
DISS. ETH No. 19705

FUNCTIONAL DIFFERENTIAL APPROACHES

TO BACKWARD STOCHASTIC EQUATIONS

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor Of Sciences

presented by

MATTEO CASSERINI

Dipl. Math. ETH

born 19 October 1983

citizen of Cerentino (TI), Switzerland

accepted on the recommendation of

Prof. Dr. Martin Schweizer examiner

Prof. em. Dr. Freddy Delbaen co-examiner

Prof. Dr. Terry Lyons co-examiner

Prof. Dr. Halil Mete Soner co-examiner

Prof. Dr. Josef Teichmann co-examiner

2011





To my family





Abstract

This thesis is mainly concerned with the study of backward stochastic dif-

ferential equations (BSDEs), introduced by Pardoux and Peng [58], and of

their generalizations. Recently, Liang, Lyons and Qian [49] developed a new

approach to Lipschitz BSDEs. Their method is based on the analysis of a

particular class of functional differential equations, where the driver of the

equation does not depend only on the present, but also on the terminal value

of the solution.

The first part is dedicated to the introduction of various classes of func-

tional differential equations, associated to several types of backward systems.

After first studying BSDEs of quadratic growth with respect to the variable z,

we then consider systems of fully coupled forward-backward stochastic differ-

ential equations (FBSDEs). Both types of equation have numerous applica-

tions in many areas of mathematical finance (for instance utility maximization

problems or hedging problems for large investors). Afterwards, we analyze a

numerical scheme for the approximation of decoupled systems of functional

differential equations, which is based on the local iteration approach intro-

duced in the fully coupled case.

In the last part, we introduce complexification techniques for stochastic

processes, which are closely related to Hermite polynomials. These techniques

allow to consider real-valued stochastic processes as projections of correspond-

ing complex-valued processes, and we believe they could provide an important

tool in the study of stochastic differential equations. We conclude by present-

ing an application of these techniques to a result obtained by Widder [70]

concerning a class of Brownian martingales.
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Sommario

L’argomento principale di questa tesi è lo studio di equazioni differenziali sto-

castiche regressive (o backward), introdotte da Pardoux e Peng [58], e delle

loro generalizzazioni. Recentemente, Liang, Lyons e Qian [49] hanno sviluppa-

to un nuovo approccio ad equazioni regressive aventi continuità lipschitziana.

Il loro metodo si basa sull’analisi di una particolare classe di equazioni dif-

ferenziali funzionali, in cui il coefficiente dell’equazione dipende non solo dal

valore presente, ma anche da quello terminale della soluzione.

La prima parte è dedicata all’introduzione di varie classi di equazioni diffe-

renziali funzionali, associate a diversi tipi di sistemi regressivi. In primo luogo,

studiamo equazioni regressive aventi crescita quadratica rispetto alla variabile

z, per poi dedicarci a sistemi accoppiati di equazioni differenziali stocastiche

progressive-regressive (o forward-backward). Entrambi questi tipi di equazio-

ne hanno numerose applicazioni in molti ambiti di matematica finanziaria (ad

esempio problemi di massimizzazione dell’utilità attesa, o problemi di hed-

ging per grandi investitori). In seguito, analizziamo uno schema numerico per

l’approssimazione di sistemi disaccoppiati di equazioni differenziali funzionali,

basato sull’approccio di iterazione locale introdotto per sistemi accoppiati.

Nell’ultima parte, introduciamo tecniche di estensione allo spazio com-

plesso per processi stocastici, strettamente correlate ai polinomi di Hermite.

Tali tecniche permettono di considerare processi stocastici a valori reali come

proiezioni di corrispondenti processi a valori complessi, e crediamo che possa-

no costituire uno strumento importante nello studio di equazioni differenziali

stocastiche. Terminiamo presentando un’applicazione di queste tecniche a un

risultato ottenuto da Widder [70] riguardo a una classe di martingale Brow-

niane.
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Chapter 1

Introduction

Backward stochastic differential equations, forward-backward stochastic dif-

ferential equations and their generalizations have been subject of extensive

research in the last twenty years. These equations have quickly become a cen-

tral tool in stochastic analysis, especially due to their intimate relation with

stochastic control, mathematical finance and partial differential equations: the

applications in these fields are countless. After giving a brief overview of back-

ward stochastic differential equations and related approaches in Section 1.1

and Section 1.2, we present the main results of the thesis in Section 1.3.

1.1 Backward stochastic differential equations

In the following, let T > 0. Assume that (Wt)t∈[0,T ] is an m-dimensional

Brownian motion defined on a probability space (Ω,F , P ), and denote by

F = (Ft)t∈[0,T ] the natural filtration of (Wt)t∈[0,T ] and augmented by the P -

nullsets of F . We recall that filtrations are normally used in stochastic analysis

to model flows of informations (in particular, Ft represents for t ∈ [0, T ] the

history of W on [0, t] and thus the information available up to time t). A

stochastic process (Xt)t∈[0,T ] is said to be F-adapted if, for every t ∈ [0, T ], Xt

is Ft-measurable: this means that, given the information in the σ-field Ft, the

historical behaviour of X up to t is known.

Assume now that f : Ω × [0, T ] × Rd × Rd×m → Rd is a random function

1



2 Chapter 1. Introduction

and ξ is an FT -measurable random variable. Backward stochastic differential

equations (BSDEs) are equations of the formdYt = −f(t, Yt, Zt)dt+ ZtdWt, t ∈ [0, T ],

YT = ξ.

This differential formulation of the BSDE is just a compact notation for the

following equivalent integral formulation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs t ∈ [0, T ].

A solution of the BSDE is then a pair of adapted processes (Y, Z) satisfying

appropriate measurability and integrability assumptions and such that the

latter integral formulation is fulfilled for all t ∈ [0, T ]. In this case, Y is called

the solution part and Z the control part.

The problem is completely determined by the pair (f, ξ), which is thus

called the generator of the BSDE. f is often referred to as the driver of the

BSDE, while ξ is called the terminal condition of the BSDE: this is due to

the fact that the solution process Y should satisfy YT = ξ (as can be seen by

taking t = T in the above integral formulation).

Moreover, let us observe that the necessity of the control process Z is

closely related to the randomness of the equation: if the driver f and the

terminal condition ξ are deterministic, we can choose Z ≡ 0, and the solution

part Y can be obtained by solving an ordinary differential equation.

The reader familiar with the theory of ordinary differential equations may

wonder why BSDEs should be more difficult to solve with respect to forward

stochastic differential equations (SDEs): namely, it is well known that ordi-

nary differential equations with given terminal conditions can be converted

into equations with initial conditions via time inversion. This approach, how-

ever, cannot be used for BSDEs mainly because of the adaptedness constraint,

which prevents us from using time inversion.

This is best illustrated by the following basic example, which exhibits once
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more the need for an auxiliary control process Z. Consider the simple BSDEdYt = 0,

YT = ξ.

Obviously, the only possible solution is the constant process Y ≡ ξ. This

process, however, is adapted to the filtration only if the terminal condition ξ

is F0-measurable: in other words, the above BSDE has a solution only if ξ is

deterministic. This leads us to a natural question: if ξ is just FT -measurable,

how can we find an adapted process with terminal value ξ? From the point

of view of martingale theory, the most simple choice is to associate to ξ its

corresponding martingale (E[ξ|Ft])t∈[0,T ]. But the well known Itô representa-

tion theorem for Brownian martingales implies (under suitable integrability

assumptions) that E[ξ|Ft] is of the form
∫ t

0
Z̃sdWs for some process Z̃. There-

fore, (E[ξ|Ft], Z̃t)t∈[0,T ] is the solution of the following BSDE:dYt = ZtdWt,

YT = ξ.

If we compare this BSDE to the previous one, we see that the adaptedness

constraint introduces a diffusion part, expressed in terms of the control process

Z, while the drift part remains 0. Then, the general formulation of the BSDE

is obtained by allowing the drift to depend on (ω, t) as well as on the solution

(Y, Z).

As already anticipated, BSDEs have found many applications in mathe-

matical finance: in numerous problems, the terminal condition can namely be

specified in terms of a random payoff due at the termination of the contract,

while the dynamics of the BSDE are given by the modeling assumptions and

can then be calibrated by observation of the historical behaviour. This is

best illustrated by considering the classical problem of replicating an Euro-

pean call option in a complete Black-Scholes market. Assume that the price

of the underlying asset St follows a geometric Brownian motion: the payoff

of an European call option with maturity T and strike price K is given by
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max{ST − K, 0}. Moreover, assume that we have an investor who wants to

hedge this call option: he can do this by investing in the market to replicate

the option payoff, and he is interested in the trading strategy he has to adopt

as well as the initial capital required.

We can then model the replicating portfolio via a BSDE: we explain briefly

the intuition (for more details, the reader is referred to the survey article [32]).

Since the portfolio should replicate the call option, its terminal value should

equal the final payoff of the option, i.e. YT = max{ST − K, 0}. On the

other hand, the dynamics can be easily deduced if we assume, for instance,

that the investor trades in a self-financing way (i.e. all portfolio changes are

financed with the bank account, without injecting or draining extra funds).

The solution part Y of the BSDE then represent the value of the replicating

portfolio, while the control part Z represents the trading strategy.

BSDEs and their applications have been studied in hundreds of articles

and several books during the last two decades, and it is not possible to give

an exhaustive list of the literature on the subject. We limit ourselves to a

brief historical summary, and refer the reader to the books [31, 51] and the

surveys [30,32] for a more extensive overview.

BSDEs have been first introduced in the linear case by Bismut [6] in 1973.

Later, his work has been extended by Pardoux and Peng [58] to the general

non-linear case, and BSDEs have since then gained considerable attention.

Pardoux and Peng were able to obtain the existence and uniqueness of so-

lutions by relying on Itô’s representation theorem and on Picard iteration

arguments, when the terminal condition is square-integrable and the driver

f satisfies a Lipschitz condition with respect to y and z. The connection

with partial differential equations (PDEs) was soon recognized by the same

authors [57, 59], who derived a probabilistic representation for solutions of

semilinear parabolic PDEs in terms of BSDEs: this is often referred to as the

non-linear Feynman-Kac representation. This connection, together with the

numerous financial applications, motivated many authors to develop proba-

bilistic numerical schemes for the approximation of Lipschitz BSDEs (see for

example [4, 7, 16,35,73]).

There have been several different generalizations of the non-linear BSDEs
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of Pardoux and Peng. For instance, a natural extension is to consider systems

where a BSDE is coupled with a forward SDE: such a system is called forward-

backward stochastic differential equation (FBSDE). While simple types of

decoupled FBSDEs had already been considered by Pardoux and Peng, the

study of fully coupled FBSDEs has been initiated by Antonelli [1]. Fully

coupled FBSDEs were later studied by several authors, see for instance [40,50,

60,61,71]: an extensive account on the subject can be found in the book [51].

A second possible generalization of Pardoux and Peng’s BSDEs consists

in weakening the Lipschitz assumption on the driver f . The problem has

been tackled by several authors: probably the most remarkable works in this

direction are those of Kobylanski [46] and Lepeltier and San Mart́ın [48],

who studied scalar BSDEs when the terminal condition is bounded and the

driver has at most quadratic growth with respect to the variable z. These

BSDEs are usually called quadratic BSDEs, and arise naturally in many prob-

lems in mathematical finance and stochastic control. Recently, the results on

quadratic BSDEs have been substantially improved [9, 10,21,22].

Finally, we point out that, while most authors limit themselves to the

Brownian setting, it is also possible to consider BSDEs defined on general

probability spaces: in this case, it is not possible to rely on Itô’s representation

theorem anymore, and the natural extension is to consider other types of

martingale representations, given by orthogonal decompositions. For more

details, we refer to the book [31] and the survey [32] for Lipschitz BSDEs, and

to the works of Morlais [55] and Tevzadze [69] for quadratic BSDEs.

1.2 The approach via functional differential

equations

Recently, Liang, Lyons and Qian [49] introduced a new approach for Lipschitz

BSDEs on a general filtration: their method is purely probabilistic and does

not rely a priori on the existence of martingale representations. We give a brief

overview of their techniques, as they will be useful throughout the thesis. We

begin with an illustrative example: for T > 0, assume that we have a special



6 Chapter 1. Introduction

semimartingale (Yt)t∈[0,T ] on a probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying

the usual assumptions, and let the terminal value YT = ξ ∈ L1(FT ) be given.

Furthermore, assume that the canonical decomposition of Y is given by

Yt = Mt − Vt,

where M is a martingale and V a predictable process of finite variation with

V0 = 0. Then, if VT is integrable, it is easy to verify that, for all t ∈ [0, T ],

Mt = E[MT |Ft] = E[ξ + VT |Ft] =:M(ξ, V )t,

Yt = Mt − Vt = E[ξ + VT |Ft]− Vt =: Y(ξ, V )t,
(1.2.1)

where the operators M and Y are defined on L1(FT ) × C , C denoting the

class of Rd-valued adapted processes V on [0, T ] such that VT ∈ L1(FT ). In

other words, the semimartingale Y and the martingale M can be expressed

as functionals of the terminal value ξ and the finite variation process V .

We show now, with the help of some intuitive arguments, how these op-

erators M and Y can be used to derive an alternative approach to Lipschitz

BSDEs. Assume for the moment that we are on a probability space (Ω,F , P )

with a m-dimensional Brownian motion W = (Wt)t∈[0,T ] on it. Let (Ft)t∈[0,T ]

be its augmented filtration, and consider a classical BSDE of the formdYt = −f(t, Yt, Zt)dt+ ZtdWt,

YT = ξ,
(1.2.2)

where ξ is FT -measurable and f : Ω × [0, T ] × Rd × Rd×m → Rd satisfies the

usual measurability assumptions. Then, by the definition of the operators

Y and M, it seems plausible to associate the above BSDE to the forward

differential equation

Vt =

∫ t

0

f(s,Y(ξ, V )s,Z(ξ, V )s)ds, (1.2.3)

where Z(ξ, V ) is defined implicitly as the integrand process in the Itô repre-
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sentation of the martingale M(ξ, V ), i.e.

M(ξ, V )T = E[M(ξ, V )T ] +

∫ T

0

Z(ξ, V )sdWs. (1.2.4)

The reader can easily verify that (1.2.3) has a solution if and only if the

BSDE (1.2.2) is solvable. Namely, if (1.2.3) has a solution V , then a simple

computation yields that the couple (Y(ξ, V ),Z(ξ, V )) given by (1.2.1) and

(1.2.4) solves (1.2.2). Conversely, if (Y, Z) solves (1.2.2), then we can construct

a solution of (1.2.3) via the canonical decomposition of Y . This leads us to

the equivalence between classical, Lipschitz BSDEs and forward equations of

the type (1.2.3).

The peculiarity of the forward differential equation (1.2.3) consists in the

fact that the driver f depends not only on the behaviour of the process up

to the present value, but also on the terminal value VT of the solution: such

stochastic differential equations are not standard, and for this reason we will

often refer to them as functional differential equations (note that the term

“functional differential equations” is often used in the literature to refer to

stochastic delay differential equations: however, contrary to the latter, the

drivers of the equations studied here do not have any delay in the past, but

rather in the future).

As shown by Liang, Lyons and Qian, such an interpretation of BSDEs

can be made rigorous and extended to a much more general framework. The

authors mainly considered two extensions: first of all, they worked on a gen-

eral filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying only the usual

assumptions of right-continuity and completeness. Second, they assumed that

the driver f depends on some general process L(M) instead that on Z, where

L is an abstract functional mapping martingales into some space of adapted

processes. This is an important extension, since it allows both to take into

account the generality of the filtration F and to treat other types of backward

equations not fitting in the classical framework.

For ξ FT -measurable and f : Ω×[0, T ]×Rd×Rp → Rd, backward stochastic
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dynamics are equations of the formdYt = −f(t, Yt,L(M)t)dt+ dMt,

YT = ξ.
(1.2.5)

Similarly to BSDEs, a solution to (1.2.5) is then a pair of adapted processes

(Y,M) with appropriate integrability and measurability assumptions, and sat-

isfying the integral formulation of (1.2.5). We note that the problem is com-

pletely determined by the generators (f, ξ,L) and, as in the previous Brow-

nian example, it can be reformulated as a functional differential equation by

replacing Y , M with the operators Y , M given by (1.2.1). This leads us to

dVt = f(t,Y(ξ, V )t,L(M(ξ, V ))t)dt, V0 = 0. (1.2.6)

Liang, Lyons and Qian studied the problem of existence and uniqueness

of solutions to the functional differential equation (1.2.6) in a L2-framework,

when the driver f satisfies the standard Lipschitz assumption and ξ is square-

integrable, but for general functionals L. This is obtained in two steps: first

of all, they obtained the existence of a unique solution when the time horizon

T is sufficiently small, provided that the functional L satisfies some bound-

edness and Lipschitz conditions with respect to appropriate L2-spaces. These

conditions turn out to be rather mild and allow to treat many different types

of functionals (even non-local ones). The main result of Liang, Lyons and

Qian can be stated as follows:

Theorem 1.2.1 (Liang et al. [49]). Assume that (f, ξ) satisfies the standard

Lipschitz assumptions, and let L be bounded and Lipschitz with respect to

appropriate L2-spaces. Then there is a constant ` > 0, depending only on the

Lipschitz constants of f and L, such that the functional differential equation

(1.2.6) admits a unique square-integrable solution V for T < `.

The theorem is shown via a Picard iteration argument. After proving the

existence of a unique solution locally, the next step consists in extending Theo-

rem 1.2.1 to any time horizon T > 0. However, the boundedness and Lipschitz

assumptions on the functional L are not enough to guarantee the existence of
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solutions for arbitrary time horizons T and general coefficients (f, ξ) (mainly

due to the possible non-locality of L). This poses natural boundaries to the

extension of Theorem 1.2.1.

In order to solve this problem, several methods are possible: a possibility is

to consider only some concrete example of functional L, and to then develop

tailor-made techniques for each L in order to identify conditions on (f, ξ)

sufficient to obtain global solutions (for example, this is the approach applied

by Delong and Imkeller [26] to BSDEs with time delayed generators).

Liang, Lyons and Qian chose instead to keep the functional L abstract.

The extension to global intervals is obtained by imposing additional condi-

tions on L, while keeping the standard assumptions on (f, ξ) intact, and the

global solution to (1.2.6) is constructed by patching together the local solu-

tions. More exactly, it can be shown that the desired extension holds if the

functional L satisfies two conditions, called local-in-time property and dif-

ferential property. Roughly speaking, the local-in-time property means that

L(M) is defined locally: L(M)t should only depend on (Ms)s∈(t−ε,t+ε) for ε > 0

arbitrarily small. The differential property tells us instead that L(M) should

depend only on the increments of the martingale M . These properties then

lead us to the following result:

Theorem 1.2.2 (Liang et al. [49]). Assume that the assumptions of Theo-

rem 1.2.1 hold true, and let L satisfy the local-in-time and differential prop-

erties. Then, the functional differential equation (1.2.6) has a unique square-

integrable solution V for any T > 0.

Remark 1.2.3. We conclude this section by suggesting a possible new di-

rection of research, inspired by the introduction of this type of functional

differential equations. Considering equation (1.2.6), it might be interesting

to study the case where the operators Y and M are not necessarily given by

the expressions (1.2.1), but rather by other more general functionals of ξ and

V . Such a generalization opens the door to a new class of stochastic delay

differential equations, where the coefficients are delayed not only to the past,

but also to the future behaviour of the solution process: a general study of

this class of equations may bring exciting new insights in stochastic analysis.



10 Chapter 1. Introduction

The idea is best illustrated by considering the example of BSDEs with time

delayed generators, which have been introduced by Delong and Imkeller [26].

Recently, Dos Reis et al. [27] studied a particular subclass of backward delayed

equations, which can be written in the formdYt = −f
(
t,

∫ 0

−t
Yt+sαY (ds),

∫ 0

−t
Zt+sαZ(ds)

)
dt+ ZtdWt,

YT = ξ,

where αY and αZ are some given non-random finite measures supported on

[−T, 0]. It is not difficult to reinterpret these backward equations as forward

SDEs delayed to the whole path behaviour of the solution: namely, we can

write

dVt = f(t,Y(ξ, V )t,L(M(ξ, V ))t)dt, V0 = 0,

where the functional Y and L are given by

Y(ξ, V )t : =

∫ 0

−t
Y(ξ, V )t+sαY (ds)

=

∫ 0

−t

(
E[ξ + VT |Ft+s]− Vt+s

)
αY (ds),

L(M(ξ, V ))t : =

∫ 0

−t
Z(ξ, V )t+sαZ(ds), t ∈ [0, T ],

and Z denotes the operator introduced in (1.2.4).

1.3 Results of the thesis

In the following, we briefly summarize the main results and contributions of

this thesis.

Backward stochastic dynamics of quadratic growth. Motivated by the

approach of Liang, Lyons and Qian, we consider a general filtered probability

space, and study functional differential equations of the form

Vt =

∫ t

0

(
f
(
s,Y(ξ, V )s,L(M(ξ, V ))s

)
− f(s, 0, 0)

)
ds, t ≥ 0,
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where the operatorsM and Y are defined as in (1.2.1), L is a general abstract

functional, ξ is bounded, and f = f(ω, t, y, z) satisfies, instead of the classical

Lipschitz condition, a particular quadratic growth condition with respect to

z. The quadratic growth assumption forces us to study these equations in a

framework different from the usual L2-setting. We thus introduce an appropri-

ate BMO-space of continuous stochastic processes, which are not necessarily

martingales.

By working in this space, the existence of a unique solution to the quadratic

functional differential equation can then be derived as follows. First of all, we

show the existence and uniqueness of solutions for small terminal conditions

ξ, by applying first a contraction argument on the BMO-space we intro-

duced, and then a change of measure. This approach is related to the work of

Tevzadze [69], and gives us the following result:

Lemma 1.3.1 (Chapter 2, Lemma 2.2.5). Let f satisfy appropriate quadratic

growth assumptions, and assume that ‖ξ‖∞ ≤ Θ, where Θ depends on T

and on the growth constants of f . Then, the quadratic functional differential

equation has a unique BMO-solution V .

Moreover, under additional compatibility conditions on f , we can extend

the solvability to arbitrary bounded terminal conditions ξ. Namely, by rewrit-

ing ξ as ξ =
∑n

i=1 ξ
i with ‖ξi‖∞ ≤ Θ, we can consider for each i a subproblem

with terminal condition ξi, each being solvable via Lemma 1.3.1. The sub-

problems can then be combined to give a solution to the original equation,

and the uniqueness follows by comparison arguments.

Fully coupled forward-backward dynamics. Motivated by the applica-

tions of fully coupled FBSDEs, we then devote ourselves to the study of fully

coupled systems of functional differential equations on general filtered proba-

bility spaces. In order to better reflect the coupling between the equations of

such systems, we have to consider modified versions of the operators Y and

M. These are given, for t ∈ [0, T ], by

Mφ(X, V )t := E[φ(XT ) + VT |Ft], Yφ(X, V )t :=Mφ(X, V )t − Vt,
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where φ : Ω × [0, T ] is a function which expresses the terminal condition of

(Yφ(X, V )t)t≥0. We write for simplicity M = Mφ, Y = Yφ, and study fully

coupled systems of the form
dXt = µ(t,Xt,Y(X,V )t,L1(M(X,V ))t)dt+ σ(t,Xt,Y(X,V )t,L2(M(X,V ))t)dWt,

dVt = f(t,Xt,Y(X,V )t,L3(M(X,V ))t)dt,

X0 = x, V0 = 0,

where µ, σ, f are random functions, and L1, L2, L3 are general abstract func-

tionals. Our attention is focused on the existence and uniqueness of solutions

to these systems of equations, by working in an appropriate L2-framework.

First of all, we obtain the existence of a unique solution for general coeffi-

cients and under very weak assumptions of functionals Li, by assuming that

the time interval is sufficiently small. This is the main result we obtain for

fully coupled systems, and can be stated as follows:

Theorem 1.3.2 (Chapter 3, Theorem 3.2.3). Let µ, σ, f and φ satisfy appro-

priate Lipschitz and monotonicity conditions, and assume that Li, i = 1, 2, 3

are bounded and Lipschitz with respect to appropriate L2-spaces. Then there

is a constant ` > 0, depending only on the Lipschitz constants of the coeffi-

cients, such that the system admits a unique square-integrable solution (X, V )

for T < `.

The generality of the condition on the functionals Li is an important result,

as it allows to treat, within the same framework, many different types of

coupled forward-backward systems not appearing in the classical literature:

this is shown with the help of various examples, which also have applications

to mathematical finance as well as interesting connections to parabolic integro-

partial differential equations.

The next step then consists in extending the above result to any time

interval. This seems however to be very difficult without knowing explicitly

the functionals Li, and the need to treat this extension separately for each

choice of Li seems to be unavoidable. We thus focus on the case where the

filtration is Brownian and the functionals Li are given by Itô’s representation:

in this case, it is possible to derive the desired extension with the help of

uniform Lipschitz estimates for solutions of classical FBSDEs.
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Numerical analysis of functional differential equations. After the

study of fully coupled systems, we focus our attention on decoupled systems

in a Brownian setting of the formX0 = x, dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

V0 = 0, dVt = f
(
t,Xt,Y(X, V )t,Z(X, V )t

)
dt,

and analyze a new numerical scheme for the approximation of these systems.

This is based on a time discretization combined with a local Picard iteration

approach, which is motivated by the previous contraction arguments.

We begin by introducing, for a partition π = (t0, . . . , tN) of [0, T ], an

implicit Euler scheme (Xπ
ti
, V π

ti
)i=0,··· ,N . This is defined by setting Xπ

0 = x,

V π
0 = 0, and for 0 ≤ i ≤ N − 1,

Xπ
ti+1

= Xπ
ti

+ µ(ti, X
π
ti

)∆ti+1 + σ(ti, X
π
ti

)∆Wti+1
,

V π
ti+1

= V π
ti

+ f
(
ti, X

π
ti
,Y(Xπ, V π)ti ,Zπ(Xπ, V π)ti

)
∆ti+1,

where Zπ is a discrete version of the operator Z. We can then prove that the

solution of this implicit scheme converges to the true solution when the mesh

of the partition goes to zero, with the same rate of convergence as for classical

Euler schemes (see [7, 45,73]).

