $\Delta$ ist ebenso zerlegt in zwei koprime Faktoren $\Delta N$ und $\Delta M$. Diese Zerlegungen erlauben durch die Modellierung der Unsicherheit innerhalb der Strecke die Berücksichtigung einer umfassenderen Menge möglicher Unsicherheiten als die in Abschnitt 4.1.2 verwendete Modellierung am Streckeneingang oder ausgang, [56].

Das Vorgehen der Inbetriebnahme ist - ausgehend von der mechanischen Regelstrecke $G$ wie folgt [56]:

- Mit einer einzeln Gewichtungsmatrix $W$ wird das gewünschte Verhalten des offenen Regelkreises $G_s = GW$ konstruiert. $W$ skaliert demnach die Strecke an ihrem Eingang, analog dazu wie ein Proportionalbeiwert dies im Fall einer Proportionalregelung tut. $W$ ist im selben Sinne wie dieser Proportionalbeiwert bestimmend für die Dynamik des geschlossenen Regelkreises, s. [56]. Typischerweise wird eine konstante, diagonale Übertragungsmatrix gewählt. $G_s$ ist dann die Strecke für die Auslegung des Reglers. ($G_s = N M^{-1}$ in Abb. 4.20).


- Ein skalarer Parameter $\rho$ wird bestimmt, der die Robustheitseigenschaften des Reglers gegenüber dem Folgeverhalten an der nominellen Strecke gewichtet, s.u.

- Die $H_{\infty}$-Optimierung wird für die skalierte Strecke $G_s$ durchgeführt und der errechnete Regler mit Vorsteuerung wird mit der Gewichtungsmatrix $W$ erweitert.
Übertragungsfunktion  Die zu minimierende Übertragungsfunktion gemäß (4.71) lässt sich für das Loop-Shaping Schema der Abb. 4.20 wie folgt entnehmen \[56\] :

\[
\begin{bmatrix}
u \\ y \\ e
\end{bmatrix} = \begin{bmatrix}
\rho (1 - K_2 G_s)^{-1} K_1 & K_2 (1 - G_s K_2)^{-1} M^{-1} \\
\rho (1 - G_s K_s)^{-1} G_s K_1 & (1 - G_s K_2)^{-1} M_s^{-1} \\
\rho^2 [(1 - G_s K_s)^{-1} G_s K_1 - T_r] & \rho(1 - G_s K_2)^{-1} M_s^{-1}
\end{bmatrix}
\begin{bmatrix}
 r \\ \phi
\end{bmatrix}
\tag{4.72}
\]

Die Übertragungsmatrix aus (4.72) ist entsprechend der Unterteilung des Eingangs- und Ausgangsvektors in $3 \times 2$ Blöcke gegliedert. Die Blöcke $(1, 2)$ (erste Zeile, zweite Spalte von (4.72)) und $(2, 2)$ gehören zur robusten Stabilisierung der Strecke: Sie beschränken die Auswirkung Modellfehler auf die Ausgänge $u$ und $y$, die die Robustheit definieren. Diese beiden Blöcke sind insbesondere nur vom Feedback-Anteil $K_2$ des Reglers abhängig. Block $(3, 1)$ bewertet die Abweichung zwischen dem Istwert und dem Sollwert und damit die Folgegüte des Modells. Block $(1, 1)$ bewertet die Übertragung von Sollwert zu Stellgröße und hilft damit die Stellgröße zu beschränken. Block $(3, 2)$ schließlich bewertet die Störgrößenübertragung. Ersichtlich ist ferner, dass der Faktor $\rho$ die Untermatrizen erste gegen die zweite Spalte und damit wie oben erwähnt die Abhängigkeit der Ausgänge von $r$ (die Folgegüte) gegen die Abhängigkeit von $\phi$, (die Robustheit) gewichtet. Insbesondere ist für $\rho := 0$ die Bewertung der Folgegüte, sowie jede Bewertung des Sollervoreingangs $r$ ausgeschaltet.

Trennung von Performance- und Messausgängen und Definition der Regelstrecke

In \[64\] \[53\] wird gezeigt, dass der Loopshaping $H_{\infty}$ Regler eine vergleichsweise einfache, Struktur aufweist, die der gewohnten Kombination aus Zustandsbeobachtung und Zustandsrückführung entspricht. Die Formeln aus den angegebenen Artikeln werden hier mit der Modifikation wiederholt, die die Performance-Größe auf einen nicht gemessenen Ausgang (TCP-Ausgang) beziehen kann. Dazu wird nach \[64\] eine Matrix $W_t$ eingeführt, die aus den Systemausgängen die Performance-Ausgänge auswählt, und hier zusätzlich die Matrix $W_m$, die die gemessenen Ausgänge auswählt. Beispielhaft, falls ein indirektes Lagemesssystem (am Antrieb, Ausgang 1), ein Beschleunigungssensor (am TCP, Ausgang 2) zur Verfügung steht, und die Performance-Größe die Lastposition (TCP, Ausgang 3) ist, so wird

\[
W_m = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\tag{4.73}
\]

\[
W_t = \begin{bmatrix}
0 & 0 & 1
\end{bmatrix}
\tag{4.74}
\]

Definition der Regelstrecke

Die erweiterte Regelstrecke $G_e$, die der Übertragungsfunktion (4.72) entspricht ist mit den zusätzlichen Matrizen $W_t, W_m$ darstellbar durch die folgende Zustandsraumdarstellung, die bis auf diese zusätzlichen Matrizen der Darstellung in \[56\] entspricht.
Das gewählte Referenzmodell \( T_r \) mit der Zustandsraumdarstellung \([A_r, B_r, C_r, D_r]\) wird hier in der Regelstrecke modelliert. Die Matrizen \([A_s, B_s, C_s, D_s]\) stellen die mit der Gewichtungsmatrix \( W \) gewichtete Regelstrecke \( G_s \) dar. Die Matrizen \( Z_s \) und \( R_s \) stammen aus der koprimen Faktorisierung der Regelstrecke und sind nicht für die Auslegung des Reglers sondern für den Optimierungsalgorithmus von Bedeutung, für dessen Beschreibung auf die Literatur \([21, 64]\) verwiesen wird. Für die Zwecke der vorliegenden Arbeit wurde die Reglerauslegung in Matlab mit Hilfe der Robust Control Toolbox durchgeführt. Die Eingänge von \( G_e \) sind in dieser Reihenfolge der Sollwerteingang \( r \) der ursprünglichen Regelstrecke, die Störung \( \phi \) und die Stellgröße \( u \). Die Ausgänge sind in dieser Reihenfolge die Stellgröße \( u \), der Tracking-Ausgang \( y_t \), der Regelfehler \( e \), die skalierte Sollgröße \( \beta \), sowie der gemessene Streckenausgang \( y_m \).

\[
G_e = \begin{bmatrix}
A_s & 0 & 0 & (B_s D_s^T + Z_s C_s^T) R_s^{-1/2} & B_s \\
0 & A_r & B_r & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
W_tC_s & 0 & W_t R_s^{1/2} & W_tD_s \\
\rho W_tC_s & -\rho^2 C_r & \rho W_t R_s^{1/2} & \rho W_tD_s \\
0 & 0 & \rho & 0 & 0 \\
W_mC_s & 0 & W_m R_s^{1/2} & W_mD_s
\end{bmatrix}
\]  (4.75)
Kapitel 5

Anwendung Zweimassenschwinger


5.1 Zweimassenschwinger Prüfstand

Als Prüfstand wurde ein Drehtisch mit einer elastisch aufgespannten Werkstückattrappe verwendet, die eine ausgeprägte Torsionsschwingung mit einer Eigenfrequenz von ca. 12 Hz aufweist. Dies entspricht einem Zweimassenschwinger gemäss Fall 1 in Tab. 2.4, wobei die Werkstückattrappe als elastisch aufgespannte Last dient. Der Prüfstand mit der Attrappe sowie einem zusätzlich aufgebrachten direkten Messsystem und einem seitlich an der Attrappe befestigten Beschleunigungsaufnehmer ist in Abb. 5.1.(a) dargestellt. Zur empirischen Überprüfung der Robustheit der Regler kann die Werkstückattrappe durch Entfernen eines oder mehrerer der seitlich angebrachten zylindrischen Gewichte modifiziert werden, wodurch sich die Trägheit sowie die Eigenfrequenz verschiebt. Geschieht die Entfernung asymmetrisch, so gesellt sich eine zweite Eigenfrequenz, die zu einer Biegeschwingung gehört zu der Torsionsschwingung. Für die Untersuchung der Robustheit wurden drei unterschiedliche Formen der Attrappe verwendet

- symmetrisch Mit allen Gewichten, wie in Abb. 5.1(a)
- asymmetrisch Drei aufeinander folgende Gewichte auf einer Seite entfernt
- stark asymmetrisch Fünf aufeinander folgende Gewichte entfernt, wie in Abb. 5.1(b)

Die Frequenzgänge der Drehzahlregelstrecke der symmetrischen und der stark asymmetrischen Attrappe sind in Abb. 5.2 dargestellt. Die nachfolgende Tabelle 5.1 beschreibt die Eigenschaften des Prüfstandes und der Regelung in tabellarischer Form.
Abbildung 5.1: Prüfstand Zweimassenschwinger mit (a) symmetrischer und (b) stark asymmetrischer Werkstücktrappe. Die Werkstückattrappe übernimmt die Rolle einer nachgiebig an den Antrieb der Drehachse gekoppelten Last.

Abbildung 5.2: Frequenzgänge der symmetrischen und der stark asymmetrischen Attrappe. Die Symmetrische Attrappe weist eine dominante Eigenfrequenz auf, die stark asymmetrische Attrappe deren zwei.
5.2 Eingliederung in eine kaskadierte Reglerstruktur


5.2.1 Eingliederung in den Geschwindigkeitsregelkreis

Die Tatsache, dass dem proportionalen Anteil des Geschwindigkeitsreglers als dissipativem Element bei der Schwingungsdämpfung eine besondere Rolle zukommt, und die Tatsache, dass der Geschwindigkeitsregler gemäss Abschnitt 3.1 direkt von den strukturellen Nachgiebigkeiten be-
Abbildung 5.3: Eingliederung der Zustandsregler-Ergänzungen in die Kaskadenregelung. (a) Eingliederung in den Geschwindigkeitsregelkreis, (b) Eingliederung in den Lageregelkreis, die Zustandsregler-Ergänzung übernimmt hier die Lageregulation

troffen ist, legt zunächst die erste Variante nahe. Es besteht die Möglichkeit, den Geschwindigkeitsregler dämpfungsoptimal auszulegen, womit man bereits ohne Zustandsregler-Ergänzung ein brauchbares System erhält und die Zustandsregler-Ergänzung zur Bedämpfung zusätzlich aufschalten kann.

Die Zustandsregler-Ergänzung im Geschwindigkeitsregelkreis lässt sich näherungsweise realisieren, indem der PI-Geschwindigkeitsregler mit seiner Übertragungsfunktion

\[ \frac{u}{y_s - y} = K_p \frac{T_n s + 1}{T_n s} \]  

(5.1)
durch ein der Zustandsregler-Ergänzung nachgeschaltetes Hochpassfilter mit der Übertragungsfunktion

\[ \frac{\hat{u}}{u} = \frac{T_n}{K_p} \frac{s}{T_n s + 1} \]  

(5.2)

5.2.2 Eingliederung in den Lageregelkreis


5.3 Polvorgabe: Compile-Zyklus CCEX

5.3.1 Umsetzung

Die Zustandsregler-Ergänzung durch Polvorgabe wurde gemäss dem Schema in Abb. 5.3(a) als Compile-Zyklus CCEX realisiert. Bei der Untersuchung standen insbesondere die Untersuchung der Robustheit gegenüber Streckenvariationen sowie der Vergleich verschiedener Methoden der Zustandserfassung im Vordergrund. Es wurden drei Varianten der Zustandserfassung, nämlich

- Zustandsmessung mit direkter Lagemessung
KAPITEL 5. ANWENDUNG ZWEIMASSENSCHWINGER

Abbildung 5.4: CCEX - Zustandsregler-Erweiterung mit Beschleunigungssensor. Die Rückführung der gemessenen Antriebsgeschwindigkeit $\dot{\phi}_1$ erfolgt im PI-Geschwindigkeitsregler, die Rückführung der beiden anderen Zustände der allgemeinen Zustandsraumdarstellung durch die Proportionalbeiwerte $K_\beta$ und $K_{\dot{\beta}}$ in der Zustandsregler-Erweiterung.

- Zustandsmessung mit Beschleunigungssensor
- Zustandsbeobachtung

realisiert und am Prüfstand getestet. Das Schema für die Variante mit dem Beschleunigungssensor ist in Abb. 5.4 dargestellt. Der Lageregler ist als Proportionalregler mit Verstärkung $K_v$ gemäß der Tabelle 5.1 ausgeführt. Die Mechanik ist im rechten Teil der Abbildung 5.4 als Zweimassenschwinger nachgebildet: Modelliert sind zwei Massen $J_1$, $J_2$ die untereinander über eine Feder mit Steifigkeit $K$ verbunden sind. Der Umrichter ist als Tiefpassfilter mit Begrenzung des Maximalmoments ebenfalls gemäß der Tabelle modelliert. Die beiden Variablen $\phi_1$ und $\phi_2$ bezeichnen die Positionen des Antriebs und der Last. Die gemessene Lastbeschleunigung $\ddot{\phi}_2$ wird dem Compile-Zyklus zugeführt und von diesem in eine Zustandsrückführung umgerechnet, s.u.

Zustandsmessung
Der Zweimassenschwinger ist gemäß der allgemeinen Zustandsraumdarstellung (2.48) mit den drei Zuständen $\dot{\alpha}$, $\dot{\beta}$ und $\beta$ beschreibbar, die in einer Zustandsrückführung zu berücksichtigen sind. $\dot{\alpha}$ entspricht der ersten zeitlichen Ableitung der im Encoder gemessenen Antriebsposition $\phi$, während die skalierte Federauslenkung $\beta$ und deren zeitliche Änderung $\dot{\beta}$ durch zusätzliche Messung zu erschiessen sind. Vergleiche Tab. 2.4 für die physikalische Bedeutung dieser Parameter.
5.3. POLVORGABE: Compile-Zyklus CCEX

Beschleunigungsmessung Beschleunigungssensoren haben im Vergleich zu direkten Lage-
messungen den Vorteil, dass sie billig und verhältnismässig einfach zu installieren sind. Ana-
loge Eingänge zum Lesen der Signale sind auf vielen industriellen Steuerungen vorhanden, so
auch auf der hier verwendeten. Die für den Einsatz von Beschleunigungssensoren entscheiden-
de Beobachtung ist, dass die geeignet skalierte gemessene Lastbeschleunigung $\dot{\varphi}_2$ ein Zustand
der allgemeinen Zustandsraumdarstellung ist:

$$\beta = \frac{1 - \lambda}{\omega_0^2 \lambda} \dot{\varphi}_2,$$

(5.3)
der direkt in der Rückführung verwendet werden kann. (5.3) folgt ohne weiteres aus (2.56) -
(2.58). Der dritte benötigte Zustand $\dot{\beta}$ kann entweder durch Integration oder durch Differenzie-
ren von $\beta$ ermittelt werden. Durch Differenzieren erhält man direkt den gesuchten Zustand $\dot{\beta}$,
durch Integration erhält man $\dot{\varphi}_2$, woraus sich $\dot{\beta}$ ebenfalls durch geeignete Skalierung ergibt. Für
ideale Signale sind die beiden Methoden gleichwertig, für die Zwecke der Zustandsrückführung
realer, insbesondere leicht verrauschter Signale hat sich in den Experimenten die erste Metho-
de besser bewährt: integration eines verrauschten Signals führt zu einer Drift, die merkliche
Lageabweichungen verursacht, während das durch die Differentiation entstehende verstärkte
Rauschen durch die Mechanik gefiltert wird, es limitiert allerdings die errechbare Regelgü-
te bei sehr steifen Maschinen. Die Ableitung und Skalierung der Beschleunigungssignale ist
in Abb. 5.4 im Block Zustandsreglerergänzung dargestellt. Die Verstärkungsfaktoren $K_\beta, K_{\dot{\beta}}$
sowie der Proportionalanteil des Geschwindigkeitsreglers bilden zusammen die proportionale
Rückführung der drei Systemzustände $\alpha, \beta, \dot{\beta}$, s. (2.51).

Lagemessung Direkte Lagemessung mit einem hochauflösenden Lagegeber liefert verlässli-
che und kaum verrauschte Signale. Aus der gemessenen Position der Last zusammen mit der
Antriebsposition lässt sich die Federspannung $\epsilon$ und daraus durch Skalierung gemäss (2.57) der
Zustand $\beta$ und zusammen mit dessen zeitlicher Ableitung eine vollständige Zustandsbeschrei-
bung des Systems erschliessen.

Zustandsbeobachtung Die Pole $\Omega_L$ des Zustandsbeobachters wurden rein reell und 3 mal
schneller, als die vorgegebenen Systempole $\Omega_K$ gewählt, s. (4.18).

