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Abstract

Financial bubbles are well known for their dramatic dynamics and consequences

that affect much of the world’s population. Consequently, much research has aimed

at understanding, identifying and forecasting bubbles and, in particular, the related,

subsequent crashes. However, researchers still cannot come to an agreement on the

definition and the causes of financial bubbles, let alone to correctly identify and

forecast them in advance.

The Johansen-Ledoit-Sornette (JLS) model is a framework to understand bubbles

and crashes from rational expectations. The model states that bubbles are not

characterized by exponential increase of price but rather by faster-than-exponential

growth of price, which is due to imitation and herding behavior of noise traders

creating a positive feedback mechanism during the bubble regime. Over longer than

the past decade, the predictability of the JLS model in detecting bubbles and crashes

has been confirmed both ex-post and ex-ante in various kinds of markets.

This thesis contributes to the current research on financial bubbles and the JLS

model by four aspects:

(i) Documentation of previous research on financial bubbles and the JLS model

with detailed clarifications to questions and criticisms on the JLS model. This

offers a synthesis of the existing state-of-the-art and best-practice advices in order

to catalyze useful future developments of research on bubbles.

(ii) Development of the generalized JLS models to estimate the fundamental value

of a stock and market risk diversification during a bubble. The first extension solved

the problem that the fundamental value of an asset is generally not directly observ-

able, poorly constrained to calculate and not distinguishable from an exponentially

growing bubble price. While the second extension provides the information about

the concentration of stock gains in a market over time. This new information is very

helpful to understand the risk diversification and to explain the investors’ behavior

during the bubble generation.

(iii) The standard JLS model has been extended to identify negative bubbles and

subsequent possible large market rebounds. By introducing a pattern recognition

method from the field of earthquake prediction, the systematic predictability of the
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JLS model in detecting crashes and rebounds has been confirmed in many major

global indices over a long period.

(iv) The JLS model has been used to make ex-post prediction of the 2008 financial

crash through analysis of the US repurchase agreements market size. This enhances

our understanding of the development of financial instabilities by providing the first

quantitative study of a leverage variable which complements other pieces of evidence

in equities, real estates and commodities.
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Zusammenfassung

Turbulenzen an den Märkten und Finanzblasen betreffen alle. Konsequenterweise

wird grosser Aufwand betrieben um Finanzblasen zu identifizieren, zu verstehen und

insbesondere deren Platzen vorherzusagen. Trotzdem ist es der wissenschaftlichen

Forschung bis heute nicht gelungen, Finanzblasen (und deren Platzen) zuverlässig

vorherzusagen. Stattdessen melden sich im Nachhinein immer wieder Koryphäen

und Experten, um die Tatsache zu vermelden, dass eine Finanzblase offensichtlich

war.

Das Johansen-Ledoit-Sornette (JLS) Modell ist ein Framework zum Verstehen

von Finanzblasen und deren Platzen aus der Sicht eines rationalen Investors. In

diesem Modell werden Blasen nicht als exponentielles Preiswachstum, sondern auf-

grund von Imitations- und Herdenverhalten von “Noise Tradern” und mit positivem

Feedback als “schneller-als-exponentielles” Preiswachstum beschrieben. Das JLS-

Modell hat sich sowohl bei ex-ante, wie auch bei ex-post Analysen für verschiedene

Marktumfeldern in den letzten Jahrzehnten als zuverlässig erwiesen.

Die vorliegende Arbeit trägt in vier Aspekten zum besseren Verständnis von

Marktblasen und des JLS-Modells bei:

(i) Dokumentation über bisher vorhandene Forschungsresultate über Marktblasen

und das JLS-Modells, inklusive einer detaillierten Diskussion und einer Klarstellung

zu Fragen und Kritik am JLS-Modell. Des Weiteren werden neue Entwicklungen

rund um das JLS-Modell sowie dessen praktische Anwendung diskutiert.

(ii) Verallgemeinerungen des JLS-Modells zur Berechnung des Fundamentalw-

ertes von Aktien und Marktrisiken während Finanzblasen. Eine erste Erweiterung

löst das Problem, dass der Fundamentalwert einer Aktie üblicherweise nicht direkt

beobachtbar und nicht unterscheidbar von einem exponentiell wachsendem Preis ist.

Eine zweite Erweiterung untersucht die Konzentration von Aktienpreisgewinnen im

Verlauf der Zeit. Diese Erweiterung ist hilfreich für das Verständnis der Risikodi-

versifikation und erklärt das Investorenverhalten bei der Bildung einer Finanzblase.

(iii) Erweiterung des Standard-JLS-Modell zur Identifikation von “negativen”

Finanzblasen und der damit verbundenen Trendwende. Durch die Benutzung von

Mustererkennungsmethoden aus der Erdbebenforschung kann die Fähigkeit des JLS-
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Modells, systematisch Finanzblasen und Trendveränderungen in Marktindexes über

lange Zeiträume vorherzusagen, bewiesen werden.

(iv) Analyse der Marktgrösse der US Rückkauf Vereinbarungen mittels JLS-

Modell zur ex-post Voraussage der Finanzmarktkrise von 2008. Dadurch wird das

Verständnis für die Bildung von Instabilitäten an den Finanzmärkten verbessert,

da erstmals die Fremdfinanzierung von Institutionen berücksichtigt wird und damit

vorhandene Studien über Aktienmärkte, Immobilien und Rohstoffe ergänzt werden.

v



Contents

Acknowledgments i

Abstract ii

Zusammenfassung iv

1 Introduction 1

1.1 What are bubbles? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 What are the causes of bubbles? . . . . . . . . . . . . . . . . . . . . 5

1.3 The Johansen-Ledoit-Sornette model as a tool to diagnose bubbles

ex-ante? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Introduction and clarifications to questions and criticisms on

the JLS model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 The generalized JLS models . . . . . . . . . . . . . . . . . . . 9

1.4.3 Systematic diagnosis and prediction of rebounds and crashes

in financial markets . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.4 Ex-post case study on the US repurchase agreements market

by using the JLS model to detect the leverage bubble . . . . 12

2 The Johansen-Ledoit-Sornette Model 13

2.1 Background of the JLS Model . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Long time scale fermentation of bubbles . . . . . . . . . . . . 16

2.1.2 Imitation and herding among humans as the cause of bubbles 17

2.1.3 Positive feedback among traders leads to power law growth in

asset price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



2.1.4 Competition between different types of traders lead to log-

periodic oscillations . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Derivation of the JLS Model and Bubble Conditions . . . . . . . . . 22

2.3 The Standard Fitting Procedure . . . . . . . . . . . . . . . . . . . . 25

2.4 Clarifications to Questions and Criticisms on the JLS Model . . . . . 27

2.4.1 Discussions on theory of the JLS model . . . . . . . . . . . . 27

2.4.2 Fitting problems concerning the JLS Model . . . . . . . . . . 30

2.4.3 Probabilistic forecast . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 The Generalized JLS Models 41

3.1 Inferring fundamental value of the stock and crash nonlinearity from

bubble calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 The generalized JLS models . . . . . . . . . . . . . . . . . . . 43

3.1.2 Calibration and results on three historical bubbles . . . . . . 46

3.1.3 Statistical comparisons of the four generalized JLS models . . 55

3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 The role of the diversification risk in the financial bubbles . . . . . . 60

3.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Calibration method . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Application to the Shanghai Composite Index (SSEC) . . . . 67

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Systematic Diagnosis and Prediction of Rebounds and Crashes

in Financial Markets 77

4.1 Diagnosis and Prediction of Rebounds in Financial Markets . . . . . 78

4.1.1 Literature review on market rebounds . . . . . . . . . . . . . 79

4.1.2 Theoretical model for detecting rebounds . . . . . . . . . . . 80

4.1.3 Rebound prediction method . . . . . . . . . . . . . . . . . . . 82

4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.5 Trading strategy . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



4.2 Detection of Crashes and Rebounds in Major Equity Markets . . . . 110

4.2.1 Prediction Method . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 Prediction in major equity markets . . . . . . . . . . . . . . . 116

4.2.3 Trading Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Leverage Bubble 135

5.1 Repos market size represents the leverage of the market . . . . . . . 136

5.2 Predicting financial crashes with the JLS model . . . . . . . . . . . . 140

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Conclusion and Outlook 149

6.1 Summary of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Future research on human dynamics . . . . . . . . . . . . . . 152

6.2.2 Interaction between open source information and stock market

behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

viii



1

Introduction

Financial bubbles are of extreme importance in modern society. Their formation

and dramatic bursts are usually considered to have great impact on most people

all over the world. Take the recent real estate bubble and the subsequent subprime

crisis as examples: Up to 2009, it led to more than four trillion global cumulative

losses of financial institutions [1], over six million job losses in the US [2] and the

destruction is still ongoing.

However, as the president of the Federal Reserve Bank of New York, William C.

Dudley stated in 2010[3]: “. . . what I am proposing is that we try — try to identify

bubbles in real time, try to develop tools to address those bubbles, try to use those

tools when appropriate to limit the size of those bubbles and, therefore, try to limit

the damage when those bubbles burst . . .” it is still very difficult in identifying,

understanding bubbles, and more importantly, trying to forecast and possibly avoid

them in advance. In this thesis, I will start the discussion on financial bubbles by

addressing the most fundamental questions which still remain unsolved: (i) What

are bubbles? (ii) What are the causes of bubbles? and (iii) How to diagnose bubbles

ex-ante?
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2 Identification and Forecasts of Financial Bubbles

1.1 What are bubbles?

Financial bubbles can be generally defined as transient upward acceleration of

prices above fundamental value [4, 5, 6, 7]. However, identifying unambiguously

the presence of a bubble remains an unsolved problem in standard econometric

and financial economic approaches [8, 9], due to the fact that the fundamental

value is in general poorly constrained and it is not possible to distinguish between

exponentially growing fundamental price and exponentially growing bubble price.

Therefore, a more precise definition of bubbles is required for the purpose to detect

them.

An investigation into some famous historical bubbles would give some more per-

ceptual knowledge of financial bubbles, and subsequently, crucial insights of their

definition.

The tulip mania

Perhaps the first famous bubble in economy history is the tulip mania that struck

Republic of Netherlands in 1630s. The country was experiencing a great prosperity

in the sixteenth and seventeenth century, during which the tulip was introduced to

Europe from the Ottoman Empire. The flower rapidly became a coveted luxury

item and a status symbol because of it beauty and profusion of varieties. A huge

number of the speculators started trading tulip, and consequently, the price of the

tulip bulbs raised to an unbelievable high level. For example, the bulb of “Viceroy”

cost between 3000 and 4200 florins, while as a comparison, a skilled craftsman at

the time earned about 300 florins a year [10]. In February 1637, the tulip market

suddenly collapsed [11].

The South Sea bubble

The South Sea bubble in 1720 was a great economic bubble leaded by speculation of

stock in the South Sea Company. During the War of the Spanish Succession, a large

amount of the British government debt was issued, and the government wanted to

cut off the interest rate of the debt to relieve its financial pressure. At the same

time, the stock of South Sea company was very popular because it was granted a

monopoly to trade in Spain’s South American colonies as part of a treaty during the

War of Spanish Succession. The company would like to hedge its risk by buying the
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Figure 1.1: A standardized price index for tulip bulb contracts, created by Earl
Thompson [11]. From February to May, the tulip market collapsed abruptly.

debts with its highly evaluated stocks and get stable income from the government.

Under this circumstance, the South Sea Scheme was activated exactly the same as

our discussion above. This scheme was considered to be a win-win trading. As a

consequence, the public started to buy the stocks of South Sea company and the

illegal actions from the company (fraud, lending money to the buyers to enable their

purchase of the stocks, etc.) escalated the irrational behavior. As Fig. 1.2 shows,

the share price had risen from the time the scheme was proposed: from £128 in

January to £1, 000 in early August, followed by a dramatic fall down to about 100

pounds within several months. Hundreds of people lost a huge amount of money,

including Sir Issac Newton. When he was asked about the continuance of the rising

of South Sea stock, he answered: “I can calculate the movement of the stars, but

not the madness of men” [12].

The late 1920s bubble and the great depression

The sharp rise and subsequent crash of stock prices in late 1920s is perhaps the most

striking episode in the history of American financial markets [13]. Before the crash,

hundreds of thousands of Americans invested heavily in the stock market in the belief
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Figure 1.2: Share price of South Sea company around the bubble. Source: Wikipedia
( zh.wikipedia.org/zh/File:South-sea-bubble-chart.png)

that the development of utility would lead to a “new” economy, and a significant

number of them were borrowing money to buy more stocks. The rising share prices

encouraged more people to invest, which created a positive feedback loop. A massive

bubble was generated by such kind of speculation. The bubble began to deflate, and

October 24, 1929 , which became known as “Black Thursday”, marked the beginning

of the “Great Crash”. This crash is one of the most devastating stock market crashes

in the history of the United States. It triggered the 12-year Great Depression that

affected all Western industrialized countries [14] and that did not end in the United

States until the onset of American mobilization for World War II at the end of 1941.

These famous historical bubbles offer some qualitative ideas on the reasons for

the absence of a quantitative definition: the term “bubble” refers to a situation

in which excessive public expectations of future price increases cause prices to be

temporarily elevated [15]. Take the dot-com bubble as an example, in the late

twentieth century, investors thought that better business models, network effects,

first-to-scale advantages, and real options effect could be considered as rational

reasons for the high prices of internet companies [16]. Based on this consideration,

the stock prices of information technology companies were temporarily elevated

in the late 1990s and finally crashed in 2000. The former U.S. Federal Reserve

chairman Alan Greenspan addressed this situation precisely [17]: “Is it possible that
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there is something fundamentally new about this current period that would warrant

such complacency? Yes, it is possible. Markets may have become more efficient,

competition is more global, and information technology has doubtless enhanced the

stability of business operations. But, regrettably, history is strewn with visions of

such new eras that, in the end, have proven to be a mirage. In short, history counsels

caution.”

1.2 What are the causes of bubbles?

What are the causes of bubbles? Many theories have been developed to answer

this question.

Financial bubbles can be generated by irrationality of the investors. According

to [4], the rise in the stock market depended on “the vested interest in euphoria that

leads men and women, individuals and institutions to believe that all will be better,

that they are meant to be richer and to dismiss as intellectually deficient what is

in conflict with that conviction.” This eagerness to buy stocks was then fueled by

an expansion of credit in the form of brokers’ loans that encouraged investors to

become dangerously leveraged. In this respect, Shiller [18] argues that the stock

price increase was driven by irrational euphoria among individual investors, fed by

an emphatic media, which maximized TV ratings and catered to investor demand

for pseudo-news.

Recent theories also show that bubbles can be generated even if there is no

irrational investors, because of (i) heterogeneous beliefs of investors together with

a limitation on arbitrage, (ii) positive feedback trading by “noise traders”, (iii)

synchronization failures among rational traders.

Many researches [19, 20, 21, 22, 23, 24, 25] show that the combined effects of het-

erogeneous beliefs and short-sales constraints may cause large movements in asset.

In this kind of models, the asset prices are determined at equilibrium to the extent

that they reflect the heterogeneous beliefs about payoffs. But short sales restrictions

force the pessimistic investors out of the market, leaving only optimistic investors

and thus inflated asset price levels. However, when short sales restrictions no longer

bind investors, then prices fall back down.
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In another class of models, the role of “noise traders” in fostering positive feed-

back trading has been emphasized. These “noise” positive feedback traders buy

securities when prices rise and sell when prices fall. Due to this positive feedback

mechanism, the deviation between the market price and the fundamental value has

been amplified [26, 27, 28, 29]. The empirical evidence on this theory are mainly

from the studies on momentum trading strategies. Stocks which performed poorly

in the past will perform better in a long-term perspective (over the next three to five

years) than stocks which performed well in the past [30]. In contrast, at interme-

diate horizon (three to twelve months), the stocks which performed well previously

will still perform better [31, 32].

Another mechanism preventing the growth of bubbles has been argued to be the

failure of synchronization of rational traders [33]. In this model, rational investors

decide to ride the bubble to make profit on it, which has been confirmed by empirical

studies on hedge funds (ideal rational investors) during the dot-com bubble [34].

They know that the market will eventually collapse when a sufficient number of

rational traders will sell out. However, the dispersion of their opinions on market

timing and the consequent uncertainty of the synchronization of their sell-off are

delaying this coming collapse, allowing the bubble to grow.

Here we only presented a brief summary on causes of bubbles. The detailed

survey on the existing bubble theories and main causes of bubbles can be found in

[35, 36].

1.3 The Johansen-Ledoit-Sornette model as a tool to

diagnose bubbles ex-ante?

The former Federal Reserve chairman Alan Greenspan said that “. . . we rec-

ognized that, despite our suspicions, it was very difficult to definitively identify a

bubble until after the fact — that is, when its bursting confirmed its existence.” [37]

at a symposium sponsored by the Federal Reserve Bank of Kansas City, Jackson

Hole, Wyoming in August 2002.

This statement also reflects the current situation in bubbles research. None of

the theories mention above can diagnose bubbles ex-ante. This may be due to
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the fact that all these theories cannot distinguish between exponentially growing

fundamental price and exponentially growing bubble price and cannot give a price

dynamics which leads to a crash.

To diagnose bubbles ex-ante, Sornette and his collaborators have proposed a

theoretical model, which is known as the Johansen-Ledoit-Sornette (JLS) model.

The JLS model describes the price dynamics during a bubble regime (identification)

by analyzing the cumulative human behaviors in a new perspective (causes). It

also has the ability to predict the most probable crash time after a bubble ex-ante

(forecasts).

In the JLS model, bubbles are actually not characterized by exponential prices

(sometimes referred to as “explosive”), but rather by faster-than-exponential growth

of price (that should therefore be referred to as “super-explosive”). The reason for

such faster-than-exponential regimes is that imitation and herding behavior of noise

traders and of boundedly rational agents create positive feedback in the valuation

of assets, resulting in price processes that exhibit a finite-time singularity at some

future time tc. See [38] for a general theory of finite-time singularities in ordinary

differential equations, [39] for a classification and [40, 41, 42] for applications. This

critical time tc is interpreted as the end of the bubble, which is often but not nec-

essarily the time when a crash occurs [43]. Thus, the main difference with standard

bubble models is that the underlying price process is considered to be intrinsically

transient due to positive feedback mechanisms that create an unsustainable regime.

Furthermore, the tension and competition between the value investors and the noise

traders may create deviations around the finite-time singular growth in the form of

oscillations that are periodic in the logarithm of the time to tc. Log-periodic oscilla-

tions appear to our clocks as peaks and valleys with progressively greater frequencies

that eventually reach a point of no return, where the unsustainable growth has the

highest probability of ending in a violent crash or gentle deflation of the bubble.

Log-periodic oscillations are associated with the symmetry of discrete scale invari-

ance, a partial breaking of the symmetry of continuous scale invariance, and occurs

in complex systems characterized by a hierarchy of scales. The detailed theory on

discrete scale invariance can be found in [44] and references therein.

The theory will be extended in Chapter 2 and relevant ongoing experiments will

be introduced to show that financial bubbles can be diagnosed ex-ante.
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1.4 Contribution of this thesis

This thesis builds on and contributes to the research on the Johansen-Ledoit-

Sornette (JLS) model to identify and forecast financial bubbles in four aspects:

1.4.1 Introduction and clarifications to questions and criticisms on

the JLS model

Background of the JLS model

During an endogenous bubble regime, the price of an asset follows a log-periodic

power law. We introduce the background of the JLS model in Sec. 2.1. The log-

periodic power law behavior in the JLS model can be interpreted by four steps:

the long time scale fermentation, imitation and herding among humans, positive

feedback among traders leads to power law growth in asset price and the competition

between different types of traders lead to log-periodic oscillations.

Derivation of the JLS model

The JLS model is an extension of the rational expectation bubble model of [45].

In this model, a crash is seen as an event potentially terminating the run-up of a

bubble. A financial bubble is modeled as a regime of accelerating (super-exponential

power law) growth punctuated by short-lived corrections organized according to the

symmetry of discrete scale invariance [44]. The super-exponential power law is

argued to result from positive feedback resulting from noise trader decisions that

tend to enhance deviations from fundamental valuation in an accelerating spiral.

We will give the derivation in Sec. 2.2.

Fit procedure

In Sec. 2.3, we briefly introduce the standard fit procedure of the JLS model. This

procedure is a combination of the heuristic search for the initial estimates and the

refine process to minimize the residuals between the model and the data. We nor-

mally use the taboo algorithm as the heuristic search method and the Levenberg-

Marquardt as the refine procedure.
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Clarifications to questions and criticisms on the JLS model

Having been developed for more than one decade, the JLS model has been stud-

ied, analyzed, used and criticized by several researchers. Much of this discussion is

helpful for advancing the research. However, several serious misconceptions seem

to be present within this collective conversation both on theoretical and empirical

aspects. Several of these problems appear to stem from the fast evolution of the

literature on the JLS model and related works. In the hope of removing possible

misunderstanding and of catalyzing useful future developments, in Sec. 2.4, we sum-

marize these common questions and criticisms concerning the JLS model and offer

a synthesis of the existing state-of-the-art and best-practice advices.

1.4.2 The generalized JLS models

Generalize the JLS model by introducing new factors in order to detect the impor-

tant but unknown market features during the bubble regime. With the knowledge

of these keynote factors, one can understand the bubble mechanisms more deeply

and take actions based on these new findings to regulate the market. Two types of

the generalized JLS model will be presented in this thesis.

The generalized JLS models by inferring fundamental value and crash

nonlinearity from bubble calibration

Identifying unambiguously the presence of a bubble in an asset price remains an

unsolved problem in standard econometric and financial economic approaches. A

large part of the problem is that the fundamental value of an asset is, in general,

not directly observable and it is poorly constrained to calculate. Further, it is not

possible to distinguish between an exponentially growing fundamental price and an

exponentially growing bubble price.

In Sec. 3.1, we present a series of the generalized JLS models by inferring the

fundamental value of an asset price and a crash nonlinearity from a bubble calibra-

tion. In addition to forecasting the time of the end of a bubble, the new models

can also estimate the fundamental value and the crash nonlinearity, meaning that

identifying the presence of a bubble is enabled by these models. In addition, the

crash nonlinearity obtained in the new models presents a new approach to possibly

identify the dynamics of a crash after a bubble.
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We test the models using data from three historical bubbles ending in crashes

from different markets. They are: the Hong Kong Hang Seng index 1997 crash,

the S&P 500 index 1987 crash (black Monday) and the Shanghai Composite index

2009 crash. All results suggest that the new models perform very well in describing

bubbles, forecasting their ending times and estimating fundamental value and the

crash nonlinearity.

The performance of the new models is tested under both the Gaussian residual

assumption and the non-Gaussian residual assumption. Under the Gaussian residual

assumption, nested hypotheses with the Wilks statistics are used and the p-values

suggest that models with more parameters are necessary. Under non-Gaussian resid-

ual assumption, we use a bootstrap method to get type I and II errors of the hypothe-

ses. All tests confirm that the generalized JLS models provide useful improvements

over the standard JLS model.

The generalized JLS model by considering the diversification risk of the

stock market

We present an extension of the JLS model in Sec. 3.2 to include an additional

pricing factor called the “Zipf factor”, which describes the diversification risk of

the stock market portfolio. Keeping all the dynamical characteristics of a bubble

described in the JLS model, the new model provides additional information about

the concentration of stock gains over time. This allows us to understand better

the risk diversification and to explain the investors’ behavior during the bubble

generation.

We apply this new model to two famous Chinese stock bubbles, from August

2006 to October 2007 (Bubble 1) and from October 2008 to August 2009 (Bubble

2). The Zipf factor is found highly significant for Bubble 1, corresponding to the

fact that valuation gains were more concentrated on the large firms of the Shanghai

index. It is likely that the widespread acknowledgement of the 80-20 rule in the

Chinese media and discussion forums led many investors to discount the risk of a

lack of diversification, therefore enhancing the role of the Zipf factor. For Bubble

2, the Zipf factor is found marginally relevant, suggesting a larger weight of market

gains on small firms. We interpret this result as the consequence of the response of

the Chinese economy to the very large stimulus provided by the Chinese government
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in the aftermath of the 2008 financial crisis.

1.4.3 Systematic diagnosis and prediction of rebounds and crashes

in financial markets

We will develop a new method which can diagnose and predict rebounds and crashes

in financial markets systematically by introducing a pattern recognition method into

the JLS framework of bubble calibration.

Diagnosis and prediction of rebounds in financial markets

In Sec. 4.1, we introduce the concept of “negative bubbles” as the mirror (but not

necessarily exactly symmetric) image of standard financial bubbles, in which positive

feedback mechanisms may lead to transient accelerating price falls. To model these

negative bubbles, we adapt the JLS model of rational expectation bubbles with a

hazard rate describing the collective buying pressure of noise traders. The price

fall occurring during a transient negative bubble can be interpreted as an effective

random down payment that rational agents accept to pay in the hope of profiting

from the expected occurrence of a possible rally. We validate the model by showing

that it has significant predictive power in identifying the times of major market

rebounds. This result is obtained by using a general pattern recognition method that

combines the information obtained at multiple times from a dynamical calibration

of the JLS model. Error diagrams, Bayesian inference and trading strategies suggest

that one can extract genuine information and obtain real skill from the calibration

of negative bubbles with the JLS model. We conclude that negative bubbles are in

general predictably associated with large rebounds or rallies, which are the mirror

images of the crashes terminating standard bubbles.

Detection of Crashes and Rebounds in Major Equity Markets

In Sec. 4.2 we extend the method in Sec. 4.1 to systematic ex-post forecasts and

detections of market crashes and rebounds from ten major global equity markets.

We show quantitatively that our developed alarm performs much better than chance

in forecasting market crashes and rebounds. We use the derived signal to develop

elementary trading strategies that produce statistically better performances than a

simple buy and hold strategy.
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1.4.4 Ex-post case study on the US repurchase agreements market

by using the JLS model to detect the leverage bubble

Leverage is strongly related to liquidity in a market and lack of liquidity is considered

a cause and/or consequence of the recent financial crisis. A repurchase agreement is

a financial instrument where a security is sold simultaneously with an agreement to

buy it back at a later date. Repurchase agreements (repos) market size is a very im-

portant element in calculating the overall leverage in a financial market. Therefore,

studying the behavior of repos market size can help to understand a process that

can contribute to the birth of a financial crisis. In Chapter 5, we hypothesize that

herding behavior among large investors led to massive over-leveraging through the

use of repos, resulting in a bubble (built up over the previous years) and subsequent

crash in this market in early 2008. We use the JLS model of rational expectation

bubbles and behavioral finance to study the dynamics of the repo market that led

to the crash. As we know that the JLS model qualifies a bubble by the presence

of log-periodic power law (LPPL) behavior in the price dynamics. We show that

there was significant LPPL behavior in the market before the crash in 2008 and

that the predicted range of times predicted by the model for the end of the bubble

is consistent with the observations.



2

The Johansen-Ledoit-Sornette Model

Bubbles and crashes in financial markets are of global significance because of

their effects on the lives and livelihoods of a majority of the world’s population. In

spite of this, the science to correctly identify bubbles in advance of their associated

crashes produces fewer successful results than that used to treat baldness, choose

‘quality’ videos to watch or find a date on the internet. Instead, pundits and experts

alike line up after the fact to claim that a particular bubble was obvious in hindsight.

Under this circumstance, the Johansen-Ledoit-Sornette (JLS) model [46, 47, 48,

5] has been developed to describe the dynamics of financial bubbles and crashes. The

model states that bubbles are not characterized by exponential increase of price but

rather by faster-than-exponential growth of price. This phenomenon is generated by

behaviors of investors and traders that create positive feedback in the valuation of

assets and unsustainable growth, leading to a finite-time singularity at some future

time tc. From a technical view point, the positive feedback mechanisms include

(i) option hedging, (ii) insurance portfolio strategies, (iii) market makers bid-ask

spread in response to past volatility, (iv) learning of business networks and human

capital build-up, (v) procyclical financing of firms by banks (boom versus contracting

times), (vi) trend following investment strategies, (vii) asymmetric information on

hedging strategies (viii) the interplay of mark-to-market accounting and regulatory

capital requirements. From a behavior view point, positive feedbacks emerge as a

result of the propensity of humans to imitate, their social gregariousness and the

resulting herding. This critical time tc of the model is interpreted as the end of the

13
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bubble, which is often but not necessarily the time when a crash occurs in the actual

system. During this growth phase, the tension and competition between the value

investors and the noise traders create deviations around the power law growth in the

form of oscillations that are periodic in the logarithm of the time to tc. Combining

these two effects, this model succinctly describes the price during a bubble phase as

log-periodic power law (LPPL).

Over longer than the past decade, the JLS model has been used widely to detect

bubbles and crashes ex-ante (i.e., with advanced documented notice in real time) in

various kinds of markets such as the 2006-2008 oil bubble [49], the Chinese index

bubble in 2009 [50], the real estate market in Las Vegas [51], the U.K. and U.S.

real estate bubbles [52, 53], the Nikkei index anti-bubble in 1990-1998 [54] and

the S&P 500 index anti-bubble in 2000-2003 [55]. Other recent ex-post studies

include the Dow Jones Industrial Average historical bubbles [56], the corporate bond

spreads [57], the Polish stock market bubble [58], the western stock markets [59],

the Brazilian real (R$) - US dollar (USD) exchange rate [60], the 2000-2010 world

major stock indices [61], the South African stock market bubble [62] and the US

repurchase agreements market [63]. Moreover, new experiments in ex-ante bubble

detection and forecast has been launched since November 2009 in the Financial

Crisis Observatory at ETH Zurich [64, 65, 66].

In this chapter, we present the JLS model to advance the science of understand-

ing why, how and when bubbles form so that they can be identified before they

spectacularly crash and spread misfortune to those who knowingly or unknowingly

had bet on a long position. We will also give a detailed derivation of the JLS model

to show that the JLS model is an extension of the rational expectation bubble model

and present the fit procedure of the JLS model. We finally discuss the questions

and criticisms on the JLS model and give a clarification.

2.1 Background of the JLS Model

The basis for the JLS approach contradicts the accepted wisdom of the Efficient

Market Hypothesis, which claims that large deviations from fundamental prices (i.e.,

bubbles and crashes) only exist when a new piece of information drops (exogenously)
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onto an unsuspecting market on a very short time scale. Instead, we claim that

bubbles are the result of endogenous market dynamics over a much longer time scale

— weeks, months and years. Because of the long build-up of these effects, bubbles

can be identified by particular dynamical signatures predicted by our theoretical

framework.

Among the well-documented history of financial bubbles and crashes over the

past 400 years, through countless significantly different countries and kings, empires

and economies, regulations and reform, there has been one consistent ingredient in

all booms and busts: humans. Only human behavior has survived all attempts at

preventing repeats in the wake of disastrous crashes. Much of the dynamics of the

long time scales mentioned above is due to humans acting like humans: those without

the knowledge imitate one another in the absence of a clearly better alternative and

take refuge in the comfort of the crowd (herding) while those with the knowledge

refute the masses and claim these noise traders are wrong.

We hypothesize that the signatures of this characteristic human behavior can

be quantitatively identified. The imitation and herding behavior creates positive

feedback in the valuation of an asset, resulting in a greater-than-exponential (power

law) growth of the price time series. The tension and competition between the

learned experts and the noise traders creates decorations on this power law growth

comprising oscillations that are periodic in the logarithm of time. Log-periodic

oscillations appear to our clocks as peaks and valleys with progressively smaller

amplitudes and greater frequencies that eventually reach a point of no return, where

the unsustainable growth has the highest probability of ending in a violent crash or

gentle deflation of the bubble.

The JLS model has thus been developed as a flexible tool to detect bubbles.

This model combines (i) the economic theory of rational expectation bubbles, (ii)

behavioral finance on imitation and herding of investors and traders and (iii) the

mathematical and statistical physics of bifurcations and phase transitions. The JLS

model considers the faster-than-exponential (power law with finite-time singularity)

increase in asset prices decorated by accelerating oscillations as the main diagnostic

of bubbles. It embodies a positive feedback loop of higher return anticipations

competing with negative feedback spirals of crash expectations.
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2.1.1 Long time scale fermentation of bubbles

In sharp contrast to the Efficient Market Hypothesis (EMH) that crashes result from

novel negative information incorporated in prices at short time scales, we build on

the radically different hypothesis summarized by Sornette [5], that the underlying

causes of the crash should be found in the preceding year(s). We define a bubble

as a market regime in which the price accelerates “super-exponentially”. The term

“super-exponential” means that the growth rate of the price grows itself. A constant

price growth rate (also called return) leads to an exponential growth, the normal

average trajectory of most economic and financial time series. When the growth rate

grows itself, the price accelerate hyperbolically. This growth of the growth rate is

interpreted as being due to progressively increasing build-up of market cooperation

between investors. As the bubble matures, its approaches a critical point, at which

an instability can be triggered in the form of a crash, or more generally a change

of regime. This critical point can also be called a phase transition, a bifurcation,

a catastrophe or a tipping point. According to this “critical” point of view, the

specific manner by which prices collapse is not the most important problem: a crash

occurs because the market has entered an unstable phase and any small disturbance

or process may reveal the existence of the instability. Think of a ruler held up

vertically on your finger: this very unstable position will lead eventually to its

collapse as a result of a small (or an absence of adequate) motion of your hand

or due to any tiny whiff of air. The collapse is fundamentally due to the unstable

position; the instantaneous cause of the collapse is secondary. In the same vein, the

growth of the sensitivity and the growing instability of the market close to such a

critical point might explain why attempts to unravel the proximal origin of the crash

have been so diverse. Essentially, anything would work once the system is ripe.