However, since the operators Y and Zπ depend on the terminal value

V π
T , the above Euler scheme is not explicitly solvable. To solve this problem,

we approximate the solution of the implicit Euler scheme via a local Picard

iteration procedure: we can then show that the rate of convergence remains

unchanged, provided that the number of iterations is sufficiently large. This

requires a careful local analysis of the iteration scheme, and finally leads to

an implementable scheme with a satisfactory convergence rate:

Theorem 1.3.3 (Chapter 4, Corollary 4.3.8). Let V π,(p1,··· ,pN ) denote the ap-

proximation of V π via local iterations, and let the number of iterations pi be

sufficiently large. Then, for a constant θ > 0 and for |π| sufficiently small,

max
1≤i≤N

‖Xπ
ti
−Xti‖2 + ‖V π,(p1,··· ,pN )

ti − Vti‖2 ≤ θ
√
|π|.
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Predictable projections of conformal stochastic integrals. In the fi-

nal part of the thesis, we introduce complexification techniques for stochastic

processes: these techniques, although not related to the functional differen-

tial equation approach previously discussed, allow to represent real-valued

processes as appropriate projections of corresponding conformal stochastic

processes, and might have interesting applications in the study of stochastic

differential equations. We begin by studying predictable projections on the

real component of stochastic integrals with respect to a conformal Brownian

motion. These projections turn out to have a particularly nice behaviour:

namely, for a d-dimensional conformal Brownian motion Z = X + iY , we

obtain the following result.

Theorem 1.3.4 (Chapter 5, Theorem 5.1.2). Denote by (·)PX the predictable

projection with respect to X, and by ΠX the orthogonal projection on H 2(X).

Assume that H is L2-integrable with respect to Z, and that
(∫

HdZ
)PX

exists.

Then, for all t ≥ 0,
(∫

HdZ
)PX
t

=
∫ t

0
ΠX(H) dX P -a.s..

In particular, this implies that the Hermite polynomials Hα(t,Xt), α ∈ Nd,

can be seen as predictable projections of the corresponding powers Zα of the

conformal Brownian motion Z. In order to extend this explicit representa-

tion of Hα(t,Xt) to a much wider class of Brownian martingales, we thus

investigate the Lp-convergence of series of Hermite polynomials and their con-

nection to analytic functions. In particular, with the help of the well known

hypercontractivity of the Wiener chaos, we obtain:

Theorem 1.3.5 (Chapter 5, Theorem 5.2.3). Let p > 1, and assume that

(Mt)t∈[0,T ] is an Lp-martingale of the form Mt = g(t,Xt). Then, there is

a constant C = C(p) ∈ (0, 1) such that, for S < CT and s ∈ [0, S], the

series
∑

α∈Nd bαHα(s,Xs) converges unconditionally in Lp to Ms. Moreover,

the analytic function f(z) :=
∑

α∈Nd bαz
α, z ∈ Cd, defines an Lp-martingale

(f(Zs))s∈[0,S] such that, for all s ∈ [0, S],
(
f(Zs)

)PX
= Ms.

The condition that p > 1 is essential in the above result: we hence handle

the special case p = 1 by relating the unconditional convergence in L1 of an

Hermite series to that in Lp, p > 1.



1.3. Results of the thesis 15

We conclude by applying the previous results to Widder’s representation

[70], which allows to express several Brownian martingales as Laplace-Stieltjes

integrals with respect to some signed measure µ: in particular, we characterize

the existence of quadratic exponential moments of Widder’s measure µ in

terms of the unconditional convergence in L1 of the corresponding Hermite

series. In the case where µ is positive, our characterization actually leads to an

equivalence between the existence of these moments and the aforementioned

L1-convergence.

Organization of the thesis. The thesis is organized as follows. Chap-

ter 2 is devoted to functional differential equations of quadratic growth, and

corresponds to the article [11]. In Chapter 3, we consider coupled systems of

functional differential equations, while Chapter 4 is dedicated to the numerical

analysis of decoupled systems: these two chapters are based on a joint article

with Gechun Liang [13]. Finally, Chapter 5 concerns predictable projections

on the real line of conformal stochastic processes and related complexification

techniques: its content corresponds to the article [12].





Chapter 2

Backward stochastic dynamics

of quadratic growth

This chapter is devoted to the application to quadratic BSDEs of the func-

tional differential equation approach introduced by Liang, Lyons and Qian:

since quadratic BSDEs are usually best treated in a BMO-framework, we

will introduce a BMO-type of norm for continuous processes (for the deep

connection between quadratic BSDEs and BMO-martingales, see for instance

[3, 23, 39,69]).

The study of quadratic BSDEs was initiated in the scalar, Brownian setting

by Kobylanski [46] and Lepeltier and San Mart́ın [48], who obtained condi-

tions for existence and uniqueness of solutions when the terminal condition

is bounded: such quadratic BSDEs became quickly of central importance in

mathematical finance and stochastic control, for instance in connection to the

utility maximization problem (see for instance Hu et al. [39]). Later, Koby-

lanski’s results were extended by Briand, Hu [9,10] and Delbaen et al. [22] to

the case of convex drivers with unbounded terminal condition. Morlais [55]

introduced a different extension of Kobylanski’s article by studying quadratic

BSDEs driven by general continuous martingales.

More recently, Bao et al. [21] investigated the possibility of further extend-

ing these results, allowing the driver to have super-quadratic growth in the

Z-component. The answer is rather surprising: even in the Brownian setting,

17
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with convex drivers and bounded terminal conditions, the super-quadratic BS-

DEs are seriously ill-posed, and it is not possible to obtain neither existence

nor uniqueness of solutions.

We observe however that, in opposition to the case of BSDEs with Lip-

schitz driver, none of the above approaches use contraction arguments to ob-

tain existence and uniqueness: such contraction results are important, for

instance, in order to derive numerical approximations. A first attempt to use

contraction arguments for quadratic BSDEs was made by Tevzadze [69]. He

constructed a contraction mapping when the L∞-bound on the terminal con-

dition is sufficiently small: the result is then extended to arbitrary bounded

terminal values by using tricky BMO-arguments. Such an extension however

requires stronger conditions than Kobylanski’s, in particular differentiability

of the driver is needed.

Despite the stronger assumptions needed, the latter approach seems to

be more suitable for a direct treatment via functional differential equations.

Indeed, all the methods derived from Kobylanski’s article rely on a transfor-

mation of the original quadratic BSDE: such a transformation depends on the

special structure of the process Z, and therefore it does not seem possible to

consider other operators. In the sequel, we will see how Tevzadze’s techniques

can be adapted to our framework in order to construct solutions for a class of

quadratic backward stochastic dynamics. As for Lipschitz backward dynam-

ics, such a functional differential approach will have some advantages. First of

all, it allows us to work in a general filtration without additional difficulties.

Second, the operator Z in the driver can be substituted by a more general op-

erator L(M), where L is an abstract functional: however, because we consider

a BMO-framework, L has to satisfy boundedness and Lipschitz assumptions

different from the ones for Lipschitz backward dynamics [49].

This chapter is organized as follows: in Section 2.1, we introduce the nec-

essary conditions on the driver as well as appropriate solution spaces. Section

2.2 is dedicated to the solution of the functional differential equation when

the terminal condition is bounded by a sufficiently small constant. Finally,

the existence and uniqueness is extended in Section 2.3 to arbitrary bounded

terminal conditions.
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2.1 A class of quadratic backward stochastic

dynamics

We begin by introducing an appropriate class of quadratic functional differ-

ential equations. Let (Ω,F , P ) be a complete probability space, fix T > 0,

and assume that we have a filtration F = (Ft)t∈[0,T ] with the usual assump-

tions of right-continuity and completeness and such that all martingales with

respect to F are continuous (observe that this implies that the correspond-

ing optional and predictable σ-fields are identical). For d ∈ N, we denote by

C = C ([0, T ],Rd) the space of Rd-valued adapted processes V on [0, T ] such

that VT ∈ L1(FT ). Then, we define the linear operators M and Y , for t ≥ 0,

by

M : L1(FT )× C → C , M(ξ, V )t := E[ξ + VT |Ft],

Y : L1(FT )× C → C , Y(ξ, V )t := E[ξ + VT |Ft]− Vt.
(2.1.1)

As discussed in the Introduction, if ξ ∈ L1(FT ) and V is a predictable process

of finite variation in C such that V0 = 0, then Y(ξ, V ) is the unique special

semimartingale Y with drift part −V and YT = ξ; its martingale part is then

given (up to a F0-measurable random variable) by M(ξ, V ). Moreover, we

denote by L a (possibly non-linear) abstract functional, defined on the space

of d-dimensional continuous martingales on [0, T ] and taking values, for some

p ∈ N, in the space of p-dimensional adapted processes (the codomain of L
will be further specified later).

In this chapter, we study functional differential equations of the form

Vt =

∫ t

0

(
f
(
s,Y(ξ, V )s,L(M(ξ, V ))s

)
− f(s, 0, 0)

)
ds, (2.1.2)

where ξ is FT -measurable, and f : Ω × [0, T ] × Rd × Rp → Rd satisfies the

required measurability assumptions. Our main result is the existence and

uniqueness of solutions to (2.1.2) when ξ is bounded and FT -measurable, and

f satisfies the following quadratic condition:
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Assumption (A1): The function f : Ω × [0, T ] × Rd × Rp → Rd satisfies

Assumption (A1) if:

(A1.1) For (y, z) ∈ Rd × Rp, f(·, y, z) is P-measurable, where P is the pre-

dictable σ-field with respect to F.

(A1.2) For (ω, t, y, z) ∈ Ω× [0, T ]×Rd×Rp, f(ω, t, ·, ·) is twice continuously

differentiable, and there are constants C, θ > 0 such that

|∇yf(t, y, z)| ≤ C, |∇zf(t, y, z)| ≤ C + θ|z|,

|Hyyf(t, y, z)| ≤ C2, |∇z∇yf(t, y, z)| ≤ Cθ, |Hzzf(t, y, z)| ≤ θ2

where Hyyf , Hzzf denote the corresponding Hessian matrices of f .

As discussed in the Introduction, the functional differential equation (2.1.2)

is then closely related to the backward stochastic dynamics

dYt = −
(
f(t, Yt,L(M)t)− f(t, 0, 0)

)
dt+ dMt, YT = ξ.

We now need to introduce some further notation. For k, l ∈ N, we denote

the Euclidean norm on Rk by | · |, while on Rk×l the notation | · | is used to

designate the Hilbert-Schmidt norm, i.e. |z| =
√

Tr(zTz) for z ∈ Rk×l: we

will often identify the space Rk×l with Rk·l. For a probability measure Q ≈ P ,

we denote by EQ the expectation with respect to Q: note that the functionals

Y , M in (2.1.1) depend on Q, and we will therefore write YQ, MQ when

we want to emphasize this dependence. We can then introduce the following

spaces:

• L (Rp,Rd), the space of all linear operators from Rp onto Rd.

• L∞ = L∞(Ω,FT , P ;Rd), the space of Rd-valued, bounded and FT -

measurable random variables with the usual ess sup-norm ‖ · ‖∞.

• S∞ = S∞([0, T ],Rd), the space of all continuous and adapted processes

Y : Ω× [0, T ]→ Rd such that

‖Y ‖S∞ := sup
τ :τ stopping

time ≤T

‖Yτ‖∞ = sup
t∈[0,T ]

‖Yt‖∞ <∞.
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• H Q = H Q([0, T ],Rp), the space of all predictable processes H : Ω ×
[0, T ]→ Rp such that

‖H‖2
H Q := sup

τ :τ stopping
time ≤T

∥∥∥∥EQ

[ ∫ T

τ

|Hs|2ds
∣∣∣∣Fτ]∥∥∥∥

∞
<∞.

• BMOQ = BMOQ([0, T ],Rd), the space of Rd-valued BMO-martingales

with respect to Q, endowed with the norm

‖N‖BMOQ1
:= sup

τ :τ stopping
time ≤T

∥∥EQ
[
|NT −Nτ |

∣∣Fτ]∥∥∞.
We also have to introduce an appropriate space for the solution process

V . Motivated by the deep connection between bounded solutions of classical

quadratic BSDEs and continuous BMO-martingales, we set

‖V ‖BMOQ1
:= sup

τ :τ stopping
time ≤T

∥∥EQ
[
|VT − Vτ |

∣∣Fτ]∥∥∞,
S Q
BMO1

= S Q
BMO1

([0, T ],Rd) := {V : Ω× [0, T ]→ Rd |V continuous and

adapted such that V0 = 0 and ‖V ‖BMOQ1
<∞}.

It is not difficult to check that
(
S Q
BMO1

, ‖ · ‖BMOQ1

)
is a Banach space.

However, for p > 1, the norm ‖·‖BMOQ1
is not equivalent to ‖·‖BMOQp

on SBMOQ1

(contrarily to the case of BMO-martingales). This can be easily proved by

taking a deterministic process V such that
∫ 1

0
Vtdt <∞ and

∫ 1

0
V p
t dt =∞ for

p > 1.

From now on, the dependence of all operators, spaces and norms on the

measure Q will be dropped when Q = P . By the definition of ‖ · ‖BMO1 , we

can easily verify the following result, which will be essential in the sequel and

in particular shows the connection of SBMO1 to the usual BMO-framework.

Lemma 2.1.1. Let Y and M denote the operators in (2.1.1). Then,

Y : L∞ ×SBMO1 → S∞, M : L∞ ×SBMO1 → BMO,
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and we have the following estimates:

‖Y(ξ, V )‖S∞ ≤ ‖ξ‖∞ + ‖V ‖BMO1 ,

‖M(ξ, V )‖BMO1 ≤ 2
(
‖ξ‖∞ + ‖V ‖BMO1), ξ ∈ L∞, V ∈ SBMO1 .

Proof. A direct computation gives that

‖Y(ξ, V )‖S∞ = sup
τ

∥∥∥E[ξ∣∣Fτ]+ E
[
VT − Vτ

∣∣Fτ]∥∥∥
∞

≤ sup
τ

∥∥E[ξ∣∣Fτ]∥∥∞ + sup
τ

∥∥∥E[VT − Vτ ∣∣Fτ]∥∥∥
∞

≤ ‖ξ‖∞ + sup
τ

∥∥∥E[|VT − Vτ |∣∣Fτ]∥∥∥
∞

= ‖ξ‖∞ + ‖V ‖BMO1 ,

and similarly

‖M(ξ, V )‖BMO1 = sup
τ

∥∥∥E[|M(ξ, V )T −M(ξ, V )τ |
∣∣Fτ]∥∥∥

∞

≤ sup
τ

∥∥E[|ξ−E[ξ|Fτ ]|
∣∣Fτ]∥∥∞+sup

τ

∥∥E[|VT−E[VT |Fτ ]|
∣∣Fτ]∥∥∞

≤ 2‖ξ‖∞+sup
τ

(∥∥E[|VT − Vτ |∣∣Fτ]∥∥∞+
∥∥∥E[∣∣E[VT−Vτ |Fτ ]

∣∣∣∣∣Fτ]∥∥∥
∞

)
≤ 2
(
‖ξ‖∞ + ‖V ‖BMO1).

2.2 Solutions for small terminal conditions

In this section, we will prove that, under the condition that the L∞-bound

on the terminal value is sufficiently small, the quadratic functional differential

equation (2.1.2) has a unique solution. For the moment, we will assume that

the driver f satisfies the following (more general) quadratic condition:

Assumption (A2): The function f : Ω × [0, T ] × Rd × Rp → Rd satisfies

Assumption (A2) with (C, θ, α,Γ) if the measurability condition (A1.1) holds,

and there are predictable processes α : Ω × [0, T ] → Rd×d, Γ : Ω × [0, T ] →
L (Rp,Rd) and constant C, θ > 0 such that |αt| ≤ C for t ∈ [0, T ], Γ(Id) ∈H
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and, for any (y, z), (y′, z′) ∈ Rd × Rp and t ∈ [0, T ],

|f(t, y, z)− f(t, y′, z′)− αt(y − y′)− Γt(z − z′)|

≤
(
C|y − y′|+ θ|z − z′|

)(
C
(
|y|+ |y′|

)
+ θ
(
|z|+ |z′|

))
P -a.s..

Remark 2.2.1. As noted by Tevzadze [69], by applying the mean value the-

orem we can verify that, if f satisfies Assumption (A1), then it satisfies As-

sumption (A2) with (C, θ,∇yf(t, 0, 0),∇zf(t, 0, 0)) (see also Lemma 2.3.1).

On the other hand, we also have to impose some conditions on the func-

tional L. As for Lipschitz backward dynamics, it is enough to impose some

Lipschitz and boundedness assumptions with respect to appropriate norms.

More exactly, we have:

Assumption (L1’): The functional L satisfies Assumption (L1’) if:

(L1.1’) L maps the space BMO([0, T ],Rd) into H ([0, T ],Rp).

(L1.2’) L is a bounded and Lipschitz continuous functional, i.e. there exists

a constant K = K(T ) > 0, which may depend on T , such that

‖L(M)‖H ≤ K‖M‖BMO1 ,

‖L(M)− L(M ′)‖H ≤ K‖M −M ′‖BMO1 , M,M ′∈BMO([0, T ],Rd).

Examples 2.2.2. We give below two examples of functionals L satisfying

Assumption (L1’).

(i) Assume that an m-dimensional Brownian motion W on (Ω,F ,F, P ) is

given, and define the mapping L : BMO([0, T ],Rd)→ H ([0, T ],Rd×m)

by L(M) := Z for M ∈ BMO([0, T ],Rd), where Z is the martingale

integrand in the orthogonal decomposition of M w.r.t. W . It is easy to

verify that L satisfies Assumption (L1’): namely, we have that

‖L(M)‖H = ‖L(M) ·W‖BMO2

≤ ‖L(M) ·W‖BMO2 + ‖M − L(M) ·W‖BMO2

= ‖M‖BMO2 ≤ K‖M‖BMO1 ,
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and similarly for ‖L(M)− L(M ′)‖H .

(ii) Another example is given by L : BMO([0, T ],R)→H ([0, T ],R),

L(M)t :=
√
E[〈M〉t,T |Ft], M ∈ BMO([0, T ],R), t ∈ [0, T ],

where for notational simplicity 〈M〉t,T := 〈M〉T − 〈M〉t. Then, by the

Kunita-Watanabe and the conditional Cauchy-Schwarz inequalities, we

have that

E
[
〈M,M ′〉t,T

∣∣Ft]≤E[|〈M,M ′〉t,T |
∣∣Ft]≤E[√〈M〉t,T 〈M ′〉t,T

∣∣∣Ft]
≤
√
E[〈M〉t,T |Ft]

√
E[〈M ′〉t,T |Ft],

and therefore, by the bilinearity of 〈·〉t,T ,

∣∣L(M)t − L(M ′)t
∣∣2 = E[〈M〉t,T |Ft] + E[〈M ′〉t,T |Ft]

− 2
√
E[〈M〉t,T |Ft]

√
E[〈M ′〉t,T |Ft]

≤ E[〈M −M ′〉t,T |Ft].

We can then compute that

‖L(M)− L(M ′)‖H = sup
τ

∥∥∥∥E[ ∫ T

τ

∣∣L(M)s − L(M ′)s
∣∣2ds∣∣∣∣Fτ]∥∥∥∥

∞

≤ sup
τ

∥∥∥∥E[ ∫ T

τ

E[〈M −M ′〉s,T |Fs]ds
∣∣∣∣Fτ]∥∥∥∥

∞

≤ sup
τ

∥∥∥∥E[ ∫ T

τ

〈M −M ′〉s,Tds
∣∣∣∣Fτ]∥∥∥∥

∞

≤ T sup
τ

∥∥E[〈M −M ′〉τ,T
∣∣Fτ]∥∥∞

= T‖M −M ′‖BMO2 ≤ KT‖M −M ′‖BMO1 ,

and similarly for ‖L(M)‖H . Therefore, (L1’) is satisfied.

While the case of martingale integrand processes is certainly the most

important (as it leads to classical quadratic BSDEs on general filtrations), the
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second example shows that it is also possible to construct non-local operators

satisfying (L1’). We are now ready to prove the main result of this section:

the existence and uniqueness of solutions to (2.1.2) when ‖ξ‖∞ is sufficiently

small. This is essentially accomplished in two steps: first, the existence and

uniqueness of solutions is obtained via a contraction argument for a particular

class of drivers f .

Proposition 2.2.3.Assume that f satisfies Assumption (A2) with (C, θ, 0, 0)

and L satisfies Assumption (L1’). Furthermore, define β := 4TC2 + 8K2θ2

and assume that ‖ξ‖∞ < 1
4β

. Then there is a unique solution to the quadratic

functional differential equation

Vt =

∫ t

0

(
f(s,Y(ξ, V )s,L(M(ξ, V ))s)− f(s, 0, 0)

)
ds, (2.2.1)

satisfying ‖V ‖BMO1 ≤ ‖ξ‖∞.

Proof. To simplify our notation, we will omit the dependence of Y andM on

ξ. For v ∈ SBMO1 , we define φ(v) := V by

Vt =

∫ t

0

(
f(s,Y(v)s,L(M(v))s)− f(s, 0, 0)

)
ds,

First of all, we check that φ maps SBMO1 into itself. Clearly, V = φ(v) is

a continuous and adapted process, and by Assumption (L1.2’) we have that

‖V ‖BMO1 = sup
τ

∥∥∥∥E[∣∣∣ ∫ T

τ

(
f(s,Y(v)s,L(M(v))s)− f(s, 0, 0)

)
ds
∣∣∣∣∣∣∣Fτ]∥∥∥∥

∞

≤ sup
τ

∥∥∥∥E[ ∫ T

τ

∣∣f(s,Y(v)s,L(M(v))s)− f(s, 0, 0)
∣∣ds∣∣∣∣Fτ]∥∥∥∥

∞

≤ sup
τ

∥∥∥∥E[ ∫ T

τ

2
(
C2|Y(v)s|2 + θ2|L(M(v))s|2

)
ds

∣∣∣∣Fτ]∥∥∥∥
∞

≤ 2

(
C2 sup

τ

∥∥∥∥E[ ∫ T

τ

|Y(v)s|2ds
∣∣∣∣Fτ]∥∥∥∥

∞
+ θ2 sup

τ

∥∥∥∥E[ ∫ T

τ

|L(M(v))s|2ds
∣∣∣∣Fτ]∥∥∥∥

∞

)
≤ 2
(
TC2‖Y(v)‖2

S∞ +K2θ2‖M(v)‖2
BMO1

)
<∞.

Therefore, the mapping φ : SBMO1 → SBMO1 is well defined. In order to
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apply the fixed point theorem to φ we first need to prove that, for sufficiently

small balls B in SBMO1 , φ maps B into itself.

By the previous computations and Lemma 2.1.1, we have that

‖V ‖BMO1 ≤ 2
(
TC2‖Y(v)‖2

S∞ +K2θ2‖M(v)‖2
BMO1

)
≤ β

(
‖ξ‖2

∞ + ‖v‖2
BMO1

)
.

Consider now the quadratic equation

βx2 − x+ β‖ξ‖2
∞ ≤ 0. (2.2.2)

Since β > 0, there are positive solutions to this inequality if and only if its

discriminant is non-negative: this happens if and only if ‖ξ‖∞ ≤ 1
2β

, and in

this case x = ‖ξ‖∞ solves (2.2.2).

By setting R := ‖ξ‖∞ and BR := {V ∈ SBMO1 | ‖V ‖BMO1 ≤ R}, we then

have by the above computations that, for v ∈ BR,

‖V ‖BMO1 ≤ β
(
‖ξ‖2

∞ + ‖v‖2
BMO1

)
≤ 2β‖ξ‖2

∞ ≤ ‖ξ‖∞ = R

whenever ‖ξ‖∞ ≤ 1
2β

, and therefore φ maps BR into itself.

The next step consists in proving that, due to the particular choice of R,

φ is a contraction on BR whenever ‖ξ‖∞ < 1
4β

. Let v1, v2 ∈ BR, V i := φ(vi)

for i = 1, 2, and set δF := F 1 − F 2 for processes F 1, F 2. Since f satisfies

Assumption (A2), by applying the classical and conditional Cauchy-Schwarz

inequalities, we can easily verify that

‖δV ‖2
BMO1

≤ sup
τ

∥∥∥∥E[ ∫ T

τ

∣∣f(s,Y(v1)s,L(M(v1))s
)

− f
(
s,Y(v2)s,L(M(v2))s

)∣∣ds∣∣∣∣Fτ]2∥∥∥∥
∞

≤ sup
τ

(∥∥∥∥E[ ∫ T

τ

(
C|δY(v)s|+ θ|δL(M(v))s|

)2
ds

∣∣∣∣Fτ]∥∥∥∥
∞
×∥∥∥∥E[∫ T

τ

[
C
(
|Y(v1)s|+ |Y(v2)s|

)
+θ
(
|L(M(v1))s|+ |L(M(v2))s|

)]2

ds

∣∣∣∣Fτ]∥∥∥∥
∞
,
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and therefore

‖δV ‖2
BMO1

≤ 2
(
TC2‖δY(v)‖2

S∞ +K2θ2‖δM(v)‖2
BMO1

)
×

4 sup
τ

(
C2

∥∥∥∥E[ ∫ T

τ

(
|Y(v1)s|2 + |Y(v2)s|2

)
ds

∣∣∣∣Fτ]∥∥∥∥
∞

+ θ2

∥∥∥∥E[ ∫ T

τ

(
|L(M(v1))s|2 + |L(M(v2))s|2

)
ds

∣∣∣∣Fτ]∥∥∥∥
∞

)
≤ 8
(
TC2‖δY(v)‖2

S∞ +K2θ2‖δM(v)‖2
BMO1

)
× (2.2.3)(

TC2
(
‖Y(v1)‖2

S∞+‖Y(v2)‖2
S∞

)
+K2θ2

(
‖M(v1)‖2

BMO1
+‖M(v2)‖2

BMO1

))
.

