
ETH Library

Efficient inference in random fields
with pairwise potentials defined on
distances

Master Thesis

Author(s):
Petrescu, Viviana

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006686889

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006686889
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Efficient inference in random fields with pairwise potentials
defined on distances

Master’s Thesis

Viviana Petrescu
Department of Computer Science

Advisor: Bogdan Alexe
Supervisor: Prof. Dr. Vittorio Ferrari

Computer Vision Laboratory
Department of Information Technology and Electrical Engineering

August 31, 2011

Acknowledgements

I am really thankful to my advisor, Bogdan Alexe, whose support and guidance from the beginning to the
end of my thesis enabled me to develop an understanding of the subject.

Lastly, I offer my regards to all of those who helped me in any respect during the completion of the project.

Contents

1 Introduction 3
1.1 Focus of this work . 3
1.2 Thesis Organization . 4

2 Background 5
2.1 LOCalizing objects while LEARNing their appearance . 5

2.1.1 The Conditional Random Field model in LocLearn 5
2.1.2 LocLearn Performance on Pascal07 . 9

2.2 Inference in Conditional Random Fields . 11
2.3 LocLearn complexity and limitations . 11

3 Divide and Conquer LocLearn 13
3.1 Divide and conquer LocLearn . 13
3.2 Experiments . 14

3.2.1 Properties of the selected windows of intermediate subproblems 17
3.2.2 corLoc results for Divide and Conquer LocLearn 21

3.3 Discussion . 24

4 LocLearn with Binary encoding of GIST descriptor 27
4.1 GIST . 27
4.2 LSBC encoding of GIST . 28
4.3 LocLearn with binary encoding of GIST feature . 29
4.4 Experiments . 30
4.5 Discussion . 32

5 LBP inference for sparse distance matrices 35
5.1 Exploiting spatial overlap for computing sparse pairwise distance matrices 35

5.1.1 Theoretical upper bound on appearance distance of Color Histogram descriptors . . 37
5.1.2 Color Histogram bound experimental evaluation 41

5.2 Sparse LocLearn . 43
5.3 Experiments . 45
5.4 Discussion . 48

6 Overview of hybrid LocLearn algorithms 49

7 Conclusions 51

I

CONTENTS

II

List of Figures

2.1 Scheme of LocLearn algorithm . 8

3.1 Divide and conquer LocLearn . 15
3.2 100 windows per image . 20
3.3 Divide and conquer LocLearn results . 22
3.4 Distribution of corLoc for 100 LocLearn problems with different candidate windows. 24

4.1 corLoc for LocLearn Binary on meta-training data . 31
4.2 Localization results of Binary GIST LocLearn with 256-bit encoded GIST 32

5.1 Spatial overlap of two windows . 36
5.2 Bound on appearance distance using spatial overlap . 37
5.3 Bound on appearance distance using spatial overlap . 38
5.4 Maximum Theoretical Upper Bound B(o, r) for CHIST. 42
5.5 Maximum Theoretical Upper Bound B(o) for CHIST . 43
5.6 Probability of selecting pairwise distances among the smallest q%. 46

III

LIST OF FIGURES

IV

List of Tables

2.1 corLoc results of LocLearn on Pascal07 6x2 . 10

3.1 Hitrate and SNRCLS for the classes in Pascal07 6x2 with 10000 sample windows per image 16
3.2 Four setups of Divide and Conquer LocLearn . 16
3.3 Histogram of hitrate for 100 LocLearn subproblems . 18
3.4 SNR per class for 100 LocLearn subproblems . 19
3.5 corLoc results of Divide and Conquer LocLearn on Pascal07 6x2 21
3.6 Accuracy of selected windows on Pascal07 6x2 . 23

4.1 coLoc of Binary GIST LocLearn on meta-training dataset Pascal07 6x2 31

5.1 Sparsity in pairwise distance matrices . 46
5.2 corLoc results for Sparse LocLearn and Sparse Mean LocLearn 47

6.1 Summary of the hybrid LocLearn algorithms . 49

V

LIST OF TABLES

VI

Abstract

We propose three independent approaches that address the memory and time complexity limits of the method
presented in [6]. This allows us to derive efficient inference algorithms for conditional random fields (CRF)
with pairwise potentials defined on distances. [6] uses a fully connected CRF for jointly localizing a new
object class for weekly supervised data by selection one window (label) per image (node) containing an in-
stance of the new object class. Our first approach uses a Divide and Conquer strategy to reduce the quadratic
complexity of the CRF in the number of windows. The second approach uses a Hamming embedder [13]
to reduce the memory needed to store the descriptors. Finally, the third approach exploits the correlation
between the spatial overlap of two windows and the appearance distance of the window descriptors [3]
to speedup the computations of the pairwise potentials matrix and also to reduce the memory by comput-
ing sparse pairwise potentials matrices. The well known loopy-belief-propagation inference algorithm is
modified such that it supports the sparse matrices input. In the experimental evaluations we show the first
approach to outperform [6] as it can use 100x more windows and the second approach to obtain great mem-
ory savings for just a minor loss in performance. Although this work addresses primarly the limitations of
LocLearn both theoretically and experimentally, the approaches we propose here can be employed in other
tasks that deal with inference in Conditional Random Fields using pairwise potentials defined on distances.

1

LIST OF TABLES

2

Chapter 1

Introduction

1.1 Focus of this work

In supervised learning methods for object recognition tasks, one has to manually provide many images with
bounding boxes of the target class for learning a model of that specific class. In order to reduce the labeling
effort, in [7] is proposed a novel algorithm for jointly localizing and learning a new model in a weakly
supervised manner. The algorithm will be referred to in the following sections as LocLearn. Given a set of
images from a target class, the algorithm selects a window per image likely to cover target objects. As the
paper [7] mentions it, LocLearn outperforms the state-of-the-art algorithms for the task defined above on
the datasets Caltech4, Pascal06 and also on the more difficult dataset Pascal07.

In LocLearn, the selection of windows is done by solving an inference problem in a fully connected
Conditional Random Field with the nodes represented by images and the labels represented by candidate
windows. The selected windows are obtained by minimizing an energy function which consists of unary
and pairwise potentials terms. The pairwise potentials are computed between every pair of windows coming
from different images and express how likely it is for two windows to contain an object of the same class.
LocLearn extracts different appearance descriptors for each window. The pairwise potential between two
windows according to an appearance cue is computed as the squared Euclidean distance between their
appearance descriptors. Storing all the descriptors and their appearance pairwise potentials requires a large
amount of memory (in the order of Gb). Often this is more than what a normal personal computer can offer.
Moreover, the computation of the pairwise potentials and their use in the inference problem makes LocLearn
a computationally intensive algorithm.

The complexity of LocLearn is determined by the numberN of images used, the numberW of candidate
windows per image and by the dimensionality of the feature descriptors that are extracted for each window.
The time complexity is O(N2W 2) and the memory complexity is O(NWD + N2W 2) where D is the
sum of the dimensions of each appearance descriptor used (O(N2W 2) for storing the pairwise potentials,
O(NWD) for storing the descriptors).

In the ideal case, LocLearn searches over all possible windows in an image in order to select the optimal
window that covers an object. This is infeasible due to the complexity of the problem, and therefore the
search space is restricted by sampling a small number of candidate windows for each image according to an
objectness measure. However, the algorithm does not use more than 100 candidate windows per image and
more than 50 images per class due to limited computational resources.

This master thesis addresses the problems that restrict the current implementation of LocLearn in using
a larger number of windows and/or images. We propose three approaches which extend the given LocLearn

3

CHAPTER 1. INTRODUCTION

framework with the goal of overcoming its limitations in memory and time.
In the first part, a Divide and Conquer version of LocLean is proposed for increasing the number of

sampled windows to be in the order of thousands, a setting which is infeasable in LocLearn. The aim is
to reduce the quadratic complexity in the number of sampled windows W which appears when solving the
inference problem.

Memory poses also some restrictions, since for each candidate window, four descriptors with dimen-
sionality varying between 216 and 4000 are extracted and stored in a preprocessing step. In the second part,
another method is proposed for reducing the required memory by binary encoding the most discriminant
feature GIST [1] using a Hamming embedder.

In a third approach, the computation of pairwise potentials is speeded up by computing less distances
between descriptors. This results in less memory needed for storing the pairwise potentials and thus allows
the use of more candidate windows per image.

Although this work addresses primarly the limitations of LocLearn both theoretically and experimen-
tally, the approaches we propose here can be employed in other tasks that deal with inference in Conditional
Random Fields using pairwise potentials defined on distances.

1.2 Thesis Organization

The next section gives a broader description of LocLearn, its current performance on Pascal07 dataset and
discusses its complexity and limitations. In the following sections, we explain in detail the different versions
of the LocLearn algorithm that we propose, devoting a separate section for each method. In sec. 3 more
candidate windows are used in a Divide and Conquer version of LocLearn, which reduces both the time
and the memory complexity of LocLearn. In sec. 4 the most discriminant feature vector GIST is binary
encoded, which reduces the memory requirements for storing the features of the candidate windows. In
sec. 5 we employ an algorithm to compute fewer pairwise distances between window descriptors. This
reduces the computational time and the storage memory of the pairwise potentials and permits the use of
more candidate windows per image. The last section summarizes the implications of our approaches which
are supported by the experimental evaluation of the three hybrid LocLearn algorithms.

4

Chapter 2

Background

2.1 LOCalizing objects while LEARNing their appearance

In supervised learning methods for object recognition tasks, classifiers are trained on a large collection of
images that come with manually annotated bounding boxes. The labeling of images is time consuming and
limits the applicability of these methods. Recently more effort has been put in learning a model for a class
in a weakly supervised fashion. In this setup, for training a model, a set of images containing one or more
objects of the specific class is given with no additional information on the location of the objects.

In [7] a Conditional Random Field (CRF) model is proposed for simultaneously LOCalizing and LEARN-
ing (LocLearn) the appearance of a new class in a weakly supervised fashion. LocLearn uses meta-training
data to learn first a model from generic classes. The meta-training data consists of images for which the
ground-truth bounding boxes covering different object classes are provided. In a next step, the model uses
the images (not annotated) from the training data in order to adapt to a new class in an iterative process,
where localization and learning stages are repeated alternatively.

Given a set of images of a new class with candidate windows, LocLearn selects a configuration of
windows that are likely to cover an object of the specific class. The Pascal criterion states that a window w

covers or correctly localizes an object, if the overlap |w∩gt||w∪gt| > 0.5, where gt is the ground-truth bounding
box.

2.1.1 The Conditional Random Field model in LocLearn

A Conditional Random Field (CRF) is a probabilistic graphical model for labeling sequence data, in which
each node can have multiple labels. If an edge is present between every pair of nodes, the CRF is said to be
fully connected. Given a random variable X which represents the observed sequence and a random variable
L which represents the label sequence, the CRF relaxes the independence assumptions by modeling p(L|X)
directly, rather than a joint distribution p(L,X) as in the case of Hidden Markov Models.

The maximum a posteriori probability p(L|X) of labels L given observation X is approximated by
exp(−E(L|X)), where E(L|X) is an energy function. The inference problem refers to selecting a label for
each node such that the energy function is minimized. This is equivalent to returning the set of labels that
have the largest probability given the observation.

In LocLearn, the nodes of the CRF are represented by the set of training images I = (I1, ..., IN) and the
labels represent candidate windows. For each node/image the model chooses a label among the candidate
windows. Searching over all possible windows in an image is infeasible and a smaller number of windows

5

CHAPTER 2. BACKGROUND

are sampled according to the objectness measure defined in [2], giving candidate windows which have a
greater probability of containing an object of any class. Each window comes with an objectness score which
quantifies how likely it is to cover an object of any class. The higher the score, the more likely it is that the
window covers an object and not pure background.

Given a set of training images I = (I1, ..., In) and their candidate windows (sampled from the objectness
measure), LocLearn selects the best configuration of windows L = (l1, l2, .., lN) by minimizing an energy
function E(L|I, θ), where θ represents the parameters of the model.

The posterior probability of the selected windows is defined by:

p (L|I, θ) ∝ exp(−E(L|I, θ)) = exp

(
−
∑
n

ρnφ(ln|In, θ)−
∑
n,m

ρnρmφ(ln, lm|In, Im, θ)

)
. (2.1)

The optimal configuration of windowsL has the smallest energy, which corresponds to the greatest MAP
probability. The energy function consists of unary and pairwise potentials terms which assign a cost to the
selected configuration. The unary potential φ(ln|In, θ) refers only to the properties of window ln and it has
a smaller value when it is more likely that ln covers an object. The pairwise potential φ(ln, lm|In, Im, θ)
expresses the similarity in appearance and shape of the windows ln and lm which come from different
images.

Each component of the energy function is reviewed below:

• Weights

– ρn represents the weight of image In; they are initially set to uniform and later are adapted in
the learning stages.

– α are the weights of each potential term (unary or pairwise) which are learned from meta-training
data.

• Unary potentials:

φ(ln|In, ω) = αωω(ln|In, θω) +
∑
f

αΥf
Υf (ln|In, θΥf

) (2.2)

– ω is 1 - the probability to have any object in the window. The probability is given by the
objectness score [2].

– Υf defines an appearance model for every cue f . It depends on the content of the image and
adds class specific information to the model.

• Pairwise potentials:

φ(ln, lm|In, Im) = αλλ(ln, lm, θλ) +
∑
f

αΓf
Γf (ln, lm|In, Im) (2.3)

– λ expresses the shape similarity of the two windows. The term is not dependent on the image
content and relates to the aspect ratio of the windows.