What is the origin of the maturing instability? A follow-up hypothesis underlying

this proposal is that, in some regimes, there are significant behavioral effects under-

lying price formation leading to the concept of “bubble risks”. This idea is probably

best exemplified in the context of financial bubble, where, fueled by initially well-

founded economic fundamentals, investors develop a self-fulfilling enthusiasm by an

imitative process or crowd behavior that leads to the building of castles in the air,

to paraphrase Malkiel [67].
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Our previous research suggests that the ideal economic view, that stock markets

are both efficient and unpredictable, may be not fully correct. We propose that, to

understand stock markets, one needs to consider the impact of positive feedbacks via

possible technical as well as behavioral mechanisms such as imitation and herding,

leading to self-organized cooperation and the development of possible endogenous

instabilities. We thus propose to explore the consequences of the concept that

most of the crashes have fundamentally an endogenous, or internal, origin and that

exogenous, or external, shocks only serve as triggering factors. As a consequence,

the origin of crashes is probably much more subtle than often thought, as it is

constructed progressively by the market as a whole, as a self-organizing process. In

this sense, the true cause of a crash could be termed a systemic instability.

2.1.2 Imitation and herding among humans as the cause of bubbles

Humans are perhaps the most social mammals and they shape their environment

to their personal and social needs. This statement is based on a growing body of

research at the frontier between new disciplines called neuroeconomics, evolutionary

psychology, cognitive science and behavioral finance ([68, 69, 70]). This body of evi-

dence emphasizes the very human nature of humans with its biases and limitations,

opposed to the previously prevailing view of rational economic agents optimizing

their decisions based on unlimited access to information and to computation re-

sources.

We hypothesize that financial bubbles are footprints of perhaps the most robust

trait of humans and the most visible imprint in our social affairs: imitation and

herding (see Sornette [5] and references therein). Imitation has been documented

in psychology and in neurosciences as one of the most evolved cognitive processes,

requiring a developed cortex and sophisticated processing abilities. In short, we

learn our basics and how to adapt mostly by imitation all through our life. It seems

that imitation has evolved as an evolutionary advantageous trait, and may even

have promoted the development of our anomalously large brain (compared with

other mammals), according to the so-called “social brain hypothesis” advanced by

R. Dunbar [71]. It is actually “rational” to imitate when lacking sufficient time,

energy and information to make a decision based only on private information and

processing, that is, most of the time. Imitation, in obvious or subtle forms, is a
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pervasive activity of humans. In the modern business, economic and financial worlds,

the tendency for humans to imitate leads in its strongest form to herding and to

crowd effects. Imitation is a prevalent form in marketing with the development of

fashion and brands. Cooperative herding and imitation lead to positive feedbacks,

that is, an action leads to consequences which themselves reinforce the action and

so on, leading to virtuous or vicious circles.

The methodology that we have developed consists in using a series of mathemat-

ical and computational formulations of these ideas, which capture the hypotheses

that (1) bubbles can be the result of positive feedbacks and (2) the dynamical sig-

nature of bubbles derives from the interplay between fundamental value investment

and more technical analysis. The former can be embodied in nonlinear extensions

of the standard financial Black-Scholes model of log-price variations [72, 73, 74, 75].

The later requires more significant extensions to account for the competition between

(i) inertia separating analysis from decisions, (ii) positive momentum feedbacks and

(iii) negative value investment feedbacks [73].

2.1.3 Positive feedback among traders leads to power law growth

in asset price

The idea of positive feedback has led us to propose that one of the hallmarks of a

financial bubble is the faster-than-exponential growth of the price of the asset under

consideration, as already mentioned. It is convenient to model this accelerated

growth by a power law with a so-called finite-time singularity [42]. This feature is

nicely illustrated by the price trajectory of the Hong Kong Hang Seng index from

1970 to 2000, as shown in Fig. 2.1. The Hong Kong financial market is repeatedly

rated as providing one of the most pro-economic, pro-entrepreneurship and free

market-friendly environments in the world, and thus provides a textbook example

of the behavior of weakly regulated liquid and striving financial markets. In Fig. 2.1,

the logarithm of the price p(t) is plotted as a function of time (in linear scale), so

that an upward trending straight line qualifies as exponential growth with a constant

growth rate: the straight solid line corresponds indeed to an approximately constant

growth rate of the Hang Seng index equal to 13.8% per year.

The most striking feature of Fig. 2.1 is not this average behavior but instead the

obvious fact that the real market is never following and abiding to a constant growth
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rate. One can observe a succession of price run-ups characterized by growth rates

. . . growing themselves: this is reflected visually in Fig. 2.1 by transient regimes

characterized by strong upward curvature of the price trajectory. Such an upward

curvature in a linear-log plot is a first visual diagnostic of a faster than exponen-

tial growth (which of course needs to be confirmed by rigorous statistical testing).

Such a price trajectory can be approximated by a characteristic transient finite-time

singular power law of the form

log p(t) = A + B(tc − t)m (2.1)

where B < 0, 0 < m < 1 and tc is the theoretical critical time corresponding to

the end of the transient run-up (end of the bubble). Such transient faster-than-

exponential growth of p(t) is our definition of a bubble. It has the major advantage

of avoiding the conundrum of distinguishing between exponentially growing funda-

mental price and exponentially growing bubble price, which is a problem permeating

most of the previous statistical tests developed to identify bubbles [9, 8]. The con-

ditions B < 0 and 0 < m < 1 ensure the super-exponential acceleration of the

price, together with the condition that the price remains finite even at tc. Stronger

singularities can appear for m < 0.

To see that faster-than-exponential growth is naturally related to positive feed-

back, let us consider the following simple presentation. Consider a population of

animals of size x which grows with some constant rate k, i.e., dx/dt = k x. Then,

growth is exponential in that x(t) = x(0) ekt. On the other hand, positive feedback

in growth dynamics arises if the growth rate k itself depends on the population size

x in that the growth rate k = k(x) increases with the population size. A particular

simple example is the setting k(x) ∼ xm−1, where m > 1. Indeed, m − 1 can be re-

garded as a measure of the degree of cooperation within the population: the higher

m is the larger is the degree of cooperation. In the case of no cooperation, growth

dynamics is exponential. Positive multiplicative feedback generates growth which

is faster than exponential. Indeed, due to growth dynamics given by dx/dt = k xm,

the size of the population growth exhibits a finite-time singularity at tc. This singu-

larity is attained according to x(t) = x(0)[1 − τ ]
1

1−m , 0 < τ < 1 where τ = t
tc

. Note

that when m = 1, no cooperation, growth is indeed exponential and when m > 1,

growth dynamics is in fact faster than exponential. It is remarkable that a critical
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time tc emerges apparently out of nowhere. Actually, tc is determined by the initial

conditions and the structure of the growth equation. This emergence of tc which

depends on the initial conditions justifies its name in mathematical textbooks as a

“movable singularity.”

Figure 2.1: Trajectory of the Hong-Kong Hang Seng index from 1970 to 2000.
The vertical log-scale together with the linear time scale allows one to qualify an
exponential growth with constant growth rate as a straight line. This is indeed the
long-term behavior of this market, as shown by the best linear fit represented by the
solid straight line, corresponding to an average constant growth rate of 13.8% per
year. The 8 arrows point to 8 local maxima that were followed by a drop of the index
of more than 15% in less than three weeks (a possible definition of a crash). The 8
small panels at the bottom show the upward curvature of the log-price trajectory
preceding each of these local maxima, which diagnose unsustainable bubble regimes,
each of which culminates at its peak before crashing.

Many systems exhibit similar transient super-exponential growth regimes, which

are described mathematically by power law growth with an ultimate finite-time sin-

gular behavior. An incomplete list of examples includes: planet formation in solar

systems by runaway accretion of planetesimals, rupture and material failures, nucle-

ation of earthquakes modeled with the slip-and-velocity, models of micro-organisms

interacting through chemotaxis aggregating to form fruiting bodies, the Euler rotat-
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ing disk, and so on. Such mathematical equations can actually provide an accurate

description of the transient dynamics not too close to the mathematical singularity

where new mechanisms come into play. The singularity at tc mainly signals a change

of regime. In the present context, tc is the end of the bubble and the beginning of

a new market phase, possibly a crash or a different regime.

Such an approach may be thought at first sight to be inadequate or too naive to

capture the intrinsic stochastic nature of financial prices, whose null hypothesis is the

geometric random walk model [67]. However, it is possible to generalize this simple

deterministic model to incorporate nonlinear positive feedback on the stochastic

Black-Scholes model, leading to the concept of stochastic finite-time singularities

[72, 76, 77, 75, 78, 79]. Still much work needs to be done on this theoretical aspect.

Coming back to Fig. 2.1, one can also notice that each burst of super-exponential

price growth is followed by a crash, here defined for the eight arrowed cases as a

correction of more than 15% in less than 3 weeks. These examples suggest that

the non-sustainable super-exponential price growths announced a “tipping point”

followed by a price disruption, i.e., a crash. The Hong-Kong Hang Seng index shows

that the average exponential growth of the index is punctuated by a succession of

bubbles and crashes, which seem to be the norm rather than the exception.

2.1.4 Competition between different types of traders lead to log-

periodic oscillations

More sophisticated models than Eq. (2.1) have been proposed to take into account

the interplay between technical trading and herding (positive feedback) versus fun-

damental valuation investments (negative mean-reverting feedback). Accounting for

the presence of inertia between information gathering and analysis on the one hand

and investment implementation on the other hand [80], and taking additionally into

account the coexistence of trend followers and value investing [73], the resulting

price dynamics develop second-order oscillatory terms and boom-bust cycles. Value

investing does not necessarily cause prices to track value. Trend following may cause

short-term trend in prices but, together with value investing and inertia, also causes

longer-term oscillations.

The simplest model generalizing Eq. (2.1) and including these ingredients is the

so-called log-periodic power law (LPPL) model (see Sornette [5] and references
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therein). Formally, some of the corresponding formulas can be obtained by con-

sidering that the exponent m is a complex number with an imaginary part, where

the imaginary part expresses the existence of a preferred scaling ratio γ describing

how the continuous scale invariance of the power law Eq. (2.1) is partially broken

into a discrete scale invariance [44]. The LPPL structure may also reflect the dis-

crete hierarchical organization of networks of traders, from the individual to trading

floors, to branches, to banks, to currency blocks. More generally, it may reveal the

ubiquitous hierarchical organization of social networks recently reported [81] to be

associated with the social brain hypothesis [71].

Examples of calibrations of financial bubbles with one implementation of the

LPPL model are the 8 super-exponential regimes discussed above in Fig. 2.1: the 8

small insets at the bottom of the figure show the LPPL calibration on the Hang Seng

index. Preliminary tests [5] suggest that the LPPL model provides a good starting

point to detect bubbles and forecast their most probable end. Rational expectation

models of bubbles a la Blanchard and Watson implementing the LPPL model [48, 47]

have shown that the end of the bubble is not necessarily accompanied by a crash,

but it is indeed the time where a crash is the most probable. But crashes can occur

before (with smaller probability) or not at all. That is, a bubble can land smoothly,

approximately one-third of the time, according to preliminary investigations [43].

Therefore, only probabilistic forecasts can be developed. Probability forecasts are

indeed valuable and commonly used in daily life, such as in weather forecast.

2.2 Derivation of the JLS Model and Bubble Conditions

The JLS model of financial bubbles and crashes is an extension of the rational

expectation bubble model of [45]. As we discussed before, a crash in this model is

seen as an event potentially terminating the run-up of a bubble. A financial bubble

is modeled as a regime of accelerating (super-exponential power law) growth punc-

tuated by short-lived corrections organized according the symmetry of discrete scale

invariance [44]. The super-exponential power law is argued to result from positive

feedback resulting from noise trader decisions that tend to enhance deviations from

fundamental valuation in an accelerating spiral.
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In the JLS model, the dynamics of stock markets is described as

dp

p
= µ(t)dt + σ(t)dW − κdj , (2.2)

where p is the stock market price, µ is the drift (or trend) and dW is the increment

of a Wiener process (with zero mean and unit variance). The term dj represents a

discontinuous jump such that dj = 0 before the crash and dj = 1 after the crash

occurs. The loss amplitude associated with the occurrence of a crash is determined

by the parameter κ. The assumption of the constant jump size is easily relaxed by

considering a distribution of jump sizes, with the condition that its first moment

exists. Then, the no-arbitrage condition is expressed similarly with κ replaced by its

mean. Each successive crash corresponds to a jump of dj by one unit. The dynamics

of the jumps is governed by a crash hazard rate h(t). Since h(t)dt is the probability

that the crash occurs between t and t + dt conditional on the fact that it has not

yet happened, we have Et[dj] = 1 × h(t)dt + 0 × (1 − h(t)dt) and therefore

Et[dj] = h(t)dt . (2.3)

Under the assumption of the JLS model, noise traders exhibit collective herding

behaviors that may destabilize the market. The JLS model assumes that the aggre-

gate effect of noise traders can be accounted for by the following dynamics of the

crash hazard rate

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos(ω ln(tc − t) − φ′) . (2.4)

The intuition behind this specification Eq. (2.4) has been presented at length in

[46, 48, 47], among others, and further developed in [40] for the power law part and

by [73, 81] for the second term in the right-hand-side of expression Eq. (2.4). In a

nutshell, the power law behavior ∼ (tc − t)m−1 embodies the mechanism of positive

feedback posited to be at the source of the bubbles. If the exponent m < 1, the crash

hazard may diverge as t approaches a critical time tc, corresponding to the end of the

bubble. The cosine term in the r.h.s. of Eq. (2.4) takes into account the existence of

a possible hierarchical cascade of panic acceleration punctuating the course of the

bubble, resulting either from a preexisting hierarchy in noise trader sizes [82] and/or

from the interplay between market price impact inertia and nonlinear fundamental

value investing [73].
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The no-arbitrage condition reads Et[dp] = 0, where the expectation is performed

with respect to the risk-neutral measure, and in the frame of the risk-free rate.

This is the standard condition that the price process is a martingale. Taking the

expectation of expression Eq. (2.2) under the filtration (or history) until time t reads

Et[dp] = µ(t)p(t)dt + σ(t)p(t)Et[dW ] − κp(t)Et[dj] . (2.5)

Since Et[dW ] = 0 and Et[dj] = h(t)dt (equation (3.19)), together with the no-

arbitrage condition Et[dp] = 0, this yields

µ(t) = κh(t) . (2.6)

This result (3.22) expresses that the return µ(t) is controlled by the risk of the crash

quantified by its crash hazard rate h(t).

Now, conditioned on the fact that no crash occurs, Eq. (2.2) is simply

dp

p
= µ(t)dt + σ(t)dW = κh(t)dt + σ(t)dW . (2.7)

Its conditional expectation leads to

Et

[

dp

p

]

= κh(t)dt . (2.8)

Substituting with the expression Eq. (2.4) for h(t) and integrating yields the so-

called log-periodic power law equation:

ln E[p(t)] = A + B(tc − t)m + C(tc − t)m cos(ω ln(tc − t) − φ) (2.9)

where B = −κB′/m and C = −κC ′/
√

m2 + ω2. Note that this expression Eq. (2.9)

describes the average price dynamics only up to the end of the bubble. The JLS

model does not specify what happens beyond tc. This critical tc is the termination

of the bubble regime and the transition time to another regime. This regime could

be a big crash or a change of the growth rate of the market. Merrill Lynch EMU

(European Monetary Union) Corporates Non-Financial Index in 2009 [64] provides

a vivid example of a change of regime characterized by a change of growth rate

rather than by a crash or rebound.

For m < 1, the crash hazard rate accelerates up to tc but its integral up to t

which controls the total probability for a crash to occur up to t remains finite and

less than 1 for all times t ≤ tc. It is this property that makes it rational for investors
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to remain invested knowing that a bubble is developing and that a crash is looming.

Indeed, there is still a finite probability that no crash will occur during the lifetime

of the bubble. The excess return µ(t) = κh(t) is the remuneration that investors

require to remain invested in the bubbly asset, which is exposed to a crash risk. The

condition that the price remains finite at all time, including tc, imposes that m > 0.

Within the JLS framework, a bubble is qualified when the crash hazard rate

accelerates. According to Eq. (2.4), this imposes m < 1 and B′ > 0, hence B < 0

since m > 0 by the condition that the price remains finite. We thus have a first

condition for a bubble to occur

0 < m < 1 . (2.10)

By definition, the crash rate should be non-negative. This imposes [83]

b ≡ −Bm − |C|
√

m2 + ω2 ≥ 0 . (2.11)

2.3 The Standard Fitting Procedure

Among the seven parameters in the JLS model, three of them are the linear

parameters (A,B and C). The other four (tc,m, ω and φ) are nonlinear parameters.

In the standard fitting procedure, we first slave the linear parameters to the

nonlinear ones [47]. The detailed equations and procedure is as follows. We rewrite

Eq. (2.9) as:

E[ln p(t)] = A + Bf(t) + Cg(t) := RHS(t) . (2.12)

We have also defined

f(t) = (tc − t)m , (2.13)

g(t) = (tc − t)m cos(ω ln(tc − t) − φ) . (2.14)

The minimization of the sum of the squared residuals should satisfy

∂Σt[ln p(t) − RHS(t)]2

∂θ
= 0, ∀ θ ∈ {A,B,C}. (2.15)

The linear parameters A,B and C are determined as the solutions of the linear



26 Identification and Forecasts of Financial Bubbles

system of four equations:
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where [t1, t2] is the fitting interval of the time series. t1 is the starting time and t2 is

the ending time of the price time being fitted by expression Eq. (2.9) or equivalently

Eq. (2.12). This provides three analytical expressions for the three linear parameters

as a function of the remaining nonlinear parameters tc,m, ω, φ. The resulting cost

function (sum of square residuals) becomes function of just the four nonlinear pa-

rameters tc,m, ω, φ. This achieves a very substantial gain in stability and efficiency

as the search space is reduced to the 4 dimensional parameter space (tc,m, ω, φ). A

heuristic search implementing the taboo algorithm [84] is used to find initial esti-

mates of the parameters which are then passed to a Levenberg-Marquardt algorithm

[85, 86] to minimize the residuals (the sum of the squares of the differences) between

the model and the data.

The bounds of the search space are normally selected as:

tc ∈ [t2, t2 + 0.375(t2 − t1)] (2.17)

m ∈ [10−5, 1 − 10−5] (2.18)

ω ∈ [0.01, 40] (2.19)

φ ∈ [0, 2π − 10−5] (2.20)

We choose these bounds because m has to be between 0 and 1 according to the

discussion before; the log-angular frequency ω should be greater than 0. The up-

per bound 40 is large enough to catch high-frequency oscillations (though we later

discard fits with ω > 20); the phase φ should be between 0 and 2π; The predicted

critical time tc should be after the end t2 of the fitted time series. Finally, the upper

bound of the critical time tc should not be too far away from the end of the time

series since predictive capacity degrades far beyond t2. Jiang et al. [50] have found

empirically that a reasonable choice is to take the maximum horizon of predictability

to extent to about one-third of the size of the fitted time window.
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2.4 Clarifications to Questions and Criticisms on the

JLS Model

Having been developed for more than one decade, the JLS model has been stud-

ied, used and criticized by many researchers including Feigenbaum [87], Chang and

Feigenbaum [88, 89], van Bothmer and Meister [83], Fry [90], and Fantazzini and

Geraskin [91]. The most recent papers addressing the pros and cons of past works

on the JLS model are written by Bree and his collaborators [92, 93]. Many ideas in

these last two papers are correct, pointing out that some of the earlier works had

some inconsistencies. However, there are some serious misunderstandings present of

both the theoretical and empirical parts of the model. Therefore, it is necessary to

address and clarify the misconceptions that some researchers seem to hold concern-

ing this model and to provide an updated, concise reference on the JLS model.

In this section, we first discusses the questions about the theory of the JLS

model in Sec. 2.4.1. The questions on fitting methods of the model are commented

in Sec. 2.4.2. Issues on probabilistic forecast will be addressed in Sec. 2.4.3.

2.4.1 Discussions on theory of the JLS model

We discuss three issues related to the derivation and the proper parameter ranges.

Why m should be between 0 and 1?

We claim that the parameter m in the JLS model should be between 0 and 1. This

point has been discussed in the Sec. 2.2. However, Bree and Joseph asked why m

cannot be greater than 1 in [92]. Therefore, we would like to give a detailed answer

as follows:

1. For m < 1, the crash hazard rate accelerates up to tc but its integral up to t,

which controls the total probability for a crash to occur up to t, remains finite and

less than 1 for all times t ≤ tc. It is this property that makes rational for investors

to remain invested knowing that a bubble is developing and that a crash is looming.

Indeed, there is still a finite probability that no crash will occur during the lifetime

of the bubble. The excess return µ(t) = κh(t) is the remuneration that investors

require to remain invested in the bubbly asset, which is exposed to a crash risk.

The crash hazard may diverge as t approaches a critical time tc, corresponding to
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the end of the bubble.

2. Within the JLS framework, a bubble exists when the crash hazard rate accel-

erates with time. According to Eq. (2.4), this imposes m < 1 and B′ > 0. That is,

m ≥ 1 cannot lead to an accelerating hazard rate.

3. Finally, the condition that the price remains finite at all time, including tc,

imposes that m > 0.

Summarize the points above, we conclude that a proper range of m where the

bubble occurs should be 0 < m < 1.

Non-negative risk condition

van Bothmer and Meister derived a constraint on the variables of the JLS model

[83] from the statement that the crash rate should be non-negative. It states that:

b := −Bm − |C|
√

m2 + ω2 ≥ 0. (2.21)

Most current research using the JLS model has taken this restriction into considera-

tion. It is among the basic restrictive filters for identifying bubbles in a more modern

framework. In [94, 95, 96, 97], b in Eq. (2.21) is even used as a key parameter for

pattern recognition method to detect the market rebounds.

How can the price in the JLS model be decreasing during a bubble?

Bree and Joseph claim that “the mechanism proposed to lead to LPPL fluctuations

as reported in [47] must be incorrect as it requires the price to be increasing through-

out the bubble.” Bree and Joseph are completely mistaken here. Sec. 2.2 presents

the JLS model in a self-consistent way. The error of Bree and Joseph is that they do

not realize that, even if not specified, the definition of the JLS model includes implic-

itly the stochastic term σdW as in expression Eq. (2.2). In expectations, this term

disappears, hence it is not included in the description of the initial JLS paper. But,

Bree and Joseph are wrong to conclude that the JLS model imposes that the price

is always monotonously increasing. Note that the formulation is nothing but that

of the rational expectation of [45], which follows exactly the same procedure, with

a stochastic component which does not play a role in the specification of the crash

hazard rate relationship to the µ term, but is present to ensure that the price can

indeed decrease. As indicated at the Sec. 2.4.1, note that van Bothmer and Meister
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showed that a certain condition between the parameters of the LPPL fit should hold

in order for the crash hazard rate to remain positive at all times until the end of the

bubble, but this condition is not that the price should be non-decreasing or always

increasing!

Faster-than-exponential growth in the JLS model

One of the fundamental differences between the JLS model and standard models

of financial bubbles is that the JLS model claims that the price follows a faster-

than-exponential growth rate during the bubble. It is necessary to emphasize this

statement as many researchers make mistakes here. For example, Bree and Joseph

wrote “exponential growth is posited in the LPPL” in several places in [92].

Financial bubbles are generally defined as transient upward acceleration of prices

above the fundamental value [4, 6, 7]. However, identifying unambiguously the

presence of a bubble remains an unsolved problem in standard econometric and

financial economic approaches [9, 8], due to (i) the fact that the fundamental value

is in general poorly constrained and (ii) the difficulty in distinguishing between an

exponentially growing fundamental price and exponentially growing bubble price.

As we have already described, the JLS model defines a bubble in terms of faster-than-

exponential growth [43]. Thus, the main difference with standard bubble models is

that the underlying price process is considered to be intrinsically transient due to

positive feedback mechanisms that create an unsustainable regime. See for instance

[50] where this is made as clear as possible.

Which kind of bubbles can be detected by the JLS model?

In page 4 of [92], three claims are outlined. One of them states that: “Financial

crashes are preceded by bubbles with fluctuations. Both the bubble and the crash

can be captured by the JLS model when specific bounds are imposed on the critical

parameters β and ω”, where β is presented as m in this paper.

Here, we should stress that this above claim is not entirely correct because crashes

can be endogenous or exogenous. The JLS model is suitable only for endogenous

crashes! Or more precisely, the JLS model is for bubbles, not for crashes. Endoge-

nous crashes are preceded by the bubbles that are generated by positive feedback

mechanisms of which imitation and herding of the noise traders are probably the
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dominant ones among the many positive feedback mechanisms inherent to finan-

cial system. In the abstract of the reference [43], Johansen and Sornette state:

“Globally over all the markets analyzed, we identify 49 outliers (now referred more

appropriately as “dragon-kings” [98]), of which 25 are classified as endogenous, 22

as exogenous and 2 as associated with the Japanese anti-bubble. Restricting to

the world market indices, we find 31 outliers, of which 19 are endogenous, 10 are

exogenous and 2 are associated with the Japanese anti-bubble.” Although the en-

dogenous outliers are more frequent than the exogenous ones, the exogenous outliers

still constitute a quite large portion. Therefore, the JLS model cannot capture all

of the crashes in the market. Only endogenous crashes which are preceded by the

bubbles can be captured by the JLS model.

2.4.2 Fitting problems concerning the JLS Model

Extensions of the JLS model and their calibration

The form of the JLS model we obtained in Eq. (2.9) is called the first-order LPPL

Landau JLS model. Extensions have been proposed, essentially amounting to choos-

ing alternative forms of the crash hazard rate h(t) that replace expression Eq. (2.4).

Let us mention the so-called second-order and third-order LPPL Landau models

[40, 54, 99, 55, 100], the Weierstrass-type LPPL model [101, 102], the JLS model

extended with second-order and third-order harmonics [103, 104, 51, 62] and the

JLS-factor model in which the LPPL bubble component is augmented by other

financial risks factors [105, 106]. We should also mention that a non-parametric es-

timation of the log-periodic power law structure has been developed to complement

the above parametric calibrations [107]. These extensions are warranted by the fact

that the positive feedback mechanisms together with the presence of the symme-

try of discrete scale invariance can be embodied in a general renormalization group

equation [101], whose general solution is the Weierstrass-type LPPL model. Then,

the first-order LPPL Landau JLS model can be considered to be just the first term

in a general log-periodic Fourier series expansion of the general solution. Therefore,

further away from the critical time tc, corrections from the first-order expression

can be expected to be relevant, depending on the context. In addition, nonlinear

extensions to the renormalization group are embodied partially in the second-order

and third-order LPPL Landau models, which extend the time domain over which
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the model can be calibrated to the empirical data [82].

Let us mention that Sornette and Johansen [82] discussed the difference between

the fitting results obtained using the first order and the second order LPPL Landau-

type JLS models. They used daily prices of the S&P 500 index from 1980 to 1987.

The results show that the fitting result of the second order form is much better

than the first order form, as based on the measure of residual sum of squares. A

standard Wilks test of nested hypotheses confirms the fact that the second-order

form provides a statistically significant improvement over the first-order form (recall

that the first-order LPPL Landau formula is recovered as a special case of the second-

order LPPL Landau formula, hence the first model is nested within the second

model). We reproduce the fitting results from [82] in Fig. 2.2 to give an intuition

on the difference between the first order and second order LPPL Landau fits. One

can observe that the first-order LPPL Landau formula accounts reasonably well for

the data from mid-1985 to the peak in October 1987. In contrast, the second-order

LPPL Landau formula provides a good fit all the way back to the beginning of 1980.

This result helps explain why the results quoted by Bree et al. [93] for time windows

of 834 trading days may be questionable.

Notwithstanding the improvement provided by the second-order LPPL Landau

model for large time windows, it is sufficient in many cases to use the first-order

version just to get a diagnostic of the presence of a bubble. This is true even when

the time window is larger than 2-3 years. For instance, the first-order LPPL Landau

model was implemented within a pattern recognition method [94, 95, 97] with time

windows of up to 1500 days. The key to the reported performance in forecasting

[94, 95, 97] is the combination of bubble diagnostics at multiple time scales, with

common model parameters associated with robustness.

Selection of the start of the time window

A common question arising in fitting the JLS model is to decide which date t1 should

be selected as the beginning of the fitting time window. Bree and Joseph [92] are

more consistent in defining bubbles to analyze and their exact beginnings than the

papers of 1998 – 2000 they analyze, which date from a decade at least. This is a

very good approach. However, we would like to note that more recent procedures

are more systematic as shown for instance in [50, 95, 96, 108, 64, 91]. In these more
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Figure 2.2: Time dependence of the logarithm of the New York stock exchange index
S&P 500 from January 1980 to September 1987 and the best fits by the first and
the second order LPPL Landau models. The crash of October 14, 1987 corresponds
to 1987.78 decimal years. The thin line represents the best fit with the first-order
LPPL Landau model on the interval from July 1985 to the end of September 1987
and is shown on the whole time span since January 1980. The thick line is the fit
by the second-order LPPL Landau model from January 1980 to September 1987.
(Reproduced from [82])
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recent procedures, multiple t1’s are selected to make the prediction more statistically

reliable. The key point here is that a single t1, corresponding to a single fit window,

is unreliable and an ensemble of fits should be used.

Should real price or log-price be fitted?

As recalled by Bree and Joseph in [92], Sornette and Johansen [46] argued that

log-price should be used when the amplitude of the expected crash is proportional

to the price increase during the bubble. This is because Eq. (2.9) is derived from

Eq. (2.2), which assumes that the changing price dp is proportional to the price p.

Therefore, this statement is in accordance with Bree et al.’s definition of a crash

(25% drop in price) in [92, 93]. Hence, it seems that the attempt by Bree et al.

to compare the results of the fits when using the price (and not the log-price) is

inconsistent.

One can also investigate the possibility that price changes may not be propor-

tional to price. If this is the case, use of the real price is warranted according to

the arguments put forward by Sornette and Johansen [46]. In practice, it is useful

to try both fitting procedures with prices and log-prices and compare their relative

merits. But one should be cautious because the fits using prices (and not log-prices)

involve data values that may change over several orders of magnitude over the time

window of interest. As a consequence, the standard least square fits is not suitable

anymore. Instead, a normalized least square minimization is recommended so that

each data point of the time series roughly contributes equally to the mean-square

root diagnostic. This approach has been implemented recently in Ref. [108].

Sloppiness of the JLS models and search algorithm

Bree et al. [92, 93] claim that the concept of sloppiness and its consequence should

be considered in fitting the JLS model to some empirical data with the Levenberg-

Marquart algorithm. And they challenge the relevance of the obtained fits. It seems

to us that this claim overlooks that the correct fitting procedure should include

the combination of the Levenberg-Marquart algorithm [85] and a preliminary taboo

search [84] or other meta-heuristics such as genetic algorithm and simulated anneal-

ing algorithm. This should occur together with the slaving of the linear parameters

to the non-linear ones in order to reduce the effective number of parameters from 7

to 4 (and to 3 in the recently novel procedure of Filimonov and Sornette [109]). The
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taboo search is a very good algorithm that provides a robust preliminary system-

atic exploration of the space of solutions, which prevents the Levenberg-Marquart

algorithm later on to be stuck in special regions of the space of solutions. Also in a

standard fitting procedure, the many results that may be obtained from the taboo

search (i.e. results associated with different parts of the searching space) should be

kept.

Taking into account the two points mentioned above, the quality of the fits with

the JLS model is in general adequate [49, 50, 51, 62, 63, 108]. In contrast, it is

obvious that fits using only the Levenberg-Marquart algorithm without a reasonably

initial guess and sufficient preliminary exploration of the space of solutions will

produce spurious results, with most of the parameters stuck at the boundary of the

search space. A typical example of such fitting failure is shown in Ref.[93], where all

the fitted m values are either very close to 0 or close to 1 and almost all the fitted

tc and ω values are very close to 0.