5.3.2 Ergebnisse

Abb. 5.5 zeigt die Ergebnisse der Zustandsregler-Ergänzung auf dem Zweimassenschwinger-
Prüfstand mit den unterschiedlichen Werkstückattrappen gemäss Abschnitt [5.1] Die vorgegebe-
nen Pollagen entsprechen denjenigen aus Abschnitt [4.2.1]. Die gezeigten Messungen stammen
aus einer raschen Positionierbewegung der Rotationsachse um $5^\circ$. Es sind jeweils die Antriebs-
position gemäss dem internen Messsystem und die Lastposition gemäss dem direkten Lage-
messsystem nebeneinander gestellt. Für alle Attrappen sind die Schwingungen der Last bei der
Abbildung 5.5: Ergebnisse mit der Zustandsregler-Ergänzung CCEX am Zweimassenschwinger-Prüfstand: Verhalten von Antrieb (linke Spalte) und Last (rechte Spalte) bei einer raschen Positionierbewegung um 5°, jeweils für die drei verwendeten Werkstückattrappen
5.4 Zustandsvorsteuerung: Compile-Zyklus CCFF

5.4.1 Umsetzung

Die Zustandsreglerergänzung wird hier gemäß der zweiten in Abschnitt 5.2 besprochenen Variante der Eingliederung in die kaskadierte Reglerstruktur umgesetzt. Das Schema ist für diesen Fall in Abb. 5.7 dargestellt, die eine auf den vorliegenden Anwendungsfall zugeschnittene Version der Abb. 4.17 ist. Das mechanische System entspricht dem Typ 1 aus der Tabelle 2.4 und ist demnach minimalphasig. Theoretisch kann für geeignete Sollwerte, s. 4.4.3 ein perfektes Folgeverhalten am TCP erreicht werden. Der Interpolator liefert die als Lastsollwerte interpretierten Sollwerte für Position, Geschwindigkeit und Beschleunigung. Daraus wird gemäß der Übertragungsfunktion zwischen Antrieb und Last (2.72) die Soll- und Vorsteuergeschwindigkeit für den Antrieb $v_{s,A}$ sowie dessen Sollposition $x_{s,A}$ bestimmt.
Abbildung 5.7: Schema der Vorsteuerung CCFF für den Zweimassenschwinger-Prüfstand. Es wird ein vollständiger Sollzustand für das verwendete Modell bestimmt und für die Zustandsrückführung mit dem gemessenen oder beobachteten Istzustand verglichen.

\[ v_{s,A} := v_{s,L} + r_{s,L} \omega_0^2 \lambda \] (5.4)

\[ x_{s,A} := x_{s,L} + a_{s,L} \omega_0^2 \lambda \] (5.5)

Der Rucksollwert der Last \( r_{s,L} \) wird durch numerische Ableitung aus dem Beschleunigungssollwert \( a_{s,L} \) bestimmt. Zusammen mit den direkt aus dem Interpolator übernommenen Werten für Lastgeschwindigkeit und -position ergibt sich ein vollständiger Sollzustand. Die Begrenzungen der Sollwerte sind gemäß Abschnitt 4.4.3 gewählt. Dies führt auf die in Abb. 5.8.(a) dargestellte Sollgeschwindigkeit für den Antrieb und das in Abb. 5.8.(b) dargestellte Sollmoment des Antriebs.

Für die im Schema mit RF bezeichnete Zustandsrückführung wird eine Polvorgabe auf der Matrix des mit \( K_p \) proportional geregelten Geschwindigkeitsregelkreises berechnet, wobei die Geschwindigkeitsregelverstärkung im Modell sowie effektiv auf dem Prüfstand um einen Faktor \( \approx 1.5 \) über das Dämpfungsumaximum vergrößert ist, damit die Eigenfrequenz innerhalb der Bandbreite des Regelkreises zu liegen kommt. Gemäß Abschnitt 4.2 müssten hier die Pollagen schneller als nach [69] wählbar sein, ohne bei hinreichend gutem Modell einen Verlust an Folgegüte zu erzeugen, nach demselben Abschnitt müsste aber die Robustheit unter dieser Wahl leiden. Um dies zu verifizieren wurden die Pollagen um einen Faktor 1.5 schneller gewählt, als in [69] empfohlen. Es wurden wiederum die Möglichkeit direkter Messung, sowie auch der Zustandsbeobachtung umgesetzt.

Zustandsbeobachtung

Für diesen Abschnitt reicht die zeitkontinuierliche Approximation des zeitdiskreten Reglers nicht aus, weshalb die zeitdiskrete Darstellung verwendet wird. Zur Unterscheidung von zeitkontinuierlichen Zustandsraumdarstellungen werden die Matrizen der zeitdiskreten Zustandsraumdarstellung mit \( \Phi, \Gamma, C, \Delta \), statt \( A, B, C, D \) bezeichnet. Die Ausgangsmatrix \( C \) ist in beiden Darstellungen identisch und erhält deshalb keinen neuen Namen.
5.4. ZUSTANDSVORSTEUERUNG: COMPILE-ZYKLUS CCFF

Abbildung 5.8: (a) Sollgeschwindigkeit am Antrieb und (b) resultierendes Moment sowie (gestrichelt) Maximalwerte der Moments bei Zustandsvorsteuerung eines Zwei-massenschwingers

\[ \hat{x}_k = \Phi \hat{x}_{k-1} + \Gamma u_{k-1} + L (y_k - C \hat{x}_{k-1}) \]

\[ u_{k+1} = -K \hat{x}_k \]

Zustandsbeobachter 1

\[ \hat{x}_k = \Phi \hat{x}_{k-1} + \Gamma u_{k-1} + L y_k - C (\Phi \hat{x}_{k-1} + \Gamma u_{k-1}) \]

\[ u_{k+1} = -K \hat{x}_k \]

Zustandsbeobachter 2

Zeitintervall \([k, k+1]^*\) dtX: Berechnung von \(\hat{x}(k)\) und von \(u(k+1)\)

Abbildung 5.9: Zeitlicher Ablauf der Zustandsbeobachtung, Steuergrösse \(u_{k+1}\) wird in Zeitintervall \([k, k + 1]\) auf Grund der bis dahin gemessenen Größen berechnet und im folgenden Intervall aktiv.
Es wurden mehrere Zustandsbeobachter getestet, die im folgenden kurz vorgestellt werden. Dabei lassen sich die in Abschnitt 4.3 diskutierten Auswirkungen von Modellierungsaufhängigkeiten auf die Zustandsbeobachtung exemplarisch darlegen. Nur einer der vier getesteten Beobachter hat sich als bedingt brauchbar erwiesen, während die anderen unbrauchbar waren.

**Zustandsbeobachter 1, Beobachter der mechanischen Regelstrecke** Es werden aperiodische Beobachterpole festgelegt, die um einen Faktor $r$, der vom Inbetriebnehmer bestimmt werden kann, schneller sind, als die gewählten Systempole $\Omega$. Es wird eine Polvorgabe der diskretisierten gewünschten Beobachterpolstellen

$$P_d = \exp(dt \cdot \Omega \cdot r)$$  \hspace{1cm} (5.6)

durch eine Rückführmatrix $L$ auf Grund der gemessenen Antriebsposition und -Geschwindigkeit und der gemessenen Stellgröße $u$ festgelegt. Die Stellgröße wird gemessen, um den Umrichter nicht separat modellieren zu müssen, wie in Abschnitt 4.3.2 erläutert wurde. Die Gleichungen des Zustandsbeobachters 1 lauten damit:

$$\hat{x}_k = \Phi \hat{x}_{k-1} + \Gamma u_{k-1} + L (y_k - C \hat{x}_{k-1})$$  \hspace{1cm} (5.7)

**Zustandsbeobachter 2, Beobachter des geschlossenen Geschwindigkeitsregelkreises ohne Verzögerung** Der oben dargestellte Zustandsbeobachter wird häufig verwendet, enthält jedoch eine Verzögerung, da die Korrektur des geschätzten Zustandes zum Zeitpunkt $t_k$ nur auf Messungen bis zum Zeitpunkt $t_{k-1}$ basiert. Diese Verzögerung lässt sich beheben, in dem statt dessen

$$\hat{x}_k = \Phi \hat{x}_{k-1} + \Gamma u_{k-1} + L (y_k - C (\Phi \hat{x}_{k-1} + \Gamma u_{k-1}))$$  \hspace{1cm} (5.8)

gesetzt wird [5]. Der zeitliche Verlauf ist in schematisch Abb. 5.9 dargestellt. Die in der Systemgleichung benutzte Stellgröße $u$ wird auch hier gemessen. Zustandsbeobachter 2 beobachtet den geschlossenen Geschwindigkeitsregelkreis. Die Systemgleichung entspricht (5.8) aber für die Systemmatrizen ist die zeitlich diskretisierte Zustandsraumdarstellung des geschlossenen Geschwindigkeitsregelkreises einzusetzen und für die Stellgrösse $u$ ist die die Sollgeschwindigkeit, bestehend aus Vorsteuer- und Regelungsteil einzusetzen.

**Zustandsbeobachter 3, Beobachter der mechanischen Regelstrecke ohne Verzögerung** Hier wird wie bei Zustandsbeobachter 1 die mechanische Regelstrecke beobachtet, mit der Systemgleichung des Zustandsbeobachters gemäß (5.8), wobei für die Systemmatrizen die zeitlich diskretisierte Zustandsraumdarstellung des mechanischen Systems und für $u$ die vom Antrieb gestellte Kraft gesetzt wird.
5.4. ZUSTANDSVORSTEUERUNG: COMPIL-ZYKLUS CCFF

5.4.2 Ergebnisse


Die Abb.5.10 vergleicht einerseits die Messung auf dem Prüfstand mit der Simulation und andererseits die Vorsteuerung mit der reinen Bedämpfung für die symmetrische Attrappe. Der gesamten Abbildung liegt die Zustandserfassung durch direkte Lagemessung zu Grunde. In Abb. 5.10(a) und 5.10(b) sind die Ergebnisse von Simulationen der Antriebs- und Lastgeschwindigkeit für die beiden Varianten dargestellt. Das Überschwingen der Geschwindigkeit für den Fall reiner Bedämpfung ist insbesondere in 5.10(b) deutlich sichtbar. In Abb. 5.10(c) und 5.10(d) sind die den Abb. (a) und (b) entsprechenden simulierten Antriebs- und Lastpositionen dargestellt, sowie zusätzlich das Ergebnis der Messung auf dem Prüfstand. Der Überschwinger der Geschwindigkeit im Fall reiner Bedämpfung überträgt sich offenbar deutlich auf die Position. Der Geschwindigkeitsverlauf des Antriebs zu Beginn der Positionierung (bei ca. 0.1s) entspricht der Beschleunigungsspitze aus Abb. 4.18, die den geforderten Ruck auf die Last über-
KAPITEL 5. ANWENDUNG ZWEIMASSENSCHWINGER

Abbildung 5.11: Positionierung mit Vorsteuerung, gemessen am Zweimassenschwinger-Prüfstand. (a) Vergleich der Vorsteuerung mit P/PI-Regelung für die symmetrische Werkstückattrappe und (b) Robustheitsanalyse mit Vorsteuerung an Hand der drei Werkstückattrappen, immer mit zusätzlicher Lagemessung an der Last trägt. Analoges gilt für die Bremsphase bei ca. 0.3s. Entsprechend weicht die Antriebsposition vom vom Interpolator ursprünglich geforderten Verlauf ab. Die Simulation stimmt während der Beschleunigungsphase sehr gut mit der Messung überein, während der Bremsphase ist eine geringe Abweichung sichtbar.

Die Abbildung 5.11(a) zeigt die gemessenen Ergebnisse der Regelung mit Vorsteuerung am Prüfstand im Vergleich zum P/PI-geregelter System bei der selben Bewegung wie in Abb. 5.10. Der vom Interpolator der Steuerung vorgegebene Sollwertverlauf ist offenbar deutlich schneller, als der Sollwertverlauf nach der Filterung gemäss Abschnitt 4.4.3, dem der Istwertverlauf recht genau folgt. Die vom Interpolator ohne die zusätzliche Filterung vorgegebenen Sollwerte sind an der Last nicht realisierbar. Die Kurve mit Zustandsregelung basierend auf direkter Lagemessung ist dieselbe wie in Abb. 5.10(d). Die auf dem verzögerungsfreien Zustandsbeobachter (Zustandsbeobachter 3, s.o.) basierende Zustandsregelung ist offenbar nicht in der Lage, die auftretenden Schwingungen zu dämpfen. Deutlich sichtbar ist, dass die Frequenz der Schwingung sich entsprechend den schnelleren vorgegebenen Pollagen erhöht. Die restlichen Zustandsbeobachter wurden nicht am Prüfstand, sondern nur in Simulation getestet, siehe den folgenden Abschnitt 5.4.2. Die Abb. 5.11(b) zeigt schliesslich die Ergebnisse einer Simulation mit den asymmetrischen und stark asymmetrischen Attrappen. Offensichtlich kann die Zustandsregelung im Gegensatz zu CCEX aus Abschnitt 5.3 in beiden Fällen keinerlei Dämpfung bewirken. Diese reduzierte Robustheit wird auf die schneller gewählten Pollagen zurückgeführt, s. Abschnitt 4.2.

Untersuchung der Zustandsbeobachtung

Das Versagen der Zustandsbeobachtung wird im folgenden untersucht. Dies geschieht an Hand einer Simulation, in der alle Parameter beliebig einstellbar und insbesondere die Übereinstimmung zwischen dem für die Auslegung der Regelung und für die Zustandsbeobachtung verwen-
Abbildung 5.12: Vergleich einer simulierten Lastgeschwindigkeit mit der durch Zustandsbeobachter 3 geschätzten Lastgeschwindigkeit, für die drei Werkstückattrappen. Der Zustandsbeobachter verwendet in allen drei Fällen ein Modell der symmetrischen Werkstückattrappe.
Abbildung 5.13: Vergleich der verwendeten Zustandsbeobachter für den Zweimassenschwin- 
ger, simulierter und beobachteter Zustand mit (a) Beobachter 1 und 2, sowie (b) Beobachter 3. (c) Simulation mit Zustandsrückführung auf Grund Beobachter 3.
deten Modell und der simulierten Regelstrecke, frei wählbar ist. Insbesondere kann auch eine perfekte Übereinstimmung zwischen dem Modell der Regelstrecke und dem Beobachtermodell gewählt werden. Bei der Simulation wird wie folgt vorgegangen:

- Das mechanische Modell wird am Eingang um ein $PT_1$ Glied mit einer Zeitkonstante von 3ms erweitert, die den Stromregler darstellt.
- Es wird eine Zustandsrückführung mit Polvorgabe gemäß Abschnitt 4.2.1 für den geschlossenen Geschwindigkeitsregelkreis bestimmt.

Die Abbildung 5.13 zeigt die Ergebnisse. Das zustandsgeregelte System weist ein gutes Folgeverhalten auf, was insbesondere anhand der Geschwindigkeit der simulierten Regelstrecke in Abb. 5.13(a,b) erkennbar ist. Der Zustandsbeobachter mit Verzögerung (Zustandsbeobachter 1) in Abb. 5.13(a) weist an den Punkten wo beschleunigt oder verzögert wird einen transienten Fehler auf, der immerhin noch gut gedämpft wieder abklingt. Dies wird auf den in Abschnitt 4.3.2 erörterten Effekt der Vernachlässigung der Verzögerungszeit des Stromreglers zurückgeführt. Der Zustandsbeobachter des geschlossenen Geschwindigkeitsregelkreises (Zustandsbeobachter 2) weist ersichtlich schlecht gedämpfte Schwingungen auf. Dies wird auf das den in Abschnitt 4.3.2 erörterten Effekt des Einkoppelns schlecht gedämpfter Zustände aus dem beobachteten Geschwindigkeitsregelkreis zurückgeführt, also ebenfalls auf Vernachlässigung oder ungenaue Abbildung der Ersatzzeitkonstante der Stromregelung. Die Erklärung wird in beiden Fällen dadurch gestützt, dass die schlecht gedämpften Schwingungen für Zustandsbeobachter 2 sowie die transienten Fehler für Zustandsbeobachter 1 verschwinden, sobald im Simulationsmodell die ein idealer Stromregler ohne Zeitverzögerung simuliert wird (nicht abgebildet). Der Beobachter ohne Verzögerung (Beobachter 3) erweist sich als der einzig verwendbare der drei getesteten Beobachter, s. Abb. 5.13(b). Nichtsdestoweniger, und obwohl die beobachtete Geschwindigkeit optisch kaum von der simulierten Realität unterschiedbar ist, wurde mit Zustandsbeobachtung keine Dämpfung erzielt, s. Abb. 5.11(a). Dies wird durch die Simulation bestätigt, wie in Abb. 5.13(c) dargestellt ist: Hier basiert die Zustandsrückführung in der Simulation auf dem Zustandsbeobachter 3. Wird mit einem der beiden anderen Zustandsbeobachtern simuliert, so wird das geschlossene System instabil (nicht abgebildet). Abb. 5.12 schliesslich vergleicht die simulierte Lastgeschwindigkeit mit der beobachteten Lastgeschwindigkeit für die drei Werkstück-Attrappen, wobei der Zustandsbeobachter immer der auf die symmetrische Attrappe ausgelegte Zustandsbeobachter 3 ist. Die beobachtete Geschwindigkeit weicht offenbar bereits deutlicher von der simulierten Realität ab. Auf Experimente mit
KAPITEL 5. ANWENDUNG ZWEIMASSENSCHWINGER

Abbildung 5.14: Umsetzung der H-∞ -Regelung (Compile-Zyklus CCHI) für den Zweimassenschwinger-Prüfstand

den Zustandsbeobachtern am Prüfstand wurde im Hinblick auf die bereits unzulänglichen Ergebnisse für die symmetrische Attrappe verzichtet.

5.5 H-∞ -Regelung: Compile-Zyklus CCHI

5.5.1 Umsetzung

Das Schema der H-∞ -Regelung entspricht der Abb. 4.20. Als Regelstrecke wird wie für CCFF der geschlossene Geschwindigkeitsregelkreis zu Grunde gelegt, der für die Auslegung des Reglers in zwei Koprimen Faktoren $N$ und $M^{-1}$ gemäß Abb. 4.20 zu zerlegen ist. Der in der Steuerung umzusetzende Regler besteht ebenso wie in Abb. 4.20 aus dem Vorsteueranteil $K_1$ und dem Feedback-Anteil $K_2$. Diese beiden Modelle sind im Lageregler als Zustandsraummodelle zu implementieren, was mit Compile-Zyklen auf der Sinumerik 840D ohne weiteres möglich ist. Abb. 5.14 zeigt die Umsetzung im Lageregler in der Simulink-Darstellung.