– Γf expresses the appearance similarity of two windows for each cue f .

6

CHAPTER 2. BACKGROUND

Γf consists of pairwise potentials defined on Euclidean distances computed between every pair of win-
dows coming from different images. It expresses appearance similarity and its computed as the sum of
squared differences:

Γf (ln, lm|In, Im) = ||lfn(In)− lfm(Im)||22, (2.4)

where lfn(In) and lfm(Im) are the descriptors extracted from windows ln and lm corresponding to cue f .
Four cues are extracted for each candidate window to express its appearance:

• Spatial Envelope for describing the overall appearance of a window (GIST) [1], of dimension 960

• Color histogram in Lab space (CHIST) quantized in 10× 20× 20 bins, of dimension 4000

• Bag of Words of Speeded up robust features (SURF) [4] of dimension 2000; a codebook of 2000
words was obtained using k-means

• Histogram of oriented gradients (HOG) [11], of dimension 216

The focus of this work is to make inference in the pairwise potentials Γf efficient. In sec. 4, lGISTm (Im) is
binary encoded using a Hamming embbeder which reduces the storage requirements for the GIST descriptor.
In sec. 5, less Υf (ln, lm|In, Im) terms are calculated which speeds up the time needed for computing all
pairwise potentials and allows the use of more candidate windows per image.

LocLearn is an iterative algorithm, where localization and learning are performed iteratively. In the
localization stage, inference in the CRF model gives us a configuration of windows. In the learning stage,
the selected configuration is used for adapting the CRF model. Fig. 2.1 illustrates the localization and
learning stages in LocLearn, which uses generic class information from meta-training data.

The parameters θω, θλ, θΓf
and the weights α of the potentials in the energy function are learned during

the meta-training stage. They carry only information from generic classes and are used to train a model to
be able to localize objects of any class. The generic class model is given as input in the first localization step
and its parameters do not adapt to the new class in the learning stages. The image responsibilities ρ and the
appearance unary potentials Υf carry information about the specific class and are updated at every training
phase. A schematic view of the flow of the algorithm is shown in Fig. 2.1.

Localization With the energy function defined, the problem of localizing the objects in images reduces to
finding the set of windows among the candidate windows which maximizes the probability:

L∗ = arg max
L

p (LI, θ) (2.5)

This is equivalent with a MAP labeling of the images (nodes of the CRF) with the windows that correspond
to a smaller energy. Intuitively, it is expected that the energy is minimized when the selected windows cover
an object of the target class. A candidate window is considered to localize a target object if the Pascal
criterion is met.

The parameters θω, θλ, θΓf
and the weights α are learned from the meta-training data and do not change

throughout the localization and learning stages. When localization is done for the first time, the image
responsibilities ρ and the appearance unary potentials Υf are set to uniform.

7

CHAPTER 2. BACKGROUND

Figure 2.1: Scheme of LocLearn algorithm. In a first stage, the weights α of the potentials and the
parameters θω, θλ and θΓ are learned from meta-training data. In the first localization step, the algorithm
minimizes an energy function in order to select a configuration of windows which are likely to localize an
object of any class. In the Learning stage, the corresponding appearance descriptors (for one or more cues)
are used as positive training data for SVMs classifiers. Using the SVMs output, the model adapts some
of its parameters to be specific for the target class. The energy function incorporates the class specific
information and its optimization returns a new configuration of windows. The Localization and Learning
stages are iteratively repeated.
8

CHAPTER 2. BACKGROUND

Learning The windows L∗ selected in the localization stage are used for training a SVM classifier for
each cue f . The negative set of images used in training does not contain objects of the target class. We
train a SVM for cue f such that the descriptors for windows in L∗ are considered positive training examples
and the descriptors of windows from the negative are considered negative training examples. To make the
algorithm more robust this is done multiple times, namely we use the windows from L∗ which received a
top k% score by the SVM to retrain the classifier. This gives more importance to windows from L∗ which
are more likely to cover a target object.

The class specific unary potential Υf for a window ln is adapted and set to the signed distance between
the SVM hyperplane and the appearance descriptor lfn(In).

The image responsibilities ρ are updated such that the images which are likely to cover an object get
more importance. The negative distance between a window descriptor for cue f and the hyperplane of
the SVM classifier for f reflects the probability that the window comes from an image of the target class.
The responsibility of an image In incorporates information from all cues and is set to be proportional to
ρn ∼

∑
f αfΥf (l∗n|In, θΓ), where l∗n is the selected window for In.

We note that the localization and learning stages depend on each other. A better configuration of selected
windows in the localization stage leads to better SVM classifiers whose output is used for adapting the class
specific model in the learning stage. In return, a better class specific model leads to better localization
results.

2.1.2 LocLearn Performance on Pascal07

In this work we propose different hybrid versions of LocLearn which aim at improving the inference in
CRF with respect to time or/and memory. We compare the performance of our approaches with the one of
the original LocLearn framework proposed in [7]. LocLearn outperforms the state-of-the-art methods for
learning a model of an unknown class in a weakly supervised manner. The performance of the algorithm is
measured as the percentage of images in the training set for which the selected window correctly localizes
the target object according to the Pascal criterion. This is reported as corLoc (correctly localized). Note
that it can happen that an image contains more instances of objects of the target class. In this case, when
computing corLoc, a selected window is considered good if it correctly localizes any of the target objects
present in the image.

When the CRF model is fully adapted to the new class, LocLearn gives corLoc of 81%, 64% and 50%
on the datasets Caltech4, Pascal06 6x2 and Pascal07 6x2. The best competitor [6] obtains corLoc of 55%,
45% and respectively 33% on the same datasets. LocLearn correctly localizes approximatively 43% more
objects over the three datasets proving its robustness to a variety of images.

In this work, we evaluate the modified versions of LocLearn only on the Pascal07 6x2 dataset. This is a
more challenging dataset which contains very difficult images. The appearance and shape characterisitcs of
the objects vary a lot among images, which often depict cluttered scene. The best competitor [6] obtains a
corLoc of only 33% on this dataset.

Pascal07 6x2 Meta-Training Data. The meta-training data for Pascal07 6x2 consists of a total of
799 images representing 24 class-viewpoint combinations from 6 classes (bird, car, cat, cow, dog, sheep).
From the 24 classes we learn a generic class model which is able to localize objects of any class. The
parameters of the generic class model are the pairwise potentials for appearance and shape, the parameters
of the objectness unary potential and the weights of each term in the energy function 2.1. LocLearn uses the
generic class model in the first localization step to select an initial configuration of windows for the images
in the training data.

9

CHAPTER 2. BACKGROUND

Pascal07 6x2 Training Data. The training data consists of 478 images coming from 6 classes (bus,
boat, aeroplane, horse, motorbike, bicycle), each with two viewpoints, left and right. Each class-viewpoint
combination has between 21 and 50 images. For each combination, the CRF model adapts the image re-
sponsibilities and the unary appearance potentials to incorporate class specific information.

We review in Table 2.1 the performance results of LocLearn on the Pascal07 6x2 training dataset as
reported in [7]. In the last column we show the average corLoc over all 12 classes in Pascal07 6x2.

Table 2.1: corLoc results of LocLearn on Pascal07 6x2

Method PASCAL07 6x2 CorLoc
LocLearn -localization only
(a) random windows 0%
(b) no objectness score + single cue GIST 30%
(c) objectness score + single cue GIST 37%
(d) all cues 37%
LocLearn - localization and learning
(e) objectness score + single cue GIST 40%
(f) full adaptation 50%

In all the setups (a)-(f), LocLearn uses 100 candidate windows per image and in setups (a)-(d) only the
localization step is run.

• setup (a): the candidate windows are randomly sampled and none of the selected windows localize
an object of the new class. This motivates the need for good candidate windows, especially since
searching over all possible windows in an image is not feasible.

• setup (b): the candidate windows are sampled from the objectness function [2], but their objectness
unary potentials are set to uniform. As appearance similarity cue only GIST feature is used and in
almost one third of the images the windows localize an object (corLoc of 30%).

• setup (c) : this setup is similar to (b) but the appearance unary potentials are expressed by the ob-
jectness scores of the sampled windows. This increases the localization rates to 37%. At this point,
LocLearn obtains better results than the best competitor [6] which on average localizes objects only
in 33% of the images of a new class.

• setup (d) : setup (c) is extended to use all four cues for the appearance similarity of two windows. The
performance of the algorithm does not improve from setup (c).

Some observations can be made related to the results of LocLearn (a)-(d). The performance of the
algorithm depends on the characteristics of the sampled windows. If the windows are randomly sampled,
LocLearn does not localize any objects. This suggests the need of an objectness function that gives us
sample candidate windows which are more likely to contain an object. Furthermore, we can conclude that
the GIST descriptor is very powerful in describing the holistic structure of a window and its use has a high
impact in the first localization stage of LocLearn. We remind that in setups (a)-(d) LocLearn uses only class
generic knowledge for localizing objects of a specific class.

In setups (e)-(f) localization and learning are done iteratively.

10

CHAPTER 2. BACKGROUND

• setup (e) : the settings are the same as in experiment (c) but the CRF model is adapted to the specific
class by alternating localization and learning stages. This increases corLoc from 37% (c) to 40% (e).

• setup (f) : the model from setup (d) is adapted to the specific class. corLoc increases from 37% (d) to
50% (f), which is a 36% improvement in performance. This shows that incorporating multiple cues
helps the model in learning specific characteristics of a new class.

The best performance of LocLearn algorithm on the Pascal07 6x2 is obtained when localization and
learning stages are run iteratively and when four cues are used in the class specific model. Adding multiple
cues does not improve performance of localizing an object of any class, but they become important when
we learn a class specific model, as the cues adapt to the particular characteristics of the class.

Throughout this work, we will refer to the setups (c), (d) for localization and setups (e), (f) for local-
ization and learning in LocLearn. The three methods we propose in the following sections for adressing
the limitatios of LocLearn add modifications to one of these setups and their corLoc performance will be
compared to the corresponding corLoc from Table 2.1.

2.2 Inference in Conditional Random Fields

Inference in a fully connected CRF consists in selecting a label for each node of the CRF such that an
energy function is minimized. Exact inference is a NP-hard problem and many approximation algorithms for
energy minimization exist such as tree-reweighted-message passing (TRW-S) [9], Loopy Belief Propagation
(LBP) [12] or graph cuts.

In the results from Table 2.1, LocLearn uses TRW-S for minimizing eq. 2.5. The algorithm TRW-S
returns also a lower bound on the energy which can be used to determine the quality of the approximation.
The authors of [7] mention that in their experiments, TRW-S proved to give very good approximative results
for the energy function and that the global minimum of the energy was attained in 93% of the cases. A fast
implementation in C++ is provided by the author of [9].

LBP does not always converge and can get stuck into loops, but proved to give good results on real world
data in computer vision problems, such as stereo [5], [10] or image restoration [5]. Graph cuts give better
results than LBP, but do not support more than 2 labels per node.

An exact inference has complexityO(NW), whereN is the number of nodes andW is the number of la-
bels or states in the CRF. In this work, we use only TRW-S and LBP which have a complexity of O(iEW 2),
where i is the number of iterations, E the number of edges and W the number of states. LocLearn uses a
CRF in which the nodes are fully connected which means E = N(N − 1)/2 edges are present. Thus, the
approximation algorithms introduced above reduce the complexity from O(NW) to O(N2W 2), which is a
significant improvement, but still not feasible if N or W are in the order of thousands.

2.3 LocLearn complexity and limitations

In LocLearn, selecting random candidates windows gives poor results (setup (a) in Table 2.1) and using all
possible windows in an image is computational infeasible. This motivates the use of an objectness measure
for sampling windows that are likely to contain an object. By sampling more windows, we expect to have
more candidate windows which localize a target object and thus our model could possibly select a better
configuration of windows.

11

CHAPTER 2. BACKGROUND

Time complexity of LocLearn As mentioned in the previous section, minimizing the energy defined by
eq. 2.5 can be done using an approximation algorithm inO(N2W 2), whereN is the number of input images
and W is the number of sampled windows per image. This makes inference computationally very intensive
and even infeasible if more than 200 candidate windows are to be sampled per image. Another expensive step
in LocLearn is the computation of appearance pairwise potentials defined on distances. A pairwise potential
for a cue f is computed for every two windows coming from different images. There areN(N−1)/2 image
pairs and each pair accounts for W 2 potentials, since there are W 2 window combinations. This means that
the computation of all the pairwise potentials has complexity O(N2W 2).

In [7] the algorithm was run with at most 50 images per class and at most 100 windows per image.
Running the problem with thousands of windows per image is infeasible in the normal settings of the algo-
rithm due to its quadratic complexity in N and W . In sec. 3, we propose a method for reducing the time
complexity O(N2W 2) in the number W of sampled windows by using a Divide and Conquer version of
LocLearn.

Memory complexity of LocLearn Another limitation of the algorithm which impedes the use of many
candidate windows per image is the memory needed for storing the potentials (unary and pairwise) and the
descriptors. The setup of LocLearn algorithm that obtains the best performance on the Pascal07 6x2 dataset
(corresponding to Table 2.1(f)), uses four descriptors: GIST, CHIST, SURF and HOG.

