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Abstract

There is a great interest in understanding three-dimensional (3-D) physical properties of the
Earth’s mantle. Estimates of 3-D variations of Earth’s properties come mainly from global
seismic tomography. While substantial progress in seismology models have been achieved
recently, interpretation of the seismic velocity anomalies in terms of thermodynamical and
compositional parameters is often uncertain and needs additional information. The only other
means to directly probe the physical properties of the mantle is electromagnetic (EM) induc-
tion sounding which recovers the electrical conductivity distribution in the Earth. To separate
the effects of composition and temperature, or in illuminating the role of partial melt and fluids
(especially water) in the mantle, both techniques are likely to be important.

The objectives of this work are three-fold: a) to develop an efficient global EM inverse
solution to recover 3-D conductivity distribution in the mantle. The solution is based on
analysis of the experimental C-responses from the global net of geomagnetic observatories;
b) to obtain a new set of reliable C-responses which cover the broadest possible period range
from the largest possible number of observatories; c) to invert these new C-responses in order
to image the 3-D mantle conductivity distribution in the depth range between 400 and 1600
km.

The developed frequency domain 3-D inversion tool exploits a quasi-Newton optimiza-
tion method. This method requires multiple calculations of the gradient of the data misfit with
respect to model parameters. We implemented the adjoint method to allow efficient calcula-
tion of the gradient. It is known that the efficiency of 3-D inversions depends critically on
the ability to execute the forward problem rapidly. Since our forward solver is based on an
integral equation formulation, we take the advantage of this approach and conduct the most
time-consuming part of the simulations – calculation of the tensor Green’s functions – only
once, prior to the inversion. Further improvement in computational time stems from the par-
allelization of the forward solver.

Our 3-D inverse solution has been applied to real ground-based geomagnetic data. We
collected and analyzed very long time series (up to 51 years; 1957-2007) of hourly means
of three components of the geomagnetic field from 281 geomagnetic observatories. Special
attention was given to data processing in order to obtain unbiased C-responses with trustwor-
thy estimates of experimental errors in the period range from 2.9 to 104.2 days. After careful
inspection of the obtained C-responses we chose the data from 119 observatories for further
analysis. Squared coherency was used as a main quality indicator to detect (and then to ex-
clude from consideration) observatories with large noise-to-signal ratios. During this analysis
we found that – along with the C-responses from high-latitude observatories (geomagnetic
latitudes higher than 58◦) – the C-responses from all low-latitude observatories (geomagnetic
latitudes below 11◦) also have very low squared coherencies, and thus cannot be used for
global induction studies.



ii Abstract

We found that the C-responses from the selected 119 mid-latitude observatories show a
huge variability both in real and imaginary parts, and we investigated to what extent the ocean
effect can explain such a scatter. By performing systematic model calculations we conclude
that: (a) the variability due to the ocean effect is substantial, especially at shorter periods,
and it is seen for periods up to 40 days or so; (b) the imaginary part of the C-responses is to
a larger extent influenced by the oceans; (c) two types of anomalous C-response behaviour
associated with the ocean effect can be distinguished. (d) in order to accurately reproduce the
ocean effect a lateral resolution of 1◦ × 1◦ of the conductance distribution is needed. (e) the
ocean effect alone does not explain the whole variability of the observed C-responses.

We also found that part of the variability in the real part of the C-responses is due to the
auroral effect. In addition we discovered that the auroral effect in the C-responses reveals
strong longitudinal variability, at least in the Northern hemisphere. Europe appears to be the
region with smallest degree of distortion compared with North America and northern Asia.
We also detected that the imaginary part of the C-responses is practically unaffected by the
auroral source, thus confirming the fact that in the considered period range the EM induction
from the auroral electrojet is negligible. Assuming independence of the auroral signals on the
Earth’s conductivity (no EM induction), and longitudinal variability of the auroral effect, we
developed a scheme to correct the experimental C-responses for this effect.

With these developments and findings in mind we performed a number of regularized 3-D
inversions of our experimental data in order to detect robust features in the recovered 3-D
conductivity images. Although differing in details, all our 3-D inversions reveal a substantial
level of lateral heterogeneity in the mantle at the depths between 410 and 1600 km. Con-
ductivity values vary laterally by more than one order of magnitude between resistive and
conductive regions. The maximum lateral variations of the conductivity have been detected
in the layer at depths between 670 and 900 km. By comparing our global 3-D results with
the results of independent global and semi-global 3-D conductivity studies, we conclude that
3-D conductivity mantle models produced so far are preliminary as different groups obtain
disparate results, thus complicating quantitative comparison with seismic tomography or/and
geodynamic models. In spite of this, our 3-D EM study and most other 3-D EM studies re-
veal at least two robust features: reduced conductivity beneath southern Europe and northern
Africa, and enhanced conductivity in north eastern China.



Zusammenfassung
Für das grundsätzliche Verständnis des Erdinneren sind Informationen über dessen physikalis-
che Eigenschaften von grosser Bedeutung. Zur Beschreibung der dreidimensionalen physika-
lischen Eigenschaften des Erdmantels werden vor allem seismische Methoden angewendet,
die jedoch die chemisch-mineralogischen und thermischen Variationen des Mantels nicht aus-
reichend aulösen können. Eine Kombination von seismischen und elektromagnetischen Meth-
oden ermölicht jedoch die detaillierte Beschreibung physikalischer und chemischer Eigen-
schaften von Mineralphasen des Mantels.

Zur Bestimmung der elektrischen Eigenschaften des Mantles wurde in dieser Arbeit ein
neuer Ansatz entwickelt, der auf der Analyse von magnetischen Übertragungsfunktionen (C-
Responsen), die aus den Messungen geomagnetischer Observatorien geschätzt wurden, basiert.
Um die “penalty” Funktion (die aus Missfit- und Regulierungs-Funktionen besteht) zu min-
imieren wurde eine iterative Gradienten-Methode angewendet. Zur Lösung des Vorwärt-
sproblems (der Bestimmung theoretischer C-Responsen für ein vorgegebenes Modell der
Mantelleitfähigkeit) wurde eine Integralgleichungsmethode verwendet. Die Bestimmung des
Missfits-Gradienten wurde mithilfe einer adjungierten Methode optimiert. Um die benötigte
Rechenzeit zu verkürzen wurde das Programm in Bezug auf die zu modellierenden Frequen-
zen parallelisiert und die Berechnung der Green’schen Tensoren vorab durchgeführt. Die Kon-
vergenz und Genauigkeit des Programms wurden an einem numerisch-synthetischen Beispiel
und unter Annahme eines dreidimensionalen Leitfähigkeitsmusters im Mantel getestet. Die
berechneten synthetische C-Responsen wurden anschliessend invertiert und die resultierende
Leitfähigkeit mit der ursprünglichen Leitfähigkeitsverteilung verglichen. Dieser Test hat ge-
zeigt, dass der verwendete Algorithmus die Mantelleitfähigkeit mit hoher Genauigkeit aus den
C-Responsen schätzen kann.

In einem weiteren Schritt wurde dann der Algorithmus verwendet um die Mantelleitfähig-
keit im Tiefenbereich zwischen 410 km und 1600 km aus experimentellen C-Responsen zu
bestimmen. Hierfür mussten letztere optimal geschätzt werden. Dies erfolgte durch eine de-
taillierte Analyse von Magnetfelddaten von 281 Observatorien der Jahre 1957 bis 2007 (51
Jahre) aus denen C-Responsen für 15 Perioden zwischen 2.9 und 104.2 Tagen geschätzt wur-
den. Spezielles Augenmerk wurde dabei auf eine genaue Bestimmung der Fehler gelegt. Gute
Übertragungsfunktionen zeichnen sich durch eine hohe Kohärenz, relativ kleine Fehler und
ein glattes Frequenzverhalten aus. C-Responsen von 119 Observatorien, gelegen in Dipolbre-
iten zwischen 11 und 58 Grad Nord oder Süd, erfüllten diese Kriterien.

Diese Übertragungsfunktionen zeigen jedoch eine hohe Variabilität bezüglich ihres Real-
und Imaginärteils. Ein relativ hoher Anteil dieser Variabilität wird durch den Einfluss von
elektrischen Strömen in den Ozeanen hervorgerufen. Dieser Effekt wurde mithilfe von Mod-
ellstudien im Detail untersucht. Es zeigte sich, dass (a) der Einfluss der Ozeane sichtbar ist
für Perioden bis zu 40 Tagen; (b) der Imaginärteil stärker beeinflusst ist als der Realteil; (c)
die Variabilität jedoch nicht ausschliesslich den Ozeanen zugeschrieben werden kann. Der
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Einfluss elektrischer Ströme in der polaren Ionosphäre ist eine zusätzliche Quelle für die Vari-
abilität der C-Responsen. Es zeigte sich, dass der Effekt dieser Ströme relativ starke longi-
tudinale Unterschiede aufweist, welche wir vor allem für die Nordhemisphäre beschreiben
konnten. Der Einfluss ist in Nordamerika und Asien ausgeprägter als in Europa. Es wurde
ein Schema entwickelt, um die durch polare Ströme hervorgerufene Verzerrung der Übertra-
gungsfunktionen abzuschätzen.

Mithilfe all dieser Informationen und dem neu entwickelten analytischen Ansatz einer
dreidimensionaler Inversion kann die räumliche Verteilung der elektrischen Leitfähigkeit im
Mantelbereich zwischen 410 km und 1600 km Tiefe gut beschrieben werden. Die Robustheit
des erhaltenen Leitähigkeitsmodelles wurde durch verschiedene Tests bestätigt. Im Weiteren
wurde das erhaltene Leitfähigkeitsmodell mit Resultaten anderer Studien verglichen. Trotz
Übereinstimmung in vielen Regionen muss eine genaue Bestimmung der Mantelleitfähigkeit
auch weiterhin Gegenstand der Forschung bleiben.
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Chapter 1

Introduction

From seismic studies we know that the Earth has a solid inner core (∼1221 km from the Earth’s
center), liquid outer core (∼1221 - ∼3481 km), a solid mantle (∼3481 - ∼6100 km) and a crust
(∼6100 - ∼6172 km) (Fig. 1.1). There is great interest in characterizing the three-dimensional
(3-D) physical properties of Earth’s mantle on a global scale. One technique that has reached
a level of maturity is seismic tomography, which recovers the 3-D variations in seismic wave
speed in the mantle (e.g. Becker and Boschi, 2002; Romanowicz, 2003, among others). This
information is crucial in characterizing the dynamics of the mantle. For example, geodynamic
processes such as mantle convection, the fate of subducting slabs and the origin of continents
all have signatures in seismic wave speed. Although seismic tomography has proven impor-
tant as a means of mapping mantle velocity heterogeneities, it suffers from the limited ability
to separate effects arising from compositional and thermal variations (see e.g. Trampert et al.,
2004; Khan et al., 2009). In this context global electromagnetic (EM) studies, by recovering
the electrical conductivity distribution in the mantle, provide independent and complementary
information about the Earth’s interior. This is indeed an important issue since conductivity
reflects the connectivity of constituents as fluids, partial melt, and volatiles (all of which may
have profound effects on rheology and, ultimately, mantle convection and tectonic activity),
while seismology ascertains bulk mechanical properties. To separate the effects of compo-
sition and temperature, or in illuminating the role of fluids (especially water) in the mantle,
both techniques are likely to be important. The latter issue - to what extent the mantle is wet -
is very topical because water content in the mantle not only governs physical rock properties
but also transport properties such as viscosity, thermal and not least electrical conductivity
(e.g. Karato, 1990, 2006). But it is still not clear how the water enhances the electrical con-
ductivity of the mantle minerals. Laboratory results at mantle conditions have so far proved
controversial, with the two main groups (Yoshino, Katsura & coworkers, and Karato, Dai &
coworkers) reaching different conclusions, as regards the effect of water on the conductivity
of upper mantle and transition zone (TZ; depths between 410 and 670 km) minerals. Since the
minerals in the transition zone (i.e. wadsleyite and ringwoodite) are known to have high H2O
solubility (Inoue et al., 1995) the actual water content is a key parameter to understand their
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Figure 1.1: Schematic picture of the Earth. After Gubbins (2008).

physical properties. An overview of laboratory studies on electrical conductivity is presented
in Appendix D.

1.1 A brief history of early EM induction studies of the Earth

The history of terrestial EM induction studies is connected to the development of the funda-
mental physics of electromagnetic energy, closely following Oersted’s 1820 observation that
an electric current deflected a magnet (Dibner, 1962) and Ampere’s quantification of this phe-
nomena in 1826 (Ampere, 1826). Ampere also found out that a current in a wire exerted
a magnetic force, and that two such wires therefore interact magnetically. In 1831 Faraday
observed that moving a magnet through a coil produces an electric current (Faraday, 1839).
In 1832 he predicted that salt water moving through a magnetic field should also produce an
electric field, an effect that was observed much later in 1918.

The first observations that associated induction effects with geomagnetic storms were seen
in telegraph cables. The storm of 1838 produced a noticeable effect on Norwegian telegraph
cables (Constable, 2007), and Barlow (1849) reports spontaneous currents in telegraph lines
in England, while Clement (1860) observed that the aurora of 29 August 1859 disrupted
the telegraphic connection. The mathematical developments of the subject started in 1839,
when Gauss published a method describing Earth’s magnetic field by a spherical harmonic
expansion, which allows the separation of “internal” and “external” magnetic sources. Later
Maxwell (1865) introduced Maxwell’s equations to describe the world of electromagnetism.
In 1865 the Greenwich Observatory started to observe Earth’s potentials on 15 km ground
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Figure 1.2: Electrical conductivity distributions in the Earth from early deep EM studies.
After Constable (2007).

lines. In the beginning of the XXth century the relationship between Earth’s currents and
magnetic activity was already well known.

The possibility of obtaining knowledge about Earth’s electrical conductivity distribution
from observations of Earth’s magnetic field, was first considered by Schuster (1889). He sep-
arated daily magnetic variations observed on a number of observatories into parts of external
and internal origin, and then applied the theory of electromagnetic induction in a uniform
sphere (Lamb, 1883) to show that the internal part could be connected to electric currents
induced in the Earth by the external part. Chapman (1919) inferred that the Earth’s interior
must be more conductive than the crustal rocks, and modeled the magnetic field of the model
sphere having a conductive core surrounded by a nonconducting shell of about 250 km thick-
ness. Chapman and Whitehead (1922) found, however, that a highly conducting ocean has
a significant effect on the internal field, and thus introduced some uncertainty in previous
estimates of core conductivity. Lahiri and Price (1939) made further investigations of terres-
tial conductivity; they modeled the internal and external parts of the magnetic field using a
radially-symmetric conductivity profile down to 1000 km. Banks (1969) proposed that the P0

1

spherical harmonic adequately describes the variation of the magnetic field over the surface
of the Earth in the period range between 2 days and 2 months and modeled the conductivity
profile down to 2000 km. In order to get an estimate of the electrical conductivity of the lower-
most mantle, McDonald (1957) modeled the outward propagation of an inferred geomagnetic
secular variation signal originating in the core. Fig. 1.2, taken from Constable (2007), sum-
marizes one-dimensional (1-D) conductivity distributions from these early studies.

1.2 Recent deep electromagnetic studies

Since the presented work aims to detect lateral variations in mantle conductivity in this chapter
we review results that are relevant to this topic (Kuvshinov, 2011).
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In most deep EM studies, time series of hourly mean values of three geomagnetic field
components measured on a global net of geomagnetic observatories have been used to probe
electrical conductivity structure of the mantle. The data are Fourier transformed, and then
analyzed and interpreted in the frequency domain. The source, caused by modulation of ring
electric current in the magnetosphere, is most frequently used for deep EM induction studies.
This source generates irregular geomagnetic variations (Dst variations) in the period range
between a few days and a few months; namely the results based on the analysis of these
variations will be discussed in the manuscript. The geometry of this source is dominated by a
P0

1 spherical harmonic function in the geomagnetic coordinate system.

By analyzing the Dst variations one relies on the solution of Maxwell’s equations in the
frequency domain

∇ ×H(r, ω) = σ(r)E(r, ω) + jext(r, ω), (1.1a)

∇ × E(r, ω) = iωB(r, ω). (1.1b)

Here E(r,ω) and B(r,ω) are frequency-dependent complex-valued electric and magnetic fields,
respectively, H(r,ω)=B(r, ω)/µ(r) is the magnetic field intensity, jext(r, ω) is the extraneous
source current, σ(r) is the conductivity distribution in the Earth, r is the position vector, the
time factor is e−iωt, ω = 2π

T , where T is period and i =
√
−1. µ(r) is the magnetic permeability

which is assumed to be equal everywhere to the permeability of free space µ0 = 4π · 10−7 N
A2 .

1.2.1 Response functions used to detect lateral variations of conductivity

Responses of GDS method

If the source magnetic potential (see Section 3.1 for details) is described by a single spherical
harmonic function, S 0

1 ≡ P0
1 = cosϑ, and if the Earth is assumed to be regionally 1-D, the

C-response can be introduced at a given site (Banks, 1969) as

C(r, ω) = −
a tanϑ

2
Br(r, ω)
Bϑ(r, ω)

, (1.2)

where ϑ is the geomagnetic colatitude. The complex-valued C-response has physical dimen-
sion of length and for 1-D conductivity models its real part provides an estimation of the depth
to which EM field penetrates (Weidelt, 1972). Other important properties of C-responses are
discussed in Appendix A.2. This technique of estimating C-responses will be referredto be-
low as the geomagnetic depth sounding (GDS) method. There is a common consensus that
the GDS method works fairly well in the period range between a few days and a few months
(cf. Banks, 1969; Roberts, 1984; Schultz and Larsen, 1987; Fujii and Schultz, 2002, among
others), thus allowing for the recovery of electrical conductivities in the depth range from 400
km down to 1600 km. More details about the GDS method are provided in Chapter 3.
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Responses of HSG method

For the case where the source is described by more than one spherical harmonic, the horizontal
spatial gradient (HSG) method is applied (Schmucker, 1970; Olsen, 1998, among others) to
determine C-responses. Using this method the C-response is calculated as

C(r, ω) = −
Br(r, ω)

∇⊥ · Bτ(r, ω)
, (1.3)

where ∇⊥ · Bτ(r, ω) is the angular part of the divergence of the horizontal magnetic field
component. In reality, one does not directly measure spatial derivatives of the field. The
common practice while applying the HSG method is to interpolate the field using low-order
polynomials or spherical harmonics and then analytically estimate the derivatives. Since the
global net of geomagnetic observatories is strongly irregular such an approach to approxi-
mating ∇⊥ · Bτ(r, ω) works reasonably well only for Europe where the spatial coverage of
observatories is rather dense and uniform.

Responses of HSG+GDS method

The GDS and HSG methods are inherently limited in that they have only been developed to
deal with 1-D conductivity models of the Earth. Schmucker (2003) presented a new approach
to remove the one-dimensionality constraint. He introduced a new relation, which locally
connects the radial magnetic component with the angular part of the divergence of the normal
horizontal component and the normal horizontal components themselves

Br(r, ω) ≈ −C(r, ω)∇⊥ · Bτ(r, ω) + zH(r, ω)Bϑ(r, ω) − zD(r, ω)Bϕ(r, ω). (1.4)

The normal fields in our context are the fields which are induced in a 1-D conducting Earth. It
is seen from eq. (1.4) that in order to estimate response functions C, zH and zD, source fields
of sufficient spatial and temporal variability are required to guarantee robust determination of
these responses. This means, that this method can’t be used for periods larger than a few days,
since the single term, P0

1, is dominating the spatial source structure at these periods.

Long-period magnetotelluric (MT) responses

If, along with magnetic field measurements, the horizontal component of the electric field is
measured, conventional MT responses can be estimated using

Eϑ = ZϑϑBϑ + ZϑϕBϕ, (1.5a)

Eϕ = ZϕϑBϑ + ZϕϕBϕ. (1.5b)
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The use of the MT method allows one to estimate responses at periods shorter than a few days,
which provides the information about the conductivity structure for depths shallower than 400
km. Moreover, the MT method works in areas where GDS method fails. For example, it
works near the geomagnetic equator, where the radial component of the magnetic field Br is
close to zero, thus preventing the use of the GDS method. At high latitudes the MT method
is also preferable, since in this region GDS responses suffer from strong contamination by
non-P0

1 sources. However, since the strength of electric field signals drops significantly as the
period increases combined with long-term drift of the electrodes that are used to measure the
electric field, it is rather difficult to obtain good quality MT responses at very long periods; a
period of 10 days is the longest period at which reliable MT responses have been obtained so
far (Utada et al., 2003; Shimizu et al., 2010a).

1.2.2 Recent regional 1-D studies of the conductivity in the Earth mantle

During the last decade a number of studies have estimated mantle 1-D conductivity profiles in
different regions of the world using the magnetic field variations in the Dst period range.

Olsen (1998) using data from 24 European observatories, obtained European averaged C-
responses in the period range between 3 hours and one month, using the HSG method. The
author also observed lateral variations in the real part of the C-responses, which he principally
attributed to the effect from ionospheric current system at high latitudes. In Olsen (1999)
the same methodology was employed to obtain averaged C-responses for periods between 1
month and 1 year. In both studies special effort was given to obtaining unbiased C-response
estimates.

Neal et al. (2000) analyzed long-period MT and GDS responses from diverse tectonic
regions in North America and the Pacific Ocean. They obtained 1-D conductivity profiles
beneath Carty Lake (CLC) in the Canadian Shield, Tucson (TUC) in the southwest United
States, Honolulu (HON) and Midway (MID) in the north central Pacific. The authors found
significant lateral variations in conductivity associated with the various tectonic settings. In
particular, the upper mantle beneath Carty Lake appeared to be approximately an order of
magnitude more resistive than the upper mantle beneath Tucson and nearly 1.5 orders of mag-
nitude more resistive than Honolulu and Midway Island. The authors suggested that the ob-
served conductivity variations may be interpreted as lateral variations in temperature, partial
melt and/or dissolved hydrogen in olivine.

Ichiki et al. (2001) obtained a 1-D conductivity model of the upper mantle including TZ
beneath the Pacific back-arc of North East China. The conductivity distributions were inves-
tigated through long-period MT and GDS experiments. The electric field data were acquired
using land telephone lines to obtain long-period MT responses at three different (but close)
locations. GDS responses were obtained using Changchun (CHN) geomagnetic observatory
data. Authors compared their profiles with those at CLC, TUC and HON. The most distinct
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Figure 1.3: Comparison of conductivity profiles from Changchung (CHC) (light green band)
in China (Ichiki et al., 2001) with those at Carty Lake (CLC) (blue dotted line), Tucson (TUC)
(red broken line) and Honolulu (HON) (green chain line) (Neal et al., 2000). The mantle
transition zone is shown by yellow. After Ichiki et al. (2001).

difference revealed in their study was that the TZ beneath North East China is significantly
more conductive than the others by about one order of magnitude. This led the authors to sug-
gest that the high conductivity is most probably related to the presence of water in the stagnant
slab. For depths shallower than 400 km, their conductivity profile has a slope and conductivity
values similar to TUC, which is also more conductive than observed elsewhere. Ichiki et al.
(2001) noted that this common feature is probably typical for the continental upper mantle
beneath the region of active tectonics as also pointed out by Neal et al. (2000). The results of
their study and comparison with the results of Neal et al. (2000) are presented in Fig. 1.3.

Tarits et al. (2004) presented the results of long-period MT sounding in the French Alps
from which a vertical electrical conductivity profile between 200 and 1000 km was obtained.
The authors speculated that for depths between 200 and 400 km their model favors a wet
mantle. The authors noted that the data do not require the conductivity to change throughout
the TZ; conductivity in the TZ is at least an order of magnitude smaller compared with the
conductivity reported by Ichiki et al. (2001) suggesting that a small amount of water has been
transported into the TZ by the subduction in the Mediterranean.

Semenov and Joswiak (2006) compiled the response functions for 35 European observa-
tories in the period range between 6 h and 11 years using various data sets including data by
Roberts (1984), Schultz and Larsen (1987) and Olsen (1998). The combined responses have
been inverted individually and the resulting 1-D profiles have been merged to obtain a mantle
conductance image down to a depth of ∼ 770 km (see Fig. 1.4). The authors noticed that their
conductance image can be correlated with major European tectonic units like the Baltic Shield
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Figure 1.4: Smoothed image of the integrated conductance, in kiloSiemens, from the surface
down to the depth of 770 km in the mantle beneath Europe. After Semenov and Joswiak
(2006).

and the Trans-European Suture zone.

Khan et al. (2011) investigated the electrical conductivity structure of the mantle at six dif-
ferent locations around the globe that cover different geological settings. The selected obser-
vatories were: Fürstenfeldbruck (FUR), Europe; Hermanus (HER), South Africa; Langzhou
(LZH), China; Alice Springs (ASP), Australia; Tucson (TUC), North America; and Honolulu
(HON), North Pacific. They inverted the response functions beneath each observatory for a
local 1-D conductivity profile using a probabilistic approach (e.g. Mosegaard, 1998) already
successfully implemented in an earlier study (Khan et al., 2006). Resolution is limited to 500-
1200 km depth. The authors found large variations in conductivity throughout the depth range
studied. Mean conductivity varies between 0.1 and 0.4 S/m at 600 km depth, with a marked
increase in conductivity (1.3-2.0 S/m) occurring at 800 km depth for all stations except HER
(0.5 S/m). Conductivity at 900 km depth increases further to 1.4-2.4 S/m with HER, HON
and ASP being most conductive. This trend persists to a depth of 1200 km. A comparison
with conductivity profiles constructed from the most recent laboratory mineral conductivity
measurements and models of Earths mantle composition and thermal state revealed that sig-
nificant variations in mantle composition and temperature are at the origin of the observed
heterogeneous mantle conductivity structure. The authors remarked that due to the somewhat
large error bounds on sampled conductivity profiles and the reduced sensitivity of their re-
sponses in the upper mantle and TZ, constraints on TZ water content are not conclusive. The
conductivity profiles beneath each of the stations are shown in Fig. 1.5.
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Figure 1.5: Conductivity models beneath Fürstenfeldbruck (FUR) in Europe, Hermanus
(HER) in South Africa, Langzhou (LZH) in China, Alice Springs (ASP) in Australia, Tuc-
son (TUC) in North America, and Honolulu (HON) in North Pacific. For comparison, two
other one-dimensional conductivity models (from Olsen (1999) and Kuvshinov and Olsen
(2006)) are indicated by colored lines. After Khan et al. (2011).

1.2.3 Semi-global quasi 1-D studies

In all studies discussed in the previous section (except for the study of Khan et al. (2011)),
various 1-D interpretation schemes were used to obtain local/regional profiles. The study of
Utada et al. (2003) commenced quasi 1-D studies (continued by Kuvshinov et al. (2005) and
Shimizu et al. (2010a)), which aimed at obtaining semi-global 1-D mantle electric conduc-
tivity structure beneath the North Pacific using 3-D modeling of the ocean effect. It is well
recognized that the ocean has a large influence on the coastal responses (cf. Kuvshinov et al.,
1999, 2002b). In particular, Kuvshinov et al. (2002b) demonstrated that a nonuniform ocean
is a major contributor to the anomalous behavior of the C-responses at coastal observatories
up to periods of 20 days. The authors also showed that the effects arising from the oceans may
be corrected using predictions in the conductivity Earth’s models with and without oceans
(we will discuss their correction scheme later, in Chapter 4). Utada et al. (2003) suggested an
iterative correction based on a similar procedure, and showed that with a few iterations good
agreement between observed and predicted responses can be achieved. Utada et al. (2003)
(and later Kuvshinov et al. (2005) and Shimizu et al. (2010a)) used this technique to obtain
reference 1-D structures beneath the North Pacific. Further discussion in this section is based
on the most recent results of Shimizu et al. (2010a). They used the experimental responses
in the period range from 1.7 to 113 days to construct the reference 1-D model. The authors
examined three different models of conductivity variation with depth: (1) a model with no
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Figure 1.6: Comparison of two-jump model beneath the North Pacific obtained by Utada et al.
(2003) (black line), by Kuvshinov et al. (2005) (red line) and by Shimizu et al. (2010a). After
Shimizu et al. (2010a).

discontinuities; (2) a model with two jumps at 400 and 650 km depths; and (3) a model with
three jumps at 400, 500 and 650 km depths. Fig. 1.6 compares their “two-jump” model with
the two-jump models by Utada et al. (2003) and Kuvshinov et al. (2005). The authors con-
cluded that the conductivity of the two-jump model in the TZ is higher than the experimentally
determined conductivity of dry wadsleyite and ringwoodite. If the difference is entirely due
to the effect of water in the TZ, then the conductivity is consistent with water contents around
0.5 wt %. However, if an additional discontinuity of electrical conductivity is allowed at the
500 km depth, the obtained conductivity for the upper 100 km of the TZ is lower, and can be
explained by a lower water content of 0.1 wt % in wadsleyite.

1.2.4 Semi-global and global 3-D EM studies

The first attempt to invert global induction data in a 3-D frame was performed by Schultz and
Pritchard (1999). Their study was based on inversion of the augmented Schultz and Larsen
(1987) set of C-responses. Their approximate forward modeling approach used for this in-
version was accurate only for small perturbations about a reference 1-D model, and it was
found that no model satisfying this limitation could fit the European subset of observato-
ries. Later on, two rigorous frequency-domain 3-D global EM inverse solutions to deal with
ground-based data have been developed at the Earthquake Research Institute (Tokyo Univer-
sity, Japan) and Oregon State University (Corvallis, USA).

Koyama (2001) pioneered the development and application of a rigorous 3-D inversion
scheme to interpret ground-based C-responses on a (semi) global scale. His inversion exploits
a quasi-Newton optimization method whereas the forward solver is based on a modern version
of the volume integral equation (IE) approach (cf. Singer, 1995; Pankratov et al., 1995; Ku-
vshinov, 2008). In subsequent studies (Fukao et al., 2004; Koyama et al., 2006; Utada et al.,
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2009; Shimizu et al., 2010b) his 3-D inverse solution was used to interpret long-period EM
data, mostly in the north Pacific region (termed semi-global studies). In all these investigations
voltage data from trans-Pacific submarine cables and magnetic field data from circum-Pacific
geomagnetic observatories were analyzed. The exception is the study of Utada et al. (2009)
where data from Europe were analyzed.

Kelbert et al. (2008) developed a 3-D EM inversion scheme for the whole globe. Their
scheme is based on a non-linear conjugate gradient method. To calculate responses and mis-
fit gradients they generalized and extended an existing staggered-grid finite difference solver
by Uyeshima and Schultz (2000). Using spherical harmonics in each inhomogeneous layer
to parameterize the model space, they inverted a suite of synthetic data sets generated using
checkerboard models to test the inversion and to study vertical and horizontal resolution of
currently available data sets. The inversion was regularized by minimizing deviations from the
reference model, with a norm that penalized higher degree and order terms and jumps between
layers. Kelbert et al. (2008) concluded that responses in the period range 5–107 days resolve
large scale (300–500 km vertically, and thousands of km horizontally) heterogeneities in man-
tle electrical conductivity reliably in the depth range 670–1600 km. They also demonstrated
that by extending induction responses to 0.2–5 days (assuming a dipole source), upper-mantle
structure could be resolved. However, the authors notice that interpreting data at these shorter
periods is a challenging task due to much more complex source structure. Kelbert et al. (2009)
used the developed scheme to obtain the first global 3-D mantle conductivity model. We will
discuss their 3-D global results and the semi-global results in Chapter 5 where these will be
compared to our results.

1.2.5 Global multi-dimensional EM studies in time domain

So far we discussed the frequency-domain results only. However, in recent years much at-
tention has been paid to implementation of time-domain approach to global induction studies
using mostly satellite data (Velimsky et al., 2006; Velimsky, 2010). In particular, Martinec
and Velimsky (2009) interpreted satellite data in the frame of 2-D conductivity models where
conductivity varies with latitude and radius. The authors developed an adjoint approach (anal-
ogous to that used in frequency domain studies) allowing for calculation of the gradient of
their misfit with respect to model parameters for the price of only one additional (backward
in time) forward calculation irrespective of the number of conductivity parameters. Using this
approach they applied conjugate gradient methods to infer the 2-D conductivity structures of
the Earth from one year (2001) of CHAMP data. They showed that a one-year time series is
capable of resolving 2-D structures in the upper mantle and the upper part of the lower mantle
down to ∼ 1500 km depth. The results of their 2-D inversion are summarized in Fig. 1.7. From
these results Martinec and Velimsky (2009) concluded that the mantle conductivity variations
in the latitudinal direction reach about 20 % of the mean value in upper mantle and about 4 %
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Figure 1.7: Two-layer, latitudinally dependent conductivity model of the upper part of the
lower mantle and the upper mantle (left and right panels). The model best fitting the 2001
CHAMP data (red lines), the starting model for the CG minimization (blue lines) and the
model after the first iteration (dotted line) are compared to the best 1-D conductivity model.
After Martinec and Velimsky (2009).

in the upper part of the lower mantle. Later on Jakub Velimsky has developed a time-domain
approach which deals with a 3-D inversion of time series of internal coefficients (cf. Chapter
3 of Kuvshinov et al., 2010). This 3-D time-domain inverse solution has been successfully
verified on a number of realistic models but as far as we know no attempt has been made so
far to apply this method to experimental data.

The first attempt to apply time-domain approach to real data in order to recover 3-D mantle
conductivity has been performed recently by Tarits and Mandea (2010). They developed a 3-
D EM time-domain technique to invert time series of the magnetic field observed on a global
net of observatories. We will also discuss their results in Chapter 5 where we compare them
with our results.

The final remark of this section is that important information about conductivity of the
minerals under mantle conditions (high pressures and high temperatures) comes from mineral
physics laboratory studies. The results of these studies are summarized in Appendix D.

1.3 Thesis outline

The objectives of this work are three-fold: a) to develop a novel and efficient global 3-D EM
inverse solution to recover (3-D) electrical conductivity distribution in the mantle. The solu-
tion is based on analysis of the experimental C-responses from the global net of geomagnetic
observatories; b) to obtain a new set of reliable C-responses which cover the broadest pos-
sible period range from the largest possible number of observatories; c) to invert these new
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C-responses in order to image the 3-D mantle conductivity distribution in the depth range
between 400 and 1600 km.

The structure of the manuscript is as follows. Chapter 2 discusses the essentials of an in-
tegral equation solution which is used as a forward problem engine to calculate the responses
and data misfit gradients during 3-D inversion. Chapter 3 presents our 3-D inverse solution.
It exploits an iterative gradient-type technique – limited-memory quasi-Newton method – for
minimizing the penalty function consisting of data misfit and regularization terms. An ad-
joint approach is implemented to compute misfit gradients efficiently. Further improvements
in computational load come from the parallelizing the scheme with respect to frequencies,
and from setting the most time-consuming part of the forward calculations – calculation of
Green’s tensors – apart from the inversion loop. Convergence, performance, and accuracy
of our 3-D inverse solution are demonstrated with a synthetic numerical example. Chapter
2 mostly follows the papers of Kuvshinov et al. (2002b) and Kuvshinov (2008). Chapter 3
closely follows the papers by Pankratov and Kuvshinov (2010) and Kuvshinov and Semenov
(2011). Chapter 4 describes estimation and analysis of new set of C-responses. To estimate
the responses we collected very long time series (up to 51 years; 1957-2007) of hourly means
of three components of the geomagnetic field from 281 observatories. Special attention was
given to data processing in order to obtain unbiased, smoothed C-responses with realistic es-
timates of experimental errors. After careful inspection of the obtained responses we left for
further analysis the responses from 119 mid-latitude observatories in period range between
2.9 to 104.2 days. In the Chapter 4 we also investigate in what extent ocean and auroral ef-
fects can explain huge variability of the observed responses, and develop schemes to correct
the observed responses for these two effects. Chapter 5 outlines the results of our 3-D in-
version of the experimental responses. We investigate the robustness of the recovered 3-D
mantle conductivity images, and compared our results with the results of independent global
and semi-global 3-D EM studies, as well as with the results of seismic tomography. Chapter 6
presents conclusions and an outlook for future studies as seen by author. Chapters 4-5 closely
follow the paper by Semenov and Kuvshinov (2011).

The thesis also includes 5 Appendices complementing the main text. In particular lengthy
Appendix E presents experimental responses, their uncertainties and squared coherencies for
all 119 observatories in the form of plots and Tables. In addition, this appendix shows time
series of hourly mean values of three components of the magnetic field for the relevant time
interval.
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Chapter 2

Forward modeling

2.1 Maxwell’s equations

Time dependent electric and magnetic fields obey Maxwell’s equations

∇ ×H(r, t) = J(r, t), (2.1a)

∇ × E(r, t) = −
∂B(r, t)
∂t

, (2.1b)

where r = (r, ϑ, ϕ) is the position vector, ϑ, ϕ and r are colatitude, longitude and radial
distance from the Earth’s center, respectively, J is the current density (A/m2), E is the electric
field (V/m), B is the magnetic flux density or induction (T), H is the magnetic field intensity
(A/m). We neglect displacement currents, as they are not significant at the frequencies and
conductivities relevant to our long-period studies. Note also that B is a solenoidal field

∇ · B(r) = 0. (2.2)

B and H are related by the magnetic permeability µ

B(r, t) = µ(r)H(r, t). (2.3)

It is common to assume the magnetic permeability µ(r) to be constant and equal to the mag-
netic permeability of free space µ0. J and E are connected by

J(r, t) = σ(r)E(r, t) + jext(r, t), (2.4)

where σ is the electrical conductivity, jext is the impressed current density.

If we consider sinusoidally varying fields of angular frequency ω = 2π
T , where T is a
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period, we can write

E(t) = Êe−iωt, jext(t) = ĵexte−iωt, H(t) = Ĥe−iωt −→
∂H
∂t

= −iωH. (2.5)

Substituting eqs (2.5) into eqs (2.1) we obtain Maxwell’s equations in frequency domain

∇ × Ĥ(r, ω) = σ(r)Ê(r, ω) + ĵext(r, ω), (2.6a)

∇ × Ê(r, ω) = iωµ0Ĥ(r, ω). (2.6b)

Further we will work only with frequency dependent EM field, therefore we denote frequency
dependent fields Ê, Ĥ and ĵext as E, H and jext, and finally write

∇ ×H(r) = σ(r)E(r) + jext(r), (2.7a)

∇ × E(r) = iωµ0H(r). (2.7b)

2.2 Integral equation approach

We solve eqs (2.7) using the integral equation (IE) approach which is based on a contrac-
tion operator (Singer, 1995; Pankratov et al., 1995, among others). We consider 3-D Earth’s
conductivity model, which consist of a number of inhomogeneous layers, embedded in 1-D
background section of conductivity σb(r).

We start with introducing ”reference” radially symmetric (1-D) model of conductivity
σ0(r). The reference magnetic and electric fields, H0 and E0, in this model obey Maxwell’s
equations

∇ ×H0(r) = σ0(r)E0(r) + jext(r), (2.8a)

∇ × E0(r) = iωµ0H0(r). (2.8b)

If we can construct and calculate fundamental solutions (tensor Green’s functions) of eqs
(2.8), Ge j

1D and Gh j
1D, then H0 and E0 can be determined via convolution integrals

H0(r) =

∫
Vext

Gh j
1D(r, r′)jext(r′)dv′. (2.9)

E0(r) =

∫
Vext

Ge j
1D(r, r′)jext(r′)dv′, (2.10)

Here r ∈ R3, r′ ∈ Vext, Vext is the volume occupied by jext, dv′ = r′2 sinϑ′dϑ′dϕ′dr′. Note that
in all quantities discussed (except conductivities) the dependence on ω is implied but omitted
for the simplicity of presentation. The subscript ”1D” means that Green’s functions depend
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not only on r, r′ and ω but also depend on 1-D conductivity distribution σ0(r). A formalism
how the entries of such kind of tensors can be derived and calculated will be presented further
in this chapter (Section 2.4).