Referenzmodell $T_r$ und Vorfilter $W$

Referenzmodell: Auf Grund der Inbetriebnahmeregeln für klassische Kaskadenregelung wird als Standardwert für das Referenzmodell $T_r$ das Verhalten eines idealen Systems mit Übertragungsfunktion $s^{-2}$ mit Geschwindigkeitsreglerverstärkung $\kappa$ und Lagereglervarstärkung $\kappa/4$ vom Stellgrößeneingang zum Lageausgang demmaß (5.9) gewählt.

$$T_r := \frac{(\kappa/2)^2}{(s + \kappa/2)^2} \quad (5.9)$$

5.5. $H_\infty$ -REGELUNG: COMPILE-ZYKLUS CCHI

Abbildung 5.15: Simulierte $H_\infty$ -Regelung eines Zweimassenschwingers zur Illustration des Parameters $\rho$. (a) mit $\rho = 1$ und (b) mit $\rho = 0.1$. Die verwendeten Modelle entsprechen den drei Werkstückattrappen.

**Vorfilter**

**Robustheitsgewichtung $\rho$**
Der skalare Parameter $\rho \geq 0$ steht gemäss (4.72) dem Inbetriebnehmer zur Verfügung, um die Folgegüte im nominellen System gegenüber der Robustheit zu gewichten. Abb. 5.15 demonstriert die Auswirkung der Wahl von $\rho$ in einer Simulation mit Modellen der drei Werkstückattrappen. Der Regler war jeweils auf die symmetrische Attrappe, mit der Lastposition als Tracking-Ausgang ausgelegt. Die Folgegüte des nominellen Systems, also der symmetrischen Attrappe ist bei $\rho = 1$ etwas besser als bei $\rho = 0.1$, dafür ist beim letzteren die Verschlechterung der Folgegüte über die drei Attrappen wesentlich geringer.

5.5.2 Ergebnisse
Abb. 5.16 zeigt die Ergebnisse der Messung einer Schwenkbewegung mit der symmetrischen Werkstückattrappe im Vergleich mit der entsprechenden Simulation. Der $H_\infty$ -Regler wurde dabei ohne zusätzliches Messsystem betrieben. Die Übereinstimmung zwischen Simulation und Messung ist im Rahmen des zu erwartenden sehr gut. Die Dämpfung der Schwingungen ist etwas geringer, als bei dem Polvorgaberegler - sie geht auch nicht explizit in die Definition des Reglers ein - aber immer noch deutlich dem P/PI-Regler überlegen. Es ist daran erinnert, dass...
Abbildung 5.16: Ergebnisse $H_{\infty}$-Regelung am Zweimassenschwinger-Prüfstand mit der symmetrischen Werkstückattrappe. Vergleich von Messung und Simulation der (a) Antriebsposition und (b) Lastposition. Es wurde nur das antriebsinterne Messsystem verwendet.

die beiden Polvorgaberegler - im Gegensatz zum $H_{\infty}$-Regler - ohne zusätzliche Messsysteme nahezu keine zusätzliche Dämpfung erzielen konnten. 

Abb. 5.17 schliesslich vergleicht das Verhalten des $H_{\infty}$-Reglers an Hand der asymmetrischen und stark asymmetrischen Werkstückattrappe mit demjenigen des P/PI-Reglers. Der $H_{\infty}$-Regler war wiederum an Hand der symmetrischen Attrappe ausgelegt und ist ohne zusätzliches Messsystem betrieben worden. Die Robustheit des Reglers äussert sich hier in einem Folgeverhalten, das noch erheblich besser ist, als die P/PI und auch besser, als dasjenige der beiden Polvorgaberegler.
Abbildung 5.17: Vergleich des $H_\infty$-Reglers gemessen auf dem Zweimassenschwinger-Prüfstand mit (a) der asymmetrischen und (b) der stark asymmetrischen Attrappe. Es wurde nur das antriebsinterne Messsystem verwendet.
Kapitel 6

Anwendung Werkzeugmaschine


6.1 Dynamische Wechselwirkung X/B

Die Kombination der X- und der B-Achse ist auf Grund der dynamischen Wechselwirkungen interessant, s. Abb. 6.1(a): da der Drehpunkt der Schwenkachse B in y-Richtung nicht mit deren Schwerpunkt zusammenfällt, entsteht bei einer Drehung dieser Achse eine vorhersehbare Störkraft auf die X-Achse. Eine einfache Möglichkeit der Kompensation besteht darin, diese Störkraft durch eine von der X-Achse gestellte Kraft zu kompensieren. Dies wurde als Compile-Zyklus CCCTC realisiert, siehe [34]. Das für die Berechnung der Kompensationskraft \( F \) verwendete Modell ist in Abhängigkeit von Position, Geschwindigkeit und Beschleunigung der B-Achse gegeben durch:

\[
F := d m_2 \left( \cos(B) \dot{B} - \sin(B) \ddot{B} \right)
\]

(6.1)

\[1\]Von CC-Computed-Torque-Control. Der CCCTC setzt den Vorsteueranteil einer sogenannten Computed-Torque-Control um, s. Kapitel 7.
6.2 Kombination von CCEX und CCCTC

Diese Kompensation kann die durch das DBB-Messsystem gemessene Auslenkung am TCP bei einer Schwenkbewegung um ca. 70% reduzieren, vorausgesetzt die Maschine kann in hinreichender Nähe rung als starres System betrachtet werden: die Kombination aus Koppel- und Kompensationskraft bringt, wie aus Abb. 6.1(a) erichtlich ist, ein Moment auf die Konfiguration auf, da die Kompensation nicht an derselben Stelle wie die Störkraft eingebracht werden kann. Dadurch wird die Führung der X-Achse belastet. Ist deren Steifigkeit gering, so macht die dadurch entstehende Schwingung die Koppelkraftkompensation nutzlos. Die für erfolgreiche Kompensation benötigte Steifigkeit hängt von der Masse ab. Beim verwendeten Prüfstand ist die Koppelkraftkompensation bei unbeladenem Schwenktisch erfolgreich, zeigt aber keine positiven Effekte mehr, sobald der Schwenktisch mit einer Last von ca. 80kg beladen wird, wie in Abb. 6.3 gezeigt. Für eine detailliertere Beschreibung der Umsetzung und Ergebnisse der Koppelkraftkompensation wird auf [34, 70] verwiesen. Im Folgenden werden Ansätze der mehrachsigen Regelung diskutiert, die die Nachgiebigkeit der Konfiguration mit einbeziehen.

Abbildung 6.1: (a) Übersprecheffekt bei der X-B Achskombination: Koppelkraft $F$ und Kompensationskraft $-F$, (b) Dominante Eigenfrequenz des geregelten Dreiachs-Prüfstands angeregelt durch Pendelbewegung der X-Achse

6.2 Kombination von CCEX und CCCTC

Die infolge der allgemeinen Zustandsraumdarstellung flexible Anwendbarkeit der Schwingungsbedämpfung durch CCEX legt es zunächst nahe, durch Kombination der Koppelkraftkompensation CCCTC mit CCEX eine Regelstrategie für die Kombination der X- und B-Achse zu entwerfen: CCCTC kompensiert die Auslenkung der X-Achse durch die Störkraft und CCEX dämpft die entstehende Schwingung. Der Frequenzgang der Drehzahlreglerstrecke der $B$-Achse in Abb. 3.8 in ungeregtem Zustand zeigt im Bereich bis 100 Hz nur eine schlecht gedämpfte Mode, der zudem mit einer Frequenz von über 90 Hz bereits am oberen Rand dieses tiefen Frequenzbereichs liegt. Die $X$-Achse hingegen zeigt gemäß Abb. 6.4(b) eine deutliche Mode bei ungefähr $21 Hz$ und eine weitere bei ca. $32 Hz$. Diese Achse ist demnach bei Verwendung von
KAPITEL 6. ANWENDUNG WERKZEUGMASCHINE

Abbildung 6.2: Eigenschwingform zur Eigenfrequenz bei ca. 32Hz des Dreiachs-Prüfstandes gemäss Modalanalyse (linke Spalte) und Modell (rechte Spalte)
Abbildung 6.3: Ergebnisse der Kombination von CTC und CCEX am Dreiachs-Prüfstand bei unbeladener Achse (linke Spalte) und beladener Achse (rechte Spalte), jeweils mit DBB gemessen (obere Zeile) und simuliert (untere Zeile)
Abbildung 6.4: (a) Wurzelortskurve des Dreiachs-Prüfstandes unter Einfluss von Geschwindigkeitsverstärkung $K_v$ und Lageverstärkung $K_n$. (b) Frequenzgangmessung Geschwindigkeit gegen Kraft der ungeregelten X-Achse des Dreiech-Prüfstandes

CCEX zu bedämpfen. Um eine Zustandsregelung umsetzen zu können, ist es nützlich zu wissen, wie sich das geregelte System verhält, um zu beurteilen, welche der Schwingungen sich am störendsten bemerkbar macht. Die Messwerte des Antriebsmesssystems bei einer einer Positionierbewegung der X-Achse der durch klassische P/PI-Regelung gemäss Kapitel 3 geregelten Maschine ist in Abbildung 6.1 gezeigt. Es ist deutlich eine schwach gedämpfte Schwingung mit einer Frequenz von etwa 10 Hz sichtbar. Die selbe Frequenz zeigt sich bei Messung der Auslenkung des Turms mittels DBB-Messsystem, wie in Abb. 6.3(a) gezeigt ist, wobei die Frequenz hier durch eine Pendelbewegung der B-Achse angeregt wurde. Der kinematische Aufbau entspricht dem Fall 2, „elastische Aufstellung“ aus der Tabelle 2.4, womit die Bedämpfung direkt anwendbar ist. Die offensichtlichste Methode der Zustandserfassung ist die Platzierung eines Beschleunigungssensors nahe beim TCP. Die Ergebnisse in Abb. 6.3(a,b) zeigen jedoch, dass dieses Vorgehen keinen Erfolg hat: Die Abb. 6.3(a) zeigt die Auswirkungen einer raschen Schwenkbewegung der B-Achse auf das DBB-Messystem bei unbeladenem Tisch, einmal mit klassischer P/PI-Regelung, ein weiteres Mal mit der Koppelkraftkompensation durch CCCCTC und ein drittes Mal mit der Kombination von CCCCTC und CCEX. Ersichtlich unterscheiden sich der zweite und dritte Fall nicht nennenswert voneinander. Abb. 6.3(b) zeigt die Messung des
6.3. POLVORGABE IM LAGEREGLERKREIS

DBB bei der selben Schwenkbewegung der B-Achse bei mit 80kg beladenem Tisch. CCCTC kann hier offensichtlich nichts mehr ausrichten, im Gegenteil die stärkere Anregung der Eigenfrequenz durch die Kompensationskraft resultiert in einer etwas grösseren maximalen Auslenkung. Dies ist auf Grund der obigen Überlegungen wenig überraschend. Überraschender ist, dass die Polvorgabe durch CCEX nicht in der Lage ist, die entstehende Schwingung zu dämpfen. Das Simulationsmodell wird für eine Erklärung herangezogen. Zunächst zeigt die Abb. 6.3(c,d) die Ergebnisse der Simulation der in 6.3(a,b) entsprechenden Experimente, wobei aus Gründen der Übersichtlichkeit die Kurven für den Fall, wo CCCTC alleine aktiv war ausgeblendet sind, diese sind optisch von den abgebildeten Verläufen der Kombination von CCCTC und CCEX nicht unterscheidbar. Wenngleich die Simulation eine geringe Verbesserung des Verhaltens mit CCCTC gegenüber P/PI voraussagt, die in Wirklichkeit nicht eintritt, wird das grundsätzliche Versagen des CCEX hinsichtlich der Schwingungsdämpfung korrekt vorausgesagt. Zur weiteren Klärung wird die aus dem Modell berechnete Wurzelortskurve, Abb. 6.4 unter P/PI-Regelung herangezogen. Abb. 6.4(a) zeigt den Verlauf der Polstelle vom unregelten System, zunächst bei Verstärkung der Proportionalanteils der Geschwindigkeitsregelung bis auf deren endgültigen Werte gemäss Kapitel 3.1 (markiert) und schliesslich bei Einschalten der Lageregelung und Verstärkung bis auf deren endgültigen Wert, ebenfalls gemäss Kapitel 3.1. Die Darstellung der Pollagen in der komplexen Ebene ist um 90° gegenüber der üblichen Darstellungsweise gedreht. Die Abbildung verdeutlicht zweierlei: erstens ist CCEX falsch ausgelegt, wenn er auf das Pol/Nullstellenpaar bei 21/13 Hz ausgelegt wird. Er müsste jedenfalls auf die Kombination von 32/13 Hz ausgelegt sein. Dies ist aus dem Frequenzgang allein, ohne Modell kaum herauslesbar, s. auch Abschnitt 4.3.3. Grundsätzlich ist dies möglich, da die Mode bei 32Hz gemäss Abb. 6.2 eine Schwingung des X/B-Aufbaus gegen das Maschinenbett enthält, was dem Fall 3 der Tabelle 2.4 entspricht. Zweitens ist die schlechte Dämpfung offenbar in erster Linie eine Folge der proportionalen Lageregelung: die Schwingung ist bei offenem Lageregelkreis noch gut gedämpft, wie in Abb. 6.4(a) erkennbar ist. Eine Bedämpfung durch Polvorgabe, die wie CCEX im Geschwindigkeitsregler platziert ist, kann hier folglich wenig ausrichten.

Der nächste Abschnitt befasst sich mit der Frage, wie eine dämpfende Zustandsregelung umgesetzt werden kann.

6.3 Polvorgabe im Lageregelkreis

Es ist gemäss dem vorangehenden Abschnitt naheliegend, den Mode auf der Ebene der Lageregelung zu bedämpfen. Dazu wird das Modell des geschlossenen Geschwindigkeitsregelkreises der X/B Kombination auf ein Teilmodell reduziert, das gerade noch die störende Mode enthält, und darauf die Pollagen vorgegeben. Gemäss Abb. 6.3 ist dazu der Mode bei 32 Hz mit der Nullstelle bei 13 Hz zu wählen. Die Vorgehensweise ist wie folgt:

1. Im zeitkontinuierlichen Modell mit Systemmatrizen $[A, B, C, D]$ wird der Geschwindig-
keitsregelkreis als reiner Proportionalregler geschlossen:

\[ B \rightarrow B_v = B K_p \quad (6.2) \]
\[ A \rightarrow A_v = A - B_v C \quad (6.3) \]

wobei \( K_p \) die diagonale, proportionale Geschwindigkeitsregelverstärkung gemäß Abschnitt 2.9.1 bezeichnet.

2. Die Zustandsraumdarstellung wird in reelle modale Koordinaten gemäß (2.78) umgewandelt und durch Abschneiden der höheren Moden von ursprünglich 36 auf 6 Freiheitsgrade reduziert. Die Zustandsmatrix enthält an dieser Stelle zwei freie Integratoren (Position der X und B Achse), zwei Freiheitsgrade, die das Tiefpassverhalten der Geschwindigkeitsregelung beschreiben sowie ein \( 2 \times 2 \)-Kästchen zur Beschreibung des Modus, s. (6.4). Der Frequenzgang der X-Achse des vereinfachten Modells ist in Abb. 6.4(b) eingetragen.


6.3.1 Zustandserfassung

Als Systemeingänge sind die beiden Antriebe der X und der B Achse, als gemessene Ausgänge zunächst zwei Lageme- und zwei Geschwindigkeitsmessungen verfügbar. Im reduzierten Modell mit 6 Zustandsvariablen sind also zwei zusätzliche Zustände auf geeignete Art zu erschliessen. Diese Zustandserfassung kann wiederum durch zusätzliche Messungen oder durch Zustandsbeobachtung erfolgen, wobei sich für die erste Variante wiederum die Möglichkeit zusätzlicher Lagemessung oder Beschleunigungsmessung anbieten.

Lagemessung

Eine zusätzliche Lagemessung ist in diesem Fall direkt beim TCP nur aufwändig zu realisieren. Für ein Experiment könnte wohl mit dem DBB-Messsystem gearbeitet werden, allerdings ist dies kaum praxistauglich. Im Experiment wurde ein Lagesensor an einer Stelle verwendet, die die zu bedämpfende Mode gut sichtbar macht. In Anbetracht der in Abb. 6.2 gezeigten Schwingform wurde die Maschinenbasis gewählt. Die Erfassung geschieht über einen Heidenhain-Taster mit einem maximalen Hub von 13mm, siehe Abb. 6.5.
und B-Achsen und den Taster werden insgesamt drei Lagesignale erfasst. Werden diese numerisch differenziert, so erhält man 6 Ausgangssignale, und damit eine vollständige Zustandserfassung mit invertierbarer Ausgangsmatrix $C$, die eine vollständige Zustandserfassung für das reduzierte System ermöglicht. Die Systemmatrix in reellen modalen Koordinaten gemäß (2.78) ist dann gegeben durch:

$$[A, B, C, D] =$$

$$\begin{bmatrix}
-59.6 & 89.7 & 0 & 0 & 0 & 0 & 6461 & 1292 \\
-89.7 & -59.6 & 0 & 0 & 0 & 0 & -11837 & -740 \\
0 & 0 & 0 & 0 & 0 & 0 & -276 & -2724 \\
0 & 0 & 0 & 0 & 0 & 0 & 5962 & 2106 \\
0 & 0 & 0 & 0 & -568 & 0 & 2869 & -779 \\
0 & 0 & 0 & 0 & 0 & 0 & -133.8 & -11597 & -02827 \\
0.0015 & 0.0013 & 0.0014 & 0.0013 & -0.0023 & -0.0019 & 0 & 0 \\
0.067 & -0.296 & 0 & 0 & 0.793 & 0.186 & 0 & 0 \\
-0.0002 & -0.0007 & 0 & 0 & 0.0003 & 0.0003 & 0 & 0 \\
\end{bmatrix} \tag{6.4}$$

Wobei in der Ausgangsmatrix nur die drei Lagemessungen in der Reihenfolge X-Achse, B-Achse, Taster aufgeführt sind. Die Zustandsmatrix $A$ enthält offenbar einen doppelten Eigenwert 0, der die freie Integration von Geschwindigkeit zu Lage der beiden Achsen beschreibt, sowie zwei reelle Eigenwerte, die das Tiefpassverhalten der beiden Geschwindigkeitsregler darstellen und zwei komplex-konjugierte Eigenwerte, die die Eigenschwingung beschreiben.

