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Abstract

We are developing mathematical and computational approximation models to the Boltz-
mann Equation, exploiting its behaviour on multiple physical scales.

We will first give a concise overview of the appearing challenges.

In a second introductory part we will describe physics on various scales inside and
around the Boltzmann equation. We will see how a molecular dynamics approach can
be coarsened into a statistical description and how the Boltzmann distribution function
relates to the macroscopic balance laws of continuum physics.

The third part consists of a mathematical analysis for kinetic models with linear colli-
sion operators. There, we will present the two main classical strategies of simplifying the
Boltzmann equation, the asymptotic expansion in Knudsen number of Chapman Enskog
and Grad’s Hermite function approximation. Out of these two classical approaches we
will construct a new, ’scale induced’ method, based on the ideas in [49]. This method
combines the physical accuracy in terms of Knudsen numbers as well as the convenient
mathematical properties of Grad. The new strategy is tested numerically in the frame-
work of a 16 discrete velocities model and, together with its mathematically proven
convergence and stability properties, exhibits significant advantages to other methods.
We will outline how this promising method can be applied also outside the framework
of kinetic theory.

In the fourth part, we are developing a computationally motivated approximation to the
Boltzmann equation. We will consider the BGK model for the collision term and derive
a Galilei-invariant, temperature scaled weak formulation. The transformed Boltzmann
distribution is non-linearly approximated by an equilibrium Maxwellian, disbalanced by
a general series of perturbation functions. In order to ensure conservation of mass, mo-
mentum and energy, a major concern in schemes for the Boltzmann equation, we couple
our formulation to the balance laws of continuum physics. Micro- / macro compatibility
will be ensured either directly through the perturbation functions or through conditions
on their series. The resulting equations evidence a considerable numerical challenge. In
the Knudsen number regime of our interest, we will leverage physical diffusion to keep
this challenge solvable. Our numerical scheme will be tested on a toy model (Grad’s
equations for 5 moments in one space and one velocity dimension), before we apply it
to a full kinetic shocktube problem. The results for the full kinetic case look promising
and will motivate future research for higher dimensional cases that are very interesting
for applications.
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Zusammenfassung

Wir entwickeln mathematische und numerische Modelle zur Näherung der Boltzmann
Gleichung auf verschiedenen physikalischen Skalen. Zuerst besprechen wir in einem
Übersichtsteil die dabei auftretenden Schwierigkeiten und Herausforderungen.

In einem zweiten Teil beschreiben wir die physikalischen Prozesse auf verschiedenen
Skalen um die Boltzmanngleichung. Wir werden einen molekular dynamischen Ansatz
grobkörniger machen und zu einer statistisch physikalischen Beschreibung transformieren.
Aus dieser statistischen Beschreibung können wiederum die makroskopischen Bilanzglei-
chungen der Kontinuumsphysik hergeleitet werden.

Der dritte Teil der vorliegenden Arbeit ist eine mathematische Abhandlung über kineti-
sche Modelle mit linearen Kollisionsoperatoren. Dabei werden wir die beiden klassi-
schen Stragegien untersuchen, um die Boltzmanngleichung zu vereinfachen: Chapmann-
Enskog Entwicklung in der Knudsenzahl und den Hermite Funktionen Ansatz von Grad.
Mit Hilfe dieser klassischen Methoden werden wir eine neue ’skaleninduzierte’ Strate-
gie entwickeln, fussend auf den Ideen in [49]. Diese Strategie kombiniert physikali-
sche Genauigkeit im Mass der Knudsenzahl sowie die günstigen mathematischen Eigen-
schaften des Ansatzes von Grad. Wir testen diese neue Strategie numerisch im Rahmen
eines diskreten Models mit 16 Geschwindigkeiten. Zusätzlich zu den mathematisch be-
weisbaren Konvergenz- und Stabilitätseigenschaften zeigen sich dabei signifikant bessere
Resultate als mit den klassischen Ansätzen von Chapman-Enskog und Grad. Wir werden
skizzieren, wie diese vielversprechende Strategie auch ausserhalb der kinetischen Theorie
angewendet werden kann.