Moreover, since v1, v2 ∈ BR we have that, for i = 1, 2,

‖Y(vi)‖2
S∞ ≤ 2

(
‖ξ‖2

∞ + ‖vi‖2
BMO1

)
≤ 4‖ξ‖2

∞,

‖M(vi)‖2
BMO1

≤ 8
(
‖ξ‖2

∞ + ‖vi‖2
BMO1

)
≤ 16‖ξ‖2

∞.

Therefore, by the inequality (2.2.3), we have that

‖δV ‖2
BMO1

≤ 8
(
TC2‖δY(v)‖2

S∞+K2θ2‖δM(v)‖2
BMO1

)
(8TC2+ 32K2θ2)‖ξ‖2

∞

≤ 64(TC2 + 4K2θ2)2‖ξ‖2
∞‖δv‖2

BMO1

≤ 16β2‖ξ‖2
∞‖δv‖2

BMO1
,

and hence φ is a contraction on BR if ‖ξ‖∞ < 1
4β

. The proof is completed by

applying the fixed point theorem.

Observe that the above result is valid for any dimension d ≥ 1, and that

it does not depend on the probability measure P and thus holds on any prob-

ability space (Ω,F , Q) with Q ≈ P .

The second step consists in extending Proposition 2.2.3 to general drivers

f via an appropriate transformation. Unfortunately, our transformation ar-

gument requires that we introduce two major restrictions. For the rest of the

chapter, we assume that d = 1, and that the functional L is explicitly given

by the orthogonal decomposition with respect to W , as in Example 2.2.2 (i).

This explicit choice of L has two consequences: first, L is linear, and second,
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for ε : Ω× [0, T ]→ R predictable, we have the transformation property

εtL(M)t = L
(∫ ·

0

εsdMs

)
t

(2.2.4)

for any t ≥ 0 and M ∈ BMO: namely, we have that

d
(∫ ·

0

εsdMs

)
t

= εtdMt = εtL(M)tdWt + εt
(
dMt − L(M)tdWt

)︸ ︷︷ ︸
orthogonal w.r.t. W

and the claim follows by uniqueness of orthogonal decompositions.

For any Q ≈ P , the functional LQ : BMOQ → H Q can be defined

similarly to L by taking the orthogonal decomposition with respect to WQ,

the Girsanov’s transformation of W . Via measure changes, we can then derive

the following transformation result:

Lemma 2.2.4. Let d = 1, and assume that f satisfies Assumption (A2) with

(C, θ, α,Γ). Define f̂ by

f̂(t, ŷ, ẑ) := et
(
f(t, e−1

t ŷ, e−1
t ẑ)− f(t, 0, 0)

)
− αtŷ − Γtẑ

for (t, ŷ, ẑ) ∈ [0, T ]× R× Rp, where et := exp
( ∫ t

0
αsds

)
for t ∈ [0, T ]. Then,

f̂ satisfies Assumption (A2) with (Ĉ, θ̂, 0, 0) := (CeTC/2, θeTC/2, 0, 0).

Moreover, the functional differential equation (2.2.1) has a solution if and

only if there is a solution V̂ to

V̂t =

∫ t

0

f̂(s,YQ(ξ̂, V̂ )s,LQ(MQ(ξ̂, V̂ ))s)ds, (2.2.5)

where ξ̂ := eT ξ, and Q ≈ P is given by dQ
dP

= E(Γ ·W )T .

Proof. We first prove that f̂ satisfies (A2) with (Ĉ, θ̂, 0, 0) via a direct com-

putation: let ŷ, ŷ′ ∈ R, ẑ, ẑ′ ∈ Rp and δŷ = ŷ − ŷ′, δẑ = ẑ − ẑ′. Then,

|f̂(t, ŷ, ẑ)−f̂(t, ŷ′, ẑ′)|=
∣∣et(f(t, e−1

t ŷ, e−1
t ẑ)−f(t, e−1

t ŷ′, e−1
t ẑ′)

)
−αtδŷ −Γtδẑ

∣∣
≤ et

∣∣f(t, e−1
t ŷ, e−1

t ẑ)− f(t, e−1
t ŷ′, e−1

t ẑ′)− e−1
t αtδŷ − e−1

t Γtδẑ
∣∣

≤ et
(
Ce−1

t |δŷ|+ θe−1
t |δẑ|

)(
Ce−1

t (|ŷ|+ |ŷ′|) + θe−1
t (|ẑ|+ |ẑ′|)

)
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= e−1
t

(
C|δŷ|+ θ|δẑ|

)(
C(|ŷ|+ |ŷ′|) + θ(|ẑ|+ |ẑ′|)

)
≤
(
Ĉ|δŷ|+ θ̂|δẑ|

)(
Ĉ(|ŷ|+ |ŷ′|) + θ̂(|ẑ|+ |ẑ′|)

)
,

where the last inequality follows from e−1
t = exp

(
−
∫ t

0
αsds

)
≤ eTC . Assume

now that we are given a solution V of (2.2.1), and set

V̂t := etVt −
∫ t

0

(
esαsMP (ξ, V )s + esΓ

T
s LP (MP (ξ, V ))s

)
ds, t ≥ 0.

We claim that V̂ defines a solution of (2.2.5). Indeed, it is easy to verify that

−V̂ is the predictable process of finite variation appearing in the canonical

decomposition with respect to Q of the special Q-semimartingale etYP (ξ, V )t,

since

etYP (ξ, V )t = et
(
MP (ξ, V )t − Vt)

=

∫ t

0

esdMP (ξ, V )s +

∫ t

0

esαsMP (ξ, V )sds− etVt

=

∫ t

0

esd
(
MP (ξ, V )− 〈MP (ξ, V ),Γ ·W 〉

)
s
− V̂t,

and because
∫ ·

0
esd
(
MP (ξ, V ) − 〈MP (ξ, V ),Γ · W 〉

)
s

is a Q-martingale by

Girsanov’s theorem. Therefore, since eTYP (ξ, V )T = ξ̂, we obtain that

YQ(ξ̂, V̂ ) = eYP (ξ, V ), MQ(ξ̂, V̂ ) =

∫ ·
0

esd
(
MP (ξ, V )−〈MP (ξ, V ),Γ·W 〉

)
s
.

On the other hand, by property (2.2.4) we have that

eLP (MP (ξ, V )) = LP
(∫ ·

0

esdMP (ξ, V )s

)
= LP

(
MQ(ξ̂, V̂ ) +

∫ ·
0

esd〈MP (ξ, V ),Γ ·W 〉s
)

= LQ
(
MQ(ξ̂, V̂ )

)
,

where the last equality follows by the definition of LP , LQ. This finally leads
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us to

dV̂t = etdVt + etαtVtdt− etαtMP (ξ, V )tdt− etΓtLP (MP (ξ, V ))tdt

=
[
et

(
f
(
t,YP (ξ, V )t,LP (MP (ξ, V ))t

)
− f(t, 0, 0)

)
− etαtYP (ξ, V )t − etΓtLP (MP (ξ, V ))t

]
dt

= f̂
(
t, etYP (ξ, V )t, etLP (MP (ξ, V ))t

)
dt

= f̂
(
t,YQ(ξ̂, V̂ )t,LQ(MQ(ξ̂, V̂ ))t

)
dt.

As a consequence of this transformation, we can relax the conditions on f

in Proposition 2.2.3, obtaining the following result:

Lemma 2.2.5. Let d = 1, and let f satisfy Assumption (A2) with (C, θ, α,Γ).

Denote by β the same constant as in Proposition 2.2.3, and assume that

‖ξ‖∞ ≤ e−2TC

4β
. Then, the functional differential equation (2.2.1) has a unique

solution V ∈ SBMO1.

Proof. For et := exp
( ∫ t

0
αsds

)
, set ξ̂ := eT ξ, and f̂ as in Lemma 2.2.4. Then,

Lemma 2.2.4 implies that f̂ satisfies Assumption (A2) with (Ĉ, θ̂, 0, 0), and

we have that

‖ξ̂‖∞ ≤ eTC‖ξ‖∞ ≤
e−TC

4β
=

1

4β̂
,

where β̂ := 4TĈ2 + 8K2θ̂2. Hence, we can apply Proposition 2.2.3, obtaining

that the functional differential equation with generators (f̂ , ξ̂) has a unique

solution on (Ω,F , Q). By Lemma 2.2.4, we obtain the claim.

2.3 Extension to arbitrary bounded terminal

conditions

In this section we extend the existence and uniqueness result to any bounded

terminal condition. The main idea is to rewrite ξ as ξ =
∑n

i=1 ξ
i for some n ∈

N, where ‖ξi‖∞ is sufficiently small, and to construct for each i a functional

differential equation with terminal condition ξi and on which Lemma 2.2.5

is applicable. The role of the Assumption (A1) is to guarantee that these
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functional differential equations all satisfy Assumption (A2) with the same

constants C, θ.

The first step is to apply the result of Lemma 2.2.5 to a transformed

functional differential equation. To obtain this, we first need to derive the

following technical result:

Lemma 2.3.1. Let d = 1, and assume that f satisfies Assumption (A1). For

ξ̃ ∈ L∞ such that ‖ξ̃‖∞ ≤ e−2TC

4β
, let Ṽ be the solution of

Ṽt =

∫ t

0

(
f(s,Y(ξ̃, Ṽ )s,L(M(ξ̃, Ṽ ))s)− f(s, 0, 0)

)
ds. (2.3.1)

Moreover, for (t, y, z) ∈ [0, T ]× R× Rp define f̆ by

f̆(t, y, z) := f
(
t, y+Y(ξ̃, Ṽ )t, z+L(M(ξ̃, Ṽ ))t

)
− f
(
t,Y(ξ̃, Ṽ )t,L(M(ξ̃, Ṽ ))t

)
.

Then. f̆ satisfies Assumption (A2) with (C, θ, α,Γ), where α, Γ are given by

αt = ∇yf
(
t,Y(ξ̃, Ṽ )t,L(M(ξ̃, Ṽ ))t

)
, Γt = ∇zf

(
t,Y(ξ̃, Ṽ )t,L(M(ξ̃, Ṽ ))t

)
.

Proof. This is essentially proved by applying the mean value theorem twice as

in [69]: for notational simplicity, we write Ỹ = Y(ξ̃, Ṽ ) and Z̃ = L(M(ξ̃, Ṽ )).

For y, y′ ∈ R, z, z′ ∈ Rp, we set δy = y − y′, δz = z − z′. Then,

∣∣f̆(t, y, z)− f̆(t, y′, z′)−∇yf
(
t, Ỹt, Z̃t

)
δy −∇zf

(
t, Ỹt, Z̃t

)
δz
∣∣

=
∣∣f(t, y + Ỹt, z + Z̃t

)
− f

(
t, y′ + Ỹt, z

′ + Z̃t
)

−∇yf
(
t, Ỹt, Z̃t

)
δy −∇zf

(
t, Ỹt, Z̃t

)
δz
∣∣

≤
∣∣∇yf

(
Λ)δy +∇zf

(
Λ
)
δz −∇yf

(
t, Ỹt, Z̃t

)
δy −∇zf

(
t, Ỹt, Z̃t

)
δz
∣∣,

where, for some λ ∈ [0, 1],

Λ =
(
t, λ(y + Ỹt) + (1− λ)(y′ + Ỹt), λ(z + Z̃t) + (1− λ)(z′ + Z̃t)

)
=
(
t, λy + (1− λ)y′ + Ỹt, λz + (1− λ)z′ + Z̃t

)
.

We then apply the mean value theorem to the functions ∇yf and ∇zf . Since
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f satisfies Assumption (A1), we conclude that

∣∣f̆(t, y, z)− f̆(t, y′, z′)−∇yf
(
t, Ỹt, Z̃t

)
δy −∇zf

(
t, Ỹt, Z̃t

)
δz
∣∣

≤
∣∣∇yf

(
Λ)−∇yf

(
t, Ỹt, Z̃t

)∣∣|δy|+ ∣∣∇zf
(
Λ
)
−∇zf

(
t, Ỹt, Z̃t

)∣∣|δz|
≤ C2

∣∣∣(λy + (1− λ)y′ + Ỹt
)
− Ỹt

∣∣∣|δy|+ Cθ
∣∣∣(λz + (1− λ)z′ + Z̃t

)
− Z̃t

∣∣∣|δy|
+ Cθ

∣∣∣(λy + (1− λ)y′ + Ỹt
)
− Ỹt

∣∣∣|δz|+ θ2
∣∣∣(λz + (1− λ)z′ + Z̃t

)
− Z̃t

∣∣∣|δz|
≤
(
C|y − y′|+ θ|z − z′|

)(
C
(
|y|+ |y′|

)
+ θ
(
|z|+ |z′|

))
,

as
∣∣λy + (1− λ)y′

∣∣ ≤ |y|+ |y′|, ∣∣λz + (1− λ)z′
∣∣ ≤ |z|+ |z′|.

The above assertion allows us to apply Lemma 2.2.5 to the functional

differential equation with driver f̆ . Thus:

Corollary 2.3.2. Assume that the conditions of Lemma 2.3.1 hold true, and

let ξ̆ ∈ L∞ such that ‖ξ̆‖∞ ≤ e−2TC

4β
. Then, the functional differential equation

V̆t =

∫ t

0

f̆
(
s,Y(ξ̆, V̆ )s,L(M(ξ̆, V̆ ))s

)
ds (2.3.2)

has a unique solution in SBMO1.

Corollary 2.3.2 is an important tool in deriving the desired extension to

arbitrary terminal conditions. Namely, it allows us to combine the solutions

of (2.3.1) and (2.3.2), obtaining a process which solves a functional differential

equation whose terminal condition is the sum of the previous ones:

Lemma 2.3.3. For d = 1, let f satisfy Assumption (A1), and assume that

‖ξ̃‖∞, ‖ξ̆‖∞ ≤ e−2TC

4β
. Let Ṽ , V̆ denote the solutions to (2.3.1), respectively

(2.3.2). Then, V = Ṽ + V̆ is a solution of

Vt =

∫ t

0

(
f(s,Y(ξ, V )s,L(M(ξ, V ))s)− f(s, 0, 0)

)
ds, where ξ = ξ̃ + ξ̆.

Proof. This follows by simply summing the equations (2.3.1) and (2.3.2), re-

membering that the operators Y , M and the functional L are linear.



2.3. Extension to arbitrary bounded terminal conditions 33

By iterating this argument, we can finally construct a solution to our

quadratic functional differential equation for any terminal condition, leading

us to the following result:

Theorem 2.3.4. Let d = 1, ξ ∈ L∞ , and assume that f satisfies Assumption

(A1). Then, the functional differential equation

dVt =
(
f
(
t,Y(ξ, V )t,L(M(ξ, V ))t

)
− f(t, 0, 0)

)
dt (2.3.3)

has a unique solution in SBMO1.

Proof. We first prove the existence. First of all, we rewrite ξ as ξ =
∑n

i=1 ξ
i

for some n ∈ N, where ‖ξi‖∞ ≤ e−2TC

4β
, i = 1, · · · , n. For i = 1, · · · , n, we can

thus construct V i as the solution of the functional differential equation

V i
t =

∫ t

0

f i
(
s,Y(ξi, V i)s,L(M(ξi, V i))s

)
ds,

where the drivers f i are defined recursively by f 1(t, x, z) = f(t, y, z)−f(t, 0, 0),

f i(t, x, z) = f
(
t, y + Y

(∑i−1
j=1 ξ

i,
∑i−1

j=1 V
j
)
t
, z + L

(
M
(∑i−1

j=1 ξ
i,
∑i−1

j=1 V
j
))
t

)
− f

(
t,Y
(∑i−1

j=1 ξ
i,
∑i−1

j=1 V
j
)
t
,L
(
M
(∑i−1

j=1 ξ
i,
∑i−1

j=1 V
j
))
t

)
,

for (t, y, z) ∈ [0, T ]× R× Rp. Note that all solutions V i exist and are unique

by Corollary 2.3.2. By applying Lemma 2.3.3, we get that V :=
∑n

i=1 V
i is a

solution of

Vt =

∫ t

0

(
f
(
s,Y(ξ, V )s,L(M(ξ, V ))s

)
− f(s, 0, 0)

)
ds.

The uniqueness is shown in two steps: we first obtain the uniqueness of Y(ξ, V )

by applying the comparison theorem for quadratic BSDEs proved by Morlais

[55] (observe that Morlais’ result can be applied since d = 1 and because of

the choice of L). Once we have the uniqueness of Y(ξ, V ), the claim follows

by the uniqueness (up to F0-measurable random variables) of the canonical

decomposition for special semimartingales.
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We end this chapter by observing that Theorem 2.3.4 also implies the

existence of a unique solution to the backward stochastic dynamics associated

to the functional differential equation (2.3.3):

Corollary 2.3.5. Under the conditions of Theorem 2.3.4, the quadratic back-

ward stochastic dynamics

dYt = −
(
f(t, Yt,L(M)t)− f(t, 0, 0)

)
dt+ dMt, YT = ξ,

have a unique solution such that (Y,M) ∈ S∞ ×BMO and Y0 = M0.



Chapter 3

Fully coupled forward-backward

dynamics

In this chapter, we introduce a broad class of fully coupled forward-backward

stochastic dynamics on a general filtered probability space, which contains

classical FBSDEs as a special case. As in the previous chapters, these forward-

backward dynamics are then associated to a system of forward functional

differential equations, by introducing appropriate functionals Y , M and Li.
This way, the problem becomes more homogeneous: both functional differen-

tial equations share a common structure, and the conflicting nature between

the forward and backward components is thus partly avoided.

When the time interval is sufficiently small, we obtain the main result

of this chapter, the existence of a unique solution to the system of functional

differential equations under weak assumptions on the functionals Li and under

Lipschitz and monotonicity conditions on the coefficients. We observe that

our approach is purely probabilistic, and that the generality of Li allows to

locally treat many other types of forward-backward equations that do not fit

in the classical FBSDE framework. The extension to arbitrarily time interval

is however more problematic, and has to be treated separately for each choice

of Li: we present a study of the case where the filtration is Brownian and the

functionals Li are given by Itô’s representation.

Fully coupled FBSDEs have been studied extensively during the last two

35
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decades, and have found many applications, especially in stochastic control

theory and mathematical finance. For an overview of the literature, we refer

the reader to the book of Ma and Yong [51]. It is well known that, contrarily

to the case of decoupled FBSDEs, the standard Lipschitz conditions are not

sufficient to obtain the solution for arbitrarily large time intervals. This led to

the development of mainly three approaches, each having its constraints and

which do not cover each other.

The first is the method of contraction mapping (our approach falls within

this category). This methodology has been initiated by Antonelli [1] and later

developed by Pardoux and Tang [60]. It works very well when the time hori-

zon is sufficiently small (or alternatively, under some particular monotonicity

conditions [60]): the drawback is that it requires particular attention when

extending the solution to arbitrarily large time intervals, in order to avoid pos-

sible explosions. This method seems to be the more convenient in our case,

since it allows us to leave the functionals Li unspecified by only imposing some

Lipschitz and boundedness conditions.

The other two methods allow, on the other hand, to directly obtain the

solution for arbitrarily large time horizons. The four-step scheme has been

introduced by Ma et al. [50], by relying on the connection between parabolic

PDEs and FBSDEs. Unfortunately, in order to solve the PDE, the coefficients

have to be deterministic and have to satisfy strong regularity assumptions.

The last approach is the method of continuation, initiated by Hu and Peng

[40], and later considered by Peng and Wu [61] and Yong [71], who introduced

the concept of bridge. While the coefficients are allowed to be random, this

method requires that they satisfy a set of monotonicity conditions.

The chapter is organized as follows. In Section 3.1, after introducing an

appropriate framework, we define our class of forward-backward dynamics

and the associated system of functional differential equations. Section 3.2 is

then dedicated to the existence and uniqueness of solutions to such a system

for sufficiently small time horizons. Finally, in Section 3.3 we discuss the

extension of the solution to arbitrarily large time intervals, especially in the

case of classical Brownian FBSDEs.
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3.1 Fully coupled systems of functional

differential equations

We begin our discussion with some intuitive argumentations in the Brownian

setting, which should help us understand how to possibly formulate a func-

tional differential approach to general fully coupled forward-backward equa-

tions. Let (Ω,F , P ) be for the moment a complete probability space with

an m-dimensional Brownian motion W = (Wt)t∈[0,T ] and the corresponding

augmented filtration (Ft)t∈[0,T ]. Consider a classical fully coupled FBSDE of

the form 
dXt = µ(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dWt,

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt,

X0 = x, YT = φ(XT ),

(3.1.1)

where the functions µ : Ω× [0, T ]×Rn×Rd×Rd×m → Rn, σ : Ω× [0, T ]×Rn×
Rd×Rd×m → Rn×m, f : Ω× [0, T ]×Rn×Rd×Rd×m → Rd, φ : Ω×Rn → Rd

satisfy the usual measurability and integrability conditions.

We denote by C φ
X the class of Rn-valued adapted processes X on [0, T ] such

that φ(XT ) ∈ L1(FT ), and by CV the class of Rd-valued adapted processes

V on [0, T ] such that VT ∈ L1(FT ). Then, the methodology considered in

the previous chapters induces us to associate such a FBSDE to the system of

functional differential equations given by
dXt = µ

(
t,Xt,Yφ(X, V )t,Zφ(X, V )t

)
dt+ σ(t,Xt,Yφ(X, V )t,Zφ(X, V )t)dWt,

dVt = f
(
t,Xt,Yφ(X, V )t,Zφ(X, V )t

)
dt,

X0 = x, V0 = 0,

where the operators Mφ and Yφ are defined on C φ
X × CV by

Mφ(X, V )t := E[φ(XT ) + VT |Ft],

Yφ(X, V )t :=Mφ(X, V )t − Vt, t ∈ [0, T ],
(3.1.2)



38 Chapter 3. Fully coupled forward-backward dynamics

whereas Zφ is given implicitly via Itô’s representation theorem by

Mφ(X, V )T = E[Mφ(X, V )T ] +

∫ T

0

Zφ(X, V )sdWs, (X, V ) ∈ C φ
X × CV .

Therefore, the solution of the FBSDE can be obtained by solving a system

of coupled functional equations which are both running forward: this allows

us to partly avoid the conflicting nature between the forward and backward

components.

For the rest of this chapter, we will drop the dependence of Mφ, Yφ and

Zφ on φ by writingM, Y and Z. As in the case of simple BSDEs, the above

approach can be made rigorous and extended to a much more general frame-

work. To this end, we first need to introduce some notation: in the following,

we fix T > 0, and assume that we are given a complete probability space

(Ω,F , P ) together with a general filtration F = (Ft)t∈[0,T ] satisfying the usual

assumptions. We recall that every F-martingale has under these conditions

a càdlàg version, which we will always choose. Moreover, we denote by P
the predictable σ-field with respect to F and assume that an m-dimensional

Brownian motion W = (Wt)t∈[0,T ] is defined on (Ω,F ,F, P ).

As in the previous chapter, for k, l ∈ N, | · | denotes the Euclidean

norm on Rk, respectively the Hilbert-Schmidt norm on Rk×l, and Rk×l will

often be identified with Rk·l. We define S 2([0, T ],Rd) as the space of all

processes V : Ω × [0, T ] → Rd continuous and adapted such that V0 = 0

and E[supt∈[0,T ] |Vt|2] < ∞, while M 2([0, T ],Rd) denotes the space of all

square integrable Rd-valued martingales on [0, T ]. Both S 2([0, T ],Rd) and

M 2([0, T ],Rd) are endowed with the norm

‖V ‖S 2[0,T ] :=

√
E
[

sup
t∈[0,T ]

|Vt|2
]
,

and
(
S 2([0, T ],Rd), ‖ ·‖S 2[0,T ]

)
then becomes a Banach space. Sometimes, we

will also need the direct sum space S 2([0, T ],Rd)⊕M 2([0, T ],Rd), endowed

with the same norm ‖ · ‖S 2[0,T ].

Finally, similarly to simple Lipschitz backward dynamics, we will assume
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that the coefficients µ, σ and f depend on more general processes Li(M) than

just Z. In such a case, Li are as usual operators mapping M 2([0, T ],Rd) into

spaces of pi-dimensional adapted processes: this will allow both to take into

account the generality of the filtration F and to treat locally other types of

forward-backward equations not fitting in the classical framework. We then

consider the following forward-backward stochastic dynamics:
dXt = µ(t,Xt, Yt,L1(M)t)dt+ σ(t,Xt, Yt,L2(M)t)dWt,

dYt = −f(t,Xt, Yt,L3(M)t)dt+ dMt,

X0 = x, YT = φ(XT ),

(3.1.3)

where µ : Ω×[0, T ]×Rn×Rd×Rp1 → Rn, σ : Ω×[0, T ]×Rn×Rd×Rp2 → Rn×m,

f : Ω × [0, T ] × Rn × Rd × Rp3 → Rd, φ : Ω × Rn → Rd have the necessary

measurability and integrability properties.

A solution to (3.1.3) is a triplet of processes (X, Y,M) such that X ∈
S 2([0, T ],Rn), Y ∈ S 2([0, T ],Rd)⊕M 2([0, T ],Rd), M ∈M 2([0, T ],Rd), and

satisfying the integral formulation of (3.1.3). The previous Brownian example

suggests us a viable approach to the solution of (3.1.3): namely, with the help

of the operators Y andM (whose definition can obviously be extended to the

general space (Ω,F ,F, P )), the problem can be reformulated as the following

system of functional differential equations:
dXt = µ(t,Xt,Y(X,V )t,L1(M(X,V ))t)dt+ σ(t,Xt,Y(X,V )t,L2(M(X,V ))t)dWt,

dVt = f(t,Xt,Y(X,V )t,L3(M(X,V ))t)dt,

X0 = x, V0 = 0.