Auf diesem System lässt sich nun durch direkte Polvorgabe eine Zustandsrückführung $K$ bestimmen. Den Inbetriebnahmeregeln aus Abschnitt 3.1 folgend, wählt man die reellen Pole der Lageregelung bei $\kappa_{min}/4$, wobei $\kappa_{min}$ die minimale, auf Einheitsmasse bezogene Geschwindigkeitsreglerverstärkung der beiden Antriebe ist, und eine Dämpfung nach dem Schröderschen

Abbildung 6.5: Zusätzlicher Lagesensor (Heidenhain-Taster) an der Maschinenbasis des Dreiachs-Prüfstandes
Abbildung 6.6: Umsetzung der dämpfenden Polvorgabe mit zusätzlicher Lagemessung für die X- und B-Achse des Dreiachs-Prüfstandes

Dämpfungsoptimum \([51]\) für die Mode. Man erhält die auf die Messgrößen bezogene Ausgangsrückführmatrix

\[
K_y := K C^{-1} = \begin{bmatrix}
48.9525 & 24.7344 & 0.6928 & 0.3019 & -0.0057 & 0.0048 \\
7.6600 & 58.2628 & 0.9452 & -0.4309 & -0.0249 & 0.0100
\end{bmatrix}
\] (6.5)

Die linke \(2 \times 2\) Untermatrix entspricht der proportionalen Rückführung der Lagemesssysteme der beiden Achsen und weicht von offenbar von der Rückführung des Kaskadenreglers ab. Der den gewählten Pollagen entsprechende \(K_v\) Wert beträgt \(50\,1/s\), die der proportionalen Lageregelung entsprechende Rückführmatrix ist demnach

\[
K_{Kv} = \begin{bmatrix}
50 & 0 \\
0 & 50
\end{bmatrix}
\] (6.6)


**Offsetkompensation** Der Taster registriert eine von der Lage der X-Achse abhängige Auslenkung auch bei Stillstand der Maschine durch die Verdrehung der Maschine auf der Aufstellung,
Abbildung 6.7: Statische Auslenkung des Tasters in Abhängigkeit der Lage der X-Achse und resultierende statische Lageabweichung, simuliert und gemessen. (a) Erklärung auf Grund der geänderten Massenverteilung (b) gemessene Tasterauslenkung, (c), (d) Simulation des Verhaltens der Polvorgabe-Regelung mit simulierter Tasterauslenkung.
wie in Abb. 6.7(a) dargestellt ist. Das Ausmass der Auslenkung beträgt bei Positionierung von der Position mittig auf der Aufstellung (keine Verdrehung) bis in die Endlage ca. 12 µm. Dies ist in Abb. 6.7(b) erkennbar, die die Tasterauslenkung bei der Pendelbewegung von mittiger Lage in die Extremlage und zurück darstellt. Die Pendelbewegung selbst ist in Abb. 6.7(c) gezeigt. Die statische Auslenkung des Tasters entspricht dem stationären während des Aufenthalts in der Extremlage zwischen ca. 0.5s - 0.7s ersichtlichen Wert von ca. 8 µm in Abb. 6.7(b). Wird diese Auslenkung nicht kompensiert, so führt sie auf statische Sollwertabweichungen von ca. 40 µm bei Verschiebung des Turms in die Endlage. Abb. 6.7(d) zeigt diese Abweichungen, die bei einem Experiment ohne Kompensation der Lageabhängigkeit gemessen wurden. In dieselbe Abbildung ist auch das Ergebnis einer Simulation eingetragen, wo im Streckenmodell (jedoch nicht in der Regelung) der Tasteroffset modelliert wurde. Die erzeugte statische Abweichung von der Sollposition deckt sich sehr genau mit der gemessenen.

**Ergebnisse**  Die Abbildungen 6.8 sowie 6.9 zeigen Ergebnisse mit der dämpfenden Zustandsrückführung. Die beiden Messungen unterscheiden sich nur hinsichtlich der verwendeten Filter für die Tastersignale: in Abb. 6.8 wurde ein als PT2 Glied ausgeführtes Tiefpassfilter mit Eckfrequenz 20Hz, in Abb. 6.9 ein als biquadratisches Filter ausgeführtes Bandpassfilter verwendet, das ein Frequenzband um 12Hz, also um die interessierende Frequenz passieren lässt. In beiden Fällen gelingt eine gute Dämpfung der Schwingungen. Die Filterung mit Bandpassfiltern erweist sich hinsichtlich des maximalen Überschwingers als etwas besser, wie an Hand der aufgezeichneten Achspositionen ersichtlich ist. Die Geschwindigkeitsverläufe der beiden Filtervarianten zeigen keine qualitativen Unterschiede, nicht abgebildet.

**Beschleunigungsmessung**

Die Beschleunigungsmessung kann im Gegensatz zu der Lagemessung in einfacher Weise in der Nähe des TCP platziert werden, dadurch erhält man die direkteste Information über das Verhalten am TCP. Für eine vollständige Zustandsfassung des reduzierten Modells werden wie in Abschnitt 6.3.1 zwei zusätzliche Signale benötigt. Dazu wurden zwei Beschleunigungssensoren an zwei Körpern des Prüfstands aufgebracht, siehe Abb. 6.10(a). Die zeitkontinuierliche Systemmatrix lautet für diesen Fall \([A, B, C, D] = \)

\[
\begin{bmatrix}
-59.6 & 89.7 & 0 & 0 & 0 & 0 & 6461 & 1292 \\
-89.7 & -59.6 & 0 & 0 & 0 & 0 & -11837 & -740 \\
0 & 0 & 0 & 0 & 0 & 0 & -276 & -2724 \\
0 & 0 & 0 & 0 & 0 & 0 & 5962 & 2106 \\
0 & 0 & 0 & 0 & -568 & 0 & 2869 & -779 \\
0 & 0 & 0 & 0 & 0 & -133.8 & -11597 & -02827 \\
0.0015 & 0.0013 & 0.0014 & 0.0013 & -0.0023 & -0.0019 & 0 & 0 \\
0.067 & -0.296 & 0 & 0 & 0.793 & 0.186 & 0 & 0 \\
18.2769 & 49.7810 & 0.0000 & 0.0000 & 228.8238 & 94.9440 & 0.4341 & -3.6303 \\
36.3212 & 34.9424 & -0.0000 & -0.0000 & -82.8994 & 84.4597 & -0.1355 & 2.9830
\end{bmatrix}
\]
Abbildung 6.9: Positionsverläufe mit der dämpfenden Polvorgabe für den Dreiachs-Prüfstand mit zusätzlicher Lagemessung bei einer Pendelbewegung der X-Achse, Signale des Tasters durch Bandpassfilter gefiltert

Abbildung 6.10: Dreiachs-Prüfstand mit zwei Beschleunigungsaufnehmern
6.3. POLVORGABE IM LAGEREGELKREIS

Abbildung 6.11: Umsetzung der dämpfenden Polvorgabe mit zusätzlicher Beschleunigungsmessung für den Dreiachs-Prüfstand

Die Ausgangsmatrix enthält die beiden internen Lagemesssysteme sowie die beiden Ausgänge der Beschleunigungssensoren in den untersten zwei Zeilen. Da die Stellgröße, eine Kraft bzw. ein Moment direkt in der gemessenen Linear- bzw. Winkelbeschleunigung sichtbar ist, erhält man in diesem Fall eine nicht verschwindende Durchgriffsmatrix \( D \). Die Zustandsvariablen haben dieselbe Bedeutung, wie in Abschnitt 6.3.1, ebenso wurden die selben Pollagen und Bandpassfilter gewählt. Die Systemmatrix führt auf die - wiederum auf die Messung bezogene - Rückführmatrix:

\[
K_y := K C^{-1} = \begin{bmatrix}
91.8393 & 5.9995 & 1.8171 & -0.2076 & 0.0149 & -0.0026 \\
110.6047 & 37.4777 & 2.9815 & -0.9564 & 0.0175 & -0.0099
\end{bmatrix}
\] (6.8)

Die Umsetzung des Regelschemas im Lageregler ist in Abb. 6.12(b) dargestellt, die Ergebnisse in Abb. 6.12. Die Abbildung zeigt, dass auch mit Beschleunigungsmessung eine gute Dämpfung erzielt werden kann, in Abb. 6.12(d) ist allerdings auch ersichtlich, dass die Position während dem Stillstand der Maschine stärkere Schwankungen zeigt, als bei der P/PI-Regelung. Dies wird auf die Anregung durch die Rückführung des Messrauschens der Beschleunigungssensoren zurückgeführt.

Zustandsbeobachtung

Die auf Zustandsbeobachtung basierende Dämpfung mit allen in Abschnitt 5.4.1 beschriebenen Zustandsbeobachtervarianten führt zu keinerlei Verbesserung des Verhaltens, sondern im Gegenteil zu Instabilität, die Ergebnisse sind nicht abgebildet. Stattdessen soll die Sensitivität der Zustandsbeobachtung, die in Abschnitt 4.3 auf Modellvereinfachungen diskutiert wurde an Hand des vorliegenden Beispiels illustriert werden. Zunächst wird die Modellvoraussage der
Abbildung 6.12: Dämpfung mit zusätzlicher Beschleunigungsmessung bei einer Positionierbewegung der X-Achse, Beschleunigungssignale durch Bandpassfilter gefiltert. Auswirkungen des leichten Signalrauschens sind in (d) gut erkennbar.
6.3. POLVORGABE IM LAGEREGLERKREIS


Tasterauslenkung des in Abschnitt 6.3.1 zusätzlich angebrachten Messtasters betrachtet. Wenn der Zustandsbeobachter das System hinreichend gut abbildet, so kann er auch das Verhalten des zusätzlichen Messsystems an der Maschinenbasis voraussagen, und umgekehrt: Wenn das Modell den Taster vollständig ersetzen kann, so sind mit Zustandsbeobachtung auch die selben Ergebnisse wie mit dem Einsatz des Tasters zu erwarten. Abb. 6.13(a) zeigt die gemessene und von dem online gerechneten Modell ohne Beobachterverstärkung vorhergesagte Tasterauslenkung, 6.13(b) das Entsprechende für die Änderungsgeschwindigkeit der Tasterauslenkung. Die Modellvoraussage stimmt im Rahmen dessen, was von einem Modell erwartet werden kann ausgesprochen gut mit der Messung überein. Die statische Abweichung, die in Abb. 6.13(a) zu Beginn und am Ende der Messung sichtbar ist, entspricht der statischen Tasterauslenkung, die in Abschnitt 6.3.1 diskutiert wurde, und die im Modell nicht abgebildet ist. Wäre der Systemzustand zu Beginn der Verwendung des Reglers bekannt, und wären keine äußeren Störeinflüsse zu erwarten, so könnte demnach das Modell an Stelle des Tasters verwendet werden. Ist dies nicht der Fall, so muss eine Beobachterverstärkung verwendet werden. Wird nun eine Beobachterverstärkung $L \neq 0$ mit aperiodischen Beobachterpollagen auf Grund der gemessenen Lage und Geschwindigkeit der beiden Achsen verwendet, so verschlechtert sich die Übereinstimmung zwischen Voraussage des Beobachters und tatsächlicher Lage und Geschwindigkeit des Tasters rapide. In Abb. 6.14 wird der Effekt an Hand eines Simulationsmodells betrachtet. Das Modell bildet die Situation der Messung nach, wobei die reale Maschine durch das vollständige Modell der X/B-Konfiguration ersetzt ist. Die dadurch simulierte Tasterauslenkung ist in der Abbildung als „simulierter Zustand“ bezeichnet. Es wurde ein verzögerungsfreier Zustandsbeobachter gemäß Abschnitt 5.4 verwendet. Als Modell des Zustandsbeobachters wird einmal dasselbe, vollständige Modell, und einmal das auf 6 Zustände reduzierte Modell gemäß (6.4) verwendet. Abbildung 6.14(a) und 6.14(b) zeigen den Unterschied, in der Voraussage der Tasterauslenkung ohne Beobachterverstärkung, der aus dieser Vereinfachung resultiert. Das vereinfachte Modell unterscheidet sich vom vollständigen Modell dadurch, dass höherfrequen-
KAPITEL 6. ANWENDUNG WERKZEUGMASCHINE

Abbildung 6.14: Einfluss von Modellvereinfachung und Verzögerungszeiten auf die Zustandsbeobachtung. (a), (b) Simulation ohne Beobachterverstärkung mit vollständigem und vereinfachtem Modell, (c), (d) Simulation mit Beobachterverstärkung mit unterschiedlichen zeitlichen Diskretisierungen des Zustandsbeobachters.
6.4. INVERTIERENDE REGLER

6.4.1 Grenzen der Dämpfung


Abbildung 6.15: Simuliertes Verhalten von X-Achse und TCP bei einer raschen Positionierbewegung der B-Achse unter Regelung durch perfekte Polvorgabe

6.4 Invertierender Regler
Pole des geschlossenen Regelkreises, was weitaus mehr ist, als in Wirklichkeit erreicht werden kann, verringern sich die maximalen Auslenkungen von X-Achse und TCP nur unwesentlich.

Dies ist in Abb. 6.15) dargestellt: der Abbildung liegt eine Polvorgabe im Simulationsmodell des Prüfstandes unter idealen Bedingungen zu Grunde, das heisst: Das für die Polvorgabe verwendete Modell ist das selbe, wie auch für die Simulation verwendet wurde und es wurde ein zeitkontinuierliches Modell ohne Totzeiten verwendet. Selbst unter diesen Bedingungen führt die Polvorgabe alleine nicht auf ein perfektes Folgeverhalten. Abbildung 6.15.a zeigt die simulierte Auslenkung der X-Achse mit Proportionalregelung und Polvorgabe, Abb. 6.15.(b) die simulierte Auslenkung des TCP. Der maximalen Abweichung von Achse und TCP kann nicht mit einer dämpfenden Polvorgabe, wohl aber mit einer Vorsteuerung entgegengewirkt werden, wie im Folgenden gezeigt wird.

6.4.2 Invertierende Vorsteuerung


Der Vorsteuerung liegt in diesem Fall das „vollständige“ Modell des Prüfstandes gemäss Abschnitt 2.9.1 ohne Vereinfachungen zu Grunde. Im einzelnen wurde wie folgt vorgegangen:

1. Der Regelung stehen als Messgrössen die Positionen der X- und B-Achsen zur Verfügung, keine zusätzlichen Messsysteme.

2. Das Modell für die Übertragung der Sollkraft \( u \) zu diesen Ausgängen wird am Eingang um ein Tiefpassfilter mit Zeitkonstante 3ms erweitert, das die Verzögerung des Stromreglers darstellt und die resultierende Übertragungsmatrix mit \( G_m \) bezeichnet.

4. Der Geschwindigkeitsregelkreis des Modells $G_m$ wird als reiner Proportionalregler mit den auch auf dem Prüfstand verwendeten Proportionalbeiwerten geschlossen, das daraus resultierende Modell vom Sollgeschwindigkeits-Eingang $v$ zum Messausgang wird mit $G_{m,v}$, dasjenige zum Tracking-Ausgang wird als $G_{t,v}$ bezeichnet.

5. $G_{t,v}$ wird nach der zero-order-hold Methode zeitlich mit der Taktrate des Lagereglers diskretisiert, dieses Modell mit Tracking-Ausgang wird mit $G_{t,v,d}$ bezeichnet.

6. Es wird eine minimalphasige Approximation $G_{t,v,d,\text{min}}$ von $G_{t,v,d}$ bestimmt, siehe unten.

7. Es wird ein Referenzmodell $T_r$ festgelegt, das das gewünschte Folgeverhalten zwischen Soll- und Istposition am Tracking-Ausgang definiert.

8. Als Sollgrößen-Generator wird das mit der Taktrate des Lagereglers zeitlich diskretisierte Modell $G_{m,v}$ verwendet.

9. Als Vorsteuerungs-Generator wird $(T_r^{-1} G_{t,v,d,\text{min}})^{-1} =: G_{vs}$ verwendet.

Das entstehende Regelschema ist in Abb. 6.17 wiedergegeben.