One candidate window requires 7176 (960+4000+2000+216) double elements for storing all its descrip-
tors. Assuming a double requires 8 bytes as it is the case for the Matlab double numeric type, this means
7176 elem x 8 bytes = 57408 bytes∼ 0.43Mb per window, which makes 43Mb for 100 windows and∼17Gb
for 400 images with 100 candidate windows per image (Pascal07 6x2 training dataset contains 478 images).
Thus, LocLearn is limited not only because of the complexity of the inference problem and the computation
of the pairwise potentials, but also because of the memory needed to store the descriptors of the windows.
The memory storage complexity of the descriptors is O(NWD), where D is the sum of the dimensions
of the descriptors used, in our case in the order of 7000. In sec. 4 we propose a method for saving large
amounts of storage requirements for the GIST features by binary encoding the descriptors using a Hamming
embedder. This is a general approach, which can be applied to any type of descriptors.

The memory complexity of the unary potentials isO(NW), since one unary potentials is stored for every
candidate window of an image. As we mentioned previously, there are O(N2W 2) pairwise potentials. The
total memory complexity for storing the potentials is O(NW + N(N−1)

2 W 2), which is dominated by the
second term. For a class with N=50 images and W=100 candidate windows per image, this gives roughly
5.8Gb if the elements of the potentials are stored as doubles. Note that Pascal07 6x2 dataset consists of 12
classes and we run LocLearn also with 4 types of descriptors.

We propose in sec. 5 an approach for reducing the storage requirements of the pairwise appearance
potentials by computing less pairwise distances. This allows us to use more candidate windows per image
and also speeds up the time needed for their computation, which is O(N2W 2).

12

Chapter 3

Divide and Conquer LocLearn

3.1 Divide and conquer LocLearn

In the general setup of a Divide and Conquer algorithm, a problem is broken down recursively into more
subproblems of the same type (or similar) until they are feasable or trivial to solve. The solutions of the
subproblems are then combined to give a solution to the initial problem. We propose a Divide and Conquer
approach such that the time complexity O(N2W 2) of LocLearn is reduced, allowing for more sampled
windows per image. We will refer to this hybrid version of LocLearn as D&C LocLearn.

As it is the case with LocLearn, given a set of N images from a target class, D&C LocLearn samples
W candidate windows per image from the objectness measure [2] and selects a configuration of windows
which are likely to cover objects in the sense of the Pascal criterion. From each image we sample a large
number W of windows, for which the problem cannot be solved in the normal settings of LocLearn due
to its quadratic complexity in W . We can distinguish three major steps of the D&C LocLearn algorithm
following a D&C paradigm:

• we break down the problem into subproblems that are smaller instances of the same problem.

The windows are partioned into S disjoint subsets. Each of the S subsets is used as input for a
LocLearn subproblem which uses Ws = W/S candidate windows for each image.

• we solve the LocLearn subproblems.

Each subproblem i ∈ 1, 2..., S minimizes the energy in a fully connected CRF with the labels being
the windows from the corresponding subset i.

• we combine the solutions of the subproblems to give a final solution

The windows selected by TRW-S for each subproblem Lsoli , i ∈ 1, ..., S are combined to form the
final LocLearn problem, which gives us the final configuration of windows Lf .

A mathematical formulation of D&C LocLearn is given in algorithm 1. Note that the final LocLearn
subproblem can select the final windows from the set of windows obtained by applying multiple LocLearn,
which should be a better set of windows than having one sample LocLearn.

The D&C algorithm is depicted in Fig. 3.1 forN = 2 images,W = 10000 sampled windows per image,
Ws = 100 windows per subproblem and a total of S = 100 intermediate subproblems.

By breaking down our initial problem into multiple LocLearn subproblems, we reduce the time comple-
xity of our algorithm from O(W 2N2) to W

Ws
O(W 2

sN
2) + O(W 2

sN
2), where Ws is the number of win-

dows per image in a subproblem (WWs
intermediate problems with O(W 2

sN
2), and a final subproblem with

13

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

Algorithm 1 DivideAndConquerLocLearn((I1, ..., IN), N,W,Ws)
Input: (I1, ..., IN) = input images
N = number of images
W = total number of candidate windows sampled for one image
Ws = number of windows per image in a subproblem

Output: Lf

S = W
WS

number of LocLearn subproblems
{sample candidate windows from objectness measure}
l1:W
1 , ..., l1:W

N

l
solj
i = the label selected in the ith image by subproblem j

for i = 1→ S do
{solve intermediate subproblem i}
Lsoli =

(
lsoli1 , lsoli2 , ..., lsoliN

)
← LocLearn

(
l
(i−1)·Ws+1:i·Ws

1 , l
(i−1)·Ws+1:i·Ws

2 , ..., l
(i−1)·Ws+1:i·Ws

N

)
end for
{solve final subproblem}
Lf =

(
lf1 , l

f
2 , ..., l

f
N

)
← LocLearn

(
lsol1,sol2,...,solS1 , lsol1,sol2,...,solS2 , ..., lsol1,sol2,...,solSN

)
return Lf

O(W 2
sN

2)). If we keep only the dominant terms, the complexity can be expressed asO(WWsN
2). Further-

more, it can be noticed that the subproblems are independent and if they are run in parallel, D&C LocLearn
algorithm can have a complexity of O(W 2

sN
2). Notice that Ws is much smaller than W and reducing the

complexity to O(W 2
sN

2) from O(W 2N2), makes the problem feasible also for large W .
We note that D&C LocLearn has different memory requirements for storing the appearance pairwise

potentials. Its memory complexity is given byO(N2Ws(W+Ws)) (we have W
Ws

+1 LocLearn subproblems

each with a memory complexity of O(N2W 2
s)). When Ws <

√
5−1
2 W , the memory complexity of D&C

LocLearn of O(N2Ws(W +Ws)) is smaller than O(N2W 2).
The method we propose exploits the independence of the LocLearn subproblems to reduce the quadratic

time complexity of LocLearn in W . This permits us to run experiments with a large number of W , which is
infeasable in the normal settings of the LocLearn algorithm. For Ws <

√
5−1
2 W our new method also uses

less memory for storing appearance pairwise potentials.

3.2 Experiments

We sample 10000 windows per image with the objectness measure [2], and precompute for each window
four descriptors (GIST, CHIST, SURF, HOG). The hitrate of a set of images from a class is defined as the
percentage of images for which it exists at least one sampled window that covers an object in the Pascal
sense. The Signal-to-Noise Ratio (SNR) in an image is defined as the percentage of sampled windows which
localize an object of the specific class. In the following section, we will report SNR per class (SNRCLS),
which is the average SNR for the set of images from that class.

The performance of D&C LocLearn expressed as corLoc has an upper bound given by the hitrate of the
sampled windows. The algorithm can not obtain better performance in terms of corLoc than the hitrate of
the input set of images. In our case, the average hitrate over all 12 classes in the Pascal07 6x2 dataset with

14

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

Figure 3.1: Divide and conquer LocLearn. The figure illustrates a fully CRF with 2 images and 10000
candidate windows per image. The windows are split into 100 intermediate subproblems and LocLearn
is run for each subproblem. Ln i is the ith window/label in image n. The solutions to the subproblems
(highlighted in red) are combined in the last step to form the final LocLearn subproblem, which gives the
final solution (highlighted in green).

15

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

10000 candidate windows per image is 0.95 and SNRCLS 0.22. We present the hitrate and SNRLCS for the
12 classes in Table 3.1. We notice that there are classes for which the hitrate is 1. We also observe that the
lowest hitrate obtained is 0.88 (for the class boat-left), proving the existence of very difficult images in the
Pascal07 training data.

class viewpoint hitrate SNRCLS

bus
left 1.00 0.19
right 0.95 0.07

boat
left 0.88 0.28
right 0.93 0.15

aeroplane
left 0.97 0.28
right 1.00 0.29

horse
left 0.91 0.25
right 0.92 0.09

bicycle
left 0.97 0.28
right 0.97 0.17

motorbike
left 0.97 0.32
right 0.97 0.32

Table 3.1: Hitrate and SNRCLS for the classes in Pascal07 6x2 with 10000 windows per image sampled
with the objectness function [2]

In our setup of D&C LocLearn, following the notations from algotihm 1, we have W = 10000 windows
in total and Ws = 100 windows in a subset, and thus a total of S = 100 subproblems. The D&C LocLearn
is run with identical settings for each LocLearn subproblem, settings which correspond to versions (d) for
localization and (f) for localization and learning from Table 2.1. The 100 intermediate subproblems are
run in parallel and their solutions are aggregated in a final subproblem. Each subproblem (intermediate
or final) can be run only until the localization stage, or localization and learning can be performed (which
correspond to settings (d), and respectively (f) from Table 2.1). This results in four possible setups which
will be denoted (g)-(j) D&C LocLearn.

Divide and Conquer LocLearn
Intermediate Subproblems Final Subproblem

localization
(g) localization
(h) localization+learning

localization+learning
(i) localization
(j) localization+learning

Table 3.2: Four setups of Divide and Conquer LocLearn

We review here the general setup of a LocLearn problem with setup (d) and (f) from Table 2.1. For
meta-training data images from 24 classes from Pascal07 are used and for training data images from other
12 classes from Pascal07 6x2 (aeroplane, bus, boat, horse, motorbike, bicycle each with two views) are used.

In setup (d) 100 candidate windows per image are sampled using the objectness measure [2]. The
energy function 2.1 incorporates unary potential ω for objectness, pairwise potentials λ for shape similarity
(aspect-ratio) and pairwise potentials Γf for appearance similarity according to four cues (GIST, CHIST,

16

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

HOG, SURF). The weights α and the parameters of the pairwise potentials θΓf
, θλ are learned from meta-

training data. We compare the performance (in terms of corLoc) of D&C LocLearn (g) which uses only
the localization step in all subproblems with the performance of LocLearn setup (d). All the subproblems
(intermediate or final) from D&C LocLearn have the same setup as LocLearn (g), namely each subproblem
uses 100 candidate windows per image and the paramaters and weights of the potential terms are the same.
We discuss the properties of the intermediate subproblems of D&C LocLearn only for setup (g).

In LocLearn (f) from Table 2.1, the setup from (d) is run with a maximum of 10 iterations in which the
localization and learning are alternating. The class specific unary pairwise potentials Υf corresponding to
each cue f and the image responsabilities ρ are adapted. Our D&C LocLearn which uses adaptation to a
specific class will be compared to the results of LocLearn setup (f).

3.2.1 Properties of the selected windows of intermediate subproblems

We first look at the properties of the windows selected by the intermediate LocLearn subproblems from setup
(g), when only localization is done. Fig. 3.2 shows a visualization of the 100 candidate windows/image that
enter the final LocLearn subproblem in setup (g) and 100 candidate windows/image for LocLearn (d) for 6
images taken from the classes bus-left and aeroplane-left.

It can be observed from Fig. 3.2a that the solutions of the subproblems give most of the time windows
covering in the Pascal sense a target object. This leads to a set of windows which enters the final subproblem,
where for one image the majority of windows localize the object (colored green), or the majority of windows
are not covering an object (colored red).

A selected window in an image is considered to be more accurate, the more it overlaps with the ground-
truth bounding box.

Statistical properties of the windows. If we look at the statistical properties of the set of candidate win-
dows for the final subproblem, we notice that they have greater SNRCLS and smaller hitrate than a set of
windows that are simply sampled using the objectness measure.

Fig. 3.3 shows a histogram of the distribution of the hitrate for all 100 intermediate subproblems of D&C
LocLearn (g). The green line represents the hitrate of the final LocLearn subproblem in (g) and the red line
represents the hitrate of the windows used in LocLearn (d). The mean hitrate over all 100 intermediate
subproblems and over all classes is 0.83, while the mean hitrate over all classes of the images in the final
subproblem of D&C LocLearn (g) is only 0.69. The blue line represents the hitrate in a sample LocLearn
problem setup (d), and its mean hitrate over all classes is 0.85. This value is close to the mean of the 100
subproblems which used in a similar way windows sampled from the ojectness measure.

It is surprising at first that the hitrate of the windows in the last subproblem, highlighted in green in
Fig. 3.3, are somehow smaller than the ones used in LocLearn (d). This can be explained by looking again
at Fig. 3.2. In a normal LocLearn problem, it happens relatively often that there are some images which
have very few windows (1-4) hitting an object, which keeps the hitrate high. In the case of the final set of
windows for the D&C LocLearn problem, most of the windows are biased to cover a certain area in the
image, and sometimes this is not the one which covers an object in a Pascal sense.

It can be viewed from Fig. 3.2b and Fig. 3.2e, that there exists also images for which almost all candi-
date windows are hitting a target object. This makes the value of SNRCLS for the set of windows of the
last subproblem to be larger. Fig. 3.4 shows a histogram of the distribution of SNRCLS over 100 inter-
mediate subproblems in D&C LocLearn (g). The green line represents the SNRCLS of the final LocLearn
subproblem in (g) and the red line represents the SNRCLS of the windows used in LocLearn (d). The mean
SNRCLS over all classes of the images in the final subproblem of D&C LocLearn (g) is 0.37, which is better

17

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

hitrate aeroplane-left hitrate aeroplane-right hitrate bus-left hitrate bus-right

hitrate boat-left hitrate boat-right hitrate bicycle-left hitrate bicycle-right

hitrate motorbike-left hitrate motorbike-right hitrate horse-left hitrate horse-right

Table 3.3: Distribution of hitrate for 100 LocLearn subproblems. For each class-viewpoint, a histogram
(shown in blue) depicts the hitrate distribution over 100 LocLearn subproblems. With a red vertical line is
highlighted the hitrate of the windows used in setup (d) from Table 2.1 and with a green vertical line is
highlighted the hitrate of the windows that enter in the final subproblem of Divide and conquer LocLearn
(g). The mean hitrate for the windows in setup (g) over all classes is 0.69 which is smaller than the average
hitrate in LocLearn setup (d) of 0.85.