(3.1.4)

The system is then completely determined by (µ, σ, f, φ,L1,L2,L3). Moreover,

it is easy to check that the problems (3.1.3) and (3.1.4) are equivalent: indeed,

if (X, Y,M) solves (3.1.3), then we obtain a solution of (3.1.4) via the canonical

decomposition of Y , and conversely, if (X, V ) is a solution of the functional

differential equation, then
(
X,Y(X, V ),M(X, V )

)
solves (3.1.3).

As mentioned previously, this approach has the important advantage of

increasing the homogeneity of the problem. Indeed, while the system (3.1.3)
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consists of a forward and a backward equation that don’t share a common

structure, both the functional equations in (3.1.4) are running forward in time

and show a similar dependence of the coefficients on both the present and the

terminal values of the solution processes. In particular, this homogeneity

allows to rewrite the problem more compactly as
dUt = Ψ(t, π1(Ut),Y(U)t,L1(M(U))t,L3(M(U))t)dt

+Σ(t, π1(Ut),Y(U)t,L2(M(U))t)dWt,

U0 = (x, 0)T,

where U = (X, V )T, π1 : Rn+d → Rn is the projection on the first n compo-

nents, Σ = (σ, 0)T, and for t ∈ [0, T ], (x, y, z1, z3) ∈ Rn × Rd × Rp1 × Rp3 ,

Ψ(t, x, y, z1, z3) = (µ(t, x, y, z1), f(t, x, y, z3))T. For the remainder of the chap-

ter, we prefer however to consider the system as formulated in (3.1.4), since

it will be more convenient to study in such a framework the coupling between

X and V .

3.2 Existence and uniqueness of local

solutions

The purpose of this section is to prove that, under some monotonicity and

Lipschitz assumptions on the coefficients µ, σ, f , φ and the functionals L1,

L2 and L3, the system of functional differential equations introduced in the

previous section has a unique solution, provided that the time horizon T is

sufficiently small.

We point out that, for our main result to hold, it is sufficient that L1, L2

and L3 satisfy the same Lipschitz and boundedness assumptions as for simple

backward stochastic dynamics. As already anticipated in the Introduction,

these conditions are rather mild and allow to study many types of operators

different from the usual martingale integrand processes considered in classical

FBSDEs: we emphasize the generality of these assumptions by giving several

examples of functionals fitting within our framework, and we present possible



3.2. Existence and uniqueness of local solutions 41

financial applications.

In the following, we denote by H 2([0, T ],Rl) the space of P-measurable

processes H : Ω × [0, T ] → Rl such that ‖H‖2
H 2[0,T ] := E[

∫ T
0
|Ht|2dt] < ∞,

where l ∈ N. We shall assume that the coefficients of (3.1.4) satisfy the

following conditions:

Assumption (B1): The functions µ : Ω × [0, T ] × Rn × Rd × Rp1 → Rn,

σ : Ω× [0, T ]×Rn ×Rd ×Rp2 → Rn×m, f : Ω× [0, T ]×Rn ×Rd ×Rp3 → Rd

and φ : Ω×Rn → Rd satisfy Assumption (B1) if there exists a constant C > 0

such that:

(B1.1) For any (x, y, z1, z2, z3) ∈ Rn × Rd × Rp1 × Rp2 × Rp3, the processes

µ(·, x, y, z1), σ(·, x, y, z2) and f(·, x, y, z3) are P-measurable and φ(x)

is FT -measurable.

(B1.2) For every (x, y, z1), (x′, y′, z′1) ∈ Rn × Rd × Rp1,

(x− x′)T
(
µ(·, x, y, z1)− µ(·, x′, y, z1)

)
≤ C|x− x′|2,

|µ(·, x, y, z1)− µ(·, x, y′, z′1)| ≤ C(|y − y′|+ |z1 − z′1|),

|µ(·, x, 0, 0)| ≤ C(1 + |x|) dP ⊗ dt-a.s.,

and the function u 7→ µ(·, u, y, z1) is dP ⊗ dt-a.s. continuous.

(B1.3) f(·, 0, 0, 0) ∈ H 2([0, T ],Rd), σ(·, 0, 0, 0) ∈ H 2([0, T ],Rn×m) and

φ(0) ∈ L2(Ω,Rd).

(B1.4) For every (x, y, z2, z3), (x′, y′, z′2, z
′
3) ∈ Rn × Rd × Rp2 × Rp3,

|σ(·, x, y, z2)− σ(·, x′, y′, z′2)|2 ≤ C(|x− x′|2 + |y − y′|2 + |z2 − z′2|2),

|f(·, x, y, z3)− f(·, x′, y′, z′3)| ≤ C(|x− x′|+ |y − y′|+ |z3 − z′3|),

|φ(x)− φ(x′)| ≤ C|x− x′| dP ⊗ dt-a.s..

Observe that these conditions are quite standard in the theory of FBSDEs

(see for instance [51]). The reader can easily verify that the condition (B1.2)

could also be replaced by the following stronger assumption:
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(B1.2’) µ(·,0,0,0)∈H 2([0, T ],Rn) and, for (x,y,z1), (x′,y′, z′1) ∈ Rn×Rd×Rp1,

|µ(t, x, y, z1)−µ(t, x′, y′, z′1)|≤C(|x−x′|+|y−y′|+|z1−z′1|) dP⊗dt-a.s..

Moreover, as a consequence of the assumptions on φ, we obtain without

much effort the following estimates:

Lemma 3.2.1. Assume that φ satisfies the conditions in (B1). Then we have

that, for the functionals introduced in (3.1.2),

Y : S 2([0, T ],Rn)×S 2([0, T ],Rd)→ S 2([0, T ],Rd)⊕M 2([0, T ],Rd),

M : S 2([0, T ],Rn)×S 2([0, T ],Rd)→M 2([0, T ],Rd).

Moreover, for any X,X ′ ∈ S 2([0, T ],Rn) and V, V ′ ∈ S 2([0, T ],Rd),

‖Y(X, V )− Y(X ′, V ′)‖S 2[0,T ] ≤ 2C‖X −X ′‖S 2[0,T ] + 3‖V − V ′‖S 2[0,T ],

‖M(X, V )−M(X ′, V ′)‖S 2[0,T ] ≤ 2C‖X −X ′‖S 2[0,T ] + 2‖V − V ′‖S 2[0,T ].

Proof. We first prove the second assertion. By the triangle inequality,

‖M(X, V )−M(X ′, V ′)‖S 2[0,T ]

≤
∥∥E[φ(XT )− φ(X ′T )|F·]

∥∥
S 2[0,T ]

+
∥∥E[VT − V ′T |F·]

∥∥
S 2[0,T ]

= E
[

sup
t∈[0,T ]

∣∣E[φ(XT )− φ(X ′T )|Ft]
∣∣2]1/2

+ E
[

sup
t∈[0,T ]

∣∣E[VT − V ′T |Ft]
∣∣2]1/2

and therefore, by Doob’s inequality and the assumption on φ,

‖M(X, V )−M(X ′, V ′)‖S 2[0,T ]≤2
(
E
[
|φ(XT )−φ(X ′T )|2

]1/2
+E

[
|VT−V ′T |2

]1/2)
≤2C‖X −X ′‖S 2[0,T ] + 2‖V − V ′‖S 2[0,T ].

The estimate for ‖Y(X, V )−Y(X ′, V ′)‖S 2[0,T ] then follows by applying again

the triangle inequality.

These Lipschitz estimates for Y and M will be very useful in the sequel.

Clearly, the above assumptions on the coefficients µ, σ, f and φ aren’t enough
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to hope for general results on existence and uniqueness of solutions, without

further specification for the abstract functionals L1, L2 and L3. As already

anticipated, the same Lipschitz and boundedness assumptions as the ones

introduced in [49] will be sufficient: we report them here for the reader’s

convenience.

Assumption (L1): The functional L satisfies Assumption (L1) if:

(L1.1) L maps M 2([0, T ],Rd) into O2([0, T ],Rp), where O2([0, T ],Rp) is ei-

ther the space H 2([0, T ],Rp) or S 2([0, T ],Rp).

(L1.2) L is bounded and Lipschitz continuous, i.e. there exists a constant

K > 0 independent of T such that, for all M,M ′ ∈M 2([0, T ],Rd),

‖L(M)‖O2[0,T ] ≤ K‖M‖S 2[0,T ],

‖L(M)− L(M ′)‖O2[0,T ] ≤ K‖M −M ′‖S 2[0,T ].

Examples 3.2.2. To convince the reader of the generality of Assumption

(L1), we give here some examples of possible operators L. We begin with the

classical case of integrand processes generated by martingale representations.

(i) Assume that (Ft)t∈[0,T ] is the augmented filtration generated by the

Brownian motion W , and take O2([0, T ],Rp) = H 2([0, T ],Rd×m). Then,

we define L : M 2([0, T ],Rd)→H 2([0, T ],Rd×m) implicitly via Itô’s rep-

resentation theorem by

Mt = M0 +

∫ t

0

L(M)sdWs, t ∈ [0, T ].

By Itô’s isometry we have that

‖L(M)‖2
H 2[0,T ] = E

[ ∫ T

0

|L(M)t|2dt
]

= E
[(
MT −M0

)2 ]
= E[M2

T ]− E[M2
0 ] ≤ ‖M‖2

S 2[0,T ],

and the Lipschitz property follows by the linearity of L. Note that in

the case where L1 = L2 = L3 = L, the system (3.1.3) is reduced to a
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classical FBSDE. The applications of FBSDEs to financial markets are

countless: for an overview, we refer the reader in particular to [32,51].

(ii) Let now (Ft)t∈[0,T ] be a general filtration with just the usual assumptions.

As in the previous case, we can take O2([0, T ],Rp) = H 2([0, T ],Rd×m),

and define L : M 2([0, T ],Rd) → H 2([0, T ],Rd×m) implicitly via the

orthogonal decomposition with respect to W , i.e.

Mt =

∫ t

0

L(M)sdWs +Nt, t ∈ [0, T ],

where N is some martingale orthogonal with respect to W . The reader

may easily notice the connection between this functional and general-

ized BSDEs (see [31]). Moreover, because of the orthogonality, we can

prove similarly to (i) that L satisfies (L1), by applying the Burkholder-

Davis-Gundy inequality instead of Itô’s isometry. Hence, generalized

fully coupled FBSDEs can be treated within our framework, and by

the generality of the filtration, we can extend the financial applications

of FBSDEs to the case of incomplete markets. Consider for instance

a large investor trading in an incomplete market. Since this investor

buys and sells large amounts of assets, it is reasonable to assume that

his trading strategy affects the prices of the stocks: by considering the

hedging problem for this investor, we therefore obtain a fully coupled

system, and the incompleteness of the market leads to a generalized fully

coupled FBSDE. For more details, we refer the reader to [51].

While martingale integrand processes are the case most studied in the

literature, they are not the only type of functional treatable within our frame-

work: there are indeed several other classes of non-local operators satisfying

Assumption (L1). Let us give some examples:

(iii) Assume that (Ft)t∈[0,T ] just satisfies the usual assumptions. We take

O2([0, T ],Rp) = S 2([0, T ],Rd), and L : M 2([0, T ],Rd)→ S 2([0, T ],Rd)

is simply defined by L(M) := M ; in this case, Assumption (L1) becomes

trivial. In a financial context, L(M) may represent the diffusion part of

the claim Y = M − V .
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(iv) Let for simplicity d = 1. Fix T̃ > 0 and assume that, for T ≤ T̃ ,

F = (Ft)t∈[0,T ] is such that all martingales with respect to F are continu-

ous. Let O2([0, T ],Rp) = H 2([0, T ],R), and define L : M 2([0, T ],R)→
H 2([0, T ],R) by

L(M)t :=
√
E
[
〈M〉t,T

∣∣Ft], M ∈M 2([0, T ],R), t ∈ [0, T ],

where 〈M〉t,T := 〈M〉T−〈M〉t. We recall that this functional has already

been considered in Chapter 2 (see Example 2.2.2 (ii)): there, by applying

the Kunita-Watanabe inequality we obtained that, for t ≥ 0,

∣∣L(M)t − L(M ′)t
∣∣2 ≤ E[〈M −M ′〉t,T |Ft],

and therefore, by Fubini’s theorem,

‖L(M)− L(M ′)‖2
H 2[0,T ] =E

[ ∫ T

0

∣∣L(M)t − L(M ′)t
∣∣2dt]

≤E
[ ∫ T

0

E
[
〈M−M ′〉t,T

∣∣Ft]dt]
=E

[ ∫ T

0

〈M−M ′〉t,Tdt
]
≤ T̃E[〈M−M ′〉T ].

By applying the Burkholder-Davis-Gundy inequality, we finally get the

desired Lipschitz property. The boundedness condition is obtained via

similar computations.

(v) We choose again for simplicity d = 1, and we assume that F = (Ft)t∈[0,T ]

is as in the example (iv). We can define L by taking O2([0, T ],Rp) =

S 2([0, T ],R), and

L : M 2([0, T ],R)→ S 2([0, T ],R), L(M)t :=
√
〈M〉t, t ∈ [0, T ].

By the Burkholder-Davis-Gundy inequality, we have that

‖L(M)‖2
S 2[0,T ] = E

[
sup
t∈[0,T ]

〈M〉t
]

= E[〈M〉T ] ≤ K‖M‖2
S 2[0,T ].
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On the other hand, by the Kunita-Watanabe inequality,∣∣∣√〈M〉t −√〈M ′〉t
∣∣∣2 = 〈M〉t + 〈M ′〉t − 2

√
〈M〉t〈M ′〉t

≤ 〈M〉t + 〈M ′〉t − 2
∣∣〈M,M ′〉t

∣∣
≤ 〈M〉t + 〈M ′〉t − 2〈M,M ′〉t = 〈M −M ′〉t,

and the Lipschitz property then follows by applying the Burkholder-

Davis-Gundy inequality as in the previous example. We restrict for a

moment to the Brownian setting to give a financial interpretation: in this

case, L(M) may be explicitly rewritten as L(M)t =
√∫ t

0
|Zs|2ds, where

Z is the martingale integrand in the Itô representation of M . In the

usual BSDE framework for hedging (see for instance [32]), L(M) is then

closely connected to the accumulated cost of the portfolio strategy: this

could allow us, for instance, to model some types of storage problems.

(vi) We modify the previous example by combining it with orthogonal de-

compositions. Let d = 1 and F = (Ft)t∈[0,T ] as in the example (iv). Fix

a martingale M̃ , and define R : M 2([0, T ],R) → M 2([0, T ],R) as the

orthogonal term in the orthogonal decomposition with respect to M̃ , i.e.

Mt =
(
Mt −R(M)t

)
+R(M)t, t ∈ [0, T ],

where R(M) is orthogonal with respect to M̃ , and Mt − R(M)t =∫ t
0
ZsdM̃s for some process Z. Then, we define the functional L by

L : M 2([0, T ],R)→ S 2([0, T ],R), L(M)t :=
√
〈R(M)〉t, t ∈ [0, T ].

Because of the orthogonality, it is easy to check that, for all t ≥ 0,

〈M〉t = 〈M −R(M) +R(M)〉t
= 〈M −R(M)〉t + 〈R(M)〉t ≥ 〈R(M)〉t,

and similarly for M −M ′. Therefore, L satisfies Assumption (L1) be-

cause of example (v). This functional may have interesting applications
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in mathematical finance: namely, in the typical BSDE framework for

hedging in incomplete markets, the operator R(M) represents the non-

hedgeable part of the claim. While we cannot hedge this risk, we can

partly incorporate its effect on the price process since the coefficients µ,

σ and f are allowed to depend on
√
〈R(M)〉t.

(vii) As a final example, we introduce a functional intimately related to back-

ward equations with time delayed generators (see [26]). Let T̃ > 0 be

fixed. For T ≤ T̃ , let (Ft)t∈[0,T ] satisfy the usual assumptions, and

O2([0, T ],Rp) = H 2([0, T ],Rd×m). Motivated by the framework intro-

duced by Dos Reis et al. [27], we can then define L : M 2([0, T ],Rd) →
H 2([0, T ],Rd×m) by

L(M)t :=

∫ 0

−t
L̂(M)t+sαZ(ds),

where L̂ is the functional introduced in (ii), and αZ is a non-random

finite measure with support in [−T̃ , 0]. Observe that L is closely related

to the functional in (v) when αZ is the Lebesgue measure restricted to

[−T̃ , 0]. Moreover, by applying the change of integration order proved

in [27], we can show that

‖L(M)‖H 2[0,T ] = E

[ ∫ T

0

∣∣∣∣ ∫ 0

−t
L̂(M)t+sαZ(ds)

∣∣∣∣2dt]1/2

≤ αZ([−T̃ , 0])‖L̂(M)‖H 2[0,T ]

≤ K‖M‖S 2[0,T ]

(3.2.1)

for some constant K = K(T̃ ), where the last inequality follows from the

boundedness of L̂. Assumption (L1) then follows by linearity.

This functional L leads us to a particular class of fully coupled forward-

backward equations with delayed generators. Let us note however that,

as already mentioned in Remark 1.2.3 in the Introduction, the study

of backward delayed equations in their full generality requires to re-

place the operator Y(X, V ) in (3.1.4) by a new functional Y(X, V )t :=
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∫ 0

−t Y(X, V )t+sαY (ds), where αY is a non-random finite measure: as

pointed out in [27], this kind of equation is very difficult to study even

in the simple decoupled case, and it will not be treated here. For an

overview of the several applications of backward equations with time

delay to mathematical finance, the reader may consult for instance the

article by Delong [25].

These examples should help us understand the importance of the next

theorem: this is the main result of this section, and states the existence of

a unique square-integrable solution to the system (3.1.4) on sufficiently small

intervals [0, T ], provided that the functionals Li satisfy Assumption (L1).

The generality of (L1) therefore gives us a great flexibility in the choice of Li,
allowing to study many different types of coupled forward-backward stochastic

systems not considered in the classical literature.

Theorem 3.2.3. Let µ, σ, f and φ satisfy Assumption (B1) with respect to

the constant C. Furthermore, assume that L1, L3 satisfy Assumption (L1)

and that L2 satisfies (L1) with respect to O2([0, T ],Rp2) = S 2([0, T ],Rp2),

denoting by K the common Lipschitz constant of L1, L2, L3. Then there is a

constant ` = `(C,K) depending only on C and K so that, for T < `, (3.1.4)

admits a unique solution (X, V ) in S 2([0, T ],Rn)×S 2([0, T ],Rd).

Proof. From now on, we will write for notational simplicity ‖ · ‖2
O for the

norm ‖ · ‖O2[0,T ]. Moreover, we denote the product space S 2([0, T ],Rn) ×
S 2([0, T ],Rd) by S 2

X ×S 2
V , and endow it with the norm

‖(X, V )‖S 2
X×S 2

V
:=
√
‖X‖2

S 2 + ‖V ‖2
S 2 , (X, V ) ∈ S 2

X ×S 2
V .

The mapping L : S 2
X ×S 2

V → S 2
X ×S 2

V , L(X, V ) := (X̃, Ṽ ), is defined as

follows: first, X̃ is constructed as the unique solution in S 2([0, T ],Rn) to the

forward stochastic differential equation

dX̃t = µ(t, X̃t,Y(X,V )t,L1(M(X,V ))t)dt+σ(t, X̃t,Y(X,V )t,L2(M(X,V ))t)dWt,

X̃0 = x. (3.2.2)
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Then, once X̃ has been obtained, Ṽ is given explicitly by the expression

Ṽt =

∫ t

0

f(s, X̃s,Y(X, V )s,L3(M(X, V ))s)ds, (3.2.3)

We show that the mapping L is well defined and maps S 2
X×S 2

V into itself.

First of all, we note that the existence of a unique solution in S 2([0, T ],Rn)

to (3.2.2) follows by Assumption (B1) and the results on stochastic differ-

ential equations with monotonous coefficients obtained, for instance, by Ro-

zovsky [66]: indeed, by setting µ̄(t, x) := µ(t, x,Y(X, V )t,L1(M(X, V ))t) and

σ̄(t, x) := σ(t, x,Y(X, V )t,L2(M(X, V ))t), the reader can easily check that

all the conditions of [66] are satisfied, as ‖Y(X, V )‖S 2 and ‖M(X, V )‖S 2 are

finite by Lemma 3.2.1. On the other hand, it is not difficult to verify that

Ṽ ∈ S 2([0, T ],Rd), as for f0 := f(·, 0, 0, 0),

‖Ṽ ‖S 2 ≤
√
T
(
‖f0‖H 2 + ‖f

(
·, X̃·,Y(X, V )·,L3(M(X, V ))·

)
− f0‖H 2

)
≤
√
T
(
‖f0‖H 2 + C(

√
T ∨ 1)

(
‖X̃‖S 2 + ‖Y(X, V )‖S 2 + ‖L3(M(X, V ))‖O2

))
≤
√
T
(
‖f0‖H 2 + C(

√
T ∨ 1)

(
‖X̃‖S 2 +‖Y(X, V )‖S 2 +K‖M(X, V )‖S 2

))
<∞.

Since the pair (X, V ) is a solution of (3.1.4) if and only if it is a fixed

point of L, it suffices to prove that L is a contraction on S 2
X ×S 2

V for small

enough T > 0. Let L(X1, V 1) = (X̃1, Ṽ 1), L(X2, V 2) = (X̃2, Ṽ 2), and assume

without loss of generality that T ≤ 1. By Itô’s formula, we can compute that

d|X̃1
t − X̃2

t |2 = 2(X̃1
t − X̃2

t )Td(X̃1 − X̃2)t + d〈X̃1 − X̃2〉t

= 2
(
X̃1
t − X̃2

t

)T
(
µ
(
t, X̃1

t ,Y(X1, V 1)t,L1(M(X1, V 1))t
)

− µ
(
t, X̃2

t ,Y(X2, V 2)t,L1(M(X2, V 2))t
))
dt

+ 2
(
X̃1
t − X̃2

t

)T
(
σ
(
t, X̃1

t ,Y(X1, V 1)t,L2(M(X1, V 1))t
)

− σ
(
t, X̃2

t ,Y(X2, V 2)t,L2(M(X2, V 2))t
)
dWt

)
+
∣∣σ(t, X̃1

t ,Y(X1, V 1)t,L2(M(X1, V 1))t
)

− σ
(
t, X̃2

t ,Y(X2, V 2)t,L2(M(X2, V 2))t
)∣∣2dt
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for any t ≥ 0. Thus, by applying Assumption (B1.2), (B1.4) and classical

inequalities we obtain that, for a constant θ1 = θ1(C) depending only on C,

‖X̃1 − X̃2‖2
S 2 = E

[
sup
t∈[0,T ]

|X̃1
t − X̃2

t |2
]

≤ θ1

(
E

[ ∫ T

0

|X̃1
s − X̃2

s |2ds
]

+E

[ ∫ T

0

|X̃1
s − X̃2

s ||Y(X1, V 1)s−Y(X2, V 2)s|ds
]

+ E

[ ∫ T

0

|X̃1
s − X̃2

s ||L1(M(X1, V 1))s − L1(M(X2, V 2))s|ds
]

+ E

[ ∫ T

0

|Y(X1, V 1)s − Y(X2, V 2)s|2ds
]

+ E

[ ∫ T

0

|L2(M(X1, V 1))s − L2(M(X2, V 2))s|2ds
]

+ E

[(∫ T

0

|X̃1
s − X̃2

s |2
(
|X̃1

s − X̃2
s |2+|Y(X1, V 1)s − Y(X2, V 2)s|2 (3.2.4)

+ |L2(M(X1, V 1))s − L2(M(X2, V 2))s|2
)
ds

)1/2])
.

The next step consists in deriving estimates for all the terms on the right

hand side of this inequality. The first term can simply be estimated by

E

[ ∫ T

0

|X̃1
s − X̃2

s |2ds
]
≤ T‖X̃1 − X̃2‖2

S 2 . (3.2.5)

For the second term, we obtain by the Cauchy-Schwarz inequality that

E

[ ∫ T

0

|X̃1
s − X̃2

s ||Y(X1, V 1)s − Y(X2, V 2)s|ds
]

≤ T

2

(
‖X̃1 − X̃2‖2

S 2 + ‖Y(X1, V 1)− Y(X2, V 2)‖2
S 2

)
.