**Minimalphasige Approximation** Die zeitdiskrete Übertragungsfunktion $G_{t,v,d}$ zeigt drei instabile Nullstellen, die in Abb. 6.16 dargestellt sind. Direkte Invertierung dieser Übertragungsfunktion resultierte demnach in einem instabilen System, das nicht als Vorsteuerung verwendbar ist. $G_{t,v,d}$ muss durch eine Übertragungsfunktion mit ausschließlich stabilen Nullstellen – durch herausfiltern der instabilen Nullstellen – approximiert werden. Für ein zeitdiskretes MIMO-System kann dies auf verschiedene Arten geschehen [53]. Im vorliegenden Fall besitzt die Übertragungsfunktion zwei Eingänge, nämlich die Sollgeschwindigkeiten der beiden

\[ \text{Nullstellen von } G_{t,v,d} \quad \text{Polstellen beider Systeme} \]

\[ \text{Nullstellen von } G_{t,v,d,\text{min}} \]

\[ \text{Realteil Null-Polstellen} \]

\[ \text{Imaginäre Null-Polstellen} \]

\[ \text{Nullstellen von } G_{t,v,d} \quad \text{Nullstellen von } G_{t,v,d,\text{min}} \]

\[ \text{Abb. 6.16: Null- und Polstellen von } G_{t,v,d} \text{ und } G_{t,v,d,\text{min}}. \text{ Die instabilen Nullstellen mit Betrag } > 1 \text{ werden durch die Approximation aus dem Modell eliminiert.} \]
Achsen und zwei Ausgänge, nämlich die beiden Tracking-Ausgänge. Hier wurde die folgende Methode, ebenfalls aus [55] verwendet: Beginnend beim ursprünglich modellierten System \( G_0 = G_{t,v,d,min} \) wird iterativ eine instabile Nullstelle nach der anderen entfernt. Dies führt zu einer Kette von Modellen \( G_k \), deren letztes nur noch stabile Nullstellen enthält. Für eine instabile Nullstelle \( z_0 \) mit \( |z_0| > 1 \) von \( G_k \), wird eine Nullstellen-Ausgangsrichtung, d.h. ein Einheitsvektor \( \eta \in \mathbb{C}^2 \), mit \( \eta^T G_k(z_0) = 0 \), sowie ein dazu orthogonaler Einheitsvektor \( \zeta \in \mathbb{C}^2 \) bestimmt und \( G_k \) ersetzt durch eine minimale Zustandsraumdarstellung von

\[
G_{k+1} := \left( \frac{-z_0 z + 1}{z - z_0} \eta \eta^T + \zeta \zeta^T \right) G_k
\]  

(6.9)

\( z_0 \) ist dann keine Nullstelle von \( G_{k+1} \) mehr. Die minimalphasige Approximation muss dabei am diskretisierten System erfolgen, da eine zeitliche Diskretisierung bezogen auf das zeitkontinuierliche System zusätzliche, unter Umständen instabile Nullstellen erzeugt [5]. Die in [60] vorgeschlagene Methode, eine minimalphasige Approximation eines Systems zu finden, ist auf MIMO-Systeme nicht anwendbar.

**Referenzmodell und Vorsteuerungs-Generator**  
Das Referenzmodell legt das gewünschte Verhalten vom Sollwerteingang zum Tracking-Ausgang fest. Im Idealfall, d.h. bei einem perfekten Modell und ohne Störeinflüsse gilt gemäß der Definition der Vorsteuerung

\[
G_{t,\text{real}} G_{vs} \approx T
\]  

(6.10)

Die durch das \( \approx \) ausgedrückte Abweichung stammt ausschließlich von der minimalphasigen Approximation her. Die diagonale Übertragungsfunktion des Referenzmodells wurde wie folgt festgelegt:

\[
T_r := \begin{bmatrix}
\frac{(2K_v)^2}{(s+2K_v)^2} & 0 \\
0 & \frac{(2K_v)^2}{(s+2K_v)^2}
\end{bmatrix}
\]  

(6.11)


**Sollgrössengenerator**  
6.4. INVERTIERENDER REGLER

Abbildung 6.17: Umsetzung des invertierenden Reglers im Lageregelkreis; der Sollwertgenerator erzeugt Sollpositionen und -geschwindigkeiten für die X- und B-Achse.

B-Achspositionen, die dann mit dem in der Steuerung vorhandenen Kaskadenregler geregelt werden. Das Regelschema benötigt deswegen auch keine Zustandsbeobachtung oder zusätzliche Zustandsmessungen. Man erhält im Lageregelkreis zwei Modelle, den Vorsteuerungs-Generator $G_{vs}$ und den Sollwert-Generator $G_{m,v}$, die aus numerischen Gründen am besten als Zustandsraummodelle in einer numerisch stabilen Form gemäß Abschnitt 2.6 implementiert werden, s. Abb. 6.17.

6.4.3 Ergebnisse


Die Abb. 6.18 zeigt die vom Sollwertgenerator $G_{vs}$ für die X-Achse berechneten Sollwerte, die deutlich von den Interpolatorsollwerten (die identisch verschwinden) abweichen, zusammen mit den gemessenen Istpositionen aus dem internen Messsystem der X-Achse. Die Achse ist offensichtlich nicht ganz in der Lage, den Sollwerten aus $G_{vs}$ zu folgen. Dies wird auf die eher schwache Motorisierung der Achse zurückgeführt, vgl. die Bemerkung in Abschnitt 2.9.1.

Abb. 6.19 zeigt die Messergebnisse für Positionierbewegungen der B-Achse bei unbeladenem Tisch mit Sollgeschwindigkeiten von $2000^\circ/min$ (links) und $5000^\circ/min$ (rechts). Die maximale Auslenkung des DBB-Messgeräts wird in jedem Fall deutlich verringert.

Im Gegensatz zum CTC ist die auf einem Nachgiebigkeiten berücksichtigenden Modell aufgebaute Vorsteuerung grundsätzlich in der Lage, auch bei geringer Steifigkeit, bzw. bei schlechterem Verhältnis zwischen Steifigkeit und Lastmasse ein gutes Folgeverhalten des TCP zu erzeugen. Ein positiver Effekt kann aber nur erwartet werden, wenn Modell und Realität sehr gut übereinstimmen. Abb. 6.20 zeigen das Verhalten des invertierenden Reglers, der auf die unbela
dene Maschine ausgelegt ist, wenn der Tisch mit 40kg, bzw. 80kg beladen wird. Das Verhalten ist offenbar nicht signifikant besser, als mit P/PI-Regelung.
KAPITEL 6. ANWENDUNG WERKZEUGMASCHINE

Abbildung 6.18: Soll- und Istwerte für die X-Achse bei Verwendung der Vorsteuerung, während einer Positionierbewegung der B-Achse mit (a) 2000°/min und (b) 5000°/min

Abbildung 6.19: Ergebnisse der Vorsteuerung bei unbeladenem Tisch: Aulenkung des DBB-Messsystems, während einer Positionierbewegung der B-Achse mit (a) 2000°/min und (b) 5000°/min
6.5. $H^{-\infty}$-REGELUNG FÜR DEN DREIACHS-PRÜFSTAND

6.5.1 Umsetzung

Regelschema und Vorgehen

Das Regelschema für die Umsetzung der $H^{-\infty}$-Regler für den Dreiachs-Prüfstand entspricht der Abb. 4.20, genau wie dasjenige aus der Anwendung auf den Zweimassenschwinger in 5.5. Das Vorgehen der Umsetzung ist für den Dreiachs-Prüfstand wie folgt:


2. Im zeitkontinuierlichen Modell werden die beiden Geschwindigkeitsregelkreise als Proportionalregler mit den auch auf der Maschine verwendeten Proportionalbeiwerten geschlossen.

3. Das zeitkontinuierliche Modell des Systems wird wie in Abschnitt 6.3 beschrieben auf 6 Zustandsgrössen reduziert.

4. Die Systemein- und -ausgänge des zeitkontinuierlichen Modells werden skaliert, wie in [56] vorgeschlagen, s.u.

5. Es wird ein Referenzmodell für das gewünschte Systemverhalten festgelegt, s.u.

Abbildung 6.20: Ergebnisse der Vorsteuerung bei mit 80kg beladenem Tisch: Auslenkung des DBB-Messsystems, während einer Positionierbewegung der B-Achse mit (a) 2000°/min und (b) 5000°/min
6. Das zeitkontinuierliche, reduzierte Modell wird in zwei *koprime Faktoren* gemäß 4.5 zerlegt.

7. Auf dem zeitkontinuierlichen Modell wird ein H-∞-Regler gemäß Abschnitt 4.5 bestimmt

8. Der Regler wird zeitlich diskretisiert

**Skalierung**  Insbesondere bei MIMO-Systemen ist eine Skalierung der Systemeintr- und -ausgänge vorzunehmen, da unterschiedliche Masseinheiten sonst zu einer ungleichen relativen Gewichtung der Ein- und Ausgänge führt. Hier wurde den Vorschlägen in [56] folgt: die maximal zulässigen Ausgangswerte, i.e. Regelabweichungen, ebenso wie die maximal möglichen Eingangswerte, i.e. Stellgrößen erhalten nach der Skalierung den Wert eins. Als maximal zulässige Abweichung wurde 0.01 mm für die X-Position und 0.01° für die B-Position festgelegt. Dies entspricht einer typischen Toleranz für hochdynamische Werkzeugmaschinen [69]. Die Skalierung der Eingänge entspricht der maximalen Kraft des X-Antriebs bzw. dem maximalen Moment des B-Antriebs.

**Referenzmodell** $T_r$ und **Vorfilter** $W$

**Referenzmodell**  Das Referenzmodell wird für beide Achsen getrennt und wie in Abschnitt 6.4 gemäß der vom Inbetriebnehmer zu wählenden Lageregelverstärkung $K_v$ ausgelegt:

$$T_r = \begin{bmatrix} \frac{(2K_v)^2}{(s+2K_v)^2} & 0 \\ 0 & \frac{(2K_v)^2}{(s+2K_v)^2} \end{bmatrix}$$  \hspace{1cm} (6.12)


**Vorfilter**  Die Gewichtung $W$ wird wie in Abschnitt 5.5 und mit derselben Begründung wie dort diagonal mit Konstantem Wert $K_v$ gewählt. Diese Wahl von Referenzmodell und Vorfilter entspricht den Bemerkungen in Abschnitt 4.5.2.

**6.5.2 Ergebnisse**

Abb.6.21 zeigt die Ergebnisse mit der H-∞-Regelung bei einer Pendelbewegung der X-Achse im Vergleich zur Kaskadenregelung. In Abb.6.21(b) ist ersichtlich, dass die Sollwerte des Referenzmodells etwas langsamer sind, als die ursprünglich aus dem Interpolator gelieferten. Das Referenzmodell bildet, entsprechend seiner Definition, die Reaktionsgeschwindigkeit des mit $K_v$ geregelter Systems ab. Die Details in Abb.6.21(c,d) schließlich zeigen die mit H-∞ erzielten Verbesserungen gegenüber der P/PI-Regelung. Der H-∞-Regler erlaubt, wie bereits bemerkt,
6.5. $H_\infty$-REGELUNG FÜR DEN DREIACHS-PRÜFSTAND

nicht, direkt eine gewünschte Dämpfung zu spezifizieren, die Dämpfung der Istwerte ist tatsächlich nur geringfügig besser, als mit P/PI-Regelung. Allerdings ist der Überschwinger bei der Bewegung im Vergleich zur P/PI-Regelung deutlich reduziert.
Kapitel 7

Hexaglide

Das folgende Kapitel untersucht den in Abschnitt 2.9.2 vorgestellten Hexaglide vom Standpunkt der Regelungstechnik und mit Rücksicht auf die Erkenntnisse der vorangegangenen Kapitel.

7.1 Inbetriebnahme Kaskadenregelung

Für die Inbetriebnahme der Kaskadenregelung wurden die dynamischen Eigenschaften in Arbeitsraummitte, bei der TCP-Position und -Orientierung $[X,Y,Z,A,B,C] = [0m, 0m, -0.95m, 0°, 0°, 0°]$ zu Grunde gelegt. Stromregelung und Stromsollwertfilter wurden analog zum Beispiel in Abschnitt 3.6 in Betrieb genommen. Für die Geschwindigkeitsreglerverstärkung können die pro Achse dominanten Eigenschwingungen betrachtet werden. Pol- und Tilgerfrequenzen können der Frequenzgangmessung in Abb. 2.19 die Massen der Massenmatrix (2.121) wie folgt entnommen werden:

\[
\lambda = \begin{pmatrix}
0.84 \\
0.80 \\
0.58 \\
0.78 \\
0.62
\end{pmatrix}, \quad \omega_0 = 2\pi \begin{pmatrix}
72 \\
28 \\
24 \\
27
\end{pmatrix} \frac{rad}{s}, \quad \Theta = \begin{pmatrix}
115 \\
243 \\
232 \\
232
\end{pmatrix} \text{kg} \quad (7.1)
\]

Die Achsen sind dabei in der Reihenfolge ihrer Nummerierung in Abb. 2.15 aufgeführt. Dies führt auf die folgenden dämpfungsoptimalen Reglerereinstellungen gemäß (3.7):

\[
\kappa = \begin{pmatrix}
384 \\
365 \\
107 \\
104 \\
108
\end{pmatrix}, \quad K_p = \begin{pmatrix}
44500 \\
42500 \\
26000 \\
25500 \\
28000 \\
25000
\end{pmatrix} \frac{Ns}{m}, \quad K_v \leq \begin{pmatrix}
5.5 \\
5.5 \\
1.6 \\
1.6 \\
1.8 \\
1.6
\end{pmatrix} \frac{m}{\text{min mm}} \quad (7.2)
\]
KAPITEL 7. HEXAGLIDE

In der Praxis erweist sich für den Hexaglide eine etwas aggressivere Einstellung der Geschwindigkeitsregelung als besser (s. Abschnitt 7.3). Die Dämpfung wird damit wohl schlechter, die maximalen Konturabweichungen reduzieren sich hingegen deutlich, sowohl antriebs- als auch TCP-seitig gemessen. Dies wird darauf zurückgeführt, dass eine steifere Regelung die Störeffekte, die sich die Achsen gegenseitig übertragen schneller kompensieren kann. Für die P/PI-Regelung wird anstelle der oben angegebenen Werte für alle Achsen ein Proportionalbeiwert des Geschwindigkeitsreglers von $50000 \, \text{Ns/m}$ und ein $K_v$ von $4 \, \text{m/min/mm}$ verwendet.


### 7.2 CTC


$$0 = M(q)\ddot{q} + h(q, \dot{q}) + f(q, \dot{q}, t) - u(t)$$

in der Formulierung als System von Differentialgleichungen 2. Ordnung aus in einem Minimalkoordinatensystem aus. Dabei bezeichnet $M$ die Massenmatrix, $h$ die Christoffelterme, $f$ zusätzliche externe Kräfte wie Reibung oder Schwerkraft und $u$ die zu bestimmende Stellgröße. Das Regelschema bestimmt dann die Stellgrößse $u$, bestehend aus einem Vorsteueranteil $u_{ffw}$ und einem Regelanteil $u_{fb}$ zu

$$u(t) = M(q)\ddot{q} + h(q, \dot{q}) + f(q, \dot{q}, t) + M(q)(k_1(q_s - q) + k_2(\dot{q}_s - \dot{q}))$$

Es wird also davon ausgegangen, dass für das System von Lagekoordinaten $q$, die das System beschreiben Beschleunigungs-, Geschwindigkeits- und Lagesollwerte $\ddot{q}, \dot{q}, q_s$ gegeben sind, sowie davon, dass die entsprechenden Istwerte $\dot{q}, q$ jederzeit bekannt sind. Da in den Anwendungen Sollwerte nur für den TCP vorliegen, bedeutet dies, dass das Koordinatensystem der TCP-Koordinaten ein vollständiges Minimalkoordinatensystem darstellen muss. Überdies wird davon ausgegangen, dass sich die gemäss (7.4) berechnete verallgemeinerte Kraft $u$ in Stellkräfte für die Antriebe umrechnen lässt. Dies ist nur möglich, wenn das Minimalkoordinatensystem nicht mehr Koordinaten enthält, als Aktuatoren vorhanden sind. Für den Hexaglide wurde von einem Minimalkoordinatensystem aus sechs TCP-Koordinaten ausgegangen, die sich kinematisch in die sechs Antriebskoordinaten umrechnen lassen. Dies wiederum entspricht der Annahme eines starren Systems.
Es werden zweimal differenzierbare Lagesollwerte benötigt, die für die verwendete Steuerung zur Verfügung stehen. Für den Fall eines linearen Systems, mit konstanter Masse \( M \) und unter Vernachlässigung der Christoffeltermine \( h \) und der externen Störkräfte \( f \) handelt es sich also einfach um einen PD-Regler mit Kraftvorsteuerung oder -äquivalent - einen Kaskadenregler mit als reinem Proportionalregler ausgeführtem Geschwindigkeitsregler mit Kraft- und Geschwindigkeitsvorsteuerung. Weiter übernimmt \( k_2 \) die Rolle der auf Einheitsmasse bezogenen Geschwindigkeitsreglerverstärkung \( \kappa \) und \( k_1 = K_v \kappa \). Die modellbasierte Erweiterung des Kaskadenreglers bringt dem Inbetriebnehmer also die Möglichkeit, die auf Einheitsmasse bezogene Geschwindigkeitsreglerverstärkung \( \kappa \) konstant über den Arbeitsraum zu wählen und – bei einer hinreichenden Maschinensteifigkeit – die Kraftkopplungen zwischen den Achsen zu berücksichtigen [69]. Dies entspricht bei einem System mit konstanter Massenmatrix und ohne Kraftkopplungen der gewohnten P/PI-Kaskadenregelung mit Kraft- und Geschwindigkeitsvorsteuerung.

Ist das Modell (7.3) perfekt, so resultiert aus der Bewegungsgleichung (7.3) und dem Regelgesetz (7.4) offenbar die lineare Fehlerdynamik

\[
0 = \ddot{e} + k_2 \dot{e} + k_1 e
\]

mit \( e := q_s - q \). Die Nullstellen des charakteristischen Polynoms von (7.5) sind durch \( k_{1,2} \) frei wählbar. In Übereinstimmung mit den Inbetriebnahmeregeln aus Abschnitt 3.1 wählt man \( k_1 := k_2^2 / 4 \), und benutzt \( k_2 = \kappa \) als Parameter, womit diese Nullstellen beide bei \(-\kappa/2\) zu liegen kommen.