Im vierten Teil entwickeln wir eine numerisch-physikalisch motivierte Näherung an die
Boltzmann Gleichung. Wir werden das BGK Model für den Kollisionsterm verwenden
und damit eine Galilei-invariante, temperaturskalierte schwache Formulierung der Boltz-
mann Gleichung herleiten. Die invariante Boltzmann Verteilung nähern wir nicht-linear
mit Hilfe einer Gleichgewichts-Maxwell Verteilung, erweitert durch eine Störungsreihe.
Um dabei Massen-, Impuls- und Energieerhaltung zu gewährleisten, was bei herkömm-
lichen numerischen Methoden für die Boltzmann Gleichung ein Problem darstellt, kop-
peln wir unsere schwache, invariante Formulierung an die Bilanzgleichungen der Kon-
tinuumsphysik. Dies geschieht mit Hilfe des Wärmeflusses. Die Kompatibilität von
mikroskopischen und makroskopischen Grössen werden wir entweder direkt mit der
Wahl der entsprechenden Störungsfunktionen oder mit Bedingungen an die gesamte
Störungsreihe sicherstellen. Die so entstehenden Gleichungen stellen eine numerische
Herausforderung dar. In den Grössenordnungen der Knudsenzahl, die für uns interessant
sind, wird physikalische Diffusion stark zur numerischen Lösbarkeit beitragen. Wir wer-
den einen numerischen Lösungsalgorithmus an einem Spielzeugmodell testen (Gradglei-
chungen für 5 Momente in einer Raum- und Geschwindigkeitsdimension), bevor wir
diesen auf das voll-kinetisches Schockwellenproblem anwenden. Die Resultate im voll-
kinetischen Fall sehen vielversprechend aus und motivieren weitere Forschungsprojekte
für höher dimensionale Fälle, die für die Praxis interessant sind.
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1 Overview

1.1 Approximating the Boltzmann Distribution - Introductive

Overview

The Boltzmann distribution function f statistically describes states of interacting par-
ticles. It is a probability density function that depends on space (RD), time (R+) and
particle velocities (RD), with D = 1, 2, 3. This description is most often used as basic
modeling tool in fluid dynamics and extends to various other fields like e.g. debris flow
research ([28]), traffic (jam) modeling ([61]) or even political opinion formation ([17]).
The evolution of the distribution function f is given through the Boltzmann-equation,
which incorporates free movement of particles together with an interaction model.

Even though the Boltzmann distribution models particles statistically, it still contains
a large amount of information, incorporated in the 3-dimensional continuous velocity
variable. This opens the challenge of finding simplified models that precisely capture
the relevant information. These models usually depend on space and time, but only on
very few discrete degrees of freedom in the velocity space.

A decisive parameter ’measuring’ the amount of information necessary for accurate mod-
eling is the ’Knudsen number’ Kn ([51]). Kn is the ratio of mean free path λ (the mean
path that a particle moves freely between two interactions) and system size L,

Kn =
λ

L
.

As such it is a measure of rarefaction: the higher Kn the less interactions occur on the
scale of L.

We will argue that the collisions drive particles into an ’equilibrium’ state, thus the
higher Kn, the further away the particles are from this equilibrium state.

In equilibrium, or very close to it, we have computationally efficient equations to ap-
proximate the solution of the Boltzmann equation in the quantities of interest, which
are usually mass density, momentum density and temperature of a fluid.

However, in regimes with larger Knudsen numbers, extended modeling or a direct solu-
tion of the Boltzmann equation becomes necessary. Typically we find flows with large
Knudsen numbers in atmospheric entry flights (large λ) or in micro devices (small L).
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Overview

We distinguish 5 regimes of Knudsen numbers, see Fig. 1.1. This distinction is physi-
cally motivated through typical effects occuring in the different regimes. The quality
of a model will be assessed partially by its computational efficiency and mainly by the
ability to capture these specific, so called ’kinetic’ effects. A very typical kinetic effect

Figure 1.1: Models suitable for various ranges of Knudsen numbers. Around Kn = 1
there is a ’gap’.

is the Knudsen paradox ([57]): the mass flow through a tube decreases with the tube’s
diameter till the diameter reaches the order of the mean free path λ, then the mass flow
increases again. A very interesting application that works with ’thermal transpiration’
are Knudsen pumps ([1]). Knudsen pumps have no moving parts, but consist of a narrow
channel with a cold and a hot end. In such a set up, particles will drift from the cold
end to the hot end.

Knudsen paradox and Knudsen pumps are two physical examples, where the system
sizes are in a range that kinetic effects become important.