Because of assumption (B1.4) on φ, we can apply Lemma 3.2.1 and get that

E

[ ∫ T

0

|X̃1
s − X̃2

s ||Y(X1, V 1)s − Y(X2, V 2)s|ds
]

≤ θ2T
(
‖X̃1 − X̃2‖2

S 2 + ‖V 1 − V 2‖2
S 2 + ‖X1 −X2‖2

S 2

)
, (3.2.6)
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for some constant θ2 = θ2(C) depending on C. To estimate the third term,

one can apply again the Cauchy-Schwarz inequality to obtain that

E

[ ∫ T

0

|X̃1
s − X̃2

s ||L1(M(X1, V 1))s − L1(M(X2, V 2))s|ds
]

≤ T

2ε
‖X̃1 − X̃2‖2

S 2 +
ε

2
E

[ ∫ T

0

|L1(M(X1, V 1))s − L1(M(X2, V 2))s|2ds
]

≤
√
T

2

(
‖X̃1 − X̃2‖2

S 2 + ‖L1(M(X1, V 1))− L1(M(X2, V 2))‖2
O2

)
,

where the last inequality is obtained by taking ε =
√
T if O2 = H 2 and ε = 1

if O2 = S 2 (remember that T ≤ 1). On the other hand, by Assumption (L1)

we know that

‖L1(M(X1, V 1))− L1(M(X2, V 2))‖2
O2 ≤ K2‖M(X1, V 1)−M(X2, V 2)‖2

S 2 ,

and by applying Lemma 3.2.1,

E

[ ∫ T

0

|X̃1
s − X̃2

s ||L1(M(X1, V 1))s − L1(M(X2, V 2))s|ds
]

≤ θ3

√
T
(
‖X̃1 − X̃2‖2

S 2 + ‖V 1 − V 2‖2
S 2 + ‖X1 −X2‖2

S 2

)
, (3.2.7)

for a constant θ3 = θ3(C,K) depending only on C and K. The fourth term is

estimated by using the same argument as for (3.2.6), obtaining that

E

[ ∫ T

0

|Y(X1, V 1)s−Y(X2, V 2)s|2ds
]
≤ θ4T

(
‖V 1−V 2‖2

S 2 +‖X1−X2‖2
S 2

)
,

(3.2.8)

for some constant θ4 = θ4(C). For the fifth term, we have that

E

[ ∫ T

0

|L2(M(X1, V 1))s − L2(M(X2, V 2))s|2ds
]

≤ T‖L2(M(X1, V 1))− L2(M(X2, V 2))‖2
S 2

≤ K2T‖M(X1, V 1)−M(X2, V 2)‖2
S 2 ,
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and hence, by Lemma 3.2.1,

E

[ ∫ T

0

|L2(M(X1, V 1))s − L2(M(X2, V 2))s|2ds
]

≤ θ5T
(
‖V 1 − V 2‖2

S 2 + ‖X1 −X2‖2
S 2

)
, (3.2.9)

for θ5 = θ5(K). It only remains to estimate the last term: for notational

simplicity, we introduce the process Ai :=
(
Y(X i, V i),L2(M(X i, V i))

)
for

i = 1, 2. By applying the Cauchy-Schwarz inequality, we can verify that

E

[(∫ T

0

|X̃1
s − X̃2

s |2
(
|X̃1

s − X̃2
s |2 + |A1

s − A2
s|2
)
ds

)1/2]
≤ E

[(
sup
t∈[0,T ]

|X̃1
t − X̃2

t |2
)1/2

(∫ T

0

(
|X̃1

s − X̃2
s |2 + |A1

s − A2
s|2
)
ds

)1/2]
≤
√
T

2
E
[

sup
t∈[0,T ]

|X̃1
t − X̃2

t |2
]

+
1

2
√
T
E

[ ∫ T

0

(
|X̃1

s − X̃2
s |2 + |A1

s − A2
s|2
)
ds

]
,

and it is not difficult to check that

E

[ ∫ T

0

(
|X̃1

s − X̃2
s |2 + |A1

s − A2
s|2
)
ds

]
≤ T

(
‖X̃1 − X̃2‖2

S 2 + ‖A1 − A2‖2
S 2

)
,

which finally leads us to

E

[(∫ T

0

|X̃1
s − X̃2

s |2
(
|X̃1

s − X̃2
s |2 + |A1

s − A2
s|2
)
ds

)1/2]
≤ θ6

√
T
(
‖X̃1 − X̃2‖2

S 2 + ‖V 1 − V 2‖2
S 2 + ‖X1 −X2‖2

S 2

)
, (3.2.10)

for some constant θ6 = θ6(C). Therefore, we can plug the estimates (3.2.5)–

(3.2.10) back into (3.2.4), obtaining the inequality

‖X̃1−X̃2‖2
S 2 ≤ θ7

√
T
(
‖X̃1−X̃2‖2

S 2+‖V 1−V 2‖2
S 2+‖X1−X2‖2

S 2

)
, (3.2.11)

for some constant θ7 = θ7(C,K). We should now consider the difference

Ṽ 1− Ṽ 2. Thanks to the explicit nature of the functional differential equation



3.2. Existence and uniqueness of local solutions 53

(3.2.3), we can easily derive the following estimate:

‖Ṽ 1 − Ṽ 2‖2
S 2 ≤ E

[(∫ T

0

∣∣∣f(s, X̃1
s ,Y(X1, V 1)s,L3(M(X1, V 1))s

)
− f

(
s, X̃2

s ,Y(X2, V 2)s,L3(M(X2, V 2))s
)∣∣∣ds)2]

≤ TE

[ ∫ T

0

∣∣∣f(s, X̃1
s ,Y(X1, V 1)s,L3(M(X1, V 1))s

)
− f

(
s, X̃2

s ,Y(X2, V 2)s,L3(M(X2, V 2))s
)∣∣∣2ds]

≤ 3C2T

(
E

[ ∫ T

0

∣∣X̃1
s − X̃2

s

∣∣2ds]+ E

[ ∫ T

0

∣∣Y(X1, V 1)s − Y(X2, V 2)s
∣∣2ds]

+ E

[ ∫ T

0

∣∣L3(M(X1, V 1))s − L3(M(X2, V 2))s
∣∣2ds])

≤ 3C2T
(
‖X̃1 − X̃2‖2

S 2 + ‖Y(X1, V 1)− Y(X2, V 2)‖2
S 2

+ ‖L3(M(X1, V 1))− L3(M(X2, V 2))‖2
O2

)
.

By using the same arguments as for the estimates (3.2.5)–(3.2.10) this yields

that, for a constant θ8 = θ8(C,K),

‖Ṽ 1−Ṽ 2‖2
S 2 ≤ θ8

√
T
(
‖X̃1−X̃2‖2

S 2 +‖V 1−V 2‖2
S 2 +‖X1

t −X2
t ‖2

S 2

)
. (3.2.12)

Hence, we can sum the inequalities (3.2.11) and (3.2.12), obtaining a constant

θ9 = θ9(C,K) depending only on C and K such that

‖(X̃1, Ṽ 1)−(X̃2, Ṽ 2)‖2
S 2
X×S 2

V
≤ θ9

√
T
(
‖X̃1−X̃2‖2

S 2+‖V 1−V 2‖2
S 2+‖X1−X2‖2

S 2

)
≤ θ9

√
T
(
‖(X̃1, Ṽ 1)− (X̃2, Ṽ 2)‖2

S 2
X×S 2

V
+ ‖(X1, V 1)− (X2, V 2)‖2

S 2
X×S 2

V

)
,

which implies that, for T > 0 such that θ9

√
T < 1/2,

‖(X̃1, Ṽ 1)− (X̃2, Ṽ 2)‖2
S 2
X×S 2

V
≤
(

1

θ9

√
T
− 1

)−1

︸ ︷︷ ︸
<1

‖(X1, V 1)− (X2, V 2)‖2
S 2
X×S 2

V
.
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This shows that L is a contraction if T < `(C,K) := 1
4θ29(C,K)

∧ 1, and thus

admits a unique fixed point (X, V ).

It is not difficult to see that Theorem 3.2.3 also holds for functionals L1

and L3 of the form Li = (Li1, · · · ,Liki ,L
i
ki+1, . . . ,Lili), i = 1, 3, where Lij

satisfies Assumption (L1) with respect to S 2
(
[0, T ],Rpij

)
for 1 ≤ j ≤ ki, and

with respect to H 2
(
[0, T ],Rpij

)
for ki + 1 ≤ j ≤ li: indeed, it suffices to take

the norm on O2
(
[0, T ],Rpi

)
:=
∏ki

j=1 S 2
(
[0, T ],Rpij

)
×
∏li

j=ki+1 H 2
(
[0, T ],Rpij

)
given by

‖L‖2
O2([0,T ],Rpi ) :=

ki∑
j=1

‖L‖2

S 2([0,T ],Rp
i
j )

+

li∑
j=ki+1

‖L‖2

H 2([0,T ],Rp
i
j )
.

Remarks 3.2.4. (i) Without going into more detail, we point out that the

flexibility in the choice of the functionals Li opens the door to prob-

abilistic interpretations for many classes of integro-partial differential

equations, similarly to the well known non-linear Feynman-Kac formula

for BSDEs. We do not attempt to investigate this problem here, leaving

it for future research.

(ii) The result of Theorem 3.2.3 can also be extended to other types of termi-

nal condition. Indeed, assume that C([0, T ],Rn) denotes the space of all

Rn-valued continuous functions on [0, T ], and let Φ : Ω×C([0, T ],Rn)→
Rd satisfy the L∞-Lipschitz condition

|Φ(x)− Φ(x′)| ≤ C sup
t∈[0,T ]

|xt − x′t| P -a.s. ∀x,x′ ∈ C([0, T ],Rn),

where C > 0. Then, the operators

M(X, V )t := E[Φ(X) + VT |Ft], Y(X, V )t :=M(X, V )t − Vt,

satisfy estimates similar to those of Lemma 3.2.1. Therefore, the reader

can easily verify that Theorem 3.2.3 remains valid if we substitute the

operators M and Y in the system (3.1.4) byM and Y . Moreover, the
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same conclusion remains true if Φ satisfies the L1-Lipschitz condition

|Φ(x)− Φ(x′)| ≤ C

∫ T

0

|xt − x′t|dt P -a.s. ∀x,x′ ∈ C([0, T ],Rn),

instead of the above L∞-Lipschitz condition. Two typical examples are

the functionals Φ1(x) = supt∈[0,T ] |xt| and Φ2(x) =
∫ T

0
xtdt, which are

related to lookback and Asian options.

(iii) By applying a change of integration order similar to the one discussed

in (3.2.1), it is possible to generalize the system (3.1.4) by substituting

the equation for the component V by

dVt = f(t,Xt,Y(X, V )t,L3(M(X, V ))t)αV (dt), V0 = 0,

where, for some T̃ > 0, αV is a non-random, finite Borel measure on

[0, T̃ ] such that αV ({0}) = 0.

(iv) The extension of the above result to the case where L2 satisfies (L1) with

respect to O2([0, T ],Rp2) = H 2([0, T ],Rp2) is problematic, as shown by

the following counterexample borrowed from the theory of FBSDEs.

Assume we have an augmented Brownian filtration, and consider the

functional differential equation
dXt = L2(Mφ(X, V ))tdWt,

dVt = 0,

X0 = V0 = 0,

where L2 is the functional given by Itô’s representation, and φ(x) :=

x + WT . Then, we obtain that V ≡ 0, and the first equation can be

rewritten as

dXt = dMφ(X, 0)t, X0 = 0.

Assume it has an adapted solution X. Then, we would have that Xt =

E[XT +WT |Ft] for all t ≥ 0, which would lead in particular, for t = T ,

to the contradiction WT = 0.
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We end this section by observing that the result of Theorem 3.2.3 can

be extended to any initial time τ > 0 without additional difficulties: indeed,

consider systems of functional differential equations on [τ, T ] of the form
dXt = µ(t,Xt,Y(X,V )t,L1(M(X,V ))t)dt+ σ(t,Xt,Y(X,V )t,L2(M(X,V ))t)dWt,

dVt = f(t,Xt,Y(X,V )t,L3(M(X,V ))t)dt,

Xτ = η, Vτ = ζ,

where η, ζ ∈ L2(Fτ ). Then it is possible to prove that, under the same

conditions of Theorem 3.2.3 and provided that T − τ < `, there is a unique

solution in S 2([τ, T ],Rn)×S 2([τ, T ],Rd).

3.3 Extension to global solutions

The purpose of this section is to extend the results of Theorem 3.2.3 to ar-

bitrarily large time intervals: as discussed in the Introduction, a similar ex-

tension has been showed in [49] for general Lipschitz backward dynamics by

imposing additional conditions on L. While these assumptions are quite re-

strictive, the approach of [49] has the advantage of leaving the assumptions

on the driver f and the terminal condition ξ unchanged.

The situation is however quite different for coupled forward-backward dy-

namics: as it is now well known in the theory of classical FBSDEs, an extension

of Theorem 3.2.3 to arbitrary intervals is possible only if we impose additional

assumptions on the coefficients of the forward-backward system (3.1.4), since

the solution could explode for large time horizons (without going into more

detail, we refer the reader to classical counterexamples for Markovian FBSDEs

and related PDEs which can be found for instance in [51]). Several techniques

have been adopted for classical FBSDEs to overcome this difficulty: let us cite

for instance the works [1, 40, 50, 60, 61, 71]. However, we prefer to apply an-

other approach which appears to be the most natural in the case of functional

differential equations.

First of all, we briefly discuss the intuition. Similarly to [49], the first

step consists in dividing the interval [0, T ] into a finite number of subintervals
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Ij := [Tj−1, Tj], 0 = T0 < · · · < TN = T : then, we solve the system separately

on any subinterval, starting from the last one and going backward. There

is, however, an important additional difficulty with respect to [49], which

clarifies why additional assumptions on the coefficients are needed. For such an

approach to work, we need that the length of the subintervals Ij, on which the

system has to be solvable, can be bounded by below by a constant independent

of j. We have seen that such a length depends on the Lipschitz constants C

and K of the system, and the only potential complication could arise from

the terminal condition on each Ij: indeed, while the other coefficients µ, σ,

f and Li remain the same on all intervals Ij, the terminal condition for the

subsystem on Ij is given by Ξj = Y(Xj+1, V j+1)Tj , where (Xj+1, V j+1) is the

local solution on Ij+1. In order to obtain the desired lower bound for the length

of all Ij, it is therefore sufficient that Ξj = θj(X
j+1
Tj

), where θj(ω, x) is for each

j Lipschitz continuous in x with respect to some constant C independent of

j.

In order to obtain such a result, the need to study the interplay between

the two components X and V appears to be unavoidable, due to the strong

coupling between the two functional differential equations. This is however

very difficult without a concrete expression for the functionals Li, and is espe-

cially true in the case of non-local operators: namely, L(M) could still depend

on the whole path of (Mt)t∈[0,T ], and the non-locality may easily lead to ex-

plosions. Contrarily to the case of Lipschitz backward dynamics, it seems

therefore inevitable that the extension to global intervals of the fully coupled

system (3.1.4) has to be treated on a case by case basis. We will thus assume

for the rest of this section that the filtration is generated by an m-dimensional

Brownian motion (Wt)t∈[0,T ] on (Ω,F , P ), and that L1 = L2 = L3 = L, where

L is the functional given by Itô’s representation theorem. As usual, we will

write Z(X, V ) = L(M(X, V )).

The choice of Li allows us to exploit the well known connection between

FBSDEs and parabolic PDEs: in the deterministic case, we have that

Y(X, V )t = θ(t,Xt),
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where θ is the solution of the corresponding PDE. Therefore, the desired

uniform property for the terminal conditions Ξj can be obtained by proving

that θ is Lipschitz in x uniformly with respect to t. This is the approach

that has been adopted, for instance, by Delarue [18]. His results can be

reformulated in our setting as follows:

Proposition 3.3.1. Assume that the coefficients µ, σ, f and φ satisfy As-

sumption (B1), that they are deterministic, and that σ does not depend on

z2. Moreover, let µ(t, ·, y, z), σ(t, ·, y), f(t, ·, y, z) and φ(·) be bounded for

all t ∈ [0, T ], (y, z) ∈ Rd × Rd×m. Finally, assume that σ is continuous

on its definition set, and that there is a constant λ > 0 such that, for all

(t, x, y) ∈ [0, T ]× Rn × Rd,

〈ζ, σσT(t, x, y)ζ〉 ≥ λ|ζ|2, ζ ∈ Rn.

Then, for any T > 0, the fully coupled system (3.1.4) has a unique solution

in S 2([0, T ],Rn)×S 2([0, T ],Rd).

However, the choice of Li allows us to extend Theorem 3.2.3 to any time

interval even in the case of random coefficients. This has been shown in

Zhang’s work [74,75], by deriving uniform Lipschitz estimates with respect to

the initial condition of the component X. In the following, we reformulate

in our setting Zhang’s results on uniform Lipschitz continuity, and we briefly

expose how these imply the extension of the solution to arbitrary intervals.

For the rest of this section, we will assume that n = 1, i.e. the component X is

1-dimensional, and that σ does not depend on z2, i.e. σ = σ(t, x, y). Moreover,

we assume that the coefficients of (3.1.4) satisfy the following condition:

Assumption (B2): The functions µ : Ω × [0, T ] × R × Rd × Rd×m → R,

σ : Ω × [0, T ] × R × Rd → Rm, f : Ω × [0, T ] × R × Rd × Rd×m → Rd and

φ : Ω × R → Rd satisfy Assumption (B2) if they satisfy Assumption (B1)

with (B1.2) replaced by (B1.2’), and:

(B2.1) φ is uniformly Lipschitz in x with constant C ′.
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(B2.2) There is a constant γ > 0 such that

Λ1
t (y) ≤ −γ|Λ2

t (y)|,

for all y ∈ Rd with |y| = 1, where

Λ1
t (y) :=

d∑
i=1

yi

(
Tr
(
∂zf

i(∂zµ)T
)
− yT∂zµ(∂zf

i)Ty + yT∂yσ(∂zf
i)Ty

)
+ ∂xσ(∂zµ)Ty + (∂yµ)Ty,

Λ2
t (y) := |∂zµ|2 − |(∂zµ)Ty|2 + 2yT∂zµ(∂yσ)Ty,

and where we assumed that all corresponding derivatives exist.

The assumption on φ is simply needed in order to differentiate between

the Lipschitz constant of φ and those of the other coefficients. Observe that

we require stronger regularity conditions than those of Delarue, since the

coefficients of the system (3.1.4) are random (however, σ is allowed to be

degenerate). Under these conditions, by deriving some clever estimates for

linear FBSDEs, Zhang obtained the following result:

Lemma 3.3.2. Assume that the coefficients µ, σ, f and φ satisfy Assumption

(B2) with γ = 1
C

, and let ` denote the constant in Theorem 3.2.3. Let T < `,

and for xi ∈ R, i = 1, 2, let (X i, V i) denote the solution of
dX i

t = µ(t,X i
t ,Y(X i, V i)t,Z(X i, V i)t)dt+ σ(t,X i

t ,Y(X i, V i)t)dWt,

dV i
t = f(t,X i

t ,Y(X i, V i)t,Z(X i, V i)t)dt,

X i
0 = xi, V i

0 = 0.

Then, there is a constant %C, depending only on C, such that

∣∣Y(X1, V 1)0 − Y(X2, V 2)0

∣∣ ≤ C|x1 − x2|,

where C :=
√(
|C ′|2 + 1

)
e%CT − 1 > 0.

The proof of this result can be found in [75]. With the help of Lemma 3.3.2,

we can extend Theorem 3.2.3 to arbitrarily large time intervals.
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Theorem 3.3.3. Assume that the coefficients µ, σ, f and φ satisfy Assump-

tion (B2). Then, for any T > 0, the fully coupled system (3.1.4) has a unique

solution (X, V ) in S 2([0, T ],Rn)×S 2([0, T ],Rd).

Proof. We assume without loss of generality that γ = 1
C

in Assumption (B2),

by changing C or γ if necessary. Let C denote the constant in Lemma 3.3.2,

and let ` = `(C) be the constant in Theorem 3.2.3. We consider a partition

(T0, · · · , TN) of [0, T ] such that 0 = T0 < · · · < TN = T and 0 < Ti − Ti−1 <

` for i = 1, · · · , N , and set Ii := [Ti−1, Ti]. Moreover, to emphasize the

dependence of the functionals Y , M on the terminal time and condition, we

introduce a slightly different notation and write, for all t ∈ [0, Ti],

M̆Ti(ξ, V )t = E[ξ + VTi |Ft],

Y̆Ti(ξ, V )t = E[ξ + VTi |Ft]− Vt.

Z̆Ti(ξ, V )t is then defined via the Itô representation of (M̆Ti(ξ, V )t)t∈[0,Ti].

The first step consists in constructing appropriate terminal conditions for

all subintervals Ii. This is accomplished via a backward procedure. We set

θN := φ, CN := C ′, and for all x ∈ R, we consider the following system on IN :

dXN,x
t = µ(t,XN,x

t , Y̆TN (θN (XN,x
TN

), V N,x)t, Z̆TN (θN (XN,x
TN

), V N,x)t)dt

+ σ(t,XN,x
t , Y̆TN (θN (XN,x

TN
), V N,x)t)dWt,

dV N,x
t = f(t,XN,x

t , Y̆TN (θN (XN,x
TN

), V N,x)t, Z̆TN (θN (XN,x
TN

), V N,x)t)dt,

XN,x
TN−1

= x, V N,x
TN−1

= 0.

Since θN has Lipschitz constant CN ≤ C, by Theorem 3.2.3 the system has a

unique solution (XN,x, V N,x) for all x ∈ R. We can thus define θN−1 by

θN−1(x) := Y̆TN (θN(XN,x
TN

), V N,x)TN−1
.

It is then easy to check that θN−1(x) is FTN−1
-measurable for all x ∈ R.

Moreover, by Lemma 3.3.2, θN−1 is uniformly Lipschitz in x with constant

CN−1 :=
√(
|CN |2 + 1

)
e%C(TN−TN−1) − 1.
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Since CN−1 ≤ C, we can iterate the same argument: for i = N − 1, · · · , 2
and for all x ∈ R, we consider the solution (X i,x, V i,x) on Ii of the system

dXi,x
t = µ(t,Xi,x

t , Y̆Ti(θi(Xi,x
Ti

), V i,x)t, Z̆Ti(θi(Xi,x
Ti

), V i,x)t)dt

+ σ(t,Xi,x
t , Y̆Ti(θi(Xi,x

Ti
), V i,x)t)dWt,

dV i,x
t = f(t,Xi,x

t , Y̆Ti(θi(Xi,x
Ti

), V i,x)t, Z̆Ti(θi(Xi,x
Ti

), V i,x)t)dt,

Xi,x
Ti−1

= x, V i,x
Ti−1

= 0,

which exists by Theorem 3.2.3. We then define θi−1 by

θi−1(x) := Y̆Ti(θi(X i,x
Ti

), V i,x)Ti−1
.

θi−1(x) is thus FTi−1
-measurable for all x ∈ R, and by Lemma 3.3.2, θi−1 is

uniformly Lipschitz in x with constant Ci−1 :=
√(
|Ci|2 + 1

)
e%C(Ti−Ti−1) − 1.

Moreover, we can easily verify by induction that

Ci−1 =
√(
|CN |2 + 1

)
e%C(TN−Ti−1) − 1 ≤ C.

Now that we have derived appropriate terminal conditions θi, we can con-

struct the solution on the whole interval [0, T ] by a forward procedure. We

set X0
T0

:= x, V 0
T0

:= 0. Then, for i = 1, · · · , N , we denote by (X i, V i) the

solution on Ii of the system

dXi
t = µ(t,Xi

t , Y̆Ti(θi(Xi
Ti

), V i)t, Z̆Ti(θi(Xi
Ti

), V i)t)dt

+ σ(t,Xi
t , Y̆Ti(θi(Xi

Ti
), V i)t)dWt,

dV i
t = f(t,Xi

t , Y̆Ti(θi(Xi
Ti

), V i)t, Z̆Ti(θi(Xi
Ti

), V i)t)dt,

Xi
Ti−1

= Xi−1
Ti−1

, V i
Ti−1

= V i−1
Ti−1

.

which exists because of Theorem 3.2.3. For t ∈ Ii, we set

Xt := X i
t , Vt := V i

t .

To prove that (X, V ) solves (3.1.4) on [0, T ], it suffices to check that, for t ∈ Ii,

Y̆Ti(θi(X i
Ti

), V i)t = Y(φ(XTN ), V )t, Z̆Ti(θi(X i
Ti

), V i)t = Z(φ(XTN ), V )t.
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However, for i = 1, · · · , N − 1 and t ∈ [0, Ti], we have that

Y̆Ti(θi(XTi), V )t = Y̆Ti(θi(X i
Ti

), V i)t

= E
[
YTi+1

(
θi+1(X i+1

Ti+1
), V i+1

)
Ti

+ V i
Ti

∣∣Ft]− V i
t

= E
[
θi+1(XTi+1

) + VTi+1
− VTi + VTi

∣∣Ft]− Vt
= Y̆Ti+1(θi+1(XTi+1

), V )t

by the construction of θi. This gives by induction that Y̆Ti(θi(X i
Ti

), V i)t =

Y(θN(XTN ), V )t = Y(φ(XTN ), V )t on Ii for i = 1, · · · , N . On the other

hand, this implies that M̆Ti(θi(X
i
Ti

), V i)t = M(φ(XTN ), V )t on Ii for all i.

In other words, (M̆Ti(θi(X
i
Ti

), V i)t)t∈Ii is the restriction to Ii of the martin-

gale (M(φ(XTN ), V )t)t∈[0,T ] and, due to the locality of the operator Z, this

gives us that Z̆Ti(θi(X i
Ti

), V i)t = Z(φ(XTN ), V )t on Ii.

This shows that (X, V ) is a solution of (3.1.4) on [0, T ], and the proof is

concluded by observing that the uniqueness is a consequence of the uniqueness

of (X i, V i) on Ii.

We end this section by briefly mentioning some interesting results recently

derived by Zhang (private communication). Motivated by the well known con-

nection between FBSDEs and PDEs in the deterministic case, Zhang suggests

that, for random coefficients, the solution can be extended to any interval

by relying on the existence of a random field θ (called decoupling field) such

that Y(X, V )t = θ(t,Xt), and by showing that θ is uniformly Lipschitz con-

tinuous. This can be obtained via the introduction of a backward stochastic

Riccati equation of quadratic growth, under much weaker assumptions than

(B2) (however, all processes have to be one-dimensional). Since the results

of Zhang are still work in progress and thus susceptible to changes, we do not

go into more details here.



Chapter 4

Numerical analysis of functional

differential equations

The purpose of this chapter is to introduce an approximation scheme for

systems of functional differential equations associated to classical decoupled

FBSDEs, obtaining a new interpretation for existing Euler-type schemes for

Lipschitz FBSDEs. Our numerical scheme is based on a time discretization

combined with a local Picard iteration approach, which is motivated by the

contraction results for fully coupled FBSDEs obtained in Chapter 3.

While the numerical simulations of forward SDEs is now well understood

(see for instance the book of Kloeden and Platen [45]), the approximation of

Lipschitz decoupled FBSDEs has been the subject of several studies in the

last decade. One of the main motivations to develop probabilistic numerical

schemes for this type of FBSDEs is certainly the non-linear Feynman-Kac

representation (introduced by Pardoux and Peng [57–59]), which provides an

interpretation of semilinear parabolic PDEs in terms of decoupled FBSDEs.

