Hygroscopicity and volatility of fresh and processed aerosols from different sources

A dissertation submitted to

ETH ZÜRICH

for the degree of

Doctor of Sciences

presented by

TORSTEN TRITSCHER

Dipl.-Landschaftsökologe, Westfälische Wilhelms-Universität Münster, Germany

born on 17 July 1979

citizen of Germany

accepted on the recommendation of

Prof. Dr. Urs Baltensperger (examiner)
Prof. Dr. Ulrike Lohmann (co-examiner)
Dr. Paolo Laj (co-examiner)
Dr. Ernest Weingartner (co-examiner)

2011
Atmospheric aerosols have several important effects on the environment, on visibility, on the Earth’s climate, and on human health. In general, an aerosol is defined as a suspension of solid or liquid particles in a gas. Atmospheric aerosol particle sizes range from a few nanometers to several micrometers, here the focus is on particles in the submicron size range. In contrast to greenhouse gases (GHG), aerosols have mainly a cooling effect on the global climate. This is seen from the direct (absorption and scattering) and indirect (cloud microphysics, e.g. cloud albedo and lifetime) aerosol effects on the radiative forcing. The uncertainties in anthropogenic radiative forcing are highest for aerosol effects compared to GHG due to insufficient knowledge of aerosol properties and processes.

The atmospheric aerosol is comprised of many different species, and chemical composition of aerosols varies strongly with their source. Aerosols are classified according to their typical particle size ranges, their sources (natural and anthropogenic) or related to their history of origin. Directly emitted primary aerosols are distinguished from secondary aerosols which form due to transformation processes from the gas phase. The atmospheric aerosols from anthropogenic or natural sources include primary organic aerosol (POA), secondary organic aerosol (SOA), and black carbon (BC), beside several inorganic species. Soot from combustion processes, which consists mainly of BC and organic compounds, is an important component of atmospheric aerosol and biomass burning is one of the largest aerosol sources worldwide.

This thesis contributes with hygroscopicity and volatility studies to the improvement of the knowledge about properties of fresh and processed aerosols. Hygroscopicity and volatility of particles in general are important physical properties closely linked to size and chemical composition of the aerosol. Volatility and its temporal evolution indicates some insight in the chemical composition and related processes. The water uptake of several inorganic substances is well
understood and studied since years, but they are typically mixed with carbonaceous substances in the atmospheric aerosol. The hygroscopicity of fresh and aged SOA and combustion aerosols is not well known so far and is of interest for their effects on climate and on human health. Both SOA and combustion aerosol aging processes are challenging to trace in the atmosphere as transformation processes and gas to particle partitioning occur which will alter aerosol properties. Therefore aging processes need to be simulated and investigated under controlled conditions.

Pure organic aerosols have been subject of studies for several years. However concentration levels and chemical properties as well as physical properties of laboratory generated SOA often differ from the findings under ambient conditions. A central process is the so-called aerosol aging, which includes several processes like oxidation, condensation of gaseous material, cloud processing, and others. The evolution of pure SOA from the gaseous precursor α-pinene was investigated: SOA was formed during ozonolysis and followed by aging with OH radicals in a smog chamber. The particles’ volatility and hygroscopicity were characterized and used as sensitive physical parameters to reveal the possible mechanisms responsible for the chemical changes in the SOA composition during aging. Four distinct reaction phases of the experiment were found. The connection between hygroscopicity and chemistry of SOA was also investigated. The water uptake was linked to the organic mass spectra during the chemical and photochemical oxidation of several organic precursors. SOA hygroscopicity was found to strongly correlate with the relative abundance of a specific ion signal. An empirical linear relation was determined for smog chamber and ambient measurements.

In further smog chamber studies hygroscopic properties below and above water vapor saturation of fresh and photochemically aged emissions from diesel vehicles and wood burning were investigated under controlled, atmospherically relevant laboratory conditions. These experiments aimed also at the SOA formation potential and properties of combustion emission that can not be observed in fresh emissions. Fresh SOA, POA, and BC undergo chemical and structural changes due to photo-chemically induced oxidation processes. Soot particles emitted from combustion processes have a fractal structure. Fractal aggregates may collapse under the influence of water or SOA and form less fractal, more compact particles. This compaction process leads to a change in the particle’s morphology and is called restructuring. Restructuring of aged soot under high relative humidity was observed for diesel aerosols and in some experiments also for wood combustion emissions. This may result in a lower apparent hygroscopicity as the compaction compensates a part of the hygroscopic growth. Therefore exact hygroscopicity measurement of soot or other fractal particles is challenging.

Initially, the fresh soot particles from diesel passenger cars show no significant interaction with water (no hygroscopic growth or cloud condensation nuclei (CCN) activity). However, there is no clear indication that these particles are hydrophobic either. Aging has different effects on the hygroscopicity of diesel soot from different vehicles. Both, CCN activity and the water uptake at subsaturated conditions of diesel soot are affected by the particles’ morphology, which changes due to aging processes. In other combustion experiments beech log wood was burnt in a
residential log wood burner and primary emissions from different burning phases were injected into the chamber. The hygroscopicity of fresh wood combustion aerosols is typically higher than for diesel aerosols, depending on experiment and particle size. For biomass burning aerosols the influence of inorganic compounds in addition to organics and BC is visible in the higher observed hygroscopicity. Aging increases the apparent hygroscopicity of combustion aerosols from very low to higher values, mainly caused by the formation of SOA. With aging time, the hygroscopicity generally increases as the particles get more oxidized.