18

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

snrcls aeroplane-left snrcls aeroplane-right snrcls bus-left snrcls bus-right

snrcls boat-left snrcls boat-right snrcls bicycle-left snrcls bicycle-right

snrcls motorbike-left snrcls motorbike-right snrcls horse-left snrcls horse-right

Table 3.4: Distribution of SNR per class for 100 LocLearn subproblems. For each class-viewpoint, a
histogram depicts the SNRCLS distribution over 100 LocLearn subproblems. With a red vertical line is
highlighted the SNRCLS of the windows used in setup (d) from Table 2.1 and with a green vertical line is
highlighted the SNRCLS of the windows that enter in the final subproblem of Divide and conquer LocLearn
(g). The SNRCLS for the windows in setup (g) is usually bigger than the one in LocLearn setup (d).

19

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.2: Visualization of 100 windows per image for two classes. On the first row are 6 images taken
from the class bus-left Pascal07 6x2. On the second row are plotted 100 windows/image. These are the
selected windows from each of the 100 problems in setup (g) of D&C LocLearn, and also the ones which
will be input as candidate windows to the final LocLearn subproblem. On row (c) are 100 windows/image
obtained by sampling from the objectness measure [2]. Green windows cover the object according to Pascal
criterion, red windows don’t. The windows in c) seem more random than those in b), where most of them
are concentrated around the same object or area. The last rows (d)-(f) contain similar plots but for the class
aeroplane left.

than that the mean SNRCLS over all 100 intermediate subproblems and over all classes which is 0.22. The
windows that are used in LocLearn (d) have a SNRCLS of 0.19, which is close to the mean SNRCLS of 0.22
of the intermediate subproblems. This is consistent with our expectations, since LocLearn (d) and the 100
LocLearn problems use candidate windows with similar properties, which are sampled with the objectness
function [2].

To summarize, the windows that enter the final subproblem have better SNRCLS but worse hitrate
compared to a normal set of windows sampled with the objectness measure. The distributions of the hitrate
and SNRCLS over 100 LocLearn problems show that localizing objects is more difficult for some classes

20

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

than for others. For the classes boat and bicycle, the hitrate and SNRCLS are on average smaller than for
the rest of the classes. Moreover, the variance in hitrate and SNRCLS for a particular class shows that
by repeating the sampling, the candidate windows can be better or worse, in which case tighter theoretical
limits are imposed on the performance of corLoc.

3.2.2 corLoc results for Divide and Conquer LocLearn

In Table 3.5 are presented the results of four versions of the D&C LocLearn algorithm. Each subproblem
(intermediate or final) can be run only until the localization stage (corresponding to setup (d) from Table 2.1),
or localization and learning can be performed (setup (g) from Table 2.1). For D&C LocLearn, the corLoc of
the final selected windows is reported in the last column.

Method PASCAL07 6x2 corLoc
(d) LocLearn localization 37%
(f) LocLearn localization+learning 50%

Divide and conquer LocLearn
Intermediate Subproblems Final Subproblem

localization
(g) localization 41%
(h) localization+learning 45%

localization+learning
(i) localization 49%
(j) localization+learning 51%

Table 3.5: corLoc results of Divide and Conquer LocLearn on Pascal07 6x2

We discuss the results below, depending on whether in the subproblems is performed only localization
or localization and learning.

• Localization in the intermediate subproblems. We can see that if we run LocLearn up to the localiza-
tion step in all subproblems, the corLoc obtained by D&C LocLearn in the final subproblem is of 41%
(g). This outperforms the results obtained in setup (d) for which only one LocLearn problem is run
up to localization (with corLoc of 37%). However, if we add the learning stage only in the last sub-
problem (corresponding to setup (h)), the final corLoc 45% does not outperform the best referenced
LocLearn with adaptation, which is 50% (f). This is primarly due to the fact that the windows used
in the last problem have different characteristics from the normal subproblem, as it was discussed in
detail in the previous section. To give better performance results, the settings (e.g. the weights α of
each potential term in eq. 2.1) of LocLearn in the final subproblem should be learnt again from the
meta-training data.

• Localization and Learning in the intermediate subproblems. When learning is performed in both the
intermediate subproblems and in the final subproblem, we observe a slight increase in corLoc returned
by D&C LocLearn after the learning stage from 49% (i) to 51% (j). However, the final result of 51%
is better than the best referenced corLoc of 50% obtained for one LocLearn problem with learning
(setup (f)). The subproblems in (j) had similar setup as in (f). Intuitively, an even better improvement
can be obtained by learning the parameters for the final subproblem, as we can observe that in the
normal settings of a LocLearn problem, corLoc increases from 37% to 50% after the learning stage,
while in the final subproblem of D&C LocLearn the performance increases less, from 41% to 45% or
from 49% to 51%.

21

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

A visualization of the windows selected by the setups (d) and (g) from Table 3.5 is depicted in Fig. 3.3.
Six images are selected for each class/viewpoint combination and in the images one can also see the ground-
truth bounding boxes.

aeroplane

bus

boat

bicycle

motorbike

horse

Figure 3.3: Localization results for Divide and conquer LocLearn. Blue windows represent ground-truth,
pink windows are the ones selected by LocLearn setup (d) in Table 2.1 and with green are colored the final
windows selected in the localization stage by Divide and Conquer LocLearn setup (g). There are images for
which the 2 algorithms return the same labels, but on average the green windows are better as the results in
Table 3.5 show.

The accuracy of the selected windows is computed as the average overlap of the ground-truth bounding
boxes with the selected windows which cover an object in the Pascal sense. For a window w which localizes
an object, the overlap with the ground-truth window gt is computed as |w∩gt||w∪gt| . In Table 3.6 are presented the
accuracy of the selected windows for four LocLearn setups.

22

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

Methods Accuracy corLoc

localization
(d) LocLearn 0.67 37%
(g) D&C LocLearn 0.69 41%

localization+learning
(f) LocLearn 0.66 50%
(j) D&C LocLearn 0.66 51%

Table 3.6: Accuracy of selected windows on Pascal07 6x2

Although corLoc is bigger in setups (f) and (j), accuracy is a little smaller than in setups (d) and (g). This
is explained by the fact that the model becomes less restrictive in the choice of selected windows, which
increases the number of selected windows that localize an object, but in the same time the selected windows
do not overlap so tightly with the ground-truth.

The autoCorLoc for two LocLearn setups is computed as the percentage of images for which the se-
lected windows from the two setups overlap in a Pascal sense. The autoCorLoc for D&C LocLearn (g) and
LocLearn (d) is 0.83. The same autoCorLoc is obtained for the setups D&C LocLearn (j) and LocLearn (f).
This shows that the windows selected by D&C LocLearn are similar with the ones given by one LocLearn
problem.

corLoc of intermediate subproblems The distribution of the values of corLoc obtained for 100 LocLearn
subproblems after the localization stage, corresponding to setup D&C LocLearn (g) are shown in Fig. 3.2.2
for each class-viewpoint combination. With a red vertical line is highlighted the corLoc from results (d) in
Table 2.1 and with a green vertical line is highlited the corLoc obtained in the final subproblem of D&C
LocLearn (g).

There is a large variance of corLoc within a class for different LocLearn subproblems. If the same
LocLearn setup is run several times but with different candidate windows, corLoc can vary even up to
±20% for a class. However, we can say that some classes have better localization results than others. Boat
proves to be a difficult class, giving relatively lower corLoc values in all subproblems, while motorbike
proves to be one of the easiest. The largest corLoc obtained for the classes boat-left and boat-right over 100
problems is ∼ 20%, which is smaller than the smallest corLoc obtained for the classes motorbike-left and
motorbike-right of ∼ 50%.

Furthermore, it can be noticed that the selected windows in the final subproblem of D&C LocLearn are
better in almost all the classes (except aeroplane left, motorbike right and horse right). This supports the
idea that corLoc varies among different LocLearn problems which have same setup but different sampled
windows. Moreover, using more windows leads to better results, as the algortihm has a greater set of labels
to choose from.

Memory savings D&C LocLearn has different memory requirements for storing the appearance pairwise
potentials than a normal LocLearn problem. Its memory complexity is given by O(N2Ws(W + Ws)),
where N is the number of images, W is the number of sampled windows and Ws is the number of windows
we use in a subproblem. When Ws <

√
5−1
2 W ∼ 0.61W , the memory complexity of D&C LocLearn is

smaller than that of LocLearn of O(N2W 2). This is the case also in our experiments, in which Ws = 100
and W = 10000. This results in saving storage memory by a factor of 99. We note that in practice D&C
LocLearn always uses less memory for storing the potentials, as we normally break down our inital problem
in at least two subproblems, which corresponds to Ws ≤ 0.5W .

23

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

corLoc aeroplane-left corLoc aeroplane-right corLoc bus-left corLoc bus-right

corLoc boat-left corLoc boat-right corLoc bicycle-left corLoc bicycle-right

corLoc motorbike-left corLoc motorbike-right corLoc horse-left corLoc horse-right

Figure 3.4: Distribution of corLoc for 100 LocLearn problems with different candidate windows. With
a red vertical line is highlighted the corLoc from results (d) in Table 2.1 and with a green vertical line is
highlighted the corLoc obtained in the final subproblem of Divide and Conquer LocLearn. The histogram
(blue) represents the distribution of the corLoc obtained in 100 intermediate subproblems of D&C LocLearn
(g).

3.3 Discussion

The performance of LocLearn in localizing objects of a new class is theoretically bounded by the hitrate of
our sampled windows. The more candidate windows we have per image, the more likely it is to have one or
more windows that cover an object in the Pascal sense for every image.

We propose a Divide and Conquer version of LocLearn which can use a number of candidate win-
dows per image in the order of thousands. Using so many candidate windows per image is not feasable in
the normal settings of LocLearn due to its computational complexity of O(N2W 2), where N is the num-
ber of images and W is the number of sampled windows per image. Divide and Conquer LocLearn uses
the independence property of its intermediate subproblems to reduce the running time from O(N2W 2) to
O(N2W 2

s), whereWs is the number of windows per subproblem. This is a big improvement since in general
Ws is much smaller than W . This approach does not only save computational time, but also memory for
storing the pairwise potentials. The memory complexity of D&C LocLearn is O(N2Ws(W + Ws)) which
in practice is always smaller than the memory requirements of a normal LocLearn problem of O(N2W 2).

The newly proposed method improves corLoc from 37% (LocLearn (c)) to 41% if only localization

24

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

is done, and from 50% (LocLearn (f)) to 51% if both localization and learning stages are performed. This
shows that using more candidate windows per image helps in obtaining better localization results. Moreover,
the performance can be improved even more when localization and learning are run iteratively if different
parameters are used in the final problem of D&C LocLearn, in which the candidate windows have different
statistical properties than a set of windows sampled with the objectness measure [7]. Namely, in many cases
the majority of candidate windows are either covering an object or are biased towards another area in the
image, leading to higher SNRCLS and smaller hitrate than a set of candidate windows sampled with the
objectness function.

25

CHAPTER 3. DIVIDE AND CONQUER LOCLEARN

26

Chapter 4

LocLearn with Binary encoding of GIST
descriptor

As mentioned in the introduction, the storage requirements of the feature vectors poses also constraints on
the number of candidate windows per image that LocLearn can use. Because we extract different descriptors
for each candidate window of every image in the input set, the memory complexity for storing the descriptors
is O(NWD), where N is the number of images, W is the number of candidate windows and D is the sum
of the dimensionalities of the descriptors used.

We see from Table 2.1 that the GIST feature alone gives good initial candidate windows in the localiza-
tion step and can be considered a crucial descriptor, since if we use all four cues or GIST alone, corLoc is
the same, the other descriptors having more impact in the learning stage. Because it is a powerful descriptor,
we devote our attention in the following sections to LocLearn setups which employ only GIST features. In
this section, we propose a binary encoding of GIST features in order to reduce the storage requirements of
the descriptors. Although we experiment only with binary encoded GIST features, same approach can be
applied to arbitrary feature vectors. Our approach aims to keep the localization performance of LocLearn
close to the ones reported in Table 2.1.

4.1 GIST

In [1] is proposed a feature descriptor for capturing the overall structure of a scene. It is known in the
literature as GIST, which literally means the essence or the substance of a concept, action. GIST provides a
representation of an image which characterizes the scene globally avoiding segmentation or edge detection
schemes. The authors of [1] made a survey in which people were asked to group images that resemble in
a global aspect or structure. They defined the spatial envelope of a scene as having at least five important
properties which are reviewed here shortly:

• naturalness: man-made or natural environment

• openness: open or closed horizon

• roughness: the sizes of the elements in the scene

• expansion: the viewpoint from which the scene is observed

• ruggedness: rough or even surface

27

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

GIST encodes an image in a low dimensional space, where each dimension represents an envelope
property. There exists a correlation between the envelopes and spectral information such as phase, amplitude
and energy spectrum of the Discrete Fourier Transform of an image. The energy spectrum encodes general
dominant patterns, the amplitude gives information about orientation and smoothness and the phase function
about the position of elements in the image. Thus, the feature provides a way of modeling a complex image
in a lower dimensional space which can be used as the first stage in an object detection algorithm.