The works on the simulation of decoupled FBSDEs can be mainly re-

grouped in two categories. The first class of algorithms is based on the four-

step scheme introduced in [50], and concentrates on the solution of the re-

lated PDE (see for instance [28, 54]). However, it is well known that the

simulation of PDEs via finite-difference and finite-element methods is affected

by the so called “curse of dimensionality”, and special attention is therefore

63
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needed. The second class of methods tackles the decoupled FBSDE directly,

and was initiated by Bally [2] and Chevance [15]. Several other approaches

have then been developed, but the most notable progress was certainly the

work of Zhang [72,73], who derived a new notion of L2-regularity for the mar-

tingale integrand process Z. His results opened the door to several new types

of algorithms, for instance [7,35,73]. We cite in particular the work of Bender

and Denk [4], which is based on a global contraction procedure and, as our

scheme, avoids the nesting of conditional expectations along the partition,

which arises in most other approaches.

The case of fully coupled FBSDEs is, on the other hand, considerably more

problematic: namely, the discretized equation is not explicitly solvable, and

it is not possible to consider the problem locally. To our knowledge, the only

works studying the fully coupled case via a probabilistic approach are those

of Delarue and Menozzi [20] and of Bender and Zhang [5].

Finally, we observe that the numerical simulation of quadratic BSDEs

has received particular attention in the last couple of years. However, the

problem is significantly more difficult to tackle than in the Lipschitz case,

mainly due to the lack of a global contraction result for quadratic BSDEs.

The delicacy of the problem has been pointed out, for instance, by Cheridito

and Stadje [14]. Interesting results have been obtained by Richou [65] and

Imkeller et al. [41,42]: however, the main drawback of these approaches resides

in their speed of convergence, and an efficiently implementable algorithm is

still subject of research.

The chapter is organized as follows. In Section 4.1, we introduce a time

discretization and define an appropriate implicit Euler scheme for the ap-

proximation of the system of functional differential equations, with the help

of discrete versions of the operators Y , M and Z considered in Chapter 3.

Then, we prove in Section 4.2 that, as the mesh of the partition goes to zero,

the solution of our implicit scheme converges to the true solution, and the

rate of convergence is the same as for classical Euler schemes (see [45]). Fi-

nally, in Section 4.3 we approximate the solution of the implicit Euler scheme

via a local Picard iteration procedure, and prove that the rate of convergence

remains the same, provided that the number of iterations is sufficiently large.
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4.1 Implicit Euler scheme for functional

differential equations

Let T > 0, and assume that (Ω,F , P ) is a complete probability space endowed

with an m-dimensional Brownian motion W = (Wt)t∈[0,T ] and the correspond-

ing augmented filtration (Ft)t∈[0,T ]. In the following, we consider decoupled

systems of functional differential equations of the form
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dVt = f
(
t,Xt,Y(X, V )t,Z(X, V )t

)
dt,

X0 = x, V0 = 0,

(4.1.1)

where M, Y , Z denote as in the previous chapter the functionals

M(X, V )t = E
[
Φ(XT ) + VT

∣∣Ft],
Y(X, V )t =M(X, V )t − Vt,

M(X, V )t =M(X, V )0 +

∫ t

0

Z(X, V )sdWs, t ≥ 0,

and µ : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×m, f : [0, T ]×Rn×R×Rm → R
and Φ : Rn → R (note in particular that the solution process V is in this

case 1-dimensional, and that the equation for X is just a classical forward

SDE). As we have seen previously, this system is essentially equivalent to

the corresponding decoupled FBSDE, and is therefore closely related to the

following semilinear parabolic PDE on [0, T ]× Rn:ut + Lu = −f
(
t, x, u,∇xu · σ(t, x)

)
,

u(T, x) = Φ(x),

where L := µ(t, x)∇x + 1
2

Tr(σσT (t, x)Hx) , Hx :=
(

∂2

∂xi∂xj

)
i,j=1,··· ,n.

To numerically approximate the system (4.1.1), we first introduce an ap-

propriate time discretization. Let 0 = t0 < t1 < · · · < tN = T , and consider

the partition π := (t0, . . . , tN) of [0, T ] with mesh |π| := max1≤i≤N |ti − ti−1|.
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For notational simplicity, we set Ii := [ti−1, ti], ∆ti := ti − ti−1 and ∆Fti :=

Fti − Fti−1
for 1 ≤ i ≤ N and for any process F . We can then introduce

an implicit Euler scheme (Xπ
ti
, V π

ti
)i=0,··· ,N for our system by setting Xπ

0 = x,

V π
0 = 0, and for 0 ≤ i ≤ N − 1,

Xπ
ti+1

= Xπ
ti

+ µ(ti, X
π
ti

)∆ti+1 + σ(ti, X
π
ti

)∆Wti+1
, (4.1.2a)

V π
ti+1

= V π
ti

+ f
(
ti, X

π
ti
,Y(Xπ, V π)ti ,Zπ(Xπ, V π)ti

)
∆ti+1, (4.1.2b)

whereM(Xπ, V π)ti =E
[
Φ(Xπ

T )+V π
T

∣∣Fti], Y(Xπ, V π)ti =M(Xπ, V π)ti−Vti , and

Zπ(Xπ, V π)ti :=
1

∆ti+1

E
[
∆M(Xπ, V π)ti+1

∆Wti+1

∣∣Fti]
=

1

∆ti+1

E
[(

Φ(Xπ
T ) + V π

T

)
∆Wti+1

∣∣Fti].
While the expressions forM and Y are inherited directly from their contin-

uous time versions, the operator Zπ is defined via an Euler-type approximation

of Z: namely, we have for 0 ≤ i ≤ N − 1 that

∆M(Xπ, V π)ti+1
=

∫ ti+1

ti

Z(Xπ, V π)sdWs ≈ Z(Xπ, V π)ti∆Wti+1
,

and by multiplying by ∆Wti+1
and conditioning with respect to Fti , we get

Z(Xπ, V π)ti ≈
1

∆ti+1

E
[
∆M(Xπ, V π)ti+1

∆Wti+1

∣∣Fti] = Zπ(Xπ, V π)ti .

Remark 4.1.1. For the rest of this chapter, we will sometimes need to con-

sider local modifications of M, Y and Zπ, while emphasizing their depen-

dence on the interval and on the terminal condition. These are defined, for

any V = (Vti , Vti+1
) ∈ L1

(
Fti
)
× L1

(
Fti+1

)
and ξ ∈ L1

(
Fti+1

)
, by

M̃Ii(ξ, V )ti := E
[
ξ + Vti+1

∣∣Fti],
ỸIi(ξ, V )ti := M̃ti+1(ξ, V )ti − Vti ,

Z̃Ii(ξ, V )ti :=
1

∆ti+1

E
[(
ξ + Vti+1

)
∆Wti+1

∣∣Fti].
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The first difficulty lies in the solvability of the discretization procedure

(4.1.2). Indeed, while the Euler approximation of the classical stochastic dif-

ferential equation for X does not pose any problem (see for instance [45]),

it is a priori not clear if the approximation scheme for V will have a unique

solution V π, due to the dependence of the driver on the terminal value V π
T

(which makes the scheme implicit).

This problem can be solved under essentially the same assumptions as in

Chapter 3. As usual, | · | denotes either the Euclidean norm on Rk or the

Hilbert-Schmidt norm on Rk×l. We assume that the coefficients satisfy the

following assumption:

Assumption (C1): The functions µ, σ, f and Φ satisfy Assumption (C1)

if there exist constants C1, C2 > 0 such that:

(C1.1) µ, σ and f are Lipschitz in the space variables with common constant

C1, and Φ is Lipschitz continuous with constant C2.

(C1.2) sup
t∈[0,T ]

(
|µ(t, 0)|+ |σ(t, 0)|+ |f(t, 0, 0, 0)|

)
≤ C1, Φ(0) ≤ C2.

This allows us to prove the following result:

Theorem 4.1.2. Assume that µ, σ, f and Φ satisfy Assumption (C1). Then,

for |π| ≤ 1
16C2

1
∧1, there is a unique solution (Xπ

ti
, V π

ti
)i=0,··· ,N to the discretiza-

tion procedure (4.1.2) such that

max
0≤i≤N

E|Xπ
ti
|2 <∞, max

0≤i≤N
E|V π

ti
|2 <∞.

Proof. Because of the decoupling, the discretization (4.1.2a) of X can be con-

sidered separately from that of V : however, (4.1.2a) is just an explicit Euler

scheme for forward SDEs, and the result for (Xπ
ti

)i=0,··· ,N then follows by [45].

Once (Xπ
ti

)i=0,··· ,N is obtained, the existence of (V π
ti

)i=0,··· ,N is derived by ap-

plying the same strategy as in the continuous time case: anyway, we prefer to

sketch the main arguments since they will be applied later to derive a local

iteration scheme.
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We start by considering the interval IN and the discretization problem on

IN given by V IN
tN−1

= 0,

V IN
tN

= f
(
tN−1, X

π
tN−1

, ỸIN (Φ(Xπ
T ), V IN )tN−1

, Z̃IN (Φ(Xπ
T ), V IN )tN−1

)
∆tN .

This can easily be solved by applying a Picard iteration: set V IN ,0
tN−1

= V IN ,0
tN

= 0

and, for p ∈ N, V IN ,p+1
tN−1

= 0 and

V IN ,p+1
tN

= f
(
tN−1, X

π
tN−1

, ỸIN (Φ(Xπ
T ), V IN ,p)tN−1

, Z̃IN (Φ(Xπ
T ), V IN ,p)tN−1

)
∆tN .

By applying classical arguments, it is easy to check that this procedure is

contractive for |∆tN | ≤ 1
16C2

1
∧1 with respect to the L2-norm (with contraction

constant 1
2
). Therefore, the discretization on IN has a unique solution, denoted

by V IN = (0, V IN
tN

).

We then set ΞN−1 := ỸIN (Φ(Xπ
T ), V IN )tN−1

. By iterating this argument on

Ii for i = N − 1, · · · , 1, we obtain similarly a unique solution V Ii = (0, V Ii
ti ) to

V Ii
ti = f

(
ti−1, X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)
∆ti

whenever |∆ti| ≤ 1
16C2

1
∧ 1, where Ξi is defined recursively for i < N − 1 by

Ξi := ỸIi+1(Ξi+1, V Ii+1)ti .

In particular, since the length of the contraction interval does not depend

on the local terminal condition Ξi, we can choose a partition π with |π| ≤
1

16C2
1
∧ 1, and we get the local solutions V I1 , · · · , V IN recursively on all the

subintervals Ii of π (starting from IN). Finally, we combine V I1 , · · · , V IN by

adding them as follows:

V π
t0

:= 0, V π
ti

:=
i∑

j=1

V
Ij
tj , i = 1, · · · , N.

It remains to check that V π is the solution of (4.1.2b). Because of the linearity

of the operator ỸIi and the definition of the terminal conditions Ξi, by iterating
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conditional expectations similarly to Theorem 3.3.3 we can verify that

ỸIi(Ξi, V Ii) = ỸIi(Ξi, V π) = Y(ξ, V π).

On the other hand, this implies that, for all t ∈ Ii,

M̃Ii(Ξi, V i)t − M̃Ii(Ξi, V i)ti =M(ξ, V π)t −M(ξ, V π)ti ,

due to the relation between M̃Ii and ỸIi . Therefore, by the locality of Z̃Ii ,
we obtain that Z̃Ii(Ξi, V i) = Zπ(ξ, V π). This concludes the proof.

4.2 Convergence of the Euler discretization

After showing that the discretization procedure (4.1.2) is solvable, the next

step consists in proving that (Xπ
ti
, V π

ti
)i=0,··· ,N converges to the true solution

(X, V ) when |π| → 0. This will be obtained as a consequence of existing

results of Zhang [73] and Bouchard and Touzi [7], recovering the usual conver-

gence rate of |π|1/2, the best possible one for Euler-types of schemes (see [45]).

However, we will need the coefficients to be regular in time. More exactly:

Assumption (C2): The functions µ, σ, f and Φ satisfy Assumption (C2)

if they satisfy Assumption (C1), and µ, σ, f are additionally 1/2-Hölder

continuous in time with Hölder constant C1.

To simplify our computations, we extend the approximations (Xπ
ti

)i=0,··· ,N ,

(V π
ti

)i=0,··· ,N to continuous time processes Xπ = (Xπ
t )t∈[0,T ], V

π = (V π
t )t∈[0,T ],

which are naturally induced by setting Xπ
0 = x, V π

0 = 0, and

Xπ
t = Xπ

ti
+ µ(ti, X

π
ti

)(t− ti) + σ(ti, X
π
ti

)(Wt −Wti),

V π
t = f

(
ti, X

π
ti
,Y(Xπ, V π)ti ,Zπ(Xπ, V π)ti

)
(t− ti)

(4.2.1)

on (ti, ti+1] for i = 0, · · · , N − 1. We first state without proof a couple of

auxiliary results from the literature: the first one is a result on the path

regularity of the processes Y(X, V ) and Z(X, V ), which has been first proved

by Zhang in his thesis [72] and later published in [73]. We introduce an
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auxiliary processZπ by defining

Zπ(X, V )ti :=
1

∆ti+1

E
[
〈M(X, V ),W 〉ti,ti+1

∣∣∣Fti], i = 0, · · ·N − 1,

for any processes X and V , where 〈·, ·〉ti,ti+1
:= 〈·, ·〉ti+1

− 〈·, ·〉ti . A simple

computation allows to verify thatZπ(Xπ, V π) and Zπ(Xπ, V π) are identical

at the partition points, i.e.

Zπ(Xπ, V π)ti = Zπ(Xπ, V π)ti , i = 0, · · ·N − 1. (4.2.2)

With the help ofZπ, we can then formulate the following L2-regularity result:

Lemma 4.2.1. Under Assumption (C2), there is a constant θ depending only

on C1 and T such that

max
0≤i≤N−1

sup
s∈[ti,ti+1]

‖Y(X, V )s − Y(X, V )ti‖2

+

(N−1∑
i=0

∫ ti+1

ti

E|Z(X, V )s −Z
π
(X, V )ti |2ds

)1/2

≤ θ
√
|π|.

Besides the L2-regularity, we will also apply an approximation result of

Bouchard and Touzi [7], which in our setting is reformulated as follows:

Lemma 4.2.2. Assume that Assumption (C2) holds. Then there is a con-

stant θ depending only on C1 and T such that, for |π| small enough,

sup
s∈[0,T ]

‖Y(X, V )s−Y(Xπ, V π)s‖2+
√
E
[
〈M(X, V )−M(Xπ, V π)〉0,T

]
≤ θ
√
|π|.

We can now derive the desired convergence of our implicit Euler scheme

to the exact solution, with the same rate as the classical Euler scheme:

Theorem 4.2.3. Assume that µ, σ, f and Φ satisfy Assumption (C2). Then,

there is a constant θ depending only on C1 and T such that

sup
t∈[0,T ]

‖Xπ
t −Xt‖2 + ‖V π

t − Vt‖2 ≤ θ
√
|π|,

whenever |π| is sufficiently small.
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Proof. We concentrate our efforts on supt∈[0,T ] ‖V π
t − Vt‖2, since the result

for supt∈[0,T ] ‖Xπ
t − Xt‖2 is standard in the literature (see [45]). Fix i ∈

{0, · · · , N − 1} and t ∈ (ti, ti+1]. Then, we have by Itô’s lemma that

d|Vt − V π
t |2 = 2(Vt − V π

t )
(
f
(
t,Xt,Y(X, V )t,Z(X, V )t

)
− f

(
ti, X

π
ti
,Y(Xπ, V π)ti ,Zπ(Xπ, V π)ti

))
dt.

By the Cauchy-Schwarz inequality and Assumption (C2), we obtain that

E|Vt−V π
t |2−E|Vti−V π

ti
|2 ≤ 2

∫ t

ti

E
[
|Vs − V π

s | ·
∣∣∣f(s,Xs,Y(X, V )s,Z(X, V )s

)
− f

(
ti, X

π
ti
,Y(Xπ, V π)ti ,Zπ(Xπ, V π)ti

)∣∣∣]ds
≤
∫ t

ti

E|Vs − V π
s |2ds+ C1

(∫ t

ti

(
|s− ti|+ E|Xs −Xπ

ti
|2

+ E|Y(X, V )s − Y(Xπ, V π)ti |2
)
ds

+

∫ t

ti

E|Z(X, V )s −Zπ(Xπ, V π)ti |2ds
)
. (4.2.3)

We estimate the last two terms: by Lemma 4.2.1 and 4.2.2, we have

E|Y(X, V )s − Y(Xπ, V π)ti |2

≤ 2
(
E|Y(X, V )s − Y(X, V )ti |2 + E|Y(X, V )ti − Y(Xπ, V π)ti |2

)
≤ θ1|π|

for some constant θ1. This gives us that∫ t

ti

(
|s− ti|+ E|Xs −Xπ

ti
|2 + E|Y(X, V )s − Y(Xπ, V π)ti |2

)
ds ≤ θ1|π|∆ti+1.

On the other hand, by applying (4.2.2) we get that

E|Z(X, V )s −Zπ(Xπ, V π)ti |2

≤ 2
(
E|Z(X, V )s −Z

π
(X, V )ti |2 + E|Zπ(X, V )ti −Zπ(Xπ, V π)ti |2

)
≤ 2
(
E|Z(X, V )s −Z

π
(X, V )ti |2 + E|Zπ(X, V )ti −Z

π
(Xπ, V π)ti |2

)
,
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and the second term can be further estimated as follows:

E|Zπ(X, V )ti −Z
π
(Xπ, V π)ti |2

=
1

∆t2i+1

E
∣∣∣E[〈M(X, V )−M(Xπ, V π),W 〉ti,ti+1

∣∣∣Fti]∣∣∣2
≤ 1

∆t2i+1

E
∣∣∣〈M(X, V )−M(Xπ, V π),W 〉ti,ti+1

∣∣∣2
≤ 1

∆ti+1

E
[
〈M(X, V )−M(Xπ, V π)〉ti,ti+1

]
,

where the last inequality is a consequence of Kunita-Watanabe’s inequality.

By applying these estimates to (4.2.3), we can find a constant θ2 such that

E|Vt − V π
t |2 ≤

∫ t

ti

E|Vs − V π
s |2ds+

[
E|Vti − V π

ti
|2 + θ2

(
|π|∆ti+1

+

∫ ti+1

ti

E|Z(X, V )s −Z
π
(X, V )ti|2ds+ E

[
〈M(X, V )−M(Xπ, V π)〉ti,ti+1

])]
Thus, we can apply Gronwall’s inequality, obtaining that

E|Vt − V π
t |2 ≤ et−ti

[
E|Vti − V π

ti
|2 + θ2

(
|π|∆ti+1 (4.2.4)

+

∫ ti+1

ti

E|Z(X, V )s −Z
π
(X, V )ti |2ds+ E

[
〈M(X, V )−M(Xπ, V π)〉ti,ti+1

])]
Now, by taking k ∈ {1, · · · , N} and iterating this inequality with t = ti+1 for

i = k − 1, · · · , 0, we get that

E|Vtk−V π
tk
|2≤θ2e

∑k−1
i=0 ∆ti+1

(
|π|

k−1∑
i=0

∆ti+1+
k−1∑
i=0

∫ ti+1

ti

E|Z(X,V )s−Z
π
(X,V )ti |2ds

+ E
[
〈M(X, V )−M(Xπ, V π)〉0,tk

])
≤ θ2e

T
(
T |π|+

N−1∑
i=0

∫ ti+1

ti

E|Z(X, V )s −Z
π
(X, V )ti |2ds

+ E
[
〈M(X, V )−M(Xπ, V π)〉0,T

])
.



4.3. Local Picard iteration 73

Finally, Lemma 4.2.1 and 4.2.2 imply that

E|Vtk − V π
tk
|2 ≤ θ3|π|

for some constant θ3. It remains to check that the estimate also holds for

t 6= tk. However, by taking (4.2.4) and applying the same estimates, we have

that, for any t ∈ [ti, ti+1],

E|Vt − V π
t |2 ≤ e|π|

[
E|Vti − V π

ti
|2+θ2

(
|π|2+

∫ ti+1

ti

E|Z(X, V )s−Z
π
(X, V )ti |2ds

+E
[
〈M(X, V )−M(Xπ, V π)〉ti,ti+1

])]
≤ θ4|π|e|π|

(
1 + |π|

)
≤ θ5|π|,

for some constants θ4 and θ5 depending only on C1 and T , provided that |π|
is small enough. Since θ5 is independent of i, this proves the claim.

4.3 Local Picard iteration

As already anticipated in the first section, while Theorem 4.2.3 shows that the

implicit Euler scheme (4.1.2) converges to the solution (X, V ) of the functional

differential equation with the best possible rate, this is still not sufficient to

obtain an implementable algorithm, since the discretization procedure (4.1.2b)

is not explicitly solvable.

In this section, we propose a local Picard iteration scheme for the approx-

imation of the solution V π of (4.1.2b): this is based on the strategy for the

proof of Theorem 4.1.2, and even includes an estimate of the necessary num-

ber of Picard iterations needed. We observe that this approach presents an

interesting feature: namely, as first noted by Gobet et al. [35] experimentally,

and later studied in depth by Bender and Denk [4], a major drawback of the

large majority of numerical schemes for Lipschitz BSDEs [7, 16, 35, 73] is the

presence of nested conditional expectations. Indeed, all conditional expecta-

tions have to be replaced by some estimators in practical implementations,

and the corresponding approximation error grows when |π| → 0, since the
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nesting takes place along π: thus, higher computational cost are needed to

avoid error explosions. On the other hand, by applying approaches based on

Picard iterations, the nesting of conditional expectations takes place along the

iterations instead that along the partition. As observed by Bender and Denk,

this allows to better control the amplification of the error.

In the following, we assume that the solution (Xπ
ti

)i=0,··· ,N of the explicit

Euler scheme (4.1.2a) has already been constructed. We start by considering

the last interval IN : we set Ξ̆N = Φ(Xπ
T ) and V IN ,0

tN−1
= V IN ,0

tN
= 0. For p ∈ N,

we then construct the couple (V IN ,p
tN−1

, V IN ,p
tN

) iteratively by V IN ,p+1
tN−1

= 0,

V IN ,p+1
tN

= f
(
tN−1, X

π
tN−1

, ỸIN (Φ(Xπ
T ), V IN ,p)tN−1

, Z̃IN (Φ(Xπ
T ), V IN ,p)tN−1

)
∆tN .

The procedure is stopped after a finite number of iterations pN (yet to be

determined): we obtain (V IN ,pN
tN−1

, V IN ,pN
tN

) = (0, V IN ,pN
tN

) as result, and we set

Ξ̆N−1 := ỸIN (Φ(Xπ
T ), V IN ,pN )tN−1

, which is FtN−1
-measurable.

We can then iterate the same procedure on Ii for i = N − 1, · · · , 1: for

some finite pi yet to be determined, the couple (V Ii,pi
ti−1

, V Ii,pi
ti ) = (0, V Ii,pi

ti ) is

constructed iteratively by V Ii,0
ti−1

= V Ii,0
ti = 0 and V Ii,p+1

ti−1
= 0,

V Ii,p+1
ti = f

(
ti−1, X

π
ti−1

, ỸIi(Ξ̆i, V Ii,p)ti−1
, Z̃Ii(Ξ̆i, V Ii,p)ti−1

)
∆ti

for 0 ≤ p < pi − 1, where Ξ̆i is defined recursively for i < N − 1 by

Ξ̆i := ỸIi+1(Ξ̆i+1, V Ii+1,pi+1)ti .

Finally, we construct V π,(p1,··· ,pN ) by adding V I1,p1 , · · · , V IN ,pN as follows:

V
π,(p1,··· ,pN )
t0 := 0, V

π,(p1,··· ,pN )
ti :=

i∑
j=1

V
Ij ,pj
tj , i = 1, · · · , N.

The scope of this section is to prove that V π,(p1,··· ,pN ) is a good approxima-

tion of the solution of the implicit Euler scheme V π, provided that the number

of iterations is sufficiently large. In the following, we draw on the notation

used in the proof of Theorem 4.1.2: V Ii denotes the local process on Ii, and
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Ξi is the corresponding terminal condition. Moreover, for the entire section,

we suppose that f satisfies the conditions of Assumption (C1).

Since V π,(p1,··· ,pN ) and V π are both constructed by adding up the respective

localizations, the main step consists in proving that, for i = 1, · · · , N , V Ii,pi
ti

is sufficiently close to V Ii
ti for pi large enough. Due to the similarity in the

construction of V Ii,pi
ti and V Ii

ti , we can prove the following result:

Proposition 4.3.1. Let |π| ≤ 1
16C2

1
∧ 1. Then, for pi ∈ N and i = 1, · · · , N ,

‖V Ii,pi
ti − V Ii

ti ‖2 ≤ ‖Ξ̆i − Ξi‖2 + (2C1

√
|π|)pi‖V Ii

ti ‖2.

Proof. Let i ∈ {1, · · · , N} be fixed. Then:

‖V Ii,pi
ti − V Ii

ti ‖2 = ∆ti

∥∥∥f(ti−1, X
π
ti−1

, ỸIi(Ξ̆i, V Ii,pi−1)ti−1
, Z̃Ii(Ξ̆i, V Ii,pi−1)ti−1

)
− f

(
ti−1, X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)∥∥∥
2

≤ C1∆ti

(
‖ỸIi(Ξ̆i, V Ii,pi−1)ti−1

− ỸIi(Ξi, V Ii)ti−1
‖2

+ ‖Z̃Ii(Ξ̆i, V Ii,pi−1)ti−1
− Z̃Ii(Ξi, V Ii)ti−1

‖2

)
. (4.3.1)

By the triangle and the Jensen inequalities, we have that

‖ỸIi(Ξ̆i, V Ii,pi−1)ti−1
− ỸIi(Ξi, V Ii)ti−1

‖2 ≤ ‖Ξ̆i − Ξi‖2 + ‖V Ii,pi−1
ti − V Ii

ti ‖2,

while the conditional Cauchy-Schwarz inequality gives that

‖Z̃Ii(Ξ̆i, V Ii,pi−1)ti−1
− Z̃Ii(Ξi, V Ii)ti−1

‖2

=
1

∆ti

∥∥∥E[((Ξ̆i − Ξi) + (V Ii,pi
ti − V Ii

ti )
)
∆Wti

∣∣∣Fti−1

]∥∥∥
2

≤ 1

∆ti
E
[
E[|(Ξ̆i − Ξi) + (V Ii,pi

ti − V Ii
ti )|2|Fti−1

] · E[|∆Wti |2|Fti−1
]
]1/2

≤ 1√
∆ti

(
‖Ξ̆i − Ξi‖2 + ‖V Ii,pi−1

ti − V Ii
ti ‖2

)
.