Reference [92] provides a sensitivity analysis of the root mean square error

(RMSE), in which one parameter is scanned while the others remain fixed. The

problem is that, because of the nonlinearity of expression Eq. (2.9), it is not obvious

that the results of such a scan can be trusted. That is, if local minima in, say, ω are

found while the other parameters are kept fixed, do the same minima appear when

one or more of the other parameters are changed to different values? In other words,

is the multi-dimensional parameter landscape around these minima smooth? The

answer to this question is more important than showing the sensitivity of 2 dimen-

sional subspaces, as in [92]. In practice, answering this question on the smoothness

of the multi-dimensional parameter landscape is difficult. Filimonov and Sornette

[109]) have documented that the standard slaving of three linear parameters (A,B

and C in expression Eq. (2.9)) to the four remaining nonlinear parameters results

into a quite corrugated fitness landscape that requires meta-heuristic (such as the

taboo search). The meta-heuristic simultaneously changes all parameters to find

acceptable minima as starting points for the Levenberg-Marquart algorithm. Yes,

this approach does not guarantee finding the absolute minimum but it does provide

an ensemble of acceptable local minima. This ensemble approach is more robust

than searching in vain for a single global minimum.
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Performance of the recommended fitting method on synthetic data

It is an essential building stone of any fitting procedure that it should be tested on

synthetic data. Indeed, in any calibration exercise, one faces simultaneously two un-

known: (i) the performance, reliability and robustness of the calibration procedure

and (ii) the time series under study from which one hopes to extract meaningful

information. How can one learn about an unknown dataset if one does not fully

understand how the fitting method behaves on controlled well-known data sets?

Early on, Johansen et al. [47, 48] set the stage by developing comparative tests

on synthetic time series generated by the GARCH model. We also attract the at-

tention to the fact that one of the most extensive set of synthetic tests concerning

the possible existence of spurious log-periodicity is found in reference [110]. Zhou

and Sornette [111] presented a systematic study of the confidence levels for log-

periodicity only, using synthetic time series with many different types of noises,

including noises whose amplitudes are distributed according to power law distribu-

tions with different exponents and long-memory modeled by fractional Brownian

noises with various Hurst exponents spanning the full range from anti-persistent

(0 < H < 1/2) to persistent (1/2 < H < 1).

We now show that the current fitting methods estimate the parameters of the

JLS model within a reasonable range of uncertainty in the following. For this, a

reference log-periodic power law (LPPL) time series of duration equal to 240 days is

generated for a typical set of parameters, shown in Tab. 2.1. This series corresponds

to a value of the critical time tc equal to 300 (days). The choice of 240 days for the

time window size is motivated by the typical length for the generation of bubbles

found in various case studies in the literature.

The synthetic data is generated by combining the LPPL time series with noise.

Two kinds of noise are considered: Gaussian noise and noise generated with a Stu-

dent t distribution with four degrees of freedom (which exhibits a tail similar to

that often reported in the literature for the distribution of financial returns). For

both types of noise, the mean value is zero and the standard deviation is set to

be 5% of the largest log-price among the 240 observations in the reference series.

The standard deviation is chosen quite high in order to offer stringent test of the

efficiency of the current fitting method. Synthetic samples obtained with both types



36 Identification and Forecasts of Financial Bubbles

Reference Gaussian Student’s t

tc 300 296.07 (20.44) 295.15 (20.81)
m 0.7 0.74 (0.15) 0.72 (0.18)
ω 10 9.75 (1.43) 9.71 (1.47)

Table 2.1: The parameter values used to generate the synthetic data are shown
in the second column “Reference”. The mean and standard (in format mean(std))
deviation values of the parameters obtained by fitting the JLS model to the synthetic
LPPL time series decorated by the two types of noise discussed in the text are
given in the last two columns. These numbers are estimated from 200 statistical
realizations of the noise, and each realization is characterized by ten different best
fits with the Levenberg-Marquart algorithm, leading to a total of 2000 estimated
parameters. The other parameters used to generate the synthetic LPPL are φ =
1, A = 10, B = −0.1, C = 0.02.

of noise along with the reference time series are shown in Fig. 2.3.

For each type of noise, 200 synthetic time series are generated. We fit each series

with the JLS model Eq. (2.9) and keep the ten best fits for each one. Recall that our

stochastic fit method produces multiple ‘good’ fits instead of the ‘best’ fit, which,

in practice, is difficult, if not impossible, to find. In the new procedure developed

by Filimonov and Sornette recently [109], the ‘best’ fit can be found in most cases

that are qualified to be in a bubble regime. However, we still use the standard

heuristic procedure in the present paper. This best ten selection results in 2000 sets

of estimated parameters for each type of noise. The probability density functions of

tc, m and ω for the two types of noise are calculated by a non-parametric method

(adaptive kernel technique). The results are shown is Fig. 2.4.

The mean and standard deviation of these parameters are shown in Tab. 2.1

alongside the original numbers used to generate the true LPPL function (tc =

300,m = 0.7, ω = 10) without noise. This test on synthetic data demonstrates that

the fitting method combining the meta-heuristic Taboo search with the Levenberg-

Marquart algorithm is satisfactory. We observe negligible biases, especially for the

crucial critical time parameter tc. The standard deviation for tc of about 20 days

is three times smaller than the 60 days separating the last observation (day 240)

of the time series and the true critical time occurring at the 300-th day, showing

that the calibration of a time series exhibiting LPPL structure, even with very large
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Figure 2.3: Synthetic data examples with zero mean and large standard deviation
(5% of the largest log-price among 240 reference points). Upper panel: the synthetic
data with Gaussian noise. Lower panel: the synthetic data with noise generated with
a Student t distribution with four degrees of freedom. The red solid line shows the
reference LPPL time series.
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Figure 2.4: Probability density functions of tc, m and ω obtained by a non-
parametric kernel method applied to the parameter values determined by analyzing
200 synthetic time series, each of which being characterized by its ten best fits with
the Levenberg-Marquart algorithm, leading to a total of 2000 estimated parameters.
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statistical noise, can provide significant skills in forecasting the critical time tc.

2.4.3 Probabilistic forecast

From a practical risk management view point, one of the prizes obtained from the

calibration of the JLS model to financial time series is the estimation of the most

probable time of the end of the bubble tc, which can take the form of a crash, but

is more generally a smooth transition to a new market regime.

As we mentioned before, a distribution of tc is obtained for a single bubble period,

associated with the set of fitted time windows (see Sec. 2.4.2) and the recording of

multiple locally optimal fits from the stochastic taboo search (see Sec. 2.4.2). Recall

that the output of the meta-heuristic is used as the initial guess required by the

Levenberg-Marquart algorithm. As demonstrated in the previous subsection, the

estimation of the distribution of the most probable time tc for the end of the bubble

is generated by a reliable non-parametric method [112].

Bree et al. [93] make the interesting remark that the estimation of the probability

density of tc might be improved by augmenting the analysis of the original time

series with that of many replicas. These replicas of the initial time series can be

obtained for instance by using a LPPL function obtained for the first calibration on

the original time series and adding to it noise generated by an AR(1) process. This

methodology provides a measure of robustness of the whole estimation exercise. The

choice of an AR(1) process for the noise is supported by the evidence provided in

Refs. [78, 113] that the residuals of the calibration of the JLS model to a bubble price

time series can be reasonably described by an AR(1) process. But, this is only one

among several possibilities. Another one, which we have implemented in our group

for quite some time and now use systematically, is to generate bootstraps in which

the residuals of the first calibration on the original time series are used to seed as

many synthetic time series as needed, using reshuffled blocks of residuals of different

durations. For instance, reshuffling residuals in blocks of 25 days ensures that the

dependence structure between the residuals is identical in the synthetic time series

as in the original one up to a month time scale. Note that this bootstrap method

does not assume Gaussian residuals in contrast with the AR(1) noise generation

model. It captures also arguably better the dependence structure of the genuine

residuals than the linear correlation embedded in the AR(1) model.
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2.4.4 Conclusion

We have discussed the present theoretical status and some calibration issues con-

cerning the JLS model of rational expectation bubbles with finite-time singular crash

hazard rates. We have provided a guide to the advances that have punctuated the

development of tests of the JLS model performed on a variety of financial markets

during the last decade. We can say that the development of new versions and of

methodological improvements have paralleled the occurrence of several major mar-

ket crises, which have served as inspirations and catalyzers of the research. We

believe that the field of financial bubble diagnostic is progressively maturing and

we foresee a close future when it could become operational to help decision makers

alleviate the consequences of excess leverage leading to severe market dysfunctions.



3

The Generalized JLS Models

The JLS model has been proved to be a very flexible and useful tool to detect

financial bubbles and crashes. However, as the research on the financial bubbles

goes deep and wide, more and more important information is required such as the

fundamental value of the asset during the bubble regime, the diversification of the

stock market and so on. Therefore, the standard JLS model is not enough to provide

sufficient information anymore. A more powerful tool in identifying and forecasting

the financial bubbles has to be developed. For this purpose, we present two types

of the generalized JLS models in this chapter.

We first introduce the generalized JLS models with fundamental value of the

stock and crash nonlinearity in Sec. 3.1. The new models can predict the critical

time of the financial bubbles as the standard JLS model. In addition, the estimation

of the fundamental value makes it possible to quantify the difference between the

market price and the intrinsic value. This is essential for identifying the financial

bubbles as the bubbles are generally defined as transient upward acceleration of price

above the fundamental value. Furthermore, the standard JLS model just describes

the dynamics of the price during the bubble generation. The price dynamics after

the critical time is not specified in the standard JLS model. By introducing the

crash nonlinearity, the new models present a new approach to possibly identify the

dynamics of a crash after a bubble.

Then in Sec. 3.2, we discuss the generalized JLS model which can estimate the

41
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diversification risk of the stock market. The Zipf factor is introduced in this model

to describe the diversification risk. It is defined as proportional to the difference

between the returns of the capitalization-weighted portfolio and the equal-weighted

portfolio. By analyzing the value of the Zipf factor as well as the factor load, a new

approach to understand the role of the diversification risk during a bubble regime

is provided.

3.1 Inferring fundamental value of the stock and crash

nonlinearity from bubble calibration

Financial bubbles are generally defined as transient upward accelerations of price

above a fundamental value [4, 6, 5]. Fundamental value reflects the intrinsic value

(and is sometimes called this) of the asset itself. It is ordinarily calculated by sum-

ming the future incomes generated by the asset, which are discounted to the present.

However, as the future income flow is uncertain and not known in advance, and since

the interest rates that should be used to discount future cash flows are bound to

change in ways not yet known at the time of the calculation, the fundamental value

of the asset is usually hard to estimate. In this sense, identifying unambiguously

the presence of a bubble remains an unsolved problem in standard econometric and

financial economic approaches [9, 8].

In this section, we generalize the standard JLS model by inferring fundamental

value of the stock and crash nonlinearity from bubble calibration. The new models

can not only detect the crash time but also estimate the fundamental value and the

crash nonlinearity. This means that our new model has the ability to identify the

presence of a bubble, thereby addressing the problem in the previous paragraph.

With the estimated fundamental value, another famous unsolved problem becomes

easier: distinguishing between an exponentially growing fundamental price and an

exponentially growing bubble price. Furthermore, the new models can also detect

the dynamics of crash after the bubble by specifying how the price evolves towards

the fundamental value during the crash.

We test the models using data from three historical bubbles from different mar-

kets that ended in significant crashes. They are: the Hong Kong Hang Seng index
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1997 crash, the S&P 500 index 1987 crash (black Monday) and the Shanghai Com-

posite index 2009 crash. All results suggest that the new models perform very well

in describing bubbles, forecasting their ending times and estimating fundamental

value and the crash nonlinearity.

The performance of the new models is tested under both the Gaussian residual

assumption and non-Gaussian residual assumption. Under the Gaussian residual

assumption, nested hypotheses with the Wilks statistics are used and the p-values

suggest that models with more parameters are necessary. Under non-Gaussian resid-

ual assumption, we use a bootstrap method to get type I and II errors of the hy-

potheses. All tests confirm that the generalized JLS models with fundamental value

and crash nonlinearity provide useful improvements over the standard JLS model.

This section is constructed as follows. We introduce our new generalized JLS

models in Sec. 3.1.1, then analyze three historical bubbles with the new models in

Sec. 3.1.2. In Sec. 3.1.3, we compare the generalized models statistically to confirm

that these new models provide useful improvements over the standard JLS model.

We conclude in Sec. 3.1.4.

3.1.1 The generalized JLS models

In an effort to study the fundamental price, we modify and generalize the JLS model

as follows. We now write the price dynamics of an asset as

dp = µ(t)pdt + σ(t)pdW − κ(p − p1)
γdj, (3.1)

where the first two items of the right hand side define the standard geometrical

Brownian motion and the third term is the jump.

When the crash occurs at some time t∗ (implying
∫ t∗+

t∗− dj = 1), the price drops

abruptly by an amplitude κ(p(t∗) − p1)
γ .

The motivations and the interpretation of the three parameters p1, κ and γ are

as follows.

• For κ = γ = 1, the price drops from p(t∗−) to p(t∗+) = p1, i.e., the price

changes from its value just before the crash to a fixed well-defined valuation

p1. In the spirit of Fama’s analysis of the 19 October 1987 crash [114], if one

interprets the asset price after the crash as the “right” price, i.e., the price

discovery towards rational equilibrium without mispricing, the crash is nothing
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but an efficient assessment by investors of the “true” or fundamental value,

once the panic has ended. Hence, p1 can be interpreted as the fundamental

price which is discovered during the crash dynamics.

• Then, κ can be thought of as a measure of market efficiency, that is, 1−κ is the

relative inaccuracy of the discovery of the fundamental price by the market.

If, say, κ = 0.5, this means that the price has dropped by only half of its

bubble component, and remains over-valued compared with its fundamental

component.

• When different from 1, the exponent γ can be interpreted as embodying a

nonlinear (i) over-reaction for small variations and under-reaction for large

deviations (0 < γ < 1) or (ii) under-reaction for small variations and over-

reaction for large deviations (γ > 1) from the fundamental value.

Since p1 is a fixed parameter, the generalized JLS model implies that we should

measure the price dynamics in the frame moving with the fundamental price. In

other words, p1 is the fundamental price at the beginning t1 of the time period over

which the bubble develops. In order to compare in a consistent way the realized

price to this fixed parameter, it is necessary to discount the asset price continuously

by the rate of return of the fundamental price. If pobs(t) denotes the empirical price

observed at time t, this means that the price p(t) that enters in expression Eq. (3.1)

is defined by

p(t) = pobs(t)

t
∏

s=t1+1

1

(1 + rf (s))
1

365

, (3.2)

where rf (s) is the annualized growth (risk free) rate of the fundamental price. In

our empirical analysis, we will take for rf (s) the annualized US 3-month treasury

bill rate.

Applying the no-arbitrage condition Et[dp] = 0 to expression Eq. (3.1) leads to

µ(t)p = κ(p − p1)
γh(t) . (3.3)

Conditional on the absence of a crash, the dynamics of the expected price obeys the

equation

dp = µ(t)pdt = κ(p − p1)
γh(t)dt , (3.4)
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and the fundamental price must obey the condition p1 < min p(t). For γ = 1, the

solution of Eq. (3.4) generalizes the standard JLS equation into

ln[p(t) − p1] = FLPPL(t) , (3.5)

where FLPPL(t) is given by the standard JLS expression:

FLPPL(t) = A + B(tc − t)m + C(tc − t)m cos(ω ln(tc − t) − φ) . (3.6)

For γ ∈ (0, 1), the solution is

(p − p1)
1−γ = FLPPL(t) , (3.7)

where again FLPPL(t) is given by expression (3.6). We do not consider the case

γ > 1 which would give an economically non-sensible behavior, namely the price

diverges in finite time before the crash hazard rate itself diverges.

In summary, we shall consider four models M0, M1, M2 and M3, where some

are nested in others. The goal will be to then apply statistical tests to the models

to determine which are sufficient or not and which are necessary or not. In the

following models, FLPPL(t) below is given by expression (3.6).

0. The original JLS model M0: p1 = 0, γ = 1 (with κ < 1):

pM0
(t) = exp(FLPPL(t)) . (3.8)

1. M1: p1 6= 0, γ = 1:

pM1
(t) = p1 + exp(FLPPL(t)) . (3.9)

M1 includes M0 as a special case. In other words, M0 is nested in M1.

2. M2: p1 = 0, γ ∈ (0, 1]:

pM2
(t) =







(FLPPL(t))
1

1−γ , γ ∈ (0, 1) ,

exp (FLPPL(t)) , γ = 1 .
(3.10)

Since M2 includes M0 as a special case, M0 is also nested in M2.

3. M3: p1 6= 0, γ ∈ (0, 1]:

pM3
(t) =







p1 + (FLPPL(t))
1

1−γ , γ ∈ (0, 1) ,

p1 + exp (FLPPL(t)) , γ = 1 .
(3.11)
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M3 includes all previous models, M0,M1 and M2 as special cases, so that

M0,M1 and M2 are all nested in M3.

3.1.2 Calibration and results on three historical bubbles

Calibration method of the models

Given an observed asset time series of prices {pobs(t)}, we first transform it into

a price time series of discounted prices {p(t)} by using expression (3.2). We next

determine the three parameters A,B and C in expression (3.6) for each model as a

function of the other parameters, by solving analytically the system of three linear

equations obtained by minimizing the square of deviations:

• ln[p(t)] −FLPPL(t) for M0,

• ln[p(t) − p1] −FLPPL(t) for M1,

• [p(t)]1−γ −FLPPL(t) for M2,

• [p(t) − p1]
1−γ −FLPPL(t) for M3.

We then determine the other parameters for each model using a Taboo search (to

find initial parameter estimates) coupled with a Levenberg-Macquardt algorithm.

We constrain the values of plausible parameters as follows:

1. the fundamental price p1 should be larger than 0.2pmin, where pmin :=

mint[p(t)] over the fitting time interval.

2. The fit parameters tc, m, p1 and γ should not be on the boundary of the

search intervals. They should deviate from these boundaries by at least 1% in

relative amplitude.

3. Among all the fits satisfying the above two conditions, the one with the small-

est sum of normalized residuals is selected. The cost function we use here is

the sum of squares of the relative discounted price differences

R(t) =
p(t) − pM (t)

pM (t)
, (3.12)

where pM (t) stands for one of the expressions Eq. (3.8 – 3.11).
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The critical time tc corresponding to the end of the bubble is searched in [t2, t2 +

0.4(t2 − t1)], where the time window of analysis is [t1, t2]. The exponent m is

constrained in [10−5, 1−10−5]. The log-angular frequency ω is searched in [0.01, 40].

The phase φ can take values in [0, 2π − 10−5]. The fundamental price p1 is in

[0.01, 0.99pmin] and then restricted by condition (i) above.

Results

We calibrate models M0 − M3 to three well-documented bubbles, which ended in

large crashes:

• Hong Kong Hang Seng index (HSI) (t1 = Feb. 1, 1995, t2 = Mar. 13, 1997),

• S&P 500 index (GSPC) (t1 = Sep. 1, 1986, t2 = Aug. 26, 1987),

• Shanghai Composite index (SSEC) (t1 = Oct. 24, 2008, t2 = Jul. 10, 2009.

The results are shown in Fig. 3.1 – 3.3 and the corresponding parameters are

given in Tab. 3.1 – 3.3. Visually, all models seem to perform similarly, with the

determined critical times tc close to the true time of the crash. We note that the

parameters p1 and γ in M1,M2 and M3 depart significantly from their reference

values p1 = 0 and γ = 1 characterizing model M0.

Model M ′
0 corresponds to model M0 with a slightly different cost-function. In-

stead of minimizing the sum of the squares of terms given by Eq. (3.12), for t

going from t1 to t2, the parameters of M ′
0 are those of model M0 obtained by

minimizing the sum of the squares of the difference ln[pM0
(t)] − FLPPL(t). Since

ln y − ln x = (y − x)/x +O[(y − x)/x]2, the two methods should give similar results

and the results summarized in Tab. 3.1 – 3.3 confirm this expectation.

Results of detailed statistical comparisons between the four models are shown

below. Tab. 3.1 – 3.3 suggest that the five models perform almost equivalently

in their ability to fit the price accelerations and to determine the time tc of the

peak of the bubbles. One can note a remarkable stability and consistency of the

estimators for the two crucial parameters, the exponent m and the angular log-

frequency ω. However, models M1 and M3 provide an interesting estimation of the

size of the bubble, which appears stable with respect to these two specifications: at

the beginning of the calibration interval, for the Hong Kong bubble, models M1 and
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Figure 3.1: Calibration of the different models to the Hong Kong Hang Seng Index.
The fit interval is shown with vertical black dashed lines. The fitted critical time tc
when the crash is most probable according the modified JLS models are marked by
vertical dashed lines with the same color as the corresponding fits with each model.
The historical close prices are shown as blue empty circles. The fundamental price
for M1 and M3 are also shown as the almost horizontal dashed lines (beware of the
break in the vertical scales for low values).
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Figure 3.2: Same as Fig. 3.1 for the S & P 500 Index.
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HSI tc |tc − tp| m ω φ
pf (t1)
p(t1)

pf (tp)
p(tp) γ RC[2months] RCmax RMS

M0 27-Jul-1997 10 0.19 6.97 0.00 - - - 0.46 0.62 0.0320
M1 11-Jul-1997 26 0.25 6.63 0.78 0.20 0.10 - 0.52 0.69 0.0320
M2 12-Jul-1997 25 0.03 6.64 0.87 - - 0.13 0.46 0.62 0.0319
M3 12-Jul-1997 25 0.03 6.65 4.04 0.29 0.15 0.11 0.54 0.73 0.0319
M ′

0 09-Jul-1997 28 0.39 6.53 3.30 - - - 0.41 0.55 0.0323

Table 3.1: Results of the calibration of models M0 −M3 for the Hong Kong Hang Seng index (HSI) from Feb. 1, 1995 to Mar. 13,
1997. tc is the critical time of a given model corresponding to the end of the bubble and the time at which the crash is the most
probable. t1 is the beginning of the fitting interval. tp is the time when the asset value peaks before the crash. The relative
amplitude of the crash following the peak of the bubble is given by RC[2months] and RCmax, which are calculated using expression
(3.13) from the following drawdown amplitudes: (i) DD[2months] is the two-months drop measured from the peak; (ii) DDmax is
the peak-to-valley drawdown from the peak to the minimum of the asset price. RMS is the root mean square of the distances
between historical prices and the model values, i.e., the square root of the sum of the squares of terms given by Eq. (3.12), for t
going from t1 to t2, where t2 is the last date of the time window used for the analysis. The model denoted M ′

0 corresponds to
model M0 with a different calibration method, as explained in the text.
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GSPC tc |tc − tp| m ω φ
pf (t1)
p(t1)

pf (tp)
p(tp) γ RC[2months] RCmax RMS

M0 13-Sep-1987 19 0.70 6.62 0.00 - - - 0.34 0.35 0.0196
M1 03-Sep-1987 9 0.68 6.10 0.00 0.18 0.14 - 0.40 0.40 0.0190
M2 05-Sep-1987 11 0.63 6.09 0.00 - - 0.72 0.34 0.35 0.0191
M3 03-Sep-1987 9 0.64 6.10 0.00 0.18 0.14 0.64 0.40 0.40 0.0190
M ′

0 26-Aug-1987 1 0.68 5.59 0.14 - - - 0.32 0.33 0.0187

Table 3.2: Same as Tab. 3.1 for the S&P 500 index (GSPC) from Sept. 1, 1986 to Aug. 26, 1987.
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SSEC tc |tc − tp| m ω φ
pf (t1)
p(t1)

pf (tp)
p(tp) γ RC[2months] RCmax RMS

M0 29-Jul-2009 2 0.63 16.60 0.00 - - - 0.23 0.23 0.0258
M1 24-Jul-2009 3 0.77 15.86 1.94 0.36 0.19 - 0.29 0.29 0.0256
M2 21-Jul-2009 6 0.69 15.52 6.28 - - 0.99 0.23 0.23 0.0257
M3 24-Jul-2009 3 0.65 15.96 2.49 0.92 0.49 0.20 0.45 0.45 0.0254
M ′

0 24-Jul-2009 3 0.68 15.86 5.12 - - - 0.23 0.23 0.0256

Table 3.3: Same as Tab. 3.1 for the Shanghai Composite index (SSEC) from Oct. 24, 2008 to July 10, 2009.
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Figure 3.3: Same as Fig. 3.1 for the Shanghai Composite Index.

M3 estimate that the bubble component might have been already accounting for

71% to 80% of the observed price. At the end of the bubble, the bubble component

is between 85% to 90% of the observed price. Similar values are found for the two

other case studies. An exception is for the Shanghai Composite index bubble, for

which model M3 suggests that the fundamental price was 92% of the observed price

at the beginning of the calibrating interval and about half of the observed price at

its peak.

The models provide a method to measure the amplitude of the crash that follows

the bubble peak. Consider two types of drawdown after the peak: (i) DD[2months]

is the two-months drop measured from the peak; (ii) DDmax is the peak-to-valley

drawdown from the peak to the minimum of the asset price after the crash. We

calculate the magnitude of the crash compared to the over-valued prices as follows.

The ratio between the crash magnitude and over-valued prices is estimated as:

RCi =
DDi

pobs(tp) − p1
∏t

s=t1+1(1 + rf (s))
1

365

i ∈ {[2months],max}. (3.13)

During the crashes, the hazard rate in Eq. ( 3.4) should be 1. Then comparing the

definition of RC and Eq. (3.4), one can easily find that κ = RC for the models

whose γ = 1 (M0,M1,M
′
0). For the other models, κ is different from RC. These

values are reported in Tab. 3.1 – 3.3.
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According to the specification of [78], we should verify that the calibrations dis-

cussed above are self-consistent, i.e., the residuals are stationary. This verification

step was proposed by [78] as a possible solution to the problems identified by [115]

and [116] resulting from the calibration of non-stationary prices.

In order to check that the normalized residuals are stationary for all the four

models, we use the Phillips-Perron and the Dickey-Fuller unit root tests. The null

hypothesis H0 is that the normalized residuals are not stationary, i.e. they have

a unit root. In order to have reasonable statistics, we consider time windows of

fixed length of 175, 250 or 550 trading days. We identify these windows in time

series much larger than the (t1, t2) intervals used to identify the bubbles (given at

the top of Sec. 3.1.2). The interval lengths correspond to the different values of

t2 − t1 for the respective case studies. We choose overlapping intervals with the

start of neighboring intervals separated by 25 days. There are 303 windows of size

550 trading days for the HSI from Jan. 1, 1987 to Feb. 25, 2010; 800 windows for

the GSPC index from Feb. 2, 1954 to Feb. 10, 2010 with size of 250 trading days;

167 windows of SSEC from Aug. 3, 1997 to Jan. 22, 2010 of size of 175 trading days.

Note that we choose these dates as the window boundaries because: (i) the chosen

(t1, t2) intervals identified at the top of Sec. 3.1.2 should be one of the windows we

get here; (ii) up to the data collection date (Feb. 26, 2010), we want to get as many

windows as we can. Using the statistical confidence level of 99%, we determine the

fraction of those windows which reject the Phillips-Perron and the Dickey-Fuller

unit root tests (H1), i.e., which qualify as stationary. The results are presented

in Tab. 3.4. We conclude that most of the residuals are found stationary, which

support the validity of our calibration procedure.

Previous works have identified the domain of parameters of the calibration of the

JLS model M0 which is the most relevant [50]. These conditions, referred to as the

LPPL (log-period power law) conditions, are

B > 0; 0.1 ≤ m ≤ 0.9; 6 ≤ ω ≤ 13; − 1 ≤ C ≤ 1 . (3.14)

Imposing that the calibrations obey these LPPL conditions (3.14), we find in Tab. 3.5

that the fraction of the above windows analyzed in Tab. 3.4 which fulfill the sta-

tionary conditions is significantly increased, augmenting our trust of the quality of

the calibration and of the relevance of this class of models.
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Percentage of stationary M0 M1 M2 M3

303 HSI windows from Jan. 1, 1987 to Feb. 25, 2010, length 550.

Phillips-Perron 96.7% 98.0% 96.7% 97.7%
Dickey-Fuller 96.7% 98.0% 96.7% 97.7%

800 GSPC windows from Feb. 2, 1954 to Feb. 10, 2010, length 250.

Phillips-Perron 90.6% 91.0% 91.8% 91.8%
Dickey-Fuller 90.6% 91.0% 91.8% 91.8%

167 SSEC windows from Aug. 3, 1997 to Jan. 22, 2010, length 175.

Phillips-Perron 96.4% 97.0% 96.4% 97.0%
Dickey-Fuller 96.4% 97.0% 96.4% 97.0%

Table 3.4: Percentage of stationary residuals for the Phillips-Perron and Dickey-
Fuller tests. Significance level: 99%.

Percentage of stationary under LPPL constrains M0 M1 M2 M3

303 HSI windows from Jan. 1, 1987 to Feb. 25, 2010, length 550.

PLPPL 0.99% 0.99% 2.64% 1.98%
Phillips-Perron 100% 100% 100% 100%
Dickey-Fuller 100% 100% 100% 100%

800 GSPC windows from Feb. 2, 1954 to Feb. 10, 2010, length 250.

PLPPL 4.50% 6.00% 4.50% 5.87%
Phillips-Perron 95.7% 100% 97.9% 100%
Dickey-Fuller 95.7% 100% 97.9% 100%

167 SSEC windows from Aug. 3, 1997 to Jan. 22, 2010, length 175.

PLPPL 4.19% 4.79% 8.38% 9.58%
Phillips-Perron 93.8% 92.9% 100% 100%
Dickey-Fuller 93.8% 92.9% 100% 100%

Table 3.5: Percentage of stationary residuals, as qualified by the Phillips-Perron and
Dickey-Fuller tests, which obey the LPPL conditions (3.14). The variable PLPPL

gives the fraction of fits that satisfy the conditions (3.14), independently of whether
their residuals are stationary or not. Significance level: 99%.
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3.1.3 Statistical comparisons of the four generalized JLS models

Standard Wilks test of nested hypotheses assuming independent and nor-

mally distributed residuals

Let us consider the five pairs of models with nested structure: (M0 ⊂ M1), (M0 ⊂
M2), (M1 ⊂ M3), (M2 ⊂ M3), and (M0 ⊂ M3). Let us denote Ml as the model

with the smaller number of parameters and Mh that with the larger number of

parameters. For each pair, we use Wilks test of nested hypotheses in terms of the

log-likelihood ratios to decide between the two hypotheses:

H0: Ml is sufficient and Mh is not necessary.

H1: Ml is not sufficient and Mh is needed.

We first present in this subsection the tests assuming that the residuals of the cali-

bration of the models to the asset price time series are normally and independently

distributed. In the next subsection, we loosen this restriction.

For each model Mi, i = 0, 1, 2, 3, let us denote the normalized residuals defined

by expression Eq. (3.12) by Ri(t) and assume that they are i.i.d. Gaussian. For

sufficiently large time windows, and noting N the number of trading days in the

fitted time window [t1; t2], the Wilks log-likelihood ratio reads

T = 2 log
Lh,max

Ll,max
= 2N ln

σl

σh
+

∑N
t=1 R2

l (t)

σ2
l

−
∑N

t=1 R2
h(t)

σ2
h

, (3.15)

where Rl and σl (respectively Rh and σh) are the residuals and their corresponding

standard deviation for Ml (respectively Mh).

In the large N limit, and under the above conditions of asymptotic independence

and normality, the T -statistics is distributed with a χ2
k distribution with k degrees

of freedom, where k is the difference between the number of parameters in Mh and

Ml. We have k = 1 for the pairs (M0,M1), (M0,M2), (M1,M3), (M2,M3), and

k = 2 for (M0,M3). The p-values associated with the T -statistics given by (3.54)

for each of the five pairs are reported in Tab. 3.6. The summary of that table is:

• Hong Kong Hang Seng index (HSI) from Feb. 1, 1995 to Mar. 13, 1997: Model

M0 is never rejected and the standard JLS model is sufficient.
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(M0,M1) (M0,M2) (M1,M3) (M2,M3) (M0,M3)

HSI 0.4710 0.2210 0.3221 0.9626 0.4723
GSPC 0.0003 0.0006 0.7930 0.2150 0.0012
SSEC 0.1405 0.2494 0.0863 0.0516 0.0775

Table 3.6: p-value of the null hypothesis H0 for pairs of models (Ml,Mh) that Ml is
sufficient and Mh is not necessary, using Wilks log-likelihood ratio statistics. Low
p-value indicates the improvement of Mh compared to Ml is significant and H0 is
rejected.

• S&P 500 index (GSPC) from Sep. 1, 1986 to Aug. 26, 1987: Model M0 is re-

jected with strong statistical confidence in favor of M1, M2 and M3. However,

when comparing M1 and M2 to M3, we find that M3 is not necessary. There-

fore, we conclude that the structure of the S&P 500 index bubble requires the

introduction of either a fundamental price p1 or of a nonlinear crash amplitude

as a function of mispricing (price for M0 and M2), but that both ingredients

together are not necessary.

• Shanghai Composite index (SSEC) from Oct. 24, 2008 to Jul. 10, 2009: Only

M3 improves on M0 at a confidence level of 92.3% that can be considered as

acceptable, while M1 and M2 are not significantly better than M0 for standard

confidence levels. Consistent with M3 being rather significantly better than

M0, it is also better than M1 and M2, which are themselves not significantly

improving on M0. There seems to exist both a fundamental value component

and a nonlinear over-reaction to mispricing in the unfolding of this Chinese

bubble.