Introducing further ”scattered” fields, Es = E − E0 and Hs = H − H0 and subtracting eqs
(2.8) from eqs (2.7), Maxwell’s equations for scattered fields can be written in the form

∇ ×Hs(r) = σ0(r)Es(r) + jq(r), (2.11a)

∇ × Es(r) = iωµ0Hs(r), (2.11b)

where
jq(r) =

[
σ(r) − σ0(r)

]
Es(r) + js(r), (2.12)

and
js(r) =

[
σ(r) − σ0(r)

]
E0(r). (2.13)

Comparing eqs (2.8) and eqs (2.11) one can deduce that the scattered magnetic and electric
fields, in analogy with eqs (2.10) and (2.9) can be written as

Hs(r) =

∫
Vmod

Gh j
1D(r, r′)jq(r′)dv′, (2.14)

Es(r) =

∫
Vmod

Ge j
1D(r, r′)jq(r′)dv′, (2.15)

where r ∈ R3, r′ ∈ Vmod, and Vmod is a region where σ(r) − σ0(r) differs from 0. If we restrict
ourselves to r ∈ Vmod we obtain from eq. (2.15) conventional scattering equation with respect
to unknown scattered field Es

Es(r) −
∫

Vmod

Ge j
1D(r, r′)

[
σ(r′) − σ0(r′)

]
Es(r′)dv′ = E f (r), (2.16)

where free term E f (r) has a form

E f (r) =

∫
Vmod

Ge j
1D(r, r′)js(r′)dv′. (2.17)
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2.3 Solution of the integral equation

The formal solution of eq. (2.16) can be written as an infinite Neumann series, starting from
E f as zero-th order approximation to Es

Es(r) = E f (r) +

∫
Vmod

Ge j
1D(r, r′)

[
σ(r′) − σ0(r′)

]
E f (r′)dv′+

+

∫
Vmod

Ge j
1D(r, r′)

[
σ(r′) − σ0(r′)

]{ ∫
Vmod

Ge j
1D(r′, r′′)

[
σ(r′′) − σ0(r′′)

]
E f (r′′)dv′

}
dv′′ + · · ·

(2.18)
It is known, however, that series (2.18) does not necessarily converge, especially when models
with strong scatterers are considered. The remedy is to modify eq. (2.16) to integral equation
with contraction operator (cf. Pankratov et al., 1995)

χ(r) −
∫

Vmod

K(r, r′)R(r′)χ(r′)dv′ = χ0(r), (2.19)

where
R(r′) =

σ(r′) − σ0(r′)
σ(r′) + σ0(r′)

, (2.20a)

K(r, r′) = δ(r − r′)I + 2
√
σ0(r)Ge j

1D(r, r′)
√
σo(r′), (2.20b)

χ0(r) =

∫
Vmod

K(r, r′)
√
σ0(r′)

σ(r′) + σ0(r′)
js(r′)dv′, (2.20c)

χ(r′) =
1

2
√
σ0(r′)

{[
σ(r′) + σ0(r′)

]
Es(r′) + js(r′)

}
. (2.20d)

Here δ(r − r′) is Dirac’s delta function, I is the identity matrix. Note that in order to derive
eq. (2.19) we add term (σ − σ0)E0/2σ0 to both sides of eq. (2.16) and change variables in
the way defined by eq. (2.20d). The specific form of equation (2.19) is motivated by the
energy inequality for the scattered EM field, which expresses a fundamental physical fact that
the energy flow of the scattered field outside the domain with inhomogeneities is always non-
negative (cf. Singer, 1995; Pankratov et al., 1995, 1997). In an operator form, eq. (2.19) can
be written as

Aχ = χ0, (2.21)

where A = I − KR. Equation (2.19) possesses a contracting integral kernel (Pankratov et al.,
1995), where wwwwwwwwwwwwwwww

∫
vmod

K(r, r′)R(r′)χ(r′)dv′

wwwwwwwwwwwwwwww < ‖χ‖, ∀χ, (2.22)
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for any choice of “reference” conductivity profile σ0(r). Here ‖χ‖ =
√ ∫

vmod

|χ(r)|2dv. Property

(2.22) allows one to find the solution of eq. (2.19) by simple iteration

χ(n+1)(r) = χ0(r) +

∫
vmod

K(r, r′)R(r′)χ(n)(r′)dv′, (2.23)

for n = 1, 2, ..., with any initial guess χ(1)(r). Moreover, this iteration procedure, when using
χ0(r) as an initial guess, produces convergent Neumann series (NS) for eq. (2.19)

χ(r) = χ0(r) +

∫
Vmod

K(r, r′)R(r′)χ0(r′)dv′+

+

∫
Vmod

K(r, r′)R(r′)
{ ∫

Vmod

K(r′, r′′)R(r′′)χ0(r′′)dv′
}

dv′′ + · · ·
(2.24)

It was shown by Singer (1995) that in case of quasi-static field and isotropic media the fastest
convergence is achieved if the reference medium is chosen in an ”optimal” way, namely: out-
side the depths occupied by inhomogeneities, it coincides with the conductivity of the back-
ground section, σb(r), but at depths with laterally inhomogeneous distribution of conductivity
it has form

σ0(r) =
√

min
ϑ,ϕ

σ(r, ϑ, ϕ) max
ϑ,ϕ

σ(r, ϑ, ϕ). (2.25)

For this specific choice of reference medium, the number, N, of simple iterations (or NS terms)
is proportional to

√
C, where C is maximum lateral contrast of conductivity in the model

C = max
r

max
ϑ,ϕ

σ(r, ϑ, ϕ)

min
ϑ,ϕ

σ(r, ϑ, ϕ)
. (2.26)

By replacing simple iteration with conjugate gradient (cf. Greenbaum, 1997) iteration, signif-
icant convergence acceleration has been reported by Avdeev et al. (2002) and Kuvshinov et al.
(2005). It can be explained by the following fact. It is well known that for well-conditioned
systems conjugate gradient (CG) iteration are far more efficient than simple iteration (cf.
Greenbaum, 1997). It can be shown (cf. Avdeev et al., 2000), that for an optimal reference
medium, a condition number, k(A) = ||A|| · ||A−1|| , can be estimated as

k(A) w
√

C. (2.27)

From this estimate it follows that even for the media with extremely large lateral contrasts of
conductivity (say, on land-ocean contacts), the operator A of eq. (2.21) still appears to be well
conditioned, with k(A) ∼ 100.

At this stage it is important to remark that eqs (2.10) and (2.9) are valid for any distribution
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of the impressed current, jext, of any location. However, since in this work we deal with
the responses generated by the external currents that are usually considered in the form of
spherical harmonic expansion (SHE) of the equivalent sheet currents, general expressions for
H0 and E0 in eqs (2.10) and (2.9) are also transformed to SHE which will be explained in
Appendix B.

A 3-D IE forward modeling solution which provides magnetic field prediction at ra ∈ S ites

(location of observatories) can be represented as a sequence of the following steps.

1. Ge j
1D(r, r′) and consequently K(r, r′) are calculated for r′ ∈ Vmod and r ∈ Vmod

2. Gh j
1D(ra, r′) is calculated for r′ ∈ Vmod and ra ∈ S ites

3. E0(r), r ∈ Vmod is calculated using eqs (B.14)-(B.15)

4. js(r) = (σ(r) − σ0(r))E0(r), r ∈ Vmod is calculated

5. χ0(r) is calculated on r ∈ Vmod with K obtained at step 1

6. The scattering equation (2.19) is solved on Vmod using CG method

7. Es(r), r ∈ Vmod is calculated using eq. (2.20d) with js obtained at step 4

8. jq(r), r ∈ Vmod is calculated using eq. (2.12) with js obtained at step 4

9. Hs(ra), ra ∈ S ites is calculated using eq. (2.14) with Gh j
1D obtained at step 2

10. H0(ra), ra ∈ S ites is calculated using eqs (B.16)-(B.17)

11. H(ra), ra ∈ S ites is calculated as a sum of Hs and H0 obtained at steps 9 and 10

Henceforce, this scheme will be referred as the “IE-C” solution. One can see that the key point
in constructing the forward problem solution is the derivation of tensor Green’s functions Ge j

1D

and Gh j
1D.

2.4 Derivation of explicit forms for Green’s tensors for elec-
tric current source

In this section we derive the explicit forms of 3×3 tensor ”current-to-electric” and ”current-to-
magnetic” Green’s functions for a case of the Earth’s model with radially-symmetric distribu-
tion of the electrical conductivity σ0(r). These tensor functions allow for calculating magnetic
and electric fields that obey Maxwell’s equations

∇ ×H(r) = σ0(r)E(r) + j(r), (2.28a)

∇ × E(r) = iωµ0H(r), (2.28b)
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in the following integral form

E(r, ϑ, ϕ) =

∫
V

Ge j
1D(r, r′, ϑ, ϑ′, ϕ − ϕ′)j(r′, ϑ′, ϕ′)dv′, (2.29)

H(r, ϑ, ϕ) =

∫
V

Gh j
1D(r, r′, ϑ, ϑ′, ϕ − ϕ′)j(r′, ϑ′, ϕ′)dv′. (2.30)

Here V is a 3-D volume occupied by a current j, and

Ge j(h j)
1D = eϑge j(h j)

ϑϑ′ eϑ′ + eϑge j(h j)
ϑϕ′ eϕ′ + ... + erg

e j(h j)
rr′ er′ , (2.31)

where er, eϑ, eϕ and er′ , eϑ′ , eϕ′ are the unit vectors of spherical coordinate system at points
r = (r, ϑ, ϕ) and r′ = (r′, ϑ′, ϕ′), respectively.

First, we consider vector spherical functions, which are determined via scalar spherical
functions S n

m(ϑ, ϕ) as (cf. Morse and Feshbach, 1953)

Sr
nm(ϑ, ϕ) = S n

m(ϑ, ϕ)er, (2.32a)

St
nm(ϑ, ϕ) =

1
√

n(n + 1)
er × ∇⊥S m

n (ϑ, ϕ), (2.32b)

Sp
nm(ϑ, ϕ) =

1
√

n(n + 1)
∇⊥S m

n (ϑ, ϕ), (2.32c)

where∇⊥ is the angular part of operator∇ = er
∂
∂r + 1

r∇⊥, er is the outward unit vector. The coef-
ficient 1

√
n(n+1)

is introduced to provide that St
nm and Sp

nm have the same norm as Sr
nm. Following

Helmholtz representation discussed in Appendix A.4, the tangential and radial components of
the electric field E and current j can be decomposed as follows

Eτ(r, ϑ, ϕ) =
1
r

∑
n,m

{
εt

nm(r)St
nm(ϑ, ϕ) + εp

nm(r)Sp
nm(ϑ, ϕ)

}
, (2.33a)

Er(r, ϑ, ϕ)er =
1
r

∑
n,m

εr
nm(r)Sr

nm, (2.33b)

jτ(r, ϑ, ϕ) =
1
r

∑
n,m

{
jt
nm(r)St

nm(ϑ, ϕ) + jp
nm(r)Sp

nm(ϑ, ϕ)
}
, (2.33c)

jr(r, ϑ, ϕ)er =
1
r

∑
n,m

jr
nm(r)Sr

nm. (2.33d)

Hereinafter
∑
n,m

denotes summation
∞∑

n=1

n∑
m=−n

. Note that for radial parts of electric field and

current the terms for n = 0 are equal to zero, as will be clear later. For magnetic field we have
similar decomposition but we write tangential part of the field in slightly different way leaving
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the same (as for electric field and impressed current) decomposition of the radial part

er ×Hτ(r, ϑ, ϕ) =
1
r

∑
n,m

{
ht

nm(r)St
nm(ϑ, ϕ) + hp

nm(r)Sp
nm(ϑ, ϕ)

}
, (2.34a)

Hr(r, ϑ, ϕ)er =
1
r

∑
n,m

hr
nm(r)Sr

nm(ϑ, ϕ). (2.34b)

Substituting eqs (2.33a)-(2.34b) into eqs (2.28) and gathering terms involving functions St
nm

and Sp
nm, we get the system of equations

{
∂rε

t
nm = −iωµ0ht

nm,

∂rht
nm = κ

iωµ0
εt

nm + jt
nm,

(2.35)

to determine coefficients εt
nm and ht

nm, and the system

{
∂rε

p
nm = κ

σ0
hp

nm −
√

n(n+1)
rσ0

jr
nm,

∂rh
p
nm = σ0ε

p
nm + jp

nm,
(2.36)

to determine coefficients εp
nm and hp

nm. Here κ =
n(n+1)

r2 − iωµ0σ0. For determination of the
coefficients εr

nm and hr
nm we, in its turn, get the following equations

σ0ε
r
nm =

√
n(n + 1)

r
hp

nm − jr
nm, (2.37)

iωµ0hr
nm = −

√
n(n + 1)

r
εt

nm. (2.38)

From eqs (2.36) and (2.37) it follows that for radial parts of electric field and current the terms
for n = 0 are equal to zero. Systems of equations (2.35) and (2.36) can be written in the
following generic form

 ∂rε(r) = p(r)h(r) + fh(r),
∂rh(r) = qε(r) + fε(r),

(2.39)

where

ε(r) = εt
nm, h(r) = ht

nm,

p(r) = −iωµ0, q(r) = − κ
iωµ0

,

fε(r) = jt
nm, fh(r) = 0,

(2.40)
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for system (2.35) and

ε(r) = ε
p
nm, h(r) = hp

nm,

p(r) = κ
σ0
, q(r) = σ0,

fε(r) = jp
nm, fh(r) = −

√
n(n+1)
rσ0

jr
nm,

(2.41)

for system (2.36). System (2.39) can be reduced to the second order ordinary differential
equation

∂r

( 1
p(r)

∂rε(r)
)
− q(r)ε(r) = f (r), (2.42)

where

f (r) = fε(r) + ∂r

( fh(r)
p(r)

)
. (2.43)

The solution of eq. (2.42) can be written as

ε(r) =

∞∫
0

G(n, r, r′) f (r′)dr′, (2.44)

where G(n, r, r′) is (scalar) Green’s function of eq. (2.42). The explicit forms of G(n, r, r′) are
presented in Appendix A.5.2. We impose boundary conditions on the solution of (2.42) in the
form ε(r)→ 0, when r → 0 and r → ∞.

Substituting eq. (2.43) into eq. (2.44) and integrating by parts, we have

ε(r) =

∞∫
0

G(n, r, r′) fε(r′)dr′ −

∞∫
0

β(n, r, r′)G(n, r, r′) fh(r′)dr′, (2.45)

where we define β as

β(n, r, r′) =
∂r′G(n, r, r′)

p(r′)G(n, r, r′)
. (2.46)

Then, substituting eq. (2.45) into the first equation of the system (2.39), we obtain in a similar
way

h(r) =

∫
α(n, r, r′)G(n, r, r′) fε(r′)dr′−

−

∫
α(n, r, r′)β(n, r, r′)G(n, r, r′) fh(r′)dr′,

(2.47)

where we denote
α(n, r, r′) = β(n, r′, r). (2.48)

An explicit formula for α(n, r, r′) is presented in eq. (2.52). Let us show how we derive eq.
(2.47)
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h(r) = 1
p(r) (∂rε(r) − fh(r)) =

= ∂r
p(r)

∫
G fε(r′)dr′ − ∂r

p(r)

∫
∂r′G
p(r′) fh(r′)dr′ − 1

p(r) fh(r)
(2.50)

======

(2.50)
======

∫
∂rG
p(r) fε(r′)dr′ − 1

p(r)

∫
∂rG

p(r′)G
∂r′G

G G fh(r′)dr′−

− 1
p(r)

∫
∂r(

∂r′G
p(r′)G )G fh(r′)dr′ − 1

p(r) fh(r)
(2.51)

======

(2.51)
======

∫
αG fε(r′)dr′ −

∫
αβG fh(r′)dr′+

+ 1
p(r)

∫
δ(r−r′)

G G fh(r′)dr′ − 1
p(r) fh(r) =

=
∫
αG fε(r′)dr′ −

∫
αβG fh(r′)dr′.

(2.49)

Here G ≡ G(n, r, r′), α ≡ α(n, r, r′), β ≡ β(n, r, r′). While deriving eq. (2.49) we also used

∂r

(
∂r′G

p(r′)G

)
=

∂r

p(r′)

(
∂r′G
G

)
=
∂r∂r′G
p(r′)G

−
∂rG∂r′G
p(r′)G2 , (2.50)

and
∂r

(
∂r′G(n, r, r)

p(r′)G(n, r, r)

)
= ∂rβ(n, r, r′)

(2.55)
====== −

δ(r − r′)
G(n, r, r)

. (2.51)

Four equations in the following frame explain how we obtain the derivatives of the spectral
functions

Derivatives of the spectral functions

α(n, r, r′) = β(n, r′, r) =

 −Yu(n, r), r > r′

Y l(n, r), r < r′
(2.52)

(see Appendix A.5). Therefore

∂r′α(n, r, r′) = (−Yu(n, r′) − Y l(n, r′))δ(r − r′), (2.53)

because ∂r′θ(r′ − r) = δ(r′ − r), where θ is a Heaviside step function and δ is a Dirac’s
delta function. This leads to

∂r′α(n, r, r′) =
δ(r − r′)

G(n, r′, r′)
= −

δ(r′ − r)
G(n, r′, r′)

, (2.54)

and
∂rβ(n, r, r′) = ∂rα(n, r′, r) = −

δ(r − r′)
G(n, r, r)

. (2.55)

Substituting further eqs (2.40) and (2.41) into eqs (2.45) and (2.47) we express coefficients
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εt
nm, ε

p
nm, ht

nm and hp
nm via coefficients qt

nm, q
p
nm and qr

nm

εt
nm(r) =

∞∫
0

Gt(n, r, r′) jt
nm(r′)dr′, (2.56)

εp
nm(r) =

∞∫
0

Gp(n, r, r′) jp
nm(r′)dr′+

+

∞∫
0

√
n(n + 1)

r′σ0(r′)
βp(n, r, r′)Gp(n, r, r′) jr

nm(r′)dr′,

(2.57)

ht
nm(r) =

∞∫
0

αt(n, r, r′)Gt(n, r, r′) jt
nm(r′)dr′, (2.58)

hp
nm(r) =

∞∫
0

αp(n, r, r′)Gp(n, r, r′) jp
nm(r′)dr′+

+

∞∫
0

√
n(n + 1)

r′σ0(r′)
αp(n, r, r′)βp(n, r, r′)Gp(n, r, r′) jr

nm(r′)dr′.

(2.59)

Then, using decompositions (2.33c) and (2.33d), the coefficients jt
nm(r′), jp

nm(r′) and jr
nm(r′)

are written as

jt
nm(r′) =

r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

∇′⊥ · (er′ × jτ)S̃ m
n dΩ′, (2.60)

jp
nm(r′) = −

r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

(∇′⊥ · jτ)S̃ m
n dΩ′, (2.61)

jr
nm(r′) =

r′

‖S m
n ‖

2

∫
Ω

jrS̃ m
n dΩ′. (2.62)

Here Ω′ is complete solid angle, dΩ′ = sinϑ′dϑ′dϕ′, S̃ m
n stands for complex conjugation of

S m
n = S m

n (ϑ′, ϕ′), ‖S m
n ‖

2 is a squared norm of S m
n . While deriving eqs. (2.60) and (2.61) we

used that
∇⊥ · (er × ∇⊥) = 0, (2.63)

∆⊥S m
n = −n(n + 1)S m

n . (2.64)

Here operators ∇⊥· and ∆⊥ stand for angular parts of the divergence and the Laplacian, respec-
tively. More explicitly, the action of these operators on any entry functions aτ = aϑeϑ + aϕeϕ
and u is defined as

∇⊥ · aτ =
1

sinϑ
∂(aϑ sinϑ)

∂ϑ
+

1
sinϑ

∂aϕ
∂ϕ

, (2.65)
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∆⊥u = ∇⊥ · (∇⊥u) =
1

sinϑ
∂

∂ϑ
(sinϑ

∂u
∂ϑ

) +
1

sin2 ϑ

∂2u
∂ϕ2 . (2.66)

Substituting eqs (2.60)-(2.62) into eqs (2.56)-(2.57) and further eqs (2.56)-(2.57) into eq.
(2.33a) we obtain for the horizontal part of the electric field, after rearranging the operations
of integration and summation

Eτ(r, ϑ, ϕ) =
∫
Ω

∞∫
0

(er × ∇⊥)
{[

(er′ × ∇
′
⊥)P[ r′

r
Gt(n,r,r′)

n(n+1) ]
]
· jτ(r′, ϑ′, ϕ′)

}
dr′dΩ′+

+
∫
Ω

∞∫
0
∇⊥

{[
∇′⊥P[ r′

r
Gp(n,r,r′)

n(n+1) ]
]
· jτ(r′, ϑ′, ϕ′)

}
dr′dΩ′−

−
∫
Ω

∞∫
0
∇⊥

{
P[β

p(n,r,r′)Gp(n,r,r′)
rσ0(r′) ] jr(r′, ϑ′, ϕ′)

}
dr′dΩ′.

(2.67)

Here ”·” stands for the scalar product of two vectors, and P[ f ] denotes the summation of
series

P
[
f (n, r, r′)

]
=

∞∑
n=1

2n + 1
4π

f (n, r, r′)Pn(cos γ), (2.68)

where Pn are the Legendre polynomials, and cos γ is determined by

cos γ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ − ϕ′). (2.69)

Note that while deriving eq. (2.67) we used the theorem of summation for spherical functions
(Jackson, 1975) ∑

n,m

S m
n (ϑ, ϕ)S̃ m

n (ϑ′, ϕ′)
‖S m

n ‖
2 =

∞∑
n=1

2n + 1
4π

Pn(cos γ), (2.70)

and the following equalities ∫
Ω

Q∇′⊥ · PdΩ′ = −

∫
Ω

P∇⊥QdΩ′, (2.71)

a(b × c) = −(b × a)c, (2.72)

that are valid for any scalar function Q and any vector functions P, a, b and c. In a similar
way we obtain the expressions for the radial component of the electric field

Er(r, ϑ, ϕ) = −
1

σ0(r)
jr(r′, ϑ′, ϕ′)−

−

∫
Ω

∞∫
0

[
∆′⊥P[

αp(n, r, r′)βp(n, r, r′)Gp(n, r, r′)
r2σ0(r)σ0(r′)

]
]
jr(r′, ϑ′, ϕ′)dr′dΩ′+

+

∫
Ω

∞∫
0

[
∇′⊥P[

r′

r2α
p(n, r, r′)Gp(n, r, r′)]

]
· jτ(r′, ϑ′, ϕ′)dr′dΩ′,

(2.73)



2. Forward modeling 27

and for the horizontal and radial components of the magnetic field

Hτ(r, ϑ, ϕ) =

∫
Ω

∞∫
0

∇⊥
{[

(er′ × ∇
′
⊥)P[

r′

r
αt(n, r, r′)Gt(n, r, r′)

n(n + 1)
]
]
· jτ(r′, ϑ′, ϕ′)

}
dr′dΩ′−

−

∫
Ω

∞∫
0

(er × ∇⊥)
{[
∇′⊥P[

r′

r
αp(n, r, r′)Gp(n, r, r′)

n(n + 1)
]
]
· jτ(r′, ϑ′, ϕ′)

}
dr′dΩ′−

−

∫
Ω

∞∫
0

(er × ∇⊥)
{
P[
αp(n, r, r′)βp(n, r, r′)Gp(n, r, r′)

rσ0(r′)
] jr(r′, ϑ′, ϕ′)

}
dr′dΩ′,

(2.74)

Hr(r, ϑ, ϕ) = −

∫
Ω

∞∫
0

[
(er′ × ∇

′
⊥)P[

r′

r2

Gp(n, r, r′)
iωµ0

]
]
· jτ(r′, ϑ′, ϕ′)dr′dΩ′. (2.75)

Now from eqs (2.67) and (2.73) we write the expressions for elements ge j
ϑϑ′ , ge j

ϑϕ′ , ... , ge j
rr′ of

eq. (2.31)

ge j
ϑϑ′ =

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ 1
r′r

Gt

n(n + 1)
]
+ ∂ϑ∂ϑ′P

[ 1
r′r

Gp

n(n + 1)
]
, (2.76a)

ge j
ϑϕ′ = −

1
sinϑ

∂ϕ∂ϑ′P
[ 1
r′r

Gt

n(n + 1)
]
+

1
sinϑ′

∂ϑ∂ϕ′P
[ 1
r′r

Gp

n(n + 1)
]
, (2.76b)

ge j
ϑr′ = −∂ϑP

[ 1
r′2r

βpGp

σ0(r′)
]
, (2.76c)

ge j
ϕϑ′ = −

1
sinϑ′

∂ϑ∂ϕ′P
[ 1
r′r

Gt

n(n + 1)
]
+

1
sinϑ

∂ϕ∂ϑ′P
[ 1
r′r

Gp

n(n + 1)
]
, (2.76d)

ge j
ϕϕ′ = ∂ϑ∂ϑ′P

[ 1
r′r

Gt

n(n + 1)
]
+

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ 1
r′r

Gp

n(n + 1)
]
, (2.76e)

ge j
ϕr′ = −

1
sinϑ

∂ϕP
[ 1
r′2r

βpGp

σ0(r′)
]
, (2.76f)

ge j
rϑ′ = ∂ϑ′P

[ 1
r′r2

αpGp

σ0(r)
]
, (2.76g)

ge j
rϕ′ =

1
sinϑ′

∂ϕ′P
[ 1
r′r2

αpGp

σ0(r)
]
, (2.76h)

ge j
rr′ = −

δ(r − r′)δ(ϑ − ϑ′)δ(ϕ − ϕ′)
r′2 sinϑ′σ0(r)

+ P
[ 1
r′2r2

n(n + 1)αpβpGp

σ0(r)σ0(r′)
]
. (2.76i)

In a similar way from eqs (2.74) and (2.75) we write the expressions for elements gh j
ϑϑ′ , g

h j
ϑϕ′ , ..., g

h j
rr′

of eq. (2.31)
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gh j
ϑϑ′ = −

1
sinϑ′

∂ϑ∂ϕ′P
[ 1
r′r

αtGt

n(n + 1)
]
+

1
sinϑ

∂ϕ∂ϑ′P
[ 1
r′r

αpGp

n(n + 1)
]
, (2.77a)

gh j
ϑϕ′ = ∂ϑ∂ϑ′P

[ 1
r′r

αtGt

n(n + 1)
]
+

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ 1
r′r

αpGp

n(n + 1)
]
, (2.77b)

gh j
ϑr′ =

1
sinϑ

∂ϕP
[ 1
r′2r

αpβpGp

σ0(r′)
]
, (2.77c)

gh j
ϕϑ′ = −

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ 1
r′r

αtGt

n(n + 1)
]
− ∂ϑ∂ϑ′P

[ 1
r′r

αpGp

n(n + 1)
]
, (2.77d)

gh j
ϕϕ′ =

1
sinϑ

∂ϕ∂ϑ′P
[ 1
r′r

αtGt

n(n + 1)
]
−

1
sinϑ′

∂ϑ∂ϕ′P
[ 1
r′r

αpGp

n(n + 1)
]
, (2.77e)

gh j
ϕr′ = −∂ϑP

[ 1
r′2r

αpβpGp

σ0(r′)
]
, (2.77f)

gh j
rϑ′ =

1
sinϑ′

∂ϕ′P
[ 1
r′r2

Gt

iωµ0

]
, (2.77g)

gh j
rϕ′ = −∂ϑ′P

[ 1
r′r2

Gt

iωµ0

]
, (2.77h)

gh j
rr′ = 0. (2.77i)



Chapter 3

Inverse modeling

3.1 C-response concept

Above the conducting Earth (r > a, a = 6371.2 km is the mean Earth’s radius) and beneath the
external (magnetospheric and ionospheric) sources, the magnetic field in a frequency domain,
B(r, ω) = µ0H(r, ω) = −∇V(r, ω), can be derived from a scalar magnetic potential, V , which
is represented by a spherical harmonic expansion

V(r, ϑ, ϕ, ω) = a
∞∑

n=1

n∑
m=−n

[
εm

n (ω)
( r
a

)n
+ im

n (ω)
(a
r

)n+1]
Pm

n (cosϑ)eimϕ, (3.1)

where εm
n and im

n are the complex-valued expansion coefficients of the external (inducing) and

internal (induced) parts of the potential. Further we will again use
∑
n,m

to designate
∞∑

n=1

n∑
m=−n

.

Components of the magnetic field following from eq. (3.1) can be written as

Br(r, ϑ, ϕ, ω) = −
∑
n,m

[
nεm

n (ω)
( r
a

)n−1
− (n + 1)im

n (ω)
(a
r

)n+2]
Pn

n(cosϑ)eimϕ, (3.2a)

Bϑ(r, ϑ, ϕ, ω) = −
∑
n,m

[
εm

n (ω)
( r
a

)n−1
+ im

n (ω)
(a

r

)n+2]dPm
n (cosϑ)
dϑ

eimϕ, (3.2b)

Bϕ(r, ϑ, ϕ, ω) = −
∑
n,m

[
εm

n (ω)
( r
a

)n−1
+ im

n (ω)
(a

r

)n+2] im
sinϑ

Pm
n (cosϑ)eimϕ. (3.2c)

From eqs (3.2) one can see, in particular, that the radial component is to a greater extent than
the horizontal components influenced by induction. For the horizontal components the degree
of this influence is governed by the complex Q-response, which is the ratio of the internal to
the external coefficients for a specific degree, order and frequency. In the case of only radially
dependent (1-D) conductivity distribution, each external coefficient induces only one internal
coefficient (of the same degree n and order m), and their ratio is independent of m

Qn(ω) =
im
n (ω)
εm

n (ω)
, (3.3)
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Figure 3.1: |Q(r)
n | for different periods as a function of degree n. Solid lines |Q(r)

n | for a typical
global 1-D conductivity profile. Dashed lines |Q(r)

n | for the same 1-D model overlain by a
uniform ocean of 15,000 S. For comparison, the dotted line in the figure shows an upper limit,
1, for |Q(r)

n | which corresponds to a perfectly conducting Earth. After Kuvshinov (2008).

and can be calculated using appropriate recurrence formulas (see Appendix B.2, eqs A.71)
and (B.27)). For the radial component, the degree of the influence is governed by the quantity

Q(r)
n (ω) =

n + 1
n

Qn(ω). (3.4)

This means that the relative amount of induction in the radial part is n+1
n times larger than for

the horizontal components (Kuvshinov, 2008). In addition, due to subtraction in eq. (3.2a) the
ratio of induced signal to total (inducing+induced) signal is larger in the radial component.
Figure 3.1 presents |Q(r)

n | for a range of periods as a function of harmonic of degree n for two
global 1-D conductivity profiles (with and without ocean of uniform conductance). Solid black
lines below the plot show the range of degree n for the different sources. For comparison, the
dotted line in the plot shows an upper limit of 1, for |Q(r)

n |, which corresponds to a perfectly
conducting Earth. In this case, induction cancels the radial component at the surface of the
Earth and more or less doubles the horizontal component. For all n, we observe that the
longer the period the smaller |Q(r)

n |. In addition, |Q(r)
n | also decreases with increasing of n. For

example, at a period of 24 h |Q(r)
n | drops from 0.56 for n = 2 (degree of fundamental spherical

harmonic of Sq at this period) down to less than 0.03 for n = 20, when inland (without ocean)
1-D profile is considered. The latter result is very important since it means that one cannot
expect an induction signal from the polar electrojet (requiring n ≥ 20) at periods longer than
a few days. Contamination of deep EM results by the polar electrojet will be discussed in
Chapter 4.
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The C-response concept was introduced by Schmucker (1970). For a radially symmetric
conductivity distribution in the Earth it is connected to the Q-response by means of

Cn(ω) =
a

n + 1
1 − n+1

n Qn(ω)
1 + Qn(ω)

=
a

n + 1
zm

n (ω)
vm

n (ω)
, (3.5)

(Schmucker, 1970, 1987; Olsen, 1998), where zm
n = nεm

n − (n + 1)im
n and vm

n = εm
n + im

n . We can
rewrite eq. (3.2) for a specific site on the surface with coordinates (r = a, ϑ, ϕ) as

Br(a, ϑ, ϕ, ω) = −
∑
n,m

zm
n (ω)Pn

n(cosϑ)eimϕ, (3.6a)

Bϑ(a, ϑ, ϕ, ω) = −
∑
n,m

vm
n (ω)

dPm
n (cosϑ)
dϑ

eimϕ, (3.6b)

Bϕ(a, ϑ, ϕ, ω) = −
∑
n,m

vm
n (ω)

im
sinϑ

Pm
n (cosϑ)eimϕ. (3.6c)

Inserting eq. (3.5) into eq. (3.6a) we can write

Br(a, ϑ, ϕ, ω) = −
1
a

∑
n,m

Cn(ω)n(n + 1)vm
n (ω)Pm

n (cosϑ)eimϕ. (3.7)

This equation has been derived with the assumption of a 1-D conductivity distribution, it has
a general validity, provided that the scale length of lateral conductivity anomalies beneath the
site is large compared with |Cn|.

Cn depends only weakly on the source field geometry (cf. Olsen, 1998), i.e. on the degree
n of the spherical harmonic, and is therefore, to a first approximation, equal to the asymp-
totic value C = C0 (C0 is the zero wave-number flat-earth response, which differs from C1

insignificantly). This yields

Br = −C
1
a

∑
n,m

n(n + 1)vm
n (ω)Pm

n (cosϑ)eimϕ. (3.8)

Further we can write

1
a

∑
n,m

n(n + 1)vm
n (ω)Pm

n (cosϑ)eimϕ =
1

sinϑ

[∂(sinϑBϑ)
∂ϑ

+
∂Bϕ

∂ϕ

]
= ∇⊥ · Bτ, (3.9)

and therefore
Br(a, ϑ, ϕ, ω) = −C∇⊥ · Bτ(a, ϑ, ϕ, ω). (3.10)

Let us assume that the source field potential is proportional to P0
1 = cosϑ (here ϑ is the

geomagnetic colatitude). This gives

V(a, ϑ, ϕ, ω) = av0
1(ω) cosϑ, (3.11)



32 3. Inverse modeling

Figure 3.2: Example of C-response estimation at Fürstenfeldbruck (FUR) observatory in
southern Germany. Blue circles represent the real part of the C-responses, red circles - the
imaginary part.

and

Br(a, ϑ, ϕ, ω) = −z0
1(ω) cosϑ, (3.12a)

Bϑ(a, ϑ, ϕ, ω) = v0
1(ω) sinϑ, (3.12b)

Bϕ(a, ϑ, ϕ, ω) = 0. (3.12c)

From eqs (3.10) and (3.12) one can write

Br = −
z0

1(ω) cosϑ

v0
1(ω) sinϑ

Bϑ = −C(ω)
2
a

tanϑBϑ, (3.13)

and then the C-response is written as

C(ω) = −
a tanϑ

2
Br

Bϑ

= −
a tanϑ

2
Hr

Hϑ

. (3.14)

Figure 3.2 shows an example of experimental C-response at the observatory Fürstenfeldbruck
in southern Germany. In Chapter 4 we discuss in detail the estimation of C-responses from
experimental data.

Weidelt (1972) derived several key properties of C-responses. We present them in Ap-
pendix A.2. In this section we summarize the three most important properties.

1. The C-response does not depend on the amplitude of the external source.

2. The real part of C-response reflects the mean depth of EM field penetration into the
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Earth.

3. In case of a 1-D Earth the real part of C-response increases monotonically to zm, the
depth to a perfect conductor, which in the case of the Earth is the depth to the core-mantle
boundary. In Fig. 3.2 one can see the violation of this property at periods smaller than 1.5
days, which is explained by completely different spatial structure of the source (Sq current
system) at these periods. At periods larger than 110 days this property also violates, hinting
at either non-P0

1 source structure and/or contamination by the sources originated in the core.

3.2 Inverse problem formulation

We formulate the inverse problem of conductivity recovery as an optimization problem such
that

φ(m, λ) →︸︷︷︸
m

min, (3.15)

with the penalty function
φ(m, λ) = φd(m) + λφs(m), (3.16)

where λ and φs(m) are a regularization parameter and a regularization term, respectively,
φd(m) is the data misfit

φd(m) =
∑

ω∈Freqs

∑
ra∈S ites

∣∣∣∣∣∣Cmod(ra, ω,m) −Cexp(ra, ω)
δCexp(ra, ω)

∣∣∣∣∣∣2. (3.17)

Here Cmod(ra, ω,m) and Cexp(ra, ω) are the (complex-valued) predicted and observed C-responses
at observation site ra and at frequency ω, and δCexp(ra, ω) is the uncertainties of the observed
responses. ”Sites” define the locations of the geomagnetic observatories

S ites := {(r = a, ϑi, ϕi), i = 1, 2, ...,Nsites}, (3.18)

where ϑi and ϕi are respectively colatitude and longitude of the observation site. ”Freqs”
define the frequencies under consideration

Freqs := {ωk, k = 1, 2, ...,N f req}. (3.19)

Vector m represents the model parameters that describe the 3-D conductivity distribution in
the model. Parameterization of the model is explained in Section 3.3.

We work with a regularization term of the form

φs(m) = {Wm}T {Wm}, (3.20)

where the superscript T means transpose and W presents a regularization matrix which –
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Figure 3.3: Sketch of 3-D conductivity model.

together with the regularization parameter λ – controls the model smoothness. As a smoothing
matrix the finite difference approximation to the gradient operator is used.

3.3 Parameterization of the model

Let V inv be the inversion problem domain where we seek a 3-D conductivity distribution. Also
let Vmod be the forward problem domain where we solve eqs (2.7). We assume that V inv is con-
fined to N inv

r laterally nonuniform spherical layers embedded into the Earth’s model, which
consists of a surface shell of known laterally varying conductance, S (ϑ, ϕ), and background
1-D section of known conductivity σb(r) (see the sketch of the 3-D model in Fig. 3.3). For
our problem statement it is important to include the surface shell (which approximates nonuni-
form distribution of the conducting oceans and resistive continents) into Vmod, since this shell
greatly affects the responses at coastal observatories (Kuvshinov et al., 2002a). Thus Vmod

consists of V inv and the thin surface layer. Vmod is discretized by Nmod = Nmod
r × Nmod

ϑ × Nmod
ϕ

volume cells, V j( j = 1, 2, ...,Nmod), with the edges of the cells stretching along r, ϑ and ϕ.
Here Nmod

r = N inv
r + 1.

The model parameterization m is defined as follows. Let V inv be subdivided onto N inv =

N inv
r × N inv

τ volume cells, Vm(m = 1, 2, ...,N inv). We assume that the conductivity is constant
within Vm.

σ(r) = σm, r ∈ Vm. (3.21)

Then the vector
m = (ln(σ1), ln(σ2), ..., ln(σNinv))T (3.22)

defines the set of model parameters. The choice of ln(σ) instead σ as unknowns guarantees
the positiveness of the conductivities during the inversion and provides a better scaling of the
problem. We also notice that the sizes of the cells along r and ϑ can be variable.

Note that Vm might coincide with V j within V inv, or might be some combinations of V j. In
the present version of the inverse solution only one type of combination of V j (to comprise
Vm) is allowed, namely simultaneous merging in both lateral directions of L2 cells V j within
each of N inv

r inhomogeneous layers. Thus, for this merging scheme N inv
τ =

Nmod
ϑ

L ×
Nmod
ϕ

L .
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3.4 Limited-memory quasi-Newton (LMQN) algorithm

To minimize φ(m, λ) we apply the quasi-Newton (QN) method. This method is based on the
update formula

mk+1 = mk + αkpk, (3.23)

where pk is determined as
pk = −B−1

k ∇φk. (3.24)

Here k is the iteration number, ∇φk = ( ∂φk
∂m1
, ∂φk
∂m2
, ..., ∂φk

∂mNinv
)T is the gradient vector with respect

to the current model parameters mk, αk is the step length and B−1
k is an approximation of the

inverse Hessian matrix.
This updating procedure requires three basic operations:

1. Update of ∇φk;

2. Update of B−1
k using, for example, Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula;

3. Inexact line search to find appropriate αk.

Since the inverse Hessian approximation is generally dense, the cost of storing and ma-
nipulating it is computationally high when the number, N inv, of variables is large. Indeed
we need O([N inv]2) bytes and operations to respectively store B−1

k and calculate B−1
k ∇φk at

each iteration. To circumvent this problem, a limited-memory variant of QN was introduced
which works with a modified version of B−1

k and requires manipulations with m vector pairs
{mi −mi−1,∇φi − ∇φi−1}. In this case we need O(mN inv) bytes and operations to store B−1

k and
calculate B−1

k ∇φk in each iteration (see Section 3.4.2 for details).

Note that the efficiency (rate of convergence to the solution) of the inversion strongly de-
pends on the accuracy of the line search scheme. We used a scheme, following the reasonings
presented in Nocedal and Wright (2006).

3.4.1 Line search. The Wolfe conditions

Computing the step length αk is a tradeoff. It is desirable to obtain a substantial reduction of
the functional, but at the same time not spending too much time finding αk. The ideal choice
would be the global minimizer of the univariate function f (α) defined by

f (α) = φ(mk + αpk), α > 0, (3.25)

but in general it is too expensive to identify this value. To find even a local minimizer of
f generally requires too many evaluations of the objective function φ and ∇φ. More practi-
cal strategies perform an inexact line search to identify a step length that achieves adequate
reductions of φ at minimal cost.
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A popular inexact line search stipulates that αk should, first of all, give sufficient decrease
in the objective function φ, as measured by the inequality:

φ(mk + αpk) ≤ φ(mk) + c1α∇φ
T
k pk, (3.26)

for some constant c1 ∈ (0, 1). Usually the value for c1 is very small, for example, c1 = 10−4.
Simply to say, the reduction in φ should be proportional to both the step length αk and the
directional derivative ∇φT

k pk. Often inequality (3.26) is called Armijo condition.