We can then plug these estimates back into (4.3.1), and

‖V Ii,pi
ti − V Ii

ti ‖2 ≤ 2C1

√
∆ti

(
‖Ξ̆i − Ξi‖2 + ‖V Ii,pi−1

ti − V Ii
ti ‖2

)
,
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since |π| ≤ 1. By iterating this inequality, we finally obtain that

‖V Ii,pi
ti − V Ii

ti ‖2 ≤
( pi∑

j=1

(2C1

√
|π|)j

)
‖Ξ̆i − Ξi‖2 + (2C1

√
|π|)pi‖V Ii

ti ‖2,

and the claim follows since
∑pi

j=1(2C1

√
|π|)j ≤ 1 by the choice of π.

Therefore, it is evident that the desired approximation of V Ii by V Ii,pi can

be obtained by controlling ‖Ξ̆i−Ξi‖2 and ‖V Ii
ti ‖2 appropriately. The first term

‖Ξ̆i − Ξi‖2 can be estimated as follows:

Lemma 4.3.2. For i = 1, · · · , N − 1, we have that

‖Ξ̆i − Ξi‖2 ≤
N∑

j=i+1

‖V Ij ,pj
tj − V Ij

tj ‖2.

Proof. This is easily shown by backward induction. By the definition of the

operator ỸIN we have that

‖Ξ̆N−1 − ΞN−1‖2 = ‖ỸIN (Φ(Xπ
T ), V IN ,pN )tN−1

− ỸIN (Φ(Xπ
T ), V IN )tN−1

‖2

≤ ‖V IN ,pN
tN

− V IN
tN
‖2.

Assume now that the claim is true for ‖Ξ̆i+1 − Ξi+1‖2. Then:

‖Ξ̆i − Ξi‖2 = ‖ỸIi+1(Ξ̆i+1, V Ii+1,pi+1)ti − ỸIi+1(Ξi+1, V Ii+1)ti‖2

≤ ‖Ξ̆i+1 − Ξi+1‖2 + ‖V Ii+1,pi+1

ti+1
− V Ii+1

ti+1
‖2 ≤

N∑
j=i+1

‖V Ij ,pj
tj − V Ij

tj ‖2.

In other words, ‖Ξ̆i−Ξi‖2 depends on the errors of all the local approxima-

tions already computed. This is a consequence of the fact that we only apply

a finite number of iterations pi, and shows that we could have uncontrollable

error amplifications if the previous estimates were not sufficiently accurate.

We now have to derive an appropriate estimate for ‖V Ii
ti ‖2: this can be done

with the help of the following discrete version of Gronwall’s inequality.
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Lemma 4.3.3. Assume that we have two constants a, δ > 0 and a sequence

of positive numbers (xi)i=0,··· ,n such that

xi ≤ δ + a
i−1∑
j=0

xj, i = 0, · · · , n.

Then,

xi ≤ δ(1 + a)i, i = 0, · · · , n.

This result can be shown by induction on i. Then, we can prove that:

Proposition 4.3.4. Assume that |π| ≤ 1
16C2

1
∧ 1. Then there is a constant θ,

depending only on C1, such that

‖V Ii
ti ‖2 ≤ θ

(
1 + 4C1

√
|π|
)N−i

, i = 1, · · · , N.

Proof. By definition of V Ii
ti , we have that

‖V Ii
ti ‖2 = ‖f

(
ti−1, X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)
∆ti‖2

≤ ∆ti

(
‖f
(
ti−1, X

π
ti−1

, 0, 0
)
‖2 (4.3.2)

+ ‖f
(
ti−1, X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)
− f

(
ti−1, X

π
ti−1

, 0, 0
)
‖2

)
The first term does not pose any problem: namely, by the assumption on

µ and σ as well as classical results on the Euler scheme for SDEs (see [45]), we

have that max1≤j≤N ‖Xπ
tj
‖2 ≤ θ1(1 +

√
|π|) for some constant θ1 depending

only on C1. Then, it is easy to compute that

‖f
(
ti−1, X

π
ti−1

, 0, 0
)
‖2 ≤ C1 + ‖f

(
ti−1, X

π
ti−1

, 0, 0
)
− f(ti−1, 0, 0, 0)‖2

≤ C1 + C1‖Xπ
ti−1
‖2 ≤ C1 + C1θ1(1 +

√
|π|) ≤ θ2

for some constant θ2, since |π| ≤ 1. For the second term, we have that

‖f
(
ti−1,X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)
− f

(
ti−1, X

π
ti−1

, 0, 0
)
‖2

≤ C1

(
‖ỸIi(Ξi, V Ii)ti−1

‖2 + ‖Z̃Ii(Ξi, V Ii)ti−1
‖2

)
.
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On the other hand, we can estimate ‖ỸIi(Ξi, V Ii)ti−1
‖2 and ‖Z̃Ii(Ξi, V Ii)ti−1

‖2

by applying the Jensen and the conditional Cauchy-Schwarz inequalities sim-

ilarly to Proposition 4.3.1, and hence

‖f
(
ti−1,X

π
ti−1

, ỸIi(Ξi, V Ii)ti−1
, Z̃Ii(Ξi, V Ii)ti−1

)
− f

(
ti−1, X

π
ti−1

, 0, 0
)
‖2

≤ C1

(
1 + (∆ti)

−1/2
)(
‖Ξi‖2 + ‖V Ii

Ti
‖2

)
.

By plugging these estimates back into (4.3.2), we obtain that

‖V Ii
ti ‖2 ≤ ∆ti

(
θ2 + C1

(
1 + (∆ti)

−1/2
)(
‖Ξi‖2 + ‖V Ii

Ti
‖2

))
≤ θ2∆ti + 2C1

√
∆ti
(
‖Ξi‖2 + ‖V Ii

Ti
‖2

)
.

Hence, the fact that ∆ti ≤ |π| ≤ 1 implies that

(1− 2C1

√
|π|)‖V Ii

ti ‖2 ≤ (1− 2C1

√
∆ti)‖V Ii

ti ‖2 ≤ θ2 + 2C1

√
|π|‖Ξi‖2,

and since |π| ≤ 1
16C2

1
, this leads us to

‖V Ii
ti ‖2 ≤

θ2

1− 2C1

√
|π|

+
2C1

√
|π|

1− 2C1

√
|π|
‖Ξi‖2 ≤ 2θ2 + 4C1

√
|π| ‖Ξi‖2.

On the other hand, by the same induction argument as in Lemma 4.3.2 we

get that, for i = 1, · · · , N − 1,

‖Ξi‖2 ≤ ‖ΞN‖2 +
N∑

j=i+1

‖V Ij
tj ‖2 ≤ θ3 +

N∑
j=i+1

‖V Ij
tj ‖2,

for some constant θ3, and therefore

‖V Ii
ti ‖2 ≤ θ4 + 4C1

√
|π|

N∑
j=i+1

‖V Ij
tj ‖2.

Since this is true for all i ∈ {1, · · · , N}, we can apply Lemma 4.3.3, and we



4.3. Local Picard iteration 79

conclude that

‖V Ii
ti ‖2 ≤ θ4

(
1 + 4C1

√
|π|
)N−i

.

We are finally ready to derive the main result of this section. Namely, by

combining all the above conclusions, we can estimate the error ‖V Ii,pi
ti −V Ii

ti ‖2

of the local approximations V Ii,pi when the number of iterations is sufficiently

large. More exactly, we have:

Proposition 4.3.5. Assume that |π| ≤ 1
16C2

1
∧ 1, and choose pi such that

pN ≥
N log(

√
|π|)−N log(1 +

√
|π|)

log(2C1

√
|π|)

,

pi ≥
(N + 1) log(

√
|π|)−N log(1 +

√
|π|)− (N − i) log(1 + 4C1

√
|π|)
)

log(2C1

√
|π|)

,

(4.3.3)

for i = 1, . . . , N − 1. Then, for some constant θ depending only on C1,

‖V Ii,pi
ti − V Ii

ti ‖2 ≤ θ

( √
|π|

1 +
√
|π|

)i
, i = 1, · · · , N.

Proof. The result is shown by backward induction on i. Since ΞN = Ξ̆N =

Φ(Xπ
T ), it follows by Proposition 4.3.1 and 4.3.4 that

‖V IN ,pN
tN

− V IN
tN
‖2 ≤ (2C1

√
|π|)pN‖V IN

tN
‖2 ≤ θ(2C1

√
|π|)pN ,

and the choice of pN gives the desired estimate. Assume now that, for all

j ≥ i+ 1 and pj chosen as in (4.3.3),

‖V Ij ,pj
tj − V Ij

tj ‖2 ≤ θ

( √
|π|

1 +
√
|π|

)j
.

Then, by applying Lemma 4.3.2 and Proposition 4.3.4 to the estimate of

Proposition 4.3.1, we obtain that

‖V Ii,pi
ti − V Ii

ti ‖2 ≤
N∑

j=i+1

‖V Ij ,pj
tj − V Ij

tj ‖2 + θ(2C1

√
|π|)pi

(
1 + 4C1

√
|π|
)N−i

.
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On the other hand, by the choice of pi,

(2C1

√
|π|)pi

(
1 + 4C1

√
|π|
)N−i ≤√|π|( √

|π|
1 +

√
|π|

)N
,

and the claim then follows by the induction assumption, since

N∑
j=i+1

‖V Ij ,pj
tj − V Ij

tj ‖2 ≤ θ

N∑
j=i+1

( √
|π|

1 +
√
|π|

)j
≤ θ

( √
|π|

1 +
√
|π|

)i
− θ
√
|π|
( √

|π|
1 +

√
|π|

)N
.

Remarks 4.3.6. (i) We observe that the required accuracy of the local

iterations V Ii,pi
ti is progressively relaxed as i decreases: indeed, the pre-

vious approximations V
Ij ,pj
tj , j > i, have to be more precise in order to

avoid possible problems of error amplification, because of the result of

Lemma 4.3.2 on the difference Ξ̆i − Ξi.

(ii) While Proposition 4.3.5 apparently suggests that pi have to be chosen

quite large, we point out that the estimates (4.3.3) have to be under-

stood only as maximal bounds: when implementing the algorithm in

practice, it is more convenient to dynamically choose pi by stopping the

algorithm when the difference between the computed solution V Ii,pi
ti and

the previous iteration is sufficiently small. This works because of the

contraction property, and allows to drastically reduce the number of it-

erations in most practical examples. Such a feature is not found, for

instance, in Bender and Denk [4], as their iteration is global and not

local in time.

By the construction of V
π,(p1,··· ,pN )
ti and V π

ti
, Proposition 4.3.5 gives us the

following result on global approximation:

Theorem 4.3.7. Assume that |π| ≤ 1
16C2

1
∧ 1, and choose pi as in Proposi-

tion 4.3.5. Then, for some constant θ depending only on C1,

max
1≤i≤N

‖V π,(p1,··· ,pN )
ti − V π

ti
‖2 ≤ θ

√
|π|.
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Proof. This is a direct consequence of Proposition 4.3.5. Namely:

max
1≤i≤N

‖V π,(p1,··· ,pN )
ti − V π

ti
‖2 = max

1≤i≤N

∥∥∥∥ i∑
j=1

(V
Ij ,pj
tj − V Ij

tj )

∥∥∥∥
2

≤ max
1≤i≤N

i∑
j=1

∥∥∥∥V Ij ,pj
tj − V Ij

tj

∥∥∥∥
2

≤ θ

N∑
j=1

( √
|π|

1 +
√
|π|

)j
≤ θ
√
|π|.

We end this section by combining the conclusions of Theorem 4.2.3 and

Theorem 4.3.7, which shows that our local Picard iteration converges to the

true solution of the functional differential equation with the same convergence

rate of the classical Euler scheme, provided that the number of iterations is

sufficiently large.

Corollary 4.3.8. Assume that µ, σ, f and Φ satisfy Assumption (C2), and

choose pi as in Proposition 4.3.5. Then, there is a constant θ depending only

on C1 such that

max
1≤i≤N

‖Xπ
ti
−Xti‖2 + ‖V π,(p1,··· ,pN )

ti − Vti‖2 ≤ θ
√
|π|,

whenever |π| is sufficiently small.





Chapter 5

Predictable projections of

conformal stochastic integrals

The purpose of this chapter is to introduce some complexification techniques

for stochastic processes, that allow to consider real-valued processes as ap-

propriate projections of corresponding complex-valued, conformal stochastic

processes. While this chapter is not related to the functional differential equa-

tion approach discussed in the previous chapters, we believe that it provides a

useful tool that might have applications, for instance, in the study of forward

and backward SDEs. As an application of our complexification techniques,

we derive a characterization of Widder’s integral representation for Brown-

ian martingales, which is obtained by adapting to the probabilistic setting a

classical result for the heat equation [70].

We start the chapter by studying predictable projections in a confor-

mal Brownian setting. Conformal martingales have been first introduced by

Getoor and Sharpe [34] to prove the duality between the Hardy space H1

and the space BMO in the martingale setting: conformal martingales later

played an important role in the probabilistic study of analytic functions as

well as in the derivation of the conformal invariance of Brownian motion (see

for instance the survey article [17]).

While stochastic integration with respect to conformal martingales is par-

ticularly interesting because of the properties of the complex plane, to our

83
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knowledge there has not been any attempt to introduce a notion of projection

of such integrals on the real line. As a first step in this direction, we consider

the predictable projection on the real component of a conformal Brownian

motion. It turns out that such a projection behaves well under integration,

and in particular powers of the conformal Brownian motion project onto the

corresponding Hermite polynomials. Such a remarkable property stresses once

more the importance of Hermite polynomials in stochastic analysis (which is

due especially to their close relation with iterated stochastic integrals and the

Wiener chaos decomposition, see for instance Nualart [56]), and it motivates

the subsequent study of series of Hermite polynomials, allowing us to obtain,

in a stochastic setting, interesting connections to analytic functions.

In the second part of the chapter, the techniques derived in the first part

are applied to a wide class of Brownian martingales, obtaining a further char-

acterization of Widder’s representation. We recall that, by the results of

Widder [70], any positive solution of the heat equation can be rewritten in

terms of a Laplace-Stieltjes integral with respect to some measure µ, which

however remains undetermined. We will show that the quadratic exponen-

tial moments of µ can be characterized by applying our results on series of

Hermite polynomials and related power series of conformal Brownian motion.

Moreover, we observe that our results hold for any dimension d ∈ N, and that

we also obtain a relation between Widder’s representation and a particular

class of analytic functions.

The chapter is organized as follows. In Section 5.1, we recall the notion

of predictable projections of stochastic processes and show how stochastic

integrals with respect to the conformal Brownian motion are projected on

the real line. Then, in Section 5.2 we derive Lp-convergence properties for

series of Hermite polynomials from well known Lp-estimates on the Wiener

chaos. Section 5.3 is dedicated to the presentation in a purely probabilistic

setting of Widder’s representation result as well as its extension to L1-bounded

martingales. Finally, we derive in Section 5.4 the characterization of the

moments of Widder’s measure µ, as well as the aforementioned connection

to analytic functions.
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5.1 Predictable projections of stochastic

integrals

We begin by introducing some notation. Let (Ω,F , P ) be a complete probabil-

ity space, and assume that X, Y are two independent, d-dimensional Brownian

motions on (Ω,F , P ). We denote by Z the conformal d-dimensional Brownian

motion given by Z = X+ i Y . Furthermore, let F = (Ft)t≥0 be the augmented

filtration generated by Z, and let FX = (FXt )t≥0, FY = (FYt )t≥0 denote the

filtrations generated by X, respectively Y , and augmented by the P -nullsets

from F. Unless otherwise stated, we will always define stochastic integrals

with respect to the filtered probability space (Ω,F ,F, P ). We denote by bL
the space of all adapted processes with bounded càglàd paths, and by bP the

space of all bounded predictable processes. Moreover, we define as usual

H 2(Z) :=

{
H : Ω× [0, T ]→ Cd

∣∣∣∣ H predictable with respect to PF, and

‖H‖H 2(Z) := E

[∫ ∞
0

|Ht|2dt
]
<∞

}
,

where | · | is the Euclidean norm, and similarly for H 2(X). Finally, we de-

note by ΠX the orthogonal projection from H 2(Z) onto the space H 2(X).

We shortly recall the definition of the predictable projection of a measurable

process:

Definition 5.1.1. Let G be a filtration on (Ω,F , P ), and let PG denote the

predictable σ-field with respect to G. Then, for a measurable process L such

that L is positive or bounded, there exists a unique process L̃, measurable with

respect to PG such that, for every predictable G-stopping time T ,

E[LT |GT−] = L̃T P -a.s. on {T <∞}.

L̃ is then called the predictable projection of L on G.

Note that, when such a process L̃ exists, we have

L̃t = E[Lt|Gt−] P -a.s., ∀ t ≥ 0.
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In the following, we will concentrate our attention on the predictable pro-

jection on FX : because of the properties of the Brownian motion X, this

actually coincides with the optional projection on FX . To simplify our nota-

tion, the predictable projection of L on FX will be denoted by LP
X

.

We can now prove the first main result of the chapter: the predictable

projection on FX maps stochastic integrals with respect to Z onto stochastic

integrals with respect to X. Moreover, we also obtain a relation between the

integrand processes.

Theorem 5.1.2. Let H be a process such that H ∈ H 2(Z). Then, the

predictable projections
(∫

HdZ
)PX

exists, and

(∫
HdZ

)PX
t

=

∫ t

0

ΠX(H) dX P -a.s. for all t ≥ 0.

Proof. First of all, we observe that both stochastic integrals can be realized

on the filtered probability space (Ω,F ,F, P ), as X and Z are both continuous

martingales on it. Moreover, we notice that the existence of
(∫

HdZ
)PX

is a

consequence of classical results on filtration shrinkage, which can be found for

instance in [63].

We first assume that H ∈ bL. Fix t ≥ 0, and consider a sequence (πn)n∈N

of partitions of [0, t] such that |πn| → 0. Because of classical convergence

results in stochastic analysis (see [63]), we have that∫ t

0

HsdZs = lim
n→∞

∑
ti∈πn

Hti(Zti+1
− Zti) in H 2,

and hence there is a subsequence (πnk)k∈N so that
∑

ti∈πnk Hti(Zti+1
− Zti)

converges to
∫ t

0
HsdZs P -a.s. as k → ∞. Since H is bounded, the bounded

convergence theorem gives that

(∫
HdZ

)PX
t

= E

[ ∫ t

0

HsdZs

∣∣∣∣FXt ] = lim
k→∞

∑
ti∈πnk

E[Hti(Zti+1
− Zti)|FXt ]

= lim
k→∞

∑
ti∈πnk

(
E[Hti(Xti+1

−Xti)|FXt ] + i E[Hti(Yti+1
− Yti)|FXt ]

)
.
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We compute the first term. Consider for t ≥ 0 the class

Ct := {C ∈ F | ∃A ∈ FXt , B ∈ FYt such that C = A ∩B},

which is stable under intersection. Because of the independence of X and Y ,

we can compute that, for all F ∈ L1(F) and C = A ∩B ∈ Cti ,

E
[
E[F |FXt ]1C

]
= E

[
E[F |FXt ]1A1B

]
= E

[
E[F |FXt ]1A

]
E[1B]

= E
[
E[F |FXti ]1A

]
E[1B] = E

[
E[F |FXti ]1C

]
.

Therefore, by the Dynkin class theorem,

E
[
E[F |FXt ]

∣∣FZti ] = E[F |FXti ]

since FZti = σ(Cti). This implies that E[Hti |FXt ] = E
[
E[Hti |FZti ]

∣∣FXt ] =

E[Hti |FXti ] = ΠX(H)ti , and therefore

E[Hti(Xti+1
−Xti)|FXt ] = E[Hti |FXt ](Xti+1

−Xti) = ΠX(H)ti(Xti+1
−Xti).

On the other hand, we have for the second term that

E[Hti(Yti+1
− Yti)|FXt ] = E[E[Hti(Yti+1

− Yti)|FYti ∨ F
X
t ]|FXt ]

= E[HtiE[(Yti+1
− Yti)|FYti ∨ F

X
t ]|FXt ] = 0,

and we can hence conclude that(∫
HdZ

)PX
t

= lim
k→∞

∑
ti∈πnk

ΠX(H)ti(Xti+1
−Xti) =

∫ t

0

ΠX(H) dX,

since ΠX(H) remains bounded and left continuous by the general theory of

stochastic processes. This proves the claim for H ∈ bL. The result is extended

first to H ∈ bP and then to H ∈H 2(Z) by applying respectively the bounded

and the monotone convergence theorem. As this procedure is fairly standard,

the details are left to the reader.
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In particular, if the predictable projection HP
X

exists for H ∈ H 2(Z),

then
(∫

HdZ
)PX
t

=
∫ t

0
HP

X
dX P -a.s. for all t ≥ 0. We end this section

by observing that Theorem 5.1.2 immediately gives us an explicit expression

for the predictable projection on FX of two important classes of stochastic

processes.

Corollary 5.1.3. For any t ≥ 0, the following assertions hold:

(i)
(
ea·Zt

)PX
= E(a ·X)t P -a.s. for all a ∈ Rd and t ≥ 0.

(ii) Let α = (α1, · · · , αd) ∈ Nd denote a multi-index. Then, for t ≥ 0,

(Zα
t )P

X

= Hα(t,Xt) P -a.s.,

where zα :=
∏d

i=1 z
αi and Hα denotes the d-dimensional generalized Her-

mite polynomial of degree α, defined by

Hα(t,Xt) :=
d∏
i=1

Hαi(t,X
i
t).

In other words, the powers of the conformal Brownian motion project

onto the corresponding Hermite polynomials.

5.2 Expansions in Hermite polynomials

The result of Corollary 5.1.3 (ii) is particularly interesting because of the

importance of Hermite polynomials in stochastic analysis, in particular in

regards to their connection to iterated stochastic integrals and to the Wiener

chaos expansion. Thus, expansions in Hermite polynomials and some of their

properties will be examined more in detail in this section.

In the following, we denote by Kn the homogeneous Wiener chaos of degree

n generated by (Xt)t∈[0,1]. First of all, we recall that the Ornstein-Uhlenbeck

semigroup (Tt)t≥0 is defined, for t ≥ 0 and F ∈ L2(σ(X1)) by

TtF :=
∞∑
n=0

e−ntJnF,
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where Jn denotes the orthogonal projection on Kn. It is well known that the

properties of the Ornstein-Uhlenbeck semigroup lead to useful comparison

results about the Lp-norms on the Wiener chaos. In particular, (Tt)t≥0 enjoys

the following hypercontractivity property:

Proposition 5.2.1. Assume that we have constants 1 < p < q <∞ and t > 0

such that

et ≥
(
q − 1

p− 1

)1/2

.

Then we have that, for all F ∈ Lp(σ(X1)),

‖TtF‖q ≤ ‖F‖p.

The result can be found, for instance, in Nualart [56]. It is then possible

to derive the following estimate:

Lemma 5.2.2. Let Vn be a random variable in Kn. Then, for 1 < p < q <∞
we have that

‖Vn‖q ≤
(
q − 1

p− 1

)n/2
‖Vn‖p.

Proof. It is well known that, by applying the operator Tt to Vn, we get that

TtVn = e−ntVn.

We now choose t > 0 such that et =
(
q−1
p−1

)1/2
. Then, Proposition 5.2.1 implies

that (
q − 1

p− 1

)−n/2
‖Vn‖q = e−nt‖Vn‖q = ‖TtVn‖q ≤ ‖Vn‖p.

From now on, we will write Lp for the space Lp(Ω,F , P ), p ≥ 1. Because

of the well known fact that the Hermite polynomials (Hα(t,Xt))α∈Nd form a

complete basis of L2(σ(Xt)), we will consider in the sequel series associated to

the system (Hα(t,Xt))α∈Nd . We recall that, given a countable index set Λ, a

sequence (xα)α∈Λ in a normed vector space (V, ‖·‖) is said to be unconditionally

convergent (or summable) to x ∈ V if, for all bijections σ : N→ Λ, the series

(xσ(k))k∈N converges to x.
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As a consequence of the hypercontractivity, we can now derive the second

main result of this chapter: this extends, via the corresponding Hermite series,

the explicit expression of Corollary 5.1.3 to a class of Lp-martingales.

Theorem 5.2.3. For p > 1 and T > 0, let (Mt)t∈[0,T ] be an Lp-martingale

such that Mt is σ(Xt)-measurable for all t ∈ [0, T ] (i.e. Mt is of the form

g(t,Xt) for some function g). Moreover, define bα, for α ∈ Nd, by

bα :=
E[MtHα(t,Xt)]

‖Hα(t,Xt)‖2
2

=
E[MtHα(t,Xt)]

α!t|α|
.

Then, the function f : Cd → C, f(z) :=
∑

α∈Nd bαz
α, is well defined, analytic

of order 2, and can be represented, for z ∈ Cd and t ∈ [0, T ], as

f(z) = E

[
Mt exp

(
1

t

(
z ·Xt −

zT z

2

))]
. (5.2.1)

Moreover, let S < (p ∨ p∗)−1 T , where p∗ = p
p−1

is the conjugate exponent

of p. Then, (f(Zs))s∈[0,S] is an Lp-martingale such that

(
f(Zs)

)PX
= Ms, s ∈ [0, S].

Proof. First of all, we show that the series
∑

α∈Nd bαz
α is absolutely convergent

for all z ∈ Cd. Since
∏d

i=1 |zi|αi ≤ |z||α|, it is sufficient to prove that

∞∑
n=0

( ∑
|α|=n

|bα|
)
|z|n <∞.