### 7.2.1 Umsetzung

Das verwendete Modell ist das starre Modell gemäss Abschnitt 2.9.2. Zur Berechnung der Vorsteuerstellgrösse wurden in Abweichung von (7.4) Soll- statt Istwerte verwendet:
KAPITEL 7. HEXAGLIDE

\[
    u(t) = M(q_s) \ddot{q}_s + h(q_s, \dot{q}_s) + f(q_s, \dot{q}_s, t) + M(q_s) (k_1 (q_s - q) + k_2 (\dot{q}_s - \dot{q}))
\]

womit kein nichtlineares, sondern ein lineares, zeitvariantes System modelliert wird. Dies ist zulässig, solange die erwarteten Bahnbeweichungen klein sind und verringert die Strukturanregung, wie in \[27, 30\] diskutiert wird. Die Eingliederung der Regelung in die Kaskadenregelung ist vereinfacht in Abbildung 7.1 dargestellt. Die kinematische Transformation, die Einzelheiten der Geschwindigkeitsregelung sowie sämtliche Filter sind aus Gründen der Übersichtlichkeit nicht eingekennzeichnet. Der Interpolator liefert Sollwerte für Beschleunigung, Geschwindigkeit und Lage des TCP. Die kinematische Transformation rechnet diese für die Regelung in die entsprechenden Antriebsstellwerte \( \ddot{q}_s, \dot{q}_s, q_s \) um. Für das Verständnis von Abb. 7.1 kann sie als Teil des Interpolator-Blocks IPO gedacht werden. Die Dynamik der Sollwerte ist auf Grund der tiefen Eigenfrequenzen durch eine Ruckbegrenzung gemäss Abschnitt 3.5.2 zu begrenzen. Die Grenzen für Beschleunigung und Geschwindigkeit sind damit sekundär, da auf Grund dieser Ruckgrenzen innerhalb des verfügbaren Arbeitsraums keine hohen Beschleunigungen oder Geschwindigkeiten erreicht werden, vgl. Abschnitt 7.3. Die Inbetriebnahme der Geschwindigkeitsregelung inklusive Stromsollwertfilter erfolgt wie im Beispiel in Abschnitt 3.6. Da Vorsteuerungen verwendet werden, sind auch die Symmetrierfilter gemäss Abschnitt 3.5.1 in Betrieb zu nehmen.

Die beiden dem CTC zugehörigen Blöcke sind in der Abbildung grau hinterlegt. \( \text{FFW} \) berechnet die Vorsteuerkraft \( \text{u}_{ffw} \) gemäss (7.6), die direkt als Kraftsollwert aufgeschaltet wird. \( \text{FB} \) bestimmt einen dem Feedback-Anteil \( \text{u}_{fb} \) entsprechenden Geschwindigkeitssollwert \( \dot{q}_{CTC} \) zu

\[
    \dot{q}_{CTC} = K_p^{-1} M(q_s)(k_1(q_s - q) + k_2(\dot{q}_s - \dot{q}))/K_p
\]

wobei \( K_p \) die diagonale Matrix der Geschwindigkeitsreglerverstärkungen bezeichnet. Im Gegensatz zu der Umsetzung von CCEX wurde der Integralanteil des Geschwindigkeitsreglers nicht invertiert. Damit wird mit der Hilfsgrösse \( u_p \)

\[
    u_p := K_p (\dot{q}_{CTC} - \dot{q}) = M(q_s)(k_1(q_s - q) + k_2(\dot{q}_s - \dot{q}))
\]

die vom Geschwindigkeitsregler gestellte Stellgrösse

\[
    u = u_p + \frac{1}{T_n} \int u_p
\]

Dies entspricht dem P/PI-Regelgesetz mit über den Arbeitsraum angepasster Massenmatrix.

Bei Verwendung der vollen Massenmatrix im closed-loop werden die Übersprecheffekte durch die CTC bei perfektem Modell kompensiert, auf Grund von Modellvereinfachungen, insbesondere der Vernachlässigung von Nachgiebigkeiten führt sie jedoch in Wirklichkeit zu grösseren

7.2.2 Ergebnisse


**Vergleich mit XOberon-Implementierung** Die Abbildung 7.2 zeigt das Verhalten des Hexaglide mit CTC auf XOberon im Vergleich zur P/PI-Regelung auf der 840D. Im Vergleich zur Arbeit von Honegger wurden der Antriebsstrang und die Steuerung ausgetauscht. Der Vergleich dieser Kreuzgittermessung zeigt, dass bei einem geringen Vorschub von 1m/min allein dadurch das Verhalten deutlich verbessert wird. Dieses unterscheidet sich bei diesem Vorschub

Abbildung 7.2: Kreuzgittermessung und Antriebspositionen im Vergleich zwischen (a) XOberon System und (b) Sinumerik 840D, beim Durchfahren von Gerade-Kreis Übergängen mit einem Vorschub von 1 m/min, Konturabweichungen 250-fach überhöht
Abbildung 7.3: Übergänge Gerade-Kreis-Gerade, Messung durch interne Messsysteme auf der 840D, Konturabweichungen sind 250-fach überhöht, (a) v=1m/min, P/PI-Regelung, (b) v=10m/min, P/PI Regelung, (c) v=10m/min, CTC


Vergleich an verschiedenen Stellen des Arbeitsraums  Die Kontur mit Gerade-Kreis-Gerade-Übergang, wurde an verschiedenen Stellen des Arbeitsraumes in verschiedenen Geschwindigkeiten, einmal mit P/PI-Regelung und einmal mit CTC abgefahren. Die Ergebnisse zeigt die
7.2. CTC

Abbildung 7.4: Kreuzgittermessung und Antriebspositionen im Vergleich zwischen (a) P/PI-Regelung und (b) CTC, beide auf Sinumerik 840D, beim Durchfahren von Gerade-Kreis Übergängen mit einem Vorschub von 5 m/min, Konturabweichungen 250-fach überhöht, v=5m/min

Abb. 7.3. Die Kontur wurde an jeweils drei y- und drei z-Positionen gefahren. Die z-Positionen sind übereinander gezeichnet. Die Welligkeit bei Verfahren in x-Richtung, in in Abb. 7.3 (b) sichtbar ist, ist keine Strukturschwingung, sondern wiederum die Auswirkung der Kraftrippel der Linear-Direktantriebe. Der CTC gelingt es, die Konturabweichungen, die hier an Hand der internen Messsysteme beurteilt wird deutlich zu verringern. Ebenso wird die Lageabhängigkeit kompensiert: Mit P/PI-Regelung variiert die maximale Konturabweichung zwischen den Messpositionen um rund einen Faktor 1.5, während sie bei der CTC im wesentlichen unverändert bleibt.

Vergleich mit P/PI-Regelung  Abb. 7.4 zeigt die Ergebnisse einer Kontur mit Gerade-Kreis-Übergängen, gefahren mit einem Sollvorschub von 5m/min. 7.4 (a) ist die Messung mit P/PI-Regelung. 7.4 (b) diejenige mit CTC. CTC kann immerhin die Konturtreue der Antriebe verbessern, aber nichts gegen die Abweichungen ausrichten, die durch die Flexibilität der Struktur entstehen. Die Kontur wird dabei zwischen der anfänglichen Beschleunigungs- und der abschliessenden Bremsphase mit konstanter Geschwindigkeit durchfahren. Bei den Gerade-Kreisübergängen wird den Achsen also ein Beschleunigungsprung auferlegt. Ein ruckbegrenztes Durchfahren eines Gerade-Kreis-Übergangs bedingte ein Anhalten, was auf Grund der Schnittbedingungen im Normalfall kaum wünschenswert sein dürfte. Die Symmetrie des Verhaltens in den jeweils diagonal gegenüberliegenden Ecken deutet darauf
Abbildung 7.5: (a) Kreuzgittermessung mit CTC auf Sinumerik 840D und Simulation im Vergleich beim Durchfahren von Gerade-Kreis Übergängen mit einem Vorschub von 5 m/min, Konturabweichungen 250-fach überhöht, (b) Amplitudenfrequenzgänge der Geometrieachsen $x$ und $y$ des Hexaglide gemäß dem Simulationsmodell

hin, dass sich die dynamischen Eigenschaften zumindest in diesem kleinen Bereich des Arbeitsraums wenig ändern. Die Richtungsabhängigkeit ist allerdings ausgeprägt: Die lastseitigen Abweichungen sind offenbar an den in Abb. 7.4 mit Pfeil markierten Stellen, beim Einfahren in die Kreissegmente 1 und 3 am grössten, also dort, wo versucht wird, den TCP in $y$-Richtung zu beschleunigen, und ebenfalls bedeutend an den Enden der Kreissegmente 2 und 4, wo die Sollbeschleunigung in $y$-Richtung sprunghaft endet. Dies deutet darauf hin, dass Kräfte (Beschleunigungen) vom Antrieb auf die Last in $y$-Richtung nur schlecht übertragen werden: die $y$-Richtung weist eine deutlich geringere Steifigkeit auf, als beispielsweise die $x$-Richtung und damit auch einen deutlichen Schleppfehler. Das scheinbare Ausweichen des TCP in die der Sollbewegung entgegengesetzte $y$-Richtung ist eine Folge der überhöhten Darstellung. Diese Schwäche der $y$-Achse wurde bereits in [28] durch Betrachtung der Singulärwerte der Ableitungsmatrix der kinematischen Transformation qualitativ vorhergesagt.

Eine Regelung, die antriebsseitige Genauigkeit garantiert, gibt dem Inbetriebnehmer die Möglichkeit, die unerwünschten Auswirkungen struktureller Nachgiebigkeiten durch Begrenzungen der Sollwerte in vertretbarem Rahmen zu halten.

Vergleich Modell - Messung  Der Vergleich zwischen dem Modell und der Messung Abb. 7.5(a) zeigt eine gute qualitative Übereinstimmung bezüglich des Schleppfehlers in Ecken 1 und 3. Die Unterschiede in Ecken 2 und 4 dürften zu einem Grossteil auf die Reglersynchroni-
sierung zurückzuführen sein, die im Simulink-Modell etwas schlechter ist, als auf der 840D. Eine korrekte Validierung des Modells mittels Lagemessungen ist allerdings schwierig durchzuführen, da alle sechs Freiheitsgrade stark mit einander verkoppelt, und Messungen in 6 Freiheitsgraden kaum möglich sind. KG-Messungen in orthogonalen Ebenen sind zudem auf Grund der beschränkten Schwenkinkel der Kinematik nicht machbar, zudem würden durch solche Messungen, wenn sie noch durchführbar wären jeweils unterschiedliche Modelle gemessen, da die Linearisierung positionsabhängig ist.

Ein Vergleich mit einer Modalanalyse zeigt immerhin, dass die Eigenform der ersten Eigenfrequenz gut mit dem Modell übereinstimmt, nicht abgebildet. Nimmt man an, das Modell sei hinreichend genau, lassen sich einige Eigenschaften der Maschine simulativ untersuchen, die einer Messung nur schwer zugänglich sind. Abbildung (b) zeigt die aus dem Modell gerechneten Amplitudenfrequenzgänge der kartesischen x- und y-Richtungen, wie sie an einer kartesischen Maschine (Kreuztisch) mit den dem Hexaglide-Modell entsprechenden Steifigkeiten an den Antrieben gemessen würden. Offenbar ist die x-Achse wesentlich steifer, als die y-Achse.


### 7.3 Strukturschwingungen

Der Begriff *hochdynamisch* wird im Zusammenhang mit Werkzeugmaschinen häufig verwendet. Man tut sich hingen schwerer damit, eine quantitative Definition davon aufzuspüren. In den meisten Fällen scheint jedenfalls die Forderung nach Beschleunigungen von deutlich über 10 m/s² mit dem Begriff verbunden.

Die Ausnutzung der Antriebskraft, also die hohe maximale Beschleunigung wurde oft als Vorteil parallelkinematischer Strukturen genannt. Die bescheidene Steifigkeit der y Bewegungsrichtung beim Hexaglide läuft der Idee einer hochdynamischen Werkzeugmaschine indes zuwider. Soll die Beschleunigungsfähigkeit im relativ kleinen Arbeitsraum des Hexaglide zum Tragen kommen, ist damit auch ein hoher Ruckwert verlangt. Als Testwerte für eine hochdynamische Bewegung wurden in Ermangelung einer genaueren Definition des Begriffs eine Positionierbewegung über eine Distanz von 0.1 m mit maximaler Geschwindigkeit 0.4 m/s, Beschleunigung 20 m/s², Ruck 1000 m/s³ gefahren. Abb. (a,b) zeigt die Ergebnisse der Kreuzgittermessung. Die Messung wurde mit P/PI Regelung durchgeführt, da CTC zur Schwingungsreduktion nichts beiträgt. Die Sollbeschleunigung wird bei dieser Ruckgrenze gerade noch erreicht. Die Messsignale des Kreuzgitters fallen während der Positionierung zeitweise aus, da dessen Winkeltoleranz überschritten wird, weshalb von der Bewegung in Abb. (a) nur ca. 0.06 m sichtbar sind. Das Detail in (b) zeigt eine schlecht gedämpfte Schwingung mit einer anfänglichen Amplitude von ca. 4 mm (die Darstellung ist nicht überhöht).

---

1Die genaue Übertragungsfunktion der Symmetrierfilter, die hier als \( PT_2 \) angenommen wurden, wird vom Hersteller nicht preisgegeben
KAPITEL 7. HEXAGLIDE

Abbildung 7.6: Positionierbewegung in y-Richtung. (a,b) mit hohem Ruck (1000 m/s³), (c,d) mit reduziertem Ruck (50 m/s³)

Die einfachste Art, das Überschwingen zu begrenzen besteht darin, auf einen Teil der Dynamik zu verzichten. Abb. 7.6 (c,d) zeigt die selbe Messung mit einer Begrenzung des Rucks auf 50 m/s³. Mit der dadurch erreichten Reduktion des Überschwingers auf rund 30 µm ist allerdings bei der vorliegenden Positionierdistanz eine Verringerung der erreichten Beschleunigung um etwa 80% auf maximal 4 m/s² verbunden. Die Abbildungen wurden mit dem Proportionalbeiwert $K_p = 50'000$ Ns/m durchgeführt. Mit der dämpfungsoptimalen Einstellung nach Zirn (s. Abschnitt 7.1) löst die hochdynamische Bewegung die Konturüberwachung der Achse aus, die eine maximale antriebsseitige Abweichung von 1 mm zulässt, die Bewegung mit reduzierter Dynamik führt auf eine maximale Abweichung der Kreuzgittermessung von rund 250 µm.

7.3.1 Geschwindigkeitssollwertfilter

Die Dämpfung der Polstellen, die auf Grund der etwas hohen Reglerverstärkungen schlecht ist, kann durch als Bandsperren ausgelegte Geschwindigkeitssollwertfilter gemäss Abschnitt 3.3.3 immerhin deutlich verbessert werden. Die Ergebnisse sind in Abb. 7.7 dargestellt. Zur Ausle-
7.3. STRUKTURSCHWINGUNGEN

Abbildung 7.7: Positionierbewegung in y-Richtung, mit Geschwindigkeitssollwertfiltern

gung der Filter werden die Polstellen des geschlossenen Geschwindigkeitsregelkreises benötigt, die der lokalen Linearisierung, d.h. dem elastischen Modell gemäß Abschnitt 2.9.2 entnommen werden können. Die maximale, durch den Verzögerungsvorgang induzierte Überschwingweite bleibt unbeeinflusst, s. Abb.7.7(b).
Um den Lageabhängigkeiten gerecht zu werden, müssten die Filter überdies auch lageabhängig angepasst werden, wozu zunächst die Polstellen des Geschwindigkeitsregelkreises an jeder Stelle des 5-dimensionalen Arbeitsraums bestimmt werden müssten. Dazu müsste man sich entweder auf die Richtigkeit des Modells an jeder Arbeitsraumposition verlassen, oder dieses an jeder Stelle separat validieren. Dieser Aufwand ist nicht durchführbar. Überlegungen zur lageabhängigen Anpassung von Filterparametern - ohne Umsetzung oder Test an einem Prüfstand - finden sich in [27].
Kapitel 8

Schlussfolgerungen

8.1 Zusammenfassung der Ergebnisse

In Kapitel 2 wurden die Bewegungsgleichungen für nichtlineare Starrkörpermodelle, die auch geometrische Bindungen aufweisen können, nach Euler-Lagrange in einer Form hingeschrieben, die sie einer numerischen Behandlung auf Grund einer standardisierten kinematischen Beschreibung einer Maschine zugänglich macht. Es wurde ein als Matlab-Programm implementierter Ansatz zur Erstellung nichtlinearer Starrkörpermodelle vorgeschlagen, der ausgehend von dieser Systembeschreibung ein System von Differentialgleichungen erstellt, die die Bewegung des modellierten Systems beschreiben. Die Art der Modellierung und der Systembeschreibung entspricht dabei inhaltlich derjenigen in [65].


Im Kapitel 3 wurden nebst der Diskussion bekannter Inbetriebnahmemethoden auch Regeln zur Inbetriebnahme der Symmetrierfilter bei der Verwendung einer Kraftvorsteuerung, sowie Regeln zur Reduktion des Ruckgrenzwertes bei Verwendung einer solchen Vorsteuerung hergeleitet.