The sufficient decrease condition is not enough to ensure the reasonable decrease in φ.
To rule out unacceptably short steps, a second requirement, called a curvature condition, is
introduced. It requires αk to satisfy

∇φ(mk + αkpk)T pk ≥ c2∇φ
t
kpk, (3.27)

for some constant c2 ∈ (c1, 1), where c1 is the constant from eq. (3.26). The left-hand side of
eq. (3.27) is simply the derivative f ′(αk), so the curvature condition ensures that the slope of
f at αk is greater than c2 times the initial slope f ′(0).

On the other hand, if f ′(αk) is only slightly negative or even positive, that means that we
cannot expect much more decrease in φ in this direction, so it makes sense to terminate the
line search. Typical values of c2 are 0.9.

The sufficient decrease and curvature conditions together are known as Wolfe conditions

φ(mk + αpk) ≤ φ(mk) + c1α∇φ
T
k pk, (3.28a)

∇φ(mk + αkpk)T pk ≥ c2∇φ
T
k pk, (3.28b)

with 0 < c1 < c2 < 1.

The strong Wolfe conditions require αk to satisfy

φ(mk + αpk) ≤ φ(mk) + c1α∇φ
T
k pk, (3.29a)

|∇φ(mk + αkpk)T pk| ≥ c2|∇φ
T
k pk|, (3.29b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that f ′(αk) is no longer
allowed to be positive. Hence, the points that are far from stationary points of f are excluded.
The proof of existence of the step lengths satisfying the Wolfe conditions (3.28) and the strong
Wolfe conditions (3.29) can be found in Nocedal and Wright (2006).
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3.4.2 Limited-memory BFGS

The most popular quasi-Newton algorithm is the BFGS method, named for its discoverers
Broyden, Fletcher, Goldfarb and Shanno. The details of this algorithm are presented in No-
cedal and Wright (2006). Each step of the BFGS method has the form

mk+1 = mk − αkHk∇φk, (3.30)

where the update formula for the Hk = B−1
k , approximation of the inverse Hessian matrix, at

each iteration is given by

Hk+1 = (I − ρkskyk
T )Hk(I − ρkskyk

T ) + ρksksk
T , (3.31)

where

sk = mk+1 −mk = αkpk, (3.32a)

yk = ∇φk+1 − ∇φk, (3.32b)

and
ρk =

1
yk

T sk
. (3.33)

Unfortunately there is no formula for H0 that works well in all cases. Some specific informa-
tion is usually used. Otherwise, one can simply set it to be identity matrix, or a multiple of the
identity matrix, where the multiple is chosen to reflect the scaling of the variables.

It is reasonable to ask whether the updating formula (3.31) can produce unsatisfactory re-
sults in certain cases. This question was studied analytically and experimentally (Nocedal and
Wright, 2006), and these studies show that the BFGS formula has very effective self-correcting
property. If the matrix Hk incorrectly estimates the curvature in the objective function, and
this bad estimate slows down the convergence, the Hessian approximation will tend to correct
itself within a few steps.

Let us now discuss the limited-memory version of BFGS method (L-BFGS). Since the
inverse Hessian approximation Hk is generally dense, the cost of storing and manipulating
it is high when the number of variables is large. To overcome this problem, one can store
a modified version of Hk implicitly, by storing a certain number (say, m) of the vector pairs
{si, yi}. The product Hk∇φk can be obtained by performing a sequence of inner products and
vector summations involving ∇φk and the pairs {si, yi}. After the new iterate is computed, the
oldest vector pair in the set is replaced by {sk, yk}. Practical experience has shown that modest
values of number of pairs (3 ≤ m ≤ 20) often produce satisfactory results.

Let us describe the updating process in more detail. At iteration k, the current iterate is
mk and the set of vector pairs si, yi, for i = k − m, · · · , k − 1. We first choose some initial
Hessian approximation H0

k (in contrast to standard BFGS iteration, this initial approximation
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is allowed to vary from iteration to iteration) and find by repeated application of the formula
(3.31), that the L-BFGS approximation satisfies the following formula:

Hk =(VT
k−1 · · ·V

T
k−m)H0

k (Vk−m · · ·Vk−1)+

+ ρk−m(VT
k−1 · · ·V

T
k−m+1)sk−msk−m

T (Vk−m+1 · · ·Vk−1)+

+ ρk−m+1(VT
k−1 · · ·V

T
k−m+2)sk−m+1sk−m+1

T (Vk−m+2 · · ·Vk−1) + · · ·+

+ ρk−1sk−1sT
k−1.

(3.34)

It is effective in practice to set H0
k = γkI, where

γk =
sT

k−1yk−1

yT
k−1yk−1

(3.35)

is the scaling factor that attempts to estimate the size of the true Hessian matrix along the most
recent search direction. This choice helps to ensure that the search direction pk is well scaled,
and as a result the step length αk = 1 is accepted in most iterations.

3.5 Adjoint approach for efficient calculation of the misfit
gradient

In the method discussed above one has to calculate the gradient of the penalty function ∇φ =

∇φd + λ∇φs. As for regularization term introduced by eq. (3.20), an evaluation of ∇φs leads
immediately to

∇φs = 2WT Wm. (3.36)

For the computation of ∇φd we adopt the adjoint approach (cf. Dorn et al., 1999; Newman and
Alumbaugh, 2000; Rodi and Mackie, 2000; Kelbert et al., 2008; Avdeev and Avdeeva, 2009,
among others), which allows for calculating the gradient with only a few forward calculations.
Pankratov and Kuvshinov (2010) presented a general formalism for the efficient calculation
of the derivatives of EM frequency-domain responses and the derivatives of the misfit with
respect to variations of 3-D isotropic/anisotropic conductivity. Using this formalism one can
readily obtain appropriate formulae for the specific sounding methods. Below we overview
this approach to the calculation of the gradient of our misfit function.

3.5.1 Definition of the operators Ge j
3D and Geh

3D

Let us again consider Maxwell’s equations

∇ ×H = σE + jext, (3.37a)

∇ × E = iωµ0H, (3.37b)
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and define the operator Ge j
3D as

E = Ge j
3D(jext)⇔


∇ ×H = σE + jext,

∇ × E = iωµ0H,
E,H→ 0 as r→ ∞,

(3.38)

where
jext = jext(r, ϑ, ϕ, ω), (3.39)

is the given impressed current, and σ ≡ σ(r, ϑ, ϕ) is the given three-dimensional (3-D) con-
ductivity distribution in the Earth’s model. The operator Ge j

3D(·) acts on the input distribution
of electric current jext and yields the electric field due to this current.

Further we define the operator Geh
3D

E = Geh
3D(hext)⇔


∇ ×H = σE,
∇ × E = iωµ0H + hext,

E,H→ 0 as r→ ∞,
(3.40)

which calculates the electric field Geh
3D(hext) provided that the input hext has the spatial distri-

bution
hext = hext(r, ϑ, ϕ, ω), (3.41)

of the imposed magnetic dipoles. Ge j
3D and Geh

3D are linked through

Geh
3D(hext) = Ge j

3D

(
∇ ×

(
hext

iωµ0

))
. (3.42)

3.5.2 Derivatives of the C-responses

Since it is most natural to relate the 3-D conductivity distribution to the geographic coordi-
nate system, all (forward and inverse) calculations are performed in geographic coordinates.
Bearing this in mind Hϑ in eq. (3.14) can be rewritten as

Hϑ(ra, ω) = cosα(ra)Hg
ϑ(ra, ω) − sinα(ra)Hg

ϕ(ra, ω), (3.43)

where Hg
ϑ and Hg

ϕ are the components directed toward geographic south and east, respectively,
and α(ra) is the angle between directions to geographic and geomagnetic north at observation
site ra. Then the C-responses can be written as

Ca(ω) =

(
K

Hr

cosαHg
ϑ − sinαHg

ϕ

)∣∣∣∣∣∣
r=ra

, (3.44)

where K = a
2 tanϑ. By denoting
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U = cosα Hg
ϑ − sinα Hg

ϕ, (3.45)

we have

Ca(ω) =

(
K

Hr

U

)∣∣∣∣∣∣
r=ra

. (3.46)

Thus we can write

dCa =

(
K
(
∂C
∂U

dU +
∂C
∂Hr

dHr

))∣∣∣∣∣∣
r=ra

=

(
K
(
−

Hr

U2 dU +
1
U

dHr

))∣∣∣∣∣∣
r=ra

. (3.47)

Let us consider the calculation of 1
U dHr:

( 1
U

dHr

)∣∣∣∣∣∣
r=ra

=

(
1
U

d
[∇ × E

iωµ0

]
r

)∣∣∣∣∣∣
r=ra

=
( 1
iωµ0

1
U

[
∇ × dE

]
r

)∣∣∣∣∣∣
r=ra

=

=
( 1
iωµ0

1
U

[
∇ × (Ge j

3D(Ge j
3D(jext)dσ))

]
r

)∣∣∣∣∣∣
r=ra

=

=

〈
1

iωµ0

1
U

erδa,∇ × (Ge j
3D(Ge j

3D(jext)dσ))
〉
,

(3.48)

where δa = δ(r − ra) is Dirac’s delta function, [v]r denotes the r-component of a vector v, and
pair in angle brackets 〈·, ·〉 denotes complex bilinear pairing

〈a,b〉 =

∫
R3

(ar(r)br(r) + aϑ(r)bϑ(r) + aϕ(r)bϕ(r))r2 sinϑdϑdϕ. (3.49)

Note that in eq. (3.48) we used the following expression for differential of electric field with
respect to variation of conductivity σ

dE = Ge j
3D(Ge j

3D(jext)dσ). (3.50)

Let us show how we derive this equation. We consider Maxwell’s equations for σ + ∆σ and
denote their solutions as H + ∆H and E + ∆E

∇ × (H + ∆H) = (σ + ∆σ)(E + ∆E) + jext, (3.51a)

∇ × (E + ∆E) = iωµ0(H + ∆H). (3.51b)

By subtracting eq. (3.37) from eq. (3.51) we obtain

∇ × ∆H = (σ + ∆σ)∆E + ∆σE, (3.52a)

∇ × ∆E = iωµ0∆H. (3.52b)
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But we notice, from eq. (3.38), that

∆σE = Ge j
3D(jext)∆σ. (3.53)

By tending ∆σ to zero we arrive at the following equation

∇ × dH = σdE + Ge j
3D(jext)dσ, (3.54a)

∇ × dE = iωµ0dH. (3.54b)

By comparing eq. (3.54) with eq. (3.38) we obtain the desired eq. (3.50). Let us continue
with eq. (3.48). Since the ∇× is a self-adjoint operator, i.e.

〈∇ × a,b〉 = 〈a,∇ × b〉, (3.55)

for any fields a and b, we obtain

( 1
U

dHr

)∣∣∣∣∣∣
a

=

〈
∇ ×

( 1
iωµ0

1
U

erδa

)
,Ge j

3D(Ge j
3D(jext)dσ)

〉
. (3.56)

Now we will show that Ge j
3D is also self-adjoint operator

〈Ge j
3D(a),b〉 = 〈a,Ge j

3D(b)〉. (3.57)

First let us obtain, from Maxwell’s equations (3.37), the equation for electric field. By substi-
tuting the second equation of (3.37) into the first equation we have

∇ ×

(
∇ × E
iωµ0

)
− σE = jext. (3.58)

Let A = Ge j
3D(a) and B = Ge j

3D(b), i.e.

∇ ×
(∇ × A

iωµ0

)
− σA = a, (3.59)

and
∇ ×

(∇ × B
iωµ0

)
− σB = b. (3.60)
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Using the reciprocity of ∇× operator we obtain the following sequence of equalities

〈Ge j
3D(a),b〉 = 〈A,∇ ×

(
∇×B
iωµ0

)
− σB〉 = 〈A,∇ ×

(
∇×B
iωµ0

)
〉−

〈A, σB〉 = 〈∇ × A, ∇×B
iωµ0
〉 − 〈σA,B〉 = 〈∇ ×

(
∇×B
iωµ0

)
,B〉−

〈σA,B〉 = 〈∇ ×
(
∇×A
iωµ0

)
− σA,B〉 = 〈a,Ge j

3D(b)〉,

(3.61)

which proves eq. (3.57). Using eq. (3.57) we obtain

( 1
U

dHr

)∣∣∣∣∣∣
r=ra

=

〈
Ge j

3D(∇ × (
1

iωµ0

1
U

erδa)),Ge j
3D(jext)dσ

〉
. (3.62)

Further using the link between Ge j
3D and Geh

3D, described by eq. (3.42) we arrive to the final
expression for

(
1
U dHr

)∣∣∣∣
r=ra

( 1
U

dHr

)∣∣∣∣∣∣
r=ra

=

〈
Geh

3D(
1
U

erδa),Ge j
3D(jext)dσ

〉
. (3.63)

In a similar way as in eqs (3.47-3.63) we calculate the first term in right-hand side of eq. (3.47)(
1

U2 dU
)∣∣∣∣∣∣

r=ra

=

(
1

U2 d(cosαHg
ϑ − sinαHg

ϕ)
)∣∣∣∣∣∣

r=ra

=

(
1

U2 d(cosαHg
ϑ − sinαHg

ϕ)
)∣∣∣∣∣∣

r=ra

=

=

([ 1
U2 d(cosαHg

ϑ)
]
−

[ 1
U2 d(sinαHg

ϕ)
])∣∣∣∣∣∣

r=ra

=

=

(
cosα

iωµ0U2

[
∇ × dE

]
ϑ −

sinα
iωµ0U2

[
∇ × dE

]
ϕ

)∣∣∣∣∣∣
r=ra

=

=

〈
1

iωµ0

cosα
U2 eϑδa,∇ × (Ge j

3D(Ge j
3D(jext)dσ))

〉
−

−

〈
1

iωµ0

sinα
U2 eϕδa,∇ × (Ge j

3D(Ge j
3D(jext)dσ))

〉
=

=

〈
Geh

3D

( 1
U2 (cosα eϑ − sinα eϕ)δa

)
,Ge j

3D(jext)dσ
〉
.

(3.64)

Here [v]ϑ and [v]ϕ denote the ϑ− and the ϕ− components of a vector v respectively. Substi-
tuting eqs (3.63)-(3.64) into eq. (3.47) we obtain the desired differential, dCa, with respect to
variation of σ

dCa =

〈
Geh

3D

((
−

KHr

U2 (cosα eϑ − sinα eϕ) +
K
U

er

)
δa

)
,Ge j

3D(jext)dσ
〉
. (3.65)
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3.5.3 Gradient of the data misfit

The differential of the misfit function defined by eq. (3.17) with respect to variation of σ can
be written in the form

dφd = d
∑

ω∈Freqs

∑
ra∈S ites

∣∣∣∣∣∣Cmod(ra, ω,m) −Cexp(ra, ω)
δCexp(ra, ω)

∣∣∣∣∣∣2 =

= 2<
{ ∑
ω∈Freqs

∑
ra∈S ites

(Cmod(ra, ω,m) −Cexp(ra), ω)∗

(δCexp(ra), ω))2 dCa

}
,

(3.66)

where < stands for the real part of the expression in brackets and the sign ”*” stands for
complex conjugation. Deriving eq. (3.66) we used the equality

d|B|2 = d(BB∗) = B∗dB + BdB∗ = B∗dB + (B∗dB)∗ = 2<(B∗dB), (3.67)

which is true for any complex-valued variable B. Substituting eq. (3.65) into the eq. (3.66)
we obtain

dφd = 2<
{ ∑
ω∈Freqs

〈Geh
3D(hext),Ge j

3D(jext)dσ〉
}
, (3.68)

where adjoint, “magnetic”, source is given by

h(r) =
∑

ra∈S ites

M(ra)δ(r − ra), (3.69)

with

M(r) = K
[
Cmod(r,m) −Cexp(r)

]∗[
δCexp(r)

]2

{ 1
U(r)

er −
Hr(r)
U2(r)

[
cosα(r)eϑ − sinα(r)eφ

]}
. (3.70)

Thus the adjoint source is an array of magnetic dipoles located at observation sites, with
the magnitudes determined via the residuals of the responses. Taking in mind our model
parametrization we obtain the expressions for the partial derivatives ∂φd

∂ml
in the form

∂φd

∂σl
=

∂φd

∂lnσl

∂lnσl

∂σl
−→

∂φd

∂ml
=

∂φd

∂lnσl
= σl

∂φd

∂σl
, (3.71)

where
∂φd

∂σl
= 2<

{ ∑
ω∈Freqs

( ∫
Vl

Geh
3D(hext) ·Ge j

3D(jext)dv
)}
. (3.72)

Summing up, the individual entries of ∇φd can be calculated as

∂φd

∂ml
=

1
σl
<

{ ∑
ω∈Freqs

∫
Vl

(
Er(r′)Ea

r (r′) + Eϑ(r′)Ea
ϑ(r′) + Eϕ(r′)Ea

ϕ(r′)
)
dv′

}
, (3.73)
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where Vl ∈ V inv, l = 1, 2, ...,N inv, E is the ”electric” solution of system of eqs (2.7) and Ea is
the electric solution of the following Maxwell’s equations

∇ ×Ha(r) = σ(r)Ea(r),
∇ × Ea(r) = iωµ0Ha(r) + h(r),

(3.74)

where adjoint, ”magnetic”, source is determined as in eq. (3.69) (note again that all the fields
and currents under discussion depend on frequency ω). These equations demonstrate the
essence of the adjoint approach: in order to calculate the gradient of the misfit one needs to
perform only one (per frequency) additional forward modeling with the excitation provided
by the adjoint source. This forward modeling differs from that described in Chapter 2 in the
following point: now we have to consider Maxwell’s equations for the reference fields with
the magnetic source

∇ ×H0,a(r) = σ0(r)E0,a(r),
∇ × E0,a(r) = iωµ0H0,a(r) + h(r).

(3.75)

Then, if we are able to construct and calculate ”magnetic-to-electric” fundamental solution
(tensor Green’s function) of eqs (3.75), Geh

1D, then E0,a can be represented via the following
convolution integral

E0,a(r) =

∫
Vext

Geh
1D(r, r′)hext(r′)dv′. (3.76)

Substituting eq. (3.69) into eq. (3.76) we obtain for E0,a

E0,a(r) =
∑

ra∈S ites

Geh
1D(r, ra)M(ra). (3.77)

With E0,a(r) at hand we can proceed exactly in the same way as we did in Chapter 2. A 3-D
IE forward modeling solution which provides the misfit gradient can be summarized with the
following steps

1. Ge j
1D(r, r′) and consequently K(r, r′) (2.20b) are calculated for r′ ∈ Vmod and r ∈ Vmod

2. Geh
1D(r, ra) is calculated for ra ∈ S ites and r ∈ Vmod

3. E0,a(r), r ∈ Vmod is calculated using eq. (3.77) with Geh
1D obtained at step 2

4. js,a(r), r ∈ Vmod is calculated using eq. (2.13) and E0,a obtained at step 3

5. χ0,a(r), r ∈ Vmod is calculated using eq. (2.20c) with K obtained at step 1

6. The scattering equation (2.19) is solved on Vmod using CG method

7. Es,a(r), r ∈ Vmod is calculated using eq. (2.20d) and js,a obtained at step 4

8. Ea(r), r ∈ Vmod is calculated as a sum of Es,a and E0,a obtained at steps 3 and 7

9. E(r) is calculated from IE-C solution (see Chapter 2)

10. Misfit gradient is calculated using eq. (3.73) with Ea and E obtained at steps 8 and 9

Henceforce, this scheme will be referred as the “IE-G” solution. In Chapter 2.4 we presented
the derivation of Ge j

1D and Gh j
1D. In the next section we will present the derivation of Geh

1D and
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Ghh
1D.

3.5.4 Derivation of explicit forms for Green’s tensor for a magnetic dipole
source

In this section we derive the explicit forms of 3 × 3 tensor ”magnetic-to-electric”, Geh
1D, and

”magnetic-to-magnetic”, Ghh
1D, Green’s functions. These tensor functions allow for calculating

magnetic and electric fields that obey Maxwell’s equations

∇ ×H(r) = σ0(r)E(r), (3.78a)

∇ × E(r) = iωµ0H(r) + h(r), (3.78b)

If we can construct and calculate fundamental solutions (tensor Green’s functions) of eqs
(2.8), Ge j

1D and Gh j
1D, then H and E can be calculated via convolution integrals

E(r) =

∫
Vext

Geh
1D(r, r′)h(r′)dv′, (3.79)

H(r) =

∫
Vext

Ghh
1D(r, r′)h(r′)dv′. (3.80)

Here
Geh(hh)

1D = eϑgeh(hh)
ϑϑ′ eϑ′ + eϑgeh(hh)

ϑϕ′ eϕ′ + ... + erg
eh(hh)
rr′ er′ . (3.81)

We then decompose the electric E(r) and magnetic H(r) fields via spherical functions defined
by eqs (2.32) inthe same way as we did in Chapter 2

Eτ(r, ϑ, ϕ) =
1
r

∑
n,m

{
εt

nm(r)St
nm(ϑ, ϕ) + εp

nm(r)Sp
nm(ϑ, ϕ)

}
, (3.82a)

Er(r, ϑ, ϕ)er =
1
r

∑
n,m

εr
nm(r)Sr

nm, (3.82b)

and

er ×Hτ(r, ϑ, ϕ) =
1
r

∑
n,m

{
ht

nm(r)St
nm(ϑ, ϕ) + hp

nm(r)Sp
nm(ϑ, ϕ)

}
, (3.83a)

Hr(r, ϑ, ϕ)er =
1
r

∑
n,m

hr
nm(r)Sr

nm(ϑ, ϕ). (3.83b)

Similarly to magnetic field we decompose the magnetic source as

er × hext
τ (r, ϑ, ϕ) =

1
r

∑
n,m

{qt
nm(r)St

nm(ϑ, ϕ) + qp
nm(r)Sp

nm(ϑ, ϕ)}, (3.84)
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hext
r (r, ϑ, ϕ)er =

1
r

∞∑
n=0

n∑
m=−n

qr
nm(r)Sr

nm(ϑ, ϕ). (3.85)

We can rewrite eq. (3.83a) and eq. (3.84) as

Hτ(r, ϑ, ϕ) =
1
r

∑
n,m

{−hp
nm(r)St

nm(ϑ, ϕ) + ht
nm(r)Sp

nm(ϑ, ϕ)}, (3.86)

hext
τ (r, ϑ, ϕ) =

1
r

∑
n,m

{−qp
nm(r)St

nm(ϑ, ϕ) + qt
nm(r)Sp

nm(ϑ, ϕ)}. (3.87)

Substituting eqs (3.82)-(3.85) into Maxwell’s equations (3.78) and gathering terms involving
functions St

nm and Sp
nm, we obtain the systems of equations

{
∂rε

t
nm = −iωµ0ht

nm − qt
nm,

∂rht
nm = εt

nm(σ0 −
n(n+1)
r2iωµ0

) −
√

n(n+1)
riωµ0

qr
nm,

(3.88)

{
∂rε

p
nm = hp

nm(n(n+1)
r2σ0
− iωµ0) − qp

nm,

∂rh
p
nm = σ0ε

p
nm,

(3.89)

{
σ0ε

r
nm =

hp
nm
√

n(n+1)
r ,

iωµ0hr
nm = −

εt
nm
√

n(n+1)
r − qr

nm,
(3.90)

where εr(t,p)
nm = ε

r(t,p)
nm (r), hr(t,p)

nm = hr(t,p)
nm (r), qr(t,p)

nm = qr(t,p)
nm (r) and σ0 = σ0(r). One can see that

from eq. (3.88) it follows that qr
00(r) = 0 and further from eq. (3.90) – that εr

00(r) = 0 and
hr

00(r) = 0. This means that the n = 0 terms are equal to zero in eqs (3.82b), (3.83b) and
(3.85).

Systems of eqs (3.88) and (3.89) can be rewritten in a same generic form as in eq. (2.39)

 ∂rε(r) = p(r)h(r) + fh(r),
∂rh(r) = qε(r) + fε(r),

(3.91)

where

ε(r) = εt
nm, h(r) = ht

nm,

p(r) = −iωµ0, q(r) = σ0 −
n(n+1)
r2iωµ0

,

fh(r) = −qt
nm, fε(r) = −

√
n(n+1

riωµ0
qr

nm,

(3.92)

for system (3.88) and

ε(r) = ε
p
nm, h(r) = hp

nm,

p(r) =
n(n+1)
r2σ0
− iωµ0, q(r) = σ0,

fh(r) = −qp
nm, fε(r) = 0,

(3.93)
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for system of eqs (3.89). In a similar way like in eqs (2.42)-(2.49) we write expressions

ε(r) =

∞∫
0

G(r, r′) fε(r′)dr′ −

∞∫
0

βG(r, r′) fh(r′)dr′, (3.94)

and

h(r) =

∫
αG fε(r′)dr′ −

∫
αβG fh(r′)dr′, (3.95)

where β(n, r, r′) =
∂r′G(r,r′)

p(r′)G(r,r′) and α(n, r, r′) = β(n, r′, r).

Substituting further eq. (3.92) and eq. (3.93) into eq. (3.94) and eq. (3.95) we express
coefficients εt

nm, ε
p
nm, ht

nm, h
p
nm via coefficients qt

nm, q
p
nm, qr

nm

εt
nm(r) = −

∞∫
0

Gt

√
n(n + 1)
r′iωµ0

qr
nm(r′)dr′ +

∞∫
0

βtGtqt
nm(r′)dr′, (3.96)

εp
nm(r) =

∞∫
0

βpGpqp
nm(r′)dr′, (3.97)

ht
nm(r) = −

∞∫
0

αtGt

√
n(n + 1)
r′iωµ0

qr
nm(r′)dr′ +

∞∫
0

αtβtGtqt
nm(r′)dr′, (3.98)

hp
nm(r) =

∞∫
0

αpβpGpqp
nm(r′)dr′, (3.99)

where Gt(p) ≡ Gt(p)(n, r, r′), αt(p) ≡ αt(p)(n, r, r′) and βt(p) ≡ βt(p)(n, r, r′). Then, using decom-
positions (3.84)-(3.85), the coefficients qt

nm(r′), qp
nm(r′) and qr

nm(r′) are written as

qt
nm(r′) =

r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

∇′⊥ · (er′ × er′ × hτ)S̃ m
n dΩ′ =

= −
r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

∇′⊥ · hτS̃ m
n dΩ′,

(3.100)

qp
nm(r′) = −

r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

∇′⊥ · (er′ × hτ)S̃ m
n dΩ′ =

=
r′

‖S m
n ‖

2
√

n(n + 1)

∫
Ω

(er′ × ∇
′
⊥) · hτS̃ m

n dΩ′,

(3.101)

qr
nm(r′) =

r′

‖S m
n ‖

2

∫
Ω

hrS̃ m
n dΩ′. (3.102)
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While deriving eq. (3.100) and eq. (3.101) we used eqs (2.63)-(2.66). Substituting eqs
(3.100)-(3.102) into eqs (3.96)-(3.99) and further eqs (3.96)-(3.99) into eqs (3.82) after some
algebra we obtain

Eτ(r, ϑ, ϕ) =
1
r

∑
n,m

(εt
nm(r)St

nm(ϑ, ϕ) + εp
nm(r)Sp

nm(ϑ, ϕ) =

=
1
r

∑
n,m

{[ ∞∫
0

Gt βt

√
n(n + 1)

qt
nm(r′)dr′ −

∞∫
0

Gt

√
n(n + 1)
r′iωµ0

qr
nm(r′)dr′

]
St

nm(ϑ, ϕ)+

+

∞∫
0

βpGpqp
nm(r′)dr′Sp

nm(ϑ, ϕ)
}
,

(3.103)

Er(r, ϑ, ϕ) =
1
r

∑
n,m

εr
nm(r)S m

n (ϑ, ϕ) =
1
r

∑
n,m

hp
nm
√

n(n + 1)
σ0r

S m
n (ϑ, ϕ) =

=
1
r

∑
n,m

√
n(n + 1)
σ0r

∞∫
0

αpβpGpqp
nm(r′)dr′S m

n (ϑ, ϕ).

(3.104)

Then substituting eqs (3.100)-(3.102) into eqs (3.103)-(3.104) we obtain for the electric field,
after rearranging the operations of integration and summation

Er(r, ϑ, ϕ) =

∫
Ω

∞∫
0

{
(er′ × ∇

′
⊥)P[

αpβpGpr′

σ0r2 ]
}
· hτdr′dΩ′, (3.105)

Eτ(r, ϑ, ϕ) =

∫
Ω

∞∫
0

(er × ∇⊥){∇′⊥P[
r′βtGt

rn(n + 1)
] · hτ}dr′dΩ′−

−

∫
Ω

∞∫
0

(er × ∇⊥){P[
Gt

riωµ0
]hr}dr′dΩ′−

−

∫
Ω

∞∫
0

∇⊥

{[
(er′ × ∇

′
⊥)P[

r′βpGp

rn(n + 1)
]
]
· hτ

}
dr′dΩ′,

(3.106)

where P[ f ] denotes the summation of series (see eq. (2.68)). In a similar way we obtain the
expressions for the magnetic fields components

Hτ(r, ϑ, ϕ) =
1
r

∑
n,m

(−hp
nm(r)St

nm(ϑ, ϕ) + ht
nm(r)Sp

nm(ϑ, ϕ)) =

=
1
r

∑
n,m

{
−

∞∫
0

αpβpGpqp
nm(r′)dr′St

nm(ϑ, ϕ)−

−
( ∞∫

0

αtGt √n(n + 1)
r′iωµ0

qr
nm(r′)dr′ −

∞∫
0

αtβtGtqt
nm(r′)dr′

)
Sp

nm(ϑ, ϕ)
}
,

(3.107)
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and
Hr(r, ϑ, ϕ) =

1
r

∑
n,m

hr
nm(r)S m

n (ϑ, ϕ) =

=
1
r

∑
n,m

[
−

qr
nm(r)
iωµ0

−
εt

nm(r)
√

n(n + 1)
iωµ0r

]
S m

n (ϑ, ϕ).
(3.108)

Finally, substituting eqs (3.100)-(3.102) into eqs (3.107)-(3.108) after similar rearranging of
the operations we obtain the expressions for magnetic field in the following form

Hτ(r,ϑ, ϕ) =

∫
Ω

∞∫
0

(er × ∇⊥){(er′ × ∇
′
⊥)P[

r′αpβpGp

rn(n + 1)
] · hτ}dr′dΩ′−

−

∫
Ω

∞∫
0

∇⊥{P[
αtGt

riωµ0
]hr}dr′dΩ′ −

∫
Ω

∞∫
0

∇⊥

{[
∇′⊥P[

r′αtβtGt

rn(n + 1)
]
]
· hτ

}
dr′dΩ′,

(3.109)

Hr(r, ϑ, ϕ) = −
1

iωµ0
hr −

∫
Ω

∞∫
0

∇′⊥P
[ r′βtGt

r2iωµ0

]
· hτdΩ′dr′−

−

∫
Ω

∞∫
0

P
[Gtn(n + 1)
ω2µ0r2

]
hrdΩ′dr′.

(3.110)

Now from eqs (3.106)-(3.105) we write the expressions for elements geh
ϑϑ′ , geh

ϑϕ′ , · · ·

geh
ϑϑ′ = −

1
sinϑ

∂ϕ∂ϑ′P[
βtGt

rr′n(n + 1)
] +

1
sinϑ′

∂ϑ∂ϕ′P[
βpGp

rr′n(n + 1)
], (3.111a)

geh
ϑϕ′ = −

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P[
βtGt

rr′n(n + 1)
] − ∂ϑ∂ϑ′P[

βpGp

rr′n(n + 1)
], (3.111b)

geh
ϑr′ =

1
sinϑ

∂ϕP[
Gt

r′2riωµ0
], (3.111c)

geh
ϕϑ′ = ∂ϑ∂ϑ′P[

βtGt

rr′n(n + 1)
] +

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P[
βpGp

rr′n(n + 1)
], (3.111d)

geh
ϕϕ′ =

1
sinϑ′

∂ϑ∂ϕ′P[
βtGt

rr′n(n + 1)
] −

1
sinϑ

∂ϕ∂ϑ′P[
βpGp

rr′n(n + 1)
], (3.111e)

geh
ϕr′ = −∂ϑP[

Gt

r′2riωµ0
], (3.111f)

geh
rϑ′ =

1
sinϑ′

∂ϕ′P[
αpβpGp

r2r′σ0
], (3.111g)

geh
rϕ′ = −∂ϑ′P[

αpβpGp

r2r′σ0
], (3.111h)

geh
rr′ = 0. (3.111i)
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Lastly from eqs (3.109) - (3.110) we obtain the expressions for elements ghh
ϑϑ′ , ghh

ϑϕ′ , · · ·

ghh
ϑϑ′ =

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ αpβpGp

rr′n(n + 1)
]
− ∂ϑ∂ϑ′P

[ αtβtGt

rr′n(n + 1)
]
, (3.112a)

ghh
ϑϕ′ = −

1
sinϑ

∂ϕ∂ϑ′P
[ αpβpGp

rr′n(n + 1)
]
−

1
sinϑ′

∂ϑ∂ϕ′P
[ αtβtGt

rr′n(n + 1)
]
, (3.112b)

ghh
ϑr′ = −∂ϑP

[ αtGt

rr′2iωµ0

]
, (3.112c)

ghh
ϕϑ′ = −

1
sinϑ′

∂ϑ∂ϕ′P
[ αpβpGp

rr′n(n + 1)
]
+

1
sinϑ

∂ϕ∂ϑ′P
[ αtβtGt

rr′n(n + 1)
]
, (3.112d)

ghh
ϕϕ′ = ∂ϑ∂ϑ′P

[ αpβpGp

rr′n(n + 1)
]
−

1
sinϑ

1
sinϑ′

∂ϕ∂ϕ′P
[ αtβtGt

rr′n(n + 1)
]
, (3.112e)

ghh
ϕr′ = −

1
sinϑ

∂ϕP
[ αtGt

rr′2iωµ0

]
, (3.112f)

ghh
rϑ′ = −∂ϑ′P

[ βtGt

r2r′iωµ0

]
, (3.112g)

ghh
rϕ′ =

1
sinϑ′

∂ϕ′P
[ βtGt

r2r′iωµ0

]
, (3.112h)

ghh
rr′ = −

δ(r − r′)δ(ϑ − ϑ′)δ(ϕ − ϕ′)
iωµ0r′2 sinϑ

− P
[Gtn(n + 1)
ωµ0r2r′2

]
. (3.112i)

Note that for the misfit gradient calculations we need only Green’s tensor Geh
1D. The expres-

sions for the elements of this tensor are presented for the first time, and therefore have to
be tested. Final remark of this section is that the expressions for the elements of Ghh

1D are
presented for completeness of the exposition.

3.5.5 Tests of calculation of Green’s tensor Geh
1D

For testing the calculation of elements of the Green’s tensor Geh
1D we consider a radially sym-

metric Earth model consisting of a 400 km thick upper layer of 0.004 S/m, a 100 km thick
transition layer of 0.04 S/m, and an inner uniform sphere of 2 S/m. The left-hand plots of Fig.
3.4 present real (upper) and imaginary (lower) parts of southward component of the electric
field at depth of 450 km, induced by radial magnetic dipole. The period of excitation is 1
day. The dipole is located at the equator on the surface of the Earth. For comparison, right-
hand plots present the same component of electric field calculated by the IE Cartesian code
of Avdeev et al. (2002). Note that we don’t plot the eastward component since it has simi-
lar geometry (but rotated anticlockwise 90◦) and similar amplitudes. Figs. 3.5 and 3.6 show
in a similar manner the electric fields induced by southward and eastward directed magnetic
dipoles. It is seen that the results for spherical and Cartesian cases as a whole agree very well,
but some disagreement exists, most probably due to the different coordinate systems used.
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Figure 3.4: Comparison of results calculated in spherical (left-hand plots) and Cartesian
(right-hand plots) geometries. Upper plots: real parts of southward component of electric
field (V/m). Lower plots: imaginary parts (V/m). Excitation: radial magnetic dipole. See
details in the text.

3.5.6 Numerical verification of the adjoint approach

To verify calculation of the misfit gradient using the adjoint approach we consider a 3-D model
which consists of a deep-seated nonuniform layer located between 500 and 600 km depth. The
conductivity distribution in the layer (in logarithmic scale) is shown in the upper left-hand plot
of Fig. 3.10. The anomaly has a conductivity of 1 S/m, whereas the surrounding area has a
conductivity of 0.04 S/m. Above the nonuniform layer (from top to the bottom) sits a resistive
100 km lithosphere of conductivity 0.00001 S/m, and a 400 km upper mantle of conductivity
0.01 S/m. Below the nonuniform layer the conductivity is fixed to be 2 S/m. The model is
excited by a source which is described by the first zonal harmonic. The layer is discretized in
72 × 36 cells of horizontal size 5◦ × 5◦ and radial size of 100 km. We calculate C-responses
on the surface of the Earth on a mesh of 5◦ × 5◦ at 25 periods from 3.9 to 109,6 days, with a
geometric step of 1.14. The gradient is calculated for model vector m with σi = 0.04 S/m for
all i (i = 1, 2, · · · ,N inv). The right-hand plot of Fig. 3.7 presents (in the form of global maps)
the data misfit gradient calculated by the adjoint approach. The left-hand plot shows the data
misfit gradient calculated by numerical differentiation

∂φd

∂mi
≈
φd(mi + δmi) − φd(mi)

δmi
, i = 1, 2, ...,N inv. (3.113)

Note that in our calculations we take δmi
mi

= 0.01 for all i. It is seen from the Fig. 3.7 that the
gradients calculated by the adjoint scheme and by numerical differentiation agree remarkably
well. Fig. 3.8 supports this conclusion in a more quantitative way. It presents the results
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Figure 3.5: Comparison of results calculated in spherical (left-hand plots) and Cartesian
(right-hand plots) geometries. Upper plots: real parts of southward component of electric
field (V/m). Lower plots: imaginary parts (V/m). Excitation: southward magnetic dipole. See
details in the text.

Figure 3.6: Comparison of results calculated in spherical (left-hand plots) and Cartesian
(right-hand plots) geometries. Upper plots: real parts of southward component of electric
field (V/m). Lower plots: imaginary parts (V/m). Excitation: eastward magnetic dipole. See
details in the text.

of comparison along the profile that is depicted by a dashed line in right-hand plot of Fig.
3.7. Again, one can see almost perfect agreement between two approaches for calculating
data misfit gradients. But numerical differentiation required N inv + 1 = 72 × 36 + 1 forward
modelings (per frequency) whereas the adjoint procedure required only 2 forward modelings
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Figure 3.7: Comparison of data misfit gradients calculated by adjoint method (right-hand
plot) and straightforward numerical differentiation (left-hand plot).

Figure 3.8: Comparison of the data misfit gradients along the profile depicted as a dashed line
in right-hand plot of Fig. 3.7.

per frequency.

3.6 Optimization and numerical verification of the 3-D in-
verse solution

3.6.1 Optimization of the inverse solution

Massive 3-D forward calculations of the responses (cf. IE-C scheme of Section 2.3) and mis-
fit gradients (cf. IE-G scheme of Section 3.5.3) during the 3-D inversion dictate that these
calculations have to be performed as fast as possible. Since our forward numerical schemes
are based on IE formulation we can take advantage of the IE approach and perform the most
time-consuming part of the forward calculations – calculation of the Green’s tensors, Ge j

1D

(Ge j
1D is the same in IE-C and IE-G schemes), Gh j

1D (needed in IE-C scheme) and Geh
1D (needed

in IE-G scheme) only once, prior to the inversion loop. The reason for this is that Green’s
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Figure 3.9: Normalized misfit with respect to the iterations. Synthetic modeling results.

tensors do not depend on the 3-D conductivity distribution in the model but only on a 1-D
reference conductivity distribution, which remains the same during 3-D inversion. In order
to illustrate the gain in efficiency by using this separation scheme we provide below the CPU
times (on a single processor of the ETH cluster Brutus) for major (in a sense of time consump-
tion) components of IE forward solution at a specific frequency for a 3-D conductivity model
discretized by Nr × Nϑ × Nϕ = 6 × 36 × 72 = 15552 cells.

• Calculation of Ge j
1D(r, r′) for r, r′ ∈ Vmod takes 270 sec

• Numerical solution of scattering equation takes 30 sec

• Calculation of Gh j
1D(ra, r′) for ra ∈ S ites and r′ ∈ Vmod takes 50 sec

• Calculation of Geh
1D(r, ra) for r ∈ Vmod and ra ∈ S ites takes 50 sec

These estimates show that separating the calculation of Green’s tensors gives more than one
order of magnitude acceleration (in this particular case 370/30=12.3 times acceleration) of the
forward calculations during inversion.

Another substantial saving of the computational load comes from parallelization of the IE
solution. Since forward calculations are independent with respect to frequency we perform
the modelings at N f req frequencies in parallel on N f req processors. This results in an additional
N f req× acceleration of the forward/inversion solutions.