It is very desirable that a model for the Boltzmann equation captures all the physical
effects of its regime of validity. Unluckily, designing experiments whose output could be
compared to corresponding simulations - for a verification of quantitative properties of
a given model - is challenging.

A very detailed descritption of the models used in the first four regimes in Fig. 1.1 is
given in Part 3, we will briefly outline them here.
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1.1 Introductive Overview

If the Knudsen number is very low, we have equilibrium and can ommit any higher
order effects. The distribution function is an isotropic Gaussian, determined through
mass-, velocity- and energy-density, as we will discuss more precisely in Sect. 2.2.3. An
appropriate model in this case are the Euler equations.

In the slip and transition regime, we have two classical strategies to derive appropriate
models, Grad’s moment methods and Chapman-Enskog asymptotic expansions of the
distribution function. Grad ([22], [23]) approximates the distribution function f by a
Hermite series which translates into a hierarchy of equations for moments of f . This
hierarchy is truncated at a certain level. The convergence of this approach towards
the true solution of the Boltzmann equation is rather slow, however the resulting equa-
tions are typically stable and locally hyperbolic, which makes them mathematically and
numerically interesting.

Chapman and Enskog ([14]) expanded f into a series

f = fequilibrium + Kn f1 + Kn2 f2 + ...

and derived equations by taking moments of the Boltzmann equation combined with
matching terms of same orders in Kn. To zeroth order, this yields Euler’s equations,
the first order corresponds to the equations by Navier-Stokes and Fourier and the third
order to Burnett equations (see Sect. 3.4.2). Here, the convergence order is more clear,
however the equations at higher order become unstable. Chapman-Enskog expansion,
as well as Grad’s approach, yield a hierarchy of equations that needs to be truncated.
This truncation is referred to as the ’closure problem’.

So called ’regularized’ moment equations combine the advantages of Grad and Chapman-
Enskog each, while avoiding their major drawbacks. They can be derived through a
scale induced closure, which will be described in detail in Sect. 3.5. The most prominent
set of such regularizued equations are the ’R13’ equations, developed by Torrilhon and
Struchtrup in [52]. While being linearly stable, they are able to reproduce typical ki-
netic effects that the Navier-Stockes-Fourier-equations fail to capture, among others the
Knudsen paradox.

In principle, so called ’discrete velocity schemes’ are available in all the regimes where
we apply the Boltzmann equation. They are based upon a point discretization of the
velocity-space ([3]). Their drawback is a huge computational cost for an adequate dis-
cretization. In real situations where quantitative data should be obtained, these schemes
are not used, however with well chosen, relatively inexpensive discretizations ([3]), they
can yield very valuable qualitative insight.

The direct simulation Monte Carlo (DSMC) method is only applicable at large Knudsen
numbers. It uses states of particles that are evolved by statistically evaluating the
collision operator of the Boltzmann equation ([6]). This method is very often applied
in practice, a very prominent example is the simulation of the controlled descent of the
MIR space station ([37]).
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What the approaches for all the regimes have in common is that we approximate our dis-
tribution function f through some appropriate fmodel. Whether fmodel is (non-linearly)
parametrized through statistical moments, or through a choice of discrete velocities, or,
very crudely, through just an equilibrium Gaussian, influences our ability to capture
physical effects.

By integrating (moments of) f or fmodel over the velocity space, we obtain macroscopic
fields (e.g. mass density, temperature), for details see Sect. 2.2.5. These fields are the
final quantities of interest. The velocity integration is sensitive to quite some details of
the distribution function, but not to all, and not always to the same ones, depending
on the regimes we are interested in. This justifies the unse of models for the Boltzmann
equation.

An effective such model should fulfill the following requirements:

1) It should be accurate enough to capture the relevant physics in the regime of
interest.

2) It should be computationally feasible.

3) It should offer theoretical insight into the physics of the corresponding regime.

4) It should converge to the full Boltzmann solution in a mathematically predictable
and numerically observable way.