As a final step the new findings from the smog chamber aging experiments should be found and verified under ambient atmospheric conditions. Ambient aerosol properties with the focus on volatility and hygroscopicity were characterized as part of a comprehensive measurement campaign at a sub-urban background site close to the Paris megacity in summer and winter. Aerosols from combustion emissions and high organic aerosol mass were found as expected in densely populated areas. From the hygroscopicity and volatility distribution the mixing state of aerosol was derived, providing information if the aerosol was internally or externally mixed. The mean diurnal variation was also analyzed and showed periods that can be attributed to certain sources such as traffic emissions.

The studies on chamber aerosols including fresh and aged combustion aerosols could not be directly linked to the ambient findings. Ambient aerosol properties and composition modifications are strongly influenced due to air mass changes and meteorological conditions. Other compounds in the ambient aerosol, especially inorganic substances with a high hygroscopicity compared to SOA, hide in many cases the relatively small changes observed in the smog chamber studies. However, chamber and ambient studies contribute both to a deeper understanding of the atmospheric aerosol properties and processes.
Zusammenfassung


Diese Doktorarbeit trägt mit Hygroskopizitäts- und Flüchtigkeitsstudien zur Erweiterung des
Wissens über frische und prozessierte Aerosoleigenschaften bei. Beides sind wichtige physikali-
sche Partikeleigenschaften, die direkt mit der Größe und der chemischen Zusammensetzung in
Verbindung stehen. Die Aerosolflüchtigkeit und ihre zeitliche Entwicklung liefern zusätzliche
Informationen über die chemische Zusammensetzung und die zugehörigen Prozesse. Die Wass-
seraufnahme von etlichen anorganischen Substanzen ist recht gut bekannt und wird seit Jahren
untersucht, aber im atmosphärischen Aerosol sind diese typischerweise mit kohlenstoffhalti-
gen Substanzen gemischt. Die Hygroskopizität von frischem und gealtertem SOA und Verbren-
nungsaerosolen ist weniger erforscht, hat aber ebenfalls einen bedeutenden Einfluss auf das
Klima und die menschliche Gesundheit. Es ist eine Herausforderung, die Alterungsprozesse
von SOA sowie von Verbrennungsaerosolen in der Atmosphäre zu verfolgen, da Transforma-
tionsprozesse und Übergänge von Gas- zu Partikelphase auftreten und Aerosoleigenschaften
verändern können. Aus diesem Grund müssen Alterungsprozesse unter kontrollierten Bedin-
gungen simuliert und untersucht werden.

Reine organische Aerosole sind seit einigen Jahren Untersuchungsgegenstand, allerdings un-
terscheiden sich die Konzentrationsbereiche und die chemischen sowie physikalischen Eigens-
chaften von SOA, das im Labor erzeugt wurde, oft deutlich von SOA, das in der Umgebungs-
luft vorgefunden wird. Ein zentraler Prozess ist die sogenannte Alterung der Aerosole, die ver-
schiedene Prozesse wie Oxidation, Kondensation von gasförmigen Substanzen, Wolkenprozes-
sierung und andere umfasst. Die Entwicklung von SOA, das von gasförmigem α-Pinen durch
Ozonolyse erzeugt und anschließend mit OH Radikalen gealtert wurde, wurde in der Smogkam-
mer untersucht. Die Flüchtigkeit und Hygroskopizität der Partikel wurden charakterisiert und
dienten als empfindliche physikalische Parameter, um die möglichen Mechanismen der Parti-
kelalterung aufzudecken. Es konnten vier unterschiedliche Reaktionsphasen identifiziert wer-
den. Der Zusammenhang zwischen Hygroskopizität und Chemie von SOA war ebenfalls Thema
einer Smogkammeruntersuchung. Die Wasseraufnahme von SOA wurde mit dem organischen
Massenspektrum während der chemischen und photochemischen Oxidation von mehreren or-
ganischen Vorläufersubstanzen verknüpft. Die Hygroskopizität des SOAs korreliert mit der rel-
ativen Menge eines bestimmten Ionensignals. Eine empirische, lineare Beziehung wurde für
Smogkammer und Außenmessungen gefunden.

In weiteren Smogkammerexperimenten wurden die hygroskopischen Eigenschaften unter und
oberhalb der Wasserdampfsättigung von frischen und photochemisch gealterten Emissionen von
Dieselfahrzeugen und Holzverbrennung unter kontrollierten, atmosphärisch relevanten Laborbe-
dingungen untersucht. Diese Untersuchungen haben auch die Erforschung des SOA Bildungspo-
tenzials und der Eigenschaften der Verbrennungsemisionen zum Ziel, die in frischen Emissionen
noch nicht beobachtet werden können. Frisches SOA, POA und BC unterliegen chemischen und strukturellen Veränderungen durch photochemisch hervorgerufene Oxidationsprozesse. Rußpar-
tikel aus Verbrennungsprozessen haben eine fraktale Struktur. Fraktale Aggregate können durch
den Einfluss von Wasser oder SOA zusammenbrechen und weniger fraktale, kompaktere Partikel
bilden. Dieser Verdichtungsprozess führt zu einer Veränderung der Partikelgestalt und wird Re-


Bis jetzt konnten die Studien in der Smogkammer mit frischen und gealterten Verbrennungsemissionen nicht direkt mit den Ergebnissen der Außenmessungen verknüpft werden. Änderungen in der Zusammensetzung aufgrund von Luftmassenänderung sowie meteorologischen Bedingungen haben einen dominanten Einfluss auf die Eigenschaften des Außenaerosols. Bestandteile des atmosphärischen Aerosols wie anorganische Substanzen mit einer hohen Hygroskopizität verglichen zu SOA überdecken in vielen Fällen die relativ kleinen Änderungen, die in der Smogkammer beobachtet wurden. Dennoch tragen sowohl Smogkammer- als auch Außenluftstudien zu einem besseren Verständnis der Aerosoleigenschaften und -prozesse bei.