Comparison between models by bootstrapping to account for non-

normality and dependence between residuals

Consider a pair of models (Ml ⊂ Mh). Let us assume that Ml is the correct gen-

erating model of the data. The calibration of Ml to the data gives a specific set of

parameters as well as a specific realization of residuals. We then use this specifi-

cation of the model Ml and its residuals to generate 1000 synthetic time series. A

given synthetic time series is the calibrated Ml time series on which we add residuals

obtained by randomly reshuffling the previously obtained residuals. Thus, the 1000
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synthetic time series differ from each other only by the reshuffling of the residuals.

We then calibrate the two models Ml and Mh on each of these 1000 synthetic time

series and calculate the difference of the sum of the square of residuals of the fits of

these two models. We thus have a list of 1000 different dn, n = 1, ..., 1000. Compar-

ing with the corresponding difference dfit (between Ml and Mh) gives us a realistic

estimation of the p-value for the null hypothesis that Ml is the correct generating

model of the data. Specifically, the p-value is the fraction among the 1000 dn’s that

are larger than dfit. For instance, if all values dn are smaller than dfit, we obtain

p = 0, i.e., it is very improbable that the difference in quality of fit between Ml

and Mh results solely from the structure of the models and of the residues. We can

reject the null and conclude that Mh is a better necessary model.

The second test we perform starts with the hypothesis that the true generating

process is Mh. Thus, the 1000 synthetic time series are now generated by using

model Mh calibrated on the data and its residuals. Then, the p-value for this null

is determined as the fraction among the 1000 dn’s that are smaller than dfit.

Tab. 3.7 summarizes the results, which improve on those shown in Tab. 3.6 by

relaxing the conditions of normality and of independence between the daily residuals

of the calibration. The bootstraps are performed by reshuffling the residuals of the

fit “every day” or in blocks of 25 continuous days (“every 25 days”), which is in

blocks of 25 continuous days. The later allows us to keep the dependence structure

over 25 days to test its possible impact on the p-values. Reshuffling every day

destroys any dependence in the residuals, while keeping their one-point (possibly

non-Gaussian) statistics.

For HSI, taking into account the dependence structure of the residuals up to 25

days confirm the results already found in Tab. 3.6 that the standard JLS model M0

is sufficient to explain the observed financial bubble. For GSPC, the results also

confirm those of the Wilks test in Tab. 3.6, that M1 and M2 improve significantly on

M0, while M3 is not necessary. For SSEC, also in agreement with Tab. 3.6, model

M3 is found to be the best and to be significant at the 95% confidence level.

Overall, these tests confirm that the generalized JLS models seem to provide

useful improvements over the standard JLS model, both in terms of their explanatory

power and in the extraction of additional information, specifically the fundamental

price p1 and a possible nonlinear dependence of the crash amplitude as a function
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(M0,M1) (M0,M2) (M0,M3) (M1,M3) (M2,M3)

HSI shuffle every day

Ml true 0 0 0 0.05 0.75
Mh true 0 0 0 0.10 0.60

HSI shuffle every 25 days

Ml true 0.46 0.20 0.42 0.26 0.76
Mh true 0.42 0.12 0.38 0.18 0.70

GSPC shuffle every day

Ml true 0 0 0 0.35 0.45
Mh true 0.05 0 0 0.45 0.40

GSPC shuffle every 25 days

Ml true 0.05 0 0.05 0.40 0.50
Mh true 0 0 0 0.50 0.45

SSEC shuffle every day

Ml true 0 0 0 0.05 0.35
Mh true 0 0.05 0 0.05 0.50

SSEC shuffle every 25 days

Ml true 0.14 0.08 0.04 0.04 0.38
Mh true 0.12 0.06 0.06 0.08 0.40

Table 3.7: p-values calculated by bootstraping (see text for explanation). Low p-
value indicates the improvement of Mh compared to Ml is significant.

of mispricing.

3.1.4 Conclusion

In this section, we generalized the JLS model by inferring the fundamental value

and crash nonlinearity from bubble calibration. In the generalized model, one can

not only predict the crash time of a stock, but also estimate the fundamental value

of that stock. Furthermore, the crash nonlinearity can also be estimated.

Three historical bubbles from different markets are tested by the generalized

models. All the results suggest that the new models perform very well in describing

bubbles, predicting crash time and estimating fundamental value and the crash

nonlinearity.
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The performance of the new models is tested both under the Gaussian and non-

Gaussian residual assumptions. Under the Gaussian residual assumption, nested

hypothesis testing with the Wilks statistics is used and the p-values suggest models

with more parameters are necessary. Under non-Gaussian residual assumption, we

use bootstrap method and get the type I and II errors of the hypothesis. All those

tests confirm that the generalized JLS models provide useful improvements over the

standard JLS model.
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3.2 The role of the diversification risk in the financial

bubbles

We present an extension of the JLS model in this section, in the spirit of the

approach developed by Zhou and Sornette [105] to include additional pricing factors.

The literature on factor models is huge and we refer e.g. to Ref.[117] and refer-

ences therein for a review of the literature. One of the most famous factor model,

now considered as a standard benchmark, is the three-factor Fama-French model

[118, 119, 120, 121] augmented by the momentum factor [122].

Recently, the concept of the Zipf factor has been introduced [123, 124]. The key

idea of the Zipf factor is that, due to the concentration of the market portfolio when

the distribution of the capitalization of firms is sufficiently heavy-tailed as is the case

empirically, a risk factor generically appears in addition to the simple market factor,

even for very large economies. Malevergne et al. [123, 124] proposed a simple proxy

for the Zipf factor as the difference in returns between the equal-weighted and the

value-weighted market portfolios. Malevergne et al. [123, 124] have shown that the

resulting two-factor model (market portfolio + the new factor termed “Zipf factor”)

is as successful empirically as the three-factor Fama-French model. Specifically, tests

of the Zipf model with size and book-to-market double-sorted portfolios as well as

industry portfolios finds that the Zipf model performs as well as the Fama-French

model in terms of the magnitude and significance of pricing errors and explanatory

power, despite that it has only two factors instead of three.

In the present section, we would like to introduce a new model by combining the

Zipf factor with the JLS model. The new model keeps all the dynamical character-

istics of a bubble described in the JLS model. In addition, the new model can also

provide the information about the concentration of stock gains over time from the

knowledge of the Zipf factor. This new information is very helpful to understand

the risk diversification and to explain the investors’ behavior during the bubble

generation.

This section is constructed as follows. Sec. 3.2.1 describe the definition of the

Zipf factor as well as the new model. Two approaches of the model derivation are

presented in this section. Sec. 3.2.2 introduce the calibration method of this new
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model. Then we test the new model with two famous Chinese stock bubbles in the

history in Sec. 3.2.3 and discuss the role of the Zipf factor in these two bubbles.

Sec. 3.2.4 concludes.

3.2.1 The model

We introduce the new model in this section. Our goal is to combine the Zipf factor

z(t)dt with the JLS model of the bubble dynamics. To be specific, we introduce the

following definition.

Definition 1: The Zipf factor z(t)dt is defined as proportional to the difference

between the returns of the capitalization-weighted portfolio and the equal-weighted

portfolio for the last time step:

z(t)dt :=
dp

p(t)
− dpe

pe(t)
, (3.16)

where p (respectively pe) is the price of the capitalization-weighted (respectively equal-

weighted) portfolio, dp := p(t)− p(t− dt) and dpe := pe(t)− pe(t− dt). The weights

of the portfolios are normalized so that their two prices are identical at the day pre-

ceding the beginning time t0 of the time series: pe(t0) = p(t0).

Definition 2: The integrated Zipf factor ζ(t) is obtained by taking the integral

of the Zipf factor defined by expression (3.16):

ζ(t) := ln p(t) − ln pe(t) . (3.17)

By definition, the Zipf factor describes the exposition to a lack of diversification due

to the concentration of the stock market on a few very large firms.

The dynamics of stock markets during a bubble regime is then described as

dp(t)

p(t)
= µ(t)dt + γz(t)dt + σ(t)dW − κdj , (3.18)

where p is the portfolio price, µ is the drift (or trend) whose accelerated growth

describes the presence of a bubble (see below), γ is the factor loading on the Zipf’s

factor and dW is the increment of a Wiener process (with zero mean and unit

variance). The term dj represents a discontinuous jump such that dj = 0 before

the crash and dj = 1 after the crash occurs. The loss amplitude associated with
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the occurrence of a crash is determined by the parameter κ. The assumption of

a constant jump size is easily relaxed by considering a distribution of jump sizes,

with the condition that its first moment exists. Then, the no-arbitrage condition is

expressed similarly with κ replaced by its mean. Each successive crash corresponds

to a jump of dj by one unit. The dynamics of the jumps is governed by a crash

hazard rate h(t). Since h(t)dt is the probability that the crash occurs between t

and t + dt conditional on the fact that it has not yet happened, we have Et[dj] =

1 × h(t)dt + 0 × (1 − h(t)dt), where Et[.] denotes the expectation operator. This

leads to

Et[dj] = h(t)dt . (3.19)

Noise traders exhibit collective herding behaviors that may destabilize the market

in this model. We assume that the aggregate effect of noise traders can be accounted

for by the following dynamics of the crash hazard rate

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos(ω ln(tc − t) − φ′) . (3.20)

The intuition behind this specification Eq. (3.20) has been presented at length by

Johansen et al. [46, 48, 47], and further developed by Sornette and Johansen [125],

Ide and Sornette [73] and Zhou and Sornette [105]. In a nutshell, the power law

behavior ∼ (tc − t)m−1 embodies the mechanism of positive feedback posited to be

at the source of the bubbles. If the exponent m < 1, the crash hazard may diverge

as t approaches a critical time tc, corresponding to the end of the bubble. The

cosine term in the r.h.s. of Eq. (3.20) takes into account the existence of a possible

hierarchical cascade of panic acceleration punctuating the course of the bubble,

resulting either from a preexisting hierarchy in noise trader sizes [82] and/or from

the interplay between market price impact inertia and nonlinear fundamental value

investing [73].

We assume that all the investors of the market have already taken the diversifica-

tion risk into account, so that the no-arbitrage condition reads Et[
dp(t)
p(t) −γz(t)dt] = 0,

where the expectation is performed with respect to the risk-neutral measure, and

in the frame of the risk-free rate. This is the condition that the price process con-

cerning the diversification risk should be a martingale. Taking the expectation of
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expression Eq. (3.18) under the filtration (or history) until time t reads

Et

[

dp

p
− γzdt

]

= µ(t)dt + σ(t)Et[dW ] − κEt[dj] . (3.21)

Since Et[dW ] = 0 and Et[dj] = h(t)dt (equation (3.19)), together with the no-

arbitrage condition Et[dp(t)] = 0,∀t, this yields

µ(t) = κh(t) . (3.22)

This result (3.22) expresses that the return µ(t) is controlled by the risk of the

crash quantified by its crash hazard rate h(t). The excess return µ(t) = κh(t) is the

remuneration that investors require to remain invested in the bubbly asset, which

is exposed to a crash risk.

Now, conditioned on the fact that no crash occurs, Eq. (3.18) is simply

dp(t)

p(t)
− γz(t) = µ(t)dt + σ(t)dW = κh(t)dt + σ(t)dW , (3.23)

where the Zipf factor z(t) is given by expression (3.16). Its conditional expectation

leads to

Et

[

dp(t)

p(t)
− γz(t)

]

= κh(t)dt (3.24)

Substituting with the expression Eq. (3.20) for h(t) and (3.16) for z(t), and inte-

grating, yields the log-periodic power law (LPPL) formula as in the JLS model, but

here augmented by the presence of the Zipf factor, which adds the term proportional

to the Zipf factor loading γ:

Et[ln p(t) − γζ(t)] = A + B(tc − t)m + C(tc − t)m cos(ω ln(tc − t) − φ) , (3.25)

where ζ(t) is defined by expression (3.17) and the r.h.s. of Eq. (3.25) is the primitive

of expression Eq. (3.20) so that B = −κB′/m and C = −κC ′/
√

m2 + ω2. This

expression Eq. (3.25) describes the average price dynamics only up to the end of the

bubble.

The same structure as Eq. (3.25) is obtained using a stochastic discount factor

(stochastic pricing kernel) following the derivation of Zhou and Sornette [105], as

shown below:

Under the stochastic pricing kernel theory, the no-arbitrage condition is presented

as follows. The product of the stochastic pricing kernel (stochastic discount factor)
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D(t) and the value process p(t), of any admissible self-financing trading strategy

implemented by trading on a financial asset, should be a martingale:

D(t)p(t) = Et[D(t′)p(t′)], ∀t′ > t . (3.26)

Let us assume that the dynamics of the stochastic pricing kernel is formulated

as:

dD(t)

D(t)
= −r(t)dt − γz(t)dt − λ(t)dW + νdŴ , (3.27)

where r(t) is the interest rate and z(t) is the Zipf factor defined as (3.16). The

process λ(t) denotes the market price of risk, as measured by the covariance of asset

returns with the stochastic discount factor and dŴ represents all other stochastic

factors acting on the stochastic pricing kernel. By definition, dW is independent to

dŴ at any time t ≥ 0:

Et[dW · dŴ ] = Et[dW ] · Et[dŴ ] = 0 ,∀t ≥ 0. (3.28)

We further use the standard form of the price dynamics in the JLS model [47, 48, 46]:

dp

p
= µdt + σ(t)dW − κdj , (3.29)

where W is the same Brownian motion as in Eq. (3.27). The term dj represents

the jump process, valued 0 when there is no crash and 1 when the crash occurs.

The dynamics of the jumps is governed by the crash hazard rate h(t) defined in

Eq. (3.20) with:

Et[dj] = h(t)dt . (3.30)

According to the stochastic pricing kernel theory, D × p should be a martingale.

Taking the future time t′ in Eq. (3.26) as the increment of the current time t, then

E

[

p(t + dt)D(t + dt) − p(t)D(t)

p(t)D(t)

]

(3.31)

= E

[

(p(t) + dp)(D(t) + dD) − p(t)D(t)

p(t)D(t)

]

= E

[

p(t)dD + D(t)dp + dDdp

p(t)D(t)

]

= E

[

dD

D
+

dp

p
+

dDdp

Dp

]

= 0 .
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To satisfy this equation, the coefficient of dt should be zero, that is

−r(t) + µ(t) + γz(t) + κh(t) + σ(t)λ(t) = 0 . (3.32)

This yields

µ(t) = r(t) + γz(t) − κh(t) − σ(t)λ(t) . (3.33)

When there is no crash (dj = 0), the expectation of the price process is obtained

by integrating Eq. (3.29):

Et [ln p(t)] =

∫

(γz(t) + κh(t) + r(t) + σ(t)λ(t))dt . (3.34)

For r(t) = 0 and λ(t) = 0, we obtain:

Et [ln p(t)] =

∫

(γz(t) + κh(t))dt (3.35)

= γζ(t) +

∫

κh(t)dt

= γζ(t) + A + B(tc − t)m + C(tc − t)m cos(ω ln(tc − t) − φ) ,

which recovers Eq. (3.25).

The JLS model does not specify what happens beyond tc. This critical tc is the

termination of the bubble regime and the transition time to another regime. This

regime could be a big crash or a change of the growth rate of the market. Merrill

Lynch EMU (European Monetary Union) Corporates Non-Financial Index in 2009

[64] provides a vivid example of a change of regime characterized by a change of

growth rate rather than by a crash or rebound. For m < 1, the crash hazard rate

accelerates up to tc but its integral up to t which controls the total probability for

a crash to occur up to t remains finite and less than 1 for all times t ≤ tc. It is

this property that makes it rational for investors to remain invested knowing that

a bubble is developing and that a crash is looming. Indeed, there is still a finite

probability that no crash will occur during the lifetime of the bubble. The condition

that the price remains finite at all time, including tc, imposes that m > 0.

Within the JLS framework, a bubble is qualified when the crash hazard rate

accelerates. According to Eq. (3.20), this imposes m < 1 and B′ > 0, hence B < 0

since m > 0 by the condition that the price remains finite. We thus have a first
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condition for a bubble to occur

0 < m < 1 . (3.36)

By definition, the crash rate should be non-negative. This imposes [83]

b ≡ −Bm − |C|
√

m2 + ω2 ≥ 0 . (3.37)

3.2.2 Calibration method

There are eight parameters in this LPPL model augmented by the introduction of

the Zipf’s factor, four of which are the linear parameters (γ,A,B and C). The other

four (tc,m, ω and φ) are nonlinear parameters.

We first slave the linear parameters to the nonlinear ones. The method here is

the same as used by Johansen et al. [47]. The detailed equations and procedure is

as follows. We rewrite Eq. (3.25) as:

E[ln p(t)] = γζ(t) + A + Bf(t) + Cg(t) := RHS(t) . (3.38)

We have also defined

f(t) = (tc − t)m , g(t) = (tc − t)m cos(ω ln(tc − t) − φ) . (3.39)

The minimization of the sum of the squared residuals should satisfy

∂Σt[ln p(t) − RHS(t)]2

∂θ
= 0, ∀ θ ∈ {γ,A,B,C}. (3.40)

The linear parameters γ,A,B and C are determined as the solutions of the linear

system of four equations:

t2
∑

t=t1
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(3.41)

This provides four analytical expressions for the four linear parameters (γ,A,B,C)

as a function of the remaining nonlinear parameters tc,m, ω, φ. The resulting cost

function (sum of square residuals) becomes function of just the four nonlinear pa-

rameters tc,m, ω, φ. This achieves a very substantial gain in stability and efficiency

as the search space is reduced to the 4 dimensional parameter space (tc,m, ω, φ). A
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heuristic search implementing the taboo algorithm [84] is used to find initial esti-

mates of the parameters which are then passed to a Levenberg-Marquardt algorithm

[85, 86] to minimize the residuals (the sum of the squares of the differences) between

the model and the data. The calibration is performed for the time window delin-

eated by [t1, t2], where t1 is the starting time and t2 is the ending time of the price

time being fitted by expression Eq. (3.25) or equivalently Eq. (3.38).

The bounds of the search space are:

tc ∈ [t2, t2 + 0.375(t2 − t1)] (3.42)

m ∈ [10−5, 1 − 10−5] (3.43)

ω ∈ [0.01, 40] (3.44)

φ ∈ [0, 2π − 10−5] (3.45)

We choose these bounds because m has to be between 0 and 1 according to the

discussion before; the log-angular frequency ω should be greater than 0. The up-

per bound 40 is large enough to catch high-frequency oscillations (though we later

discard fits with ω > 20); the phase φ should be between 0 and 2π; The predicted

critical time tc should be after the end t2 of the fitted time series. Finally, the upper

bound of the critical time tc should not be too far away from the end of the time

series since predictive capacity degrades far beyond t2. Jiang et al. [50] have found

empirically that a reasonable choice is to take the maximum horizon of predictability

to extent to about one-third of the size of the fitted time window.

3.2.3 Application to the Shanghai Composite Index (SSEC)

Construction of the capitalization-weighted and equally-weighted portfo-

lios

We use the Shanghai Composite Index as the market proxy to test the JLS model

augmented with the Zipf factor. The Shanghai Composite Index is a capital-

weighted measure of stock market performance. On December 19, 1990, the base

value of the Shanghai Composite Index I was fixed to 100. We note the base date

as tB . Denoting by KB , the total market capitalization of the firms entering in the

Shanghai Composite index on tB December 19, 1990, the value p(t) of the Shanghai
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Composite Index at any later time t is given by

p(t) =
K(t)

KB
× 100, (3.46)

where K(t) is the current total market capitalization of the constituents of the

Shanghai Composite index. Here, time is counted in units of trading days. Calling

pj(t) (respectively sj(t)), the share price (respectively total number of shares) of

firm j at time t, we have the total capitalization of firm j at time t

Kj(t) = pj(t)sj(t) , (3.47)

and the total market capitalization at time t

K(t) =

M(t)
∑

j=1

Kj(t) , (3.48)

where M(t) is the number of the stocks listed in the index at time t.

At the time when the calibrations were performed, the SSEC market included

884 active stocks. Since December 19, 1990, 36 firms were delisted and another 11

were temporarily stopped. Based on the rule of the index calculation, the termi-

nated stocks are deleted from the total market capitalization after the termination

is executed, while the last active capitalization of the temporarily stopped stocks

are still included in the total market capitalization.

The equal-weighted price pe entering in the definition of the Zipf factor is con-

structed according to the formula:

pe(t) = p(t0) × exp

[

t
∑

i=t1

re(i)

]

, (3.49)

where t1 is the beginning of the fitted window and t0 is the trading day immediately

preceding t1. We use this measure of pe to make sure that the equal-weighted price

and the value-weighted price are identical at t0. This implies that ζ(t0) is set to be

0 (recall that ζ is defined by expression (3.17)). The return re(i) is defined by

re(i) =
1

M(i)

M(i)
∑

j=1

[ln Kj(i) − ln Kj(i − 1)] . (3.50)

In expression (3.50), Kj(i) is the total capitalization value of firm j at time i and

M(i) is the number of the stocks which are listed in the index for both time i
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and i − 1. Formula (3.50) together with (3.49) means that the Zipf factor is a

portfolio that puts an equal amount of wealth at each time step (by a corresponding

dynamical reallocation depending on the relative performance of the M(i) stocks as a

function of time) on each of the M(i) stocks entering in the definition of the Shanghai

Composite Index, so that the Zipf portfolio is maximally diversified (neglecting here

the impact of cross-correlations between the assets). Putting expression (3.50) inside

(3.49) yields

pe(t) = p(t0) ×
t

∏

i=t1











M(i)
∏

j=1

Kj(i)

Kj(i − 1)





1/M(i)





. (3.51)

When the number of the stocks remains unchanged from t0 to t, i.e.

M(i) = M, ∀i ∈ [t0, t] , (3.52)

expression (3.51) can be simplified as:

pe(t) = p(t0) ×





M
∏

j=1

(

Kj(t)

Kj(t0)

)





1/M

, (3.53)

showing that pe(t) is the geometrical mean of the capitalizations of the stocks con-

stituting the Shanghai Composite Index, as compared with the index which is pro-

portional to the arithmetic mean of the firm capitalizations.

Empirical test of the JLS model augmented by the Zipf factor

The Shanghai Composite Index had two famous bubbles in recent history as de-

scribed in Tab. 3.8. Both of them are tested in this paper. The time series are fitted

with both the original JLS model and the new model. The 10 best initial guesses

from the heuristic search algorithm are kept. The results are shown in Fig. 3.4 –

3.5.

Example Calibration start at t1 Prediction start at t2 Peak date of the bubble

Bubble 1 Aug-01-2006 Sep-28-2007 16-Oct-2007
Bubble 2 Oct-31-2008 Jul-01-2009 Aug-04-2009

Table 3.8: Information on the tested bubbles of SSEC.

We use the standard Wilks test of nested hypotheses to check the improvement

of the new factor model. This test assumes independent and normally distributed
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Figure 3.4: Calibration of the new factor model and the original JLS model to the
Shanghai Composite Index (SSEC) between Aug-01-2006 and Sep-28-2007. (Upper
panel) The beginning of the fit interval is the left boundary of the plot, while the
end of the fit interval is indicated by the vertical thick black dotted line. The real
critical time tc when the crash started is marked by the vertical magenta dot-dashed
line. The historical close prices are shown as blue full circles. The best 10 fits of the
original JLS model are shown as the green dashed lines and the best 10 fits of the
new factor model are shown as the red solid lines. (Lower panel) The corresponding
Zipf factor (magenta solid line with ‘x’ symbol) and ζ function (blue dot-dashed
line) during this period.
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Figure 3.5: Calibration of the new factor model and the original JLS model to the
Shanghai Composite Index (SSEC) between Oct-31-2008 and Jul-01-2009. (upper)
The beginning of the fit interval is the left boundary of the plot, while the end of
the fit interval is indicated by the vertical thick black dotted line. The real critical
time tc when the crash started is marked by the vertical magenta dot-dashed line.
The historical close prices are shown as blue full circles. The best 10 fits of the
original JLS model are shown as the green dashed lines and the best 10 fits of the
new factor model are shown as the red solid lines. (lower) The corresponding Zipf
factor (magenta solid line with ‘x’ symbol) and ζ function (blue dot-dashed line)
during this period.
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residuals. The null hypothesis is:

H0: the original JLS model is sufficient and the new factor model is not necessary.

The alternative hypothesis reads:

H1: The original JLS model is not sufficient and the new factor model is needed.

For sufficiently large time windows, and noting T the number of trading days in

the fitted time window [t1, t2], the Wilks log-likelihood ratio reads

W = 2 log
LZipf,max

LJLS,max
= 2T ln

σJLS

σZipf
+

∑T
t=1 R2

JLS(t)

σ2
JLS

−
∑T

t=1 R2
Zipf(t)

σ2
Zipf

, (3.54)

where RJLS and σJLS (respectively RZipf and σZipf ) are the residuals and their

corresponding standard deviation for the original JLS model (respectively the new

factor model).

In the large T limit, and under the above conditions of asymptotic independence

and normality, the W -statistics is distributed with a χ2
k distribution with k degrees

of freedom, where k is the difference between the number of parameters in two

models. In our case, the new factor model has one more parameter, which is γ.

Therefore, W in Eq.(3.54) should follow the χ2
1 distribution.

Only considering the best fit for each of the two models, we obtain a p-value

associated with the empirical value of the W -statistics equal to 2.64 × 10−7 for

bubble 1 and 0.2517 for bubble 2. Thus, the null hypothesis is rejected and the

Zipf factor is necessary for the best fit of bubble 1, while the null hypothesis is not

rejected and the Zipf factor is not necessary for the best fit of bubble 2. This result

is also consistent with the two values found for γ, where γ = 0.44 for bubble 1 and

γ = −0.028 for bubble 2, showing the Zipf factor in bubble 1 plays an important

role in the improvement of the fit quality.

Keeping the best 10 fits as we described before increases the statistical power

of the Wilks test (simply by having more statistical data) and we want to show

that the new JLS model with the Zipf factor is an significant improvement. For

this, we combine all of the residuals from the best 10 fits to the data into a large

residual sample and calculate the Wilks log-likelihood ratio W for this large sample

as defined by expression (3.54). The corresponding p-values are 0 for bubble 1 and
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0.0119 for bubble 2. This means the new factor model performs better than the

original JLS model for both cases when we consider the overall qualify of the best

10 fits.

A natural and interesting test is to find out if the new model with Zipf factor

has a better predictability of the critical time. To achieve this goal, two examples

are fitted by both models within different time windows obtained by varying their

start time t1 and the end time t2. We consider 15 different values of t1 and of t2

in steps of 3 days, yielding 225 time series for each example. We keep the best

10 fits for each time series and get 2250 predicted critical time tc with each model

and for each example. The results in Tab. 3.9 show that the mean value and the

standard deviation of the critical time tc for both models are similar. The new

model including the Zipf factor neither improves nor deteriorates the predictability

of the critical time for these two examples.

Example Peak date Mean(std) of tc, new Mean(std) of tc, original

Bubble 1 16-Oct-2007 07-Oct-2007(55.6) 18-Oct-2007(54.1)
Bubble 2 Aug-04-2009 04-Jul-2009(33.6) 05-Jul-2009(32.4)

Table 3.9: Prediction of the critical time for both models (“new” is stand for the
new model with Zipf factor while “original” is stand for the standard JLS model).
For each example, 225 time series are generated by varying the start time t1 and
end time t2 of the windows in which the calibration is performed. The mean value
and the standard deviation of the predicted critical time tc among 2250 predictions
are shown in the table.

However, the new model makes it possible to determine the concentration of

stock gains over time from the knowledge of the Zipf factor. The two bubbles are

found to differ by the sign and contribution of the Zipf factor as well as the factor

load γ.

For bubble 1, the integrated Zipf factor ζ is positive as shown in Fig. 3.4, cor-

responding to the fact that valuation gains were more concentrated on the large

firms of the Shanghai index, especially in two periods, Dec. 2006 – Jan. 2007 and

Oct. 2007 – Dec. 2007. The factor load γ of the best fit in the example shown in

Fig. 3.4 is 0.44. And the statistics of γ from all the 2,250 fits of bubble 1 is shown

in the second row of Tab. 3.10. All these results indicate that the Zipf factor load γ

in bubble 1 is statistically large and positive. This implies the existence of a lack-
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of-diversification premium that contributes significantly to the overall price level in

addition to the bubble component.

A possible interpretation of the important of the Zipf factor is based on the

importance that investors started to attribute to the role of large companies in

driving the appreciation of the SSEC index during the first bubble. The so-called

80-20 rule started to be hot among investors in discussions and interpretation of the

rising SSEC index. It was widely pointed out that the growth of the SSEC index

was driven essentially by 20% of the stocks while the other 80% constituents of

the index remains approximately flat (known as the 80-20 quotation of the Chinese

stock market 1). It is plausible that the widespread acknowledgement of the 80-20

rule led many investors to discount the risk of a lack of diversification, therefore

enhancing the role of the Zipf factor. This is consistent with our observation that

the Zipf factor load γ is large and positive during the first bubble period.

Example Mean of γ Median of γ std of γ

Bubble 1 0.35 0.56 0.43
Bubble 2 -0.14 -0.11 0.15

Table 3.10: Statistics of the Zipf factor load γ from 2250 fit results. Most of the
values for γ for the period during the development of bubble 1 are positive and
their average value is large. This means that the Zipf factor plays an important
role during the development of bubble 1. The concentration of the stock market
on a small number of large firms has a significant impact on the price change of
the stock index. In contrast, for bubble 2, the average value of γ is relatively small
and the exposition to the risk associated with a lack of diversification is found to be
insignificant in pricing the value of the market.

In contrast, the integrated Zipf factor ζ remained negative over the lifetime of

bubble 2 as shown in Fig. 3.5, implying that the gains of the Shanghai index were

more driven by small and medium size firms. The factor load γ is -0.028 for the

best fit shown in Fig. 3.5 and the mean value of γ for bubble 2 is small and negative

(see Tab. 3.10). The overall contribution of the Zipf factor to the stock change is

therefore small and negative (due to the product of a negative integrated Zipf factor

by a negative factor loading), which makes the remuneration of investors due to

their exposition to the diversification risk still positive but small.

1http://www.hudong.com/wiki/二八现象
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At the time when bubble 2 started, the world economy has been seriously shaken

by the developing subprime crisis. The demand for Chinese product exports de-

creased dramatically. To compensate for the loss from collapsing exports, the Chi-

nese government launched a 4 trillion Chinese yuan stimulus with the aim to boost

the domestic demand. Small companies that are usually more vulnerable to a lack

of access to capital profited proportionally more than their larger counterpart from

this injection of capital in the economy. This is reflected in relative better perfor-

mance of small and medium size firms in the stock market, leading to a slightly

negative value of the integrated Zipf factor ζ during the development of bubble 2.

Although the small companies benefit more, the stimulus was designed to boost the

whole economy. The diversification risk turned out to be relatively minor at that

time, explaining the small value of the Zipf factor load.

3.2.4 Conclusion

We have introduced a new model that combines the Zipf factor embodying the risk

due to lack of diversification with the JLS model of rational expectation bubbles

with positive feedbacks. The new model keeps all the dynamical characteristics of

a bubble described in the JLS model. In addition, the new model can also provide

information about the concentration of stock gains over time from the knowledge

of the Zipf factor. This new information is very helpful to understand the risk

diversification and to explain the investors’ behavior during the bubble generation.

We have applied this new model to two famous Chinese stock bubbles and found

that the new model provide sensible explanation for the diversification risk observed

during these two bubbles.
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4

Systematic Diagnosis and Prediction of

Rebounds and Crashes in Financial Markets

In this chapter, we introduce a pattern recognition method, which is originally de-

veloped by Israel Gelfand and his collaborators to predict the earthquakes. Gelfand

is a famous mathematician who shared the first Wolf Prize in Mathematics with

Carl Ludwig Siegel for his work in functional analysis, group representation, and for

his seminal contributions to many areas of mathematics and its applications. He

also did many important works in many areas outside mathematics such as biology,

medicine and earthquake predictions. This pattern recognition method together

with the JLS model enables us to perform systematic diagnosis and prediction of

rebounds and crashes in financial markets.

In Sec. 4.1, we introduce the concept of “negative bubbles” as the mirror (but not

necessarily exactly symmetric) image of standard financial bubbles, in which positive

feedback mechanisms may lead to transient accelerating price falls. To model these

negative bubbles, we adapt the JLS model of rational expectation bubbles with a

hazard rate describing the collective buying pressure of noise traders. The price

fall occurring during a transient negative bubble can be interpreted as an effective

random down payment that rational agents accept to pay in the hope of profiting

from the expected occurrence of a possible rally. We validate the model by showing

that it has significant predictive power in identifying the times of major market

rebounds. This result is obtained by using a general pattern recognition method that

77
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combines the information obtained at multiple times from a dynamical calibration

of the JLS model. Error diagrams, Bayesian inference and trading strategies suggest

that one can extract genuine information and obtain real skill from the calibration

of negative bubbles with the JLS model. We conclude that negative bubbles are in

general predictably associated with large rebounds or rallies, which are the mirror

images of the crashes terminating standard bubbles.

Then in Sec. 4.2, we extend our work by testing both rebounds and crashes in

10 major equity markets. A simple trading strategy based on the prediction results

of both rebounds and crashes is designed. The performance of the trading strategy

as well as the error diagram confirms that our method is very efficient in terms of

diagnosing and predicting market rebounds and crashes systematically.