3.6.2 Numerical verification

To test our inverse scheme we considered the same data, model and excitation as in Section
3.5.6. Our aim is to recover from the input data the conductivity distribution within the deep-
seated inhomogeneous layer. The vector of parameters to be determined, m, is the vector of
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Figure 3.10: 3-D Model and results of conductivity recovery at initial stage of inversion at (0,
10, 50, 150 and 450 iterations) in logarithmic scale.

logarithms of unknown electrical conductivities in N inv = 72 × 36 cells (of 100 km thickness)
comprising the inhomogeneous layer. For this test we assume known: a) the background 1-
D conductivity; b) the geometry of the source; and c) the location (depth and thickness) of
the deep-seated inhomogeneous layer. No noise is added to the data, and no regularization
is applied. Thus, this test is considered as a proof of concept, i.e. we verify whether our
implementation of the LMQN method along with the adjoint approach, and an optimization
of the inverse solution discussed in Section 3.6 works correctly. We start the inversion using a
homogeneous layer of conductivity 0.2 S/m which is far away from both the conductivity of
anomaly (1 S/m) and background conductivity (0.04 S/m).

Figs. 3.9 and 3.10 summarize the results of our 3-D inversion test. Fig 3.9 presents
the misfit with respect to the number of iterations. It is seen that within 150 iteration the
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normalized misfit drops from 10.058 to 0.067, and after 450 to 0.003.
The upper left-hand plot of Fig. 3.10 shows the “true” (which has to be recovered) conduc-

tivity distribution in the layer, while other plots show the evolution of conductivity recovery
with respect to the number of iterations in the inversion. It is seen that after 50 iterations the
deep-seated anomaly is recovered fairly well, after which a further 400 iterations are neces-
sary to recover properly the background conductivity. The final image (lower right-hand plot)
almost perfectly agrees with the true conductivity.



Chapter 4

Estimation of experimental C-responses

4.1 Data collection

We assembled very long time series (up to 51 years; 1957-2007) of hourly mean values of three
components of the geomagnetic field from 281 geomagnetic observatories, including polar
and equatorial observatories. These data were retrieved from Edinburgh World Data Center
for Geomagnetism (http://www.wdc.bgs.ac.uk). The spatial distribution of observatories is
shown in Fig. 4.1.

We first visually inspected all the data and found that very few observatories (mostly in
Europe and Japan) provide continuous time series of good quality (without baseline jumps
and gaps) for the whole 51 year interval. As an example Fig. 4.2 shows time series of the
geomagnetic field components for two of the best (with respect to data quality) geomagnetic
observatories – Hermanus (HER) in South Africa and Fürstenfeldbruck (FUR) in Germany.
Data found to have gaps and/or involve baseline jumps were excluded. No attempt has been
made to edit the data. This decision is motivated by the intention to avoid any uncertainties
associated with the necessarily subjective editing schemes. Our hope was that using very long
time series the above simple criteria would provide enough data for further analysis. Fig. 4.3
demonstrates the data of “moderate” quality from Chinese observatory, Sheshan (SSH), and
from Papete (PPT) observatory in Pacific Ocean. In spite of clear baseline jumps and lengthy
gaps in the data time intervals of considerable duration showing continuous observations with-
out jumps and outliers are nonetheless extant. Note that usable data from many observatories
exist only for periods as little as few months down to a few days (e.g. EIC, Easter Island in
Pacific Ocean), preventing their use. After initial processing step data from 262 observato-
ries remained. Based on the results of time series analysis to be discussed below we further
decreased more than twice this subset of observatories.
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Figure 4.1: Location of 281 observatories, data from which have been retrieved from Edin-
burgh World Data Center for Geomagnetism.

Figure 4.2: Time series of hourly mean values X (upper plots), Y (middle plots) and Z (lower
plots) components of the magnetic field for Fürstenfeldbruck (FUR) observatory (left-hand
plots) in Germany and Hermanus (HER) observatory (right-hand plots) in South Africa.

4.2 Determination of C-responses

In this section we discuss details of time series analysis to estimate C-responses, which we
write here in the following form

C(ra, ω) = −
a tanϑ

2
Z(ra, ω)
H(ra, ω)

, (4.1)

where we denote Z ≡ −Br and H ≡ −Bϑ.
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Figure 4.3: Time series of hourly mean values of X (upper plots), Y (middle plots) and Z
(lower plots) components of the magnetic field for Papete (PPT) observatory (left-hand plots)
in Pacific Ocean and Sheshan (SSH) observatory (right-hand plots) in China.

4.2.1 Least squares approach

The procedure presented below describes how we estimated C-responses.

1. Secular variation is removed from the original time series. For each component the
secular variation is treated by means of cubic B-splines (cf. De Boor, 1978; Eilers and Marx,
1996; Dierckx, 1993, among others) with a knot separation of 2 years.

2. The resulting time series of the horizontal component are transformed by a rotation
from geographic to geomagnetic (dipolar) coordinate system. Location of the geomagnetic
pole has been obtained from three dipole components of the IGRF 1985 model. The secular
motion of the pole is not relevant because this rate is much slower than the period range of
interest.

3. Segments of Z and H time series of length KT j (hereinafter referred to as realizations)
are taken for estimating time harmonics of Z and H at various periods T j, j = 1, . . . ,NT ,
with NT being the number of considered periods and K being a constant. The responses were
estimated at 15 periods between 2.9 and 104.2 days, evenly spaced on a logarithmic scale.
There is a consensus that the GDS method works well in this period range (cf. Banks, 1969;
Roberts, 1984; Schultz and Larsen, 1987; Fujii and Schultz, 2002, among others). We varied
K between 3 and 10 and finally choose K = 7, considering this value as a good compromise
between resolution and accuracy of the response estimates. In order to increase the number of
realizations, successive realizations overlap 50% with preceding ones. If a given realization
contains gaps in either component (Z or H), we exclude it from further analysis. To reduce
sidelobes a Kaiser window (Kuo and Kaiser, 1966) is applied to each realization. This window
is an approximation to the prolate-spheroidal window, for which the ratio of the main lobe
energy to the side lobe energy is maximized.
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4. For each realization and for each period T j, we calculate a frequency dependent Ẑl and
Ĥl using the Fourier transform

Ẑl(ω j) =

tl+KT j∫
tl

Z(t)e−iω jtdt, Ĥl(ω j) =

tl+KT j∫
tl

H(t)e−iω jtdt, (4.2)

where l = 1, · · · , L, L is the number of realizations, and tl is the first time instant of the
realization. Hereinafter we will use the symbols Z and H for frequency dependent fields in
place of Ẑ and Ĥ.

5. Least squares C-responses are then estimated as

C = −
a tanϑ

2
< ZWH∗ >
< HWH∗ >

, (4.3)

where H∗ is the complex conjugate of H, and < · · · > denotes summation over the L realiza-
tions

< AWH∗ >=

L∑
l=1

AlWlH∗l , (4.4)

where A is either Z or H. Non-Gaussian noise is handled with an iterative robust (Huber)
weight W which reduces the effect of outliers (Huber, 1981). The corresponding errors are
calculated as follows (Schmucker, 1999)

δC(ω) = |C|

√
1 − coh2

coh2

(1
β

) 1
L−1

, (4.5)

where 1− β is the confidence level, i.e. probability that the absolute value |C| lies within error
limits |C|±δC. In our calculations the confidence level is chosen to be 0.9. Squared coherence
coh2 is calculated as

coh2 =
| < ZWH∗ > |2

< ZWZ∗ >< HWH∗ >
. (4.6)

In Section 4.2.3 the squared coherence will be used as the quality indicator, which allows for
detecting sites with large noise-to-signal ratio. Let us provide the reasonings for this decision.
Following Olsen (1998) we denote true signals of magnetospheric origin (for each realization
l) as Z0,l and H0,l, and noise parts in Zl and Hl as δZl and δHl

Zl = Z0,l + δZl,

Hl = H0,l + δHl,
(4.7)

Eq. (4.1) should then be written as

C = −
a tanϑ

2
Z0,l + δZl

H0,l + δHl
, (4.8)
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where Z0,l and H0,l are assumed to be exactly correlated

−
a tanϑ

2
Z0,l = E(C)H0,l. (4.9)

Here E(C) denotes expected value for C. Let us further assume that

< δHWδZ∗ >=< δZWZ∗0 >=< δHWH∗0 >=< δZWH∗0 >=< δHWZ∗0 >= 0. (4.10)

Then the eq. (4.6) can be rewritten as

coh2 =
| < ZWH∗ > |2

< ZWZ∗ >< HWH∗ >
=
< ZWH∗ >
< ZWZ∗ >

HWZ∗

HWH∗
=

=
< Z0WH∗0 >

< Z0WZ∗0 > + < δZWδZ∗ >
< H0WZ∗0 >

< H0WH∗0 > + < δHWδH∗ >
=

=
< Z0WH∗0 >
< Z0WZ∗0 >

1
(1 + <δZWδZ∗>

<Z0WZ∗0>
)

< H0WZ∗0 >
< H0WH∗0 >

1
(1 + <δHWδH∗>

<H0WH∗0>
)

=

=
1

(1 + <δZWδZ∗>
<Z0WZ∗0>

)(1 + <δHWδH∗>
<H0WH∗0>

)
,

(4.11)

where we have made use of the equality

< Z0WH∗0 >
< Z0WZ∗0 >

=
< Z0WZ∗0 >
< H0WZ∗0 >

, (4.12)

which arises from the exact correlation of Z0 and H0 (see eq. (4.9)). It is seen from eq. (4.11),
that low squared coherence means high relative errors in Z or/and in H. These errors are
possible due to a combination of the following cases: 1) instrumental or/and environmental
noise; 2) smallness of the true signal; 3) violation of the assumption about P0

1 structure of the
true signal. With regard to the use of eq. (4.3) for estimating C-responses, the question of a
possible downward bias of the responses arises (Olsen, 1998). In order to address this issue,
we calculate responses using the remote reference technique (Gamble et al., 1979) which
allows for a reduction of downward bias of the C-response estimates (should this bias exist).
Using this technique the responses are computed as follows

C = −
a tanϑ

2

< ZWH∗re f >

< HWH∗re f >
, (4.13)

where Hre f are realizations at the reference observatory, which is sufficiently far away so that
the noise sources in H and Hre f are independent. Applying this technique we found that es-
timates calculated with the use of eqs (4.3) and (4.13) are very similar for all observatories
over the period range of interest. We paired the observatories with different remote reference
observatories, but noticed only a negligible difference between the different estimates so com-
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Figure 4.4: C-responses for Fürstenfeldbruck observatory estimated with the use of eq. (4.3)
and eq. (4.13) (for details see the text). Circles signify the results obtained from “single site”
estimation (using eq. (4.3)), triangles and crosses denote the results obtained using remote
reference technique (see eq. (4.13)) with Kakioka (KAK) and Chambon-la-Forêt (CLF) as
respective reference observatories. Blue circles represent the real part of the C-responses, red
circles – the imaginary part.

puted. This is illustrated in Fig. 4.4, which shows the results of C-response estimates for FUR
estimated with the use of eqs (4.3) and (4.13). Circles depict the results obtained from “single
site” estimation (i.e. using eq. (4.3), triangles and crosses denote the results obtained using the
remote reference technique (see eq. (4.13)), employing Kakioka (KAK) observatory in Japan
and Chambon-la-Forêt (CLF) in France as remote reference observatories. The responses are
seen to be very close over the whole period range, which means that the use of eq. (4.3) for
obtaining unbiased estimates of C-responses seems adequate.

4.2.2 The jackknife method

We also applied an alternative (jackknife) method (cf. Chave and Thomson, 1989) to estimate
C-responses and their uncertainties. The advantage of the jackknife method over the least
squares approach discussed above is two-fold. First, jackknife estimates of the responses tend
to be bias-free (see Efron, 1982). Second, the jackknife method does not require assump-
tions about the statistical distribution of experimental errors and, thus, gives a more realistic
estimate of the response uncertainties. The method works as follows. Let’s designate

< AWH∗ >i=

i−1∑
j=1

A jW jH∗j +

L∑
j=i+1

A jW jH∗j , (4.14)

and
Ĉi =

< ZWH∗ >i

< HWH∗ >i
. (4.15)
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Figure 4.5: Comparison of least squares and jackknife techniques used to calculate C-
responses on the Hermanus observatory (left-hand plot) and the Alice Springs observatory
in Australia (right-hand plot). Blue circles represent the real part of the C-responses, red
circles - the imaginary part.

Then the jackknife estimate of the response, C̃, is determined as

C̃ = LĈ −
(L − 1)

L

N∑
i=0

Ĉi, (4.16)

where Ĉ is calculated as in eq. (4.3) from all available (L) realizations. The jackknife estimate
of the variance is written as

s̃2 =
L − 1

L

L∑
i=1

∣∣∣∣Ĉi −
1
L

L∑
j=1

Ĉ j

∣∣∣∣2. (4.17)

Under very general conditions, it can be shown (cf. Chave and Thomson, 1989) that C̃−C
s̃ is

asymptotically normally distributed, allowing the exact value of C with probability 1−γ to be
placed between

C̃ − tν(1 −
γ

2
)s̃ ≤ C ≤ C̃ + tν(1 −

γ

2
)s̃, (4.18)

where tν(1 −
γ

2 ) is a value from Student’s distribution with ν degrees of freedom. In our cal-
culations we took γ = 0.1. Thus, within the jackknife approach we can estimate uncertainty,
dC, as

dC = tν(1 −
γ

2
)s̃. (4.19)

Fig. 4.5 presents comparison of estimates of C-responses and their uncertainties obtained by
the least squares and the jackknife methods. The results are presented for the observatory
Alice Springs (ASP) in Australia and the observatory Hermanus. It is seen from the figure
that the two methods give comparable estimates, both of responses and uncertainties. These
model studies demonstrate that we are rather safe by using either least squares or jackknife
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Figure 4.6: Averaged over all periods squared coherencies at 262 preselected observatories.
Upper plot shows averaged coherency at a given observatory, where the circles stand for av-
eraged coherencies; the larger the size of the circle the higher the coherency (5 different sizes
correspond to the following interwals: 0-0.2; 0.2-0.4; 0.4-0.6; 0.6-0.8, 0.8-1). Lower plot
presents the distribution of the averaged coherency with respect to geomagnetic latitude.

methods, however we prepared the final set of C-responses and their uncertainties with the
use of the jackknife scheme.
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Figure 4.7: Examples of C-responses at equatorial observatories. Left upper plot – at Guam
(GUA) observatory in the Pacific Ocean (5◦N GM), right upper plot – at Hyderabad (HYD)
observatory in India (8◦N GM), left lower plot – at Huancayo (HUA) in South America (1◦S
GM) and right lower plot – at Addis Ababa in Africa (5◦N GM). Blue circles represent the
real part of the C-responses, red circles – the imaginary part.

4.2.3 C-responses selection

As previously mentioned the (squared) coherency can serve as a proxy either for estimating
the quality of the responses at a given observatory. Fig. 4.6 quantitatively summarizes infor-
mation in a form of coherencies at 262 observatories. The upper plot in Fig. 4.6 presents this
information in a form of global map where the circles of different sizes stand for the averaged
(over all (15) periods) coherencies at a given observatory. The lower plot shows the same
averaged coherencies versus geomagnetic latitude. It is clearly seen from the figure that the
coherence dramatically drops at geomagnetic latitudes higher then 58◦ and below 11◦ (these
latitudes are depicted in the plots by solid (upper plot) and dotted (lower plot) lines).

The decrease in coherency is particularly prominent in the vicinity of the geomagnetic
equator, which is likely due to the assumed geometry of the magnetospheric source. For this
source (described by the first zonal harmonic, P0

1 = cosϑ, in geomagnetic coordinates) the
vertical component, Z, near the geomagnetic equator tends to 0, thus enlarging the noise-to-
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Figure 4.8: Examples of C-responses at high-latitude observatories. Left upper plot – at Sitka
observatory in North America (60◦N GM), right upper plot – at Yakutsk observatory in Siberia
(52◦N GM), left lower plot – at Arkhangelsk observatory in north-west of Russia (59◦N GM),
and right lower plot – at Tromso observatory in Norway (67◦N GM). Blue circles represent
the real part of the C-responses, red circles – the imaginary part.

signal ratio, as a consequence of which coherency diminishes (see eq. (4.11)). As a result the
GDS method fail in this region as is illustrated in Fig. 4.7, showing C-responses, uncertainties
and coherencies for four equatorial observatories – Guam (GUA; geomagnetic (GM) latitude,
ϑ = 5◦N; North Pacific), Hyderabad (HYD; ϑ = 8◦N; India), Addis-Ababa (AAE; ϑ = 5◦N;
Africa), and Huancayo (HUA; ϑ = 1◦S; South America). Indeed, along with the low squared
coherency, C-responses are seen to be very scattered and have large uncertainties.

Coherency at high-latitude observatories is also very low, which is explained by the fact
that in this region the main source of the magnetic field variations is the ionospheric polar
electrojet. This source has spatial structure that is very different from the here assumed P0

1

structure of our magnetospheric source, which thus prevents us from implementing of the
GDS method at high latitudes. Fig. 4.8 shows the results for high-latitude observatories –
Sitka (SIT; ϑ = 60◦N; Alaska), Yakutsk (YAK; ϑ = 52◦N; Russia), Arkhangelsk (ARK;
ϑ = 59◦N; Russia), Tromso (TRO; ϑ = 67◦N; Norway) and supports this inference. Here
the responses have unphysical values (for example, at SIT, YAK and ARK observatories real
parts of C-responses are negative for most of the periods) and the coherency between Z and
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H signals is very low.

Applying these additional constraints C-responses from 119 mid-latitude observatories
remained for further analysis. Fig. 4.9 shows the location of the selected observatories and
the surface conductance map, which describes the nonuniform distribution of the conductive
oceans and resistive continents. Table 1 in Appendix E summarizes station details such as
their acronyms, names, locations (both in geographic and geomagnetic coordinates) and time
interval used for estimating C-responses. Appendix E also presents experimental responses,
uncertainties and squared coherencies for all 119 observatories. In addition, Appendix E
presents time series of hourly mean values of the three components of the magnetic field for
the time interval that was used to estimate the C-responses. Note that for many observatories
Appendix E also presents the experimental responses corrected for the auroral effect (to be
discussed later in this chapter).

In Fig. 4.9 we are also showing the variability of the selected C-responses of both real and
imaginary parts. Black circles in these plots show the responses which have been calculated
from the global 1-D conductivity profile, derived from 5 years of satellite (CHAMP, Orsted,
and SAC-C) magnetic data by Kuvshinov and Olsen (2006).

4.3 Ocean effect in C-responses

There is a common understanding that two 3-D induction effects prevail in the responses:
those caused by the distribution of land and sea, and those due to the heterogeneous mantle.
Kuvshinov et al. (2002b) demonstrated that up to periods of 20 days a nonuniform ocean is a
major contributor to the anomalous behavior of the C-responses at coastal observatories. This
was concluded by comparing predicted (in the model with nonuniform oceans) and observed
responses at five coastal geomagnetic observatories: Apia (South Pacific), Hermanus (South
Africa), Kakioka, Kanoya, and Simosato (all in Japan). The authors also concluded that in
order to achieve good agreement between predictions and observations one needs: (a) good
lateral resolution of the conductance distribution (grid with a lateral resolution of 2◦ × 2◦ or
denser); and (b) highly resistive lithosphere. Kuvshinov et al. (2002b) also showed that the
effects arising from the oceans may be corrected for by multiplying the observed response,
Cexp, by the ratio of the synthetic response of a radially symmetric conductive Earth (without
oceans), C1D, with the response of the same radially symmetric conductive Earth overlain by
an inhomogeneous shell (shell approximates the nonuniform oceans), C1D+shell,

Cexp,corr(ω) = Cexp(ω) ×
C1D(ω)

C1D+shell(ω)
. (4.20)

In this section we analyze the ocean effect in the responses from all 119 observatories that
we selected for further analysis. The goal is to understand to what extent the variability of
our collection of the experimental responses (see Fig. 4.9) can be understood by the ocean
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Figure 4.9: Upper plot shows conductance map using a logarithmic scale and location of
the 119 mid-latitude observatories employed here. Lower plots present the variability of the
real (left-hand plot) and imaginary (right-hand plot) parts of experimental responses at these
observatories.

effect. We would also like to know how the ocean effect shows up in the responses in different
regions of the world.

The 3-D (“ocean+1D”) model, which is used to predict the ocean effect, consists of a thin
spherical layer of laterally varying surface conductance S (ϑ, ϕ) (see conductance distribution
in Fig. 4.9) and a radially symmetric conductivity σ(r) underneath. The shell conductance
S (ϑ, ϕ) is obtained by considering contributions from both sea water and from sediments.
The conductance of sea water is taken from Manoj et al. (2006), which accounts for ocean
bathymetry (taken from the global 5′ × 5′ NOAA ETOPO map of bathymetry/topography),
ocean salinity, temperature and pressure (taken from the World Ocean Atlas 2001). Con-
ductance of the sediments (in continental as well as oceanic regions) is based on the global
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sediment thicknesses given by the 1◦ × 1◦ map of Laske and Masters (1997) and calculated
by a heuristic procedure similar to that described by Everett et al. (2003). The underlying
radially symmetric (1-D) conductivity model, σ(r), includes a 100 km resistive lithosphere of
3000 Ohm-m and a layered model underneath derived by Kuvshinov and Olsen (2006).

4.3.1 Resolution studies

We first investigate what lateral resolution of the model is needed to adequately represent the
ocean effect. We calculated the responses for the selected 119 observatories in an “ocean+1D”
model using the three conductance maps of resolution 3◦ × 3◦, 1◦ × 1◦, and 0.3◦ × 0.3◦. Fig.
4.10 shows the variability of the responses for the three resolutions adopted. It is seen that,
proper resolution of the conductance map is essential to accurately describe the ocean effect.
A lateral resolution of 3◦ × 3◦ is, likely, not detailed enough to fully account for the effect.
Visual comparison of the results for the 1◦×1◦ and the 0.3◦×0.3◦ resolutions indicates that the
1◦ × 1◦ grid is able to adequately model the ocean effect. We also observe that the variability
due to the ocean effect is substantial, especially at shorter periods, and that it can be traced
to periods of 40 days. Variability of the imaginary part is, on average, 1.5 times larger than
the variability seen in the real part. Maximum predicted variability at shortest period are
1050 km and 1500 km in real and imaginary parts, respectively. At a period of 40 days this
variability drops to 100 km and 300 km, respectively, although in the imaginary part still
exceeds the uncertainties of the responses. It is remarkable that the shape of the variability of
the imaginary part of the predicted responses to a period of 20 days is in good agreement with
the variability of the imaginary part of the experimental responses (cf. right-hand lower plot
of Fig. 4.9). The agreement in the real part is worse (cf. left-hand lower plot of Fig. 4.9),
where variability of the experimental responses is more or less constant throughout the whole
period range and reaches 1600 km which is substantially larger than maximum variability of
the predicted responses.

4.3.2 Two types of anomalous behavior due to ocean effect

We discovered that two types of anomalous C-response behavior can be seen due to the ocean
effect. The first type is characterized by a substantial increase in both real and imaginary parts
of the responses towards shorter periods. Moreover at shorter periods the imaginary part at
many coastal observatories becomes positive. Such a behavior is not compatible with any 1-D
conductivity structure, the responses of which always show up with a negative imaginary part
(we adopted eiωt time dependence convention to present the results; note that in Chapters 2 and
3 we work with e−iωt), and a monotonically descending real part with decreasing period. Three
end-member observatories, showing maximum ocean effect of this type, are KOU (Kourou,
French Guiana), VSS (Vassouras, Brasil), and HER (Hermanus, South Africa). This is exem-
plified in Fig. 4.11, which shows the predicted anomalous behavior for Hermanus observatory.
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Figure 4.10: Ocean effect due to different ocean resolutions in the “1D+ocean” models. Up-
per plots present the results for 0.3◦ × 0.3◦ resolution of the surface conductance, middle plots
– the results for 1◦ × 1◦ resolution, and lower plots – the results for 3◦ × 3◦ resolution. Blue
circles (left-hand column) represent the real part of the C-responses, red circles (right-hand
column) - the imaginary part.

For comparison, the global responses discussed above are shown by black circles.

The second type of anomalous behavior is characterized by an excessive (compared to 1-D
case) decrease in both real and imaginary parts of the responses for decreasing period. Three
observatories that show the maximum ocean effect of this type are the Japanese observato-
ries HTY (Hatizyo), KNY (Kanoya) and SSO (Simosato). Fig. 4.11 shows the anomalous
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Figure 4.11: C-responses from the Hermanus observatory (left-hand plot) and from Kanoya
observatory (right-hand plot) that are predicted in “ocean+1D” model. Blue circles represent
the real part of C-responses, red circles – the imaginary part. Black circles represent the
“global” C-responses (see text for explanation).

Figure 4.12: C-responses from the Port Stanley (PST) observatory in South America (left-
hand plot) and from Faraday Island (AIA) observatory in Antarctic (right-hand plot) which
are predicted in “ocean+1D” model. Blue circles represent the real part of C-responses, red
circles - the imaginary part. Black circles represent the “global” C − responses (see text for
explanation).

behavior of the second type of ocean effect for Kanoya (KNY) observatory in Japan. It is
interesting that in some regions the relatively closely located observatories demonstrate the
anomalous behavior of different type of ocean effect. Fig. 4.12 illustrates this fact by show-
ing the predicted responses at observatories Port Stanley (PST; South Atlantic) and Faraday
island (AIA; Antarctica). The reason for this different behavior in this particular region is that
the observatories are situated at opposite sides of a strong electric currents that flow between
South America and Antarctica.
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Figure 4.13: Variability of the predicted responses due to the changes in lithosphere resistiv-
ity. Upper and lower plots show the variability of the responses when the lithosphere resistiv-
ities in the “ocean+1D” model are 300 Ohm-m and 30000 Ohm-m, respectively. Blue circles
(left-hand column) represent the real part of the C-responses, red circles (right-hand column)
- the imaginary part.

4.3.3 Dependence of the responses on 1-D conductivity structure be-
neath oceans

We also studied to what extent the variability of the responses depends on the resistivity of the
lithosphere. Fig. 4.13 shows the variability calculated in the models (with lateral resolution
1◦ × 1◦) in which lithospheric resistivities were chosen to be 300 Ohm-m (upper plot) and
30000 Ohm-m (lower plot), while below this the model was fixed to 1-D obtained by Kuvshi-
nov and Olsen (2006). From this figure and the corresponding (middle) plot in Fig. 4.10, it is
seen that the overall variability, both in real and imaginary parts, only slightly depends on the
resistivity of the lithosphere. However, for coastal observatories, like Hermanus, the depen-
dence is rather pronounced, as is seen in Fig. 4.14, which shows the responses calculated in
the “ocean+1D” model for the three values of lithospheric resistivity.

Finally, we investigated how the results change if we vary the underlying 1-D section. For
this purpose we take as global 1-D section the local conductivity model derived by Khan et al.
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Figure 4.14: Dependence of the predicted responses at Hermanus observatory on lithosphere
resistivity. Blue circles represent the real part of the C-responses, red circles – the imaginary
part. Black circles show the responses for 1-D conductivity model, colored circles, triangles
and crosses are the responses for the “ocean+1D” model with 300 Ohm-m, 3000 Ohm-m and
30000 Ohm-m lithosphere, respectively.

Figure 4.15: Variability of the predicted responses when the oceanic layer was underlain by
1-D profile recovered by Khan et al. (2011) from the Hermanus observatory data. Blue circles
(left-hand plot) represent the real part of the C-responses, red circles (right-hand plot) – the
imaginary part.

(2011) from the analysis of the responses estimated at Hermanus observatory. Note that Khan
et al. (2011) achieved excellent agreement between very anomalous observed and predicted
(in the model with oceans) responses at this observatory (see their Figure 4) by applying
iteratively the correction scheme described by eq. (4.20). Fig. 4.15 shows the variability of
the predicted responses when the oceanic layer was underlain by the 1-D profile recovered
from the Hermanus data. It is seen that the variability in the real part remains the same,
but that the variability in the imaginary part is visibly enhanced. As for the case when we
varied lithospheric resistivity, the responses for coastal observatories vary substantially if we
change the underlying 1-D section. Fig. 4.16 illustrates this for the responses at Hermanus
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Figure 4.16: Dependence of the predicted responses at Hermanus observatory on 1-D con-
ductivity profile. Blue circles represent the real part of the C-responses, red circles - the
imaginary part. Black circles show the responses for 1-D conductivity model from Kuvshi-
nov and Olsen (2006), colored circles are the responses for the “ocean+1D” model with 1-D
conductivity profile from Kuvshinov and Olsen (2006), and triangles are the responses for the
“ocean+1D” model with 1D conductivity profile recovered by Khan et al. (2011) from the
Hermanus observatory data.

observatory.

4.3.4 Correction for the ocean effect

The model studies in this section demonstrate that we must account for the ocean effect as
accurately as possible in order not to interpret this effect as arising from deeper structures.
The best strategy to account for the distortions associated with a nonuniform distribution of
the oceans and continents would be to include an oceanic layer of known conductance (with
a lateral resolution of 1◦ × 1◦) in the 3-D conductivity model, the deeper part of which we
aim to image when inverting the data. However, only a coarser grid with a lateral resolution
of 3◦ × 3◦ is presently computationally feasible when performing our global 3-D inversion.
(Note that in our present version of the inverse solution all nonuniform layers have the same
lateral resolution.)

Alternatively, observed responses can be corrected for the ocean effect using eq. (4.20)
where the predicted results in the model with oceans are calculated on a 1◦ × 1◦ grid. This
correction was employed by Kelbert et al. (2009) to isolate the influence of the oceans during
their global 3-D inversion. However, our modeling studies have shown that the amount of cor-
rection (at least at very coastal observatories) depends strongly on the 1-D profile used during
forward modelings. In order to apply corrections as consistently as possible we consider a
more sophisticated correction scheme, which is described below.

We took the 1-D regional conductivity profiles recovered by Khan et al. (2011) for the six
observatories distributed across the globe (Europe (FUR), South Africa (HER), China (LZH),
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Figure 4.17: Results of the ocean correction for the Hermanus observatory and Kakioka ob-
servatories. Blue circles represent the real part of the C-responses, red circles - the imaginary
part. Circles with error bars show original experimental responses, triangles depict the re-
sponses corrected for the ocean effect.

Australia (ASP), North America (TUC) and North Pacific (HON)). The localities are repre-
sentative of a number of different tectonic settings, covering regions of continental extension
(TUC), ocean (HON), relatively young continents (FUR and HER) and the stable archaean
Australian craton (ASP). Next we subdivided the selected (119) observatories into six clus-
ters depending on distance to these six (reference) observatories. Finally, for each cluster of
observatories we corrected the responses using eq. (4.20) but exploiting as a 1-D model the
regional 1-D profile for the corresponding reference observatory. Fig. 4.17 illustrates the
result exemplified with observatories Hermanus and Kakioka.

4.4 Auroral effect in C-responses

4.4.1 Existence of the auroral effect

Another source of the variability of the experimental responses comes from auroral currents
(polar electrojet) flowing in the ionosphere at an altitude of 110 km. This current system can
to a first approximation be represented by a circular infinitesimally thin line current flowing
23◦ apart from the geomagnetic pole (see Fig. 4.18). Fujii and Schultz (2002) demonstrated
that the influence of this current system (auroral effect) is seen in the responses down to
geomagnetic latitudes of 40◦. In this section we investigate in detail the morphology of the
auroral effect and propose a scheme to correct the experimental responses for this effect.

To start with, Fig. 4.19 presents the experimental responses at periods of 3.7, 10.5, 22.5,
and 37.4 days from all observatories as a function of GM latitude. Two features in the response
behavior are clearly visible.

First, the behavior of the responses both in real and imaginary parts show abrupt changes
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Figure 4.18: Adopted model of the auroral electrojet current system. This current system is
represented by a circular infinitesimally thin line current flowing 23◦ apart from geomagnetic
pole, at an altitude of 100 km.

around 58◦ latitude. Note that in Section 4.2.3 we – based on the analysis of the squared
coherency (cf. Fig. 4.6) – provided the reasons why we exclude the responses from the
observatories higher than 58◦ latitude from the final data set. In this section we present the
responses from those observatories just to demonstrate again that these data cannot be used
for the interpretation.

Second, one can see that in the latitudinal band between 40◦ and 58◦ the real part of the
responses clearly decays towards higher latitudes. Note that this behavior of the real part is
observed for all considered periods. In contrast, the imaginary part of the responses does not
reveal a dependency on geomagnetic latitude in this band. Below we argue that this can be
explained by the fact that there is no induction effect from the auroral current system in the
considered period range.

Fig. 4.20 shows a typical manifestation of the auroral effect in the responses at obser-
vatories located in the discussed latitudinal range, for example, the experimental responses
at observatory Brorfelde (BFE; Denmark; ϑ = 55◦N GM), and at observatory Ekaterinburg
(SVD; Russia; ϑ = 49◦N GM). For comparison black circles depict the predicted responses
from the global 1-D conductivity profile derived by Kuvshinov and Olsen (2006). The auroral
effect is seen as a strong decrease of the real part of the responses towards shorter periods. We
also notice that the imaginary part of the responses is not influenced by the auroral electrojet
as there is no induction occurring from this source. Moreover, the squared coherency for these
observatories is substantially smaller than those obtained at lower latitude observatories (cf.
Fig. 4.4).

To confirm this conclusion quantitatively we calculated magnetic fields at the Earth’s sur-
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Figure 4.19: Real (blue) and imaginary (red) parts of the C-responses estimated for all obser-
vatories at periods of 3.7 days (upper left-hand plot), 10.5 days (upper right-hand plot), 22.5
days (lower left-hand plot), and 37.4 days (lower right-hand plot). The responses are shown
as a function of GM latitude.

face induced by the auroral current which has the geometry shown in Fig. 4.18. Fig. 4.21
presents the results for the Z and H components for a period of 22.5 days along the profile
ϕ = 30◦ (in geomagnetic coordinates). Blue curves represent the external field, black and red
curves show the results for the models with and without an ocean, respectively. One observes
that the conducting Earth (either with or without an ocean) only negligibly affects the external
field (see a discussion in Section 3.1), which also supports the fact that the induction effect
from the auroral source at the considered periods is negligible.

4.4.2 Longitudinal dependence

Having found that the influence of the auroral current system can be traced in C-responses
down to geomagnetic latitude of 40◦ globally, we next discovered that the auroral effect in the
responses reveals a strong longitudinal variability, at least in the Northern hemisphere. Figs
4.22 and 4.23 display responses at four periods as a function of geomagnetic latitude for three
regions: Europe, North America and North Asia. It is clearly seen that for all periods the decay
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Figure 4.20: Experimental responses at two observatories located in geomagnetic latitude
band between 40◦ and 58◦. Left-hand plot shows the responses at Brorfelde (BFE; Denmark)
observatory, right-hand plot – the responses at Ekaterinburg (SVD; Russia) observatory. Blue
circles represent the real part of the C-responses, red circles – the imaginary part. Black circles
depict the predicted responses from global 1-D conductivity profile derived by Kuvshinov and
Olsen (2006).

Figure 4.21: Z (left-hand plot) and H components (right-hand plot) of the real part of the
magnetic fields at the Earth’s surface excited by an auroral current. Blue curves depict ex-
ternal field, black and red curves show the results for the models with and without ocean,
respectively. The results are for period of 22.5 days.

pattern of the real part of the responses towards geomagnetic pole varies with region. Europe
appears to be the region with the smallest level of distortion. (Note again, that the imaginary
parts are almost unaffected by the auroral source in the latitudinal band between 40◦ and 58◦).
This strong longitudinal variability of the responses is observed (not shown) for all periods.
This suggests that the auroral electrojet has longitudinal variations either in strength or/and
in spatial distribution. We have no conclusive explanation so far for what physical process is
behind such variability of the auroral source. One can speculate (personal communication, C.
Finlay; 2010) that the longitudinal variability of the auroral source can be governed by spatial
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Figure 4.22: Comparison of the auroral effect in experimental C-responses in different re-
gions. Left-hand plots show the comparison of the responses in Europe and North America,
right-hand plots – comparison of the responses in Europe and North Asia. Circles represent
the real part of the C-responses, crosses - the imaginary part. Blue, magenta and red colours
depict the results for Europe, North Asia and North America, respectively. From the top to
the bottom are the responses for periods 3.7 and 10.5 days.

inhomogeneity of the main field intensity which strongly deviates from dipolar structure in
auroral regions and has pronounced patches exactly over North America and North Asia (see
Fig. 4.24). Upward continuation of this map to 110 km, the altitude of the current, reveals
the same high latitude flux concentrations will still be evident. The enhanced field strength in
these regions could perhaps help to explain this asymmetry in auroral ionospheric currents.

4.4.3 Correction for the auroral effect

Given that the auroral signals appear independent of Earth’s conductivity, in addition to the
longitudinal variability of the auroral effect, we have developed a scheme to correct the re-
sponses from observatories located between 40◦ and 58◦ latitude for this effect. We consider
as before the model of the auroral current described in the beginning of Section 4.4. The
correction scheme works as follows.
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Figure 4.23: Comparison of the auroral effect in experimental C-responses in different re-
gions. Left-hand plots show the comparison of the responses in Europe and North America,
right-hand plots – comparison of the responses in Europe and North Asia. Circles represent
the real part of the C-responses, crosses - the imaginary part. Blue, magenta and red colours
depict the results for Europe, North Asia and North America, respectively. From the top to
the bottom are the responses for periods 22.5 and 37.4 days.

1. Magnetic fields from the auroral current source, Zaur
s (ω) and Haur

s (ω), are calculated at
the location of all considered observatories, with s denoting the specific observatory. During
these calculations the choice of the conductivity model of the Earth is not relevant, since it
does not influence the results as discussed above (cf. Fig. 4.21).

2. Magnetic fields from a magnetospheric ring current source, ZR
s (ω) and HR

s (ω), are cal-
culated for each of three regions, R. These regions are Europe (with geographic longitude
from 330◦ to 45◦), northern Asia (with geographic longitude from 45◦ to 180◦), and North
America ( with geographic longitude from 180◦ to 330◦). For these regions we used three dif-
ferent 1-D conductivity profiles derived by inversion of C-responses from the observatories of
these regions, for which data are assumed not to be influenced by the auroral effect. For North
America, Europe and northern Asia these observatories were Tucson (TUC; ϑ = 40◦N GM),
Panagyurishte (PAG; ϑ = 40◦N GM) and Manzhouli (MZL; ϑ = 39◦N GM), respectively.
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Figure 4.24: Intensity of the main magnetic field at Earth’s surface in 2010 from IGRF-11
(Finlay et al., 2010). The units are in 10000 nT.

3. We introduce complex-valued coefficients, kR(ω), which we assume are specific for
each region, R, and frequency, ω, and estimate the size of the auroral effect in this region by
minimizing (with respect to kR) the following functional

∑
s∈R

∣∣∣∣∣∣Cmod
s (ω) −Cexp

s (ω)
δCexp

s (ω)

∣∣∣∣∣∣2 kR(ω)
−−−−→ min, (4.21)

where

Cmod
s (ω) = −

a tanϑs

2
ZR

s (ω) + kR(ω)Zaur
s (ω)

HR
s (ω) + kR(ω)Haur

s (ω)
. (4.22)

Fig. 4.25 demonstrates the results of fitting experimental responses using eq. (4.22) at period
of 10.5 days in Europe, North America, and North Asia, respectively. Circles with error bars
show the experimental responses, Cexp

s , whereas crosses depict modelled responses, Cmod
s . It is

remarkable that coefficients, kR(ω), indeed vary from region to region, showing, as expected,
the smallest magnitude in Europe. For the particular period the coefficients are k = −0.8−0.1i,
k = −2.3+1.1i and k = −1.5+0.4i for Europe, North America and northern Asia, respectively.

4. Finally, we correct the real parts of the experimental responses, for each region R and
frequency ω as

<
{
Cexp,corr

s (ω)
}

= <
{
Cexp

s (ω)
}
+<

{
CR

1D(ω)
}
−<

{
Cmod

s (ω)
}
. (4.23)

Fig. 4.26 illustrates the application of this scheme for European observatories. Fig. 4.27
illustrates the results of the correction on the observatory Niemegk (NGK; ϑ = 51◦N GM;
Germany). One can see that the correction made the responses more compatible with the
responses at lower latitude (cf. Fig. 4.4).
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Figure 4.25: The results of fitting of experimental responses, Cexp
s , and modelled responses

Cmod
s for Europe (upper plot), North America (middle plot), and northern Asia (lower plot).

Blue color represents the real part of the C-responses, red color – the imaginary part. Cir-
cles with error bars show the experimental responses, Cexp

s , whereas crosses depict modelled
responses, Cmod

s . The results are for the period of 10.5 days.