We will consider points 1), 3) and 4) in Part 3 in detail for several models in the setting of
a general linear collision operator. The well known approaches of Chapman-Enskog and
Grad will be presented in a mathematically concise way that will allow insight into the
approximation principles of these models. Both models, Chapman-Enskog and Grad are
computationally feasible, but show some severe instability (Chapman-Enskog) or conver-
gence problems (Grad). In Part 3, we will combine the advantages of Chapman-Enskog
and Grad into a new ’scale induced’ strategy. We will be able to formulate mathemat-
ical theorems about convergence order and stability of this strategy and examplify its
numerical approximation qualities in a discrete velocity model. Summarizing, Part 3 is
yielding mathematical and theoretical insights in a simplified setting of linear collision
operators.

In Part 4, we will illuminate the closure problem from a different angle: we will recast
the Boltzmann equation into a very general invariant (weak) form. This will be math-
ematically much more complex than the original formulation and is motivated through
computational efficiency. In this form, we will approximate the distribution function
through an equilibrium Gaussian, that is perturbed with some arbitrary functions. This
highly non-linear representation will allow us to capture properties of f that many ap-
proaches have difficulties to detect. The trade-off for the computational advantages is
that we gain only little theoretical insight or mathematically provable approximation
theorems with this approach, so points 3) and 4) are out of focus. The in-focus points
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1.1 Introductive Overview

1) and 2) will be illustrated by several numerical convergence studies, including perfor-
mance comparisons to Grad’s moment approach.

Summarizing, the approaches in Part 3 and Part 4 have the same goal: constructing a
computationally feasible model for the Botlzmann equation that captures relevant fea-
tures and leaves out redundant information. Whereas Part 3 yields mathematical insights
in trade of quantitatively realistic non-linear modeling, Part 4 focusses on numerical fea-
sibility in trade of qualitative insight.

All the algorithms and theoretical considerations presented, both in Part 3 and Part 4
are conceptionally interesting and as such analysed on a conceptional level in one space
and one velocity dimensions. Large scale real world engineering applications (3 space
and 3 velocity dimensions) have not been implemented in this work - this is left for
future projects.
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2 Introduction

In this introductory part, we will explore the physics around (Sect. 2.1) and inside the
Boltzmann equation (Sect. 2.2).

2.1 Physics around the Boltzmann Equation: Particles and

Continuum

The Boltzmann equation incorporates the dynamics of a single particle system in a
mathematically challenging continuum limit. Continuum field equations can be derived
from it. These two descriptions, particles and continuum, conceptionally encircle the
Boltzmann equation and deserve consideration in view of physical symmetries and con-
servation. We start by summarizing classical results for the movements of point particles
in space and time, as essentially described by Sir Isaac Newton in [41] and discuss clas-
sical conservation properties in this microscopic view. Next we will have a look at
continuum mechanics, describing processes in macroscopic terms of space and time de-
pendent fields. There we will derive the balance laws of mass, momentum and energy in
a macroscopic continuum setting.

2.1.1 How Particles Move

Let us consider N point particles of masses mi ∈ R+, i = 1, ..., N moving in time t ∈ R+

with space trajectories xi(t) ∈ R
3, i = 1, ..., N . Then Newton’s second law of motion

states that the particle trajectories are determined by the N vectorial equations

miẍi(t) = Fi(x1, ...,xN , ẋ1, ..., ẋN , t), i = 1, ..., N, (2.1)

given the initial positions and velocities

x1(0) = x
(0)
1 , ...,xN (0) = x

(0)
N , ẋ1(0) = v

(0)
1 , ..., ẋN (0) = v

(0)
N . (2.2)

Here Fi ∈ R
3 is the force acting on particle i. Typically, this force is a superposition

of pairwise internal forces F
(int)
ik independent of velocity and time and an external force

F
(ext)
i , independent of the particles k 6= i:

Fi(x1, ...,xN , ẋ1, ..., ẋN , t) =
∑

k 6=i
F

(int)
ik (xi,xk) + F

(ext)
i (xi, ẋi, t) . (2.3)

1



2 Introduction

Newtons third law, actio = reactio, postulates that F
(int)
ik = −F

(int)
ki .

Newton’s first law (see [41]) defines inertial systems:

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum,
nisi quatenus a viribus impressis cogitur statum illum mutare.

Every body persists in its state of being at rest or of moving uniformly in a straight line,
except insofar as it is compelled by an impressed force to change this state.