Note that in our task, a GIST feature is extracted for each window, not for the whole image as in [1].
Omitting the mathematical background of extracting a GIST feature, we show only what determines the
dimensionality of GIST in our implementation. Every sampled window is rescaled to a square image of
size 128 x 128. Before filtering, the image is normalized by dividing by the local luminance variance. The
window is further split into 4 x 4 blocks and Gabor filters are applied to each block and for each color
channel. We compute oriented edge responses at three scales with 8, 8 and 4 orientations per scale giving
a total of 20 Gabor filters. In our experiments, the dimensionality of the GIST feature extracted from a
window is determined as nrColorChannels× nrBlocks× nrFilters = 3× 16× 20 = 960.

4.2 LSBC encoding of GIST

The storage and processing of high-dimensional data imposes large restrictions on the aplicability of many
computer vision algorithms. Often the data is represented by high-dimensional feature descriptors coming
from a large set of images. In order to reduce the dimensionality of the data, different methods have been
proposed for binary encoding the high-dimensional descriptors such that the descriptors that are similar in
the Euclidean space are mapped to similar binary codes in the Hamming space. The encoding algorithms
aim to preserve the nearest neighbours of the high-dimensional data points in the Hamming space.

Restricted Boltzmann machines [14], locality sensitive hashing [8] and spectral hashing [15] are some
of the state-of-the-art methods for computing binary codes from high dimensional data which learn the code
parameters in a data dependent fashion. Unlike these methods, in [13] is proposed a Locality Sensitive
Binary Codes (LSBC) Hamming embedder which is not dependent on the distribution of the input data, and
thus the method can be easily applied to arbitrary feature descriptors. Furthermore, the embedding consists
in a simple and fast to compute random projection. The high-dimensional descriptors are mapped to binary
codes such that the value of a shift-invariant kernel is preserved.

A real valued feature vector x ∈ RD can be encoded as a binary vector y of length B using a LSBC
mapping φ : RD → {0, 1}B . The ith bit of y is computed as

yi = φi(x) = sgn[cos(x · ri + bi) + ti] (4.1)

where ri ∼ Normal(0, κI), bi ∼ Unif[0, 2π] and ti ∼ Unif[−1, 1].
The normalised Hamming distance between two binary vectors y1 and y2 approximates a shift-invariant

kernel function
dH(y1, y2)

B
≈ 1−K(y1, y2)

2
, (4.2)

where K(x, y) = e−κ||x−y||
2
. The parameters r, b and t are randomly drawn from the respective distribu-

tions, and only the parameter κ can be adapted to a specific task.
The authors of [13] give theoretical proofs that a set of N points in a RD space can be encoded in a

{0, 1}O(log(N)) space preserving the similarity of the distances in Euclidean and Hamming spaces with large
probability. They also give a thorough proof that although the encoding is done by randomly projecting in
a lower dimensional binary cube, the normalized Hamming distance between two binary strings converges

28

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

as a function of the Euclidean distance of the original vectors. Due to its convergence properties, LSBC
becomes more powerful when the size of the binary codes is increased.

When more bits are used, it is more likely that we deal with bigger Hamming distances and we can
increase the kernel bandwith κ to keep the approximation in eq. 4.2 more accurate. The variation of κ also
influences the radius in which the search of nearest neighbors is being done.

4.3 LocLearn with binary encoding of GIST feature

In this section, we aim to reduce the memory complexity of LocLearn for storing the GIST descriptors of
the candidate windows which is in O(NWDGIST), where N is the number of images, W is the number
of sampled windows per image and DGIST = 960 is the dimensionality of the descriptor. To this end, we
binary encode our GIST descriptors using the LSBC [13] Hamming embedder. This is a general approach
which can be applied also to the other descriptors. Our focus is on this particular descriptor since it proved
to have an important role in the localization stage of LocLearn.

We propose a modified LocLearn algorithm that uses only one cue which corresponds to a binary en-
coded GIST feature using LSBC [13]. This hybrid version of the LocLearn framework will be referred to in
the following sections as Binary GIST LocLearn. As we are interested only in the localization performance
of GIST, Binary GIST LocLearn will be compared to setup (c) in Table 2.1 which also uses one cue (GIST)
up to the localization stage.

As mentioned in sec. 2 eq. 2.4, the sum of squared differences is used as the pairwise energy contribution
of two windows with respect to a cue f :

Γf (ln, lm|In, Im) = ||lfn(In)− lfm(Im)||22, (4.3)

where lfn(In) and lfm(Im) are the descriptors according to cue f .
In order to use the same weights αΓf

for the appearance pairwise potential terms in eq. 2.1 as the ones
used in LocLearn (c), we need to approximate the squared Euclidean distance (eq. 4.3) as a function of the
Hamming distance of the encoded features.

We want to keep the same weights as this allows for a better comparison of the algorithms Binary
GIST LocLearn and LocLearn (c), which have similar setups. The only difference is the fact that the first
algorithm uses binary GIST features while the second one uses normal GIST features. Moreover, using
weights adapted to binary features requires more effort as they have to be learned again from the meta-
training data.

We now derive an approximation of the squared Euclidean distance 4.3 by using the properties of the
LSBC encoding from eq. 4.2:

2
BdH(y1, y2) = 1− e−κ

||x1−x2||
2

2

1− 2
BdH(y1, y2) = e−κ

||x1−x2||
2

2

−κ ||x1−x2||2
2 = ln(1− 2

BdH(y1, y2))

where x1, x2 are GIST descriptors and y1, y2 their corresponding binary encoded vectors.

This simplifies to

||x1 − x2||2 =
−2
κ

ln(1− 2
B
dH(y1, y2)). (4.4)

29

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

The similarity of two windows according to binary encoded features is now given by

Γf (ln, lm|In, Im) =
−2
κ

ln(1− 2
B
dH(lfm(Im), lfm(Im))), (4.5)

where lfn(In) and lfm(Im) are binary descriptors according to cue f . In our case the cue f corresponds to
binary encoded GIST descriptors using LSBC.

The performance of Binary GIST LocLearn is now tied by the properties of the LSBC encoding, since
the values of the appearance pairwise potentials are now approximated by a function which depends on the
Hamming distance of the encoded features.

Note that if GIST is encoded using LSBC in B bits, the memory complexity for storing the descriptors
for N images and W sampled windows per image is reduced from O(NWDGIST) doubles (each with 64
bits) to O(NWB) bits. This can mean a large saving in storage memory since usually the number of bits
used for encoding a descriptor using LSBC is relatively small, up to 2048 bits [13].

4.4 Experiments

Binary GIST LocLearn setup In Binary GIST LocLearn, we keep the settings the same as in Table 2.1
(d), but instead of GIST features we use binary encoded GIST features. As meta-training and training data
the 24 classes and respectively 12 classes from Pascal07 6x2 are used. Each image in the training data comes
with the same set of 100 candidate windows for both LocLearn (c) and Binary GIST LocLearn.

In setup (c) 100 candidate windows per image are sampled using the objectness measure [2]. The
energy function 2.1 consists of unary potential ω for objectness, pairwise potentials λ for shape similarity
(aspect-ratio) and pairwise potentials Γf for appearance similarity according to one cue (GIST). Image
responsibilities ρ and unary appearance potentials Υf are set to uniform and the other parameters were
learned from generic classes from the meta-training data. The algorithm is run up to the localization step
which uses information only from generic classes.

Our results for Binary GIST LocLearn (g) will be compared to the ones obtained in LocLearn setup (c),
the only difference between the two algorithms being the fact that now the appearance pairwise potential
term Γf uses LSBC encoded GIST features and it is approximated using 4.3.

Implementation details The parameter κ in eq. 4.1 is trained on the generic classes from the meta-training
data and it was observed that κ = 1 gives the best performance.

The term inside the logarithmic function in eq. 4.3 can be negative if the normalized Hamming distance
1
BdH(lfm(Im), lfm(Im)) is greater than 0.5, which means that more than half of the bits of the binary descrip-
tors differ. In this case, we can replace 1 − 2

BdH(lfm(Im), lfm(Im)) with eps = 2.2204e−16 value, which
gives a large approximative value for the sum of squared differences. This is a reasonable approximation,
since if more than half of the bits of the binary descriptors differ, it means that also the corresponding orig-
inal descriptors differ a lot and the Euclidean distance between them should be large. The windows are not
similar, and thus a large cost is assigned to their appearance similarity.

We try various code sizes from 26 to 211 (powers of 2 only), and take the one that gives the best per-
formance on the meta-training data. When code sizes of 16 or 32 bits are used, most of the values (∼90%)
of the pairwise distances are approximated with −2ln(eps), since very often more than half of the bits of
two descriptors differ. The results of this setups are not significant, since if most of the pairwise distances

30

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

have the same values, the similarity appearance looses its importance in selecting a good configuration of
windows.

Table 4.1 and Fig. 4.1 present the localization results of Binary GIST LocLearn on the meta-training
classes.

nr bits 128 256 512 1024 2048
corLoc 29.62% 30.02% 28.39% 28.07% 27.08%

Table 4.1: coLoc of Binary GIST LocLearn on meta-training dataset Pascal07 6x2

Figure 4.1: coLoc of Binary GIST LocLearn on meta-training dataset Pascal07 6x2. The plot shows
corLoc results for Binary GIST LocLearn with the GIST feature binary encoded using LSBC [13] on the 24
meta-training classes in Pascal07 6x2. On the horizontal axis are the number of bits used for encoding a
GIST descriptor. The best results are obtained for code sizes of 256 bits and if more bits are used corLoc
starts to decrease.

If we increase the number of bits up to 256 bits, corLoc increases, afterwards it starts to decrease. A
visualization of the windows selected by Binary Loclearn when more than 256 bits are used shows that the
algorithm has preference for big windows. A decrease in performance when the number of bits is increased
is mentioned also in the case of spectral hashing encoding but used and evaluated in a different context
[13]. One of the reasons why we obtain worse performance for larger code sizes can be the fact that the
kernel bandwidth κ should normally be increased when more bits are used, but in our experiments we only
use κ = 1. Increasing the value of κ for large code sizes ensures that the normalised Hamming distance
between two binary vectors approximates better the shift-invariant kernel function from eq. 4.2.

corLoc results of Binary GIST LocLearn using 256-bits encoding of GIST The results on the meta-
training data suggest that B = 256 bits is the desired encoding which gives best localization results. We run
Binary GIST LocLearn on the training data with the same set of candidate windows and same setup as in
LocLearn (c) but with GIST encoded into a 256-bit vector using LSBC. We obtain corLoc of 36% which is
very close to 37%, the corLoc obtained when LocLearn uses normal GIST features. A visualization of the
windows selected by 256-bits Binary GIST LocLearn and LocLearn (c) is depicted in Fig. 4.2.

We verify the choice of B by repeating the experiments from Table 4.2 for the training data as well
and observe that corLoc decreases when more than 512 bits are used. Using B = 512 we obtain corLoc
of 36.7% on the training data, which actually suggests that a 512-bits encoding can in practice give better
results.

31

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

aeroplane

bus

boat

bicycle

motorbike

horse

Figure 4.2: Localization results of Binary GIST LocLearn with 256-bit encoded GIST. Blue windows
represent groundtruth, red windows are the ones selected by LocLearn setup (c) and with green are colored
the windows selected by LocLearn with the GIST feature encoded in a 256 bit vector. Binary GIST LocLearn
gives localization results comparable to LocLearn which uses GIST not encoded.

Memory savings for storing GIST descriptors In our implementation, GIST is a 960-dimensional array
of Matlab double numeric type, which uses 960×64 bits = 61440 bits. If we encode the feature in 256 bits,
we use 15360/256 = 240 times less space for one descriptor. For a training dataset with 400 images and 100
sampled windows per image, this means reducing the storage requirements from 2.28Gb to only 9.76Mb.

4.5 Discussion

One of the limitations of LocLearn which does not allow the use of more candidate windows per image
is the memory requirements for storing the descriptors, which has complexity O(NWD), where N is the

32

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

number of images, W the number of sampled windows per image and D the sum of the dimensions of the
descriptors used. We propose an approach for which the storage memory of the GIST descriptor can be
reduced drastically using a binary encoding, which comes at a small cost of reducing the performance of
the algorithm. This is a general method that can be employed for other descriptors as well, our focus being
GIST due to its key-importance in the localization stage of LocLearn. The memory complexity for storing
the descriptors is now reduced to O(NWB), where B is the code size, which potentially allows the use of
more candidate windows per image.

33

CHAPTER 4. LOCLEARN WITH BINARY ENCODING OF GIST DESCRIPTOR

34

Chapter 5

LBP inference for sparse distance matrices

LocLearn is limited by the memory storage requirements for the potentials (unary and pairwise) O(NW +
N(N−1)

2 W 2) terms and for the descriptors O(NWD), where N is the number of images, W the number
of sampled windows per image and D the sum of the dimensions of the descriptors. If we are able to save
memory, we can allow the use of a larger W , which means LocLearn can select a configuration out of a
greater set of windows, leading to better localization results.

The dominant term in the memory complexity comes from storing the pairwise potentials distances. As
it was derived in sec. 2, there are O(N2W 2) pairwise potentials, one between each pair of windows. In this
part, we propose a method for reducing the storage requirements by using sparse distance matrices that store
the pairwise potentials such that we are able to run LocLearn for larger values of W . This approach does
not only save memory, but also speeds up the computations because fewer elements are computed in the
distance matrices. The central idea of computing less distances is to use the spatial overlap of two windows
in an image and its corrrelation to their appearance distance.