By Hölder’s inequality and Lemma 5.2.2, it is easy to verify that( ∑
|α|=n

|bα|
)1/n

≤
( ∑
|α|=n

‖Mt‖p‖Hα(t,Xt)‖p∗
α!t|α|

)1/n

≤
(
‖Mt‖p

∑
|α|=n

(
(p∗ − 1) ∨ 1

)|α|/2 ‖Hα(t,Xt)‖2

α!t|α|

)1/n

=

((
1/(p− 1) ∨ 1

t

)n/2
‖Mt‖p

∑
|α|=n

1√
α!

)1/n

.
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Therefore, by the multinomial theorem,( ∑
|α|=n

|bα|
)1/n

≤
√

1/(p− 1) ∨ 1

t

(
‖Mt‖p

√∣∣{α | |α| = n
}∣∣√∑

|α|=n

1

α!

)1/n

≤
√

1/(p− 1) ∨ 1

t

(
‖Mt‖p

dn/2√
n!

√√√√∑
|α|=n

(
n

α

))1/n

= d

√
1/(p− 1) ∨ 1

t

(
‖Mt‖p

1√
n!

)1/n

.

The last term converges for n→∞ to 0 because of Stirling’s approximation.

This shows that f is well defined and analytic. We now prove the represen-

tation (5.2.1): by applying Corollary 5.1.3 and the dominated convergence

theorem, it is easy to check that, for all t > 0,

f(z) =
∑
α∈Nd

1

α!t|α|
E[MtHα(t,Xt)] · zα =

∑
α∈Nd

1

α!t|α|
E[MtZ

α
t ] · zα

= E

[
Mt

∑
α∈Nd

zαZα
t

α!t|α|

]
.

Therefore, the multinomial theorem gives the representation:

f(z) = E

[
Mt

∑
n∈N

∑
|α|=n

zαZα
t

α!t|α|

]
= E

[
Mt

∑
n∈N

1

n!tn

∑
|α|=n

(
n

α

)
zαZα

t

]

= E

[
Mt

∑
n∈N

(z · Zt)n

n!tn

]
= E

[
Mt exp

(
z · Zt
t

)]
= E

[
Mt exp

(
z ·Xt

t

)
E

[
exp

(
i
z · Yt
t

)]]
= E

[
Mt exp

(
1

t

(
z ·Xt −

zT z

2

))]
.

On the other hand, by applying Hölder’s inequality to this representation we
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can verify that

|f(z)| ≤ ‖Mt‖p
∥∥∥∥exp

(
1

t

(
z ·Xt −

zT z

2

))∥∥∥∥
p∗

= ‖Mt‖pE
[∣∣∣∣exp

(
p∗

t
z ·Xt

)∣∣∣∣]1/p∗

exp

(
− Re(zT z)

2t

)
= Kt exp

(
1

2t
((p∗ − 1) Re(z)2 + Im(z)2)

)
≤ Kt exp

(
(p∗ − 1) ∨ 1

2t
|z|2
)
, (5.2.2)

where Kt := ‖Mt‖p, and hence f is analytic of order 2. It remains to consider

the process (f(Zs))s∈[0,S]. Because of the choice of S, we get that f(Zs) ∈ Lp

for all s ∈ [0, S]; namely, by taking some t ∈ [0, T ] such that t > (p∨ p∗)s, the

estimate (5.2.2) implies that

E
[
|f(Zs)|p

]
≤ KtE

[
exp

(
p ∨ p∗

2t
|Zs|2

)]
<∞.

Then, the fact that (f(Zs))s∈[0,S] is a martingale such that
(
f(Zs)

)PX
= Ms

for s ∈ [0, S] is obtained by applying Fubini’s theorem and Corollary 5.1.3 to

the integral representation (5.2.1) for f : the details are left to the reader.

As a consequence, we obtain the following result for martingales on [0,∞):

Corollary 5.2.4. Let p > 1, and assume that (Mt)t∈[0,∞) is an Lp-martingale

such that Mt is σ(Xt)-measurable for all t ∈ [0, T ], and let f as in Theo-

rem 5.2.3. Then, (f(Zt))t∈[0,∞) is an Lp-martingale such that

(
f(Zt)

)PX
= Mt, t ∈ [0,∞).

By analyzing the proof of Theorem 5.2.3, we immediately notice that the

result cannot hold for p = 1, due to the unboundedness of the Hermite poly-

nomials. It is however possible to relate the convergence in L1 of an Hermite

series to that in Lp, p > 1. First of all, we derive the following estimate

with the help of Lemma 5.2.2 and of the well known interpolation of Hölder’s



5.2. Expansions in Hermite polynomials 93

inequality.

Lemma 5.2.5. Let Vn is a random variable in Kn, and p > 1. Then:

‖Vn‖p ≤ enp/2‖Vn‖1.

Proof. Let q > p be arbitrary, and let θ = θ(p, q) ∈ (0, 1) be such that
1
p

= 1−θ
q

+ θ. Then, the interpolation of Hölder’s inequality and Lemma 5.2.2

yield that

‖Vn‖p ≤ ‖Vn‖1−θ
q ‖Vn‖θ1 ≤

(
q − 1

p− 1

)n(1−θ)/2

‖Vn‖1−θ
p ‖Vn‖θ1.

By rearranging the terms, this gives us that

‖Vn‖p ≤
(
q − 1

p− 1

)n(1−θ)
2θ

‖Vn‖1.

The claim then follows by observing that

inf
q∈(p,∞)

(
q − 1

p− 1

)n(1−θ(p,q))
2θ(p,q)

= lim
q→p+

(
q − 1

p− 1

)n(1−θ(p,q))
2θ(p,q)

= enp/2.

Even though the constant enp/2 could be further optimized, it is sufficiently

small for our purpose. Thanks to the above estimate, we obtain that the

convergence in L1 of an Hermite series implies, to a certain extent, that in Lp

for p > 1:

Proposition 5.2.6. Let t ≥ 0, and assume that the series
∑

α∈Nd bαHα(t,Xt)

is unconditionally convergent in L1. Then, for p > 1,
∑

α∈Nd bαHα(s,Xs)

converges unconditionally and absolutely in Lp for s < t
d2ep

.

Proof. We denote by X the unconditional L1-limit of
∑

α∈Nd bαHα(t,Xt), and

fix a bijection σ : N→ Nd. Then, for any ε > 0, there is an N ∈ N such that

∥∥∥ n∑
k=0

bσ(k)Hσ(k)(t,Xt)−X
∥∥∥

1
≤ ε for all n ≥ N.
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This implies that, for all k > N ,

|bσ(k)|‖Hσ(k)(t,Xt)‖1 =
∥∥∥ k∑
j=0

bσ(j)Hσ(j)(t,Xt)−
k−1∑
j=0

bσ(j)Hσ(j)(t,Xt)
∥∥∥

1

≤
∥∥∥ k∑
j=0

bσ(j)Hσ(j)(t,Xt)−X
∥∥∥

1
+
∥∥∥ k−1∑
j=0

bσ(j)Hσ(j)(t,Xt)−X
∥∥∥

1
≤ 2ε.

On the other hand, since the Hermite polynomial Hα(1, X1) lies for α ∈ Nd in

the Wiener chaos K|α|, Lemma 5.2.5 implies that, for s ≥ 0 and k ∈ N,

‖Hσ(k)(s,Xs)‖p = (
√
s)|σ(k)|/2‖Hσ(k)(1, X1)‖p ≤ (eps)|σ(k)|/2‖Hσ(k)(1, X1)‖1.

As a consequence of these two estimates and of the scaling property of Brow-

nian motion we obtain that, for all m,n > N and s ≥ 0,

∥∥∥ m∑
k=n

bσ(k)Hσ(k)(s,Xs)
∥∥∥
p
≤

m∑
k=n

|bσ(k)|‖Hσ(k)(s,Xs)‖p

≤
m∑
k=n

2ε(eps)|σ(k)|/2‖Hα(1, X1)‖1

‖Hα(t,Xt)‖1

= 2ε
m∑
k=n

(
ep
s

t

)|σ(k)|/2

. (5.2.3)

Consider now the series
∑∞

k=0

(
ep s

t

)|σ(k)|/2
, and assume that s < t

d2ep
. Since

all terms are positive, it is easy to verify that

∞∑
k=0

(
ep
s

t

)|σ(k)|/2

=
∞∑
j=0

∑
|α|=j

(
ep
s

t

)|α|/2
=
∞∑
j=0

(
ep
s

t

)j/2∣∣{α ∈ Nd| |α| = j}
∣∣

≤
∞∑
j=0

(
ep/2d

√
s

t

)j
<∞,

and we can therefore find an N ′ ≥ N such that

m∑
k=n

(
ep
s

t

)|σ(k)|/2

≤ 1

2
for all m,n ≥ N ′.
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As a consequence of (5.2.3), we finally obtain that, for s < t
d2ep

and m,n ≥ N ′,

∥∥∥ m∑
k=n

bσ(k)Hσ(k)(s,Xs)
∥∥∥
p
≤ ε.

Thus, the series
∑n

k=0 bσ(k)Hσ(k)(s,Xs) converges in Lp, and the Lp-limit has to

be equal to the L1-limit X because of Jensen’s inequality. As σ was arbitrary,

this proves the unconditional convergence. The absolute convergence follows

similarly from (5.2.3) by applying the same arguments.

On the other hand, the assumption that the series converges uncondi-

tionally can be further weakened, since we can prove that the conditional

convergence of an Hermite series in L1 with respect to a graded order on Nd

implies its unconditional convergence in the following way:

Lemma 5.2.7. Let (bα)α∈Nd be a family of coefficients in R. Moreover, set

γn(t,Xt) :=
∑
|α|=n bαHα(t,Xt) for t ≥ 0, and assume that

∑
n∈N γn(t,Xt)

converges in L1 for some t. Then,
∑

α∈Nd bαHα(s,Xs) converges uncondition-

ally in L1 for s < t
d2e2

.

Proof. Let ε > 0 be arbitrary. By computations similar to those of Proposi-

tion 5.2.6, we can easily find an N ∈ N such that, for all n ≥ N and all α with

|α| = n, |bα|‖Hα(t,Xt)‖1 ≤ ε. By the orthogonality of Hermite polynomials

and Lemma 5.2.5, it is then easy to check that, for all n ≥ N and s ≥ 0,

∥∥γn(s,Xs)
∥∥1/n

2
=

( ∑
|α|=n

|bα|‖Hα(s,Xs)‖2

)1/n

=

( ∑
|α|=n

εensn/2
‖Hα(1, X1)‖2

‖Hα(t,Xt)‖2

)1/n

≤
(
εdnen

(
s

t

)n/2)1/n

= ε1/nde

√
s

t
.

By choosing s < t
d2e2

, we thus get that

lim
n→∞

∥∥γn(s,Xs)
∥∥1/n

2
≤ de

√
s

t
lim
n→∞

ε1/n = de

√
s

t
< 1.



96 Chapter 5. Predictable projections of conformal stochastic integrals

Hence, the series
∑

n∈N γn(s,Xs) converges absolutely in L2. By the orthog-

onality of the Hermite polynomials in L2, we can break up the homogeneous

terms in γn, obtaining that
∑

α∈Nd bαHα(s,Xs) converges unconditionally in

L2. This in turn implies the unconditional convergence in L1.

We conclude this section by observing that the combination of Proposi-

tion 5.2.6 and Lemma 5.2.7 leads to the following result:

Corollary 5.2.8. Assume that, for all t ≥ 0, the series
∑

α∈Nd bαHα(t,Xt)

converges conditionally in L1 with respect to a graded order on Nd. Then,∑
α∈Nd bαHα(t,Xt) converges unconditionally and absolutely in Lp for all t ≥ 0

and p ≥ 1.

5.3 Widder’s representation for Brownian

martingales

As an application of the above properties, we derive a characterization of Wid-

der’s theorem about the representation of positive martingales. First of all,

we recall how the classical formulation of Widder translates in a probabilistic

setting. A purely probabilistic proof of this theorem can be found in [53], but

we prefer to include a different presentation for the convenience of the reader.

Moreover, we observe that our result hold for any dimension d ∈ N.

Theorem 5.3.1. Let X be a d-dimensional Brownian motion, and suppose

that Mt = g(t,Xt) is a continuous martingale such that g(0, 0) = 1 and

g(t,Xt) ≥ 0. Then, there exists a probability measure µ on Rd such that,

for all t ≥ 0,

Mt =

∫
Rd
E(v ·X)t µ(dv) P -a.s..

Proof. Let f : Rd → C be a bounded, continuous map. Then, for s ≥ t one

has that

E

[
Mtf

(
Xt

t

)]
= E

[
Msf

(
Xt

t

)]
= E

[
Msf

(
Xs

s
+

(
Xt

t
− Xs

s

))]
.
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Note that the random variables
(
Xt
t
− Xs

s

)
and Xs

s
are independent as they

are uncorrelated in a Gaussian space. Therefore, by conditioning on Xs
s

one

gets that

E

[
Mtf

(
Xt

t

)]
= E

[
Ms

∫
Rd
f

(
Xs

s
+

√
1

t
− 1

s
x

)
exp(−|x|2/2)

(2π)d/2
dx

]
.

We can now proceed with the construction of the measure µ. By taking

f(x) := exp(iu · x), the previous equality yields that

E

[
Mt exp

(
iu · Xt

t

)]
= E

[
Ms exp

(
iu · Xs

s

)]
exp

(
−1

2

(
1

t
− 1

s

)
|u|2
)
.

On the other hand, the process (Mt)t≥0 is by assumption a density process,

and is therefore associated to a measure Q on C(R+,Rd) with Q
∣∣
Ft
<< P

∣∣
Ft

via the Radon-Nikodym theorem. This gives us that

EQ

[
exp

(
iu · Xt

t

)]
= EQ

[
exp

(
iu · Xs

s

)]
exp

(
−1

2

(
1

t
− 1

s

)
|u|2
)
.

By taking t = 1, this implies in particular that

ϕQX1
(u) = ϕQXs

s

(u) exp

(
−1

2

(
1− 1

s

)
|u|2
)
,

where ϕQY denotes the characteristic function of the random variable Y under

the measure Q.

As a consequence, we get that ϕQXs
s

(u) converges pointwise for s→∞ to a

continuous function ϕQX1
(u) exp

(
1
2
|u|2
)
. Therefore, Lévy’s continuity theorem

yields the existence of a measure µ such that Xs
s

converges weakly to µ under

Q as s→∞.

We now have to check that µ satisfies the desired property. By the above

convergence in distribution, we have that, for any f bounded and continuous

and for any fixed t > 0,

EQ

[∫
Rd
f

(
Xs

s
+

√
1

t
− 1

s
x

)
e−|x|

2/2

(2π)d/2
dx

]
→
∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv)
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when s→∞. Since the left hand side equals E
[
Mtf

(
Xt
t

)]
for any s ≥ t, we

get that

E

[
Mtf

(
Xt

t

)]
=

∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv).

On the other hand, by using Girsanov’s theorem one can easily check that,

for any f bounded and continuous,

E

[∫
Rd
E(vX)t µ(dv)f

(
Xt

t

)]
=

∫
Rd
E

[
E(vX)t f

(
Xt

t

)]
µ(dv)

=

∫
Rd
E

[
f

(
Xt

t
+ v

)]
µ(dv)

=

∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv).

By approximation arguments, this equality can then be extended to any f

bounded and measurable, obtaining the desired representation for Mt.

The condition that g(t,Xt) forms a martingale on the whole interval [0,∞)

is essential. This can easily be shown by separation arguments: let d = 1,

T > 0, and denote by K the set of all the martingales having the desired

representation, i.e.

K =
{
N = (Nt)0≤t≤T

∣∣ There is a probability measure µ such that

Nt =

∫
R
E(vX)t µ(dv), 0 ≤ t ≤ T

}
.

Clearly, K is a convex set. Now, for an arbitrary f ∈ L∞(Rd) and any N ∈ K
we have that

E [f(Xt)Nt] =

∫
Ω

∫
R
f(Xt)E(vX)t µ(dv)dP

=

∫
R
E [f(Xt)E(vX)t]µ(dv)

=

∫
R
E [f(Xt + vt)]µ(dv).
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The choice fk(x) := sin(kx) gives

E [fk(Xt)Nt] =

∫
R
E [sin(kXt + kvt)]µ(dv)

=

∫
R
E [cos(kXt)] sin(kvt)µ(dv)

≥ E [cos(kXt)] inf
v∈R

sin(kvt) = −e−k2t/2.

However, by defining

MT =
1{sin(kXT )<−e−k2T/2}

P (sin(kXT ) < −e−k2T/2)

and by setting Mt := E[MT |Ft] = g(t,Xt), we get a martingale on [0, T ] of the

desired form and such that E [fk(Xt)Mt] < −e−k
2t/2. This proves the claim.

On the other hand, Theorem 5.3.1 can easily be extended to any continuous

L1-bounded Brownian martingale on [0,∞). First of all, we recall the well

known Krickeberg decomposition for L1-bounded martingales:

Theorem 5.3.2. Let M denote a martingale on [0,∞). Then M is L1-

bounded if and only if it can be written (P -a.s.) as the difference of two

positive martingales M1, M2. Moreover, one can choose M1, M2 so that

sup
t≥0
‖Mt‖1 = E[M1

0 ] + E[M2
0 ],

and the decomposition is then given by

M1
t = sup

s≥t
E[M+

s |Ft], M2
t = sup

s≥t
E[M−

s |Ft] P -a.s., t ≥ 0.

The proof of this well known result can be found for instance in [24].

Krickeberg’s decomposition allows us to extend Widder’s representation the-

orem, obtaining the following result:

Proposition 5.3.3. Let (Mt)t≥0 be a continuous, L1-bounded martingale of

the form Mt = g(t,Xt). Then there is a signed measure µ on Rd such that

Mt =

∫
Rd
E(v ·X)t µ(dv) P -a.s. for all t ≥ 0.
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Moreover, we have that

sup
t≥0
‖Mt‖1 = ‖µ‖.

Proof. We apply the Krickeberg decomposition to M , obtaining two positive

martingales M1, M2 such that M = M1−M2 and supt≥0 ‖Mt‖1 = M1
0 +M2

0 .

By construction, M i is of the formM i = f i(t,Xt). We can assume, without

loss of generality, that M i
0 6= 0. Then, we can apply Widder’s representation

to the positive martingales M1

M1
0
, M2

M2
0
, obtaining two probability measures µ̂1,

µ̂2 such that
M i

t

M i
0

=

∫
Rd
E(v ·X)t µ̂

i(dv) P -a.s..

We thus set µi := M i
0µ̂

i and µ := µ1 − µ2. Then, for all t,

Mt = M1
t −M2

t =

∫
Rd
E(v ·X)t µ(dv) P -a.s..

On the other hand, we have that

‖Mt‖1 ≤
∫

Ω

∫
Rd
E(v ·X)t |µ|(dv)dP =

∫
Rd
E [E(v ·X)t] |µ|(dv) = ‖µ‖,

so that we finally get that

‖µ1‖+ ‖µ2‖ = M1
0 +M2

0 = sup
t≥0
‖Mt‖1 ≤ ‖µ‖ ≤ ‖µ1‖+ ‖µ2‖.

5.4 A characterization of Widder’s measure

We now present the aforementioned characterization of the measure µ appear-

ing in Proposition 5.3.3. To the best of our knowledge, this characterization

is new and shows interesting analogies with results from Fourier analysis.

Theorem 5.4.1. Let (g(t,Xt))t≥0 be a continuous L1-bounded martingale on

[0,∞) with Widder’s representation g(t,Xt) =
∫
Rd E(v ·X)t µ(dv). Then, the

following assertions hold:

(i) If the measure |µ| has quadratic exponential moments of all orders, i.e.∫
Rd
eλ|v|

2|µ|(dv) <∞ for all λ > 0,
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then there is a family (bα)α∈Nd of coefficients in R such that, for all t ≥ 0,

the series
∑

α∈Nd bαHα(t,Xt) converges unconditionally to g(t,Xt) in L1,

and the coefficients bα can be represented as

bα =
1

α!

∫
Rd
vα µ(dv), α ∈ Nd.

(ii) Conversely, if µ is positive and there is a family (bα)α∈Nd such that∑
α∈Nd bαHα(t,Xt) converges unconditionally to g(t,Xt) in L1 for all

t ≥ 0, then µ has quadratic exponential moments of all orders. More-

over, the function f(z) :=
∫
Rd e

v·zµ(dv), z ∈ Cd, is well defined, analytic

of order 2, and can be represented, for z ∈ Cd and t > 0, as

f(z) =
∑
α∈Nd

bαz
α = E

[
g(t,Xt) exp

(
1

t

(
z ·Xt −

zT z

2

))]
.

Proof. We first show (i). By the properties of Hermite polynomials we have

that, for all bijections σ : N→ Nd, t ≥ 0 and v ∈ Rd,

E(v ·X)t =
d∏
i=1

E(vi ·X i)t =
d∏
i=1

(∑
n∈N

vni
n!
Hn(t,X i

t)
)

=
∑
k∈N

vσ(k)

σ(k)!
Hσ(k)(t,Xt),

where the last equality holds pointwise P -a.s.; moreover, by Corollary 5.1.3

we obtain that, for all n ∈ N,∣∣∣∣ n∑
k=0

vσ(k)

σ(k)!
Hσ(k)(t,Xt)

∣∣∣∣ =

∣∣∣∣E[ n∑
k=0

vσ(k)

σ(k)!
Z
σ(k)
t

∣∣∣∣FXt ]∣∣∣∣
≤ E

[∑
k∈N

|vσ(k)Z
σ(k)
t |

σ(k)!

∣∣∣∣FXt ]

= E

[
exp

( d∑
i=1

|vi|
∣∣Zi

t

∣∣)∣∣∣∣FXt ] P -a.s.,

where the last equality is valid because of monotone convergence. On the
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other hand, it is not difficult to verify that E
[

exp
(∑d

i=1 |vi|
∣∣Zi

t

∣∣)∣∣∣FXt ] lies

in L1(P ⊗ µ). Namely, by Cauchy-Schwarz inequality and the assumption on

the moments of |µ|, we have that, for some constant C > 0,

∫
Rd
E

[
E

[
exp

( d∑
i=1

|vi|
∣∣Zi

t

∣∣)∣∣∣∣FXt ]]|µ|(dv) ≤
∫
Rd
E
[

exp
(
|v|
∣∣Zt∣∣)]|µ|(dv)

≤ C

∫
Rd
E
[

exp
(
|v|Zt

)]
|µ|(dv)

=
C√
2πt

∫
Rd

exp

(
t|v|2

2

)
|µ|(dv) <∞.

We can therefore apply the bounded convergence theorem, obtaining that∑
k∈N

vσ(k)

σ(k)!
Hσ(k)(t,Xt) converges absolutely in L1(P ⊗ µ) to E(v · Xt). By

integrating with respect to µ, we finally get the unconditional convergence in

L1(P ) of
∑

α∈Nd
1
α!

( ∫
Rd v

αµ(dv)
)
Hα(t,Xt) to g(t,Xt), as σ was arbitrary. This

proves the first implication as well as the representation for the coefficients

bα.

We now prove the second implication. First of all, we consider the func-

tion f̃ : Cd → C, f̃(z) :=
∑

α∈Nd bαz
α. By Proposition 5.2.6, we have that

g(t,Xt) ∈ L2 for t ≥ 0: thus, we have that bα = 1
α!t|α|

E[g(t,Xt)Hα(t,Xt)],

since the Hermite polynomials are orthogonal to each other. We therefore see

that the series f̃ corresponds to the one considered in Corollary 5.2.4, and this

implies that f̃ is well defined, analytic of order 2, and

f̃(z) =
∑
α∈Nd

bαz
α = E

[
g(t,Xt) exp

(
1

t

(
z ·Xt −

zT z

2

))]
.

On the other hand, by substituting g(t,Xt) with its Widder’s representation

in the above expression and by applying Fubini’s theorem, it is easy to verify

that f̃(z) = f(z) =
∫
Rd e

v·zµ(dv). It remains to prove that µ has quadratic

exponential moments: however, the estimate (5.2.2) implies similarly to The-

orem 5.2.3 that f(Zs) ∈ L1 for all s ≥ 0, since by taking t > s we can verify

that

E|f(Zs)| ≤ KtE
[

exp
( |Zs|2

2t

)]
<∞.
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On the other hand, since f(z) =
∫
Rd e

v·zµ(dv) and µ is positive, by applying

Fubini’s theorem we obtain that

E[f(Zt)] =

∫
Rd
e
t
2
|v|2µ(dv), t > 0.

As t > 0 is arbitrary, this proves the existence of all quadratic exponential

moments.

We conclude this chapter with an example illustrating the fact that the

quadratic exponential moments of µ are needed in order to have an expansion

in Hermite series of the corresponding martingale. Let µ denote the standard

Gaussian measure on R: we can then verify that, for t ≥ 0,

g(t,Xt) =

∫
R
E(v ·X)t µ(dv) =

1√
t+ 1

exp

(
X2
t

2(t+ 1)

)
.

Since not all the quadratic exponential moments of µ exist, Theorem 5.4.1 im-

plies that g(t,Xt) cannot be represented as an Hermite series in L1. Moreover,

it is easy to check that g(t,Xt) corresponds to the counterexample introduced

in a deterministic setting by Pollard [62] in order to prove that the Hermite

polynomials do not form a basis of Lp for p 6= 2, and his conclusions can then

be recovered from the results on Lp-convergence proved in Section 5.2.

We can therefore observe that Theorem 5.4.1 gives a full explanation of

Pollard’s counterexample: namely, the non-convergence of the corresponding

Hermite series is simply due to the non-existence of quadratic exponential

moments of any order for the corresponding Widder’s measure. This obser-

vation allows us to construct several other counterexamples whose Hermite

series do not converge in L1: after choosing a measure on R which does not

have quadratic exponential moments of all orders, it suffices to consider the

martingale given by the corresponding Widder representation.
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