All inertial systems are linked through the Galilei transformations

Time shift and time reversion:

t′ = λt+ a, λ = ±1, a ∈ R

Uniform movement, rotated and shifted:

x′ = Rx + vt+ b, R ∈ O(3);v,b ∈ R
3

(2.4)

Imposing that the law of motion (2.1) is invariant under Galilei transformations, it

follows that the internal forces F
(int)
ik act along the line connecting particles i and k with

a modulus depending only on their distance:

F
(int)
ik = fik (|xi − xk|)

xi − xk

|xi − xk|
. (2.5)

Integrating the scalar function fik(r) = fki(r), we obtain a pair potential Vik(r), such
that

Fik = −∇xiVik (|xi − xk|) (2.6)

The total potential V is the sum of all the pair potentials,

V (x1, ...,xN ) =
∑

i<k

Vik (|xi − xk|) . (2.7)

The Galilei-invariance of (2.1) manifests itself in the symmetry of the potential,

V (Rx1 + b, ..., RxN + b) = V (x1, ...,xN ), R ∈ O(3),b ∈ R
3. (2.8)
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2.1 Physics around the Boltzmann Equation: Particles and Continuum

Balance Laws

According to (2.8), the potential exhibits 7 symmetries (4 rotational1, 3 displacement).
These symmetries translate into balance laws for momentum, angular momentum and
energy. Mass balance is trivial in this setting of particles with equal masses m.

Let us state

Definition 2.1.1 (momentum, angular momentum, energy).

• The momentum of a single particle is pi = miẋi. The total momentum of the N
particles is

P =
N∑

i=1

pi (2.9)

• The total angluar momentum of the N particles is

L =

N∑

i=1

xi ∧ pi (2.10)

• The kinetic energy of a single particle is 1
2miẋ

2
i . The total kinetic energy of the N

particles is

T =
1

2

N∑

i=1

miẋ
2
i (2.11)

With these definitions at hand, we can derive (microscopic) balance laws

Lemma 2.1.2 (balance laws).

momentum balance:
d

dt
P =

N∑

i=1

F
(ext)
i (2.12a)

angular momentum balance:
d

dt
L =

N∑

i=1

xi ∧F
(ext)
i (2.12b)

energy balance:
d

dt
(T + V ) =

N∑

i=1

F
(ext)
i · ẋi (2.12c)

For the proof of Lemma 2.1.2 we need to exploit the symmetries of the potential, repre-
sented in the form (2.6).

Note that (2.12) is a system of ordinary differential equations for total (angular) mo-
mentum and energy.

1one rotational axis with 3 parameters and one angle describing the rotation around that axis
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2 Introduction

2.1.2 How Fields Evolve

We have seen in the last subsection that mircoscopically, balance laws are a result of fun-
damental symmetries, namely Galilei-invariance. A mathematical extension of Galilei-
invariance and Newton’s laws to fields of macroscopic quantities leads to conservation
laws for fields of mass density, momentum density, energy density and angular momen-
tum density.

A proper mathematical description of this extension process is given in [55]. Here, we
will summarize the main results.

Let us consider a domain Ω0 ⊂ R
3 at time t = 0.2 The fundamental object of continuum

mechanics is a bijective time evolution

Φt : Ω0 ∋ a 7→ x ∈ Ωt = Φt(Ω0). (2.13)

We can describe the state of a system by two possible sets of variables that are linked
through Φ:

(x, t) = (Φt(a), t) (Eulerian description) (2.14a)

(a, t) = (Φ−t(x), t) (Lagrangian description) (2.14b)

We will mainly use the Eulerian description.

Mass Balance

The mass density is a field ρ(x, t) in the (Eulerian) space variable x and time t. Mass
balance states that no mass is produced or destroyed as time evolves:

d

dt

∫

Ωt

ρ(x, t)dx = 0. (2.15)

The Reynolds transport theorem (see [55], p. 19) can be used to commute the (time
dependent) integral with the time derivative. Defining the velocity field

vi(x, t) =
∂

∂t
Φi(a, t), a = Φ−t(x), (2.16)

we obtain the partial differential equation for the mass balance3

∂tρ+ ∂j (ρvj) = 0. (2.17)

2The choice of the initial time point does not change the physics. This corresponds to (2.4) in Sect. 2.1.1
3Notation see App. A.1
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2.1 Physics around the Boltzmann Equation: Particles and Continuum

Momentum Balance

Generalizing Newton’s second law to fields, we balance total momentum with the total
forces. Forces can act on volumes (e.g. gravity, electric forces) or surfaces (e.g. friction
forces).