Note that we applied this scheme only for the observatories located in the Northern hemi-
sphere. In the Southern hemisphere no definitive conclusion could be made about the longitu-
dinal variability of the auroral effect due to the lack of observatories in this region. Moreover,
the responses from the very few Southern hemisphere observatories located between 40◦ and
58◦ latitudes are also influenced by the ocean effect (fortunately, this is not the case for most



4. Estimation of experimental C-responses 83

Figure 4.26: Results of the correction of the European responses for the auroral effect at
period 13.5 days (see eq. (4.23). Blue line is the real part of the 1-D C-response,<

{
CR

1D(ω)
}
,

at observatory PAG (ϑ = 40◦N GM), red crosses are the real parts of the modeled (see eq.
(4.22)) C-responses, <

{
Cmod

s (ω)
}
. Black circles are experimental values of the real parts of

C-responses, <
{
Cexp

s (ω)
}
. Magenta triangles are the real parts of the corrected responses,

<
{
Cexp,corr

s (ω)
}
.

Figure 4.27: Results of the auroral correction for the Niemegk (NGK) observatory in Ger-
many. Blue color represent the real part of the C-responses, red color - the imaginary part.
Circles with error bars show original experimental responses, triangles – real part of responses
corrected for the auroral effect.

of the observatories in this latitude band in Northern hemisphere), complicating the analysis.
The latter fact is illustrated in Fig. 4.28, which demonstrates experimental responses at Fara-
day Island (AIA; ϑ = −55◦S GM; Antarctic) observatory. Here, a very strong decay in the
real part of the responses at shorter periods is most probably due to cumulative effect of both
– auroral electrojet and ocean. Note that here the imaginary part is also affected, because of
the ocean effect.

A final remark of this section concerns the question of whether we have to use the re-
sponses from the observatories located in latitude band between 40◦ and 58◦ at all? We be-
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Figure 4.28: Experimental responses at Faraday Island (AIA) observatory. Blue circles rep-
resent the real part of the C-responses, red circles – the imaginary part. Black circles are the
responses for 1-D profile from Kuvshinov and Olsen (2006).

lieve that answer on this question should be “yes” for three reasons. First, our correction
scheme makes the real parts of the responses more consistent with the responses at lower lat-
itudes. Second, the imaginary parts of the responses are not distorted by the auroral effect.
By excluding these data from analysis we diminish by as much as a half the amount of usable
observatories, since 58 of our 119 observatories from our preselected set are located in this
latitude band.



Chapter 5

3-D inversion of the experimental
responses

5.1 Detecting lateral variations in mantle conductivity

For the 3-D inversion of our data set it was assumed that lateral heterogeneities are present in
the depth range 410 – 1600 km. We parameterized the 3-D conductivity distribution at these
depths by 5 spherical inhomogeneous layers of 110, 150, 230, 300 and 400 km thickness. The
thicknesses of the two upper layers were chosen in accordance with seismic studies which
show compositional changes at depths 410, 520 and 670 km. The thicknesses of three lower
layers coincide with those used by Kelbert et al. (2009) to simplify the comparison with their
results which will be discussed later in this chapter. Note that we did not attempt to recover
3-D variations at depths shallower than 410 km and deeper than 1600 km, assuming that our
responses in the considered period range between 2.9 and 104.2 days have limited sensitivity
to conductivity variations at these depths (see also the results of Kelbert et al. (2008) which
support this reasoning). The layers were embedded into an a priori 1-D section obtained by
Kuvshinov and Olsen (2006). Introducing a priori means that we will consider as a vector of
our model parameters

m =
(

ln
(σ1

σ0
1

)
,
σ2

σ0
2

)
· · · , ln

(σNinv

σ0
Ninv

))
, (5.1)

where σ0
i , i = 1, 2, · · · ,N inv are the conductivities of the a priori section. This 1-D section

remains unchanged during 3-D inversion. The sketch of the model is shown in Fig. 5.1. The
model is excited by a source which is described by the first zonal harmonic in a geomagnetic
coordinate frame. All forward problem calculations were performed on a 3◦ × 3◦ grid. The
lateral resolution of the inverse domain was chosen to be 9◦ × 9◦. We also tried resolutions
6◦×6◦ and 15◦×15◦ for the inverse domain but observed only minor changes in the recovered
images (see these model studies in Appendix C). The details of our 3-D inverse solution are
presented in Chapter 3. For each inversion run the regularization parameter was determined
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Figure 5.1: Side view of the model.

Figure 5.2: Typical shape of L-curve for our 3-D inversions. Regularization term is from eq.
(3.20).

using the L-curve criterion (cf. Zhdanov, 2002). Fig. 5.2 presents a typical L-curve for one
of our 3-D inversions; for all runs the regularization parameter was taken to be in the vicinity
of the knee of the L-curve. Note that hereinafter the misfit stands for the normalized misfit
defined as

φN
d =

1
Ndata

Nobs∑
i=1

NT (i)∑
j=1

∣∣∣∣∣∣C
pred
i j −Cexp

i j

δCi j

∣∣∣∣∣∣2. (5.2)

Here Ndata =
Nobs∑
i=1

NT (i), and Cexp
i j , Cpred

i j and δCi j are experimental responses, predicted re-

sponses, and uncertainties of experimental responses, respectively, of the i-th observatory and
at the j-th period. The expression for Ndata means that for some observatories a number of
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Figure 5.3: Results of our 3-D inversion. Left-hand column of plots presents the results of
inversion of uncorrected responses. Middle column – the results of inversion of the responses
corrected for the auroral effect. Right-hand column – the results of inversion of the responses
corrected for the auroral and the ocean effects.

analyzed periods are less than 15.

To detect robust features in the conductivity images we performed three 3-D inversion runs
which differ by an amount of the corrections applied to the data. In the first run data were not
corrected neither for ocean nor for auroral effects. The ocean was included in the model as an
additional thin (surface) inhomogeneous layer with a prescribed and fixed (during the inver-
sion) conductance with a lateral resolution of 3◦ × 3◦. Results from this 3-D inversion (global
conductivity distributions in five inhomogeneous layers) are presented in the left-hand col-
umn of Fig. 5.3. Note that we present in this Figure not the raw results – which are piece-wise
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constant conductivity distributions – but their smoothed version. The smoothing procedure is
based on a spherical harmonic filtering of the raw results up to spherical harmonics of degree
9. We present the filtered results only when we discuss the global images. This is motivated
by the fact that we aim to compare these images with the global results of Kelbert et al. (2009),
who used a spherical harmonic parameterization (up to degree 9) of their inverse domain, as
well as with the global filtered results of Tarits and Mandea (2010). Note also that here our
results are shown as decimal logarithms of conductivities. To be able to compare the results at
different depths the same scale is employed for all five layers. A scale range between -2 and
1 corresponds to a range in conductivity between 0.01 S/m and 10 S/m. It is also important
to emphasize at this stage that one must interpret the results of inversion in many regions (for
example, in equatorial and oceanic regions) with extreme care – lack of observation precludes
any conclusive inferences about conductivity distributions in these regions. For example, the
decrease in conductivity beneath Indonesia in first three layers is not supported by data.

In the second run we also included the oceanic layer in the model but corrected the data
for the auroral effect (see Section 4.4 for details of the correction scheme). The recovered
conductivities are shown in the middle column of Fig. 5.3. Unfortunately our sophisticated
scheme of data correction for the auroral effect only partly improves the results of the in-
version (normalized misfit appeared to be slightly less). We nonetheless observe enhanced
conductivity in our images in Northern Europe (at least in the first three layers) which is – we
believe – an artefact dictated to a large extent by an inappropriate correction for the auroral
effect. Discernible differences are seen only beneath North America (in the two first layers)
where an implementation of the correction led to a less pronounced conductivity anomaly.

Finally, in the third run we inverted data corrected both for ocean and auroral effects. Our
correction scheme for the ocean effect is outlined in Section 4.3. We exclude the surface layer
from the model, assuming that our correction scheme suppresses the effect of the ocean in the
responses. The results of this inversion run are shown in the right-hand column of Fig. 5.3.
Here we observe substantial changes in the conductivity distribution in the three first layers
beneath two regions: South Africa and Australia. The spurious anomaly to the south of the
African continent, which was seen in the results of the two first runs is much decreased in
amplitude. We think that this last (third) run produces the most plausible images which will
be compared with results from other semi-global and global 3-D studies.

A closer look at the results presented in Fig. 5.3 reveal the following common features:
(1) at depths between 410 and 900 km lateral variations in conductivity are rather prominent
reaching 1.5 order of magnitude and below 900 km the conductivity variations diminish with
depth; (2) all inversions show a decrease in conductivity beneath southern Europe and northern
Africa at all considered depths, this feature will be discussed later in this section; (3) an
increase of conductivity is discernable beneath China at depths between 520 and 900 km.
This is in agreement with the results of Ichiki et al. (2001). We also see a prominent anomaly
beneath the northern Europe but we attribute this feature to an artefact associated with an
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Figure 5.4: Starting misfit (left-hand plot) versus final misfit (right-hand plot).

Figure 5.5: Misfit evolution during the 3-D inversion.

underestimation of the auroral effect in the corrected responses. Alternatively, one could also
speculate about the presence of an enhanced conductivity beneath Australia and South Africa.
However, prior to scrutinizing the conductivity maps it is also important to emphasize that
results for equatorial and oceanic regions have to be interpreted with extreme care given lack
of observatory data from these regions, and since the amount and the shape of this anomalous
behavior strongly varies with inversion settings.

Fig. 5.4 shows how well the results of the 3-D inversion (third run) fit the data. The figure
presents the misfits at each observatory for a starting 1-D conductivity model (left-hand plot)
and for the recovered 3-D model (right-hand plot). It is seen that for most of the observatories
the 3-D inversion substantially decreases the misfit. This is especially true for European and
Japanese observatories.

Fig. 5.5 shows the evolution of the overall misfit with respect to number of iterations
performed. During inversion the misfit drops from 2.4 to 0.98, and after 20 iterations the
solution has converged with almost no improvement of misfit. For comparison, the two first
inversion runs achieved misfits of 1.7 and 1.6, respectively.
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Figure 5.6: Left-hand plot presents the locations of geomagnetic observatories and Trans-
Pacific telegraph cables. Right-hand plot illustrates the concept of voltage measurement using
the cables.

5.2 Comparison with semi-global 3-D studies

Koyama (2001) was the first to develop and apply a rigorous 3-D inversion scheme to interpret
ground-based C-responses on a semi-global scale. In later studies (Fukao et al., 2004; Koyama
et al., 2006; Utada et al., 2009; Shimizu et al., 2010b) his inverse solution was exploited
to analyze EM data, mostly beneath the northern Pacific region. The authors investigated
voltage data from trans-Pacific submarine cables and magnetic field data from circum-Pacific
geomagnetic observatories (see location of observatories and cables in Fig. 5.6). We note that
Utada et al. (2009) also analyzed data from Europe (to be discussed later in this section). In
the above studies lateral heterogeneity was assumed to exist between 350 and 850 km depth,
thus aiming to resolve the electrical conductivity structures in and around the TZ.

We compare our results with the most recent results obtained by Shimizu et al. (2010b).
Shimizu et al. (2010b) inverted GDS responses at 9 periods between 5 and 35 days from 13
observatories, and MT responses at 9 periods between 1.7 to 10.5 from 8 trans-Pacific cables.
The 1-D conductivity model beneath the North Pacific obtained by Shimizu et al. (2010a) was
employed as an a priori model in this inversion. The grid spacing for the forward problem
was 2◦ × 2◦ laterally and 50 km radially. The size of each block in the final inversion domain
was 10◦ × 10◦ laterally and 100 km radially, comprising a total of N = 19 × 9 × 5 unknowns.
Absolute values of the Laplacian of m −m0 represented the regularization term in horizontal
directions. No regularization of the model parameters in the vertical direction was applied.
The right-hand plots of Figure 5.7 show the resulting 3-D conductivity model. The authors
detected three features in the TZ: (a) a high conductivity anomaly beneath the Philippine Sea;
(b) a high conductivity anomaly beneath the Hawaiian Islands, and (c) a low conductivity
anomaly beneath and in the vicinity of northern Japan.

Left-hand plots in the same Figure show our results for the same region and for similar
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Figure 5.7: Comparison of our results (left-hand column of plots) with results from Shimizu
et al. (2010b) study (two right-hand columns of plots).

depths. We plot log10(σ3D
σ1D

), where σ3D is our resulting conductivity and σ1D is the 1-D a priori

conductivity profile of Kuvshinov and Olsen (2006). Note that since the authors of these semi-
global studies presented the piece-wise constant conductivity distributions we apply the same
strategy showing in this section the raw (blocky) 3-D results. Surprisingly, our results mostly
anti-correlate with the results of Shimizu et al. (2010b). It should be noted that their results
beneath Philippine Sea and Hawaiian Islands are probably more conclusive than ours due to
the fact that they used additional (“cable”) data in these regions. As for regions beneath Japan
and China our results seem to be closer to the results of the global 3-D model by Kelbert et al.
(2009), which we will discuss in the next section.

Utada et al. (2009) constructed a 3-D conductivity model beneath Europe in depth range
between 400 and 800 km. They inverted C-responses obtained in the period range between 5
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Figure 5.8: Location of observatories used in Utada et al. (2009) study.
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Figure 5.9: Comparison of our results (left column) with results from Utada et al. (2009)
study.

and 50 days from 12 European observatories (see location of the observatories in Fig. 5.8).
As an a priori model they used the 1-D model for the northern Pacific region (Utada et al.,
2003). The grid spacing for the forward problem calculations was 1◦ × 1◦ laterally and 50
km radially. The size of each block in the inversion domain was 5◦ × 5◦ laterally and 100
km radially, resulting in a total of N = 9 × 9 × 5 unknowns. No regularization was applied
during inversion. The authors were interested in the conductivity distribution in the TZ, at
depths between 400 and 700 km. The right-hand side of Fig. 5.9 shows their conductivity
anomaly maps as well as the results of global P- and S-wave tomography studies (Megnin and
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Romanowicz, 2000; Obayashi et al., 2006), with δVP(S ) defined as

δVP(S ) =
Vmod

P(S ) − VPREM
P(S )

VPREM
P(S )

· 100%, (5.3)

where Vmod
P(S ) are the P(S)-wave velocities from the 3-D study, and VPREM

P(S ) are the P(S)-wave
velocities from preliminary reference Earth model (PREM; Dziewonski and Anderson, 1981).

The authors found that the most notable feature in their results is the correlation between
the low-conductivity and high-velocity anomalies beneath the central and southern parts of Eu-
rope, where slab material subducted from the Tyrrhenian trench stagnates in the transition zone
(Faccena et al., 2003). They claim that such a correlation implies that the low-conductivity
and high-velocity characteristics of the stagnant slab (Fukao et al., 2001) have a common ori-
gin, most likely temperature, and thus that there is no need to assume an additional conduction
mechanism (e.g., hydrogen conduction) to explain a particular conductivity anomaly. These
results led the authors to the inference that the TZ beneath Europe is relatively dry. Our re-
sults (left-hand plots) – using a different data set and different modeling technique – confirm
this conclusion, with low conductivity regions beneath the central and southern parts of Eu-
rope. In the images from both studies we see enhancement of conductivity in the northern
and north-western parts of Europe, but we believe that this may be an artefact related to the
auroral effect, which is still present in the corrected experimental data.

5.3 Comparison with global 3-D studies

Kelbert et al. (2009) obtained the first global 3-D model of mantle electrical conductivity.
They parameterized the 3-D conductivity distribution at depths between the surface and 1600
km by 8 spherical inhomogeneous layers of 100, 150, 160, 110, 150, 230, 300 and 400 km
thickness, in each of which lateral conductivity variations around the 1-D reference model of
Kuvshinov and Olsen (2006) are parameterized by spherical harmonics up to degree and order
9. Conductivity jumps at 410, 520 and 670 km were allowed to mimic major mineral phase
transitions in mantle. Below 1600 km the layers were assumed to be homogeneous with a fixed
conductivity value. They used a compilation of the C-responses at 59 observatories from the
studies of Fujii and Schultz (2002) (responses from 53 observatories) and Schultz and Larsen
(1987) (responses from 6 observatories). The responses were estimated at 28 periods from 5
to 106.7 days. The lateral grid for forward problem calculations was chosen as 10◦ × 10◦. To
account for the ocean effect the eq. (4.20) was applied, where the predicted responses were
calculated with the use of integral equation (IE) solver of Kuvshinov (2008) (the IE solution
is summarized in Chapter 2) using a much denser grid (1◦ × 1◦) to represent nonuniform
oceans. The right-hand plots in Fig. 5.10 show the results of Kelbert et al. (2009). The
authors note that in regions with poor data coverage, including most of Africa, South America,
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Figure 5.10: Comparison of our results (left-hand plots) with results from Kelbert et al. (2009)
study (right-hand plots).

and the Indian and South Pacific Oceans, conductivity is poorly constrained at all depths.
Their inversion suggests enhanced conductivity at TZ depths along the circum-Pacific margin
extending from western North America, through the Aleutian arc and East Asia, and into the
Indian Ocean and Australia. Most notably, higher conductivities are found beneath Japan,
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Figure 5.11: Comparison of our results (left-hand plots) with Tarits and Mandea (2010) study
(right-hand plot).

eastern China, and in the areas of the Izu-Bonin and Tonga slabs. The central Pacific basin is
seen to be more than an order of magnitude more resistive than the surrounding conductive
regions. The left-hand plots in Fig. 5.10 show our results for comparison. The images differ in
detail (for example, they differ beneath North America), but nonetheless reveal two common
features: (1) reduced conductivity beneath southern Europe and northern Africa; (2) enhanced
conductivity beneath Japan and eastern China. The former is in agreement with the results of
the semi-global study of Utada et al. (2009), while the latter, an enhanced conductivity beneath
eastern China is in accord with the results of Ichiki et al. (2001). However, high conductivities
beneath Japan and low conductivities beneath Hawaii contrast with the results of Shimizu
et al. (2010b). In addition, both inversions show enhanced conductivities in polar regions.
This is, as already remarked, likely an artefact due to inappropriate accounting/correction for
the auroral source effect. Visible differences are also present in lower layers, where our results
are more conductive and show less lateral variability.

Recently Tarits and Mandea (2010) developed a 3-D EM time-domain technique to invert
32 years (1958-1990) of magnetic monthly mean values from 120 geomagnetic observatories
to image the conductivity in the middle mantle. Their interpretation scheme includes two
steps. As a first step a source field model and an initial 1-D conductivity profile are deter-
mined. To find a source they used a potential representation of the magnetic field. The authors
obtained time series of external and internal coefficients up to degree n = 3 using a regu-
larized least squares method. A 1-D conductivity profile was then obtained by performing a
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regularized inversion of global C-responses. C-responses were estimated using time series of
external and internal coefficients from dominant term (n = 1,m = 0) of spherical harmonic
expansion, using eq. (3.1).

3-D inversion was initiated with a 1-D conductivity model obtained in an initial step.
The parameters for the inversion are the conductivity in the cells of the inversion grid. Only
the layer between 900 km and 1400 km was assumed to be heterogeneous. Other layers
were fixed to be homogeneous with conductivities fixed to their initial 1-D model. Tarits
and Mandea (2010) used a grid with lateral resolution of 15◦ × 15◦ (in both forward and
inverse domains), thus estimating conductivity in 12 × 24 = 288 cells. The right-hand plots
in Fig. 5.11 present their results filtered up to spherical harmonic degree 7. Our results for
overlapping depth ranges are shown in the left-hand plots. The results of Tarits and Mandea
(2010) reveal low conductivities beneath the Australian region, Western Africa, near Japan,
North and Central America, and high conductivities in Eastern Africa, South-East Asia and
Eurasia. When compared with our results significant discrepancies can be observed. The
most striking feature of the model by Tarits and Mandea (2010) is that it shows much stronger
conductivity contrasts (up to 3 decimal logarithmic units) than our model (less than 1 log unit).
It is interesting however that the reduced conductivity anomaly beneath southern Europe and
northern Africa is recovered in both studies.

5.4 Comparison with global 3-D seismic studies

Lateral variation of electrical conductivity and seismic velocity are caused by compositional
and temperature changes in the mantle in relation with global geodynamics. Good (anti)correlation
is expected when temperature variations are the leading process in a dry mantle (e.g. Shank-
land et al., 1993; Verhoeven et al., 2008; Utada et al., 2009): in regions with increasing
temperature, the velocity decreases while the conductivity increases. This means that high
conductivity corresponds to low velocity or vice versa.

There are several tomography models of the mid-mantle available (e.g. Becker and Boschi,
2002; Romanowicz, 2003). Becker and Boschi (2002) synthesized the common large scale
features, which are observed in P-wave and S-wave models, and created mean models, shown
in two right-hand columns of plots in Fig. 5.12. In the middle column the resulting P-wave
distributions of the P-mean model of Becker and Boschi (2002) in 5 layers are presented. The
results are for depths between: 399 and 498 km, 498 and 598 km, 678 and 797 km, 997 and
1096 km, 1395 and 1495 km. The depths of these layers were chosen to correspond to the
depths of our 5 inhomogeneous layers. In the right-hand column of Fig. 5.12 the S-wave
distributions in the S-mean model of Becker and Boschi (2002) are shown for the same layers.
δVP(S ) is defined as in eq. (5.3). The left-hand column in Fig. 5.12 shows our 3-D results. Fig.
5.13 in a similar manner shows the comparison of our global 3-D EM results with the most
recent global 3-D seismic results of Della Mora et al. (2011). It is remarkable how well the
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Figure 5.12: Comparison of our results (left-hand column of plots) P-wave (middle column of
plots) and S-wave (right-hand column of plots) distributions from Becker and Boschi (2002).

models by Becker and Boschi (2002) and Della Mora et al. (2011) agree with each other, at
least visually.

A very tentative comparison of our EM results with those from seismic studies, shows
that different trends are observed (at least in two shallower layers). In northern Africa, for
example, low conductivity corresponds to high velocity. But in Australia we see opposite
trend: EM inversion reveals high conductivity anomaly, whereas seismic tomography suggests
high velocity structure. This could be an indication of the processes that act differently on
conductivity and seismic velocities. A weak correlation between high (low) conductivities
and low (high) velocities may be attributed for example to the water effect (Koyama et al.,
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Figure 5.13: Comparison of our results (left-hand column of plots) with the P-wave (middle
column of plots) and S-wave (right-hand column of plots) distributions from Della Mora et al.
(2011).

2006). But we have to state that more work is still needed to ascertain the full robustness of
the features observed in our 3-D EM images.



Chapter 6

Conclusions and outlook for future
studies

6.1 Conclusions

A novel 3-D inversion tool for global electromagnetic studies in the frequency domain has
been developed and verified with synthetic data. The techique is based on the analysis of
local C-responses and exploits a limited-memory quasi-Newton optimization method. As
with most other types of optimization methods, this method requires multiple calculations of
the gradient of the data misfit with respect to model parameters. We implemented the adjoint
method to allow efficient calculation of the gradient. In support of the gradient calculation
the formulas for “magnetic-to-electric” Green’s tensor (fundamental solution of Maxwell’s
equation in the Earth’s models with radially symmetric conductivity distribution, excited by
arbitrarily oriented magnetic dipoles) have been derived and tested.

It is known that the efficiency of 3-D inversions depends critically on the ability to execute
the forward problem promptly. Since our forward solver is based on an integral equation
formulation, we take the advantage of this approach and conduct the most time-consuming
part of the simulations – calculation of the tensor Green’s functions – only once, prior to the
inversion. Model experiments demonstrated that separating the calculation of Green’s tensors
accelerates the inverse problem solution by more than one order of magnitude.

Further improvement in computational time stems from the parallelization of the forward
solver. Since forward calculations are independent with respect to frequencies, they are per-
formed at different frequencies in parallel on N f processors, where N f is the number of ana-
lyzed periods.

The developed 3-D inverse solution has been applied to real ground-based geomagnetic
data. The goal was to obtain three-dimensional images of the electrical conductivity distri-
bution in the mantle at depths between 400 and 1600 km. As a first step we collected and
analyzed very long time series (up to 51 years; 1957-2007) of hourly means of three com-
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ponents of the geomagnetic field from 281 geomagnetic observatories. Special attention was
given to data processing in order to obtain unbiased C-responses with trustworthy estimates
of experimental errors in the period range from 2.9 to 104.2 days.

After careful inspection of the obtained C-responses we chose the data from 119 obser-
vatories for the further analysis. Squared coherency was used as a main quality indicator
to detect (and then to exclude from consideration) observatories with large noise-to-signal
ratio. During this analysis we found that – along with the C-responses from high-latitude
observatories (geomagnetic latitudes higher than 58◦) – the C-responses from all low-latitude
observatories (geomagnetic latitudes below 11◦) also have very low squared coherencies, and
thus cannot be used for global induction studies.

We found that the C-responses from the selected 119 mid-latitude observatories show a
huge variability both in real and imaginary parts, and we investigated to what extent the ocean
effect can explain such a scatter. By performing the systematic model calculations we con-
clude that: (a) the variability due to the ocean effect is substantial, especially at shorter periods,
and it is seen for periods up to 40 days or so; (b) the imaginary part of the C-responses is to a
larger extent (compared with the real part) influenced by the oceans; (c) two types of anoma-
lous C-response behaviour associated with the ocean effect can be distinguished. The first
type is characterized by substantial increase in both real and imaginary parts towards shorter
periods. In addition, at small periods (of our period range) the imaginary part becomes posi-
tive. Such behavior of the C-responses is not compatible with any 1-D conductivity structure,
which always have a negative imaginary part (for adopted eiωt time dependence convention),
and a descending real part with decreasing period. Three end-member observatories, show-
ing maximum ocean effect of this type, are KOU (Kourou, French Guiana), VSS (Vassouras,
Brasil), and HER (Hermanus, South Africa). The second type of anomalous behaviour is ap-
parent as an excessive (compared with a 1-D case) decrease in both real and imaginary parts
of the C-responses with decreasing period. Three observatories, showing maximum ocean
effect of this type, are the Japanese observatories SSO (Simosato), HTY (Hatizyo), and KNY
(Kanoya); (d) in order to accurately reproduce the ocean effect a lateral resolution of 1◦ × 1◦

of the conductance distribution is needed. Note that from the point of view of practicality
such a resolution in the case of 3-D inversion still requires prohibitively high computational
loads, and the applied correction scheme to account for the ocean effect is only approximate;
(e) the ocean effect alone does not explain the whole variability of the observed C-responses
in particular the variability observed in the real part.

We also found that part of the variability in the real part of the C-responses is due to the
auroral effect, which manifests itself as an excessive descrease of the real part at shorter peri-
ods. In addition to the observation of Fujii and Schultz (2002) that the influence of the auroral
current system can be traced in C-responses to a geomagnetic latitude of 40◦ globally, we also
found that the auroral effect in the C-responses reveals strong longitudinal variability, at least
in the Northern hemisphere. Moreover, as the auroral effect is seen as the decay of the real
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part of the C-responses towards higher latitudes, we clearly showed that the latitudinal pattern
of the decay varies with the region and that this pattern persists in the whole period range. Eu-
rope appears to be the region with smallest degree of distortion compared with North America
and northern Asia. It is interesting that the imaginary part of the C-responses is practically un-
affected by the auroral source, thus confirming the fact that in the considered period range the
EM induction from the auroral electrojet is negligible (due to the small scale spatial pattern of
this source). Assuming the independence of the auroral signals on the Earth’s conductivity (no
EM induction), and longitudinal variability of the auroral effect, we developed an approximate
scheme to correct the experimental C-responses for this effect.

With these developments and findings in mind we performed a number of regularized 3-D
inversions of our experimental data in order to detect robust features in the recovered 3-D
conductivity images. The proper choice of the regularization parameter (for each inversion
run) was based on the standard L-curve formalism.

Although differing in details, all our 3-D inversions reveal a substantial level of lateral
heterogeneity in the mantle at the depths between 410 and 1600 km. Conductivity values
vary laterally by more than one order of magnitude between resistive and conductive regions.
The maximum lateral variations of the conductivity have been detected in the layer at depths
between 670 and 900 km. In the layers below (between 900 and 1600 km) the overall tendency
is that lateral conductivity variations diminish in magnitude with depth. As expected, polar,
equatorial and oceanic regions, where we lack data, are poorly resolved. It is believed that
the forthcoming Swarm geomagnetic satellite mission will improve the situation providing a
much better spatial data coverage.

By comparing our global 3-D results with the results of independent global and semi-
global 3-D conductivity studies, we conclude that 3-D conductivity mantle models produced
so far are preliminary as different groups obtain disparate results, thus complicating quan-
titative comparison with seismic tomography or/and geodynamic models. The present dis-
crepancy is most probably due to: (a) strong non-uniqueness of the inverse problem arising
from spatial sparsity and irregularity of data distribution, variable data quality and limited
period range; (b) different data sets; (c) different inversion settings, including forward prob-
lem gridding, model parameterization, form of regularization term employed, and choice of
regularisation parameter; (d) inconsistency of external field models, for example improper ac-
count/correction for the auroral effect and/or ignoring asymmetric part of the ring current; (e)
possible inaccuracy in forward and inverse solutions.

In spite of this, our 3-D study and most other 3-D studies reveal at least two robust fea-
tures: a) reduced conductivity beneath southern Europe and northern Africa and b) enhanced
conductivity in north eastern China.
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6.2 Outlook for future studies

6.2.1 Extending the data for global 3-D EM inversions

While the data from geomagnetic satellite missions are believed to be very important, we think
that the major input for 3-D conductivity studies will still come from ground-based data. There
are still large gaps in the ground-based network, especially in oceanic areas and in the South-
ern hemisphere. In the last decade a number of geomagnetic observatory projects have been
initiated to improve the coverage by long-term measurements in those regions. From 2007
GFZ (Helmholtz-Zentrum Potsdam) operates an observatory in the South Atlantic Ocean on
St. Helena Island (Korte et al., 2009). In 2008, a new observatory on Easter Island (South
Pacific Ocean) was installed by Institut de Physique du Globe de Paris (France) and Direc-
cion Meteorologica de Chile (Chulliat et al., 2009). Since 2009 the National Space Institute
at the Technical University of Denmark runs an observatory on Tristan da Cuhna Island also
located in the South Atlantic Ocean (Matzka et al., 2009). The Institute of Geophysics, ETH
Zurich (Switzerland) is on the way to install and run two geomagnetic observatories in the
Indian Ocean – on Gan island, Maldives (in cooperation with Maldives Meteorological Ser-
vice and National Geophysical Research Institute, Hyderabad, India), and on Cocos Island (in
cooperation with Geoscience Australia and the Ionospheric Prediction Service).

A few long-term geomagnetic stations have been installed by Ocean Hemisphere Research
Center (OHRC) of ERI (Shimizu and Utada, 1999) in the Pacific Ocean. Five stations at
Majuro (Marshall Islands), Pohnpei (Micronesia), Muntinlupa (Philippines), Atele (Tonga),
Marcus Island (Japan) are running and OHRC plans to continue observations at these sites.

The irregular distribution of the land/island geomagnetic observatories is improved by ex-
tending the geomagnetic observatories to the seafloor. Toh et al. (2004, 2006, 2010) reported
running of two long-term seafloor stations. One station operates in the North West Pacific
since 2001 and another – operates in the West Philippine Basin since 2006. Their seafloor
data consist of the geomagnetic vector and scalar field measurements along with attitude mea-
surements for both orientation and tilt. In addition, horizontal components of the electric field
are measured, thus allowing for long period MT sounding.

Note that long period electric field measurements more often complement magnetic field
observations. During 2001-2003 MT data have been collected at positions of 11 geomagnetic
observatories situated within a few 100 km along the South West margin of the East Euro-
pean Craton (Semenov et al., 2008). Long period MT measurements have been conducted at
7 backbone MT stations across North America in the frame of Earthscope project (Schultz,
2010). These data are very relevant for global induction studies since the use of electric fields
allows us to obtain C-responses at periods shorter than a few days and thus to provide informa-
tion on conductivities at depths shallower than 400 km. Another merit of the MT technique is
that it works in regions where the GDS method fails. For example, MT measurements might
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be helpful in the vicinity of the geomagnetic equator where Br of magnetospheric origin is
close to zero thus preventing the use of the GDS method. High latitudes are also favorable
for MT experiments since in these regions the GDS method also fails to work due to the fact
that here the source structure is completely different from the P0

1 structure (that is assumed
by default in the GDS method). Finally, use of the electric field allows us to probe relatively
resistive structures in the mantle that is not readily possible using magnetic observations only.

In addition to local MT observations, variations of the voltage differences measured with
the use of the retired transoceanic submarine cables provide unique information in oceanic re-
gions (Lizarralde et al., 1995; Utada et al., 2003, among others). Note that there exist already
first successful examples of 3-D semi-global joint analysis of the data from geomagnetic ob-
servatories and trans-Pacific cables (Koyama et al., 2006; Shimizu et al., 2010b). In summary,
we believe that complementing the existing data with the above-mentioned dat should improve
the reliability and resolution of the global 3-D images of mantle electrical conductivity.

Lastly, the analysis of forthcoming satellite data from Swarm or joint analysis of satellite
and ground-based data should enhance the capability to detect lateral conductivity variations,
especially in the vast oceanic regions where the ground-based data are still rare. But the 3-D
EM inversion of satellite data is a challenging problem since satellite data analysis is more
difficult compared to observatory data, bacause satellites move typically with a speed of 7-8
km/s and thus measure a mixture of temporal and spatial changes of the magnetic field. A
review of the approaches for induction studies from space is given by Kuvshinov (2011).

6.2.2 Proper account/correction for the auroral effect

Our attempt to correct for the auroral effect in 3-D inversion of ground-based C-responses
cannot be said to be fully successful. Artefacts are still present in global 3-D conductivity im-
ages at polar latitudes. A future goal, albeit challenging, would be to understand the physical
processes occurring in the auroral regions in order to obtain quantitative models of the polar
electrojets and incorporate these into global 3-D EM inversion schemes.

6.2.3 Further developments of our global 3-D EM inversion solution

Our experience with the depelopment of global 3-D EM inversion and its implementation to
real data allows us to formulate some possible directions for how this can be improved and
extended. These directions are as follows.

1. The forward problem gridding of 3◦ × 3◦ used during 3-D inversion is most probably
not enough to account accurately for the ocean effect. Our attempt to run inversion on a dense
grid of 1◦×1◦ were computationally prohibitive. We also tried to correct the data for the ocean
effect using dense gridding, but found that such correction only slightly influenced the results.
Modification of the forward modeling scheme to allow for different lateral gridding in surface
(denser grid) and deeper (coarser grid) layers could resolve this problem.
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2. In existing inversion solution the volume cells, where the conductivities are searched
for, are assumed to cover uniformly (in lateral directions) the inverse volume. More flexible
options of the inverse volume parameterization seems to be more appropriate for ground-
based data. For example discretization of the inverse volume can be made denser beneath the
regions with better data coverage and sparser in the regions with no data. However, this will
require development of numerical algorithm(s) to perform it in the most consistent way.Such
flexibility in the model parameterization will also require elaboration of new regularization
schemes which will account for this spatially nonuniform parameterization.

3. If long period MT responses and the voltage difference will be included in the inter-
pretation one has to derive the formulas for the adjoint sources, which are needed to calculate
efficiently data misfit gradient. This can be done by applying a general formalism developed
by Pankratov and Kuvshinov (2010).

4. In all existing 3-D EM solutions that are based on a deterministic approaches, the
resolution estimates are generally deficient. Part of the problem is the inherently non-linear
relation between the Earth’s conductivity structure and the responses that leads to misfit func-
tionals with multiple local minima. In the vicinity of the global minimum the Hessian matrix
(matrix of second derivatives of the misfit functional with respect to Earth model parameters)
can be used to infer the resolution of and the trade-offs between model parameters. Recently,
Fichtner and Trampert (2011) presented an extension of the adjoint method that allows them
to compute the second derivatives of seismic data functionals with respect to Earth model
parameters. Perhaps this approach can be adopted for EM studies, and thus can serve as a
prelude to the development of quantitative resolution analyses.

6.2.4 Implementation of the alternative approach to global 3-D EM in-
version

Alternatively a probabilistic approach, which uses a stochastic-based sampling algorithm
(Mosegaard, 1998) can be applied to invert our data set in a 3-D frame. The advantage of
this approach lies in its inherent ability to fully incorporate nonlinearities into the final solu-
tion, obviating any form of linearization of the original problem that is typical of deterministic
approaches. This means that probabilistic approaches are capable of finding the global min-
imum, and allows us to obtain reliable resolution estimates. The main disadvantage of the
method are huge computational resources required, since it involves thousands (at least) calls
of the forward problem. To date this approach has been applied only for 1-D (or quasi 1-D)
interpretation of global induction data (Khan et al., 2006, 2011). Keeping in mind our de-
velopments in solving the forward problem (separating calculations of Green’s tensors, paral-
lelization of the solution with respect to the frequencies) – along with the progress in computer
hardware – we believe that implementation of a probabalistic approach for 3-D inversion of
the data as implemented here will become feasible in the near future.



Appendix A

Mathematical basics

A.1 Analytic functions

The material presented below will be used in Appendix A.2. A function f (x) is complex
analytic on an open set A ⊂ C, complex plane, if for any x0 ∈ A one can write

f (x) =

∞∑
n=0

an(x − x0)n. (A.1)

An analytic function is an infinitely differentiable function such that the Taylor series at any
point x0 ∈ A

T (x) =

∞∑
n=0

f (n)(x0)
n!

(x − x0)n, (A.2)

converges to f (x) in a neighborhood of x0.
Properties of analytic functions are as follows

• If f (z) and g(z) are analytic on G ⊂ C then f (z)±g(z), f (z) ·g(z) and f (g(z)) are analytic
in G. If g(z) is also not equal to 0 on G, then f (z)

g(z) is analytic;

• If f (z) is analytic on G ⊂ C, then f (z) is infinitely differentiable. The converse is not
true.

There are four kinds of singularity for analytic functions

• Isolated singularities. This kind of singularity appear when function f (x) is not defined
at some point a ∈ G, but defined everywhere else on G \ {a}

– If there exists such an analytic function g(x) defined on G, that f (x) = g(x) for all
x ∈ G \ {a}, the point a is called a removable singularity;

– If there exists such an analytic function g(x), that f (x) =
g(x)

(x−a)n for all x ∈ G \ {a},
the point a is called a pole of order n;
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– If the isolated singularity is neither removable, nor a pole, it is called an essential

point;

• Branch points appear as a result of multi-valued functions, like
√

x or log(x), defined in
a certain domain in such a way, that function can be made single-valued for this domain.

A.2 Properties of C-responses as analytic functions

Weidelt (1972) discussed in detail properties of the response function, as an analytic function.
Here we sum up the most important and descriptive of them. For simplicity, only a flat Earth
and uniform inducing magnetic field are considered here. Conductivity is assumed to vary
with depth only.

Neglecting the displacement current and assuming free space magnetic permeability, con-
sidering the time factor to be eiωt, horizontal magnetic and electric field (in x and y directions
respectively) are interconnected by

∂Hx(z, ω)
∂z

= σ(z)Ey(z, ω), (A.3a)

∂Ey(z, ω)
∂z

= iωµ0Hx(z, ω), (A.3b)

which leads to
∂2Ey(z, ω)

∂z2 = iωµ0σ(z)Ey(z, ω). (A.4)

In this case the response function C(ω) is defined as

C(ω) = −
Ey(0, ω)
E′y(0, ω)

= −
Ey(0, ω)

iωµ0Hx(0, ω)
, (A.5)

where E′y(0, ω) =
∂Ey(z,ω)

∂z

∣∣∣∣
z=0

.

Let zm be the maximum depth to which the electromagnetic field can penetrate,

zm =

 ∞, if there is no perfect conductor

the depth of the perfect conductor
(A.6)

a) Analytic properties in the complex frequency plane

The response function C(ω) is zero-free and analytic in the whole ω-plane except on the
positive imaginary axis, where it has either infinite series of interlacing simple poles and zeros,
or a finite number of poles and zeros and two branch points (one at ω = +i∞), according
whether integral

lim
z→zm

z∫
0

√
σ(r)dr, (A.7)
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converges or not. A possible perfect conductor at z = zm is not to be included in eq. (A.7).

The proof follows from general theorems on second order differential equations (Titchmarsh,
1962; Weidelt, 1972).

Let w1(z, ω) and w2(z, ω) be two solutions of eq. (A.4) with the initial conditions

w1(0, ω) = 1, w′1(0, ω) = 0, w2(0, ω) = 0, w′2(0, ω) = 1. (A.8)

Their Wronskian
w1(z)w′2(z) − w2(z)w′1(z) = 1, (A.9)

is not zero everywhere, those solutions are linearly independent for all z, and the solution for
electric field Ey from eq. (A.4) is a linear combination of them. From eqs (A.3) and (A.8) we
can withdraw

Ey(z, ω) =Ey(0, ω)w1(z, ω) + iωµ0Hx(0, ω)w2(z, ω),

m

Ey(z, ω)
Ey(0, ω)

=w1(z, ω) −
1

C(ω)
w2(z, ω).