8.2. DISKUSSION UND AUSBLICK

Es wurde gezeigt, wie die Polvorgabe mit einer auf die Verbesserung des Folgeverhaltens am TCP ausgelegten Vorsteuerung erweitert werden kann, und die am TCP maximale zu verlängende Dynamik in Abhängigkeit der dominanten Eigenfrequenz wurde hergeleitet. Es wurde gezeigt, wie das Loop-Shaping-$H_{\infty}$ Regelschema unter Verwendung der Inbetriebnahmeregeln für eine Kaskadenregelung in eine solche Regelung eingliedern lässt.


In Kapitel 6 wurde eine komplexe, nichtlineare Werkzeugmaschine betrachtet und die CTC als auf einem nichtlinearen Modell der Maschine basierendes Reglerkonzept umgesetzt. Es wurde festgestellt, dass die CTC in der Lage ist, das Verhalten der Antriebe im Vergleich zu einer klassischen P/PI-Regelung deutlich zu verbessern. Es ergibt sich hingegen keinerlei Verbesserung des Verhaltens am TCP, was auf die zu geringe Steifigkeit der Konstruktion zurückzuführen wird. Eine gewisse Verbesserung des Verhaltens am Antrieb liess sich nur mit der Verwendung speziell entworferener Geschwindigkeitssollwertfilter erreichen.

In Kapitel 7 wurde eine komplexe, nichtlineare Werkzeugmaschine betrachtet und die CTC als auf einem nichtlinearen Modell der Maschine basierendes Reglerkonzept umgesetzt. Es wurde festgestellt, dass die CTC in der Lage ist, das Verhalten der Antriebe im Vergleich zu einer klassischen P/PI-Regelung deutlich zu verbessern. Es ergibt sich hingegen keinerlei Verbesserung des Verhaltens am TCP, was auf die zu geringe Steifigkeit der Konstruktion zurückzuführen wird. Eine gewisse Verbesserung des Verhaltens am Antrieb liess sich nur mit der Verwendung speziell entworferener Geschwindigkeitssollwertfilter erreichen.

8.2 Diskussion und Ausblick


Es wurde an Hand eines Systems mit einer dominanten Nachgiebigkeit gezeigt, dass die Wahl der Pollagen nach [69] die robusteste ist. Derartige Überlegungen für ein allgemeines System anzustellen dürfte schwieriger sein, in den Experimenten hat sich aber gezeigt, dass diese Wahl der Pollagen auch für den Dreiachs-Prüfstand die einzige umsetzbare war: Jede Wahl der Pollagen, die eine Erhöhung der dominanten Eigenfrequenz durch die Regelung ausgelegt war, führte in allen Experimenten zu Instabilität des geschlossenen Regelkreises, typischerweise be-
reits in einer hinreichend realitätsnahen Simulation. Die Antwort auf die eingangs in Abschnitt 1.1 gestellte Frage, ob sich konstruktive Mängel durch steuerungsseitige Kompensation wettmachen liessen ist in diesem Fall für die Regelung für den Moment negativ zu beantworten: die dominante Eigenfrequenz bleibt auch bei Verwendung von Zustandsreglern derzeit limitierend für die erreichbare Dynamik und Regelgüte und lässt sich nicht in robuster Weise erhöhen.


Schliesslich konnte durch die $H\infty$ -Regelung deutliche Verbesserungen im Verhalten des Zwei massenschwingerprüfstandes sowie des Dreiachsprüfstandes erreichen, und dies als einzige der betrachtete modellbasierten Methoden der Regelung auch ohne die Verwendung zusätzlicher Messsysteme. Diese Methode hat gegenüber einer Polvorgabe allerdings den Nachteil, dass die Dämpfung einmal angeregter Strukturschwingungen bislang nicht direkt spezifiziert werden kann.
Anhang A

Erläuterungen

A.1 Symbolverzeichnis

<table>
<thead>
<tr>
<th>Lateinische Symbole</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a$</td>
<td>Vektor Winkelkoordinaten (Drehungen um die drei Koordinatenachsen)</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>Beschleunigung</td>
</tr>
<tr>
<td>$A$</td>
<td>Zustandsmatrix eines zeitkontinuierlichen linearen Systems</td>
</tr>
<tr>
<td>$\alpha_i$</td>
<td>Rotationslage eines Körpers mit Index $i$</td>
</tr>
<tr>
<td>$B$</td>
<td>Steuermatrix eines zeitkontinuierlichen linearen Systems</td>
</tr>
<tr>
<td>$C$</td>
<td>Ausgangsmatrix eines linearen dynamischen Systems.</td>
</tr>
<tr>
<td>$D$</td>
<td>Durchgriffsmatrix eines zeitkontinuierlichen linearen Systems oder Dämpfung der angenommenen Feder</td>
</tr>
<tr>
<td>$D_b$</td>
<td>Dämpfungsmatrix einer Starrkörperbindung mit Index $b$</td>
</tr>
<tr>
<td>$d_b$</td>
<td>translatorische und rotatorische Auslenkung einer Feder in Mehrkörpermodell</td>
</tr>
<tr>
<td>diag (...)</td>
<td>Diagonal- oder Blockdiagonalmatrix</td>
</tr>
<tr>
<td>$dt_X$</td>
<td>Abtastzeit des Lagereglers</td>
</tr>
<tr>
<td>$dt_V$</td>
<td>Abtastzeit des Geschwindigkeitsreglers</td>
</tr>
<tr>
<td>$e_x, e_y, e_z$</td>
<td>Einheitsvektoren entlang den Koordinatenachsen</td>
</tr>
<tr>
<td>$e$</td>
<td>Regelabweichung</td>
</tr>
<tr>
<td>$\mathcal{E}_{\text{trans}}$</td>
<td>Translatorische Energie eines Systems von Starrkörpern</td>
</tr>
<tr>
<td>$\mathcal{E}_{\text{rot}}$</td>
<td>Translatorische Energie eines Systems von Starrkörpern</td>
</tr>
<tr>
<td>$f_N$</td>
<td>Nullstellenfrequenz mit Dämpfung</td>
</tr>
<tr>
<td>$f_P$</td>
<td>Eigenfrequenz mit Dämpfung $f_P = \omega_0 \sqrt{1 - \xi^2}$</td>
</tr>
<tr>
<td>$G$</td>
<td>Regelstrecke</td>
</tr>
<tr>
<td>$G_e$</td>
<td>erweiterte Regelstrecke</td>
</tr>
<tr>
<td>$G_s$</td>
<td>skalierte Regelstrecke</td>
</tr>
<tr>
<td>$i$</td>
<td>Imaginäre Einheit</td>
</tr>
<tr>
<td>$K$</td>
<td>Federkonstante der angenommenen Feder oder</td>
</tr>
</tbody>
</table>
Verstärkungsmatrix eines Reglers
$K_e$ euklidisches Koordinatensystem
$K_0$ inertiales euklidisches Koordinatensystem
$K_b$ Steifigkeitsmatrix einer Starrkörperbindung mit Index $b$
$K_p$ Proportionalitätskonstante des Geschwindigkeitsregelkreises
$K_v$ Proportionalitätskonstante des Lageregelkreises.
$l$ Vektor in Richtung eines Verbindungsstabs beim Hexaglide
$L$ Verstärkungsmatrix eines Zustandsbeobachters
$M$ rechter Faktor einer koprime Faktorisierung
$m_i$ Masse eines Körpers mit Index $i$
$\text{Mat}(n, m)$ Menge aller rellen $n \times m$ Matrizen
$N_i$ nichtlineare Bezugsmatrix
$N$ linker Faktor einer koprime Faktorisierung
$p_r$ Reelle Polstelle des geschlossenen Geschwindigkeitsregelkreises
$p_c$ Komplexe Polstelle des geschlossenen Geschwindigkeitsregelkreises mit $T(p_c) > 0$
$q$ Minimalkoordinatensystem
$R$ Rotationsmatrix
$r$ Sollgrösse eines Regelsystems
$s$ Frequenzvariable in Übertragungsfunktionen
$S$ Sensitivität einer Übertragungsmatrix/Übertragungsfunktion
$t$ Zeit
$T_i$ Trägheitstensor eines Starrkörpers mit Index $i$ in $K_0$
$T_n$ Nachstellzeit des Integralanteils des Geschwindigkeitsreglers
$T_r$ Referenzmodell
$u$ Stellgrösse eines Systems
$U_K$ Potentielle Energie eines Systems von Starrkörpern
$u_s$ Soll-Stellgrösse, Ausgang des Geschwindigkeitsreglers
$w$ Vektor der Winkelgeschwindigkeit eines Körpers in $K_0$
$W$ Gewichtungsmatrix
$W_m$ Auswahlmatrix für gemessene Ausgänge einer Regelstrecke
$W_t$ Auswahlmatrix für Performance-Ausgänge einer Regelstrecke
$x$ Zustandsvektor eines linearen Systems oder euklidische Koordinaten
$x_i$ Ort des Körperschwerpunkts eines Körpers mit Index $i$ in $K_0$
$\hat{x}$ Zustandsschätzung eines Zustandsbeobachters
$y$ Ausgangsgrösse eines Systems
$y_m$ gemessene Ausgangsgrösse eines Systems
$y_t$ Ausgangsgrösse eines dynamischen Systems zur Beurteilung der Güte

**Griechische Symbole**

$\alpha$ Antriebsseitig gemessene Lagekoordinate in der allgemeinen Zustandsraumdarstellung
$\Gamma$ Steuermatrix eines zeitdiskreten linearen Systems oder Christoffelsymbole
A.2. GLOSSAR

\[\Delta\] Durchgriffsmatrix eines zeitdiskreten linearen Systems
\[\epsilon\] Auslenkung der angenommenen Feder
\[\kappa\] Auf Einheitsmasse bezogene Proportionalverstärkung des Geschwindigkeitsreglers
\[\xi\] Relative Dämpfung
\[\Theta\] Gesamtmasse oder -Trägheit
\[i\Theta_i\] Trägheitstensor eines Starrkörpers mit Index \(i\) in \(\mathcal{K}_i\)
\[\lambda\] Verhältnis zwischen Lastmasse und Gesamtmasse
\[\rho\] Antriebskoordinate beim Hexaglide
\[\sigma\] Singulärwert einer Matrix
\[\phi_1\] Gemessene Winkellage des Antriebs
\[\phi_2\] Winkellage der Last
\[\Phi\] Zustandsmatrix eines zeitdiskreten linearen Systems
\[i\nu\] Vektor von Körperschwerpunkt zu Bindungsstelle in \(\mathcal{K}_i\)
\[\omega_0\] Eigenfrequenz ungeregelt, ohne Dämpfung
\[\omega_N\] Tilgerfrequenz ungeregelt, ohne Dämpfung
\[\Omega\] Jacobimatrix der Rotation
\[i\omega\] Vektor der Winkelgeschwindigkeit eines Körpers in \(\mathcal{K}_i\)

### Numerische Symbole

1\(_n\) Einheitsmatrix der Dimension \(n\)
0\(_n\) Nullmatrix der Dimension \(n\)

### Modifikatoren

\[\bar{z}\] komplex konjugierte der komplexen Zahl \(z\)
\[\mathcal{R}(z)\] Realteil der komplexen Zahl \(z\)
\[\mathcal{I}(z)\] Imaginärteil der komplexen Zahl \(z\)

### A.2 Glossar

**aggressive Polvorgabe** Vorgabe von Pollagen, die schneller sind, als diejenigen nach \[69\].

**aktive Bedämpfung** Bedämpfung von Eigenschwingungen durch Verschieben der Pollagen des geschlossenen Regelkreises mittels eines geeigneten Regelsystems.

**autonomes dynamisches System** Dynamisches System ohne äussere Eingänge.

**Bandbreite** Die kleinste Frequenz \(\omega\), sodass \(|S(\omega)| \geq -3\) dB ist. Dabei bezeichnet \(S\) die Sensitivität des Regelkreises. \[56\]
biquadratisches Filter Filter der Form
\[ F = \frac{\omega_n^2}{\omega_d^2} \times \frac{s^2 + 2\xi_n\omega_ns + \omega_n^2}{s^2 + 2\xi_d\omega_ds + \omega_d^2} \] (A.1)

Cauer-Filter, auch als elliptische Filter bezeichnet. Frequenzfilter, die auf einen sehr stei-
len Übergang des Amplitudengangs vom Durchlassbereich in den Sperrbereich ausgelegt
sind, siehe [33].

Compile-Zyklus C++ Programm, das in die Sinumerik 840D-Steuerung von Siemens
eingebracht werden kann, s. [46].

CTC Akronym: Computed Torque Control, Regelschema mit Kraftvorsteuerung für star-
re MIMO-Systeme. Einige Autoren bezeichnen auch die Kraftvorsteuerung alleine als
CTC.

Eigenform Eigenvektor der Zustandsmatrix zu einem Eigenwert

Eigenfrequenz Frequenz, bei der ein lineares physikalisches System ohne dauernde äus-
sere Anregung Schwingungen ausführen kann. In Zustandsraumdarstellung ist die Fre-
quenz Imaginärteil eines Eigenwertes der Zustandsmatrix, in der Darstellung als Übertra-
gungsfunktion eine Polstelle derselben.

externer Eingang Eingangsgröße eines Regelsystems, beispielsweise Sollwertvorgabe
oder Störkraft

Frequenzgangmessung Messung der Systemreaktion auf eine Anregung, deren Fourier-
erlegung Komponenten des gesamten interessierenden Frequenzbereichs enthält. Man
erhält daraus gemäss Anhang [A.3] die vollständige Information über das dynamische Ver-
halten eines linearen Systems.

holonome Bindung Zwangsbedingung an ein System, die nicht explizit zeitabhängig
ist [22].

Hurwitz Kriterium Eine Methode zur Entscheidung, ob alle Nullstellen eines gegeben
Polynom in der rechten Halbebene liegen, ohne dass die Nullstellen tatsächlich berechnet
werden müssen. Damit kann die Stabilität einer mit symbolischen Koeffizienten gegebe-
enen Übertragungsfunktion überprüft werden.

invertierendes Regelschema Regelschema, das die Regelstrecke invertiert: Zu gegebe-
inem Systemausgang wird auf Grund eines Modells eine Eingangsgröße bestimmt, die
am Modell den gewünschten Systemausgang erzeugt. Nur im strengen Sinne möglich,
falls die resultierende Vorsteuergröße nicht divergiert, s. minimalphasig.

komplementäre Sensitivität Übertragungsfunktion eines Regelkreises vom Sollwertein-
gang zum Istwertausgang
**koprime Faktorisierung** Zerlegung einer Übertragungsfunktion in zwei *stabile, koprime* Übertragungsfunktionen

**koprime Übertragungsfunktionen** Übertragungsfunktionen ohne gemeinsame Null- und Polstellen

**Kraftrippel** Positionsabhängige Unterschiede in der tatsächlichen Motorkonstanten, bedingt durch die Anordnung der magnetischen Pole eines Elektromotors, insbesondere bei Lineardirektantrieben.

**Lie Ableitung** Die Lie-Ableitung einer Funktion $h : \mathbb{R}^n \rightarrow \mathbb{R}^1$ entlang eines Vektorfelds $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ ist definiert durch

\[
L_f h(x) := h'(x) f(x) \quad (A.2)
\]

\[
L^k_f h(x) := L_f (L^k_f h(x)) \quad (A.3)
\]

**Lineares Modell** Modell der Form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du
\]

Die Matrizen $A, B, C, D$ heissen Zustands-, Steuer-, Ausgangs- und Durchgriffs-matrix, die Zusammenfassung der Matrizen in der Form

\[
G = \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\]

heisst Systemmatrix

**multiplikative Unsicherheit** Form der Modellierung einer Modellunsicherheit, [56]

**MIMO-System** System mit mehreren Ein- und Ausgängen. Der Begriff ist die Abkürzung von Multiple Inputs, Multiple Outputs

**minimale Zustandsraumdarstellung** Zustandsraumdarstellung eines Systems, aus der alle nicht-beobachtbaren oder nicht-steuerbaren Zustände entfernt sind.


**Nullstelle eines Systems** Nullstelle der Übertragungsfunktion eines Linearen Systems. Für die Berechnungen von Nullstellen direkt aus der Zustandsraumdarstellung s. [56]

**PT1-Glied** Übertragungsfunktion der Form

\[
\frac{y}{u} = \frac{\omega}{s + \omega} \quad (A.4)
\]
**Performancegrösse** Ausgangsgrösse, an der das Verhalten eines Regelsystems zu messen ist. Beispielsweise Regeldifferenz

**Polstelle** Eigenwert der Zustandsmatrix $A$ eines linearen dynamischen Systems, gleichbedeutend mit Nullstelle des Nenners der Übertragungsfunktion des linearen dynamischen Systems

**Polvorgabe** Verfahren der Folgeregelung, bei dem die Pollagen des geregelten Systems explizit vorgegeben werden, s. Anhang A.3

**Pseudoinverse** einer Matrix $A$ ist die Matrix $A^+$, die das Lineare Gleichungssystem $y = Ax$ bei gegebenem $y$ im Sinne einer kleinsten quadratischen Fehlers approximiert, in dem Sinne, dass

$$\|y - A^+ y\|_2 = \min_x \|y - Ax\|_2$$

(A.5)

Die Pseudoinverse kann aus der Singulärwertzerlegung von $A$ berechnet werden, und ist auch für singuläre und nicht-quadratische Matrizen definiert. Weiter gilt:

$$\sigma(A) = 1/\sigma(A^+)$$

(A.6)

weshalb die Pseudoinverse bei Stabilitätsbetrachtungen nach dem small-gain-theorem anstelle der Inversen herangezogen werden kann.

**Pseudozufälliges binäres Rauschsignal (PRBS)** Spezifische Art der Erzeugung pseudzufälliger Zahlenfolgen, auf Grund der vergleichsweise einfachen und schnellen Berechnung im Zusammenhang mit schnellen Echtzeitsystemen verbreitet.