Forces acting on surfaces are assumed to depend on time, on one space point x and on
the normal n to the surface element they are acting on. Then (see [55], p. 47) the surface
force T(x,n) is a linear function of the direction n,

Ti(x,n, t) = σij(x, t)nj . (2.18)

σ is called the stress tensor. The total force acting on our system is then the sum of

Fvolume(t) =

∫

Ωt

f(x, t)dx, (2.19a)

Fsurface(t) =

∫

∂Ωt

σ(x, t) · nΓtdΓt, (2.19b)

dΓt being the surface element of Ωt. Balancing, we obtain

d

dt

∫

Ωt

ρv(x, t)dx =

∫

Ωt

fdx−
∫

∂Ωt

σ(x, t) · nΓtdΓt, (2.20)

leading to the partial differential equation of momentum balance

∂t(ρvi) + ∂j (ρvivj + σij) = fi. (2.21)

Balance of angular momentum is expressed through symmetry of the stress tensor σ.
This can be seen by balancing the angular momentum analogously to what we have
sketched above (see [55], p. 51).

Energy Balance

The energy of a system of monatomic matter consists of kinetic energy and of internal
energy (non-motion energy) e(int)4

E(x, t) =

∫

Ωt

ρ(x, t)

(
e(int)(x, t) +

1

2
v(x, t)2

)
dx (2.22)

4For polyatomic gases, there is also rotational energy.
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2 Introduction

E changes due to exterior volume actions (radiation r(x, t), energy of volume forces)
and surface actions (heat flux q(x, t), power of surface forces5):

d

dt
E =

∫

Ωt

rdx+

∫

Ωt

f · vdx−
∫

∂Ωt

1

2
q · ntdΓt −

∫

∂Ωt

v · σntdΓt. (2.23)

This integral balance translates to the partial differential equation for (internal) energy
conservation as

∂t

(
ρe(int) +

1

2
ρv2
k

)
+ ∂j

((
ρe(int) +

1

2
ρv2
k

)
vj + vkσkj +

1

2
qj

)
= fkvk + r (2.24)

For ideal gases6, we can reformulate (2.24) in terms of temperature (in energy units):
through the ideal gas equation, we can relate pressure p, volume V and temperature T
as

p = ρ
k

m
T, (2.25)

where k is the Boltzmann constant and m the mass of the particles. Pressure on the
other hand relates to internal energy and dimension d as

p =
2

d
ρe(int). (2.26)

Writing temperature in energy units as θ := k
mT , we conclude that e(int) = d

2θ (see
[51]).

With this transform, (2.27) becomes

∂t

(
ρ
d

2
θ +

1

2
ρv2
k

)
+ ∂j

((
ρ
d

2
θ +

1

2
ρv2
k

)
vj + vkσkj +

1

2
qj

)
= fkvk + r (2.27)

We will see in Sect. 2.2.5 that furthermore θ = 1
ρ trace σ, with which we could reformulate

(2.27) even further.

Closure Problem

Out of first principles, we have obtained the following system of partial differential
equations, called balance laws of mass, momentum and energy,

5The prefactor 1
2

to q in the balance equation is for mathematical convenience.
6A gas is ideal if the collision time of two particles is short compared to the free flight time, see [51].
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2.2 Physics in the Boltzmann Equation

∂tρ+ ∂j (ρvj) = 0 (2.28a)

∂t(ρvi) + ∂j (ρvivj + σij) = fi (2.28b)

∂t

(
ρ
d

2
θ +

1

2
ρv2
k

)
+ ∂j

((
ρ
d

2
θ +

1

2
ρv2
k

)
vj + vkσkj +

1

2
qj

)
= fkvk + r (2.28c)

σij − σji = 0 (2.28d)

Typically, we are interested in ρ, v and θ, while f and r are given, together with some
boundary and initial conditions. But what about q and σ? Naively, there are more
variables than equations - the system is not closed and can therefore not have a unique
solution.

This is in intuitive accordance with physics, since we did not put any information about
material properties into the balance laws. They are valid for fluids or solid bodies, for
metals, water, honey, blood, gases or even plasmas. Obviously, the physical behaviour
of these materials is very different.