(A.10)

Thus for any conductivity profile

C(ω) = lim
z→zm

w2(z, ω)
w1(z, ω)

. (A.11)

All singularities of C(ω) are either poles or zeroes (zeroes of w1 and w2 respectively), and lie
on the positive imaginary ω-axis (Weidelt, 1972).

b) Symmetry relation for C(ω)
C(−ω∗) = C∗(ω). (A.12)

It follows from eq. (A.11) and the fact, that w∗1(2)(z, ω) and w1(2)(z,−ω∗) satisfy the same
differential equations and initial conditions.

c) Limiting values for large and small frequencies

For large frequencies we have

C(ω) = k−1 −
1
4
σ′(0)
σ(0)

k−2 +©(k−3), ω→ ∞, k2 = iωµ0σ(0), (A.13)

(Kamke, 1959; Siebert, 1964), and for small frequencies

lim
ω→0

C(ω) = zm, (A.14)

which follows from eq. (A.11).

d) Dispersion relations
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Let us for real frequencies define

C(ω) = g(ω) − ih(ω). (A.15)

Then for real part g(ω) and imaginary part h(ω) we can write

g(ω) =
1
π

+∞?
−∞

h(x)dx
x − ω

=
2
π

+∞?
0

xh(x)dx
x2 − ω2 , (A.16a)

h(ω) = −
1
π

+∞?
−∞

g(x)dx
x − ω

= −
2
π

+∞?
0

ωg(x)dx
x2 − ω2 , (A.16b)

where
>

denotes the Cauchy principal value
>

= lim
ε→0

(
ω−ε∫
−∞

) +
+∞∫
ω+ε

). For details we again refer to

(Weidelt, 1972).

e) Inequalities

Let ω > 0 and define an operator D by

D f = ω
d f
dω

=
d f

d lnω
= −

d f
d ln T

, (A.17)

where T = 2π
ω

is a period. Recalling the definition (A.15) following inequalities apply

g ≥ 0, h ≥ 0, (A.18a)

Dg ≤ 0, (A.18b)

0 ≤ −D|C| ≤ |C|, (A.18c)

|DC| ≤ h, |C + DC| ≤ g, (A.18d)

|D2C| ≤ h, |C + 2DC + D2C| ≤ g. (A.18e)

f) Physical meaning of the real part of C(ω)

Let j(z, ω) = σ(z)Ey(z, ω) be the density of the induced currents. Then from eq. (A.3),
integrating by parts we can write

zm∫
0

j(z, ω)dz = Hx(0, ω),

zm∫
0

z j(z, ω)dz = −
1
ωµ0

Ey(0, ω). (A.19)

Hence applying eq. (A.5) we get

g(ω) =

zm∫
0

zRe{ j(z, ω)}dz

zm∫
0

Re{ j(z, ω)}dz
. (A.20)
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Thus, g(ω) can be interpreted as the mean depth of induced current propagation for a certain
frequency. Recalling eq. (A.18b), g′(ω) ≤ 0 shows that the mean depth of induced current
system increases if the frequency is diminished, and limiting values are g(∞) = 0 and g(0) =

zm.

A.3 Spherical harmonics

A.3.1 Laplace’s equation

Spherical harmonics come from solution of Laplaces’s equation ∇2V = 0 in spherical polar
coordinates. In this coordinate system Laplace’s equation has a form

1
r
∂2(rV)
∂r2 +

1
r2

1
sinϑ

∂

∂ϑ

(
sinϑ

∂V
∂ϑ

)
+

1
r2

1
sin2 ϑ

∂2V
∂ϕ2 = 0. (A.21)

If we separate the solution V(r, ϑ, ϕ) = R(r)Θ(ϑ)Φ(ϕ), we can find that

R(r) = rn or r−(n+1), (A.22a)

Θ(ϑ) = Pm
n (cosϑ), (A.22b)

Φ(ϕ) = sin(mϕ) or cos(mϕ), (A.22c)

where n and m are integers with m ≤ n. Pm
n (x) is an associated Legendre function, being a

solution of

(1 − x2)
d2Pm

n

dx2 − 2x
dPm

n

dx
+

{
n(n + 1) −

m2

1 − x2

}
Pm

n = 0, (A.23)

where x = cosϑ, n is called the degree and m – the order.

A.3.2 Associated Legendre functions

The Legendre polynomials satisfy eq. (A.23) with m = 0. They can be written as (e.g.
Abramowitz and Stegun, 1984)

Pn(x) =
1

2nn!
dn(x2 − 1)n

dxn . (A.24)

The associated Legendre functions are related by

Pm
n (x) = (1 − x2)

m
2

dmPn(x)
dxm , (A.25)
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and are orthogonal to each other:

π∫
0

Pm
n (cosϑ)Pm

k (cosϑ) sinϑdϑ =


2

2n+1
(n+m)!
(n−m)! n = k

0 n , k.
(A.26)

One can rewrite eq. (A.25) as

Pm
n (cosϑ) = sinm ϑ

dmPn(cosϑ)
d(cosϑ)m . (A.27)

From eq. (A.23) one can see, that Pn(−x) = (−1)nPn(x).

A.4 Helmholtz representation

In this Appendix we introduce Helmholtz representation (on a sphere) of a general vector
field; this representation is used in Chapters 2-3. Consider vector field F. Then the equation

F = Uer + ∇⊥V + er × ∇⊥W, (A.28)

defines the Helmholtz representation of F in terms of a radial vector field Uer and horizontal
vector field ∇⊥V +er×∇⊥W. This representation can be shown to be unique (cf. Backus et al.,
1996) if for any value r within a shell, the average values of V and W over the sphere of radius
r (denoted as 〈〉S (r)) is such that

〈V〉S (r) = 〈W〉S (r) = 0. (A.29)

Each of scalar function U, V , W can be expanded in terms of spherical harmonics in the form

U(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

Umn(r)S m
n (θ, ϕ), (A.30)

where S m
n (ϑ, ϕ) = Pm

n (cosϑ)eimϕ, Pm
n are the associated Legendre polynomials of degree n

(n = 0, 1, . . . ) and of order m (m = 0,±1,±2, . . . ,±n). Note that for V and W the n = 0 term is
zero because of eq. (A.29). Substituting eq. (A.30) and similar expansions for V and W into
eq. (A.28) we obtain

F(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

Umn(r)S m
n (θ, ϕ)er+

+

∞∑
n=1

n∑
m=−n

Vmn(r)∇⊥S m
n (θ, ϕ)+

+

∞∑
n=1

n∑
m=−n

Wmn(r)er × ∇⊥S m
n (θ, ϕ).

(A.31)
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Note that if F stands for the magnetic field or electric current then the terms for n = 0, in
corresponding radial components, are also zero, since the magnetic field and electric current
are solenoidal vector fields (cf. Backus et al., 1996).

A.5 Scalar Green’s functions

A.5.1 Definition and properties

Definition. A Green’s function, G(r, r′), of a linear differential operator L = L(r) acting on
distribution over a subset of the Euclidean space Rn, at points r′, is any solution of

LG(r, r′) = δ(r − r′), (A.32)

where δ is the Dirac’s delta function. If the kernel of L is nontrivial, then the Green’s function
is not unique (Eyges, 1972). However, in practice, some combination of symmetry, boundary
conditions and/or other externally imposed criteria will give a unique Green’s function.

This property of a Green’s function can be exploited to solve differential equations of the
form

Lu(r) = f (r). (A.33)

So, if such a function G can be found for the operator L, then if we multiply the eq. (A.32) by
f (r′), and then integrate in the r′ variable, we obtain∫

LG(r, r′) f (r′)dr′ =

∫
δ(r − r′) f (r′)dr′ = f (r) = Lu(r). (A.34)

Because the operator L = L(r) is linear and acts only on the variable r

Lu(r) = L
( ∫

G(r, r′) f (r′)dr′
)
⇔ u(r) =

∫
G(r, r′) f (r′)dr′. (A.35)

In our case we determine Green’s function, G(r, r′) ≡ G(n, r, r′), as a continuous (with respect
to r) solution of the following equation

∂r

( 1
p(r)

∂rG(n, r, r′)
)
− q(r)G(n, r, r′) = δ(r − r′), (A.36)

where p(r) and q(r) (assumed to be continuous) are defined in Section 2.4. We also require
that

G(n, r, r′)→ 0

 r → ∞

r → 0
(A.37)

The two properties arise from our definition of the Green’s function.
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1. The first one is [ 1
p(r)

∂rG(n, r, r′)
]r=r′+0

r=r′−0
= 1. (A.38)

This property comes from continuity of the Green’s function. Indeed, integrating eq. (A.36)
from r′ − 4 to r′ + 4

r′+4∫
r′−4

∂r

( 1
p(r)

∂rG(n, r, r′)
)
dr =

r′+4∫
r′−4

q(r)G(n, r, r′)dr +

r′+4∫
r′−4

δ(r − r′)dr, (A.39)

and tending 4 to zero we obtain the desired property. Here we used that q(r)G(n, r, r′) is
continuous with respect to r.

2. The second property reads

G(n, r, r′) = G(n, r′, r). (A.40)

Indeed, let us write

∂r

( 1
p(r)

∂rG(n, r, r′)
)

= q(r)G(n, r, r′) + δ(r − r′) (A.41)

and
∂r

( 1
p(r)

∂rG(n, r, r′′)
)

= q(r)G(n, r, r′′) + δ(r − r′′). (A.42)

Multiplying the first one by G(n, r, r′′) and the second one by G(n, r, r′), subtracting then one
from another, and integrating over r we have

∞∫
0

∂r

( 1
p(r)

∂rG(n, r, r′)
)
G(n, r, r′′)dr −

∞∫
0

∂r

( 1
p(r)

∂rG(n, r, r′′)
)
G(n, r, r′)dr =

=

∞∫
0

G(n, r, r′′)δ(r − r′)dr −

∞∫
0

G(n, r, r′)δ(r − r′′)dr =

= G(n, r′, r′′) −G(n, r′′, r′)

. (A.43)

The left-hand part after integrating by parts leads to

1
p(r)

G(n, r, r′′)∂rG(n, r, r′)
∣∣∣∣∞
0
−

1
p(r)

G(n, r, r′)∂rG(n, r, r′′)
∣∣∣∣∞
0

= 0, (A.44)

because of the boundary conditions (A.37). Thus we obtain the symmetry of Green’s function

G(n, r′, r′′) = G(n, r′′, r′). (A.45)
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A.5.2 Derivation of scalar Green’s functions

As was stated in previous section the scalar Green’s functions Gt(p)(n, r, r′) are solutions of the
equation

∂r

[ 1
pt(p)(r)

∂rGt(p)(n, r, r′)
]

= qt(p)(r)Gt(p)(n, r, r′) + δ(r − r′), (A.46)

with the imposed boundary conditions: Gt(p)(n, r, r′) → 0 when r → 0 and r → ∞. The coef-
ficients for the two modes (“t” and “p”) are defined in eq. (2.40) and eq. (2.41), respectively.
From eq. (A.38) we obtain the following matching condition

1
p(r′ + 0)

∂rG(n, r′ + 0, r′) =
1

p(r′ − 0)
∂rG(n, r′ − 0, r′) + 1. (A.47)

Here and later in this section we will omit superscripts “t” and “p” for the simplicity of pre-
sentation. By fixing r′ we write

G(n, r, r′) =

 νu(n, r), r > r′

νl(n, r), r < r′
, (A.48)

where functions νu(n, r) and νl(n, r) satisfy the equation

∂r

[ 1
p(r)

∂rν
l(u)(n, r)

]
= q(r)νl(u)(n, r), (A.49)

and where νu(n, r) → 0, when r → ∞, and νl(n, r) → 0, when r → 0. We introduce further
“lower”, Y l, and “upper”, Yu, admittances as follows

Y l(n, r) =
1

p(r)
∂rν

l(n, r)
νl(n, r)

, Yu(n, r) = −
1

p(r)
∂rν

u(n, r)
νu(n, r)

. (A.50)

Using eq. (A.50) we write

νl(n, r) = νl(n, r′) exp
[ r∫

r′

p(ξ)Y l(n, ξ)dξ
]
, νu(n, r) = νu(n, r′) exp

[
−

r∫
r′

p(ξ)Yu(n, ξ)dξ
]
.

(A.51)
Then substituting eq. (A.51) into eq. (A.48) and using eq. (A.47) we obtain

1
p(r′ + 0)

∂rν
u(n, r′ + 0) =

1
p(r′ − 0)

∂rν
l(n, r′ − 0) + 1. (A.52)

Noting the continuity of G(n, r, r′) with respect to r we use that

νu(n, r′ + 0) = νu(n, r′) = νl(n, r′) = νl(n, r′ − 0). (A.53)
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Then using eq. (A.50) we represent νu(n, r) and νl(n, r) as

νu(n, r′) = νl(n, r′) = −
1

Y l(n, r′) + Yu(n, r′)
. (A.54)

And finally from eqs (A.48), (A.51) - (A.54) we write the explicit form of scalar Green’s
function as

G(n, r, r′) = −
1

Y l(n, r′) + Yu(n, r′)
· exp

[ r∫
r′

p(n, ξ)α(n, ξ, r′)dξ
]
, (A.55)

where the spectral function α is defined as

α(n, r, r′) =

 −Yu(n, r), r > r′

Y l(n, r), r < r′
. (A.56)

A.5.3 Calculation of admittances

In order to calculate the admittances Y l,t(p)(n, r) and Yu,t(p)(n, r) we assume that the radially
symmetric reference section consists of N layers

{
rk+1 < r ≤ rk

}
k=1,2,...,N . We construct the set{

rk
}
k=1,2,...,N in such a way that it includes all levels r j, where we will calculate the admittances

and the Green’s scalar functions.We assume that within each layer the conductivity varies as

σo(r) = σk

(rk

r

)2
, rk+1 < r ≤ rk, (A.57)

where r1 = a, rN+1 = 0, σk is an appropriate constant. Distribution (A.57) (cf. Rokityansky
(1982); Fainberg et al. (1990)) is chosen to make recurrent calculations of Y l,t(p)(n, r) and
Yu,t(p)(n, r) for any n as accurate and stable as possible. Since N can be taken as large as
necessary, the distribution (A.57) allows for the approximation of any radially symmetric
conductivity distribution. Let us show, with an example of Y l,p(n, r), how these recurrences
are derived.

According to eq. (2.41) and using eq. (A.57), eq. (A.49) for νl,p within k-th layer is written
as

∂2

∂r2 ν
l,p(n, r) −

n(n + 1) − iωµ0σkr2
k

r2 νl,p(n, r) = 0. (A.58)

The solution of equation
∂2

∂r2 ν(r) =
C
r2 ν(r), (A.59)

where C is constant can generally be written in form

Arx1 + Brx2 , (A.60)

where A and B are constants and x1 and x2 are the roots of quadratic equation
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x(x − 1) = C ↔ x2 − x −C = 0, (A.61)

and therefore
ν(r) = Ar

1
2 +
√

1
4 +C + Br

1
2−
√

1
4 +C. (A.62)

The solution of eq. (A.58) has the form

νl,p(n, r) = Al,p
k

(rk+1

r

)b−k
+ Bl,p

k

( r
rk+1

)b+
k
, (A.63)

where

b−k = bk −
1
2
, b+

k = bk +
1
2
, bk =

{(
n +

1
2

)2
− iωµ0σkr2

k

} 1
2

. (A.64)

From eq. (A.63) we get

∂rν
l,p(n, r) =

−b−k Al,p
k

rk+1

(rk+1

r

)b−k +1
+

b+
k Bl,p

k

rk+1

( r
rk+1

)b+
k −1
. (A.65)

Substituting eq. (A.63) and eq. (A.65) into eq. (A.50), taking into account eq. (2.41), we
obtain

Y l,p(n, ω, r) =
σkr2

k

b+
k b−k

−
b−k Cl,p

k
rk+1

(
rk+1

r

)b−k +1
+

b+
k

rk+1

(
r

rk+1

)b+
k −1

Cl,p
k

(
rk+1

r

)b−k
+

(
r

rk+1

)b+
k

, (A.66)

where Cl,p
k =

Al,p
k

Bl,p
k

. By setting r = rk+1 in eq. (A.66) we obtain for Cl,p
k

Cl,p
k =

σkr2
k

b−k rk+1
− Y l,p

k+1

σkr2
k

b+
k rk+1

+ Y l,p
k+1

, (A.67)

where Y l,p
k+1 ≡ Y l,p(n, ω, rk+1). Substituting eq. (A.67) into eq. (A.66) we finally have the

recurrence

Y l,p
k ≡ Y l,p(n, ω, rk) = gk

Y l,p
k+1(bk − 0.5τk) − glηkτk

gkηk(bk + 0.5τk) − b+
k b−k τkY

p,l
k+1

, k = N − 1,N − 2, ..., 1, (A.68)

where
ηk =

rk

rk+1
, τk =

1 − ζk

1 + ζk
, ζk = η2bk

k , gk = σkrk, (A.69)

and
Y l,p

N =
σNrN

b−N
. (A.70)

Deriving eq. (A.68) we used continuity of admittance at the boundaries of the spherical layers.
In addition, while deriving eq. (A.70) we used the fact that Ap,l

N = 0, what follows from
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boundary condition νl,p → 0, when r → 0. In a similar way we derive the recurrences for Yu,p,
Y l,t, Yu,t

Y l,t
k =

1
qk

qk+1Y l,t
k+1(bk − 0.5τk) + b+

k b−k τk

(bk + 0.5τk) + qk+1τkY l,t
k+1

, k = N − 1,N − 2, ..., 1, Y l,t
N = −

b+
N

qN
, (A.71)

Yu,t
k+1 =

1
qk+1

qkYu,t
k (bk + 0.5τk) + b+

k b−k τk

(bk − 0.5τk) + qkτkYu,t
k

, k = 1, 2, ...,N − 1, Yu,t
1 = −

b−1
q1
, (A.72)

Yu,p
k+1 = gkηk

Yu,p
k (bk + 0.5τk) − gkτk

gk(bk − 0.5τk) − b+
k b−k τkY

u,p
k

, k = 1, 2, ...,N − 1, Yu,p
1 =

σ1r1

b+
1
, (A.73)

where
qk = iωµ0rk. (A.74)

A.5.4 Calculation of scalar Green functions

Finally we show how to calculate Gt(p)(n, r, r′) when r , r′. Let us consider the calculation of
Gt(n, ri, r j) when ri ≤ r j. From eqs (A.55) and (A.56) it follows that Gt(n, ri, r j) can be written
as

Gt(n, ri, r j) = −
1

Y t,l
j + Y t,u

j

i∏
k= j

F t
k, ri ≤ r j, (A.75)

where F t
k is defined as

F t
k = exp

( rk∫
rk+1

iωµ0Y t,l(n, r)dr
)
, (A.76)

and Y t,l (in analogy with Y p,l) has the form

Y t,l(n, r) = −
1

iωµ0

−
b−k Ct,l

k
rk+1

(
rk+1

r

)b−k +1
+

b+
k

rk+1

(
r

rk+1

)b+
k −1

Ct,l
k

(
rk+1

r

)b−k
+

(
r

rk+1

)b+
k

. (A.77)

Substituting eq. (A.77) into eq. (A.76) we derive

rk∫
rk+1

iωµ0Y t,l(n, r)dr =
1

rk+1

rk∫
rk+1

b−k Ct,l
k − b+

k

(
r

rk+1

)2bk(
r

rk+1

)(
Ct,l

k +
(

r
rk+1

)2bk)dr =

=
1
bk

ζk∫
1

Ct,l
k b−k − b+

k γk

γk(Ct,l
k + γk)

dγk = ln
(

Ct,l
k + 1

Ct,l
k + γk

η
b−k
k

)
.

(A.78)



A. Mathematical basics 117

While integrating we used the change of variables, γk = η2bk , where η = r
rk+1

, and tabular
integrals

∫
dx

a+bx = 1
b ln(a + bx),

∫
dx

x(a+bx) = −1
a ln

(
a+bx

x

)
. Setting further in eq. (A.77) r = rk+1

we obtain for Ct,l
k

Ct,l
k =

b+
k + iωµ0Y t,l

k+1

b−k − iωµ0Y t,l
k+1

. (A.79)

Substituting eq. (A.79) into eq. (A.78) and then eq. (A.78) into eq. (A.76) we obtain for F t
k

F t
k =

1
1 + ζk

2bkηk
b−k

(bk + 0.5τk) + qkτkY l,t
k+1

. (A.80)

In a similar way we obtain the expressions for another mode

Gp(n, ri, r j) = −
1

Y p,l
j + Y p,u

j

i∏
k= j

F p
k , ri ≤ r j, (A.81)

where

F p
k =

1
1 + ζk

2gkbkηk
b−k

gkηk(bk + 0.5τk) − b+
k b−k τkY

l,p
k+1

. (A.82)

Due to symmetry of scalar Green’s functions, Gt(p)(n, r, r′) = Gt(p)(n, r′, r) (see eq. (A.40)),
one derives the results for ri > r j.



Appendix B

Representation of EM field in 1-D
conductivity model via external
coefficients

B.1 Representation of Be via equivalent sheet current

The results presented below will be used in Appendix B.2. It is known that in the source-
free (and insulating) region, the magnetic field B can be represented via the scalar magnetic
potential V

B = µ0H = −∇V. (B.1)

Since magnetic field is solenoidal
∇ · B = 0, (B.2)

potential V satisfies Laplace′s equation

∆V = 0. (B.3)

The general solution of Laplace′s equation in spherical coordinates in this region is given by

V = a
∑
n,m

[
εm

n

( r
a

)n
+ ιmn

(a
r

)n+1]
S m

n (ϑ, ϕ), (B.4)

where εm
n ≡ ε

m
n (ω) and ιmn ≡ ι

m
n (ω) are the complex-valued expansion coefficients of inducing

(external) and induced (internal) parts of the potential. Using eqs (B.1) and (B.4) one can
write magnetic field, B, in the form

B = Be + Bi, (B.5)
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where
Be = −∇

{
a
∑
n,m

εm
n

( r
a

)n
S m

n (ϑ, ϕ)
}
, (B.6)

Bi = −∇
{
a
∑
n,m

ιmn
(a

r

)n+1
S m

n (ϑ, ϕ)
}
. (B.7)

Let us introduce a spherical, infinitely thin shell of radius b and assume that the shell is sur-
rounded by the insulator. We also assume that the current system flows in the shell, and
therefore is described by the sheet current density, Jext

τ . In the region above the shell r > b the
source is seen as internal, producing a magnetic field of the form of eq. (B.7). Below the shell
r < b the source is seen as external, producing a field with a magnetic potential of the form of
eq. (B.6). However, because B is solenoidal, one can obtain (using Gauss theorem) that the
radial component, Br, is continuous across the shell, and thus

Bi
r

∣∣∣
r=b

= Be
r

∣∣∣
r=b
. (B.8)

Substituting expressions for Be
r and Bi

r from eqs (B.6) and (B.7) into eq. (B.8) we find that
coefficients εm

n and ιmn are connected via relation

ιmn = −
n

n + 1

(b
a

)2n+1
εm

n . (B.9)

In contrast to the radial component of magnetic field which is continuous across the shell,
horizontal components have a jump across the shell

Jext
τ =

δ(r − b)
µ0

er × (B+
τ − B−τ ), (B.10)

which follows from Ampere′s law. Here

B+
τ = Bτ

∣∣∣∣
r→b+0

= Bi
τ

∣∣∣∣
r=b
, (B.11)

B−τ = Bτ

∣∣∣∣
r→b−0

= Be
τ

∣∣∣∣
r=b
. (B.12)

Substituting expressions for Be
τ and Bi

τ from eqs (B.11) and (B.12) into eq. (B.10), and using
eqs (B.6)-(B.7) and relation (B.9) we express Jext

τ via the external coefficients εm
n as

Jext
τ =

δ(r − b)
µ0

∑
n,m

2n + 1
n + 1

εm
n

(b
a

)n−1
er × ∇⊥S m

n (ϑ, ϕ). (B.13)

Thus, the currents in the form of eq. (B.13) flowing in a shell r = b ≥ a (embedded in
an insulator) produce exactly the external magnetic field Be below the shell in the region
a ≤ r < b.
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B.2 Final representation of EM fields

In Appendix B.1 we discussed a representation of our impressed (magnetospheric) source in
the form of a SHE of an equivalent sheet current, Jext

τ . Now we obtain the representation for
E0 and H0 (cf. eqs (2.10)-(2.9)) via Jext

τ (and thus via inducing coefficients εm
n ). Substituting

eq. (B.13) into eq. (2.60), then the resulting expression into eq. (2.56), by accounting eqs
(2.32b) and (2.33a), and rearranging operations of integration and summation, we write the
SHE for the horizontal electric field, E0

τ, in the following form

E0
τ(r, ϑ, ϕ) =

1
µ0

b
r

∑
n,m

2n + 1
n + 1

εm
n

(b
a

)n−1
Gt(n, r, b) er × ∇⊥S m

n (ϑ, ϕ). (B.14)

Since the sheet current is horizontal and, moreover, contains only one (“t”) mode, then

E0
r (r, ϑ, ϕ) = 0. (B.15)

In a similar way, using eqs (2.32a), (2.32b), (2.34a), (2.34b), (2.38), and (2.58) we write SHE
for the magnetic field, H0, as

H0
r (r, ϑ, ϕ) = −

1
iωµ0

b
µ0r2

∑
n,m

(2n + 1)nεm
n

(b
a

)n−1
Gt(n, r, b)S m

n (ϑ, ϕ), (B.16)

H0
τ(r, ϑ, ϕ) =

1
µ0

b
r

∑
n,m

2n + 1
n + 1

εm
n

(b
a

)n−1
αt(n, r, b)Gt(n, r, b)∇⊥S m

n (ϑ, ϕ). (B.17)

Let us obtain expressions for electric and magnetic field at the surface of the Earth. Assume
that Jext

τ flows just above the Earth’s surface, i.e. at b = a+. From eqs (A.55), (A.64), (A.71),
(A.72) and (A.74) we then have

Gt(n, a, a+) = −
iωµ0a

iωµ0aY l,t
1 − n

, (B.18)

and from eq. (A.56)
αt(n, a, a+) = Y l,t

1 . (B.19)

Using eqs (B.18) and (B.19) we finally derive expressions for the electric and magnetic fields
on the surface of the Earth

E0
τ(a, ϑ, ϕ) = −

1
µ0

∑
n,m

2n + 1
n + 1

εm
n

iωµ0a

iωµ0aY l,t
1 − n

er × ∇⊥S m
n (ϑ, ϕ), (B.20)

H0
r (a, ϑ, ϕ) =

1
µ0

∑
n,m

(2n + 1)nεm
n

1

iωµ0aY l,t
1 − n

S m
n (ϑ, ϕ), (B.21)
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H0
τ(a, ϑ, ϕ) = −

1
µ0

∑
n,m

2n + 1
n + 1

εm
n

iωµ0aY l,t
1

iωµ0aY l,t
1 − n

∇⊥S m
n (ϑ, ϕ). (B.22)

Note that the C-responses at the Earth’s surface, Cn(ω, a), are connected to
Y l,t

1 (n, ω) ≡ Y l,t(n, ω, a) as

Cn(ω, a) = −
1

iωµ0Y l,t
1 (n, ω)

. (B.23)

If we assume that ϑ and ϕ correspond to geomagnetic coordinate system then C1 gives the
response discussed in Section 3.1.

A final remark concerns the connection between Y l,t
1 (n, ω) and Qn(ω) which is defined as

Qn(ω) =
εm

n (ω)
ιmn (ω)

. (B.24)

Note, that in the case of a 1-D conductivity distribution this ratio is independent of m. With
the use of eq. (B.24) and eqs (B.5)-(B.7) the magnetic field at the surface of the Earth can be
written in an alternative manner as

H0
r (a, ϑ, ϕ) = −

1
µ0

∑
n,m

εm
n
(
n − (n + 1)Qn

)
S m

n (ϑ, ϕ), (B.25)

H0
τ(a, ϑ, ϕ) = −

1
µ0

∑
n,m

εm
n
(
1 + Qn

)
∇⊥S m

n (ϑ, ϕ). (B.26)

Equating eq. (B.25) with eq. (B.21) (or eq. (B.26) with eq. (B.22)) one can deduce that

Qn(ω) =
n

n + 1
iωµ0aY l,t

1 (n, ω) + n + 1

iωµ0aY l,t
1 (n, ω) − n

. (B.27)



Appendix C

Tests of different inversion settings

In this appendix we present the results of checkerboard test (Section C.1) and the results of
the inversions in which we varied the resolution of the inverse domain (Section C.2) and an a

priori model (Section C.3). The inverse problem settings, such as discretization of the forward
problem and inverse problem domains, the geometry of the source, conductivity distribution
in the background 1-D section, are explained in the beginning of Chapter 5.

C.1 Checkerboard test

The discussed period range of our study is 2.9 – 104.2 days, and in this period range the real
part of experimental C-responses shows on average the values between ∼ 600 and ∼ 1000 km.
Since the real part gives an estimate of the depth where EM field penetrates, we assume that
our third inhomogeneous layer located at depths between 660 km and 900 km should be best
resolved. To understand, how well we can resolve the conductivity in this layer with our spatial
distribution of the data, we perform the following “checkerboard” test. We prepared a set of
synthetic responses in the considered period range and at location of our 119 observatories.
The responses were calculated in a 3-D model which included surface oceanic layer of fixed
conductance, and checkerboard structure in the third layer with the lowest conductivity values
equal to the 1-D conductivity value divided by

√
10 and the highest value equal to that of 1-D

conductivity times
√

10. The size of single anomaly of checkerboard structure is 60◦ × 60◦.
During 3-D inversion we recover conductivity distributions in all 5 layers. The resolution
of the inverse domain was taken as 30◦ × 30◦. Fig. C.1 shows the results of inversion. As
expected the conductivities is better resolved in the regions with good data coverage. The
worst resolution is obviously detected in the polar and oceanic regions where there is no data
present.
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1200 km - 1600 km

log(σ)

Figure C.1: Checkerboard test. Left-hand plots are original (“true”) conductivity distributions
in five layers. Right-hand plots – results of 3-D inversion. See details in the text.

C.2 The results for different lateral resolutions of the in-
verse domain

The aim of this model study is to understand how robust are the results of our inversion with
respect to different lateral resolutions in the inversion domain. We run our 3-D inversion for
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Figure C.2: Unfiltered results for different lateral resolutions of the inverse domain. Left-
hand, middle and right-hand plots are the results for grids of lateral resolution 6◦ × 6◦, 9◦ × 9◦,
and 15◦ × 15◦, respectively.

the data set, which is not corrected for the ocean and auroral effects. This, in particular, means
that the surface (oceanic) layer of known conductance was included in the model. Figs C.2 and
C.3 present the unfiltered and filtered results, respectively, for three different lateral resolutions
of the inverse domain. From these figures it is seen that irrespectively of the resolution we
recover similar structures in all layers. Note that in Chapter 5, where we discussed our inverse
results, the lateral resolution of the inverse domain was adopted as 9◦ × 9◦.
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Figure C.3: Filtered results for different lateral resolutions of the inverse domain. The same
legend as in Fig. C.2.

C.3 The results for different a priori models

The goal of the last model study is to understand how robust are the results of our inversion
with respect to different a priori models. We run our 3-D inversion for the same data set
(not corrected for the ocean and auroral effects). Fig. C.4 shows the filtered results for three
different a priori models. From this figure one can see that, again, irrespectively of an a priori

model we are able, more or less, to detect common anomalous features in all layers. We notice
that in regions that are far away from observatories, the conductivity tends to be close to the
predifined a priori value.
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Figure C.4: Filtered results for different a priori models. Left-hand plots are the inverse
results when the local 1-D profile derived from analysis of Hermanus data was taken as a
priori model. Middle plots are the results when global profile from (Kuvshinov and Olsen,
2006) was taken as a priori model. Right-hand plots correspond to the case when inversion
was performed without a priori model.



Appendix D

Mineral physics studies

It was shown during seismological studies that the Earth’s interior has conditions of pressure
up to 360 GPa and temperatures up to thousands of degrees Kelvin (K). To estimate conductiv-
ity of the minerals under such circumstances high-pressure and high-temperature experiments
on hypothetical Earth’s forming materials have been carried out, to find out what structures
and properties they have under such extreme conditions (Yoshino, 2009). In the following
frame we describe the chemical composition of the major mineral in the mantle.

Mineral composition

Pyroxene – mineral with the formula XY(Si,Al)2O6. X represents Ca, Na or Fe2+ and
rarely Zn, Mg and Li. Y represents ions of smaller size - Cr, Al, Fe3+, Mg, Sc, Ti, V or
even Fe2+.

Garnet – nesosilicate having the general formula X3Y2(Si,O4)3. X is usually occupied by
divalent cations (Ca2+, Mg2+, Fe2+) and Y by trivalent cations (Al3+, Fe3+, Cr3+).

Majorite garnet – garnet with composition Mg3Y2(Si,O4)3, where Y is Fe, Al or Si.

Olivine – magnesium iron silicate with the formula X2SiO4, where X is Mg or Fe.

Wadsleyite and Ringwoodite – high-pressure transformations from olivine with different
structure of Mg or Fe elements.

Ferro-periclase or Magnesiowüstite – a magnesium/iron oxide XO, where X is Mg or Fe.

Silicate perovskite – mineral with formula XSiO3, where X is Mg or Fe.

Silicate post-perovskite – a high pressure phase of perovskite MgSiO3.

Although many different pressure devices have been designed, usually the solid pres-
sure media is exploited to generate high pressures corresponding to the mantle conditions.
Three types of devices are widely used in the scientific community: piston-cylinder appara-
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Figure D.1: Mineral proportions and phase transition in the Earth’s mantle. Shaded areas
indicate the mantle transition zone between 410 and 660 km discontinuities. PX-Pyroxene,
OPX - ortopyroxene, CPX - clinopyroxene, GRT - garnet, MJ - majorite garnet, OL - olivine,
WD - wadsleyite, RW - ringwoodite, FP - ferro-periclase, PV - silicate perovskite, PPV -
silicate post-perovskite, Ca − PV Ca-perovskite. After Yoshino (2009).

tus, Kawai-type multi-anvil press, and diamond anvil cell (DAC). Each of them has different
pressure and temperature generating possibilities. The advantage of piston-cylinder apparatus
is characterized by relatively large sample space (< 500 mm3) and small thermal gradient. But
pressure generation is limited only up to 4 GPa. The Kawai-type multi-anvil press has some
remarkable advantages: accurate temperature control, large sample volume. Disadvantage of
this press is also a limit of pressure generation. Recently an accessible pressure range for
electrical conductivity measurement in such devices has been extended to 35 GPa by adopting
sintered diamond (SD) anvils (Katsura et al., 2007). The DAC is one of the simpliest high-
pressure apparatus composed of the opposed anvils of single crystal diamond with flat faces
at the top. It can covers the mantle pressure conditions up to the core mantle boundary (above
135 GPa). In addition with laser-heating system it can realize extremely high temperature
conditions (< 4000 K). The problem of the DAC is that the sample size is very limited. To
generate pressure above 100 GPa, the sample size should be less then 50 µm, but the smaller
size of the sample would lead to the larger error of the calculated conductivity.

In the Earth’s mantle some seismic velocity discontinuities have been globally observed,
and are thought to be caused by the phase transformations of mantle minerals (see Fig. D.1).
We shortly review the electrical conductivities of the major mantle constituents minerals.
Olivine is the most abundant mineral in the upper mantle and transforms to wadsleite and
ringwoodite in the mantle transition zone at 410 and 520 km seismic discontinuities, respec-
tively.

Pyroxen is another important constituent mineral in the mantle. In the depth range from
300 to 500 km, pyroxenes progressively dissolve into garnet with increasing pressure (Taka-
hashi and Ito, 1987; Irifune and Ringwood, 1993). With increasing pressure majorite garnet
gradually dissolves into silicate perovskite. Near the core-mantle boundary perovskite trans-
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forms into post-perovskite (Murakami et al., 2004). Although most mantle minerals are sil-
icates, non-silicate oxide ferro-periclase appears as a second abundant mineral in the lower
mantle (Ito and Takahashi, 1989).

The electrical conductivity of olivine increases with increasing oxygen fugacity (Wana-
maker and Duba, 1993; Hirsch and Shankland, 1993; Du Frane et al., 2005) and total iron
content (Hirsch et al., 1993). It has been modeled as a function of temperature and oxygen
fugacity (Shankland and Duba, 1990; Constable et al., 1992; Constable, 2006). Different con-
duction mechanisms were studied and the resulting conductivities strongly depend on them.
But in general the results for conductivity on a certain pressure (3 GPa) and water content with
the same conducting mechanism vary from 1.45 S/m for lower temperatures (723-973 K) to
9.23 S/m for higher ones (973-1473 K) (Yoshino et al., 2006). For higher pressures (10GPa)
it can go up to 113.2 S/m (Yoshino et al., 2009).

Wadsleyite and Ringwoodite are the main constituent minerals in the mantle transition
zone (410-660 km depth), and are able to store rather large amount of water in their crystal
structure. Xu et al. (1998b) reported that electrical conductivities of wadsleyite and ringwood-
ite are similar and two orders of magnitude higher than that of olivine, but these values are too
high to explain the conductivity depth profiles obtained by electromagnetic induction studies
(Neal et al., 2000; Tarits et al., 2004; Kuvshinov et al., 2005). However Yoshino et al. (2008a)
in their studies argued, that electrical conductivity of ringwoodite is around one magnitude
higher than that of wadsleyite and for mantle temperature condition the dominant conduction
mechanism is the same as for olivine.

Garnet is stable on a wide range of pressure conditions from the Earth’s crust down to
the lower mantle. Xu and Shankland (1999) firstly measured electrical conductivity of gar-
net under pressure of 21 GPa at temperatures 1473-1773 K and received 28.5 S/m for the
conductivity. However their recovered sample was a mixture of ilmenite and garnet. Ro-
mano et al. (2006) reported the electrical conductivity of garnet as a function of iron content
(Fe3Al2Si3O12 → Mg3Al2Si3O12) at pressures from 10 to 19 GPa. His results for conductivity
vary from 1.5 S/m for high pressures (19 GPa) and high temperatures (1173-1923 K) to 80.6
at lower pressures (10 GPa) and lower temperatures (573-873 K). Yoshino et al. (2008b) mea-
sured electrical conductivities of majorite garnet with compositions of pyrolite minus olivine
(pyrolite majorite) at 18 and 23 GPa and temperatures up to 2000 K. According to their re-
sults pyrolite majorite has only slightly higher and lower conductivity than dry wadsleyite and
ringwoodite, respectively, and will not largely change the conductivity depth profile predicted
from the electrical conductivities of wadsleyite and ringwoodite.

The major phase in the Earth’s lower mantle is thought to be silicate perovskite. It can store
much of aluminium and iron (Ito and Takahashi, 1989; Wood and Rubie, 1996). Electrical
conductivity of silicate perovskite was firstly measured in DAC (Peyronneau and Poirer, 1989;
Li and Jeanloz, 1990; Shankland et al., 1993). Shankland et al. (1993) estimated the maximum
conductivity value of 3-10 S/m at the base of the lower mantle using the extrapolation of low
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temperature data on the mantle condition. On the other hand Li and Jeanloz (1990) reported
extremely lower conductivity values ( 10−4 S/m) at temperature above 2000 K compared with
geophysical observations (Egbert et al., 1992). Two groups (Katsura et al., 1998; Xu et al.,
1998a) in the end of 1990s measured the conductivity of the silicate perovskite in an Kawai-
type multi-anvil press under physical conditions of the uppermost lower mantle. These studies
show, that perovskite has slightly higher conductivity then ringwoodite with the same Mg#. A
presence of impurities in perovskite significantly affects the electrical conductivity of silicate
perovskite (Yoshino, 2009). Xu et al. (1998a) reported a significant effect of aluminium on
the conductivity of perovskite.

Lower mantle pressures increase from 23 GPa at the 660 km seismic discontinuity up to
136 GPa at the core-mantle boundary, and above 30 GPa, the conductivity measurements were
conducted in a DAC, using laser heating system. Ohta et al. (2008) reported that electrical
conductivity of perovskite with composition (Mg0.9Fe0.1SiO3) decreases with pressure.

Ferro-periclase is the second abundant mineral in the lower mantle. The conductivity
measurements of ferropericlase have been performed separately at high (> 1300 K) and low (<
1000 K) temperatures.Wood and Nell (1991) showed that the conductivity of ferropericlase at
atmospheric pressure is largely higher than that of co-existing silicate perovskite. Same results
are reported by Katsura and Ito (1996), who linked the higher conductivity of ferropericlase
to higher iron content. Lin et al. (2007) measured electrical conductivity of the ferropericlase
(Mg0.75Fe0.25)O using DAC at pressures over 100 GPa. The electrical conductivity gradually
increases by an order of magnitude up to 50 GPa but decreases by a factor of approximately
3 between 50 and 70 GPa. Although the absolute conductivity values are largely different
from each other due to usage of samples with different iron content, a trend showing a gradual
decrease of electrical conductivity between 50 and 80 GPa is quite consistent.