4.1 Diagnosis and Prediction of Rebounds in Financial

Markets

In this section, we explore the hypothesis that financial bubbles have mirror

images in the form of “negative bubbles” in which positive feedback mechanisms

may lead to transient accelerating price falls. We adapt the JLS model of rational

expectation bubbles [46, 48, 47] to negative bubbles. The crash hazard rate becomes

the rally hazard rate, which quantifies the probability per unit time that the market

rebounds in a strong rally. The upward accelerating bullish price characterizing a

bubble, which was the return that rational investors require as a remuneration for

being exposed to crash risk, becomes a downward accelerating bearish price of the

negative bubble, which can be interpreted as the cost that rational agents accept to

pay to profit from a possible future rally. During this accelerating downward trend,

a tiny reversal could be a strong signal for all the investors who are seeking the profit

from the possible future rally. These investors will long the stock immediately after

this tiny reversal. As a consequence, the price rebounds very rapidly.

This section contributes to the literature by augmenting the evidence for transient

pockets of predictability that are characterized by faster-than-exponential growth

or decay. This is done by adding the phenomenology and modeling of “negative

bubbles” to the evidence for characteristic signatures of (positive) bubbles. Both
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positive and negative bubbles are suggested to result from the same fundamental

mechanisms, involving imitation and herding behavior which create positive feed-

backs. By such a generalization within the same theoretical framework, we hope to

contribute to the development of a genuine science of bubbles.

The rest of this section is organized as follows. Sec. 4.1.1 gives a brief litera-

ture review on the research of rebounds in the financial market. Sec. 4.1.2 presents

the modified JLS model for negative bubbles and their associated rebounds (or ral-

lies). The subsequent sections test the JLS model for negative bubbles by providing

different validation steps, in terms of prediction skills of actual rebounds and of

abnormal returns of trading strategies derived from the model. Sec. 4.1.3 describes

the method we have developed to test whether the adapted JLS model for negative

bubbles has indeed skills in forecasting large rebounds. This method uses a robust

pattern recognition framework build on the information obtained from the calibra-

tion of the adapted JLS model to the financial prices. Sec. 4.1.4 presents the results

of the tests concerning the performance of the method of Sec. 4.1.3 with respect

to the advanced diagnostic of large rebounds. Sec. 4.1.5 develops simple trading

strategies based on the method of Sec. 4.1.3, which are shown to exhibit statisti-

cally significant returns, when compared with random strategies without skills with

otherwise comparable attributes. Sec. 4.1.6 concludes.

4.1.1 Literature review on market rebounds

The rebounds in the financial markets have been studied widely in both theoretical

and empirical aspects.

On the theoretical side, there are several competing explanations for price de-

creases followed by reversals: liquidity and time-varying risk. [126] stresses the

importance of liquidity: as more people sell, agents who borrowed money to buy

assets are forced to sell too. When forced selling stops, this trend reverses. [127]

shows that it is risky to be a fundamental trader in this environment and that price

reversals after declines are likely to be higher when there is more risk in the price,

as measured by volatility.

On the empirical front concerning the forecast of reversals in price drops, [31]

shows that the simplest way to predict prices is to look at past performance. [128]

shows that price-dividend ratios forecast future returns for the market as a whole.
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Our approach in this section has the advantage in both theoretical and empirical

aspects. Theoretically, we suggest that the negative bubbles may generated due to

the imitation and herding behavior among the noisy investors which create positive

feedbacks. During this accelerating downward trend, a tiny reversal could be a

strong signal for all the investors who are seeking the profit from the possible future

rally. While empirically, the previous approaches do not aim at predicting and

cannot determine the most probable rebound time for a single ticker of the stock.

The innovation of our methodology in this respect is to provide a very detailed

method to detect rebound of any given ticker.

4.1.2 Theoretical model for detecting rebounds

In the JLS framework, financial bubbles are defined as transient regimes of faster-

than-exponential price growth resulting from positive feedbacks. We refer to these

regimes as “positive bubbles.” We propose that positive feedbacks leading to in-

creasing amplitude of the price momentum can also occur in a downward price

regime and that transient regimes of faster-than-exponential downward acceleration

can exist. We refer to these regimes as “negative bubbles.” In a “positive” bubble

regime, the larger the price is, the larger the increase of future price. In a “negative

bubble” regime, the smaller the price, the larger is the decrease of future price. In

a positive bubble, the positive feedback results from over-optimistic expectations of

future returns leading to self-fulfilling but transient unsustainable price apprecia-

tions. In a negative bubble, the positive feedbacks reflect the rampant pessimism

fueled by short positions leading investors to run away from the market which spirals

downwards also in a self-fulfilling process.

The symmetry between positive and negative bubbles is obvious for currencies.

If a currency A appreciates abnormally against another currency B following a

faster-than-exponential trajectory, the value of currency B expressed in currency

A will correspondingly fall faster-than-exponentially in a downward spiral. In this

example, the negative bubble is simply obtained by taking the inverse of the price,

since the value of currency A in units of B is the inverse of the value of currency B

in units of A. Using logarithm of prices, this corresponds to a change of sign, hence

the “mirror” effect mentioned above.
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Recall that the dynamics of the stock market in the JLS model is described as:

dp

p
= µ(t)dt + σ(t)dW − κdj , (4.1)

It provides a suitable framework to describe negative bubbles, with the only modifi-

cations that both the expected excess return µ(t) and the crash amplitude κ become

negative (hence the term “negative” bubble). Thus, µ becomes the expected (neg-

ative) return (i.e., loss) that investors accept to bear, given that they anticipate

a potential rebound or rally of amplitude |κ|. Symmetrically to the case of posi-

tive bubbles, the price loss before the potential rebound plays the role of a random

payment that the investors honor in order to remain invested and profit from the

possible rally. The hazard rate h(t) now describes the probability per unit time for

the rebound to occur:

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos(ω ln(tc − t) − φ′) . (4.2)

The fundamental JLS equation remains the same as:

ln E[p(t)] = A + B(tc − t)m + C(tc − t)m cos(ω ln(tc − t) − φ) . (4.3)

The only difference is that the inequalities

B > 0 , b < 0 (4.4)

being the opposite to those corresponding to a positive bubble as described in the

preceding subsection.

An example of the calibration of a negative bubble with the JLS model (4) to the

S&P 500 index from 1973-01-01 to 1974-10-01 is shown in the upper panel of Fig. 4.1.

During this period, the S&P 500 index decreased at an accelerating pace. This

price fall was accompanied by very clear oscillations that are log-periodic in time, as

described by the cosine term in formula (4). Notice that the end of the decreasing

market is followed by a dramatic rebound in index price. We hypothesize that,

similar to a crash following an unsustainable super-exponential price appreciation

(a positive bubble), an accelerating downward price trajectory (a negative bubble)

is in general followed by a strong rebound. Furthermore, in order to suggest that

this phenomenon is not an isolated phenomenon but actually happens widely in all

kinds of markets, another example in the foreign exchange market is presented in
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the lower panel of Fig. 4.1. The USD/EUR change rate from 2006-07-01 to 2008-04-

01 also underwent a significant drawdown with very clear log-periodic oscillations,

followed by a strong positive rebound. One of the goals of this paper is to identify

such regions of negative bubbles in financial time series and then use a pattern

recognition method to distinguish ones that were (in a back-testing framework)

followed by significant price rises.

In financial markets, large positive returns are less frequent than large negative

returns, as expressed for instance in the skewness of return distributions. However,

when studying drawdowns and drawups (i.e., runs of same sign returns). Johansen

and Sornette found that, for individual companies, there are approximately twice

as many large rallies as crashes with amplitude larger than 20% with durations of

a few days [129].

4.1.3 Rebound prediction method

We adapt the pattern recognition method of [130] to generate predictions of rebound

times in financial markets on the basis of the detection and calibration of negative

bubbles, defined in the previous section. We analyze the S&P 500 index prices,

obtained from Yahoo! finance for ticker ‘ˆGSPC’ (adjusted close price)1. The start

time of our time series is 1950-01-05, which is very close to the first day when the

S&P 500 index became available (1950-01-03). The last day of our tested time series

is 2009-06-03.

Fitting methods

We first divide our S&P 500 index time series into different sub-windows (t1, t2) of

length dt ≡ t2 − t1 according to the following rules:

1. The earliest start time of the windows is t1 = 1950-01-03. Other start times

t1 are calculated using a step size of dt1 = 50 calendar days.

2. The latest end time of the windows is t2 = 2009-06-03. Other end times t2 are

calculated with a negative step size dt2 = −50 calendar days.

3. The minimum window size dtmin = 110 calendar days.

4. The maximum window size dtmax = 1500 calendar days.

1http://finance.yahoo.com/q/hp?s=ˆGSPC
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Figure 4.1: (upper) Significant drawdown of nearly 50% from 1973-01-01 to 1974-
10-01 (time window delineated by the two black dashed vertical lines) with very
clear log-periodic oscillations, followed by a strong positive rebound. The best
fits from taboo search are used to form a 90% confidence interval for the critical
time tc shown by the light shadow area. The dark shadow area corresponds to the
20-80 quantiles region of the predicted rebounds. (lower) The same phenomenon is
observed in foreign exchange market. The plot shows the fitted results for USD/EUR
change rate from 2006-07-01 to 2008-04-01. The USD/EUR change rate performed
a significant drawdown with very clear log-periodic oscillations, followed by a strong
positive rebound.
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These rules lead to 11,662 windows in the S&P 500 time series.

For each window, the log of the S&P 500 index is fit with the JLS equation

Eq. (4.3). The fit is performed in two steps. First, the linear parameters A,B

and C are slaved to the non-linear parameters by solving them analytically as a

function of the nonlinear parameters. We refer to [47] (page 238 and following

ones), which gives the detailed equations and procedure. Then, the search space is

obtained as a 4 dimensional parameter space representing m,ω, φ, tc. A heuristic

search implementing the Tabu algorithm [84] is used to find initial estimates of the

parameters which are then passed to a Levenberg-Marquardt algorithm [85, 86] to

minimize the residuals (the sum of the squares of the differences) between the model

and the data. The bounds of the search space are:

m ∈ [0.001, 0.999] (4.5)

ω ∈ [0.01, 40] (4.6)

φ ∈ [0.001, 2π] (4.7)

tc ∈ [t2, t2 + 0.375(t2 − t1)] (4.8)

We choose these bounds because m has to be between 0 and 1 according to the

discussion before; the log-angular frequency ω should be greater than 0. The upper

bound 40 is large enough to catch high-frequency oscillations (though we later dis-

card fits with ω > 20); phase φ should be between 0 and 2π; as we are predicting

a critical time in financial markets, the critical time should be after the end of the

time series we are fitting. Finally, the upper bound of the critical time should not

be too far away from the end of the time series since predictive capacity degrades

far beyond t2. We have empirically found elsewhere [50] one-third of the interval

width to be a good cut-off.

The combination of the heuristic and optimization results in a set of parameters

A,B,C,m,ω, φ and tc for each of the 11,662 windows. Of these parameter sets, 2,568

satisfy the negative bubble condition Eq. (4.4). In Fig. 4.2, we plot the histogram

of critical time tc for these negative bubble fits and the negative logarithm of the

S&P 500 time series. Peaks in this time series, then, indicate minima of the prices,

many of these peaks being preceded by a fast acceleration with upward curvature

indicating visually a faster-than-exponential growth of −p(t). This translates into
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Figure 4.2: (upper) Histogram of the critical times tc over the set of 2,568 time
intervals for which negative bubbles are detected by the condition that the fits of
ln p(t) by Eq. (4.3) satisfy condition Eq. (4.4). (lower) Plot of − ln p(t) versus time
for the S&P 500 index. Note that peaks in this figure correspond to valleys in actual
price.

accelerating downward prices. Notice that many of these peaks of − ln p(t) are

followed by sharp drops, that is, fast rebounds in the regular + ln p(t). We see

that peaks in − ln p(t) correspond to valleys in the negative bubble tc histogram,

implying that the negative bubbles qualified by the JLS model are often followed

by rebounds. This suggests the possibility to diagnose negative bubbles and their

demise in the form of a rebound or rally. If correct, this hypothesis would extend

the proposition [50, 65], that financial bubbles can be diagnosed before their end

and their termination time can be determined with an accuracy better than chance,

to negative bubble regimes associated with downward price regimes. We quantify

this observation below.

Definition of rebound

The aim is first to recognize different patterns in the S&P 500 index from the 11,662

fits and then use the subset of 2,568 negative bubble fits to identify specific negative

bubble characteristics. These characteristics will then be used to ‘predict’ (in a

back-testing sense) negative bubbles and rebounds in the future.

We first define a rebound, note as Rbd. A day d is a rebound Rbd if the price on
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that day is the minimum price in a window of 200 days before and 200 days after

it. That is,

Rbd = {d | Pd = min{Px},∀x ∈ [d − 200, d + 200]} (4.9)

where Pd is the adjusted closing price on day d. We find 19 rebounds of the ±200-

days type2 in the 59 year S&P 500 index history. Our task is to diagnose such

rebounds in advance. We could also use other numbers instead of 200 to define a

rebound. The predictability is stable with respect to a change of this number. This

is because we learn from the learning set with a certain number type of rebounds

and try to predict the rebounds of the same type. Later we will also show the results

for ±365-days type of rebounds.

Definitions and concepts needed to set up the pattern recognition method

In what follows we describe a hierarchy of descriptive and quantitative terms as

follows.

• learning set. A subset of the whole set which only contains the fits with

critical times in the past. We learn the properties of historical rebounds from

this set and develop the predictions based on these properties.

• classes. Two classes of fits are defined according to whether the critical time

of a given fit is near some rebound or not, where ‘near’ will be defined below.

• groups. A given group contains all fits of a given window size.

• informative parameters. Informative parameters are the distinguishing

parameters of fits in the same group but different classes.

• questionnaires. Based on the value of an informative parameter, one can

ask if a certain trading day is a start of rebound or not. The answer series

generated by all the informative parameters is called questionnaire.

• traits. Traits are extracted from questionnaire. They are short and contain

crucial information and properties of a questionnaire.

2Ten rebounds in the back tests before 1975.1.1: 1953-09-14; 1957-10-22; 1960-10-25; 1962-
06-26; 1965-06-28; 1966-10-07; 1968-03-05; 1970-05-26; 1971-11-23; 1974-10-03 and nine rebounds
after 1975.1.1 in the prediction range: 1978-03-06; 1980-03-27; 1982-08-12; 1984-07-24; 1987-12-04;
1990-10-11; 1994-04-04; 2002-10-09; 2009-03-09.



Chapter 4 Systematic Prediction of Rebounds and Crashes 87

• features. Traits showing the specific property of a single class are selected to

be the feature of that class.

• rebound alarm index. An index developed from features to show the prob-

ability that a certain day is a rebound.

In this paper, we will show how all the above objects are constructed. Our final

goal is to make predictions for the rebound time. The development of the rebound

alarm index will enable us to achieve our goal. Several methodologies are presented

to quantify the performance of the predictions.

Classes

In the pattern recognition method of [130], one should define the learning set to

find characteristics that will then be used to make predictions. We designate all fits

before Jan. 1, 1975 as the learning set Σ1:

Σ1 = {f | tc,f , t2,f < Jan. 1, 1975} (4.10)

There are 4,591 fits in this set, which we all use without any pre-selection. No

pre-selection for instance using Eq. (4.4) is applied, on the basis of the robustness

of the pattern recognition method. We then distinguish two different classes from

Σ1 based on the critical time tc of the fits. For a single fit f with critical time tc,f ,

if this critical time is within D days of a rebound, then we assign fit f to Class I,

represented by the symbol CI . Otherwise, f is assigned to Class II, represented by

the symbol CII . For this study, we chose D = 10 days because D too big will lose

precision and D too small will take the noise into account. In this case, Class I fits

are those with tc within 10 days of one of the 19 rebounds. We formalize this rule

as:

CI = {f | f ∈ Σ1,∃d ∈ Rbd, s.t.|tc,f − d| ≤ D}, (4.11)

CII = {f | f ∈ Σ1, |tc,f − d| > 10,∀d ∈ Rbd}, (4.12)

D = 10 days. (4.13)

To be clear, Class I is formed by all the fits in learning set Σ1 which have a critical

time tc within 10 days of one of the rebounds. All of the fits in the learning set

which are not in Class I are in Class II.
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Groups

We also categorize all fits into separate groups (in addition to the two classes defined

above) based on the length of the fit interval, Lf = dt = t2 − t1. We generate 14

groups, where a given group Gi is defined by:

Gi = {f | Lf ∈ [100i, 100i + 100], i = 1, 2, ..., 14, f ∈ Σ1} (4.14)

All 4,591 fits in the learning set are placed into one of these 14 groups.

Informative Parameters

For each fit in the learning set, we take 6 parameters to construct a flag that de-

termines the characteristics of classes. These 6 parameters are m,ω, φ and B from

Eq. (4.3), b (the negative bubble condition) from Eq. (2.21) and q as the residual of

the fit.

We categorize these sets of 6 parameters for fits which are in the same group and

same class. Then for each class-group combination, we calculate the probability

density function (pdf) of each parameter using the adaptive kernel method [131],

generating 168 pdfs (6 parameters × 2 classes × 14 groups).

We compare the similarity (defined below) of the pdfs of each of the six parame-

ters that are in the same group (window length) but different classes (proximity of

tc to a rebound date). If these two pdfs are similar, then we ignore this parameter

in this group. If the pdfs are different, we record this parameter of this group as an

informative parameter. The maximum number of possible informative parameters

is 84 (6 parameters × 14 groups).

We use the Kolmogorov-Smirnov method [132] to detect the difference between

pdfs. If the maximum difference of the cumulative distribution functions (integral

of pdf) between two classes exceeds 5%, then this is an informative parameter. We

want to assign a uniquely determined integer IPl to each informative parameter.

We can do so by using three indexes, i, j and l. The index i indicates which group,

with i ∈ [1, 14]. The index j indicates the parameter, where j = 1, 2, 3, 4, 5, 6 refer to

m,ω, φ,B, b, q, respectively. Finally, l represents the actual informative parameter.

Assuming that there are L informative parameters in total and using the indexes,
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IPl is then calculated via

IPl = 6i + j (4.15)

for l ∈ N
+, l ≤ L .

Given the L informative parameters IPl, we consider the pdfs for the two different

classes of a single informative parameter. The set of abscissa values within the

allowed range given by Eq. (4.5 – 4.8), for which the pdf of Class I is larger than the

pdf of Class II, defines the domain RgI,l (‘good region’) of this informative parameter

which is associated with Class I. The other values of the informative parameters for

which the pdf of Class I is smaller than the pdf of Class II define the domain RgII,l

which is associated with Class II. These regions play a crucial role in the generation

of questionnaires in the next section.

Our hypothesis is that many “positive” and “negative bubbles” share the same

structure described by the JLS model, because they result from the same underlying

herding mechanism. However, nothing a priori imposes that the control parameters

should be identical. Note that our pattern recognition methodology specifically

extract the typical informative parameter ranges that characterize the “negative

bubbles”.

Intermediate summary

We realize that many new terms are being introduced, so in an attempt to be

absolutely clear, we briefly summarize the method to this point. We sub-divide a

time series into many windows (t1, t2) of length Lf = t2 − t1. For each window, we

obtain a set of parameters that best fit the model Eq. (4.3). Each of these windows

will be assigned one of two classes and one of 14 groups. Classes indicate how

close the modeled critical time tc is to a historical rebound, where Class I indicates

‘close’ and Class II indicates ‘not close’. Groups indicate the length of the window.

For each fit, we create a set of six parameters: m,ω, φ and B from Eq. (4.3), b

(the negative bubble condition) from Eq. (2.21) and q as the residual of the fit.

We create the pdfs of each of these parameters for each fit and define informative

parameters as those parameters for which the pdfs differ significantly according to

a Kolmogorov-Smirnov test. For each informative parameter, we find the regions of

the abscissa of the pdf for which the Class I pdf (fits with tc close to a rebound) is
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greater than the Class II pdf. For informative parameter l (defined in Eq. (4.15)),

this region is designated as RgI,l. In the next section, we will use these regions to

create questionnaires that will be used to predictively identify negative bubbles that

will be followed by rebounds.

Another important distinction to remember at this point is that the above method

has been used to find informative parameters that will be used below. Informative

parameters are associated with a class and a group.

Questionnaires

Using the informative parameters and their pdfs described above, we can generate

questionnaires for each day of the learning or testing set. Questionnaires will be

used to identify negative bubbles that will be followed by rebounds. The algorithm

for generating questionnaires is the following:

1. Obtain the maximum (tcmax) and minimum (tcmin) values of tc from some

subset Σsub, either the ‘learning’ set or the ‘predicting (testing)’ set of all

11,662 fits.

2. Scan each day tscan from tcmin to tcmax. There will be N = tcmax − tcmin + 1

days to scan. For each scan day, create a new set Stscan consisting of all fits in

subset Σsub that have a tc near the scan day tscan, where ‘near’ is defined using

the same criterion used for defining the two classes, namely D = 10 days:

Stscan = {f | |tc,f − tscan| ≤ D, f ∈ Σsub} (4.16)

The number #Stscan of fits in each set can be 0 or greater. The sum of the

number of fits found in all of the sets
∑tcmax

tscan=tcmin
#Stscan can actually be

greater than the total number of fits in Σsub since some fits can be in multiple

sets. Notice that the fits in each set Stscan can (and do) have varying window

lengths. At this point, only the proximity to a scan day is used to determine

inclusion in a scan set.

3. Assign a group to each of the fits in Stscan. Recall that groups are defined in

Eq. (4.14) and are based on the window length Lf = dt = t2 − t1.

4. Using all sets Stscan, for each informative parameter IPl found in Sec. 4.1.3,

determine if it belongs to Class I (close to a rebound) or Class II (not close
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to a rebound). There are 3 possible answers: 1 = ‘belongs to Class I’, −1 =

‘belongs to Class II’ or 0 = ‘undetermined’.

The status of ‘belonging to Class I’ or not is determined as follows. First, find all

values of the informative parameter IPl in a particular scan set Stscan . For instance,

if for a particular scan day tscan, there are n fits in the subset Σsub that have tc ‘near’

tscan, then the set Stscan contains those n fits. These n fits include windows of varying

lengths so that the windows themselves are likely associated with different groups.

Now consider a given informative parameter IPl and its underlying parameter j

(described in Sec. 4.1.3) that has an associated ‘good region’, RgI,l. Remember that

this informative parameter IPl has an associated group. Count the number p of the

n fits whose lengths belong to the associated group of IPl. If more of the values of

the underlying parameter of p lie within RgI,l than outside of it, then IPl belongs

to Class I and, thus, the ‘answer’ to the question of ‘belonging to Class I’ is a = 1.

If, on the other hand, more values lie outside the ‘good region’ RgI,l than in it, the

answer is a = −1. If the same number of values are inside and outside of RgI,l then

a = 0. Also, if no members of Stscan belong to the associated group of IPl then

a = 0.

To assist more in that understanding, let us have a look at an example. Assume

that the informative parameter information tells us parameter m in Group 3 is the

informative parameter IP19 and m ∈ [A,B] is the ‘good region’ RgI,l of Class I. We

consider a single tscan and find that there are two fits in Stscan in this group with

parameter m values of m1 and m2. We determine the ‘answer’ a = aIP19
as follows:

• If m1,m2 ∈ [A,B], we say that based on IP19 (Group 3, parameter m) that

fits near tscan belong to Class I. Mark this answer as aIP19
= 1.

• If m1 ∈ [A,B] and m2 6∈ [A,B], we say that fits near tscan cannot be identified

and so aIP19
= 0.

• If m1,m2 6∈ [A,B], fits near tscan belong to Class II and aIP19
= −1.

More succinctly,

aIP19
=















1 if m1,m2 ∈ [A,B]

0 if mi ∈ [A,B],mj 6∈ [A,B], i 6= j, i, j ∈ {1, 2}
−1 if m1,m2 6∈ [A,B]

(4.17)
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For each of the informative parameters, we get an answer a that says that fits near

tscan belong to Class I or II (or cannot be determined). For a total of L informative

parameters, we get a questionnaire A of length L:

Atscan = a1a2a3...aL, ai ∈ {−1, 0, 1} (4.18)

Qualitatively, these questionnaires describe our judgment to whether tscan is a re-

bound or not. This judgment depends on the observations of informative parame-

ters.

Traits

The concept of a trait is developed to describe the property of the questionnaire for

each tscan. Each questionnaire can be decomposed into a fixed number of traits if

the length of questionnaire is fixed.

From any questionnaire with length L, we generate a series of traits by the

following method. Every trait is a series of 4 to 6 integers, τ = p, q, r, (P,Q,R).

The first three terms p, q and r are simply integers. The term (P,Q,R) represents

a string of 1 to 3 integers. We first describe p, q and r and then the (P,Q,R) term.

The integers p, q and r have limits: p ∈ 1, 2, . . . , L, q ∈ p, p + 1, . . . , L, r ∈
q, q + 1, . . . , L. We select all the possible combinations of bits from the questionnaire

Atscan with the condition that each time the number of selected questions is at most

3. We record the numbers of the selected positions and sort them. The terms p, q

and r are selected position numbers and defined as follows:

• If only one position i1 is selected: r = q = p = i1

• If two i1, i2 are selected: p = i1, r = q = i2(i1 < i2)

• If three i1, i2, i3 are selected: p = i1, q = i2, r = i3(i1 < i2 < i3)

The term (P,Q,R) is defined as follows:

r = q = p, (P,Q,R) = ap (4.19)

r = q, q 6= p, (P,Q,R) = ap, aq (4.20)

r 6= q, q 6= p, (P,Q,R) = ap, aq, ar (4.21)

As an example, A = (0, 1,−1,−1) has traits in Tab. 4.1.
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p q r (P,Q,R)

1 1 1 0
1 2 2 0,1
1 2 3 0,1,-1
1 2 4 0,1,-1
1 3 3 0,-1
1 3 4 0,-1,-1
1 4 4 0,-1
2 2 2 1
2 3 3 1,-1
2 3 4 1,-1,-1
2 4 4 1,-1
3 3 3 -1
3 4 4 -1,-1
4 4 4 -1

Table 4.1: Traits for series A = (0, 1,−1,−1)

For a questionnaire with length L, there are 3L + 32
(L

2

)

+ 33
(L

3

)

possible traits.

However, a single questionnaire has only L+
(

L
2

)

+
(

L
3

)

traits, because (P,Q,R) is de-

fined by p,q and r. In this example, there are 14 traits for questionnaire (0, 1,−1,−1)

and 174 total traits for all possible L = 4 questionnaires.

Features

At the risk of being redundant, it is worth briefly summarizing again. Until now

we have: L informative parameters IP1, IP2, . . . , IPL from 84 different parameters

(84 = 6 parameters × 14 groups) and a series of questionnaires Atscan for each tscan

from tcmin to tcmax using set Stscan . These questionnaires depend upon which subset

Σsub of fits is chosen. Each questionnaire has a sequence of traits that describe the

property of this questionnaire in a short and clear way. Now we generate features

for both classes.

Recall that the subset of fits Σfeature that we use here is that which contains all

fits which have a critical time tc earlier than tp = 1975-01-01, Σfeature = {f | tc,f <

tp}. By imposing that t2 and tc,f are both smaller than tp, we do not use any future

information. Considering the boundary condition of critical times in Eq. (4.8), the

end time of a certain fit t2 is less than or equal to tc. Additionally, we select only

those critical times such that tc,f < tp,∀f ∈ Σfeature.
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Assume that there are two sets of traits TI and TII corresponding to Class I and

Class II, respectively. Scan day by day the date t from the smallest tc in Σfeature

until tp. If t is near a rebound (using the same D = 10 day criterion as before), then

all traits generated by questionnaire At belong to TI . Otherwise, all traits generated

by At belong to TII .

Count the frequencies of a single trait τ in TI and TII . If τ is in TI for more

than α times and in TII for less than β times, then we call this trait τ a feature

FI of Class I. Similarly, if τ is in TI for less than α times and in TII for more than

β times, then we call τ a feature FII of Class II. The pair (α, β) is defined as a

feature qualification. We will vary this qualification to optimize the back tests and

predictions.

Rebound alarm index

The final piece in our methodology is to define a rebound alarm index that will be

used in the forward testing to ‘predict’ rebounds. Two types of rebound alarm index

are developed. One is for the back tests before 1975-01-01, as we have already used

the information before this time to generate informative parameters and features.

The other alarm index is for the prediction tests. We generate this prediction

rebound alarm index using only the information before a certain time and then try

to predict rebounds in the ‘future’ beyond that time.

4.1.4 Results

Features of learning set

Recall that a feature is a trait which frequently appears in one class but rarely in the

other class. Features are associated with feature qualification pairs (α, β). Using all

the fits from subset Σfeature found in Sec. 4.1.3, we generate the questionnaires for

each day in the learning set, i.e., the fits with tc before 1975-01-01. Take all traits

from the questionnaire At for a particular day t and compare them with features

FI and FII . The number of traits in FI and FII are called νt,I and νt,II . Then we

define:

RIt =







νt,I

νt,I+νt,II
if νt,I + νt,II ≥ 0

0 if νt,I + νt,II = 0
(4.22)
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From the definition, we can see that RIt ∈ [0, 1]. If RIt is high, then we expect that

this day has a high probability that the rebound will start.

We choose feature qualification pair (10, 200) here, meaning that a certain trait

must appear in trait Class I at least 11 times and must appear in trait Class II

less than 200 times. If so, then we say that this trait is a feature of Class I. If,

on the other hand, the trait appears 10 times or less in Class I or appears 200

times or more in Class II, then this trait is a feature of Class II. The result of this

feature qualification is shown in Fig. 4.3. Note that the choice (10, 200) is somewhat

arbitrary and does not constitute an in-sample optimization on our part. This can

be checked from the error diagrams presented below, which scan these numbers: one

can observe in particular that the pair (10, 200) does not give the best performance.

We have also investigated the impact of changing other parameters and find a strong

robustness.
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Figure 4.3: Rebound alarm index and log-price of the S&P 500 Index for the learning
set, where t2 and tc are both before Jan. 1, 1975. (upper) Rebound alarm index
for the learning set using feature qualification pair (10, 200). The rebound alarm
index is in the range [0, 1]. The higher the rebound alarm index, the more likely is
the occurrence of a rebound. (lower) Plot of ln p(t) versus time of S&P Index. Red
vertical lines indicate rebounds defined by local minima within plus and minus 200
days around them. Note that these rebounds are the historical “change of regime”
rather than only the jump-like reversals. The jump-like reversals, 1972, 1974 as
examples, are included in these rebounds. They are located near clusters of high
values of the rebound alarm index of the upper figure.
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With this feature qualification, the rebound alarm index can distinguish rebounds

with high significance. If the first number α is too big and the second number β

is too small, then the total number of Class I features will be very small and the

number of features in Class II will be large. This makes the rebound alarm index

always close to 0. In contrast, if α is too small and β is too large, the rebound

alarm index will often be close to 1. Neither of these cases, then, is qualified to be

a good rebound alarm index to indicate the start of the next rebound. However,

the absolute values of feature qualification pair are not very sensitive within a large

range. Only the ratio α/β plays an important role. Fig. 4.4 – 4.7 show that varying

α and β in the intervals 10 ≤ α ≤ 20 and 200 ≤ β ≤ 1000 does not change the

result much. For the sake of conciseness, only the rebound alarm index of feature

qualification pair (10, 200) is shown in this paper.
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Error Diagram for S&P 500 predictions.
9 rebounds after 1975-01-01
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Figure 4.4: Error diagram for predictions after Jan. 1, 1975 with different types of
feature qualifications. Feature qualification α, β means that, if the occurrence of a
certain trait in Class I is larger than α and less than β, then we call this trait a
feature of Class I and vice versa. See text for more information.

Predictions

Once we generate the Class I and II features of the learning set for values of tc before

tp (Jan. 1, 1975), we then use these features to generate the predictions on the data

after tp. Recall that the windows that we fit are defined such that the end time

t2 increases 50 days from one window to the next. Also note that all predictions
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Figure 4.5: Same as Fig. 4.4 but for the learning set before Jan. 1, 1975.
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Figure 4.6: Same as Fig. 4.4 but with the different definition of a rebound determined
as the day with the smallest price within the 365 days before it and the 365 days
after it.
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Error Diagram for S&P 500 back tests.
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Figure 4.7: Same as Fig. 4.6 for the learning set before Jan. 1, 1975.

made on days between these 50 days will be the same because there is no new fit

information between, say, tn2 and tn−1
2 .

Assume that we make a prediction at time t:

t ∈ (t2, t2 + 50], t > tp (4.23)

Then the fits set Σt2 = {f | t2,f ≤ t2} is made using the past information before

prediction day t. We use Σt2 as the subset Σsub mentioned in Sec. 4.1.3 to generate

the questionnaire on day t and the traits for this questionnaire. Comparing these

traits with features FI and FII allows us to generate a rebound alarm index RIt

using the same method as described in Sec. 4.1.4.