5.1 Exploiting spatial overlap for computing sparse pairwise distance ma-
trices

We define the spatial overlap of two windows wa and wb from an image as o(wa, wb) = |wa∩wa|
|w∪awb| , where |w|

is the area of a window. The overlap has values in the interval [0, 1], namely it has value 0 if the windows
don’t have any area in common and it is 1 if the windows are identical.

The overlap o of two windows and their appearance distance dapp are correlated. If the overlap is very
large, we expect that the window descriptors are similar and they have a small appearance distance. If the
overlap is 0 or very small, we can actually not say with certainty anything about their appearance distance.
In Fig. 5.1 are shown examples of images with windows having different spatial overlap.

Upper bound on appearance distance as a function of spatial overlap The spatial overlap o will be
used for computing a smaller number of pairwise appearance distances between windows from different
images. For this, we first derive an upper bound B on the appearance distance as a function of the spatial
overlap

dapp(w
′
1, w

′′
1) ≤ B(o(w

′
1, w

′′
1)), (5.1)

for two windows w
′
1 and w

′′
1 in an image.

35

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

a) b) c)

Figure 5.1: Spatial overlap of two windows
In a), the two windows have a 0 overlap, but they both contain mostly background information and their
appearance distance will be very small. In b) the two windows have a small overlap, but their appearance
distance will be large because their actual content is now very different. In c) the overlap is large (> 0.5)
which makes more likely that their appearance distance will be small.

B can be either a statistically bound which is learned from meta-training data or an exact bound which is
theoretically derived. While a theoretical bound is not trivial to compute for certain appearance descriptors,
a statistical bound can always be estimated.

The bound B is used to compute all pairwise distances smaller than a threshold dε between two sets of
window descriptors coming from images I1 and I2. Later we propose a similar task for LocLearn.

Assuming each set has cardinality W , for a window w1 from I1 we need to compute W distances, for
each window in image I2. Lets assume that we have computed dapp(w1, w

′
2) and we want now to compute

dapp(w1, w
′′
2), with windows w

′
2, w

′′
2 from I2. If dapp(w1, w

′
2) is larger than the threshold and the overlap

o(w
′
2, w

′′
2) is large, using B we can bound dapp(w1, w

′′
2). If the lower bound of dapp(w1, w

′′
2) is greater than

dε, we can discard its computation. The situation is depicted in Fig. 5.2.

Efficient computation of appearance distances less than a threshold We continue with a more theoret-
ical formulation of the above concept which shows how the bound B can be used for efficiently computing
appearance distances less than a threshold.

dapp is a metric, and we can derive a simple relation between dapp(w1, w
′
2) and dapp(w1, w

′′
2) using the

triangle inequality for bounding dapp(w1, w
′
2):

|dapp(w1, w
′′
2)− dapp(w

′′
2 , w

′
2)| ≤ dapp(w1, w

′
2) ≤ |dapp(w1, w

′′
2) + dapp(w

′′
2 , w

′
2)| (5.2)

Using dapp(w
′
2, w

′′
2) ≤ B(o(w

′
2, w

′′
2)), we obtain:

max(0, |dapp(w1, w
′′
2)− B(o(w

′
2, w

′′
2))|) ≤ dapp(w1, w

′
2) ≤ B(o(w

′
2, w

′′
2)) + dapp(w1, w

′′
2). (5.3)

This implies that
dapp(w1, w

′
2)− B(o(w

′
2, w

′′
2)) ≤ dapp(w1, w

′′
2). (5.4)

If we know that the left hand side of the equation above is greater than dε, we can discard the computation
of the distance. B is used to derive bounds for the appearance distance of two windows from different images.
This is the key concept which stays at the base of the Distance-Overlap algorithm (DO algorithm) [3] which
efficiently computes pairwise distances between two sets of descriptors lower than a threshold. Since this is
not part of this work, here we have explained only the concepts on which the algorithm is based.

36

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

Figure 5.2: Bound on appearance distance using spatial overlap
If we know dapp(w1, w

′
2) and o(w

′
2, w

′′
2), we can find bounds for dapp(w1, w

′′
2). If we are interested in

appearance distances lower than a threshold dε, we can avoid computing dapp(w1, w
′′
2) if its lower bound is

greater than dε.

In LocLearn, appearance distances dapp(w1, w2) appear as pairwise potentials Γf (w1, w2|I1, I2) for a
cue f . The pairwise potentials are terms of an energy function 2.1 that we want to minimize. We expect that
only potentials with small values are of interest to us, and we can try to avoid the computation of those that
are greater than a given threshold using DO algorithm. Note that calculating the overlap of two windows is
anO(1) operation and we can avoid recomputing it for the same pair of windows, by precomputing a spatial
overlap table for the set of candidate windows of each image.

A theoretical bound B is difficult to compute for some type of descriptors, in which case it can be
computed statistically from training data. A bound approximated statistically can in practice be tighter than
a theoretical bound. For appearance descriptors based on histograms, an exact theoretical bound is easier
to compute. In the next section, we derive a theoretical bound for the distance of CHIST descriptors of
two windows as a function of their overlap. The reasoning in deriving B for CHIST can be used for other
descriptors based on histograms.

5.1.1 Theoretical upper bound on appearance distance of Color Histogram descriptors

We derive an upper bound for the square Euclidean distance of two normalized CHIST descriptors as a
function of their overlap and ratio r = |w1\w2|

|w1| . The normalized CHIST of a window w quantized into C
color bins is a C-dimensional vector

CHIST(w) =
1
|w|

(hw1 , h
w
2 , .., h

w
C), (5.5)

where |w| is the area of the window (the total number of pixels) and hwi is the number of pixels from w
whose color falls into bin i. We assume that the colors of the windows are first quantized, such that only C
colors are used and in the next sections we will use the term color to refer to the quantized color c of a pixel,
c ∈ 1, ..., C.

To keep the notation simple, we denote the square Euclidean distance d2
CHIST(w1, w2) for two windows

37

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

Figure 5.3: Bound on appearance distance using spatial overlap
We have the relation d(w1a, w2a) < d(w1b, w2b) < d(w1c, w2c). Case b) illustrates the limit case when the
upper bound B = d(w1b, w2b) for two windows w1 and w2 with the given size and common overlap. Case
c) illustrates a case when B has the maximum possible value.

w1, w2 in an image with d2(w1, w2). The distance is defined as

d2(w1, w2) =
C∑
c=1

(
hw2
c

|w2|
− hw1

c

|w1|

)2

(5.6)

Properties of bound B for CHIST We first make important observations about the properties of B for
normalized CHIST, which are explained through three example.

Fig. 5.3 depicts three different color configurations of two windows w1 and w2 for a given o(w1, w2).
Each square represents a pixel, thus the sizes of the windows w1 and w2 are 3x3 and respectively 3x4. In
the example we consider 6 quantized colors (dark-blue, light-blue, dark-red, light-red, yellow, green). Using
this representation, in the three cases from Fig. 5.3 we have the following appearance distances:

• CHIST(w1a) = (3
9 , 0, 0, 0,

2
9 ,

4
9)

CHIST(w2a) = (0, 0, 4
12 , 0,

4
12 ,

4
12)

d2(w1a, w2a) = (3
9)2 + 0 + (4

12)2 + 0 + (2
9 −

4
12)2 + (4

9 −
4
12)2

• CHIST(w1b) = (3
9 ,

2
9 , 0, 0, 0,

4
9)

CHIST(w2b) = (0, 0, 4
12 ,

4
12 , 0,

4
12)

d2(w1b, w2b) = (3
9)2 + (2

9)2 + (4
12)2 + (4

12)2 + 0 + (4
9 −

4
12)2

Since (2
9 −

4
12)2 ≤ (2

9)2 + (4
12)2 we have that d(w1a, w2a) ≤ d(w1b, w2b). This suggests that the

bound increases when the windows don’t have colors in common outside their intersetion area.

• CHIST(w1c) = (5
9 , 0, 0, 0, 0,

4
9)

CHIST(w2c) = (0, 0, 8
12 , 0, 0,

4
12)

d2(w1c, w2c) = (5
9)2 + 0 + (8

12)2 + 0 + 0 + (4
9 −

4
12)2

Since (3
9)2 + (2

9)2 ≤ (5
9)2 and (4

12)2 + (4
12)2 ≤ (8

12)2 , we have that d(w1b, w2b) ≤ d(w1c, w2c). The
bound increases when the colors in w1c \ w2c, w2c \ w1c are spread over fewer bins. In this case B

38

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

reaches its maximum value, which corresponds to a configuration when every window has only two
colors, with one color in common in their intersection area.

To summarize, given o(w1, w2), the bound B(o(w1, w2)) is represented by the case when the pixels from
w1 \ w2 and w2 \ w1 do not have any quantized color in common. The bound increases when the colors
of the pixels from w1 \ w2 fall in a fewer number of bins (fewer colors) and similarly for w2 \ w1. The
bound B(o(w1, w2)) ∈ [0,Bmax] reaches its maximum value Bmax when the histogram hw1 contains only
two colors cw1\w2

, cw1∩w2 and histogram hw2 contains only two colors cw2/w1
, cw1∩w2 . The color cw1∩w2

is the color of the pixels from w1 ∩ w2. Fig. 5.3c represents the case when the maximum bound Bmax is
attained, which corresponds to a value of Bmax = (|w1\w2|

|w1
|)2 + (|w2\w1|

|w2|)2 + (|w1|∩|w2|
|w1| − |w1∩w2|

|w2|)2. The
maximum numerical value of Bmax is 2, which is obtained if the two windows are single colored and they
don t intersect.

We continue with the derivation of the upper bound for the square Euclidean distance d2(w1, w2) as a
function of the overlap o and of the ratio r, where

o =
|w1 ∩ w2|

|w1 ∩ w2|+ |w1 \ w2|+ |w2 \ w1|
, 0 ≤ o ≤ 1, (5.7)

and

r =
|w1 ∩ w2|
|w1|

, 0 ≤ r ≤ 1. (5.8)

In our derivation we make use of the observations above and also note that the elements of a normalized
CHIST of a window w have the following properties

∑C
c=1 h

w
c = |w| and 0 ≤ hwc , ∀c ∈ 1, ..., C.

Using hw1
c = hw1∩w2

c + h
w1\w2
c and hw2

c = hw1∩w2
c + h

w2\w1
c in definition 5.6 and expanding the terms

we obtain

d2(w1, w2) =
∑C

c=1

(
h

w2\w1
b +h

w2∩w1
b

|w2| − h
w1\w2
b +h

w2∩w1
b

|w1|

)2

=
∑C

c=1

(
h

w2\w1
b
|w2| −

h
w1\w2
b
|w1| + hw2∩w1

b

(
1
|w2| −

1
|w1|

))2

=
∑C

c=1

[(
h

w2\w1
b
|w2|

)2

+
(
h

w1\w2
b
|w1|

)2

+
(
hw2∩w1
b

)2 (1
|w2| −

1
|w1|

)2
]

−2
∑C

c=1 h
w2\w1
c h

w1\w2
c

1
|w1||w2| + 2

∑C
c=1 h

w2\w1
c hw1∩w2

c
1
|w2|

(
1
|w2| −

1
|w1|

)
+2
∑C

c=1 h
w1\w2
c hw1∩w2

c
1
|w1|

(
1
|w1| −

1
|w2|

)
.

We derive
∑C

c=1

(
h
w2\w1
c

)2
≤
(∑C

c=1 h
w2\w1
c

)2
= |w2\w1|2 and similar relations for

∑C
c=1

(
h
w1\w2
c

)2

and
∑C

c=1 (hw2∩w1
c)2 using the Cauchy1 inequality. Equality holds when all the colors are concentrated in

one bin, namely when w1/w2, w2/w1 and w1∩w2 are single colored (only one element in their correspond-
ing histogram is non zero). If we also renounce at the term

∑C
c=1−h

w2\w1
c h

w2\w1
c

1
|w1||w2| since it is always

negative, we can derive an initial upper bound as

d2(w1, w2) ≤
(
|w2\w1|
|w2|

)2
+
(
|w1\w2|
|w1|

)2
+ |w1 ∩ w2|2

(
1
|w2| −

1
w1

)2
+

+2
∑C

c=1

[
h
w2\w1
c hw1∩w2

c
1
|w2|

(
1
|w2| −

1
|w1|

)
+ h

w1\w2
c hw1∩w2

c
1
|w1|

(
1
|w1| −

1
|w2|

)]
.

By denoting with A the sum of the first three terms on the right hand side, we can rewrite it as:

1PN
i=1 xiyi ≤

PN
i=1 xi

PN
i=1 yi, for 0 ≤ xi, 0 ≤ yi

39

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

d2(w1, w2) ≤ A+ 2
C∑
c=1

[
hw2\w1
c hw1∩w2

c

1
|w2|

(
1
|w2|

− 1
|w1|

)
+ hw1\w2

c hw1∩w2
c

1
|w1|

(
1
|w1|

− 1
|w2|

)]
.

(5.9)
We can use the following relations in order to express A only in terms of o and r:

• |w1 \ w2| = |w1| − |w1 ∩ w2| = |w1|(1− r)

• |w2| = |w1| r−o(1−r)o , derived from o = r|w1|
|w2|+|w1\w2| = r|w1|

|w2|+|w1|(1−r)

• |w2 \ w1| = |w2| − |w1 ∩ w2| = |w1|
(
r−o(1−r)

o − r
)

= |w1| r−oo .