Large seismic anomalies have been observed at the bottom of lower mantle with a thick-
ness of several kilometers (D” layer) (Lay et al., 1998). Those anomalies are difficult to
explain with known physical properties of MgSiO3 perovskite - the main constituent of the
lower mantle. A first report on electrical conductivity of silicate post-perovskite with a com-
position (Mg0.89Fe0.11SiO3) at 129 and 143 GPa using laser heating DAC showed extremely
high conductivity (> 102 S/m) in comparison with that of silicate perovskite and little temper-
ature dependence at the conditions of D” layer (Ohta et al., 2008). If the electrical conductivity
of the post-perovskite has positive pressure dependence, temperature may have a small neg-
ative effect. But further studies including the effect of Al and Fe contents on the electrical
conductivity of the post-perovskite phase are needed to characterize the conductivity structure
near the core-mantle boundary.

There is still some results inconsistency among laboratories, but nevertheless, the com-
prehensive collection of high-pressure conductivity data for mantle minerals yields some im-
portant features. Electrical conductivity of the main mantle constituents increases in order of
olivine, wadsleyite, ringwoodite, perovskite and post-perovskite. At least three conductivity
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Figure D.2: Laboratory mineral electrical conductivity measurements as a function of inverse
temperature (A upper mantle, B transition zone and C upper part of lower mantle) and vari-
ations in mineral phase proportions and laboratorybased conductivity profile computed on the
basis of a homogeneous adiabatic pyrolite mantle as a function of pressure (depth) and tran-
sition zone water content (B and D). The solid and dotted lines in (D) are bulk conductivity
and adiabat, respectively. Phases are: Ol (olivine), Opx,(orthopyroxene), Cpx (clinopyrox-
ene), C2/c (highpressure Mgrich Cpx), Gt (garnet), Wads (wadsleyite), Ring (ringwoodite),
Aki (akimotoite), Ca-pv (calcium perovskite), Wus (magnesiowustite), Pv (perovskite) and
CF (calcium ferrite). After Khan et al. (2011).

jumps would be present at 410, 520 and 660 km discontinuities due to phase transformation.
Electrical conductivity increases with increasing water and iron content. Small difference of
iron content may produce the large difference of conductivity (Yoshino, 2009).

Combining laboratory measurements and numerical modeling results it should be possible
to infer mantle water content and other physical properties of the mantle (Khan et al., 2011).
The comparison hinges on the construction of a reliable laboratory-based conductivity profile
using a technique where laboratory data are combined with a self-consistently computed min-
eralogical model of the Earths mantle from a specific composition and geotherm using Gibbs
free energy minimization (Connoly, 2005). Fig. D.2 represents the resulting distribution of
the minerals in the mantle.



Appendix E

Experimental responses

This Appendix presents collection of experimental responses from 119 observatories which
we used in our 3-D inversions. Each page summarizes the results for two observatories. Ta-
bles on the right consist of 6 columns for 55 observatories above 40◦ geomagnetic latitude in
the Northern hemisphere, and 5 columns for all other observatories. For the latter observato-
ries Tables present period (in days), real (Re C) and imaginary (Im C) parts of experimental
responses (in km), uncertainty of the responses (δC; in km) and squared coherency (coh2).
For 55 observatories above 40◦ geomagnetic latitude the extra column includes real part of
the experimental responses corrected for the auroral effect (Re C∗; in km). Title of the Tables
contains the name of observatory, its acronym and geomagnetic latitude of the observatory.
Left-hand lower plots of each semi-page shows three components (X, Y and Z (from the top
to the bottom); in geographic coordinate system; in nT) of time-varying magnetic field for the
years, the data from which are used to estimate the C-responses. Upper left plots present the
experimental responses (circle with error bars). The real and imaginary parts are depicted by
blue and red colors, respectively. Also shown are the predicted responses for starting model
(dashed lines), and predicted responses, which correspond to the recovered 3-D conductivity
model (solid lines). The latter responses are obtained as follows. First, the 3-D inversion was
performed using the data set corrected for the ocean and the auroral effects (thus ignoring the
ocean layer during inversion). Second, the recovered 3-D model was complemented by the
oceanic layer, and the resulting responses were calculated in the “extended” 3-D model with
the lateral resolution of 1◦ × 1◦. In addition in these plots we also present the RMS which are
calculated as follows

RMS =

√√√
1

NT (i)

NT (i)∑
j=1

∣∣∣∣∣∣C
pred
i j −Cexp

i j

δCi j

∣∣∣∣∣∣2, (E.1)

where NT (i) is the number of periods used for a certain observatory, and subscript “i j” stands
for the results for i-th observatory and for j-th period, respectively.
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Alma Ata (AAA); 34◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 746 -131 86 0.39
3.79 767 -120 126 0.41
4.88 784 -85 162 0.30
6.29 827 -212 221 0.38
8.12 743 -447 309 0.40
10.46 934 -73 384 0.32
13.50 777 -510 569 0.29
17.42 1120 -211 951 0.58
22.46 415 832 1910 0.15
29.00 908 886 2048 0.29
37.46
48.38
62.46
80.67
104.17

Alibag (ABG); 10◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1013 -355 260 0.15
3.79 729 -312 222 0.11
4.88 1106 -430 256 0.24
6.29 1105 -265 289 0.28
8.12 1176 -451 311 0.31
10.46 1177 -409 521 0.26
13.50 1033 -295 420 0.37
17.42 587 -283 719 0.13
22.46 1241 13 584 0.41
29.00 900 -938 1024 0.40
37.46
48.38
62.46
80.67
104.17
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Faraday Islands (AIA); 55◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 12 -785 135 0.26
3.79 127 -726 101 0.30
4.88 199 -651 113 0.31
6.29 250 -522 108 0.28
8.12 368 -575 116 0.38
10.46 502 -510 101 0.47
13.50 429 -491 109 0.48
17.42 502 -577 158 0.53
22.46 502 -350 147 0.51
29.00 610 -670 223 0.65
37.46 815 -479 307 0.59
48.38 788 -300 405 0.57
62.46 1026 -296 345 0.74
80.67 804 -919 814 0.51
104.17

Almeria (ALM); 39◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 823 -314 144 0.64
3.79 657 -299 207 0.50
4.88 907 -242 206 0.73
6.29 861 -398 362 0.69
8.12 970 -342 208 0.78
10.46 1094 -328 305 0.83
13.50 790 -164 164 0.84
17.42 772 -411 246 0.87
22.46 1185 -70 786 0.73
29.00
37.46
48.38
62.46
80.67
104.17
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Amberley (AML); 46◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 547 -247 240 0.27
3.79 617 -233 161 0.34
4.88 543 -312 165 0.39
6.29 525 -304 213 0.36
8.12 458 -258 245 0.28
10.46 842 -212 351 0.39
13.50 551 -275 277 0.48
17.42 1186 -359 437 0.72
22.46 808 -91 420 0.46
29.00 822 -346 418 0.76
37.46 1151 -328 486 0.89
48.38 1271 -406 385 0.92
62.46
80.67
104.17

Martin de Vivies (AMS); 46◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 128 -473 184 0.19
3.79 304 -422 180 0.23
4.88 393 -437 183 0.29
6.29 459 -470 155 0.43
8.12 470 -248 193 0.31
10.46 428 -401 286 0.38
13.50 648 -352 211 0.60
17.42 459 -419 199 0.41
22.46 1189 -123 437 0.69
29.00 1163 -304 538 0.83
37.46 830 -530 330 0.97
48.38
62.46
80.67
104.17
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Amatsia (AMT); 28◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 645 -11 148 0.31
3.79 690 29 122 0.42
4.88 635 -8 162 0.40
6.29 726 -44 170 0.42
8.12 792 -116 237 0.43
10.46 730 -108 294 0.49
13.50 718 -92 368 0.49
17.42 838 -10 498 0.44
22.46 1099 -194 441 0.63
29.00 1027 -551 453 0.68
37.46 1390 -554 261 0.97
48.38
62.46
80.67
104.17

Apia (API); 15◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 308 -982 141 0.28
3.79 372 -774 178 0.23
4.88 465 -809 145 0.32
6.29 793 -755 209 0.44
8.12 578 -636 217 0.40
10.46 529 -358 388 0.26
13.50 651 -501 350 0.37
17.42 1358 -2415 2244 0.58
22.46
29.00
37.46
48.38
62.46
80.67
104.17
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L’Aquila (AQU); 42◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 753 773 -135 38 0.64
3.79 774 792 -120 39 0.69
4.88 811 829 -165 34 0.74
6.29 836 853 -187 35 0.78
8.12 871 888 -239 35 0.80
10.46 930 946 -267 40 0.83
13.50 911 930 -262 35 0.87
17.42 958 977 -309 56 0.83
22.46 1026 1042 -329 64 0.87
29.00 1057 1073 -427 63 0.89
37.46 1208 1221 -438 90 0.87
48.38 1174 1190 -431 145 0.79
62.46 1289 1302 -342 152 0.80
80.67 1226 1237 -502 195 0.90
104.17 1253 1271 -454 113 0.93

Arti (ARS); 49◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 238 431 -119 136 0.04
3.79 300 481 -113 159 0.07
4.88 387 570 -119 153 0.12
6.29 432 580 -244 134 0.20
8.12 465 575 -175 167 0.20
10.46 442 580 -232 227 0.23
13.50 592 773 -236 145 0.39
17.42 571 632 -365 186 0.37
22.46 722 789 -294 155 0.49
29.00 747 868 -422 135 0.64
37.46 844 844 -366 182 0.60
48.38 931 931 -302 211 0.45
62.46 1145 1145 -523 253 0.49
80.67 1123 1123 -558 436 0.48
104.17 1264 1264 -442 408 0.69
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Vannovskaya (ASH); 31◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 791 -70 80 0.42
3.79 806 -66 77 0.52
4.88 836 -71 128 0.46
6.29 845 -57 133 0.60
8.12 982 -146 154 0.56
10.46 920 -449 320 0.53
13.50 831 -26 184 0.50
17.42 1155 -224 332 0.67
22.46 982 -270 363 0.73
29.00 1038 -673 408 0.79
37.46 1227 -352 722 0.78
48.38
62.46
80.67
104.17

Aso (ASO); 23◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 779 -432 275 0.50
3.79 756 -535 296 0.62
4.88 753 -535 237 0.74
6.29 461 -215 355 0.60
8.12 789 -279 229 0.97
10.46 1076 -429 422 0.98
13.50
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17
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Alice Springs (ASP); 32◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 724 -171 77 0.53
3.79 751 -122 77 0.56
4.88 808 -55 77 0.65
6.29 901 -113 73 0.73
8.12 945 -168 76 0.79
10.46 849 -157 131 0.72
13.50 986 -106 78 0.83
17.42 954 -165 120 0.81
22.46 950 -298 115 0.89
29.00 1109 -359 104 0.91
37.46 979 -351 176 0.86
48.38 742 -386 551 0.58
62.46 1035 -470 185 0.93
80.67 665 -259 869 0.80
104.17

Budkov (BDV); 48◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 748 884 -135 98 0.53
3.79 815 941 -71 117 0.61
4.88 813 938 -149 124 0.70
6.29 784 898 -188 102 0.70
8.12 823 941 -149 119 0.78
10.46 846 954 -289 136 0.80
13.50 823 950 -284 154 0.79
17.42 862 986 -304 168 0.81
22.46 925 1028 -231 91 0.90
29.00 1082 1186 -394 128 0.91
37.46 1192 1271 -451 182 0.88
48.38 1008 1109 -409 166 0.80
62.46 1145 1223 -437 231 0.90
80.67 1100 1168 -556 227 0.91
104.17 1240 1352 -437 137 0.97
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Belsk (BEL); 50◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 669 848 -130 72 0.36
3.79 708 874 -107 75 0.45
4.88 740 904 -127 77 0.51
6.29 765 914 -195 66 0.61
8.12 783 938 -202 67 0.66
10.46 819 959 -292 71 0.71
13.50 832 996 -225 67 0.76
17.42 860 1020 -311 84 0.76
22.46 969 1104 -277 66 0.84
29.00 984 1118 -395 90 0.84
37.46 1116 1218 -388 136 0.85
48.38 1111 1241 -403 131 0.80
62.46 1222 1322 -470 155 0.87
80.67 1332 1419 -618 207 0.89
104.17 1326 1471 -518 130 0.92

Brorfelde (BFE); 55◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 105 524 -139 154 0.01
3.79 234 624 -213 165 0.07
4.88 342 723 -190 134 0.11
6.29 376 722 -288 145 0.19
8.12 491 846 -268 144 0.27
10.46 472 791 -335 173 0.30
13.50 527 897 -269 132 0.42
17.42 611 968 -377 183 0.44
22.46 803 1104 -297 140 0.64
29.00 833 1132 -389 276 0.53
37.46 918 1145 -398 408 0.64
48.38 873 1161 -386 285 0.69
62.46 1177 1398 -412 311 0.84
80.67 1128 1325 -680 332 0.91
104.17 1114 1434 -516 711 0.94
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Black Forest (BFO); 49◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 581 725 -100 153 0.56
3.79 588 722 -147 178 0.58
4.88 727 858 -170 193 0.64
6.29 734 855 -162 172 0.75
8.12 675 800 -209 156 0.80
10.46 735 849 -82 171 0.72
13.50 772 906 -181 199 0.76
17.42 529 659 -503 336 0.82
22.46 986 1095 -98 277 0.86
29.00 886 996 -196 233 0.93
37.46
48.38
62.46
80.67
104.17

Bar Gyora (BGY); 28◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 758 -73 183 0.44
3.79 878 0 187 0.59
4.88 871 -98 165 0.67
6.29 976 -59 350 0.57
8.12 895 -217 139 0.83
10.46 1053 -304 312 0.73
13.50 1126 -558 523 0.75
17.42 482 -669 403 0.90
22.46
29.00
37.46
48.38
62.46
80.67
104.17
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Beijing (BJI); 29◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 642 -245 55 0.50
3.79 679 -219 64 0.53
4.88 703 -197 55 0.61
6.29 714 -203 76 0.61
8.12 764 -263 64 0.71
10.46 914 -305 77 0.78
13.50 884 -168 87 0.78
17.42 853 -324 114 0.76
22.46 908 -310 154 0.77
29.00 960 -346 143 0.82
37.46 944 -295 232 0.72
48.38 938 -571 239 0.76
62.46 829 -383 454 0.47
80.67 1022 -534 998 0.42
104.17

Beijing Ming Tombs (BMT); 30◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 715 -174 70 0.53
3.79 754 -230 69 0.64
4.88 771 -242 65 0.70
6.29 892 -183 67 0.79
8.12 919 -242 90 0.79
10.46 927 -175 98 0.76
13.50 939 -268 88 0.81
17.42 1044 -248 128 0.81
22.46 1023 -272 98 0.87
29.00 1127 -296 104 0.90
37.46 1080 -421 167 0.85
48.38 933 -299 316 0.70
62.46 993 -310 205 0.84
80.67 990 -344 622 0.62
104.17 1336 -301 386 0.70
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Boulder (BOU); 48◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 445 720 -385 125 0.22
3.79 422 681 -397 121 0.29
4.88 501 730 -293 117 0.32
6.29 442 653 -377 136 0.38
8.12 600 800 -262 147 0.46
10.46 633 836 -244 216 0.45
13.50 503 687 -360 175 0.58
17.42 716 716 -495 283 0.68
22.46 895 895 -430 574 0.69
29.00 853 853 -767 315 0.92
37.46
48.38
62.46
80.67
104.17

Borok (BOX); 53◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 124 -62 189 0.01
3.79 228 -96 190 0.03
4.88 427 -54 159 0.10
6.29 490 -177 154 0.17
8.12 453 -190 156 0.17
10.46 463 -259 181 0.17
13.50 649 -216 175 0.36
17.42 633 -393 222 0.31
22.46 787 -331 184 0.50
29.00 603 -334 265 0.41
37.46 876 -273 289 0.50
48.38
62.46 1014 -277 541 0.53
80.67 1252 -660 669 0.72
104.17
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Bay St. Louis (BSL); 40◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 684 688 -519 153 0.56
3.79 730 733 -586 186 0.66
4.88 800 803 -468 168 0.74
6.29 743 746 -394 223 0.64
8.12 932 934 -309 229 0.78
10.46 971 971 -217 409 0.77
13.50 704 707 -377 245 0.79
17.42 305 305 -443 451 0.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Chichijima (CBI); 18◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 846 -376 182 0.23
3.79 1082 -310 214 0.37
4.88 1134 -194 184 0.56
6.29 1176 -270 226 0.60
8.12 1267 -197 305 0.69
10.46 1348 -465 424 0.56
13.50 988 -430 574 0.52
17.42 894 -380 858 0.49
22.46 1181 -776 1356 0.79
29.00
37.46
48.38
62.46
80.67
104.17
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Chengdu (CDP); 20◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 784 -202 106 0.36
3.79 862 -224 105 0.43
4.88 991 -262 109 0.59
6.29 1067 -257 122 0.67
8.12 976 -182 167 0.59
10.46 1187 -142 172 0.59
13.50 1102 -216 156 0.71
17.42 1079 -362 209 0.58
22.46 1109 -143 236 0.62
29.00 1085 -191 226 0.67
37.46 1157 -506 340 0.63
48.38 960 -450 432 0.49
62.46 901 -485 382 0.62
80.67 794 -127 1250 0.26
104.17 1003 -812 821 0.70

Chambon la forêt (CLF); 49◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 671 837 -144 72 0.39
3.79 721 875 -102 65 0.48
4.88 766 918 -115 59 0.58
6.29 795 934 -147 53 0.65
8.12 806 951 -174 50 0.75
10.46 864 994 -215 50 0.73
13.50 864 1018 -220 56 0.79
17.42 891 1040 -275 73 0.78
22.46 987 1113 -220 67 0.84
29.00 977 1103 -399 87 0.83
37.46 1083 1178 -439 113 0.86
48.38 1094 1216 -411 104 0.82
62.46 1154 1247 -476 136 0.74
80.67 1334 1416 -489 175 0.81
104.17 1264 1399 -348 163 0.80
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Canberra (CNB); 42◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 661 -45 88 0.42
3.79 644 -38 95 0.46
4.88 654 -90 109 0.55
6.29 715 -145 82 0.64
8.12 653 -124 108 0.55
10.46 635 -144 141 0.60
13.50 776 -203 81 0.80
17.42 826 -281 126 0.81
22.46 837 -345 116 0.85
29.00 789 -342 172 0.78
37.46 1000 -228 149 0.88
48.38 1104 -218 331 0.80
62.46 1140 -544 266 0.94
80.67 711 -493 683 0.64
104.17 1592 -754 257 0.98

Changchun (CNH); 33◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 529 -345 134 0.32
3.79 718 -193 134 0.48
4.88 499 -309 148 0.38
6.29 710 -333 165 0.55
8.12 882 -268 182 0.66
10.46 895 -555 353 0.54
13.50 666 -259 348 0.55
17.42 741 227 574 0.27
22.46 1157 -241 528 0.55
29.00 832 -245 472 0.49
37.46
48.38 902 -323 505 0.84
62.46 831 -214 1337 0.22
80.67
104.17



E. Experimental responses 147

Coimbra (COI); 44◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 1068 1111 -66 175 0.63
3.79 1145 1184 -63 147 0.69
4.88 1052 1092 -95 181 0.66
6.29 1206 1242 -214 238 0.82
8.12 1179 1217 -338 308 0.70
10.46 913 948 35 417 0.47
13.50 1180 1221 -349 984 0.65
17.42 947 988 -183 508 0.66
22.46 737 771 82 1746 0.56
29.00
37.46
48.38
62.46
80.67
104.17

Charters Towers (CTA); 28◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 810 -381 77 0.52
3.79 878 -247 82 0.61
4.88 910 -174 89 0.61
6.29 998 -229 92 0.73
8.12 1020 -161 82 0.77
10.46 996 -241 141 0.76
13.50 1090 -98 82 0.86
17.42 1033 -287 144 0.77
22.46 1070 -219 135 0.81
29.00 1143 -350 283 0.84
37.46 948 -740 392 0.65
48.38
62.46
80.67
104.17



148 E. Experimental responses

Port Alfred (CZT); 51◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 33 83 179 0.00
3.79 247 14 215 0.04
4.88 328 -75 241 0.07
6.29 420 -161 157 0.16
8.12 530 -111 207 0.20
10.46 593 -214 256 0.25
13.50 466 -261 220 0.30
17.42 372 -118 416 0.15
22.46 373 -397 272 0.49
29.00 728 149 667 0.47
37.46 1167 -95 1227 0.62
48.38 785 -873 829 0.69
62.46
80.67
104.17

Dallas (DAL); 42◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 612 663 -71 200 0.33
3.79 666 714 -193 170 0.39
4.88 701 744 -177 177 0.45
6.29 806 845 -146 153 0.58
8.12 712 749 -264 88 0.71
10.46 847 885 -158 313 0.61
13.50 841 875 -136 153 0.72
17.42 881 881 -278 220 0.77
22.46 832 832 -400 148 0.78
29.00 776 776 -492 247 0.82
37.46 1344 1344 -610 514 0.90
48.38 106 106 -192 76 0.96
62.46
80.67
104.17



E. Experimental responses 149

Del Rio (DLR); 38◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 570 -426 111 0.53
3.79 651 -429 81 0.70
4.88 724 -383 136 0.70
6.29 690 -333 93 0.76
8.12 748 -225 109 0.77
10.46 742 -385 129 0.79
13.50 1135 -86 410 0.72
17.42 938 -495 926 0.77
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Dourbes (DOU); 51◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 552 772 -141 136 0.30
3.79 636 840 -119 95 0.40
4.88 680 881 -155 80 0.49
6.29 740 923 -141 85 0.57
8.12 751 940 -174 86 0.63
10.46 750 921 -216 83 0.60
13.50 841 1042 -221 80 0.73
17.42 838 1032 -297 101 0.70
22.46 893 1056 -264 91 0.77
29.00 941 1104 -409 107 0.77
37.46 1112 1236 -381 159 0.75
48.38 1069 1227 -343 172 0.74
62.46 1099 1219 -420 185 0.74
80.67 1440 1546 -497 271 0.80
104.17 1186 1361 -527 293 0.68



150 E. Experimental responses

Ebro (EBR); 43◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 714 743 -190 62 0.62
3.79 764 791 -177 67 0.66
4.88 793 820 -227 59 0.78
6.29 796 821 -187 94 0.72
8.12 864 890 -189 70 0.85
10.46 917 941 -285 110 0.84
13.50 919 947 -325 98 0.87
17.42 962 990 -178 179 0.84
22.46 907 930 -269 92 0.90
29.00 1010 1034 -344 130 0.93
37.46 1190 1209 -447 158 0.96
48.38 1197 1220 -458 113 0.95
62.46 1110 1128 -601 321 0.97
80.67
104.17

Eilat (ELT); 26◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 787 -51 104 0.55
3.79 743 -55 104 0.53
4.88 799 -152 108 0.66
6.29 904 -206 158 0.64
8.12 849 -190 190 0.77
10.46 809 -119 189 0.79
13.50 890 -162 136 0.91
17.42 1038 -272 124 0.95
22.46 984 -245 210 0.98
29.00
37.46
48.38
62.46
80.67
104.17



E. Experimental responses 151

Esashi (ESA); 30◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 465 -311 83 0.42
3.79 594 -221 98 0.48
4.88 616 -269 112 0.54
6.29 707 -188 84 0.67
8.12 767 -297 99 0.73
10.46 708 -288 119 0.71
13.50 915 -269 111 0.84
17.42 794 -356 154 0.78
22.46 862 -241 189 0.82
29.00 1022 -379 160 0.87
37.46 1170 -500 180 0.94
48.38 1272 -572 232 0.90
62.46 926 -560 305 0.91
80.67 886 -609 458 0.87
104.17 1104 -352 347 0.89

Eskdalemuir (ESK); 57◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 -127 476 -163 119 0.02
3.79 40 602 -182 130 0.02
4.88 165 712 -161 110 0.03
6.29 302 800 -260 100 0.11
8.12 352 862 -225 97 0.16
10.46 409 866 -312 109 0.22
13.50 396 924 -262 106 0.26
17.42 435 944 -365 118 0.32
22.46 632 1063 -267 103 0.45
29.00 554 983 -493 134 0.45
37.46 657 984 -393 170 0.49
48.38 742 1155 -446 168 0.53
62.46 962 1281 -493 190 0.67
80.67 957 1242 -524 252 0.55
104.17 1000 1459 -483 237 0.69



152 E. Experimental responses

Eyrewell (EYR); 47◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 559 -200 125 0.21
3.79 602 -220 100 0.31
4.88 655 -132 132 0.36
6.29 672 -189 111 0.45
8.12 726 -164 116 0.50
10.46 702 -248 122 0.47
13.50 775 -281 124 0.64
17.42 822 -250 145 0.63
22.46 833 -289 115 0.75
29.00 703 -523 208 0.70
37.46 955 -330 287 0.75
48.38 1217 -293 481 0.64
62.46 798 -407 725 0.33
80.67 1282 -984 544 0.84
104.17

Fredericksburg (FRD); 48◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 271 546 -290 124 0.09
3.79 410 670 -248 115 0.15
4.88 408 637 -306 120 0.20
6.29 489 699 -220 93 0.29
8.12 532 731 -337 109 0.40
10.46 569 772 -289 137 0.45
13.50 681 865 -322 108 0.57
17.42 692 692 -374 144 0.54
22.46 740 740 -318 169 0.57
29.00 838 838 -510 187 0.66
37.46 829 829 -287 200 0.64
48.38 987 987 -474 286 0.55
62.46 1023 1023 -385 359 0.55
80.67 1067 1067 -638 519 0.64
104.17 1172 1172 -830 585 0.72



E. Experimental responses 153

Fresno (FRN); 43◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 556 644 -418 95 0.47
3.79 516 599 -497 92 0.56
4.88 656 729 -369 89 0.61
6.29 628 695 -350 104 0.67
8.12 668 732 -314 125 0.59
10.46 670 735 -347 193 0.64
13.50 662 721 -460 108 0.87
17.42 671 671 -349 259 0.69
22.46 657 657 -419 216 0.76
29.00 574 574 -475 489 0.64
37.46 808 808 -589 620 0.90
48.38
62.46
80.67
104.17

Fürstenfeldbruck (FUR); 48◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 742 868 -103 53 0.52
3.79 775 892 -90 52 0.60
4.88 798 913 -107 48 0.67
6.29 840 946 -148 41 0.72
8.12 843 953 -162 42 0.78
10.46 900 1000 -245 43 0.80
13.50 906 1024 -232 51 0.82
17.42 905 1019 -287 58 0.80
22.46 1003 1099 -283 65 0.85
29.00 1043 1140 -389 63 0.87
37.46 1087 1160 -362 111 0.81
48.38 1206 1300 -302 93 0.85
62.46 1222 1294 -361 135 0.84
80.67 1319 1382 -455 94 0.91
104.17 1268 1372 -485 102 0.90



154 E. Experimental responses

Grocka (GCK); 43◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 791 822 -158 140 0.61
3.79 984 1013 -133 255 0.72
4.88 1168 1196 -76 402 0.75
6.29 971 998 -144 298 0.75
8.12 1020 1048 -238 221 0.94
10.46 1276 1301 -225 537 0.86
13.50 654 684 -414 291 0.84
17.42 425 455 607 1761 0.83
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Golmud (GLM); 26◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 795 -196 81 0.52
3.79 836 -206 98 0.58
4.88 882 -287 84 0.64
6.29 985 -292 90 0.75
8.12 1089 -270 124 0.75
10.46 1029 -257 132 0.71
13.50 1040 -344 116 0.83
17.42 1306 -349 248 0.72
22.46 1136 -295 169 0.79
29.00 1228 -165 194 0.80
37.46 1238 -420 324 0.73
48.38 1297 -395 705 0.63
62.46 1351 -164 635 0.67
80.67 1294 -383 589 0.61
104.17 694 -286 1858 0.22



E. Experimental responses 155

Gnangara (GNA); 41◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 820 211 59 0.48
3.79 840 116 62 0.52
4.88 838 79 64 0.60
6.29 887 23 68 0.64
8.12 800 -38 80 0.60
10.46 872 -57 115 0.59
13.50 859 -133 109 0.66
17.42 999 -109 166 0.64
22.46 880 -392 169 0.66
29.00 942 -337 196 0.75
37.46 787 -17 1243 0.84
48.38 2289 -198 939 0.98
62.46
80.67
104.17

Guimar (GUI); 33◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 830 1 84 0.36
3.79 828 -52 80 0.35
4.88 866 -150 140 0.36
6.29 841 -151 102 0.39
8.12 891 -65 107 0.78
10.46 868 -99 187 0.61
13.50 926 -45 152 0.85
17.42 973 -306 385 0.77
22.46 1089 26 519 0.89
29.00
37.46
48.38
62.46
80.67
104.17



156 E. Experimental responses

Guangzhou (GZH); 12◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 963 -702 123 0.27
3.79 1330 -513 135 0.40
4.88 1454 -556 129 0.48
6.29 1474 -394 153 0.48
8.12 1373 -247 131 0.50
10.46 1544 -364 177 0.57
13.50 1556 -356 144 0.62
17.42 1481 -247 222 0.52
22.46 1463 -451 278 0.54
29.00 1603 -371 302 0.58
37.46 1667 -537 321 0.54
48.38 1731 -294 668 0.32
62.46 1511 -795 983 0.30
80.67
104.17

Hartland (HAD); 53◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 522 852 -153 101 0.20
3.79 598 904 -128 93 0.29
4.88 652 952 -139 84 0.39
6.29 711 984 -156 62 0.50
8.12 722 1003 -152 70 0.59
10.46 791 1043 -257 69 0.65
13.50 760 1055 -222 75 0.66
17.42 766 1049 -307 87 0.68
22.46 887 1127 -259 73 0.78
29.00 927 1164 -392 109 0.74
37.46 984 1165 -365 106 0.80
48.38 993 1222 -443 123 0.79
62.46 1116 1291 -435 171 0.78
80.67 1297 1453 -512 193 0.82
104.17 1197 1451 -460 132 0.88



E. Experimental responses 157

Hartebeesthoek (HBK); 27◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1044 224 99 0.60
3.79 941 140 106 0.51
4.88 921 217 119 0.64
6.29 961 111 143 0.54
8.12 914 95 217 0.53
10.46 1009 183 320 0.47
13.50 1015 -107 323 0.82
17.42 1550 342 689 0.87
22.46 1115 -21 250 0.99
29.00
37.46
48.38
62.46
80.67
104.17

Hermanus (HER); 33◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1322 944 51 0.79
3.79 1235 796 46 0.79
4.88 1192 597 50 0.79
6.29 1118 421 44 0.79
8.12 1104 285 48 0.80
10.46 1115 207 64 0.80
13.50 1070 112 48 0.82
17.42 1123 63 63 0.82
22.46 1121 11 70 0.83
29.00 1136 -80 60 0.87
37.46 1186 -140 80 0.85
48.38 1157 -218 141 0.75
62.46 1239 -248 130 0.78
80.67 1184 -315 125 0.81
104.17 1260 -361 247 0.75



158 E. Experimental responses

Hel (HLP); 53◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 410 707 -196 140 0.11
3.79 510 786 -164 133 0.18
4.88 545 815 -147 129 0.24
6.29 587 833 -236 119 0.34
8.12 620 874 -190 138 0.37
10.46 626 854 -334 121 0.46
13.50 687 954 -249 138 0.51
17.42 723 979 -365 138 0.59
22.46 811 1028 -256 109 0.70
29.00 853 1068 -379 123 0.75
37.46 926 1089 -382 148 0.75
48.38 940 1147 -406 295 0.56
62.46 1294 1452 -504 277 0.83
80.67 1056 1196 -765 385 0.85
104.17 1226 1456 -450 356 0.91

Honolulu (HON); 21◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 766 -291 75 0.31
3.79 912 -268 78 0.44
4.88 914 -177 84 0.45
6.29 894 -146 82 0.54
8.12 923 -88 114 0.51
10.46 1009 -96 141 0.50
13.50 948 -270 125 0.63
17.42 1031 -178 225 0.53
22.46 946 -224 209 0.54
29.00 962 -306 244 0.68
37.46 921 -100 374 0.51
48.38 1391 -503 526 0.75
62.46 541 -573 1152 0.16
80.67 953 -632 934 0.33
104.17



E. Experimental responses 159

Hurbanovo (HRB); 46◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 795 886 -71 72 0.56
3.79 856 941 -72 76 0.66
4.88 839 923 -129 77 0.68
6.29 847 924 -186 68 0.70
8.12 850 930 -170 80 0.78
10.46 952 1025 -279 88 0.81
13.50 895 982 -294 85 0.83
17.42 995 1080 -281 112 0.80
22.46 1002 1073 -242 79 0.89
29.00 1049 1121 -392 101 0.90
37.46 1255 1310 -394 146 0.88
48.38 1068 1138 -456 147 0.80
62.46 1277 1331 -454 180 0.91
80.67 1173 1220 -503 249 0.85
104.17 1313 1391 -447 137 0.96

Hatizyo (HTY); 24◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 340 -973 76 0.53
3.79 547 -815 80 0.60
4.88 646 -686 84 0.60
6.29 749 -627 82 0.67
8.12 769 -537 88 0.65
10.46 814 -506 110 0.63
13.50 918 -545 108 0.73
17.42 973 -441 164 0.66
22.46 1028 -464 159 0.70
29.00 1048 -486 180 0.76
37.46 1034 -302 342 0.67
48.38 1101 -999 545 0.49
62.46 1003 -720 448 0.64
80.67 1294 -659 742 0.71
104.17



160 E. Experimental responses

Irkutsk (IRT); 41◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 412 443 -213 88 0.22
3.79 461 491 -188 83 0.29
4.88 481 511 -216 74 0.39
6.29 527 552 -260 64 0.50
8.12 590 608 -222 77 0.53
10.46 563 586 -278 134 0.51
13.50 578 609 -291 82 0.59
17.42 755 766 -327 101 0.73
22.46 847 858 -356 94 0.79
29.00 718 739 -417 121 0.75
37.46 744 744 -356 157 0.72
48.38 876 876 -373 224 0.67
62.46 1015 1015 -376 266 0.82
80.67 1163 1163 -359 578 0.77
104.17 1504 1504 -547 300 0.92

Istanbul Kandilli (ISK); 38◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 835 -54 59 0.68
3.79 844 -98 50 0.76
4.88 868 -118 60 0.79
6.29 889 -152 66 0.80
8.12 942 -218 56 0.85
10.46 976 -221 81 0.86
13.50 1003 -260 62 0.91
17.42 1042 -353 97 0.87
22.46 1089 -320 102 0.90
29.00 1111 -416 92 0.91
37.46 1455 -452 270 0.93
48.38 1322 -442 412 0.84
62.46 1726 -176 782 0.83
80.67
104.17



E. Experimental responses 161

Jaipur (JAI); 17◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 559 -122 174 0.15
3.79 573 -245 149 0.27
4.88 746 -244 232 0.35
6.29 988 -443 265 0.54
8.12 480 -221 247 0.26
10.46 984 -142 214 0.65
13.50 883 -512 434 0.69
17.42 1245 -107 749 0.74
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Kakioka (KAK); 27◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 343 -844 37 0.54
3.79 485 -690 42 0.54
4.88 565 -648 43 0.59
6.29 666 -569 43 0.64
8.12 721 -514 41 0.69
10.46 784 -462 45 0.72
13.50 814 -455 47 0.76
17.42 903 -487 65 0.75
22.46 920 -448 64 0.81
29.00 1013 -483 62 0.85
37.46 1043 -425 89 0.82
48.38 1072 -427 106 0.79
62.46 1162 -401 160 0.75
80.67 1097 -535 121 0.84
104.17 1205 -550 190 0.78



162 E. Experimental responses

Kakadu (KDU); 21◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 687 -481 118 0.35
3.79 781 -420 115 0.41
4.88 914 -265 126 0.53
6.29 961 -369 119 0.64
8.12 1026 -334 179 0.64
10.46 1131 -243 173 0.71
13.50 1084 -60 171 0.74
17.42 1105 -307 195 0.79
22.46 1034 -102 303 0.73
29.00 1282 -470 206 0.89
37.46 1174 -398 599 0.90
48.38
62.46
80.67
104.17

Kanoya (KNY); 21◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 341 -1021 49 0.51
3.79 506 -813 51 0.51
4.88 667 -754 53 0.58
6.29 737 -620 55 0.60
8.12 767 -529 55 0.60
10.46 807 -493 55 0.65
13.50 861 -499 64 0.69
17.42 921 -449 84 0.64
22.46 902 -389 83 0.70
29.00 990 -517 88 0.76
37.46 1007 -399 111 0.71
48.38 1198 -521 152 0.72
62.46 1092 -496 175 0.69
80.67 947 -561 185 0.63
104.17 1180 -628 228 0.72



E. Experimental responses 163

Kanozan (KNZ); 26◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 215 -1058 105 0.62
3.79 500 -829 114 0.61
4.88 554 -802 133 0.65
6.29 696 -622 98 0.69
8.12 753 -595 114 0.72
10.46 733 -620 168 0.72
13.50 938 -527 143 0.85
17.42 841 -477 189 0.70
22.46 889 -384 270 0.70
29.00 1115 -592 168 0.89
37.46 998 -456 231 0.77
48.38 1413 -546 993 0.75
62.46 965 -627 246 0.94
80.67 789 -494 505 0.74
104.17 1400 -582 2734 0.44

Kazan (KZN); 49◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 585 -156 181 0.19
3.79 574 -133 162 0.25
4.88 657 -38 126 0.31
6.29 588 -247 138 0.36
8.12 658 -86 167 0.38
10.46 696 -268 149 0.55
13.50 773 -198 168 0.61
17.42 929 -304 300 0.58
22.46 966 -296 241 0.75
29.00 866 -526 314 0.81
37.46 1023 -322 239 0.91
48.38 783 -94 510 0.59
62.46
80.67
104.17



164 E. Experimental responses

Kourou (KOU); 14◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1058 1160 256 0.39
3.79 1084 740 319 0.37
4.88 1003 473 320 0.39
6.29 956 391 317 0.37
8.12 1101 310 434 0.46
10.46 1456 428 1000 0.43
13.50 1010 -6 738 0.34
17.42 978 -532 902 0.58
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Kashi (KSH); 30◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 675 -164 83 0.45
3.79 717 -164 99 0.60
4.88 751 -202 83 0.64
6.29 817 -296 93 0.72
8.12 902 -238 114 0.76
10.46 813 -300 131 0.74
13.50 922 -325 82 0.89
17.42 1110 -385 137 0.85
22.46 1080 -247 108 0.90
29.00 1097 -286 140 0.91
37.46 1213 -653 283 0.88
48.38 1274 -526 412 0.76
62.46 1355 -237 648 0.86
80.67 980 -381 368 0.89
104.17



E. Experimental responses 165

Kiev (KIV); 47◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 660 660 -90 101 0.40
3.79 656 656 -95 114 0.44
4.88 729 729 -105 82 0.55
6.29 777 777 -172 80 0.63
8.12 781 781 -205 83 0.69
10.46 813 813 -238 91 0.71
13.50 829 829 -227 87 0.74
17.42 886 886 -259 103 0.79
22.46 966 966 -306 121 0.80
29.00 947 947 -426 129 0.83
37.46 1124 1124 -433 186 0.89
48.38 1103 1103 -416 167 0.91
62.46 1267 1267 -661 420 0.86
80.67 1737 1737 -522 925 0.83
104.17

Logrono (LGR); 45◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 816 877 -147 251 0.48
3.79 662 719 -104 290 0.38
4.88 789 845 147 253 0.53
6.29 831 883 -171 331 0.59
8.12 1218 1272 -13 370 0.64
10.46 803 852 -206 585 0.68
13.50 1228 1287 -275 625 0.84
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17



166 E. Experimental responses

Lunping (LNP); 14◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 641 -196 172 0.12
3.79 794 -123 162 0.24
4.88 773 -132 177 0.24
6.29 680 -39 197 0.22
8.12 895 10 268 0.28
10.46 629 -79 512 0.11
13.50 1095 -112 362 0.37
17.42 1172 -107 549 0.26
22.46 967 66 358 0.30
29.00 1096 -63 536 0.42
37.46 954 -277 1089 0.17
48.38 1283 -938 1527 0.31
62.46
80.67
104.17

Learmonth (LRM); 32◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 700 -486 75 0.53
3.79 732 -417 69 0.64
4.88 754 -398 72 0.69
6.29 911 -346 73 0.79
8.12 824 -292 105 0.73
10.46 838 -354 123 0.71
13.50 858 -342 132 0.74
17.42 874 -288 168 0.75
22.46 978 -293 269 0.69
29.00 855 -272 506 0.66
37.46
48.38
62.46
80.67
104.17