**Regeldifferenz** Abweichung zwischen Soll- und Istwert eines Regelkreises.

**Robustheit** Eigenschaft, eines Regelsystems, seine Eigenschaften auch bei Abweichung der Realität von dem zu Grunde liegenden Modell beizubehalten, s. 4.1.2

**Ruck** Dritte zeitliche Ableitung der Position

**Referenzmodell** Modell, das das gewünschte, typischerweise idealisierte Verhalten eines geregelten Systems beschreibt. Ein Referenzmodell beschreibt demnach nicht ein reales physikalisches System sondern lediglich ein erwünschtes Systemverhalten.

**relativer Grad** Differenz von Grad des Zähler- und Nennerpolynoms einer Übertragungsfunktion

**Sensitivität** Übertragungsfunktion eines Regelkreises vom Sollwerteingang zum Regelfehler

**Schrödersonsches Dämpfungs optimum** Polstellen liegen bei $120^\circ$ in der komplexen Ebene, [51].
A.3. GRUNDBEGRIFFE DER REGELUNGSTECHNIK

Der folgende Abschnitt definiert in Kurzform einige Begriffe, die für die Regelungstechnik von Bedeutung sind. Die Erklärungen fallen notgedrungen knapp aus. Für eingehendere Beschreibungen ist auf die Lehrbuchliteratur verwiesen.

**Singularwert** Diagonalwerte von $\Lambda$ in der Singularwertzerlegung einer Matrix $M = U \Lambda V^T$. [56]

**SISO-System** System mit einem Ein- und einem Ausgang, d.h. die Steuermatrix $B$ ist ein Spaltenvektor, die Ausgangsmatrix $C$ ein Zeilenvektor und die Durchgriffsmatrix $D$ ist ein Skalar. Der Begriff ist die Abkürzung von Single Input, Single Output

**skleronome Bindung** Zwangsbedingung an ein System, die in Form einer Gleichung $f(x, t) = 0$ für die das System beschreibenden Koordinaten $x$ geschrieben werden kann [22].

**Sliding mode Regler** Im Zustandsraum des regelnden Systems wird ein Unterraum bestimmt, auf dem das System asymptotisch stabil ist. Das Regelgesetz hat dann die Aufgabe, erstens das System in einen Zustand dieses Unterraums zu bringen und zweitens auf diesem Unterraum zu halten, s. [38].

**small gain theorem** s. 4.1.2

**stabile Übertragungsfunktion** Übertragungsfunktion, die nur Polstellen in der linken komplexen Halbeebene aufweist

**Störgrößensbeobachter** Als Software implementiertes dynamisches System, das auf Grund des Vergleichs von Modellvoraussage und Messung in Echtzeit die auf das modellierte System wirkende Störgröße schätzt.

**Systemmatrix** s. Lineares Modell

**TCP** Tool Center Point, Werkzeugmittelpunkt. Hier für den Berührpunkt von Werkzeug und Werkstück verwendet.

**Zuck** Vierte zeitliche Ableitung der Position


**Zustandssollwert** Sollvorgabe für einen Systemzustand

**zero-order-hold** Interpolation nullter Ordnung: Der Funktionswert wird zwischen zwei Interpolationspunkten konstant auf dem Wert des ersten (zeitlich früheren) Interpolationspunktes gehalten.
Zeitkontinuierliche Darstellung

**Systemmatrix** Es werden _lineare Modelle_ der Form

\[
\begin{align*}
\dot{x} &= A x + B u \\
y &= C x + D u
\end{align*}
\]  

(A.7) (A.8)

verwendet. Die Vektoren \( x, y \) heissen Zustands- und Ausgangsvektor, die Matrizen \( A, B, C, D \) Zustands-, Steuer-, Ausgangs- und Durchgriffsmatrix. Die Zusammenfassung der vier Matrizen in eine Matrix \( S \)

\[
S := \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\]  

(A.9)

heisst _Systemmatrix_. Das System heisst _asymptotisch stabil_, falls alle Eigenwerte der Zustandsmatrix in der linken offenen Halbebene liegen.

**Lösung der Bewegungsgleichung** Die Gleichung wird für gegebene Anfangsbedingung \( x(0) \) und Eingangsgrösse \( u(\cdot) \) gelöst durch

\[
\begin{align*}
x(t) &= \exp(A t) \left[ x(0) + \int_0^t \exp(-A \tau) B u(\tau) d\tau \right]
\end{align*}
\]  

(A.10)

**Koordinatentransformationen** Jede invertierbare Matrix \( T \) vermittelt eine lineare Koordinatentransformation auf die Darstellung

\[
\begin{align*}
x &\mapsto z := T x \\
\dot{z} &= T A T^{-1} z + T B u \\
y &= C T^{-1} z + D u
\end{align*}
\]  

(A.11) (A.12) (A.13)

**Beobachtbarkeit** Die durch

\[
Y_O := \int_0^\infty \exp(A t)^T C^T C \exp(A t) \, dt
\]  

(A.14) (A.15)

definierte, positiv semidefinite Matrix \( Y_O \) heisst _observability Gramian_ des Systems. Offenbar gilt für den aus der Zeitentwicklung gemäss \( \text{A.10} \) resultierende Ausgang bei gegebenem Anfangszustand \( x(0) \) und konstant verschwindendem Eingangsvektor \( u \equiv 0 \)
\[ \|y\|_2^2 := \int_0^\infty y^T y \, dt = x(0)^T Y_0 x(0) \quad (A.16) \]

Ein Zustand \( x \) heisst beobachtbar, falls \( x^T Y_0 x \neq 0 \), also der zugehörige Ausgangsvektor nicht identisch in \( t \) verschwindet. Falls \( Y_0 \) positiv definit ist und damit alle Zustände eines Systems beobachtbar sind, so heisst das System vollständig beobachtbar.

**Beobachtbare Zustandsraumdarstellung**  
Die beobachtbaren Zustände bilden einen unter \( A \) invarian ten Unterraum des Zustandsraumes, und jedes System lässt sich durch eine Transformation auf die Form

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
A_{11} & 0 & B_1 \\
A_{21} & A_{22} & B_2 \\
C_1 & 0 & D
\end{bmatrix}
\quad (A.17)
\]

bringen, sodass das Teilsystem

\[
G_o := \begin{bmatrix}
A_{11} & B_1 \\
C_1 & D
\end{bmatrix}
\quad (A.18)
\]

vollständig beobachtbar ist. Die in der beobachtbaren Form vernachlässigten Zustände haben keinen Einfluss auf die Systemausgänge.

**Steuerbarkeit**  
Die durch

\[
X_c := \int_0^\infty \exp(A \, t)^T \, B \, B^T \, \exp(A^T \, t) \, dt
\quad (A.19)
\]

\[
X_c := \int_0^\infty \exp(A \, t)^T \, B \, B^T \, \exp(A^T \, t) \, dt
\quad (A.20)
\]

definierte, positiv semidefinite Matrix \( X_c \) heisst *controllability Gramian* des Systems. Sie definiert die „Energie“, die mindestens aufzuwenden ist, um ein System in einen vorgegebenen Zustand mit Zustandsvektor \( x_* \) zu bringen in dem Sinne, dass

\[
\|u_{\text{opt}}\|_2 = x_*^T X_c^{-1} x_* \quad (A.21)
\]

ANHANG A. ERLAEUTERUNGEN

Steuerbare Zustandsraumdarstellung  Die steuerbaren Zustände bilden einen unter $A$ invarianten Unterraum des Zustandsraumes, und jedes System lässt sich durch eine Transformation auf die Form

$$
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
= 
\begin{bmatrix}
A_{11} & 0 & B_1 \\
A_{21} & A_{22} & 0 \\
C_1 & C_2 & D
\end{bmatrix}
$$

(A.22)

transformieren, sodass das Teilsystem

$$
G_c := \begin{bmatrix}
A_{11} & B_1 \\
C_1 & D
\end{bmatrix}
$$

(A.23)

erschließt. Die in der steuerbaren Form vernachlässigten Zustände sind durch die Stellgrösseneingänge nicht beeinflussbar.

balancierte Zustandsraumdarstellung  Zustandsraumdarstellung, in der controllability und observability gramian beide identisch und diagonal sind, [40]. Die Darstellung ist numerisch meist gut konditioniert, [13].

Polstellen  Eine Polstelle ist ein $p \in \mathbb{C}$, das für ein geeignetes $x_p \in \mathbb{C}^n$ der Eigenwertgleichung

$$(p 1_n - A) x_p = 0$$

(A.24)

Nullstellen  Eine Nullstelle ist ein $z \in \mathbb{C}$, der für geeignete $x_z \in \mathbb{C}^n$, $u_z \in \mathbb{C}^m$ der verallgemeinerten Eigenwertgleichung

$$
\left( z \begin{bmatrix} 1_n & 0 \\
0 & 0
\end{bmatrix} - \begin{bmatrix} A & B \\
C & D
\end{bmatrix} \right) \begin{bmatrix} x_z \\
u_z
\end{bmatrix} = 0
$$

(A.25)
genügt. $z$ und $x_z$ sind Polstelle und Eigenform des durch $A, B, C, D$ beschriebenen Systems, dem eine zusätzliche ideale Bindung an der durch $C$ definierten Messstelle und Messrichtung hinzugefügt wurde. $u_z$ ist die in dieser Bindung auftretende Lagerkraft [48]. Wird ein System mit einer proportionalen Ausgangsrückführung mit Verstärkung $k$ geregelt, so nähern sich die Polstellen des geregelten Systems dessen Nullstellen, für $k \to \infty$ [56]. Durch Ausschreiben der Gleichung (A.25) in der Form

\begin{align*}
\left( z \begin{bmatrix} 1_n & 0 \\
0 & 0
\end{bmatrix} - \begin{bmatrix} A & B \\
C & D
\end{bmatrix} \right) \begin{bmatrix} x_z \\
u_z
\end{bmatrix} &= 0
\end{align*}

(A.25)
A.3. GRUNDBEGRIFFE DER REGELUNGSTECHNIK

\[ A \dot{x}_z + B u_z = z x_z \]  \hspace{1cm} (A.26)
\[ C \dot{x}_z + D u_z = 0 \]  \hspace{1cm} (A.27)

wird klar, dass im Zustand \( x_z \) bei Eingangssgröße \( u_z \) nichts gemessen wird. Nullstellen sind auch Nullstellen der Übertragungsfunktion \[ 56 \].

**Steuerbare Standardform**  Für ein vollständig steuerbares SISO-System ist die Matrix

\[
T := \begin{bmatrix}
B & A B & A^2 B & \ldots & A^{n-1} B \\
A & B & A^2 & \ldots & A^{n-1} \\
C & D & C & \ldots & D \\
D & C & D & \ldots & C \\
\end{bmatrix}
\]  \hspace{1cm} (A.28)

invertierbar \[ 19 \] und vermittelt eine Koordinatentransformation auf die steuerbare Standardform

\[
\begin{bmatrix}
A \\
C \\
D \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
-a_0 & -a_1 & -a_2 & -a_3 & \ldots & -a_{n-1} \\
c_1 & c_2 & c_3 & c_4 & \ldots & c_n \\
\end{bmatrix}
\]  \hspace{1cm} (A.29)

**Übertragungsfunktion**  Der Übergang von einer Zustandsraumdarstellung zu einer Übertragungsfunktion bedeutet im Wesentlichen den Übergang von einer Differentialgleichung erster Ordnung mit \( n \) Variablen zu einer Differentialgleichung \( n \)-ter Ordnung in einer Variablen: Die durch die Systemmatrix (A.29) definierte Differentialgleichung erster Ordnung in \( n \) Variablen lässt sich offenbar als Differentialgleichung \( n \)-ter Ordnung mit einer einzigen Zustandsvariable \( z \) ausdrücken

\[
z^{(n)} + \sum_{j=0}^{n-1} a_j z^{(j)} = u \]  \hspace{1cm} (A.30)
\[ y = \sum_{j=1}^{n} c_j z^{(j-1)} \]  \hspace{1cm} (A.31)

wobei \( z^{(n)} \) die \( n \)-te Ableitung von \( z \) nach der Zeit bedeutet.

Die Funktion der komplexen Variablen \( s \)

\[
T_{yu}(s) := \frac{c_n s^{n-1} + \ldots + c_2 s + c_1}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}
\]  \hspace{1cm} (A.32)

Heisst dann die Übertragungsfunktion des Systems. Die Bedeutung der Übertragungsfunktion ist die folgende: Falls
\[ u = \exp(i \omega t) \]  \hspace{1cm} (A.33)
\[ x(0) = 0 \]  \hspace{1cm} (A.34)

so ist
\[ y(t) = \exp(i \omega t) T_{yu}(i \omega) \]  \hspace{1cm} (A.35)

die *partikuläre Lösung* der Bewegungsdifferentialgleichung, die bekanntlich den durch den Systemeingang \( u \) erzwungenen Systemausgang \( y_u \) beschreibt. Da jede Eingangsgröße \( u \) eindeutig in Fourier-Komponenten der Form \( \exp(i \omega_j t) \) zerlegt werden kann, ist durch die Übertragungsfunktion das Übertragungsverhalten von Systemein- zu Ausgang eindeutig festgelegt. Aus der Übertragungsfunktion lässt sich offenbar ohne weiteres die Zustandsraumdarstellung in Steuerbarer Standardform gemäß (A.29) hinschreiben. Die beiden Modelldarstellungen sind folglich äquivalent. Durch Messung der Systemreaktion auf alle Anregungen der Form (A.33) lässt sich in der Regel in logarithmischem Massstab nach Amplitude und Phase getrennt aufgezeichnet.

**Übertragungsmatrix**  Für MIMO-Systeme wird für jedes Ein- Ausgangspaar eine Übertragungsfunktion bestimmt. Die Zusammenfassung dieser Übertragungsfunktionen in Matrixform, wobei der Eintrag \((i, j)\) der Matrix die Übertragungsfunktion von Eingang \( j \) nach Ausgang \( i \) bezeichnet, heisst auch Übertragungsmatrix des Systems.

**Polvorgabe**  Wird dem Antrieb eine dem Systemzustand \( x \) oder dem gemessenen Systemausgang \( C x \) proportionale Stellgröße \( u := -K_x x \) bzw. \( u := -K_y C x \) zugeführt, so ergibt sich die Zustandsmatrix des geschlossenen Regelkreises zu
\[ A_{cl} = A - B K_x \]  \hspace{1cm} bzw. \hspace{1cm} \[ A_{cl} = A - B K_y C \]  \hspace{1cm} (A.36)

Die Bestimmung einer Rückführungs matrix \( K_x \) bzw. \( K_y \), die vorbestimmte Eigenwerte von \( A_{cl} \) erzeugt, heisst Polvorgabe. Die Pole von \( A_{cl} \) können nur mit einer vollständigen Rückführung des Systemzustandes \( x \) und nur für ein vollständig steuerbares System beliebig vorgegeben werden.

**Minimalphasige Approximationen**  Soll eine Regelstrecke zur Bestimmung einer Vorsteuerung invertiert werden, so resultiert für nicht minimalphasige Systeme eine divergenten Vorsteuerung. Jede Übertragungsfunktion mit instablen Nullstellen lässt sich jedoch als Produkt einer minimalphasigen Übertragungsfunktion und eines *Allpassfilters* schreiben \(^{[36]}\). Zur Erzeugung der Vorsteuerung behilft man sich dann mit der Invertierung der Approximation, die in einer stabilen Vorsteuerung resultiert. Die Abb. \([A.1]\) zeigt dies am Beispiel der durch den
Integrator $1/s$ dividierten Übertragungsfunktion (2.73). Abb. A.1(a) zeigt die Frequenzgänge der Übertragungsfunktion und ihrer minimalphasigen Approximation, die sich nur in der Phase unterscheiden, und Abb. A.1(b) zeigt die Sprungantworten der beiden Übertragungsfunktionen.

### Zeitdiskrete Darstellung

**Grundlagen** Es werden *lineare Modelle* der Form

\[
\begin{align*}
    x(k) & = \Phi x(k-1) + \Gamma u(k-1) \\
    y(k) & = C x(k) + D u(k)
\end{align*}
\]  

(A.37)  

(A.38)

verwendet. Die Gleichung ist für gegebene Anfangsbedingung $x(0)$ und Eingangsgröße $u(\cdot)$ explizit lösbar durch

\[
x(k) = A^k x(0) + \sum_{j=0}^{k-1} A^j B u(n-j-1)
\]  

(A.39)

**Diskretisierung eines zeitkontinuierlichen Modells** Falls die Stellgröße $u$ eines dynamischen Systems während eines Zeitintervalls $h$ konstant bleibt, so kann (A.10) über ein Zeitintervall integriert werden, woraus die zeitdiskreten Zustandsmatrizen

\[
\begin{align*}
    \Phi & = \exp(A h) \\
    \Gamma & = \exp(A h) \int_0^h \exp(-A \tau) \, d\tau \, B
\end{align*}
\]  

(A.40)  

(A.41)

resultieren. Diese Situation ist für die in dieser Arbeit betrachteten Systeme grundsätzlich gegeben, da die Stellgröße durch die digitale Regelung nur in diskreten Zeitintervallen angepasst wird.
Literaturverzeichnis


Lebenslauf

Christian Jaeger

geboren 17. Nov. 1970 in Luzern, Schweiz

verheiratet, zwei Töchter

seit 2008 Mitarbeiter F&E, Fässler AG, Dübendorf Schweiz
2004 - 2008 Doktorand an IWF/inspire
2001 - 2003 Mitarbeiter Fachgruppe SIM, D-BEPR, ETHZ
1999 - 2000 Mitarbeiter ∆3D GmbH, Hinwil
1997 - 1999 Freelancer Software-Entwicklung
1991 - 1996 Studium der Mathematik, ETHZ
1977 - 1990 Grundschule und Gymnasium in Luzern