Using this technique, the prediction day t2 is scanned from 1975-01-01 until 2009-

07-22 in steps of 50 days. We then construct the time series of the rebound alarm

index over this period and with this resolution of 50 days. The comparison of this

rebound alarm index with the historical financial index (Fig. 4.8) shows a good

correlation, but there are also some false positive alarms (1977, 1998, 2006), as well

as some false negative missed rebounds (1990). Many false positive alarms such

as in 1998 and 2006 are actually associated with rebounds. But these rebounds

have smaller amplitudes than our qualifying threshold targets. Concerning the false

negative (missed rebound) in 1990, the explanation is probably that the historical

prices preceding this rebound does not follow the JLS model specification. Rebounds
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may result from several mechanisms and the JLS model only provides one of them,

arguably the most important. Overall, the predictability of the rebound alarm index

shown in Fig. 4.8, as well as the relative cost of the two types of errors (false positives

and false negatives) can be quantified systematically, as explained in the following

sections. The major conclusion is that the rebound alarm index has a prediction

skill much better than luck, as quantified by error diagrams.
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 Rebounds in range of [-200, 200] days are shown by red vertical lines.

Figure 4.8: Rebound alarm index and log-price of S&P 500 Index for the predicting
set after Jan. 1, 1975. (upper) Rebound alarm index for predicting set using feature
qualification pair (10, 200). The rebound alarm index is in the range [0,1]. The
higher the rebound alarm index, the more likely is the occurrence of a rebound.
(lower) Plot of ln p(t) versus time of the S&P Index. Red vertical lines indicate
rebounds defined by local minima within in plus and minus 200 days. They are
located near clusters of high values of the rebound alarm index of the upper figure.

Error Diagram

We have qualitatively seen that the feature qualifications method using back testing

and forward prediction can generate a rebound alarm index that seems to detect

and predict well observed rebounds in the S&P 500 index. We now quantify the

quality of these predictions with the use of error diagrams [133, 134]. We create an

error diagram for predictions after 1975-01-01 with a certain feature qualification in

the following way:

1. Count the number of rebounds after 1975-01-01 as defined in Sec. 4.2.1 and

expression (4.33). There are 9 rebounds.
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2. Take the rebound alarm index time series (after 1975-01-01) and sort the set

of all alarm index values in decreasing order. There are 12,600 points in this

series and the sorting operation delivers a list of 12,600 index values, from the

largest to the smallest one.

3. The largest value of this sorted series defines the first threshold.

4. Using this threshold, we declare that an alarm starts on the first day that

the unsorted rebound alarm index time series exceeds this threshold. The

duration of this alarm Da is set to 41 days, since the longest distance between

a rebound and the day with index greater than the threshold is 20 days. Then,

a prediction is deemed successful when a rebound falls inside that window of

41 days.

5. If there are no successful predictions at this threshold, move the threshold

down to the next value in the sorted series of alarm index.

6. Once a rebound is predicted with a new value of the threshold, count the ratio

of unpredicted rebounds (unpredicted rebounds / total rebounds in set) and

the ratio of alarms used (duration of alarm period / 12,600 prediction days).

Mark this as a single point in the error diagram.

In this way, we will mark 9 points in the error diagram for the 9 rebounds.

The aim of using such an error diagram in general is to show that a given pre-

diction scheme performs better than random. A random prediction follows the line

y = 1−x in the error diagram. A set of points below this line indicates that the pre-

diction is better than randomly choosing alarms. The prediction is seen to improve

as more error diagram points are found near the origin (0, 0). The advantage of

error diagrams is to avoid discussing how different observers would rate the quality

of predictions in terms of the relative importance of avoiding the occurrence of false

positive alarms and of false negative missed rebounds. By presenting the full error

diagram, we thus sample all possible preferences and the unique criterion is that the

error diagram curve be shown to be statistically significantly below the anti-diagonal

y = 1 − x.

In Fig. 4.4, we show error diagrams for different feature qualification pairs (α, β).

Note the 9 points representing the 9 rebounds in the prediction set. We also plot
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the 11 points of the error diagrams for the learning set in Fig. 4.5.

As a different test of the quality of this pattern recognition procedure, we repeated

the entire process but with a rebound now defined as the minimum price within a

window of 2× 365 days3 instead of 2× 200 days, as before. These results are shown

in Fig. 4.6 – 4.7.

Bayesian inference

Given a value of the predictive rebound alarm index, we can also use the historical

rebound alarm index combined with Bayesian inference to calculate the probability

that this value of the rebound alarm index will actually be followed by a rebound.

We use predictions near the end of November, 2008 as an example. From Fig. 4.8,

we can see there is a strong rebound signal in that period. We determine if this is

a true rebound signal by the following method:

1. Find the highest rebound alarm index Lv around the end of November 2008.

2. Calculate Dtotal, the number of days in the interval from 1975-01-01 until the

end of the prediction set, 2009-07-22.

3. Calculate DLv, the number of days which have a rebound alarm index greater

than or equal to Lv.

4. The probability that the rebound alarm index is higher than Lv is estimated

by

P (RI ≥ Lv) =
DLv

Dtotal
(4.24)

5. The probability of a day being near the bottom of a rebound is estimated as

the number of days near real rebounds over the total number of days in the

predicting set:

P (rebound) =
DrwNrebound

Dtotal
, (4.25)

where Nrebound is the number of rebounds we can detect after 1975-01-01 and

Drw is the rebound width, i.e. the number of days near the real rebound

3seven rebounds in the back tests before 1975.1.1: 1953-09-14; 1957-10-22; 1960-10-25; 1962-
06-26; 1966-10-07; 1970-05-26; 1974-10-03, and six rebounds after 1975.1.1 in the prediction range:
1978-03-06; 1982-08-12; 1987-12-04; 1990-10-11; 2002-10-09; 2009-03-09.
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in which we can say that this is a successful prediction. For example, if we

say that the prediction is good when the predicted rebound time and real

rebound time are within 10 days of each other, then the rebound width Drw =

10 × 2 + 1 = 21.

6. The probability that the neighbor of a rebound has a rebound alarm index

larger than Lv is estimated as

P (RI ≥ Lv|rebound) =
N0

Nrebound
(4.26)

where N0 is the number of rebounds in which

sup
|d−rebound|≤20

RId ≥ Lv. (4.27)

7. Given that the rebound alarm index is higher than Lv, the probability that

the rebound will happen in this period is given by Bayesian inference:

P (rebound|RI ≥ Lv) =
P (rebound) × P (RI ≥ Lv|rebound)

P (RI ≥ Lv)
(4.28)

Averaging P (rebound|RI ≥ Lv) for all the different feature qualifications gives

the probability that the end of November 2008 is a rebound as 0.044. By comparing

with observations, we see that this period is not a rebound. We obtain a similar

result by increasing the definition of rebound from 200 days before and after a local

minimum to 365 days, yielding a probability of 0.060.

When we decrease the definition to 100 days, the probability that this period is a

rebound jumps to 0.597. The reason for this sudden jump is shown in Fig. 4.9 where

we see the index around this period and the S&P 500 index value. From the figure,

we find that this period is a local minimum within 100 days, not more. This is

consistent with what Bayesian inference tells us. However, we have to address that

the more obvious rebound in March 2009 is missing in our rebound alarm index.

Technically, one can easily find that this is because the end of crash is not consistent

with the beginning of rebound in this special period.

In this case, we then test all the days after 1985-01-01 systematically by Bayesian

inference using only prediction data (rebound alarm index) after 1975-01-01. To

show that the probability that RI ≥ Lv is stable, we cannot start Bayesian inference

too close to the initial predictions so we choose 1985-01-01 as the beginning time.
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 Probability of rebound given the rebound alarm index is calculated by Bayesian inference.
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Figure 4.9: Rebound alarm index and market price near and after November 2008.

We have 5 ‘bottoms’ (troughs) after this date, using the definition of a minimum

within ±200 days.

For a given day d after 1985-01-01, we know all values of the rebound alarm index

from 1975-01-01 to that day. Then we use this index and historical data of the asset

price time series in this time range to calculate the probability that d is the bottom

of the trough, given that the rebound alarm index is larger than Lv, where Lv is

defined as

Lv = sup
d−t<50

RIt (4.29)

To simplify the test, we only consider the case of feature qualification pair (10,

200), meaning that the trait is a feature of Class I only if it shows in Class I more

than 10 times and in Class II less than 200 times. Fig. 4.10 shows that the actual

rebounds occur near the local highest probability of rebound calculated by Bayesian

inference. This figure also illustrates the existence of false positive alarms, i.e., large

peaks of the probability not associated with rebounds that we have characterized

unambiguously at the time scale of ±200 days.

4.1.5 Trading strategy

In order to determine if the predictive power of our method provides a genuine

and useful information gain, it is necessary to estimate the excess return it could
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Probability of rebound obtained using Bayesian inference. 
 Rebound is bottom of [-200, 200] days. Red dashed lines represent real rebounds.

Figure 4.10: Probability of rebound as a function of time t, given the value of the
rebound alarm index at t, derived by Bayesian inference applied to bottoms at the
time scale of ±200 days. The feature qualification is (10, 200). Lv is the largest
rebound index in the past 50 days. The vertical red lines show the locations of the
realized rebounds in the history of the S&P500 index.

generate. The excess return is the real return minus the risk free rate transformed

from annualized to the duration of this period. The annualized 3-month US treasury

bill rate is used as the risk free rate in this paper. We thus develop a trading strategy

based on the rebound alarm index as follows. When the rebound alarm index rises

higher than a threshold value Th, then with a lag of Os days, we buy the asset. This

entry strategy is complemented by the following exit strategy. When the rebound

alarm index goes below Th, we still hold the stock for another Hp days, with one

exception. Consider the case that the rebound alarm index goes below Th at time

t1 and then rises above Th again at time t2. If t2 − t1 is smaller than the holding

period Hp, then we continue to hold the stock until the next time when the rebound

alarm index remains below Th for Hp days.

The performance of this strategy for some fixed values of the parameters is com-

pared with random strategies, which share all the properties except for the timing

of entries and exits determined by the rebound alarm index and the above rules.

The random strategies consist in buying and selling at random times, with the con-

straint that the total holding period (sum of the holding days over all trades in a

given strategy) is the same as in the realized strategy that we test. Implementing
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Strategy I Strategy II

Threshold Th 0.2 0.7
Offset Os 10 30
Holding period Hp 10 10
Number of trades 77 38
Success rate
(fraction of trades with positive return) 66.2% 65.8%
Total holding days 1894 days 656 days
Fraction of time when invested 15.0% 5.2%
Cumulated log-return 95% 45%
cumulated excess log-return 67% 35%
Average return per trade 1.23% 1.19%
Average trade duration 24.60 days 17.26 days
p-value of cumulative excess return 0.055 0.058
Sharpe ratio per trade 0.247 0.359
Sharpe ratio of random trades
(holding period equals average trade duration) 0.025 0.021
p-value of Sharpe ratio 0.043 0.036
Bias ratio 1.70 1.36
Bias ratio of random trades
(holding period equals average trade duration) 1.27 1.25
p-value of bias ratio 0.105 0.309

Table 4.2: Performances of two strategies: Strategy I (Th = 0.2, Os = 10,Hp = 10)
and Strategy II (Th = 0.7, Os = 30,Hp = 10).

1000 times these constrained random strategies with different random number real-

izations provide the confidence intervals to assess whether the performance of our

strategy can be attributed to real skill or just to luck.

Results of this comparison are shown in Tab. 4.2 for two sets of parameter values.

The p-value is a measure of the strategies’ performance, calculated as the fraction of

corresponding random strategies that are better than or equal to our strategies. The

lower the p-value is, the better the strategy is compared to the random portfolios.

We see that all of our strategies’ cumulative excess returns are among the top 5%

– 6% out of 1000 corresponding random strategies’ cumulative excess returns. Box

plots for each of the strategies are also presented in Fig. 4.11 – 4.12.

The cumulative returns as well as the cumulative excess returns obtained with

the two strategies as a function of time are shown in Fig. 4.13 – 4.14. These results
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Box plot for strategy with holding period 10 days, threshold 0.2 and offset 10

Figure 4.11: Box plot for Strategy I (Th = 0.2, Os = 10,Hp = 10). Lower and
upper horizontal edges (blue lines) of box represent the first and third quartiles.
The red line in the middle is the median. The lower and upper black lines are the
1.5 inter-quartile range away from quartiles. Points between quartiles and black
lines are outliers and points out of black lines are extreme outliers. Our strategy
return is marked by the red circle. This shows our strategy is an outlier among the
set of random strategies. The log-return ranked 55 out of 1000 random strategies.
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Figure 4.12: Same as Fig. 4.11 for Strategy II (Th = 0.7, Os = 30,Hp = 10). The
log-return ranked 58 out of 1000 random strategies.
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suggest that these two strategies would provide significant positive excess return.

Of course, the performance obtained here are smaller than the naive buy-and-hold

strategy, consisting in buying at the beginning of the period and just holding the

position. The comparison with the buy-and-hold strategy would be however unfair

as our strategy is quite seldom invested in the market. Our goal here is not to

do better than any other strategy but to determine the statistical significance of a

specific signal. For this, the correct method is to compare with random strategies

that are invested in the market the same fraction of time. It is obvious that we

could improve the performance of our strategy by combining the alarm indexes of

bubbles and of negative bubbles, for instance, but this is not the goal here.
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Wealth trajectory for strategy: threshold: 0.2, offset: 10 days, holding period: 10 days.
 Cumulated log-return (excess log-return): 94.84% (66.99%), 77 trades in total.

return path
excess return path

Figure 4.13: Wealth trajectory for Strategy I (Th = 0.2, Os = 10,Hp = 10). Major
performance parameters of this strategy are: 77 trading times; 66.2% trades have
positive return; 1894 total holding days, which is 15.0% of total time. Accumulated
log-return is 95% and average return per trade is 1.23%. Average trade length is
24.60 days. P-value of this strategy is 0.055

We also provide the Sharpe ratio as a measure of the excess return (or risk

premium) per unit of risk. We define it per trade as follows

S =
E[R − Rf ]

σ
(4.30)

where R is the return of a trade, Rf is the risk free rate (we use the 3-month US

treasury bill rate) transformed from annualized to the duration of this trade given

in Tab. 4.2 and σ is the standard deviation of the returns per trade. The higher the
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Wealth trajectory for strategy: threshold: 0.7, offset: 30 days, holding period: 10 days.
 Cumulated log-return (excess log-return): 45.03% (34.97%), 38 trades in total.
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Figure 4.14: Wealth trajectory for Strategy II (Th = 0.7, Os = 30,Hp = 10). Major
performance parameters of this strategy are: 38 trading times; 65.8% trades have
positive return; 656 total holding days, which is 5.2% of total time. Accumulated
log-return is 45% and average return per trade is 1.19%. Average trade length is
17.26 days. P-value of this strategy is 0.058

Sharpe ratio is, the higher the excess return under the same risk.

The bias ratio is defined as the number of trades with a positive return within one

standard deviation divided by one plus the number of trades which have a negative

return within one standard deviation:

BR =
#{r|r ∈ [0, σ]}

1 + #{r|r ∈ [−σ, 0)} (4.31)

In Eq. (4.31), r is the excess return of a trade and σ is the standard deviation of

the excess returns. This ratio detects valuation bias.

To see the performance of our strategies, we also check all the possible random

trades with a holding period equals to the average duration of our strategies, namely

25 days and 17 days for strategy I and II respectively. The average Sharpe and bias

ratios of these random trades are shown in Tab. 4.2. Both Sharpe and bias ratios

of our strategies are greater than those of the random trades, confirming that our

strategies deliver a larger excess return with a stronger asymmetry towards positive

versus negative returns.

As another test, we select randomly the same number of random trades as in

our strategies, making sure that there is no overlap between the selected trades.
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We calculate the Sharpe and bias ratios for these random trades. Repeating this

random comparative selection 1000 times provides us with p-values for the Sharpe

ratio and for bias ratio of our strategies. The results are presented in Tab. 4.2. All

the p-values are found quite small, confirming that our strategies perform well.

4.1.6 Conclusion

We have developed a systematic method to detect rebounds in financial markets

using “negative bubbles,” defined as the symmetric of bubbles with respect to a

horizontal line, i.e., downward accelerated price drops. The aggregation of thou-

sands of calibrations in running windows of the negative bubble model on financial

data has been performed using a general pattern recognition method, leading to the

calculation of a rebound alarm index. Performance metrics have been presented in

the form of error diagrams, of Bayesian inference to determine the probability of

rebounds and of trading strategies derived from the rebound alarm index dynamics.

These different measures suggest that the rebound alarm index provides genuine

information and suggest predictive ability. The implemented trading strategies out-

perform randomly chosen portfolios constructed with the same statistical charac-

teristics. This suggests that financial markets may be characterized by transient

positive feedbacks leading to accelerated drawdowns, which develop similarly to but

as mirror images of upward accelerating bubbles. Our key result is that these neg-

ative bubbles have been shown to be predictably associated with large rebounds or

rallies.

In summary, we have expanded the evidence for the possibility to diagnose bub-

bles before they terminate [65], by adding the phenomenology and modeling of

“negative bubbles” and their anticipatory relationship with rebounds. The present

paper contributes to improving our understanding of the most dramatic anomalies

exhibited by financial markets in the form of extraordinary deviations from funda-

mental prices (both upward and downward) and of extreme crashes and rallies. Our

results suggest a common underlying origin to both positive and negative bubbles

in the form of transient positive feedbacks leading to identifiable and reproducible

faster-than-exponential price signatures.
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4.2 Detection of Crashes and Rebounds in Major Eq-

uity Markets

To test this idea and to implement a systematic forecast procedure based on

the JLS model, Zhou and Sornette adapted a pattern recognition method to detect

bubbles and crashes [94]. This method was originally developed by the famous

mathematician I. M. Gelfand and his collaborators in 1975 [130], when they were

trying to predict the earthquake in California. Since then, this method has been

widely used in many kinds of predictions ranges from uranium prospecting [135]

to unemployment rate [136]. Yan, Woodard and Sornette [95, 96] extended this

method to negative bubbles and rebounds of financial markets, which is the content

of Sec. 4.1. They also improved the method in [94] by separating the learning period

and prediction period to enable a pure causal prediction.

Since the study in Sec. 4.1 only tested for rebounds in one major index (S&P

500), in this section we expand to ten major global equity markets using the pat-

tern recognition method to detect and forecast crashes and rebounds. Our results

indicate that the performance of the predictions on both crashes and rebounds for

most of the indices is better than chance. That is, the end of large drawdowns and

the subsequent rebounds can be successfully forecast. To demonstrate this, we de-

sign a simple trading strategy and show that it out-performs a simple buy-and-hold

benchmark.

The structure of the paper is as follows: We present the pattern recognition

method for the prediction of crashes and rebounds in Sec. 4.2.1. This method is

the same as the one presented in Sec. 4.1.3. However, the introduction of this

method in this section is a short and visible version, which can be easier understood

by the readers. The quality of the prediction is tested in Sec. 4.2.2 using error

diagrams to compare missed events versus total alarm time. We next introduce the

trading strategy based on the alarm index and test its performance in Sec. 4.2.3.

We summarize our results and conclude in Sec. 4.2.4.

4.2.1 Prediction Method

We adapt the pattern recognition method of Gelfand et al. [130] to generate predic-

tions of crashes and rebound times in financial markets on the basis of the detection
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and calibration of bubbles and negative bubbles. The prediction method used here

is basically that used to detect rebounds in [95] but we now use it to detect both

crashes and rebounds at the same time. Here we give a brief summary of the method,

which is decomposed into five steps.

Fit the time series with the JLS model

Given a historical price time series of an index (such as the S&P 500 or the Dow

Jones Industrial Average, for example), we first divide it into different sub-windows

(t1, t2) of length dt ≡ t2 − t1 according to the following rules:

1. The earliest start time of the windows is t10. Other start times t1 are calculated

using a step size of dt1 = 50 calendar days.

2. The latest end time of the windows is t20. Other end times t2 are calculated

with a negative step size dt2 = −50 calendar days.

3. The minimum window size dtmin = 110 calendar days.

4. The maximum window size dtmax = 1500 calendar days.

For each sub-window generated by the above rules, the log of the index is fit with

the JLS Eq. (2.9). The fitting procedure is a combination of a preliminary heuristic

selection of the initial points and a local minimizing algorithm (least squares). The

linear parameters are slaved by the nonlinear parameters before fitting. Details

of the fitting algorithm can be found in [95, 47]. We keep the best 10 parameter

sets for each sub-window and use these parameter sets as the input to the pattern

recognition method.

Definition of crash and rebound

We refer to a crash as ‘Crh’ and to a rebound as ‘Rbd’. A day d begins a crash

(rebound) if the price on that day is the maximum (minimum) price in a window of

100 days before and 100 days after. That is,

Crh = {d | Pd = max{Px},∀x ∈ [d − 100, d + 100]} (4.32)

Rbd = {d | Pd = min{Px},∀x ∈ [d − 100, d + 100]} (4.33)

where Pd is the adjusted closing price on day d. Our task is to diagnose such crashes

and rebounds in advance. We could also use other windows instead of ±100 to define
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a rebound. The results are stable with respect to a change of this number because

we learn from the ‘learning set’ with a certain rebound window width and then try

to predict the rebounds using the same window definition. The reference [95] shows

the results for ±200-days and ±365-days type of rebounds.

Learning set, class, group and informative parameter

As described above, we obtain a set of parameters that best fit the model Eq. (2.9)

for each window. Then we select a subset of the whole set which only contains the

fits of crashes and rebounds with critical times found within the window (that is,

where parameter tc is not calculate to be beyond the window bounds). We learn

the properties of historical rebounds from this set and develop the predictions based

on these properties. We call this set the learning set. In this paper, a specific day

for each index is chosen as the ‘present time’ (for backtesting purposes). All the

fit windows before that day will be used as the learning set and all the fit windows

after that will be used as the testing set, in which we will predict future rebounds.

The quality of the predictability of this method can be quantified by studying the

predicted results in the testing set using only the information found in the learning

set.

Each of the sub-windows generated by the rules in Sec. 4.2.1 will be assigned

one of two classes and one of 14 groups. Classes indicate how close the modeled

critical time tc is to a historical crash or rebound, where Class I indicates ‘close’ and

Class II indicates ‘not close’ (‘close’ will be defined below as a parameter). Groups of

windows have similar window widths. For each fit, we create a set of six parameters:

m,ω, φ and B from Eq. (2.9), b from Eq. (2.11) and q as the residual of the fit. We

will compare the probability density functions (pdf) of these parameters among the

different classes and groups. The main goal of this technique is to identify patterns

of parameter pdf’s that are different between windows with crashes or rebounds and

windows without crashes or rebounds. Given such a difference and a new, out-of-

sample window, we can probabilistically state that a given window will or will not

end in a crash or rebound.

A figure is very helpful for understanding these concepts. We show the selection

of the sub-windows and sort the fits by classes and groups in Fig. 4.15. Then we

create the pdf’s of each of these parameters for each fit and define informative
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parameters as those parameters for which the pdf’s differ significantly according to

a Kolmogorov-Smirnov test. For each informative parameter, we find the regions of

the abscissa of the pdf for which the Class I pdf (fits with tc close to an extreme) is

greater than the Class II pdf. This procedure has been performed in Fig. 4.16.

Figure 4.15: Step one of pattern recognition procedure: Create sub-windows, fit
each window with the JLS model. Classify the fits in groups and classes.

Figure 4.16: Step two of pattern recognition procedure: For each group compare
fits in class I with those in class II and find out the informative parameters.

Questionnaires, traits and features

Using the informative parameters and their pdf’s described above, we can generate

a questionnaire for each day of the learning or testing set. A questionnaire is a

quantitative inquiry into whether or not a set of parameters is likely to indicate a
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bubble or negative bubble. Questionnaires will be used to identify bubbles (negative

bubbles) which will be followed by crashes (rebounds). In short, the length of a

questionnaire tells how many informative parameters there are for a given window

size. An informative parameter implies that the pdf’s of that parameter are very

different for windows with a crash/rebound than windows without. The more values

of ‘1’ in the questionnaire, the more likely it is that the parameters are associated

with a crash/rebound.

One questionnaire is constructed for each day tscan in our learning set. We first

collect all the fits which have a critical time near that day (‘near’ will be defined).

Then we create a string of bits whose length is equal to the number of informative

parameters found. Each bit can take a value -1, 0 or 1 (a balanced ternary system).

Each bit represents the answer to the question: are more than half of the collected

fits more likely to be considered as Class I? If the answer is ‘yes’, we assign 1 in the

bit of the questionnaire corresponding to this informative parameter. Otherwise, we

assign 0 when the answer cannot be determined or −1 when the answer is ‘no’. A

visual representation of this questionnaire process is shown in Fig. 4.17.

Figure 4.17: Step three of pattern recognition procedure: Generate the questionnaire
for each trading day.

The concept of a trait is developed to describe the property of the questionnaire

for each tscan. Each questionnaire can be decomposed into a fixed number of traits if

the length of the questionnaire is fixed. We will not give the details in how the traits
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are generated in this paper. For a clear explanation of the method, please refer to

Sec. 3.9 of the reference [95]. Think of a trait as a sub-set (like the ‘important’

short section from a very long DNA sequence) of a fixed-length questionnaire that

is usually found in windows that show crashes/rebounds. Conversely, a trait can

indicate windows where a crash/rebound is not found.

Assume that there are two sets of traits TI and TII corresponding to Class I and

Class II, respectively. Scan day by day the date t before the last day of the learning

set. If t is ‘near’ an extreme event (crash or rebound), then all traits generated

by the questionnaire for this date belong to TI . Otherwise, all traits generated by

this questionnaire belong to TII . ‘Near’ is defined as at most 20 days away from

an extreme event. The same definition will be used later in Sec. 4.2.2 when we

introduce the error diagram.

Using this threshold, we declare that an alarm starts on the first day that the

unsorted crash alarm index time series exceeds this threshold. The duration of this

alarm Da is set to 41 days, since the longest distance between a crash and the day

with index greater than the threshold is 20 days.

Count the frequencies of a single trait τ in TI and TII . If τ is in TI for more

than α times and in TII for less than β times, then we call this trait τ a feature

FI of Class I. Similarly, if τ is in TI for less than α times and in TII for more than

β times, then we call τ a feature FII of Class II. The pair (α, β) is defined as a

feature qualification. Fig. 4.18 shows the generation process of traits and features.

We would like to clarify that by definition some of the traits are not from any type

of feature since they are not ‘extreme’ and we cannot extract clear information from

them.

Alarm index

The final piece in our methodology is to define an alarm index for both crashes and

rebounds. An alarm index is developed based on features to show the probability

that a certain day is considered to be a rebound or a crash. We first collect all

the fits which have a predicted critical time near this specific day and generate

questionnaires and traits from these fits. The rebound (crash) alarm index for a

certain day is just a ratio quantified by the total number of traits from feature type

FI (a set of traits which have high probability to represent rebound (crash)) divided
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Figure 4.18: Step four of pattern recognition procedure: Create traits from ques-
tionnaires. Obtain features for each class by traits statistics.

by the total number of traits from both FI and FII . Note that FII is a set of traits

which have low probability to represent rebound (crash). The principles for the

generation of the alarm index are summarized in Fig. 4.19.

Two types of alarm index are developed. One is for the back tests in the learning

set, as we have already used the information before this time to generate informative

parameters and features. The other alarm index is for the prediction tests. We

generate this prediction alarm index using only the information before a certain

time and then try to predict crashes and rebounds in the ‘future’.

4.2.2 Prediction in major equity markets

We perform systematic detections and forecasts on both the market crashes and

rebounds for 10 major global equity markets using the method we discussed in

Sec. 4.2.1. The 10 indices are S&P 500 (US), Nasdaq composite (US), Russell 2000

(US), FTSE 100 (UK), CAC 40 (France), SMI (Switzerland), DAX (German), Nikkei

225 (Japan), Hang Seng (Hong Kong) and ASX (Australia). The basic information

for these indices used in this study is listed in Tab. 4.3. Due to space constraints,

we cannot show all results for these 10 indices here. The complete results for three

indices from different continents are shown in this paper. They are Russell 2000

(America), SMI (Europe) and Nikkei 225 (Asia). Partial results for the remaining
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Figure 4.19: Step five of pattern recognition procedure: Construct the alarm index
for each day by decomposing the questionnaire into traits for that day and compare
these traits to the features of each class.

indices are shown in Tab. 4.4, which will be discussed in details later in Sec. 4.2.3.

The alarm index depends on the features which are generated using information

from the learning set. Thus, the alarm index before the end of the learning set uses

‘future’ information. That is, the value of the alarm index on a certain day t0 in the

learning set uses prices found at t > t0 to generate features. The feature definitions

from the learning set are then used to define the alarm index in the testing set using

only past prices. That is, the value of the alarm index on a certain day t0 in the

testing set uses only prices found at t ≤ t0 in the testing set (and the definitions of

features found in the learning set). We do not use ‘future’ information in the testing

set. In this case, the alarm index predicts crashes and rebounds in the market.

The crash and the rebound alarm index for Russell 2000, SMI and Nikkei are

shown in Fig. 4.20 – 4.25. Fig. 4.20 – 4.22 show the back testing results for these

three indices and Fig. 4.23 – 4.25 present the prediction results. In all of these

results, the feature qualification pair (7, 100) is used. This means that a certain

trait must appear in trait Class I (crash or rebound) at least 7 times and must

appear in trait Class II (no crash or rebound) less than 100 times. If so, then we say

that this trait is a feature of Class I. If, on the other hand, the trait appears 7 times

or less in Class I or appears 100 times or more in Class II, then this trait is a feature
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of Class II. Tests on other feature qualification pairs are performed also. Due to

the space constraints, we do not show the alarm index constructed by other feature

qualification pairs here, but later we will present the predictability of these alarm

indices by showing the corresponding error diagrams. In the rest of this paper, if

we do not mention otherwise, we use (7, 100) as the feature qualification pair.
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Figure 4.20: Alarm index and log-price of the Russell 2000 Index for the learning set,
where the end date is 17-Apr-1999. (upper) Rebound alarm index for the learning
set using feature qualification pair (7, 100). The rebound alarm index is in the range
[0, 1]. The higher the rebound alarm index, the more likely is the occurrence of a
rebound. (middle) Crash alarm index for the learning set using feature qualification
pair (7, 100). The crash alarm index is in the range [0, 1]. The higher the crash alarm
index, the more likely is the occurrence of a crash. (lower) Plot of price versus time
of Russell Index (shown in blue cycles). Green solid vertical lines indicate rebounds
defined by local minima within plus and minus 100 days around them. Red dashed
vertical lines indicate crashes defined by local maxima within plus and minus 100
days around them. Note that these rebounds and crashes are the historical “change
of regime” rather than only the jump-like reversals.

To check the quality of the alarm index quantitatively, we introduce error di-

agrams [133, 134]. Using Nikkei 225 as an example, we create an error diagram

for crash predictions after 17-Apr-1999 with a certain feature qualification in the

following way:

1. Calculate features and define the alarm index using the learning set between

04-Jan-1984 and 17-Apr-1999.
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Figure 4.21: Alarm index and price of the SMI Index for the learning set, where the
end date is 17-Apr-1999. The format is the same as Fig. 4.20.

2. Count the number of crashes after 17-Apr-1999 as defined in Sec. 4.2.1 and

Eq. (4.32). There are 7 crashes.

3. Take the crash alarm index time series (after 17-Apr-1999) and sort the set

of all alarm index values in decreasing order. There are 4,141 points in this

series and the sorting operation delivers a list of 4,141 index values, from the

largest to the smallest one.

4. The largest value of this sorted series defines the first threshold.

5. Using this threshold, we declare that an alarm starts on the first day that the

unsorted crash alarm index time series exceeds this threshold. The duration of

this alarm Da is set to 41 days, since the longest distance between a crash and

the day with index greater than the threshold is 20 days. This threshold is

consistent with the previous classification of questionnaires in Sec. 4.2.1, where

we define a predicted critical time as ‘near’ the real extreme events when its

distance is less than 20 days. Then, a prediction is deemed successful when a

crash falls inside that window of 41 days.

6. If there are no successful predictions at this threshold, move the threshold

down to the next value in the sorted series of alarm index.
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Figure 4.22: Alarm index and price of the Nikkei 225 Index for the learning set,
where the end date is 17-Apr-1999. The format is the same as Fig. 4.20.

7. Once a crash is predicted with a new value of the threshold, count the ratio of

unpredicted crashes (unpredicted crashes / total crashes in set) and the ratio

of alarms used (duration of alarm period / 4,141 prediction days). Mark this

as a single point in the error diagram.

In this way, we will mark 7 points in the error diagram for the 7 Nikkei 225 crashes

after 17-Apr-1999.

The aim of using such an error diagram in general is to show that a given pre-

diction scheme performs better than random. A random prediction follows the line

y = 1−x in the error diagram. A set of points below this line indicates that the pre-

diction is better than randomly choosing alarms. The prediction is seen to improve

as more error diagram points are found near the origin point (0, 0). The advan-

tage of error diagrams is to avoid discussing how different observers would rate the

quality of predictions in terms of the relative importance of avoiding the occurrence

of false positive alarms and of false negative missed rebounds. By presenting the

full error diagram, we thus sample all possible preferences and the unique criterion

is that the error diagram curve be shown to be statistically significantly below the

anti-diagonal y = 1 − x.