E. Experimental responses 167

Lviv (LVV); 47◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 682 795 -184 79 0.44
3.79 718 824 -156 83 0.51
4.88 752 856 -172 84 0.58
6.29 776 871 -194 69 0.62
8.12 762 862 -263 80 0.68
10.46 800 890 -296 72 0.73
13.50 778 885 -269 121 0.70
17.42 775 879 -334 171 0.65
22.46 810 897 -327 225 0.65
29.00 979 1067 -416 142 0.83
37.46 1124 1191 -202 280 0.69
48.38 1027 1112 -120 786 0.58
62.46 925 990 -243 673 0.63
80.67 1356 1414 -945 563 0.97
104.17

Lanzhou (LZH); 25◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 607 -206 67 0.42
3.79 687 -185 70 0.55
4.88 713 -232 88 0.57
6.29 736 -278 75 0.67
8.12 831 -233 88 0.65
10.46 883 -290 101 0.71
13.50 759 -314 90 0.76
17.42 907 -342 115 0.77
22.46 786 -249 142 0.73
29.00 834 -263 217 0.75
37.46 776 -328 466 0.45
48.38 913 -306 768 0.60
62.46 647 -88 610 0.48
80.67 1467 -926 2047 0.51
104.17



168 E. Experimental responses

Manhay (MAB); 51◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 745 965 -147 174 0.42
3.79 775 979 -93 171 0.47
4.88 749 949 -162 141 0.59
6.29 698 881 -209 121 0.58
8.12 759 948 -181 169 0.70
10.46 707 877 -370 140 0.74
13.50 758 958 -347 204 0.76
17.42 821 1014 -344 238 0.80
22.46 882 1045 -272 129 0.90
29.00 919 1081 -425 158 0.89
37.46 1175 1298 -436 200 0.95
48.38 797 954 -493 315 0.91
62.46 1017 1137 -439 317 0.94
80.67
104.17

MBour (MBO); 20◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 807 7 82 0.20
3.79 805 -10 83 0.24
4.88 817 -22 87 0.27
6.29 857 -84 92 0.32
8.12 848 4 112 0.32
10.46 955 -122 128 0.44
13.50 872 -190 132 0.47
17.42 907 -224 188 0.35
22.46 1026 -204 223 0.48
29.00 962 -376 234 0.53
37.46 1207 -675 333 0.61
48.38 957 -842 601 0.53
62.46 1123 -310 776 0.49
80.67 2082 -968 1753 0.78
104.17



E. Experimental responses 169

Midway (MID); 25◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 488 -501 464 0.30
3.79 715 -299 354 0.65
4.88 770 -254 327 0.63
6.29 778 -309 545 0.54
8.12 1233 -115 467 0.85
10.46 1302 55 1060 0.81
13.50
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17

Mizusawa (MIZ); 30◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 443 -405 82 0.44
3.79 612 -304 100 0.52
4.88 638 -311 109 0.57
6.29 722 -256 85 0.68
8.12 770 -315 97 0.73
10.46 737 -331 116 0.72
13.50 942 -310 108 0.84
17.42 822 -324 156 0.76
22.46 925 -274 156 0.84
29.00 1062 -441 135 0.90
37.46 1158 -427 206 0.90
48.38 1171 -628 293 0.85
62.46 1036 -523 295 0.91
80.67 1047 -467 469 0.81
104.17 1000 -462 304 0.86



170 E. Experimental responses

Memambetsu (MMB); 35◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 503 -283 35 0.47
3.79 557 -242 35 0.53
4.88 589 -276 35 0.59
6.29 667 -292 36 0.70
8.12 713 -286 39 0.73
10.46 775 -288 45 0.79
13.50 778 -309 39 0.82
17.42 857 -339 55 0.82
22.46 877 -310 47 0.86
29.00 939 -434 60 0.87
37.46 978 -428 56 0.89
48.38 988 -390 107 0.81
62.46 1145 -431 116 0.86
80.67 1174 -453 122 0.90
104.17 1154 -493 123 0.87

Minsk (MNK); 51◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 647 874 -103 138 0.22
3.79 643 853 -110 105 0.30
4.88 616 822 -87 100 0.32
6.29 715 904 -169 123 0.50
8.12 755 949 -254 108 0.53
10.46 796 971 -258 161 0.52
13.50 557 763 -190 130 0.46
17.42 799 997 -240 240 0.46
22.46 798 965 -150 258 0.52
29.00 908 1075 -262 178 0.77
37.46 1056 1183 -561 568 0.77
48.38 763 925 -167 913 0.41
62.46
80.67
104.17



E. Experimental responses 171

Moscow (MOS); 51◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 326 -102 157 0.06
3.79 416 -122 143 0.11
4.88 500 -137 119 0.20
6.29 557 -232 94 0.28
8.12 654 -149 121 0.38
10.46 640 -303 123 0.45
13.50 624 -262 124 0.45
17.42 757 -359 120 0.57
22.46 817 -300 128 0.61
29.00 898 -378 135 0.68
37.46 864 -372 172 0.63
48.38 964 -428 208 0.61
62.46 1240 -540 297 0.64
80.67 1222 -563 273 0.66
104.17 1188 -472 333 0.70

Manzhouli (MZL); 39◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 552 -207 93 0.44
3.79 638 -205 86 0.58
4.88 632 -268 81 0.63
6.29 698 -244 61 0.75
8.12 759 -288 86 0.75
10.46 810 -270 99 0.74
13.50 834 -309 103 0.77
17.42 913 -276 94 0.83
22.46 980 -356 99 0.89
29.00 1009 -370 132 0.87
37.46 1085 -340 151 0.85
48.38 948 -165 253 0.77
62.46 1169 -341 157 0.94
80.67 1117 -306 338 0.82
104.17 1277 -411 140 0.96



172 E. Experimental responses

Nagycenk (NCK); 46◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 789 881 -141 81 0.59
3.79 883 968 -100 103 0.66
4.88 845 930 -165 98 0.74
6.29 833 910 -224 87 0.76
8.12 870 951 -177 102 0.79
10.46 917 990 -301 123 0.79
13.50 937 1024 -292 89 0.83
17.42 968 1053 -288 139 0.82
22.46 1032 1103 -209 120 0.84
29.00 1062 1134 -423 151 0.84
37.46 1233 1288 -371 225 0.82
48.38 1039 1109 -463 235 0.70
62.46 1077 1131 -297 242 0.75
80.67 1187 1235 -691 331 0.73
104.17 1307 1385 -385 233 0.90

Niemegk (NGK); 51◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 556 794 -101 97 0.23
3.79 631 851 -100 90 0.33
4.88 668 885 -102 84 0.43
6.29 727 925 -168 62 0.51
8.12 729 933 -143 72 0.60
10.46 803 987 -261 67 0.67
13.50 801 1017 -235 79 0.70
17.42 804 1012 -293 92 0.70
22.46 954 1130 -247 83 0.79
29.00 1004 1179 -394 108 0.78
37.46 1052 1185 -345 143 0.84
48.38 946 1115 -350 131 0.77
62.46 1173 1302 -373 176 0.89
80.67 1284 1398 -436 158 0.91
104.17 1283 1470 -422 132 0.94



E. Experimental responses 173

Novosibirsk (NVS); 45◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 440 536 -126 133 0.15
3.79 471 561 -101 125 0.19
4.88 494 586 -130 118 0.24
6.29 567 642 -169 118 0.35
8.12 564 619 -159 130 0.36
10.46 542 612 -233 250 0.36
13.50 646 738 -150 94 0.56
17.42 816 847 -278 119 0.64
22.46 782 816 -221 109 0.71
29.00 638 701 -329 178 0.62
37.46 763 763 -322 210 0.61
48.38 1132 1132 -517 464 0.74
62.46 1397 1397 -513 296 0.82
80.67 1193 1193 -830 890 0.70
104.17 1292 1292 -824 470 0.90

Odessa (ODE); 43◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 758 758 -148 50 0.59
3.79 773 773 -159 53 0.65
4.88 802 802 -136 50 0.70
6.29 856 856 -190 49 0.76
8.12 890 890 -219 53 0.81
10.46 934 934 -257 62 0.82
13.50 946 946 -282 60 0.86
17.42 989 989 -262 65 0.86
22.46 1049 1049 -312 80 0.84
29.00 1089 1089 -425 65 0.91
37.46 1227 1227 -385 130 0.87
48.38 1074 1074 -311 210 0.74
62.46 1327 1327 -444 186 0.80
80.67 981 981 -229 377 0.66
104.17 808 808 -519 609 0.62



174 E. Experimental responses

Panagyurishte (PAG); 40◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 834 -119 43 0.69
3.79 858 -110 48 0.76
4.88 890 -153 46 0.82
6.29 889 -184 48 0.81
8.12 898 -217 67 0.83
10.46 968 -273 60 0.87
13.50 1000 -241 40 0.91
17.42 1010 -303 83 0.90
22.46 1077 -249 106 0.87
29.00 1152 -425 75 0.94
37.46 1254 -460 200 0.91
48.38 1229 -279 289 0.78
62.46 1354 -507 357 0.79
80.67 1253 -428 286 0.94
104.17 1527 -440 130 1.00

Penteli (PEG); 36◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 807 -287 124 0.72
3.79 900 -162 190 0.80
4.88 786 -177 119 0.81
6.29 882 -224 132 0.82
8.12 781 -175 184 0.80
10.46 1062 -335 243 0.93
13.50 914 -440 393 0.95
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17



E. Experimental responses 175

Paratunka (PET); 45◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 373 478 -366 89 0.27
3.79 403 502 -335 79 0.30
4.88 401 501 -300 96 0.31
6.29 427 507 -378 116 0.38
8.12 561 621 -361 129 0.51
10.46 566 642 -324 153 0.54
13.50 373 473 -303 151 0.45
17.42 751 751 -257 607 0.26
22.46 718 755 -149 254 0.82
29.00
37.46
48.38
62.46
80.67
104.17

Port Moresby (PMG); 17◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1190 627 129 0.44
3.79 1076 390 128 0.49
4.88 1104 315 154 0.47
6.29 1022 291 156 0.49
8.12 1129 213 239 0.51
10.46 978 -136 280 0.49
13.50 964 31 367 0.58
17.42 1241 9 577 0.72
22.46
29.00
37.46
48.38
62.46
80.67
104.17



176 E. Experimental responses

Pamatai (PPT); 15◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 948 -513 121 0.31
3.79 1047 -406 107 0.43
4.88 1051 -424 125 0.44
6.29 1072 -219 139 0.46
8.12 995 -205 160 0.43
10.46 1115 -192 164 0.51
13.50 1218 -229 154 0.65
17.42 1068 -278 259 0.54
22.46 994 -501 213 0.61
29.00 1010 -415 377 0.51
37.46 1081 -422 358 0.63
48.38 1343 -646 689 0.65
62.46 1395 -163 917 0.46
80.67 321 -678 391 0.41
104.17

Port Stanley (PST); 41◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1183 609 207 0.74
3.79 938 515 118 0.73
4.88 1085 351 180 0.78
6.29 1003 278 127 0.80
8.12 1124 93 139 0.81
10.46 1096 222 320 0.76
13.50 1097 -109 325 0.76
17.42 871 -90 387 0.70
22.46 717 -196 554 0.86
29.00 1012 -279 42 0.99
37.46
48.38
62.46
80.67
104.17



E. Experimental responses 177

Qianling (QIX); 24◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 754 -226 79 0.46
3.79 818 -167 88 0.51
4.88 868 -237 95 0.61
6.29 982 -268 92 0.74
8.12 996 -201 127 0.68
10.46 1019 -190 132 0.68
13.50 1048 -292 122 0.79
17.42 1211 -311 178 0.75
22.46 1060 -256 180 0.79
29.00 1127 -208 192 0.77
37.46 1220 -503 259 0.73
48.38 1229 -336 420 0.67
62.46 874 -434 242 0.78
80.67 1036 -293 884 0.53
104.17 1132 -679 562 0.66

Rude Skov (RSV); 55◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 -31 372 -299 192 0.04
3.79 184 559 -276 209 0.05
4.88 275 641 -239 152 0.09
6.29 452 785 -319 146 0.18
8.12 556 897 -148 110 0.30
10.46 552 858 -321 154 0.36
13.50 488 845 -310 129 0.35
17.42 586 929 -307 155 0.45
22.46 780 1070 -244 157 0.58
29.00 777 1064 -426 165 0.62
37.46 718 936 -401 270 0.47
48.38 861 1138 -309 198 0.55
62.46 879 1092 -639 317 0.54
80.67 1578 1767 -679 875 0.72
104.17 1183 1490 -737 477 0.67



178 E. Experimental responses

San Fernando (SFS); 40◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 770 -222 124 0.73
3.79 776 -107 182 0.70
4.88 764 -243 116 0.87
6.29 709 -214 163 0.77
8.12 852 -234 276 0.84
10.46 912 -271 234 0.94
13.50
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17

South Georgia (SGE); 45◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 457 -165 131 0.35
3.79 567 -125 96 0.44
4.88 529 -263 163 0.37
6.29 655 -193 145 0.54
8.12 691 -229 138 0.61
10.46 680 -214 181 0.55
13.50 524 -158 268 0.58
17.42 527 -229 373 0.45
22.46 438 -39 488 0.35
29.00 531 -223 684 0.60
37.46 559 -199 584 0.63
48.38
62.46
80.67
104.17



E. Experimental responses 179

Shillong (SHL); 15◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 723 -290 281 0.18
3.79 1114 -621 402 0.39
4.88 627 -328 509 0.18
6.29 1577 -681 983 0.47
8.12 879 -239 1106 0.30
10.46 1256 -171 589 0.71
13.50
17.42
22.46
29.00
37.46
48.38
62.46
80.67
104.17

San Juan (SJG); 28◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 895 -347 110 0.47
3.79 923 -231 131 0.49
4.88 926 -318 103 0.55
6.29 1004 -346 118 0.62
8.12 1039 -145 137 0.64
10.46 993 -421 168 0.59
13.50 1009 -334 171 0.65
17.42 1331 -351 183 0.82
22.46 1212 -372 210 0.90
29.00 1226 -496 256 0.87
37.46 1612 -139 1002 0.81
48.38
62.46
80.67
104.17



180 E. Experimental responses

San Pablo (SPT); 42◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 845 869 -71 67 0.73
3.79 913 935 -37 68 0.78
4.88 849 872 -101 59 0.79
6.29 829 850 -126 60 0.81
8.12 897 918 -138 55 0.87
10.46 913 933 -205 71 0.88
13.50 944 968 -227 67 0.91
17.42 968 991 -256 83 0.90
22.46 943 962 -255 79 0.92
29.00 1032 1052 -261 89 0.93
37.46 1183 1198 -348 96 0.94
48.38 1155 1174 -459 119 0.93
62.46 1184 1199 -406 125 0.96
80.67 1119 1132 -443 255 0.85
104.17 1068 1090 -356 185 0.92

Sheshan (SSH); 21◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1105 -229 108 0.44
3.79 1169 -115 120 0.52
4.88 1303 -285 127 0.61
6.29 1403 -207 113 0.72
8.12 1372 -252 129 0.71
10.46 1416 -220 159 0.69
13.50 1447 -356 176 0.73
17.42 1656 -358 241 0.67
22.46 1403 -237 221 0.71
29.00 1370 -422 283 0.66
37.46 1342 -374 345 0.57
48.38 1196 -137 584 0.30
62.46 1496 -472 412 0.68
80.67
104.17 1576 -121 511 0.69



E. Experimental responses 181

Simosato (SSO); 24◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 381 -1011 158 0.54
3.79 382 -724 195 0.32
4.88 563 -620 220 0.39
6.29 582 -460 300 0.28
8.12 667 -643 193 0.41
10.46 646 -525 172 0.50
13.50 733 -384 482 0.36
17.42 629 -504 448 0.36
22.46 1380 -639 871 0.62
29.00 1187 -842 1124 0.43
37.46 801 -310 955 0.20
48.38
62.46
80.67
104.17

Surlari (SUA); 42◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 745 764 -125 115 0.57
3.79 770 788 -77 147 0.59
4.88 792 810 -181 126 0.66
6.29 936 952 -298 176 0.64
8.12 881 899 -209 276 0.51
10.46 874 890 -351 207 0.59
13.50 1089 1108 -245 186 0.85
17.42 1236 1255 -265 263 0.88
22.46 1099 1115 -513 148 0.96
29.00 949 965 -723 498 0.79
37.46
48.38
62.46
80.67
104.17



182 E. Experimental responses

Ekaterinburg (SVD); 49◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 133 327 -259 203 0.05
3.79 304 486 -215 174 0.08
4.88 398 582 -123 187 0.14
6.29 380 528 -305 134 0.22
8.12 680 790 -185 112 0.44
10.46 636 774 -277 182 0.47
13.50 540 721 -204 117 0.40
17.42 661 722 -341 170 0.52
22.46 682 749 -219 148 0.58
29.00 743 864 -269 222 0.57
37.46 909 909 -377 241 0.64
48.38 928 928 -337 263 0.59
62.46 1114 1114 -663 581 0.56
80.67 1321 1321 -616 608 0.62
104.17 1054 1054 -581 1456 0.51

Tamanrasset (TAM); 24◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 792 -77 81 0.49
3.79 839 6 76 0.60
4.88 847 -31 80 0.67
6.29 889 -103 97 0.67
8.12 873 -119 102 0.70
10.46 948 -118 150 0.72
13.50 1009 -140 125 0.83
17.42 897 -297 231 0.75
22.46 682 -264 352 0.54
29.00 1229 -232 489 0.87
37.46 1090 -701 400 0.81
48.38
62.46
80.67
104.17



E. Experimental responses 183

Las Mesas (TEN); 33◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 908 -119 62 0.56
3.79 968 -121 97 0.64
4.88 1026 -17 102 0.63
6.29 960 -80 111 0.63
8.12 1072 -229 146 0.65
10.46 1124 -250 222 0.68
13.50 986 -281 193 0.72
17.42 1056 -107 427 0.42
22.46 861 411 486 0.49
29.00 1233 -589 186 0.91
37.46
48.38
62.46
80.67
104.17

Tbilisi (TFS); 36◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 872 -81 39 0.64
3.79 911 -91 39 0.72
4.88 941 -64 51 0.71
6.29 975 -157 46 0.77
8.12 1025 -189 64 0.82
10.46 1043 -220 58 0.82
13.50 1024 -252 62 0.83
17.42 1082 -295 81 0.79
22.46 1115 -250 90 0.80
29.00 1103 -365 106 0.84
37.46 1313 -185 238 0.71
48.38 1308 -418 318 0.57
62.46 1439 -499 299 0.60
80.67 1232 -753 480 0.53
104.17 1738 -941 795 0.48



184 E. Experimental responses

Tonghai (THJ); 13◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 696 -604 178 0.23
3.79 809 -603 162 0.29
4.88 1083 -506 166 0.43
6.29 1139 -417 171 0.50
8.12 1024 -486 161 0.49
10.46 1216 -295 205 0.50
13.50 1301 -269 232 0.63
17.42 1212 -460 277 0.51
22.46 1120 -211 235 0.59
29.00 1139 -84 304 0.55
37.46 1249 -471 332 0.55
48.38 929 -265 650 0.27
62.46 867 -774 563 0.44
80.67 1441 -596 1803 0.28
104.17 2137 -1166 983 0.72

Tihany (THY); 45◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 814 888 -111 75 0.63
3.79 874 942 -53 95 0.68
4.88 881 948 -96 80 0.76
6.29 906 968 -167 74 0.77
8.12 901 966 -161 70 0.86
10.46 973 1033 -290 81 0.88
13.50 938 1009 -308 107 0.86
17.42 1009 1078 -275 129 0.87
22.46 1053 1111 -223 138 0.88
29.00 1183 1242 -378 156 0.91
37.46 1264 1309 -268 184 0.91
48.38 1303 1361 -643 224 0.93
62.46 1446 1490 -374 400 0.80
80.67 941 979 -207 523 0.74
104.17 1372 1436 -277 516 0.93
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Tashkent (TKT); 33◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 720 -219 88 0.58
3.79 719 -173 107 0.52
4.88 826 -104 125 0.61
6.29 866 -258 99 0.72
8.12 786 -222 142 0.68
10.46 921 -301 231 0.66
13.50 910 -241 191 0.74
17.42 960 -306 251 0.60
22.46 1103 -295 256 0.78
29.00 991 -350 213 0.90
37.46 1239 -415 365 0.78
48.38 975 0 943 0.36
62.46 1341 -1137 1227 0.73
80.67
104.17

Toledo (TOL); 43◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 932 959 -28 112 0.67
3.79 882 908 -12 140 0.69
4.88 1000 1025 -67 113 0.77
6.29 1045 1069 -152 182 0.70
8.12 1028 1053 -134 114 0.83
10.46 1176 1199 -140 155 0.83
13.50 1152 1179 -135 299 0.72
17.42 1144 1170 -52 396 0.60
22.46 1013 1035 102 391 0.74
29.00 1094 1117 -386 1757 0.44
37.46
48.38
62.46
80.67
104.17
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Toolangi (TOO); 45◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 706 -118 185 0.34
3.79 752 -143 191 0.37
4.88 800 -152 140 0.56
6.29 724 -232 204 0.52
8.12 878 -97 148 0.68
10.46 948 -78 140 0.82
13.50 734 -235 204 0.68
17.42 725 -385 463 0.59
22.46 676 -241 989 0.71
29.00 667 -187 506 0.93
37.46
48.38
62.46
80.67
104.17

Trelew (TRW); 33◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1038 167 133 0.38
3.79 1046 228 149 0.40
4.88 1010 88 223 0.42
6.29 950 90 154 0.63
8.12 802 64 151 0.64
10.46 1111 194 385 0.79
13.50 851 -326 494 0.56
17.42 572 519 903 0.76
22.46
29.00
37.46
48.38
62.46
80.67
104.17
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Tsumeb (TSU); 18◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1124 343 91 0.41
3.79 988 163 95 0.41
4.88 1084 177 121 0.48
6.29 994 200 149 0.44
8.12 1111 163 141 0.54
10.46 1124 39 255 0.51
13.50 1084 -51 300 0.59
17.42 1122 -170 344 0.55
22.46 515 8 498 0.32
29.00 914 -690 490 0.85
37.46
48.38
62.46
80.67
104.17

Tucson (TUC); 39◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 588 -361 58 0.53
3.79 674 -315 56 0.58
4.88 682 -272 56 0.64
6.29 717 -266 59 0.67
8.12 758 -285 56 0.78
10.46 827 -293 80 0.79
13.50 835 -284 68 0.82
17.42 869 -332 99 0.80
22.46 939 -324 122 0.84
29.00 945 -461 97 0.90
37.46 911 -431 175 0.80
48.38 899 -543 221 0.81
62.46 1134 -232 402 0.63
80.67 1202 -531 625 0.75
104.17
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Valentia (VAL); 55◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 337 780 -117 118 0.07
3.79 419 831 -95 115 0.12
4.88 512 913 -107 97 0.21
6.29 575 941 -139 78 0.31
8.12 588 963 -157 82 0.39
10.46 656 992 -270 91 0.47
13.50 598 989 -233 90 0.47
17.42 682 1057 -304 100 0.53
22.46 776 1094 -260 80 0.65
29.00 733 1049 -437 105 0.60
37.46 885 1124 -397 146 0.68
48.38 796 1100 -409 145 0.56
62.46 1012 1245 -415 177 0.67
80.67 1160 1368 -506 196 0.70
104.17 932 1269 -458 375 0.58

Gornotayezhnaya (VLA); 34◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 524 -214 67 0.36
3.79 518 -224 88 0.32
4.88 545 -312 83 0.44
6.29 615 -341 106 0.51
8.12 702 -344 95 0.68
10.46 726 -311 206 0.46
13.50 647 -403 250 0.48
17.42 1124 -286 341 0.62
22.46 1165 -526 725 0.50
29.00 930 -286 776 0.72
37.46
48.38
62.46
80.67
104.17
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Vassouras (VSS); 13◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 1425 293 448 0.29
3.79 1642 322 357 0.41
4.88 1613 648 458 0.56
6.29 1455 374 321 0.50
8.12 1265 211 491 0.54
10.46 1712 431 996 0.51
13.50 1316 127 684 0.42
17.42 842 -305 1296 0.20
22.46 1620 22 767 0.76
29.00 1235 50 2458 0.49
37.46
48.38
62.46
80.67
104.17

Watheroo (WAT); 40◦S

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 735 -71 249 0.41
3.79 757 -212 293 0.46
4.88 847 -194 186 0.68
6.29 931 -222 259 0.64
8.12 923 -222 233 0.80
10.46 956 -123 347 0.77
13.50 760 -42 327 0.65
17.42 1248 260 989 0.62
22.46 1572 -240 1001 0.87
29.00
37.46
48.38
62.46
80.67
104.17
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Wuhan (WHN); 20◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 575 -263 106 0.22
3.79 662 -240 115 0.28
4.88 798 -330 131 0.42
6.29 899 -244 125 0.54
8.12 924 -236 141 0.54
10.46 946 -322 182 0.49
13.50 1059 -287 170 0.59
17.42 1179 -279 253 0.52
22.46 1102 -44 448 0.47
29.00 984 -227 306 0.44
37.46 1241 -897 1161 0.33
48.38
62.46
80.67
104.17 1628 -667 1985 0.23

Wien Kobenzl (WIK); 47◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 795 901 -146 89 0.56
3.79 850 949 -88 105 0.63
4.88 837 935 -111 90 0.71
6.29 867 957 -186 69 0.74
8.12 832 925 -152 78 0.82
10.46 939 1023 -281 71 0.88
13.50 916 1017 -315 76 0.87
17.42 1030 1128 -249 140 0.86
22.46 992 1074 -173 114 0.87
29.00 1141 1224 -457 195 0.87
37.46 1168 1231 -440 240 0.86
48.38 1224 1305 -336 226 0.93
62.46 1183 1245 -485 267 0.80
80.67 1301 1355 -652 349 0.92
104.17 1306 1396 -378 959 0.84
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Witteveen (WIT); 53◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 423 741 -195 133 0.14
3.79 530 824 -207 132 0.22
4.88 595 883 -178 90 0.33
6.29 704 967 -217 92 0.44
8.12 712 982 -160 82 0.53
10.46 746 989 -231 100 0.56
13.50 726 1010 -271 93 0.61
17.42 764 1037 -302 118 0.65
22.46 929 1160 -215 134 0.70
29.00 856 1085 -443 130 0.73
37.46 1021 1195 -344 152 0.77
48.38 1032 1253 -414 145 0.79
62.46 1135 1304 -582 221 0.75
80.67 1388 1538 -432 319 0.77
104.17 1317 1562 -358 215 0.85

Wingst (WNG); 54◦N

Period Re C Re C∗ Im C δC coh2

[days] [km] [km] [km] [km]

2.96 398 740 -213 110 0.12
3.79 500 817 -187 117 0.19
4.88 535 845 -188 92 0.27
6.29 636 919 -248 77 0.41
8.12 663 953 -157 89 0.49
10.46 723 984 -312 89 0.59
13.50 674 978 -296 99 0.58
17.42 737 1030 -300 102 0.63
22.46 840 1088 -233 93 0.72
29.00 859 1105 -421 111 0.73
37.46 948 1135 -407 145 0.74
48.38 1090 1327 -470 155 0.75
62.46 1296 1477 -496 155 0.83
80.67 1193 1354 -505 220 0.82
104.17 1184 1447 -421 322 0.71
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Yuzhno Sakhalinsk (YSS); 38◦N

Period Re C Im C δC coh2

[days] [km] [km] [km]

2.96 514 -173 58 0.38
3.79 517 -175 61 0.41
4.88 577 -255 80 0.48
6.29 574 -265 74 0.54
8.12 645 -247 72 0.65
10.46 702 -268 76 0.70
13.50 665 -247 90 0.69
17.42 794 -337 132 0.72
22.46 781 -280 124 0.75
29.00 757 -385 109 0.83
37.46 1036 -368 326 0.67
48.38 901 -514 372 0.62
62.46 776 -223 499 0.62
80.67 589 -68 1121 0.46
104.17
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Code Station latitude longitude gm latitude gm longitude Data length

AAA Alma Ata 43.250 76.920 34.29 152.74 1963-2007
ABG Alibag 18.638 72.872 10.19 146.16 1957-2007
AIA Faraday Islands -65.250 295.730 -55.06 5.49 1957-2007
ALM Almeria 36.853 357.540 39.83 77.12 1957-1966
AML Amberley -43.152 172.722 -46.80 254.13 1961-1977
AMS Martin de Vivies -37.796 77.574 -46.39 144.27 1981-2007
AMT Amatsia 31.550 34.917 28.12 112.26 1979-2000
API Apia -13.807 188.225 -15.36 262.65 1957-2007
AQU L’Aquila 42.383 13.317 42.42 94.50 1960-2007
ARS Arti 56.433 58.967 49.13 139.91 1973-2007
ASH Vannovskaya 37.950 58.100 31.01 135.09 1972-1990
ASO Aso 32.882 131.009 23.35 200.75 1957-1959
ASP Alice Springs -23.761 133.883 -32.91 208.18 1992-2007
BDV Budkov 49.080 14.015 48.97 97.61 1994-2007
BEL Belsk 51.837 20.792 50.24 105.17 1966-2007
BFE Brorfelde 55.625 11.672 55.45 98.48 1981-2007
BFO Black Forest 48.330 8.320 49.06 91.80 2006-2007
BGY Bar Gyora 31.723 35.088 28.26 112.46 2003-2007
BJI Beijing 40.040 116.175 29.87 187.02 1960-1980
BMT Beijing Ming Tombs 40.300 116.200 30.13 187.04 1996-2007
BOU Boulder 40.130 254.760 48.40 320.59 1967-2007
BOX Borok 58.070 38.230 53.41 123.52 1980-2007
BSL Bay St. Louis 30.350 270.370 40.05 339.79 1986-2007
CBI Chichijima 27.096 142.185 18.47 211.63 1991-2006
CDP Chengdu 31.000 103.700 20.77 175.86 1995-2007
CLF Chambon-la-Foret 48.025 2.261 49.84 85.68 1957-2007
CNB Canberra -35.315 149.363 -42.71 226.94 1979-2007
CNH Changchun 43.827 125.299 33.96 194.80 1979-2007
COI Coimbra 40.220 351.580 44.14 71.99 1992-1994
CTA Charters Towers -20.090 146.264 -28.01 220.97 1990-2007
CZT Port Alfred -46.431 51.867 -51.35 113.28 1982-2007
DAL Dallas 32.980 263.250 42.15 331.47 1964-1974
DLR Del Rio 29.490 259.080 38.30 327.31 1982-2007
DOU Dourbes 50.100 4.600 51.43 88.90 1957-2007
EBR Ebro 40.821 0.493 43.18 81.30 1957-2007
ELT Eilat 29.670 34.950 26.27 111.89 1998-2007
ESA Esashi 39.237 141.355 30.46 209.42 2000-2007
ESK Eskdalemuir 55.317 356.800 57.80 83.75 1957-2007
EYR Eyrewell -43.410 172.350 -47.11 253.83 1978-2007
FRD Fredericksburg 38.200 282.630 48.40 353.38 1957-2007
FRN Fresno 37.090 240.280 43.52 305.25 1982-2007
FUR Furstenfeldbruck 48.165 11.277 48.38 94.61 1957-2007

Table 1 Station details: acronyms, names, locations (both in geographic and geomagnetic coordinates), and
time interval for estimating C-responses.
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Code Station latitude longitude gm latitude gm longitude Data length

GCK Grocka 44.633 20.767 43.29 102.40 1965-2007
GLM Golmud 36.400 94.900 26.39 168.06 1995-2006
GNA Gnangara -31.780 115.947 -41.93 188.84 1957-2007
GUI Guimar 28.321 343.559 33.78 60.59 1993-2007
GZH Guangzhou 23.093 113.343 12.88 184.84 1960-2007
HAD Hartland 51.000 355.517 53.90 80.17 1957-2007
HBK Hartebeesthoek -25.883 27.707 -27.13 94.40 1972-2007
HER Hermanus -34.425 19.225 -33.98 84.02 1957-2007
HLP Hel 54.608 18.817 53.24 104.63 1966-2007
HON Honolulu 21.320 202.000 21.64 269.74 1961-2007
HRB Hurbanovo 47.873 18.190 46.87 101.11 1957-2007
HTY Hatizyo 33.073 139.825 24.20 208.98 1986-2005
IRT Irkutsk 52.167 104.450 41.93 176.90 1957-2007
ISK Istanbul Kandilli 41.063 29.062 38.40 109.11 1957-1999
JAI Jaipur 26.920 78.900 17.92 152.32 1979-1987
KAK Kakioka 36.232 140.186 27.37 208.95 1957-2007
KDU Kakadu -12.686 132.472 -21.99 205.61 1995-2007
KIV Kiev 50.720 30.300 47.57 113.43 1958-1991
KNY Kanoya 31.424 130.880 21.89 200.75 1958-2006
KNZ Kanozan 35.256 139.956 26.38 208.65 1980-2007
KZN Kazan 55.830 48.850 49.75 131.59 1978-1989
KOU Kourou 5.210 307.269 14.89 19.66 1996-2007
KSH Kashi 39.500 76.000 30.64 151.44 1995-2007
LGR Logrono 42.450 357.500 45.29 78.80 1963-1966
LNP Lunping 25.000 121.167 14.99 192.14 1965-2007
LRM Learmonth -22.222 114.101 -32.42 186.46 1990-2007
LVV Lviv 49.900 23.750 47.87 107.11 1957-2007
LZH Lanzhou 36.087 103.845 25.86 176.08 1980-2007
MAB Manhay 50.300 5.680 51.42 90.05 1995-2007
MBO Mbour 14.384 343.033 20.11 57.47 1957-2007
MID Midway 28.210 182.620 25.02 249.50 2000-2002
MIZ Mizusawa 39.112 141.204 30.32 209.30 2000-2007
MMB Memambetsu 43.910 144.189 35.35 211.26 1957-2007
MNK Pleshenitzi(Minsk) 54.500 27.883 51.60 112.82 1961-1994
MOS Moscow 55.467 37.312 51.04 121.57 1957-2005
MZL Manzhouli 49.600 117.400 39.45 187.70 1995-2007
NCK Nagycenk 47.633 16.717 46.90 99.62 1993-2007
NGK Niemegk 52.072 12.675 51.88 97.64 1957-2007
NVS Novosibirsk 55.030 82.900 45.57 159.51 1966-2007
ODE Odessa 46.780 30.880 43.66 112.55 1957-1991
PAG Panagyurishte 42.520 24.180 40.65 104.95 1964-2007
PEG Penteli 38.083 23.933 36.37 103.43 1999-2003

Table 1 Station details: acronyms, names, locations (both in geographic and geomagnetic coordinates), and
time interval for estimating C-responses.
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Code Station latitude longitude gm latitude gm longitude Data length

PET Paratunka 53.100 158.630 45.95 221.73 1969-1995
PMG Port Moresby -9.460 147.160 -17.36 220.51 1958-1991
PPT Pamatai -17.567 210.426 -15.14 285.14 1968-1994
PST Port Stanley -51.703 302.110 -41.69 11.50 1994-2007
QIX Qianling 34.600 108.200 24.34 179.99 1995-2006
RSV Rude Skov 55.483 12.457 55.18 99.14 1957-1980
SFS San Fernando 36.462 353.795 40.09 73.18 1995-2004
SGE South Georgia -54.280 323.520 -45.57 28.81 1975-1982
SHL Shillong 25.550 91.880 15.68 164.72 1976-1987
SJG San Juan 18.110 293.850 28.31 6.08 1967-1982
SPT San Pablo 39.547 355.651 42.78 75.98 1997-2007
SSH Sheshan 31.097 121.187 21.08 191.89 1983-2006
SSO Simosato 33.575 135.940 24.39 205.19 1957-1965
SUA Surlari 44.680 26.253 42.39 107.58 1994-2007
SVD Ekaterinburg 56.730 61.070 49.14 142.07 1957-1980
TAM Tamanrasset 22.792 5.530 24.66 81.76 1993-2007
TEN Las Mesas 28.480 343.740 33.91 60.82 1973-1992
TFS Tbilisi 42.080 44.700 36.91 123.82 1957-2001
THJ Tonghai 24.000 102.700 13.79 174.81 1995-2007
THY Tihany 46.900 17.900 45.99 100.47 1957-2007
TKT Tashkent 41.333 69.617 33.05 146.02 1975-1981
TOL Toledo 39.880 355.950 43.06 76.39 1957-1980
TOO Toolangi -37.530 145.470 -45.38 223.12 1957-1979
TRW Trelew -43.248 294.685 -33.05 5.62 1957-2007
TSU Tsumeb -19.202 17.584 -18.97 85.83 1964-2007
TUC Tucson 32.170 249.270 39.88 316.11 1957-1994
VAL Valentia 51.930 349.750 55.79 74.63 1957-2007
VLA Gornotayezhnaya 43.683 132.167 34.19 200.79 1958-1988
VSS Vassouras -22.400 316.350 -13.29 26.61 2000-2007
WAT Watheroo -30.318 115.877 -40.47 188.90 1957-1958
WHN Wuhan 30.528 114.559 20.33 185.82 2000-2007
WIK Wien Kobenzl 48.265 16.318 47.58 99.49 1957-1984
WIT Witteveen 52.813 6.668 53.66 92.20 1957-1984
WNG Wingst 53.743 9.073 54.12 95.00 1957-2007
YSS Yuzhno Sakhalinsk 46.950 142.717 38.24 209.49 1970-1988

Table 1 Station details: acronyms, names, locations (both in geographic and geomagnetic coordinates), and
time interval for estimating C-responses.
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introduced me to this community. In particular I would like to thank the coaches Fränzi and
Greg, and the ZUF-open team - Henning, Dani, Livia, Luca, Reto, Sam, Pascal, Jonatan, Jeff

and Niki. From them I learned really a lot about personal spirit and communication with
people from completely different backgrounds.

I would like to acknowledge my friends in Moscow, who, even from Russia, were always
present during these 4 years of my PhD.

I wish to make a special acknowledgement to my sister Lena and my brother Leonid, who
always supported me emotionally in difficult times.

Last but by no means least, I want to express my deep gratitude to my dear parents, Alexan-
der and Natalia. I thank them for their constant love and believing in me.


	Abstract
	Zusammenfassung
	Introduction
	A brief history of early EM induction studies of the Earth
	Recent deep electromagnetic studies
	Response functions used to detect lateral variations of conductivity
	Recent regional 1-D studies of the conductivity in the Earth mantle
	Semi-global quasi 1-D studies
	Semi-global and global 3-D EM studies
	Global multi-dimensional EM studies in time domain

	Thesis outline

	Forward modeling
	Maxwell's equations
	Integral equation approach
	Solution of the integral equation
	Derivation of explicit forms for Green's tensors for electric current source

	Inverse modeling
	C-response concept
	Inverse problem formulation
	Parameterization of the model
	Limited-memory quasi-Newton (LMQN) algorithm
	Line search. The Wolfe conditions
	Limited-memory BFGS

	Adjoint approach for efficient calculation of the misfit gradient
	Definition of the operators Gej3D and Geh3D
	Derivatives of the C-responses
	Gradient of the data misfit
	Derivation of explicit forms for Green's tensor for a magnetic dipole source
	Tests of calculation of Green's tensor Geh1D
	Numerical verification of the adjoint approach

	Optimization and numerical verification of the 3-D inverse solution
	Optimization of the inverse solution
	Numerical verification


	Estimation of experimental C-responses
	Data collection
	Determination of C-responses
	Least squares approach
	The jackknife method
	C-responses selection

	Ocean effect in C-responses
	Resolution studies
	Two types of anomalous behavior due to ocean effect
	Dependence of the responses on 1-D conductivity structure beneath oceans
	Correction for the ocean effect

	Auroral effect in C-responses
	Existence of the auroral effect
	Longitudinal dependence
	Correction for the auroral effect


	3-D inversion of the experimental responses
	Detecting lateral variations in mantle conductivity
	Comparison with semi-global 3-D studies
	Comparison with global 3-D studies
	Comparison with global 3-D seismic studies

	Conclusions and outlook for future studies
	Conclusions
	Outlook for future studies
	Extending the data for global 3-D EM inversions
	Proper account/correction for the auroral effect
	Further developments of our global 3-D EM inversion solution
	Implementation of the alternative approach to global 3-D EM inversion


	Mathematical basics
	Analytic functions
	Properties of C-responses as analytic functions
	Spherical harmonics
	Laplace's equation
	Associated Legendre functions

	Helmholtz representation
	Scalar Green's functions
	Definition and properties
	Derivation of scalar Green's functions
	Calculation of admittances
	Calculation of scalar Green functions


	Representation of EM field in 1-D conductivity model via external coefficients
	Representation of Be via equivalent sheet current
	Final representation of EM fields

	Tests of different inversion settings
	Checkerboard test
	The results for different lateral resolutions of the inverse domain
	The results for different a priori models

	Mineral physics studies
	Experimental responses
	Bibliography
	Curriculum Vitae
	List of Publications
	Acknowledgements