Thus, we obtain: A =
(
|w2\w1|
|w2|

)2
+
(
|w1\w2|
|w1|

)2
+ |w1∩w2|2

(
1
|w2| −

1
|w1|

)2
= |w1|2

(
r−o
o

o
r−o(1−r)

)2
1
|w1|2

+ |w1|2(1−r)2
|w1|2 + r2|w1|2 1

|w1|2

(
2o−r−or
r−o(1−r)

)2
=
(

r−o
r−o(1−r)

)2
+ (1− r)2 + r2

(
2o−r−or
r−o(1−r)

)2
.

Using again Cauchy inequality we derive

C∑
c=1

hw2\w1
c hw1∩w2

c ≤

(
C∑
c=1

hw2\w1
c

)(
C∑
c=1

hw1∩w2
c

)
= |w2 \ w1||w2 ∩ w1|

and in a similar way we obtain
∑C

c=1 h
w1\w2
c hw1∩w2

c ≤ |w1 \ w2||w2 ∩ w1|. In the first relation, equality
holds when w1/w2 and w1 ∩ w2 are single colored and their colors are different. A similar observation
holds for w2/w1 and w1 ∩w2. This setting corresponds to the maximum value of the bound Bmax as it was
illustrated in Fig. 5.3c.

Now we consider two cases:

• |w1| ≤ |w2| => 1
|w2| −

1
|w1| ≤ 0

• |w1| > |w2| => 1
|w2| −

1
|w1| > 0

In each of the cases, we renounce to the corresponding negative term from inequality 5.9 and we obtain:

• |w1| ≤ |w2|

d2(w1, w2) ≤ A+ 2
∑C

c=1 h
w1\w2
c hw1∩w2

c
1
|w1|

(
1
|w1| −

1
|w2|

)
≤ A+ 2 |w1\w2||w1∩w2|

|w1|

(
1
|w1| −

1
|w2|

)
= A+ 2 |w1|r|w1|(1−r)

|w1|
1
|w1|

(
1− o

r−o(1−r)

)
= A+ 2r(1− r) r−2o+or

r−o(1−r)

= (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 + r2(2o− r − ro)2 + 2r(1− r)(r − o(1− r))(r − 2o+ or)

]
The final bound is:

d2(w1, w2) ≤ (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 + r(r − 2o+ or)

(
r2(−o− 1) + r(2o+ 2)− 2o

)]
.

40

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

• |w1| > |w2|

d2(w1, w2) ≤ A+ 2
∑C

c=1 h
w2\w1
c hw1∩w2

c
1
|w2|

(
1
|w2| −

1
|w1|

)
≤ A+ 2 |w2\w1||w1∩w2|

|w2|

(
1
|w2| −

1
|w1|

)
= A+ 2 |w1|(r−o)

o
r|w1|
|w1|

o
r−o(1−r)

(
o

r−o(1−r) − 1
)

1
|w1| =

= A+ 2 r(r−o)(2o−r−or)
(r−o(1−r))2

= (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 + r(2o− r − or)(r(2o− r − or) + 2r − 2o)

]
The final bound is:

d2(w1, w2) ≤ (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 − r(r − 2o+ or)(r2(−o− 1) + r(2o+ 2)− 2o)

]
.

To summarize, we have derived a theoretical upper bound B(o, r) for the square Euclidean distance
d2(w1, w2) of two normalized CHIST descriptors , which is equal to

• (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 + r(r − 2o+ or)

[
r2(−o− 1) + r(2o+ 2)− 2o

]]
, if |w1| ≤ |w2|

• (1− r)2 + 1
(r−o(1−r))2

[
(r − o)2 − r(r − 2o+ or)(r2(−o− 1) + r(2o+ 2)− 2o)

]
, if |w1| > |w2|,

with r = |w1∩w2|
|w1| and o the spatial overlap of the windows. In the following section we evaluate the

theoretical bound B(o, r) experimentally.

5.1.2 Color Histogram bound experimental evaluation

In order to experimentally verify our theoretical upper bound, we compute B(o, r) for pairs of windows
taken from real images. We use images taken from the classes bus, bicycle and horse from Pascal07 6x2.
From each image, we sample pairs of windows and compute a set S of (o, r,B(o, r)) triplets. The set S
contains approximatively 8 million pairs of windows. We quantize the values of o and r into 100 values
o1, o2, ..., o100 and r1, r2, ..., r100, and since 0 ≤ o, r ≤ 1 this corresponds to a step size of 0.01.

In Fig. 5.4 we plot for each pair of quantized values (oi, rj) with i, j ∈ 1...100, the maximum theoretical
bound found among our set S of triplets, namely B(oi, rj) = max(B(o, r)), with o ∈ oi, r ∈ rj and
(o, r,B(o, r)) ∈ S. Since o ≤ r, for the pairs (oi, rj) with rj < oi nothing is plotted.

41

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

Figure 5.4: Maximum Theoretical Upper Bound B(o, r) for CHIST. We obtain a set of (o, r,B(o, r))
triplets from millions of pairs of windows. Both o and r are quantised into 100 values. For each quantised
value (oi, rj), we plot the maximum bound B(o, r) from our set for which o is quantised into oi and r into
rj .

In Fig. 5.5 we renounce to the dependency of B on r and make a 2D plot relating only B and o. The maxi-
mum bound is computed now asB(oi) = maxr(B(oi, r)), for oi ∈ {0.01, 0.02, ..., 1} and (oi, ri,B(oi, ri)) ∈
S. We note that the maximum upper bound is 2, which corresponds to the case when two windows don’t
overlap and are monocolored, each with a different color. The graph shows that the maximum bound decays
rapidly with increasing overlap. This confirms our intuition presented before, that for a larger overlap, the
appearance distance of two windows decreases. In this case, the bound becomes tighter.

42

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

Figure 5.5: Maximum Theoretical Upper Bound
B(o) for CHIST. The spatial overlap o is quantized
into 100 bin values. For each quantized value oi, we
plot the maximum bound B(oi) from the set S .

5.2 Sparse LocLearn

Given a set of images from a new class, LocLearn selects a window per image likely to cover target objects.
The selection of windows is done by minimizing the energy function defined in eq. 2.1. The energy consists
of unary potentials and pairwise potentials. In particular, we expect that the appearance pairwise potentials
for the selected configuration of windows are among the top k% smallest values of all pairwise potentials,
for some value k. We therefore propose a speeded up version of LocLearn in which we compute only the
smallest top k% appearance pairwise distances, leading to sparse distance matrices. The aim is to reduce
both the time complexity for computation and the memory complexity of appearance pairwise potentials,
which are in O(W 2N2), for N images and W sampled windows per image. This allows to run LocLearn
with more candidate windows per image, but unlike Divide and Conquer LocLearn method from sec. 3, all
the windows are used in the same LocLearn problem.

Sparse pairwise appearance distances Between every pair of images Im, In from the training set, each
with W sampled windows, we store the appearance pairwise potentials in a matrix Pmn;f of size W ×W
such that the element pmn;f

ij represents the pairwise potential for appearance cue f between the ith window in

In and the jth window in Im. We remind that for cue f , pmn;f
ij = Γf (lfi (In), lfj (Im)) = ||lfi (In)− lfj (Im)||22

where lfi (Im) and lfj (Im) are the descriptors of window i in Im and window j in Im according to cue f .
We denote with lf,1:W (In) and lf,1:W (Im) the set of descriptors extracted from the sampled windows of the
images In and Im.

We now employ DO algorithm for computing all pairwise distances less than a threshold dε between
the sets of descriptors lf,1:W (In) and lf,1:W (Im). The DO algorithm returns a sparse representation of each
Pmn;f matrix by exploiting the correlation between the spatial overlap and the appearance distance of two

43

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

windows. For every two sets of descriptors we determine the threshold dε by an initial sampling of a few
pairs. We compute only 1% randomly selected elements of Pmn;f and set dε to be the 10%-quantile of the
computed appearance distances.

Most of the pairwise distances in Pmn;f returned by the DO algorithm are smaller than a threshold dε.
The percentage of sparse elements in a distance matrix varies with the number of windows W used and also
with the randomness of the sampling when computing the threshold. Large memory savings can result from
using sparse matrices, because instead of storing the full W ×W matrices they efficiently keep in memory
only the elements of interest in the form of triplets (i, j, pmnij).

This can be done for all matrices Pmn;f , namely for every pair of image and for each cue f , with f ∈
GIST, CHIST, HOG, SURF which reduces the storage requirements of the pairwise appearance potentials.
We experiment only with the more powerful GIST feature since if LocLearn is run up to the localization
stage, using only GIST or all four cues, the performance is the same. Since we use only one cue, in the
following sections we denote Pmn;f with Pmn, the pairwise distance matrices of GIST descriptors. We
compare the performance of our algorithm with the one of LocLearn (c) from Table 2.1, which also uses
only GIST features.

Inference using sparse matrices The C++ implementation of the energy minimization algorithm TRW-S
from [9] requires full pairwise distance matrices. In this setup, we use a Matlab implementation of the
Loopy Belief Propagation[12] adapted for sparse matrices. LBP was implemented as a message-passing
algorithm where the messages are represented by probabilities. The input to LBP is a sparse matrix but
inside the message passing routine we set some values for the missing data. We therefore convert the
unary and pairwise potentials into probabilities such that a potential term with a small cost corresponds to
a large probability. We exploit eq. 2.1 which gives us an approximation of the posterior probability of a
configuration of windows as a function of potentials.

The energy cost of an appearance pairwise potential according to cue f for any windows li from image
In and lj from Im is Γf (lfi (In), lfj (Im)) and can be transformed into a probability similarly as in eq.2.1

using p(lif , l
f
j |In, (Im)) = e−Γf (lfi (In),lfj (Im)). The probability p(li|In, ω) corresponding to the unary

potential term for objectness ω(li|In, ω) can be approximated in a similar way using e−ω(li|In,ω). However,
the objectness score [2] of a window already gives us a value in the interval [0, 1] which represents the
probability that the window covers an object of any class. Thus we use this score to approximate p(li|In, ω).

The pairwise distances that are not computed by the sparse algorithm are bigger than our threshold, and
thus in our approximation they should correspond to small probability values. We propose two algorithms,
depending on how we approximate the pairwise distances that are not computed. We approximate all ele-
ments pmnij = Γf (lfn(In), lfm(Im)),∀i, j ∈ 1..W from a matrix Pmn that are not computed, with the same
distance D. We look at two posibilities:

• D =∞, corresponding to a probability of P = e−∞ = 0 in LBP.

• D = M, where M is the mean of the elements in Pmn computed using the DO algorithm for a
threshold dε. The motivation for using the mean is the fact that it minimizes the sum of squared errors
between the actual value of the distances pmnij that were not computed and their approximation. This
corresponds to a probability of P = e−M in LBP.

For a given sparse Pmn matrix, even if we approximate in the LBP inference the unknown probability
values with P = 0, we don’t have to store the 0 elements since they can be read on the fly. When we use

44

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

P = e−M, we have to store for each pairwise matrix Pmn, the mean distance of its computed elements.
This will add a O(N(N−1)

2) storage requirements, since there are O(N(N−1)
2) pairwise appearance matrices.

We propose therefore two different versions of LocLearn with sparse pairwise appearance distances
for GIST which uses LBP inference. One version of the algorithm uses 0 values for approximating the
probabilities of the unknown elements and will be referred to in the following sections as Sparse LocLearn.
The other version of LocLearn uses the mean of the computed elements in a pairwise matrix to approximate
the missing probabilities and will be referred to as Sparse Mean LocLearn.

Both algorithms are compared to LocLearn (c) from Table 2.1. The major differences between these
methods consist in the fact that our proposed algorithms use sparse pairwise appearance distances for GIST
features and the optimization of the energy function 2.1 uses LBP, while LocLearn (c) uses full pairwise
distance matrices for GIST and the energy is optimized using TRW-S inference.

5.3 Experiments

We run Sparse LocLearn and Sparse Mean LocLearn on the training data from Pascal07 6x2 comprising
of 6 classes, each with 2 viewpoints. The settings of the proposed algorithms that are not mentioned, are
considered to be the same as in LocLearn (c). By employing the DO algorithm, we obtain sparse pairwise
distances for GIST which reduce the memory storage requirements. This allows to sample more candidate
windows per image, namely we experiment with W ∈ {100, 500, 1000}.

LocLearn which incorporates only unary potentials gives corLoc of 32% on Pascal07 6x2 training data.
By adding to the model the pairwise potentials appearance corresponding to GIST, corLoc is increased to
37%. This proves the usefulness of using appearance similarity in our model.

Thresholding DO algorithm uses a threshold dε for computing only the pairwise distances in Pmn which
are smaller than dε. In order to see if computing only the top k% of the distances is meaningful for our prob-
lem, we look to see if the pairwise distances corresponding to the selected windows by LocLearn are among
the smallest distances in their corresponding pairwise matrix. For a pairwise matrix Pmn corresponding to
images Im and In, if the selected windows by LocLearn have indices i and respectively j, we look at the
rank of the element pmnij in Pmn. In other words, we make a sorted array of the elements in Pmn and look at
the position of pmnij . We compute the rank q as the ratio of the position of the element in the sorted array over
the total number of elements in the array given by W ×W . This expresses the q-quantile of the distances in
Pmn.

We run LocLearn (c) on the meta-training data classes of Pascal07 6x2 and we compute for each distance
matrix Pmn the ranks of the pmnij , where i, j are the selected windows by the algorithm for the images In and
Im respectively. In Fig.5.3 we plot the probability that the windows selected by the algorithm correspond to
elements in pairwise matrices that are among the smallest q% elements.