In Fig. 4.26 – 4.28, we show the results on predictions and back tests in terms

of error diagrams for crashes and rebounds in each of the indices. The results
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Figure 4.23: Alarm index and log-price of Russell 2000 Index for the predicting set
after 17-Apr-1999. The format is the same as Fig. 4.20.

for different feature qualification pairs (α, β) are shown in each figure. All these

figures show that our alarm index for crashes and rebounds in either back testing

or prediction performs much better than random.

4.2.3 Trading Strategy

One of the most powerful methods to test the predictability of a signal is to design

simple trading strategies based on it. We do so with our alarm index by using simple

moving average strategies, which keep all the key features of the alarm index and

avoid parametrization problems. The strategies are kept as simple as possible and

can be applied to any indices.

The trading strategies are designed as follows: the daily exposure of our strategy

θ is determined by the average value of the alarm index for the past n days. The

rest of our wealth, 1 − θ, is invested in a 3-month US treasury bill.

Let us denote the average rebound and crash alarm index of the past n days as

AIR and AIC respectively. We create three different strategies:

• A long strategy using only the rebound alarm index. We will take a long

position in this strategy only. The daily exposure of our strategy is based on

the average value of the past n days rebound alarm index: θ = AIR.

• A short strategy using only the crash alarm index. We will take a short



122 Identification and Forecasts of Financial Bubbles

0.0

0.2

0.4

0.6

0.8

1.0

Re
bo

un
d 

al
ar

m
 in

de
x

0.0

0.2

0.4

0.6

0.8

1.0
Cr

as
h 

al
ar

m
 in

de
x

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Time

4000

5000

6000

7000

8000

9000

Hi
st

or
ic

al
 p

ric
e

Figure 4.24: Alarm index and price of the SMI Index for the predicting set after
17-Apr-1999. The format is the same as Fig. 4.20.

position in this strategy only. The daily absolute exposure of our strategy is

based on the average value of the past n days crash alarm index: |θ| = AIC .

• A long-short strategy linearly combining both strategies above. When the

average rebound alarm index is higher than the average crash alarm index, we

take a long position and vice versa. The absolute exposure |θ| = |AIR −AIC |.

These strategies have the advantage of having few parameters, as only the du-

ration n needs to be determined. Despite their simplicity, they capture the two

key features of the alarm index. First, we see that the alarms are clustered around

certain dates. The more clustering seen, the more likely that a change of regime is

coming and, therefore, the more we should be invested. Second, we see that a strong

alarm close to 1 should be treated as more important than a weaker alarm while at

the same time the smaller alarms still contain some information and should not be

discarded.

Tab. 4.4 summarizes the Sharpe ratios for long-short strategies on the out-of-

sample period (testing set) for each index. The strategy is calculated with four

different moving average look-backs: n = 20, 30, 40, 60 days. We use the Sharpe

ratios of the market during this period as the benchmark in this table. Recall that

the Sharpe ratio is a measure of the excess return (or risk premium) per unit of risk
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Figure 4.25: Alarm index and price of the Nikkei 225 Index for the predicting set
after 17-Apr-1999. The format is the same as Fig. 4.20.

in an investment asset or a trading strategy. It is defined as:

S =
R − Rf

σ
=

R − Rf
√

V ar[R − Rf ]
, (4.34)

where R is the return of the strategy and Rf is the risk free rate. We use the US

three-month treasury bill rate here as the risk free rate. The Sharpe ratio is used

to characterize how well the return of an asset compensates the investor for the

risk taken: the higher the Sharpe ratio number, the better. When comparing two

assets with the same expected return against the same risk free rate, the asset with

the higher Sharpe ratio gives more return for the same risk. Therefore, investors

are often advised to pick investments with high Sharpe ratios. From Tab. 4.4, we

can find that, for seven out of ten global major indices, the Sharpe ratios of our

strategies (no matter which look-back duration n is chosen) are much higher than

the market, which means that our strategies perform better than the simple buy and

hold strategy. This result indicates that the JLS model combined with the pattern

recognition method has a statistically significant power in systematic detection of

rebounds and of crashes in financial markets.

The long-short strategies for CAC 40, DAX and ASX perform not as well as

the market. However, this is not a statement against the prediction power of our

method, but instead supports the evidence that our method detects specific signa-
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Figure 4.26: Error diagram for back tests and predictions of crashes and rebounds
for Russell 2000 index with different types of feature qualifications. The value of the
feature qualifications are shown in the legend. The fact that all the curves lie under
the line y = 1 − x indicates better performance than chance in detecting crashes
and rebounds using our method. (upper left) Back tests of crashes. (upper right)
Back tests of rebounds. (lower left) Predictions of crashes. (lower right) Predictions
of rebounds. Feature qualification (α, β) means that, if the occurrence of a certain
trait in Class I is larger than α and less than β, then we call this trait a feature of
Class I and vice versa. See text for more information.
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Figure 4.27: Error diagram for back tests and predictions of crashes and rebounds
for SMI index with different types of feature qualifications. The format is the same
as Fig. 4.26.



126 Identification and Forecasts of Financial Bubbles

0.0 0.2 0.4 0.6 0.8 1.0
Alarm period / Total period

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

ve
nt

s 
no

t p
re

di
ct

ed

(5,75)
(7,100)
(10,100)
(15,100)

0.0 0.2 0.4 0.6 0.8 1.0
Alarm period / Total period

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

ve
nt

s 
no

t p
re

di
ct

ed

(5,75)
(7,100)
(10,100)
(15,100)

0.0 0.2 0.4 0.6 0.8 1.0
Alarm period / Total period

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

ve
nt

s 
no

t p
re

di
ct

ed

(5,75)
(7,100)
(10,100)
(15,100)

0.0 0.2 0.4 0.6 0.8 1.0
Alarm period / Total period

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

ve
nt

s 
no

t p
re

di
ct

ed

(5,75)
(7,100)
(10,100)
(15,100)

Figure 4.28: Error diagram for back tests and predictions of crashes and rebounds
for Nikkei 225 index with different types of feature qualifications. The format is the
same as Fig. 4.26.
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tures preceding rebounds and crashes that are essentially different from high volatil-

ity indicators. Contrary to common lore and to some exceptional empirical cases

[137, 75], crashes of the financial markets often happen during low-volatility periods

and terminate them. By construction, both our rebound alarm index and the crash

alarm index are high during such volatile periods. So if the alarm indices of both

types are high at the same time, it is likely that the market is experiencing a highly

volatile period. Now, we can refine the strategy and combine the evidence of a di-

rectional crash or rebound, together with a high volatility indicator. If we interpret

the two co-existing evidences as a signal for a crash, we should ignore these rebound

alarm index and take the short strategy mentioned before. As an application, we

show the wealth trajectories of DAX based on different type of strategies in Fig. 4.29.

In the beginning of 2008, both the rebound alarm index and the crash alarm index

for DAX are very high, therefore, we detect this period as a highly volatile period

and ignore the rebound alarm index. The short strategy gives a very high Sharpe

ratio S = 0.41 compared to the long-short and short benchmarks where S = 0.06.

The strategy’s average weight is used to compute these benchmarks. These simple

benchmarks are constantly invested by a given percentage in the market so that,

over the whole time period, they give the same exposure as the corresponding strat-

egy being tested but without the genuine timing information the strategy should

contain.

As before, the detailed out-of-sample performances for each sample index (Russell

2000, SMI and Nikkei 225) are also tested. Fig. 4.30 – 4.32 illustrate the wealth

trajectories for different strategies. In order to show the consistency of the strategies

with respect to the chosen parameters in the pattern recognition method, we show

the performance of the Russell 2000 index for different qualification pairs: (15, 100)

for rebounds and (10, 100) for crashes. From these wealth trajectories, it is very

obvious that our alarm indices can catch the market rebounds and crashes efficiently.

The detailed performances for these three stock indices are listed in Tabs. 4.5

– 4.8. We also provide the performance of the Russell 2000 index for the ‘normal’

qualification pair: (7, 100) in Tab. 4.6 as a reference. These tables confirm again

that strategies mostly succeed in capturing big changes of regime. Compared to the

market, the strategies based on our alarm index perform better than the market for

more than eleven years in all the important measures: Annual returns and Sharpe
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ratios are larger, while volatilities, downside deviations and maximum drawdowns

are smaller than the market performance.

4.2.4 Conclusion

We provided a systematic method to detect financial crashes and rebounds. The

method is a combination of the JLS model for bubbles and negative bubbles, and the

pattern recognition technique originally developed for earthquake predictions. The

outcome of this method is a rebound/crash alarm index to indicate the probability

of a rebound/crash for a certain time. The predictability of the alarm index has been

tested by ten major global stock indices. The performance is checked quantitatively
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Figure 4.29: Performance of trading strategy using our technique: DAX index 60
days moving average strategy using the feature qualification pair (15, 100) for crashes
and (10, 200) for rebounds. (upper) the exposures for different strategies, where the
olive solid line represents the long-short strategy, the green dotted line and red
dashed line are for long and short strategy respectively. (lower) The historical price
and wealth trajectories of the strategies. The blue circles represent the historical
price of the index while the others are the wealth trajectories consistent with the
upper figure (olive solid - long-short, green dotted - long, red dashed - short). The
Sharpe ratio for the strategies are 0.07 (long-short), −0.66 (long) and 0.41 (short).
The Sharpe ratio of the corresponding benchmarks, which consist of constant posi-
tion in the market with exposure equal to the strategy over the whole period, are
0.06 (long-short), −0.06 (long) and 0.06 (short). And the Sharpe ratio of the index
in this period is −0.06. Note that the short strategy performs better than long-short
or long strategies as discussed in the text.
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by error diagrams and trading strategies. All the results from error diagrams indicate

that our method in detecting crashes and rebounds performs better than chance and

confirm that the new method is very powerful and robust in the prediction of crashes

and rebounds in financial markets. Our long-short trading strategies based on the

crash and rebound alarm index perform better than the benchmarks (buy and hold

strategy with the same exposure as the average exposure of our strategies) in seven

out of ten indices. Highly volatile periods are observed in the indices of which

the long-short trading strategy fails to surpass the benchmark. By construction

of the alarm index and the fact that highly volatile periods are not coherent with

bullish markets, we claim that we should ignore the rebound alarm index during

such volatile periods. This statement has been proved by the short strategy which

only consider the crash alarm index. Thus, our trading strategies confirm again

that the alarm index has a strong ability in detecting rebounds and crashes in the

financial markets.
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Figure 4.30: Performance of trading strategy using our technique: Russell 2000
index 30 days moving average strategy using the feature qualification pair (15, 100)
for crashes and (10, 100) for rebounds. The format is the same as Fig. 4.29. The
Sharpe ratio for the strategies are 0.47 (long-short), 0.18 (long) and 0.26 (short). The
Sharpe ratio of the corresponding benchmarks, which consist of constant position
in the market with exposure equal to the strategy over the whole period, are 0.03
(long-short), 0.03 (long) and −0.03 (short). And the Sharpe ratio of the index in
this period is 0.03.
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Figure 4.31: Performance of trading strategy using our technique: SMI index 20
days moving average strategy. The format is the same as Fig. 4.29. The Sharpe
ratio for the strategies are 0.28 (long-short), −0.04 (long) and 0.65 (short). The
Sharpe ratio of the corresponding benchmarks, which consist of constant position
in the market with exposure equal to the strategy over the whole period, are 0.2
(long-short), −0.2 (long) and 0.2 (short). And the Sharpe ratio of the index in this
period is −0.2.
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Index name Yahoo ticker Learning start Prediction start Prediction end win. #

S&P 500 ˆGSPC 5-Jan-1950 26-Mar-1999 3-Jun-2009 11662
Nasdaq ˆIXIC 13-Dec-1971 20-Mar-1999 30-Jul-2010 7209
Russell 2000 ˆRUT 30-Sep-1987 17-Apr-1999 27-Aug-2010 4270
FTSE 100 ˆFTSE 3-May-1984 17-Apr-1999 27-Aug-2010 4970
CAC 40 ˆFCHI 1-Mar-1990 17-Apr-1999 27-Aug-2010 3766
SMI ˆSSMI 9-Nov-1990 17-Apr-1999 27-Aug-2010 3626
DAX ˆGDAXI 26-Nov-1990 17-Apr-1999 27-Aug-2010 3626
Nikkei 225 ˆN225 4-Jan-1984 17-Apr-1999 27-Aug-2010 5026
Hang Seng ˆHSI 31-Dec-1986 17-Apr-1999 27-Aug-2010 4410
ASX ˆAORD 6-Aug-1984 17-Apr-1999 27-Aug-2010 4914

Table 4.3: Information for the tested indices: Yahoo ticker of each index, starting time of learning and prediction periods, ending
time of prediction and number of sub-windows.
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Index Strategy (duration n) Market
20 30 40 60

S&P 500 0.32 0.38 0.43 0.39 -0.28
Nasdaq 0.18 0.41 0.48 0.34 -0.11
Russell 2000 0.29 0.3 0.27 0.27 0.03
FTSE 100 -0.07 -0.06 0.01 0.05 -0.22
CAC 40 -0.18 -0.35 -0.37 -0.24 -0.19
SMI 0.28 0.22 0.14 0.13 -0.20
DAX -0.26 -0.24 -0.27 -0.19 -0.06
Nikkei 225 0.07 0.19 0.39 0.59 -0.33
Hang Seng 0.32 0.38 0.31 0.23 0.06
ASX -0.38 -0.41 -0.33 -0.24 0.02

Table 4.4: Summary of Sharpe ratios for the market and the long-short strategies
with different moving average duration n. The start and end dates of the strategies
are 26-Mar-1999 – 3-Jun-2009 for S&P 500, 20-Mar-1999 – 30-Jul-2010 for Nasdaq
and 17-Apr-1999 – 27-Aug-2010 for others. The feature qualification pairs of (7, 100)
for both crash and rebound alarm indices are used in this calculation.
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Figure 4.32: Performance of trading strategy using our technique: Nikkei 225 index
60 days moving average strategy. The format is the same as Fig. 4.29. The Sharpe
ratio for the strategies are 0.59 (long-short), −0.11 (long) and 0.59 (short). The
Sharpe ratio of the corresponding benchmarks, which consist of constant position
in the market with exposure equal to the strategy over the whole period, are 0.33
(long-short), −0.33 (long) and 0.33 (short). And the Sharpe ratio of the index in
this period is −0.33.
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Strategy (duration n) Market
20 30 40 60

Ann Ret 5.3% 5.4% 4.8% 4.2% 0.1%
Vol 6.4% 5.9% 5.3% 4.1% 26.3%
Downside dev 4.2% 3.6% 3.4% 2.7% 18.9%
Sharpe 0.42 0.47 0.41 0.37 0.03
Max DD 10% 7% 7% 6% 65%
Abs Expo 16% 15% 14% 12%
Ann turnover 328% 220% 167% 123%

Table 4.5: Russell 2000 index long-short strategies out-of-sample performance table.
Start date: 17-Apr-1999, end date 27-Aug-2010. Qualification pairs: (15, 100) for
rebounds and (10, 100) for crashes.

Strategy (duration n) Market
20 30 40 60

Ann Ret 4.8% 4.7% 4.3% 4.0% 0.1%
Vol 7.9% 7.1% 6.5% 5.2% 26.3%
Downside dev 5.4% 4.8% 4.5% 3.6% 18.9%
Sharpe 0.29 0.30 0.27 0.27 0.03
Max DD 11% 12% 9% 9% 65%
Abs Expo 23% 21% 20% 18%
Ann turnover 446% 306% 237% 172%

Table 4.6: Russell 2000 index long-short strategies out-of-sample performance table.
Start date: 17-Apr-1999, end date 27-Aug-2010. Qualification pairs: (7, 100) for
both rebounds and crashes.

Strategy (duration n) Market
20 30 40 60

Ann Ret 3.4% 3.3% 3.0% 3.0% -3.4%
Vol 2.6% 2.6% 2.5% 2.3% 20.4%
Downside dev 1.7% 1.6% 1.6% 1.5% 14.6%
Sharpe 0.28 0.22 0.14 0.13 -0.20
Max DD 7% 6% 7% 5% 59%
Abs Expo 9% 9% 9% 9%
Ann turnover 134% 102% 77% 55%

Table 4.7: SMI index long-short strategies out-of-sample performance table. Start
date 17-Apr-1999, end date 27-Aug-2010.
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Strategy (duration n) Market
20 30 40 60

Ann Ret 3.0% 3.7% 4.8% 5.7% -8.4%
Vol 6.3% 6.0% 5.6% 5.0% 25.4%
Downside dev 4.4% 4.1% 3.7% 3.2% 18.7%
Sharpe 0.07 0.19 0.39 0.59 -0.33
Max DD 15% 13% 10% 8% 75%
Abs Expo 19% 18% 17% 16%
Ann turnover 417% 300% 223% 146%

Table 4.8: Nikkei 225 index long-short strategies out-of-sample performance table.
Start date 17-Apr-1999, end date 27-Aug-2010.
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Leverage Bubble

Following [15], the term “bubble” refers to a situation in which excessive public

expectations of future price increases cause prices to be temporarily elevated. For

instance, during a housing price bubble, homebuyers think that a home that they

would normally consider too expensive for them is now an acceptable purchase

because they will be compensated by significant further price increases. They will

not need to save as much as they otherwise might, because they expect the increased

value of their home to do the saving for them. First-time homebuyers may also worry

during a housing bubble that if they do not buy now, they will not be able to afford a

home later. Furthermore, the expectation of large price increases may have a strong

impact on demand if people think that home prices are very unlikely to fall, and

certainly not likely to fall for long, so that there is little perceived risk associated

with an investment in a home.

In this chapter, instead of emphasizing the case for the presence of a housing

bubble (which was indubitably present, see [53, 51]), we argue that there was in

addition a leverage bubble that peaked and crashed in early 2008 after building up

for the years beforehand. We know that leverage is strongly related to liquidity

in a market and lack of liquidity is considered a cause and/or consequence of the

recent financial crisis. As we explain below, the leverage bubble formed and grew for

the same reasons as described in the housing bubble example above: investors were

afraid that if they did not extend their leverage (buy a house) then they would lose

135
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money later. Further, we argue that the size of the market in repurchase agreements

(or repos, for short) is an observable proxy of leverage in the financial system, i.e.

repos market size is a very important element in calculating the overall leverage in

a financial market. We will elaborate on repos below, but, briefly, a repo is simply

a cash transaction for an asset combined with a forward contract to buy the asset

back at a later time (hence ‘re-purchase’). Therefore, studying the behavior of repos

market size can help to understand a process that can contribute to the birth of a

financial crisis.

We hypothesize that herding behavior among large investors led to massive over-

leveraging through the use of repos, resulting in a bubble (built up over the previous

years) and subsequent crash in this market in early 2008. We use the JLS model of

rational expectation bubbles and behavioral finance to study the dynamics of the

repo market that led to the crash. As we know that the JLS model qualifies a bubble

by the presence of log-periodic power law behavior in the price dynamics. We show

that there was significant log-periodic power law behavior in the market before that

crash and that the predicted range of times predicted by the model for the end of

the bubble is consistent with the observations. We conclude that by measuring the

size of the repos market and applying the JLS bubble model, we can see that the

leverage crash in early 2008 was potentially a predictable event.

The chapter is constructed as follows. In Sec. 5.1, we discuss the relationship

between repos market size and the overall leverage of the market. In Sec. 5.2, we

apply the JLS model to total repos market size to make an ex-post forecast of the

crash in early 2008. We conclude in Sec. 5.3.

5.1 Repos market size represents the leverage of the

market

A repurchase agreement (repo) is the sale of securities together with an agreement

for the seller to buy back the securities at a later date 1. In other words, it is a

contract obliging the seller of an asset to buy back the asset at a specified price

on a given date. Therefore, a repo is equivalent to a cash transaction combined

1http://en.wikipedia.org/wiki/Repurchase_agreement
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with a forward contract. The cash transaction results in transfer of money to the

borrower in exchange for legal transfer of the security to the lender, while the forward

contract ensures repayment of the loan to the lender and return of the collateral of

the borrower.

To understand the possible role of repos in the generation of a bubble, we first

discuss the relationship between leverage and balance sheet size. We start with a

very simple case, taken from Sec. 2 of [138]. Assume that an investment bank has

100 USD in securities while its shareholder equity is 20 USD and its debt is 80 USD.

Then the balance sheet of this bank looks like:

Assets Liabilities

Securities, 100 Equity, 20

Debt, 80

Now the leverage of the bank is:

assets

equity
=

100

20
= 5. (5.1)

Suppose that the debts of this bank are all long term debts and, therefore, we can

assume that the debt remains the same in the balance sheet over the short period

of time considered in the argument. Now assume that the prices of the securities

increase by 10%, so that the new balance sheet is:

Assets Liabilities

Securities, 110 Equity, 30

Debt, 80

The leverage, then, becomes:

assets

equity
=

110

30
= 3.67 < 5. (5.2)

This shows that the leverage decreases as the assets’ prices increase.

However, to an investor during the bull market, reduction of the leverage means

losing money. Consider another example to demonstrate this. Suppose that two

people A and B both have a house worth 1,000 USD. Assume that they somehow

know that the price of gold, for instance, will definitely increase in the near future.
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Each of them can use her house as collateral and get a maximum 2,000 USD loan

from a bank (based on the recent convention of poor underwriting requirements).

Investor A, being somewhat unsure of her future ability to repay her debts, applied

for and received ‘only’ 1,500 USD, which corresponds to a leverage of 1.5. Investor

B, though, with no such qualms, asked for and received the maximum value of

2,000 USD, for a leverage of 2. Both investors used all of the borrowed money to

buy gold. After one month, the gold price, as expected, increased by 20%. Both A

and B sold all of the leveraged gold and pay the money back to the bank (ignore

interest rate for simplicity) and get back their houses. Investor A has made a profit

of 300 USD but investor B, the bold risk-taker, has made the profit of 400 USD

by simply increasing her leverage by one-third. In a sense, investor A’s weak-kneed

approach lost 100 USD due to failure to maximally leverage her position.

With this lesson in mind, let us now return to the investment bank. During the

bull market, banks believe that the markets will continue to increase and that all

of their competitors will be maximally leveraged to take advantage of the expected

rise. If a bank decreases its leverage, it means it will lose money in the future

(or lose opportunities with respect to competitors, since performance is relative to

benchmarks and to the industry), so, guided by the practice of maximizing short-

term profits by any means necessary, banks increase their leverage in order to get

more return in the future. How large they will increase their leverage depends on

their expectation of the future market. If the market performs very well now, they

expect that the future will be very good, also (this is due to the well-documented

behavior bias that investors tend to extrapolate past trends and past gains). This

means that they will change their leverage based on the return now. Regardless of

whether this is a good thing or not, for our study, we can use this because it implies

that the total asset growth should be proportional to the leverage growth. This is

demonstrated in Fig. 8 of [138]. In that paper, the authors used quarterly data from

more than 10 years for six major U.S. investment banks: Lehman Brothers, Merrill

Lynch, Morgan Stanley, Bear Stearns, Goldman Sachs and Citigroup Markets. The

total asset growth of the banks is found strongly proportional to the leverage growth.

So we know that when the expectation of the market is high, the investment banks

tend to increase their leverage. The next question, then, is: how can a bank change

its leverage?



Chapter 5 Leverage Bubble 139

Repos play a key role here. A typical balance sheet of an investment bank has

not only the long term debt but also repos. Therefore, a typical balance sheet is as

follows:

Assets Liabilities

Trading assets Repos

Reverse repos Long term debt

Other assets Equity

Recall that a repo is the sale of securities together with an agreement for the seller

to buy back the securities at a later date. Long term debt is normally a small

fraction of the balance sheet and can be assumed to be constant over the time scale

of interest here (a few years at most). In this case, when banks want to increase or

decrease their leverage, they will write repos in appropriate quantities.

We would like to emphasis one thing here: The use of repos is not the only

method to change leverage. For example, the use of financial derivatives can also

cause incredibly high leverage factors. However, repos trading plays a key role in

changing of the leverage as the market size of repos is huge and it is a very good

observable proxy of leverage in the financial system. Therefore, we use repos market

size to present the leverage level in this paper.

One may argue that the haircut of the repo2 is also a very important role for the

leverage of the banks. We completely agree with this and the repurchase haircut

should be counted here. However, the historical data shows that the haircut remains

approximately within a range between 10% and 20% during ‘normal’ (i.e., non-crisis)

times. During a financial crisis, the haircut will rise sharply to a very high level.

When there is a shortage of liquidity, for instance, during the recent financial crisis,

investors are afraid to trade. Increased haircuts and decreased repos size usually

occur simultaneously. In this paper, we want to investigate the question of whether

or not the dynamics of repos activity shows any precursory information before a

large crash. Of course, this means we only use data before a crash to try to estimate

2The “haircut” is the difference between the true market value of the collateral and that used
by the dealers in the repo contract. This haircut reflects the underlying risk of the collateral
and protects the buyer against a change in its value. Haircuts are therefore specific to classes of
collateral.
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the time of its onset. Since the haircut is almost constant for a long time before a

crash, all of the leverage information lies in the repo size of the market.

To summarize this section, we claim that:

(i) investors want to increase their leverage when their expectations of future gains

of the market increase;

(ii) they will use repos to increase their leverage;

(iii) therefore, the total repo market size is a proxy to measure the overall expec-

tation of all investors.

5.2 Predicting financial crashes with the JLS model

In the last section, we said that the repos market size represents the average

leverage of the market and the leverage represents the investors’ expectation of

future market returns. We now discuss how the dynamics of leverage among traders

could lead to a bubble and how this bubble can be identified as it grows.

We have argued before that bubbles are the result of imitation and herding

behavior among investors [139, 48, 47, 5]. In the current case, investors increase

their leverage when they see others doing so because, as discussed above, they

think that they will lose money if they are the only ones not taking this strategy. Of

course, this is a self-reinforcing (positive feedback) process: the numbers of leveraged

investors and their levels of leverage will increase in a game of financial copycat. At

some point, though, some investors are bound to notice that the numbers are too

large and they will start to deleverage. Others nervously waiting for this signal will

unload as well and the bottom will drop out. When this occurs, the repo market

size goes down dramatically and the haircut of the repo increases very sharply, both

leading to rapid loss of liquidity in the repo market.

This qualitative process is quantified in the JLS model to describe the herding

dynamics during a bubble [48, 47]. This model combines the economic theory of

rational expectation bubbles, behavioral finance on imitation and herding of in-

vestors and traders and the mathematical and statistical physics of bifurcations and

phase transitions. The price dynamics in the model exhibits log-periodic power law
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behavior, where a super-exponential price increase also oscillates in the log of time-

to-crash (or more precisely in the log of the time to the end of the bubble, which

is not necessarily a crash but rather generally a change of regime). A significant

number of successful predictions of financial market crashes based on the JLS model

have been made as mentioned before (see Chap. 2).

In the JLS model, (the logarithm of) price is used as a proxy for herding behavior

among traders (see [46] for justifications on the use of log-price versus price). Since

we argue that the repo market size is also a proxy for herding via the leverage level,

we substitute it for the log-price in the JLS model. For the total repos market

size R(t) at time t, we use the following JLS model specification (corresponding to

replacing log-price by logarithmic repos volume in the JLS equation):

ln R(t) = A + B|tc − t|m + C|tc − t|m cos(ω ln |tc − t| + φ) , (5.3)

where tc is the most probable time of crash and m,ω, φ,A,B and C are parame-

ters. To determine the values of these parameters, we want to minimize the sum of

squares:

(tc,m, ω, φ,A,B,C) = (5.4)

arg min
∑

t(ln R(t) − A − B|tc − t|m − C|tc − t|m cos(ω ln |tc − t| + φ))2 .

We hypothesize that the run-up to the sudden large drop in the repos market in

early 2008 was characterized by log-periodic power law dynamics, supporting our

claim of the entanglement of expectations, leverage and herding behavior.

To test this hypothesis, we use the weekly data of US primary dealers’ total repos

size from 6 July 1994 to 23 June 2010.3, 4 The data have very strong seasonal effects

due to the fact that banks try to remove their repos to improve their balance sheet

at the end of each quarter. To remove the seasonal effect, we used a 13 week (1

quarter) moving average.

We fit this smoothed time series with the JLS Eq. (5.3) in time windows defined

3We thank Tobias Adrian from the Federal Reserve Bank of New York for providing the data.
4The primary dealers list: BNP Paribas Securities Corp, Banc of America Securities LLC, Bar-

clays Capital Inc, Cantor Fitzgerald & Co, Citigroup Global Markets Inc, Credit Suisse Securities
(USA) LLC, Daiwa Capital Markets America Inc, Deutsche Bank Securities Inc, Goldman, Sachs
& Co, HSBC Securities (USA) Inc, Jefferies & Company, Inc, J.P. Morgan Securities LLC, Mizuho
Securities USA Inc, Morgan Stanley & Co, Incorporated Nomura Securities International, Inc, RBC
Capital Markets Corporation, RBS Securities Inc, UBS Securities LLC.
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by (t1, t2). We chose a fixed t2 = 13 February 2008, approximately one month

before the observed peak of the repos volume. We then repeated the analysis with

an ensemble of 7 values of t2, each separated by 7 days for the 3 weeks before and

after 13 February 2008. Note that the 7 values of t2 bracket a time span of 6 weeks,

with the end of that period (5 March 2008) being just before the large drop in the

repos market. An observer in the past on this date would not have noticed any

unusual drop in the time series. That is, the impending crash was not obvious

based on any recent trend in the data (though perhaps some market intelligence

could have provided an indication). For each value of t2, we use an ensemble of

different t1’s. Each ensemble brackets a range between 6 and 18 months before the

respective t2 and values of t1 are separated by 7 days.

The fit for a particular (t1, t2) interval is generated in two steps. First, the linear

parameters A,B and C are slaved to the non-linear parameters by solving them

analytically as a function of the nonlinear parameters. We refer to [48] (page 238

and following ones), which gives the detailed equations and procedure. Then, the

search space is obtained as a 4 dimensional parameter space representing m,ω, φ

and tc. A heuristic search implementing the Taboo algorithm [84] is used to find 10

initial estimates of the parameters which are then passed to a Levenberg-Marquardt

algorithm [85, 86] to minimize the residuals (the sum of the squares of the differences)

between the model and the data. The Taboo search together with the Levenberg-

Marquardt method ensure a systematic exploration of the space of solutions and

provide good estimates of the uncertainty on tc. The bounds of the search space

are:

m ∈ [0.001, 0.999] (5.5)

ω ∈ [0.01, 40] (5.6)

φ ∈ [0.001, 2π − 0.001] (5.7)

tc ∈ [t2, t2 + 0.375(t2 − t1)] (5.8)

Fig. 5.1 shows the fitting results with a fixed end of the time series t2 = 3

February 2008 and the ensemble of t1s as described above. The use of many fits

provides an ensemble of tc’s, from which we can calculate quantiles of the most likely

date of a crash. The 20% – 80% quantile region is shown on the figure as the inner
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vertical band with diagonal cross-hatching. The 5% – 95% quantiles are shown as

the outer vertical band with horizontal hatching. The dark vertical line to the left

of the quantile windows represents the last observation used in the analysis, that

is, t2. The shaded envelopes to the right of t2 represent 20% – 80% and 5% – 95%

quantiles of the extrapolations of the fits. From the plot, we see that both the tc

quantiles and the extrapolation quantiles are consistent with the observed trajectory

of the moving average of the repos market size.

Figure 5.1: Results of the calibration of the JLS model to the time evolution of the
total repos market size. The end time of the time series is fixed to t2 =2008-02-
03, shown as the dark vertical line to the left of the quantile windows. For different
starting times, the probability density of the most probable time of crash tc is shown
in quantiles. The curves on the right of the dark vertical line are the extrapolated
quantile repos volume, which are found consistent with the realized trajectory of
the moving average of the repos market size.

One may argue that the uncertainty on the most probable critical time tc obtained

by taking several data time windows on a single time series may not be consistent

with the one estimated on many artificial data sets with the same parameters.

This problem is essential since in case they are not consistent with each other, the

uncertainty estimates is not convincing. To prove that our estimation of the critical
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time tc is reliable, the following test has been performed:

We fix the end of the selected time window to t2 = 13 February 2008, change

the beginning of the time window t1 based on the rule that each window size is

between 6 and 18 months and values of t1 are separated by 7 days. 53 time windows

have been generated by this selection procedure. For each time window, we fit the

repos time series with the JLS model and keep the best 10 fitted results. Therefore,

530 estimated values of tc are obtained. We use the cumulative probability density

(CDF) of these estimated tc as the reference, CDFref .

Furthermore, we choose the fitted parameter set whose tc is the median of the

estimated critical time among all 530 sets to generate the synthetic time series which

will be tested. We build up the JLS signal by this selected parameter set and add

noises to generate the synthetic time series. The noises are produced by reshuffling

the residuals between the repos data and the JLS signal. Two types of noises are

used: the residuals are reshuffled at the daily scale and the residuals are reshuffled in

blocks of 10 days in order to keep some dependence structure between the residuals.