45

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

Figure 5.6: Probability of selecting pairwise distances among the smallest q%. The plot uses information
from the selected windows of LocLearn (c) on the meta-training classes. P (rank < q) represents the
probability that the pairwise potentials which enter in the minimum energy returned by LocLearn are among
the smallest q% elements in their corresponding matrices.

The plot shows that with probability of roughly 0.60, the pairwise potentials which enter in the minimum
energy returned by LocLearn are in the top 10%, with probability of 0.75 are in the top 20%, with probability
0.85 are in the top 30% and with probability 0.95 are in the top 50%. This gives us an idea of what to expect
when we use sparse appearance matrices with more than 50% of elements that are not computed. However,
the plot uses only data obtained from LocLearn (c), which uses only 100 sample windows per image, while
we use also setups with W = 500 and W = 1000.

Sparsity of pairwise distance matrices For all values of W , we compute using DO algorithm [3] sparse
distance matrices Pmn of size W ×W . We compute the sparsity of a matrix as the percentage of elements
from the matrix that are not computed. The sparsity of a matrix varies with the number W of windows used
and with the threshold used (which we obtain statistically). The more windows we used, the sparser the
matrix becomes.

Nr sampled windows W 100 500 1000
Sparsity of distance matrices 48.8% 71.8% 77.3%

Table 5.1: Sparsity in pairwise distance matrices.
Using sparse algorithm with statistically determined threshold for each matrix, we obtain sparser matrices
as W is increased. The percentages represent the average sparsity over all the appearance matrices for
GIST computed with DO algorithm [3].

46

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

The reduction in memory for a class which has N images and W windows per class is of almost 50%
for W = 100, of 70% for W = 500 and of 77% for W = 1000. The memory complexity of the pairwise
potentials is of O(N(N−1)

2 W 2). To give a rough idea what this actually means, we give some examples of
the memory requirements for a class with N = 40 images and distance matrices stored in the Matlab double
numerical type. For W = 100 this means a reduction from roughly 59.5 Mb to 30.46 Mb, for W = 500 from
1.45 Gb to 0.40 Gb and for W = 1000 from 5.81 Gb to 1.29 Gb. The training data of Pascal07 6x2 consists
of 12 classes, each having between 21 and 50 images.

Nr sampled windows W 100 500 1000

corLoc
Sparse LocLearn (k) 31% 28% 17%
Sparse Mean LocLearn (l) 32% 30% 29%*
LocLearn (c) 37% - -

Table 5.2: corLoc results for Sparse LocLearn and Sparse Mean LocLearn.
The table presents the performance results of LocLearn with sparse pairwise distances obtained using DO
algorithm. The newly proposed methods can be run with more candidate windows per image since the sparse
matrices reduce memory requirements. The performance of Sparse LocLearn and Sparse Mean LocLearn
is smaller than the referenced LocLearn (c) from Table 2.1 which has a similar setup.

corLoc results For all values of W , Sparse LocLearn (k) and Sparse Mean LocLearn (l) give worse
localization results than LocLearn (c), which is our targeted reference algorithm when only GIST features
are used. The corLoc values are in the range 28% − 31% even when W was increased to 500 or 1000.
The performance of Sparse Mean LocLearn is slightly better than Sparse LocLearn, which can be explained
by the fact that using the mean of the computed distances to approximate the sparse elements is a better
approximation in the mean squared error sense, than simply using infinity.

If we rerun the experiment from LocLearn setup (k) or (l), we obtain different corLoc results, but still
in the same range of 28% − 31%. The variations appear because we use a different threshold dε for each
pairwise matrix, which is computed by randomly sampling pairwise distances from the matrix.

Another parameter which influences our results is the maximum number of iterations for running LBP
when it does not converge. This is set by default to 4 × N . TRW-S usually performs 10 iterations and its
implementation in C++ is faster than the LBP implementation in Matlab that we use. We also run LocLearn
(c) (with TRW-S) with W = 100 and pairwise distance matrices obtained with DO algorithm. Since TRW-
S requires full matrices as input we fill in the missing values in the matrix with the mean of the computed
distances. We obtain for this setup a corLoc of 30% which shows that our poor results are not a result of
the optimization algorithm that we use, TRW-S or LBP, but of the approximation in the sparse appearance
pairwise distances.

When W = 1000, for LocLearn (k), due to the large number of probabilities with 0 value that are used
in the LBP inference, the algorithm has a poor performance as all the windows receive the same probability
in the end. The selected windows are then randomly chosen among the candidates, which explain the low
localization result of 17%. For LocLearn (l) with W = 1000, we run our algorithm only on 8 classes out
of 12 and obtained a corLoc of 29%. For the same 8 classes, LocLearn (c) obtains a corLoc of 33%. For
the other 4 classes (horse left/right, bicycle left/right) we were not able to run LocLearn (k) due to memory
limit restrictions since they had more images than the other classes.

From Fig. 5.3 we see that the pairwise potentials that enter in the final optimized energy are not always
among the smallest in their corresponding matrix. Increasing W , we increase the sparsity of the matrices.

47

CHAPTER 5. LBP INFERENCE FOR SPARSE DISTANCE MATRICES

This eliminates some possible configurations which might have been selected by the optimization algorithm,
and thus we obtain worse localization results.

5.4 Discussion

We propose hybrid versions of the LocLearn framework which reduce the memory requirements for storing
the pairwise appearance potentials for GIST and thus it allows us to run LocLearn with more candidate
windows per image. The savings in memory that we obtain are bigger than 50%.

We compute only the smallest pairwise distance between two sets of descriptors coming from different
images using DO algorithm.

The algorithm uses the correlation between the spatial overlap and appearance distance of window de-
scriptors. For this, we first derive an upper bound B on the appearance distance as a function of the overlap.
The bound can be either exact or estimated statistically from training data. We derive an exact theoretical
bound for normalised CHIST which can provide intuitions on how to compute theoretical bounds for other
histogram based descriptors.

We obtain large savings in memory by using sparse pairwise distance matrices at the cost of a worse
localization performance. Our sparse matrices contain only the top k% smallest elements from the full dis-
tance matrix. However, the pairwise potentials which enter in the final energy returned by the optimization
algorithm are not always among the smallest. LocLearn looses from the benefit of using a lager number of
sample windows per image because this leads to sparse appearance distance matrices which do not model
properly the dependencies in the data.

48

Chapter 6

Overview of hybrid LocLearn algorithms

LocLearn is limited by the number N of images and the number W of sampled windows per image. In
the previous sections, we proposed three hybrid versions which build on top of the LocLearn framework
with the aim of reducing its time and/or memory complexity. Table 6.1 summarizes the complexities and
performance of each algorithm relative to LocLearn. The memory complexity is expressed in doubles (64
bits). We review here the notations from Table 6.1:

• D is the sum of the dimensionalities of the descriptors used.

• Ws is the number of windows in a subproblem of Divide and Conquer LocLearn.

• B is the number of bits used for encoding a descriptor.

• s% is the average sparsity of a pairwise distance matrix obtained using DO algorithm [3].

Method Memory complexity Time complexity Performance
unary + pairwise potentials pairwise potentials + inference

LocLearn O(NWD) +O(N2W 2) O(N2W 2) +O(N2W 2) reference

Divide and Conquer LocLearn O(NWD) +O(N2Ws(W +Ws)) O(N2W 2
s) +O(N2W 2

s) +

Binary GIST LocLearn O(NW B
64) +O(N2W 2) O(N2W 2) +O(N2W 2) -

Sparse/Mean Sparse LocLearn O(NWD) +O((1− s%)N2W 2)) O((1− s%)N2W 2) +O(N2W 2) - -

Table 6.1: Summary of the hybrid LocLearn algorithms.
The table presents the time and memory complexities of the hybrid LocLearn algorithms. Their performance
(in terms of corLoc) is reported relative to that of normal LocLearn. + means the performance increases, -
it slightly decreases, - - it decreases more (see text for details).

The memory complexity is determined by the storage requirements of the unary and pairwise potentials
of the energy function 2.1. The time complexity is determined by the computation of the pairwise potentials
and the inference problem in the localization step of LocLearn. In Table 6.1 we do not include the time
complexity of the unary potentials. We compute the unary potentials in a preprocessing step which in
practice can be very expensive depending on the cues we are using. The complexity is of O(NWC), where
C is the time needed to compute the descriptors for one window.

49

CHAPTER 6. OVERVIEW OF HYBRID LOCLEARN ALGORITHMS

We review below the problems that each hybrid algorithm tackles.

• Divide and Conquer LocLearn - Following a D&C paradigm and making use of the independence
of the subproblems that can be run in parallel, we reduce the time complexity of LocLearn and its
memory requirements of the pairwise potentials. Moreover, D&C LocLearn with W sampled win-
dows per image and Ws windows in a subproblem performs better than LocLearn with Ws windows
per image.

• Binary GIST LocLearn - The algorithm reduces the memory storage of the unary potentials at a cost
of a slightly decrease in performance. The unary potentials use features encoded in B bits. The time
complexity is the same as that of LocLearn.

• Sparse/Mean Sparse LocLearn - The algorithm uses Loopy Belief Propagation for sparse distance
matrices obtained using DO algorithm [3]. The new approach reduces both the computation and the
memory requirements of the pairwise potentials. However, this comes at a cost of a large decrease in
performance.

50

Chapter 7

Conclusions

We proposed three methods for addressing the problems that restrict LocLearn in using more input images
and/or more candidate windows per image, with the ultimate goal of increasing its performance by process-
ing more images and/or windows. While the initial algorithm did not use more than 100 candidate windows
per image and more than 50 images per class due to its complexity, we were able to run experiments also
with 500, 1000 and even 10000 candidate windows per image. The novel methods modify the LocLearn
framework with the aim of reducing the storage memory of the appearance potentials (unary or pairwise) or
the time complexity.

In a first approach, following a Divide and Conquer paradigm, we were able to run LocLearn with a
number of candidate windows which is in the order of thousands, a setting which is infeasable in a normal
LocLearn setup. By running the intermediate subproblems in parallel, we reduced the quadratic time com-
plexity in the number of windows per image. Due to the large number of candidate windows our algorithm
can choose from, we outperformed LocLearn [7] on the Pascal07 6x2 dataset. Another advantage of D&C
LocLearn is that it uses less memory for storing the pairwise potentials, since it computes pairwise distances
only between windows from the same subproblem.

In a second approach, we aimed at reducing the storage requirements of the unary pairwise potentials
for GIST. This was done by binary encoding the features using a LSBC Hamming embedder, such that
descriptors that are similar in the Euclidean space map to similar binary codewords in the Hamming space.
We therefore modified the computation of the appearance distances in the LocLearn framework to account
for the use of binary descriptors. Although we experimented only with GIST descriptors, the embedding
does not depend on the distribution of data and can be applied to arbitrary features. The use of binary
encoded GIST features accounted only for a small loss in performance.

In a third approach, we reduced both the computation time and the memory requirements of the ap-
pearance pairwise potentials by using sparse distance matrices for GIST. This allowed us to run LocLearn
with 100, 500 and 1000 candidate windows per image. We modified Loopy Belief Propagation algorithm
to deal with sparse matrices, which were efficiently computed using the DO algorithm [3]. The central idea
of the algorithm [3] is to exploit the correlation between the spatial overlap and the appearance distance of
windows. Although the use of sparse matrices allowed us to use more candidate windows, the performance
of the algorithm decreased more than desired.

For the last two methods, we experimented only with the GIST features due to its discriminative char-
acteristics in the localization stage of LocLearn, but the algorithms can be used with arbitrary features.

All our methods reduce the memory requirements of the potentials (unary or pairwise) by at least half
of that of LocLearn. D&C LocLearn reduces the quadratic time complexity in the number of windows

51

CHAPTER 7. CONCLUSIONS

and Sparse/Sparse Mean LocLearn reduces the computation time of the pairwise potentials. Due to their
modularity, any of the above algorithms can be combined to contribute to further reductions in memory or
time complexity. For instance, we can obtain memory savings for both unary and pairwise potentials if we
use D&C LocLearn with binary encoded features.

The problems that we addressed in this work are related mostly with the potentials term of the energy
function 2.1. In practice, any CRF model which incorporates unary or pairwise potentials defined on ap-
pearance distances can benefit from the above approaches.

52

Bibliography

[1] Oliva A. and A Torralba. Modeling the shape of the scene: a holistic representation of the spatial
envelope. In ICVJ, 2001.

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In CVPR 2010, June 2010.

[3] B. Alexe, V. Petrescu, and V. Ferrari. Exploiting spatial overlap to efficiently compute appearance
distances between image windows. In NIPS, In Press, 2011.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc J. Van Gool. Speeded-up robust features (surf).
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell., 23(11), 2001.

[6] Ondrej Chum and Andrew Zisserman. An exemplar model for learning object classes. In CVPR, 2007.

[7] T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV,
volume 6314 of LNCS, pages 452–466. Springer, September 2010.

[8] Piotr Indyk and Milan Ruzic. Near-optimal sparse recovery in the l1 norm. In FOCS, pages 199–207,
2008.

[9] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
Trans. Pattern Anal. Mach. Intell., 28(10):1568–1583, 2006.

[10] Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via graph cuts. In ECCV
(3), pages 82–96, 2002.

[11] Dalal N. and Triggs B. Histogram of Oriented Gradients for Human Detection. In CVPR, 2005.

[12] J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. 1982.

[13] Lazebnik S. Raginsky M. Locality sensitive binary codes from shift-invariant kernels. 2009.

[14] Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. Int. J. Approx. Reasoning,
50(7):969–978, 2009.

[15] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS, pages 1753–1760, 2008.

53