For each type of noise, 100 synthetic time series are fit by the JLS model and

1,000 estimated critical times tc are obtained by keeping the best 10 fits for each time

series. The cumulative probability density of these estimated values of tc from daily

(respectively, 10 days) reshuffled noises is noted by CDF1 (respectively, CDF2).

Our goal is to prove that the two estimation methods give similar results. Fig. 5.2

shows the cumulative probability densities produced from 1) different time windows

for the original time series (CDFref) and 2) a single time window for the two sets

of synthetic time series (CDF1 and CDF2). From this figure, one can tell that

the maximum difference between CDF1,2 and CDFref is less than 10%. Therefore,

we can safely conclude that both methods produce similar results. The relatively

big difference between CDFs in the upper right part of the figure is due to the

boundary condition of the tc search space being different for different methods. By

construction, the search space of tc only depends on the lengths of the time series.

Time series with different lengths are used to generate CDFref while the length of the

synthetic time series which generate CDF1 and CDF2 are identical. Furthermore,

CDF2 is closer to CDFref than to CDF1. This means that the dependence structure

between residuals has influence on the tc estimation. This finding is helpful in future

studies of the JLS model fitting issues.
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Figure 5.2: CDFs of estimated tc with different methods. CDFref indicates the
estimation from the real time series with different time windows while CDF1 (CDF2)
refers to the estimation from the synthetic time series generated from daily (10 days)
shuffled residuals. Three similar CDFs indicate that the uncertainty on the most
probable critical time tc obtained by taking several data time windows on a single
time series is consistent with the one estimated on many synthetic data sets with
the same parameters.

Our use of 7 values of t2s in the 6-week window described above is to address the

issue of the stability of the predicted most probable time of crash in relation to t2.

We fit the ensemble of (t1, t2) intervals as described above and plot the pdfs of the

predicted most probable time of crash tc for each t2 by a non-parametric method.

The pdfs are generated using the 10 best fits obtained from the Taboo search. This

non-parametric method provides an excellent estimate of the distribution of tcs. The

result is shown in Fig. 5.3. From the plot, one can observe two regimes. The first

four pdfs corresponding to the tcs generated from the earliest t2s peak practically at

the same value, showing a very good stability. The last two pdf’s show a tendency to

shift to the future, as some of the used data starts to be sensitive to the plateauing of

the repos volume. Overall, the observed stability of the predicted distributions of tcs

means the calibration of the JLS model is quite insensitive to when the prediction is

made. This is proposed as an important validation step for the relevance of the JLS

model. This suggests that the JLS model can be used as an advanced diagnostic

of impending crashes. The present results support those accumulating within the

“financial bubble experiment”, which has the goal of testing such advanced forecasts
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of bubbles and crashes. In the financial bubble experiment, the results are revealed

only after the predicted event has passed but the original date when we produced

the forecasts has been publicly, digitally authenticated [64, 65, 66].

Figure 5.3: We vary the end of the window t2 within the grey area and show the
probability density of the most probable time of crash tc for each of these t2, as the
bell-shaped curves with open circle symbols.

5.3 Conclusion

In this chapter, we discussed how leverage can influence the liquidity of the market

and used the observation that a dramatic decrease of leverage coincided with the

recent financial crisis. The market size of repos is a very good proxy for the overall

leverage of the market. We used the JLS model of log-periodic power law dynamics

on an ensemble of intervals from a time series of the total repos market size and

found that the range of the most probable times of crash tc as forecast by the fits is

consistent with the observed peak and subsequent crash.

In conclusion, this chapter contributes further to our understanding of the de-

velopment of financial instabilities, in providing the first quantitative study of a
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leverage variable, that complements other pieces of evidence on the development of

bubbles in equities (ICT and Biotech from 1995 to 2001), real-estate until mid-2006

in the USA, equities again until October 2007, commodities including cereals and

precious metals as well as oil, which have been referenced by Sornette and Woodard

[140].
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6

Conclusion and Outlook

6.1 Summary of this thesis

The main focus of this thesis has been modeling and forecasting of bubbles and

extreme events in financial systems based on the Johansen-Ledoit-Sornette (JLS)

model. We discussed why the JLS model is effective in explaining the causes and

dynamics of financial bubbles and followed extreme events, and how it functions as

a flexible tool to detect bubbles. The present theoretical status and some calibration

issues concerning the JLS model are also discussed. We have provided a guide to

the advances that have punctuated the development of tests of the JLS model per-

formed on a variety of financial markets during the last decade. We can say that the

development of new versions and of methodological improvements have paralleled

the occurrence of several major market crises, which have served as inspirations and

catalyzers of the research. We believe that the field of financial bubble diagnosis is

progressively maturing and we foresee a close future when it could become opera-

tional to help decision makers alleviate the consequences of excess leverage leading

to severe market dysfunctions.

The JLS model has been theoretically and empirically extended. The general-

ized JLS models with the function of estimating the fundamental value of a stock,

the nonlinearity of crash dynamics and risk diversification of a market have been

developed and tested with famous historical bubble examples.

149
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To show the improvement of the generalized JLS models which infer the funda-

mental value and crash nonlinearity, three historical bubbles from different markets

were tested. The results suggest that the new models perform well in describing

bubbles, predicting crash time and estimating fundamental value and the crash

nonlinearity. The performance of the new models is tested also under the Gaussian

and non-Gaussian residual assumptions. Under the Gaussian residual assumption,

nested hypothesis testing with the Wilks statistics is used and the p-values sug-

gest models with more parameters are necessary. Under the non-Gaussian residual

assumption, we use a bootstrap method to get type I and II errors. Those tests

confirm that these generalized JLS models provide useful improvements over the

standard JLS model.

A new model that combines the Zipf factor embodying the risk due to lack of

diversification with the JLS model is also introduced. The new model keeps all

the dynamical characteristics of a bubble described in the JLS model. In addition,

the new model can also provide information about the concentration of stock gains

over time from the knowledge of the Zipf factor. This new information is very help-

ful to understand the risk diversification and to explain investors’ behavior during

the bubble generation. We have applied this new model to two famous Chinese

stock bubbles and found it provides sensible explanation for the diversification risk

observed during these two bubbles.

Furthermore, we successfully extended the standard JLS model by claiming that

negative bubbles are in general predictably associated with large rebounds or ral-

lies, which are the mirror images of the crashes terminating standard bubbles. The

aggregation of thousands of calibrations in running windows of the negative bub-

ble model on financial data has been performed using a general pattern recognition

method, leading to the calculation of a rebound alarm index. Performance metrics

have been presented in the form of error diagrams, of Bayesian inference to deter-

mine the probability of rebounds and of trading strategies derived from the rebound

alarm index dynamics. These different measures suggest that the rebound alarm in-

dex provides genuine information and predictive ability. The implemented trading

strategies outperform randomly chosen portfolios constructed with the same sta-

tistical characteristics. This suggests that financial markets may be characterized

by transient positive feedbacks leading to accelerated drawdowns, which develop
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similarly to but as mirror images of upward accelerating bubbles. Our key result

is that these negative bubbles have been shown to be predictably associated with

large rebounds or rallies.

We further detected financial crashes and rebounds in ten major global stock in-

dices systematically using this method. A rebound/crash alarm index was calculated

to indicate the probability of a rebound/crash for a certain time. The performance

was checked quantitatively by error diagrams and trading strategies. The results

from error diagrams indicate that our method in detecting crashes and rebounds

performs better than chance and confirm that the new method is very powerful and

robust in the prediction of crashes and rebounds in financial markets. Our long-

short trading strategies based on the crash and rebound alarm index perform better

than the benchmarks (buy and hold strategy with the same exposure as the average

exposure of our strategies) in seven out of ten indices. Highly volatile periods are

observed in the indices of which the long-short trading strategy fails to surpass the

benchmark. By construction of the alarm index and the fact that highly volatile

periods are not coherent with bullish markets, we claim that we should ignore the

rebound alarm index during such volatile periods. This statement has been sup-

ported by the short strategy which only considers the crash alarm index. Thus,

our trading strategies confirm again that the alarm index has a strong ability in

detecting rebounds and crashes in the financial markets.

Finally, a successful ex-post prediction of the 2008 financial crash through analy-

sis of the US repurchase agreements market with the JLS model was also presented.

We discussed how leverage can influence the liquidity of the market and used the

observation that a dramatic decrease of leverage coincided with the recent financial

crisis. The market size of repos is a very good proxy for the overall leverage of the

market. We used the JLS model of log-periodic power law dynamics on an ensemble

of intervals from a time series of the total repos market size and found that the

range of the most probable times of crash tc as forecast by the fits is consistent

with the observed peak and subsequent crash. This work contributes further to

our understanding of the development of financial instabilities, in providing the first

quantitative study of a leverage variable, that complements other pieces of evidence

on the development of bubbles in equities, real-estate and commodities.
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6.2 Outlook

Up to now, we have talked much about the JLS model, which says that imitation

and herding behavior has direct influence on the stock price: the stock price dynam-

ics follows a log-periodic power law in a bubble regime. This means that the JLS

model only studies part of human behavior and describes only part of stock price

dynamics. Thus, there are two natural extensions of the current research. First,

studies on imitation and herding behavior is a small window from which we can go

further to understand human behaviors. Second, we can explore other dynamics of

stock markets and their relation to human behavior.

6.2.1 Future research on human dynamics

Although varying widely, human behavior still has some intrinsic characteristics

which can be detected and formulated quantitatively. The JLS model is one of the

successful models to describe the cumulative characteristics of human behaviors.

The model provides a quantitative description of imitation and herding behavior

which is log-periodic power law. However, most of the characteristics have not been

well described or even studied until now. In this sense, future research on human

behaviors is very important and this is the direction I want to pursue after my

doctoral studies. In this section, I will first give a brief literature review on current

human dynamics research, then discuss some potential topics in the future research

of human dynamics by using the unique data set of mobile phone calls, texts and

geolocations from the China Telecommunications Corporation.

Literature review

The bursty nature of human behavior as a consequence of a decision-based queuing

process was pointed out by Barabási in 2005 [141]. When individuals execute tasks

based on some perceived priority, the distribution of the timing of the tasks will be

heavy tailed, with most tasks being rapidly executed while a few experiencing very

long waiting times. This paper helped to motivate and guide an important facet

of complexity research: human dynamics. The series of papers afterwards showed

empirical research that power law distributed waiting times can be observed in many

different areas, such as telephone and letter communication [142, 143, 144, 145],

web browsing[146, 147, 148], online movie and music services [149, 150] and online
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game behavior [151], to name a few. Almost all of these empirical studies sharply

contradict the traditional hypothesis that assumes that human dynamics can be

approximated by a Poisson process.

Following [141], Vázquez et al. studied the characteristics of this decision-based

queuing process systematically [152, 153] and other researchers improved this pro-

cess later [154, 155, 156, 157]. However, since human behavior is highly complex,

many types of behavior cannot be explained by a decision-based queuing process.

Therefore, many other models have been proposed, such as the self-attracting walk

model [147], the adaptive interest model [158], the memory impact model [159], the

seasonal inter-event time model [160] and the cascading nonhomogeneous Poisson

process [161]. Recently, Jo et al. proposed that the inhomogeneity of task han-

dling strategies of humans is the real origin of the power law distributed inter-event

waiting time [162].

Compared to the temporal regularity of human dynamics, the research on human

spatial dynamics (mobility patterns) was started quite late due to lack of data. In

2006, Brockmann et al. first introduced this topic by analyzing the circulation laws

of bank notes [163]. They found that the distributions of both the travel distance

and the remaining time in a small spatially confined region follow power laws with

exponent 1.6. However, the circulation of bank notes is not a direct reflection of

the individual travel behavior as it is difficult to know how many people make

contributions to the transportation of a bank note. Starting from 2008, Barabási

and his group promoted the idea that human mobility patterns can be studied based

on the trajectory of mobile phone users. They found that humans follow simple

reproducible patterns and that the displacements follow a truncated power law [164].

Later they pointed out that human mobility has strong regularity and predictability

[165]. All of these results show that the Lévy process and the continuous time

random walk model, for instance, are not enough to describe human mobility.

Theories of human mobility have been proposed by many researchers. Song et

al. summarized two principles of human trajectories: new location exploration and

a tendency to return to familiar locations [165, 166, 167]. They built a statistically

self-consistent microscopic model for individual human mobility by adding these

two principles to a continuous time random walk model. Han et al. think that the

hierarchy of a transportation network leads to power law distributed human mobility
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directly [168]. Hu et al. proposed that the origin of this scaling law should be due

to the demand of entropy maximization [169] while Yan et al. pointed out that the

spatial extension of human activity is highly dependent on the work distance and

the velocity of the mobility. Therefore, a single human mobility model based on a

random walk framework is not enough [170].

Empirical and theoretical studies on human dynamics in a big city

In spite of the above work, empirical studies of human mobility in big cities are still

lacking. A modern megacity is usually identified with high population density and

high mobility over a large spatial scale. Such specific characteristics may lead to

human dynamics that is very different from that found in the general populations

used in the previous studies. Also, most of the above research is based on data from

developed countries, where transportation is highly developed and more related to

private cars. However, transportation in Shanghai is a mixture of subways, buses,

bicycles and private cars. Because of these two important differences (city size and

modes of transportation), the case study on the Shanghai mobile phone data is new

and potentially relevant to ever-growing city sizes worldwide.

Empirically, Jiang [171] found that both inter-event waiting times and individual

mobility derived from the Shanghai mobile phone data follow a Weibull distribution,

not a power law distribution, as shown in Fig. 6.1. Here, an event is defined as a

phone call between any two people in the dataset and a waiting time is, then, simply

the time between the beginning of successive phone calls between any two people.
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Figure 6.1: Statistics of human dynamics based on Shanghai mobile phone data.
(left) The inter-event waiting time follows a Weibull distribution. (right) The indi-
vidual travel distance also follows a Weibull distribution.
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Theoretically, current human dynamics models lead to power law distributed

waiting times and or truncated power law distributed mobility patterns. If our

final results from these initial empirical studies show that the Weibull distribution,

instead of power law or truncated power law, better characterizes the Shanghai

mobile phone data, then new models should be introduced. A Weibull distribution

implies that the cumulative distribution function C(x) = 1 − exp−(x/λ)k, where

λ is the scale factor and k is the shape factor. We feel that such a result will be

based on the diversity of travel modes (subways, bicycles, cars, foot), something

that is not considered in current models. Jiang and I will complete this preliminary

research and produce a thorough and credible model for this empirical study.

Group behavior

Almost all the current research on human dynamics focuses on individuals and their

patterns. How people interact with other people, though, is also very important.

Therefore, I would like to explore group mobility patterns by empirically calculating

the distribution of the physical distance between users when interactions (i.e., phone

calls) occur and then explain the possible origins behind the empirical findings.

As a bonus, with the timestamped geolocation data, we could track the dynamics

of population density of phone owners within Shanghai. That is, we could observe

the daily waves of human population moving into and out of a specified area in

such a large city and see the differences in these dynamics between workdays and

weekends.

Epidemics

Scientists would like to develop epidemic models to understand the propagation

process of epidemics and, hopefully, to propose efficient policy to control and slow

down the spread of disease. This is in contrast to studies on information propagation,

for instance, that have the opposite goal of discovering the most efficient strategy

to accelerate the diffusion of the information.

Until now, the development of epidemic models has gone through three stages:

the classical models, models based on complex networks and models based on human

mobility. In the first stage, the models assume that the disease propagates in a

simple uniform network, where each individual has the same probability to get the
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disease. In the second stage, the population structure is set as a complex network.

This different setting makes for two major changes. The first is that the scale free

network has no propagation threshold, i.e. the minimum propagation probability of

the disease is zero. In this kind of network, a very small propagation probability

can lead to a rapid burst of disease in the whole system [172]. The second change is

that a small world network enhances the local propagation and rapid diffusion of the

disease [173]. Some researchers also studied epidemics on actual human networks

[174, 175] and time dependent networks [176]. Recently, the self-excited conditional

Hawkes Poisson process has been studied as a model for the dynamics underlying

an epidemic process [177, 178, 179]. However, neither the classical models nor

the models based on the complex networks can accurately describe epidemics in

the real world, probably because they do not consider human mobility in the model

[180]. Thus, epidemic models based on human mobility have been recently proposed

[181, 182, 183].

We are now experiencing the transition from the second stage to the third stage

of epidemic modeling. Research on epidemics based on human mobility is just

beginning. After (hopefully) understanding mobility patterns in a big city and

some of the characteristics of human interactions, I would use these results to study

epidemics based on the structure and mobility patterns of big cities by analyzing

features of a spreading process in such a high population density city like Shanghai.

I would hope to find an efficient strategy to inhibit disease propagation. In our

growing, more connected, ‘smaller’ world, this topic is very important.

6.2.2 Interaction between open source information and stock mar-

ket behavior

Another natural extension of the JLS model is to study the interaction between

open source information and stock market behavior. By analyzing the open source

information, which is a direct reflect of human behaviors, we may obtain more deep

insight in stock dynamics.

In finance, the price of an asset is theoretically the discounted cash flow of future

income. A stock price, then, should be the summation of the future discounted

dividends. These future dividends are highly related to investors’ current expecta-

tion of the future, which in turn is dependent on current information (i.e., news,
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fundamentals, etc.). Therefore, current information plays an important role in asset

pricing, specifically in stock returns. Most previous research focuses on the rela-

tionship between stock returns and traditional information, such as news from stock

exchanges [184], news from news providing company [185], news from newspapers

[186, 187] and firm-specific news [188].

In the past decades, the internet has become an important platform for publishing

and receiving vast amounts and types of information. A huge amount of open source

information is generated (and available) through the internet. A natural question

is then: is open source information related to stock returns?

To answer this question, Tumarkin and Whitelaw analyzed the correlation be-

tween returns of 25 major stocks and data from the Raging Bull message board (a

forum with discussions and commentary that focuses on stocks and mutual funds),

concluding that open source information is mainly noise [189]. Later, Antweiler

and Frank developed a bullish index of the messages using computational linguistics

with the Raging Bull data and daily price data from Yahoo! Finance [190]. In con-

trast to Tumarkin and Whitelaw, their conclusion is that the relationship between

the bullish index and stock returns is statistically significant but economically small.

Recently, Preis and Stanley [191] studied the correlation between Google trends data

and the S&P 500 index. They found a significant correlation between the changes

in weekly transaction volume of the S&P 500 index and the changes in volume of

weekly Google searches for constituent company names. However, they also found

that the weekly price changes of the S&P 500 index are not correlated to the weekly

search volume changes.

Though these relations were demonstrated, there are a few shortcomings. Specifi-

cally, the bullish index and the Google trend index are examples of proprietary black

boxes whose derivations are not publicly known. Furthermore, due to the high level

of market liquidity, the two correlations are very sensitive to the frequency of the

data (i.e, hourly, daily, weekly, etc.). From an Efficient Market Hypothesis point of

view, prices are updated almost as soon as a new piece of information is available.

Therefore, the weekly data used in the above two studies is too coarse to fully mea-

sure correlations between new information and price changes. Finally, these studies

were made on a small subset of available stocks [189, 190] or a single index [191].

Further tests on a larger data set would help in understanding this issue.
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With the above discussion in mind, I would ask: is there a direct correlation

between open source information and stock returns and/or volumes on daily or sub-

day time scales? I would try to answer this fundamental question using a data set

which addresses the problems mentioned above. I will use data from Baidu Tieba,

which is the largest Chinese communication platform provided by the Chinese search

engine Baidu (http://www.baidu.com). I have all posts from the stock forums of

Baidu Tieba for the past five years. Within this data, the general ‘Stock’ channel has

approximately 2 million posts and, further, each of the approximately 2,000 separate

channels for all publicly traded Chinese stock has about 3,000 to 100,000 posts (per

channel). Thus, this data set is complete in that we can test each individual Chinese

stock. This data set is valuable also because of its size and time span and, most

importantly, because it contains the timestamp (down to the minute) of each post

which enables a much higher resolution test.

My preliminary result in Fig. 6.2 shows that both the daily price changes and the

daily volume changes of the Shanghai Composite Index are strongly correlated to

the amount of open source information (proxied by total number of posts per day in

the ‘Stock’ channel). The result for the correlation of changes in transaction volume

with changes in post volume is consistent with [191]. More importantly, we see a

strong correlation between price changes and the open source information, which

is not found in [191]. This result for the Baidu data is probably due to its higher

resolution time scale (daily) and that the Google search data is only available on a

weekly time scale. Coarse graining the search volume to weekly ‘washes out’ any

correlation with daily price changes.

The above research only focuses on the correlation between the open source

information and the stock price or volume changes. A more important question is:

which factor is leading in this correlation? If the open source information is leading

the stock changes, then we could conclude that information changes the investors’

expectation of the asset and thus changes the stock prices and trading volumes. In

contrast, if the stock changes lead the information (more likely), then this implies

that the information (discussion) is mainly a reaction to stock changes.

To answer this question, I propose the null hypothesis that price movements (pos-

itive or negative) appear first followed by the reaction of online discussion/search.

I base this on the simple assumption that large traders who move markets are not
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Figure 6.2: Correlation between the amount of the open source information and
the stock changes. (upper) Correlation between the change in total number of
daily posts in the ‘Stock’ channel of Baidu Tieba ∆n and the Shanghai Composite
Index daily return ∆p. It shows a strong negative correlation at zero lag, which
is an evidence of asymmetric reaction of people on good and bad news. (lower)
Correlation between the change in total number of daily posts in the ‘Stock’ channel
of Baidu Tieba ∆n and the Shanghai Composite Index daily volume changes ∆v.
There is a strong correlation at zero lag, indicating the tracking of much discussion
with much trading volume. Signals at noise levels in both figures continue for ±100
days. Negative values of lag indicate ∆n is leading.

discussing their stock picks on online public forums. If this null hypothesis is not

supported (that is, if online discussion does not lag price movements) then the value

of the discussion data could be tested by adding an ‘open source information factor’

to a simple autoregressive moving average model, which predicts the future prices

(volumes) by combining the past price (volume) information. Whether the factor

adds anything useful or not can be then tested by some model selection procedure

(such as Akaike information criterion).



160 Identification and Forecasts of Financial Bubbles



Bibliography

[1] International Monetary Fund executive summary, http://www.imf.org/

External/Pubs/FT/GFSR/2009/01/pdf/summary.pdf (2009).

[2] M. Chadbourn, Five banks are seized, raising U.S. failures this

year to 45, Bloomberg, http://www.bloomberg.com/apps/news?pid=

newsarchive&sid=aCbHA.m7rikc (2009).

[3] J. Goldstein, New York Fed chief: We should “try to identify bubbles”,

National Public Radio, http://www.npr.org/blogs/money/2010/04/the_

friday_podcast.html (2010).

[4] J. Galbraith, The great crash, 1929, Mariner Books, 1997.

[5] D. Sornette, Why Stock Markets Crash (Critical Events in Complex Financial

Systems), Princeton University Press, 2003.

[6] C. Kindleberger, Manias, Panics and Crashes: A History of Financial Crises,

4th Edition, Wiley, 2000.

[7] D. Sornette, Critical market crashes, Physics Reports 378 (2003) 1–98.

[8] T. Lux, D. Sornette, On rational bubbles and fat tails, Journal of Money,

Credit and Banking 34 (3) (2002) 589–610.

[9] R. Gurkaynak, Econometric tests of asset price bubbles: Taking stock, Journal

of Economic Surveys 22 (1) (2008) 166–186.

[10] H. P. H. Nusteling, Welvaart en werkgelegenheid in Amsterdam, 1540-1860:

Een relaas over demografie, economie en sociale politiek van een wereldstad,

dutch Edition, Bataafsche Leeuw, 1985.

161



162 Identification and Forecasts of Financial Bubbles

[11] E. Thompson, The tulip mania: Fact or artifact?, Public Choice 130 (1–2)

(2007) 99–114.

[12] M. C. Taylor, Confidence Games, University of Chicago Press, 2004.

[13] J. B. De Long, A. Shleifer, The bubble of 1929: Evidence from Closed-

End funds, NBER Working Paper No. 3523, http://econpapers.repec.org/

paper/nbrnberwo/3523.htm (1990).

[14] Stock market crash of 1929, britannica Concise Encyclopedia,

http://www.britannica.com/EBchecked/topic/566754/

stock-market-crash-of-1929.

[15] K. E. Case, R. J. Shiller, Is there a bubble in the housing market?, Brookings

Papers on Economic Activity 2 (2003) 299–362.

[16] M. J. Mauboussin, Rational Exuberance?, Equity research, Credit Suisse First

Boston, http://www.capatcolumbia.com/Articles/Reports/Grl_235__0.

pdf (Janurary 1999).

[17] A. Greenspan, Federal Reserve’s semiannual monetary policy report, before

the Committee on Banking, Housing, and Urban Affairs, U.S. Senate (Febru-

ary 1997).

[18] R. J. Shiller, Irrational Exuberance, 2nd Edition, Princeton University Press,

2005.

[19] J. Lintner, The aggregation of investors’ diverse judgments and preferences

in purely competitive security markets, Journal of Financial and Quantitative

Analysis 4 (1969) 347–400.

[20] E. Miller, Risk, uncertainty and divergence of opinion, Journal of Finance 32

(1977) 1151–1168.

[21] M. Harrison, D. Kreps, Speculative investor behavior in a stock market with

heterogeneous expectations, Quarterly Journal of Economics 92 (1978) 323–

336.

[22] R. Jarrow, Heterogeneous expectations, restrictions on short sales, and equi-

librium asset prices, Journal of Finance 35 (1980) 1105–1113.



Bibliography 163

[23] J. Chen, H. Hong, J. C. Stein, Breadth of ownership and stock returns, Journal

of Financial Economics 66 (2002) 171–205.

[24] J. Scheinkman, W. Xiong, Overconfidence and speculative bubbles, Journal

of Political Economy 111 (2003) 1183–1219.

[25] D. Duffie, N. Garleanu, L. H. Pedersen, Securities lending, shorting, and pric-

ing, Journal of Financial Economics 66 (2002) 307–339.

[26] J. B. DeLong, A. Shleifer, L. H. Summers, R. J. Waldmann, Noise trader risk

in financial markets, Journal of Political Economy 98(4) (1990) 703–738.

[27] N. Barberis, A. Shleifer, R. Vishny, A model of investor sentiment, Journal of

Financial Economics 49(3) (1998) 307–343.

[28] K. Daniel, D. Hirshleifer, A. Subrahmanyam, Investor psychology and security

market underand overreactions, Journal of Finance 53 (1998) 1839–1885.

[29] H. Hong, J. D. Kubik, J. C. Stein, Thy neighbor’s portfolio: Word-of-mouth

effects in the holdings and trades of money managers, Journal of Finance 60

(2005) 2801–2824.

[30] W. M. D. Bondt, R. Thaler, Does the stock market overreact?, Journal of

Finance 40 (1985) 793–805.

[31] N. Jegadeesh, S. Titman, Returns to buying winners and selling losers: Im-

plications for stock market effciency, Journal of Finance 48(1) (1993) 65–91.

[32] N. Jegadeesh, S. Titman, Profitability of momentum strategies: An evaluation

of alternative explanations, Journal of Finance 54 (2001) 699–720.

[33] D. Abreu, M. K. Brunnermeier, Bubbles and crashes, Econometrica 71(1)

(2003) 173–204.

[34] M. K. Brunnermeier, S. Nagel, Hedge funds and the technology bubble, Jour-

nal of Finance 59 (2004) 2013–2040.

[35] T. Kaizoji, D. Sornette, Market bubbles and crashes, in: the Encyclopedia of

Quantitative Finance, Wiley, 2009, long version at http://arxiv.org/abs/

0812.2449.



164 Identification and Forecasts of Financial Bubbles

[36] U. Bhattacharya, X. Yu, The causes and consequences of recent financial mar-

ket bubbles: An introduction, Review of Financial Studies 21 (1) (2008) 3–10.

[37] A. Greenspan, Economic volatility, remarks at a symposium sponsored by

the Federal Reserve Bank of Kansas City, Jackson Hole, Wyoming, http://

www.federalreserve.gov/boarddocs/speeches/2002/20020830/ (August

2002).

[38] A. Goriely, C. Hyde, Necessary and sufficient conditions for finite time singu-

larities in ordinary differential equations, Journal of Differential equations 161

(2000) 422–448.

[39] S. Gluzman, D. Sornette, Classification of possible finite-time singularities by

functional renormalization, Physical Review E 6601 (2002) 016134.

[40] A. Johansen, D. Sornette, Finite-time singularity in the dynamics of the world

population and economic indices, Physica A 294 (3–4) (2001) 465–502.

[41] S. Sammis, D. Sornette, Positive feedback, memory and the predictabil-

ity of earthquakes, Proceedings of the National Academy of Sciences USA

99 (SUPP1) (2002) 2501–2508.

[42] D. Sornette, H. Takayasu, W.-X. Zhou, Finite-time singularity signature of

hyperinflation, Physica A 325 (2003) 492–506.

[43] A. Johansen, D. Sornette, Shocks, crashes and bubbles in financial markets,

Brussels Economic Review (Cahiers economiques de Bruxelles) 53(2) (2010)

201–253.

[44] D. Sornette, Discrete scale invariance and complex dimensions, Physics Re-

ports 297 (5) (1998) 239–270.

[45] O. Blanchard, M. Watson, Bubbles, rational expectations and speculative mar-

kets, NBER Working Paper 0945, http://papers.ssrn.com/sol3/papers.

cfm?abstract_id=226909 (1983).

[46] A. Johansen, D. Sornette, Critical crashes, Risk 12 (1) (1999) 91–94.

[47] A. Johansen, O. Ledoit, D. Sornette, Crashes as critical points, International

Journal of Theoretical and Applied Finance 3 (2000) 219–255.



Bibliography 165

[48] A. Johansen, D. Sornette, O. Ledoit, Predicting financial crashes using discrete

scale invariance, Journal of Risk 1 (4) (1999) 5–32.

[49] D. Sornette, R. Woodard, W.-X. Zhou, The 2006-2008 oil bubble: Evidence

of speculation and prediction, Physica A 388 (2009) 1571–1576.

[50] Z.-Q. Jiang, W.-X. Zhou, D. Sornette, R. Woodard, K. Bastiaensen,

P. Cauwels, Bubble diagnosis and prediction of the 2005-2007 and 2008-2009

Chinese stock market bubbles, Journal of Economic Behavior and Organiza-

tion 74 (2010) 149–162.

[51] W.-X. Zhou, D. Sornette, Analysis of the real estate market in Las Vegas:

Bubble, seasonal patterns, and prediction of the CSW indexes, Physica A 387

(2008) 243–260.

[52] W.-X. Zhou, D. Sornette, 2000-2003 real estate bubble in the UK but not in

the USA, Physica A 329 (2003) 249–263.

[53] W.-X. Zhou, D. Sornette, Is there a real estate bubble in the US?, Physica A

361 (2006) 297–308.

[54] A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold

and Nikkei collapses, International Journal of Modern Physics C 10 (4) (1999)

563–575.

[55] D. Sornette, W.-X. Zhou, The US 2000-2002 market descent: How much longer

and deeper?, Quantitative Finance 2 (6) (2002) 468–481.

[56] N. Vandewalle, M. Ausloos, P. Boveroux, A. Minguet, Visualizing the log-

periodic pattern before crashes, European Physics Journal B 9 (1999) 355–

359.

[57] A. Clark, Evidence of log-periodicity in corporate bond spreads, Physica A

338 (2004) 585–595.
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[136] V. Keilis-Borok, A. Soloviev, C. Allègre, A. Sobolevskii, M. Intriligator, Pat-

terns of macroeconomic indicators preceding the unemployment rise in western

europe and the USA, Pattern Recognition 38 (3) (2005) 423–435.

[137] G. Schwert, Stock volatility and the crash of ’87, Review of Financial Studies

3 (1) (1990) 77 –102.

[138] T. Adrian, H.-S. Shin, Liquidity and leverage, Journal of Financial Interme-

diation 19 (2010) 418–437.

[139] D. Sornette, A. Johansen, J. P. Bouchaud, Stock market crashes, precursors

and replicas, Journal de Physique I 6 (1996) 167–175.

[140] D. Sornette, R. Woodard, Financial bubbles, real estate bubbles, derivative

bubbles, and the financial and economic crisis, in: M. Takayasu, T. Watanabe,

H. Takayasu (Eds.), New Approaches to the Analysis of Large-Scale Business



Bibliography 173

and Economic Data, Proceedings of APFA7 (Applications of Physics in Fi-

nancial Analysis), Springer, 2010, http://arxiv.org/abs/0905.0220.

[141] A.-L. Barabási, The origin of bursts and heavy tails in human dynamics,

Nature 435 (2005) 207–211.
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Email: wanfeng.yan@gmail.com
Office: +41 (0) 44 632 64 93

Cell: +41 (0) 78 943 27 89
Fax: +41 (0) 44 632 19 14

EDUCATION

Swiss Federal Institute of Technology (ETH) Zürich
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