The material properties enter through modeling assumptions. These modeling assump-
tions typically yield additional relations between the variables. One very prominent
example of such relations are the Euler assumptions

σij =
1

d
pδij =

1

3
ρθδij, qi = 0. (2.29)

These assumptions lead to the Euler equations of fluid dynamics (see [51], p. 59).

We will soon see that the construction of such modeling assumptions or closures for the
balance laws (2.28) is a delicate issue, especially if we consider rarefied gases.

2.2 Physics in the Boltzmann Equation

In the last section we have seen physical descriptions on a microscopic particle scale as
well as macroscopic field equations that do not involve single particles anymore. The
Boltzmann equation is something in between: it considers particles in the sense of a
probability distribution of particle velocities in every space time point. Its time evolution
is based on two ingredients: collisions of particles and free flight of particles.

We are deriving the Boltzmann equation in the next two subsections. We will start with
describing particle collisions on the microscopic level in Sect. 2.2.1. Then we will sketch a
mathematically complicated continuum limit in Sect. 2.2.2, explaining necessary physical
assumptions on the system of colliding particles. In Sect. 2.2.3, we will derive quanti-
ties that are invariant under collisions and discuss some implications of the Boltzmann
description like time irreversibility and entropy. In Sect 2.2.4 we are presenting some
simplified collision models (Broadwell, BGK), and will finally connect the Boltzmann
equation to the balance laws of continuum physics in Sect. 2.2.5.
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2 Introduction

2.2.1 Microscopic Particle Collisions - Atomistic Billiards

Before we proceed to a statistical description, we will consider again particles. We
will derive what happens in a two-particle collision, using first principle conservation
of momentum, angular momentum and energy. The full understanding of the collision
process is not crucial for this thesis, since we will consider simplified collision models later
on. However, the collision dynamics are the key ingredient to the Boltzmann equation
and as such they allow for various applications of the Boltzmann equation to other fields
(see Part 1). Therefore, we give the collision process some consideration.

We will start by exploiting all the symmetries that two-body interaction offers. Then
we will compute cross sections of the scattering process in general and specifically for
the case of hard spheres. We will be following [24] and [51].

Integration of two Body Interaction

We consider two particles at positions x1 and x2 with equal masses m12 in a potential
V (|x1 − x2|).

The equations of motion, (2.1), are

ẍ1 = − 1

m12
∇x1V (|x1 −x2 |) (2.30a)

ẍ2 = − 1

m12
∇x2V (|x1 −x2 |) (2.30b)

Introducing center of mass coordinates X = x1 +x2, x = x1 −x2 as well as m = m12
2 ,

(2.30) translates to7

Ẍ = 0 (2.31a)

mẍ = −∇xV (|x |) (2.31b)

The center of mass moves uniformly in a given direction, so we find a Galilei transform
where it is at rest in 0. From now on we therefore assume without loss of generality that
X(t) = 0 for all t. For simplicity, we can also specify te coordinates such that the total
angular momentum satisfies L = (0, 0, 1).

With the two conserved quantities

Energy: E =
1

2
mẋ2 + V (|x |) (2.32a)

Angular momentum: L = mx∧ẋ := (0, 0, 1) (2.32b)

7This also works for two different masses m1, m2. m is then chosen such that 1
m

= 1
m1

+ 1
m2

.
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2.2 Physics in the Boltzmann Equation

we see that the trajectory x(t) is bound to the plane perpendicular to L. In this plane,
we use a polar coordinate basis with

er = (cosφ, sinφ, 0) (radial direction)

eφ = (− sinφ, cos φ, 0) (tangential direction)

such that x(t) = r(t) er(t) and ẋ = ṙ er +rφ̇ eφ.

In these coordinates, the constant modulus of the angular momentum is expressed as
l := |L | = mr2φ̇. This allows to restate (2.31) in terms of E and l, using that φ̇ = l

mr2

1

2
mṙ2 = E − l2

2mr2
− V (r), (2.33)

which can be integrated to

t(r) − t(r0) = ±
∫ r

r0

1√
2
m

(
E − l2

2mr̃2 − V (r̃)
)dr̃ (2.34a)

φ(r) − φ(r0) = ±
∫ r

r0

l

r̃2
√

2m
(
E − l2

2mr̃2 − V (r̃)
)dr̃. (2.34b)

To obtain the second equaqtion, we used dφ
dr = φ̇1

ṙ = l
mr2

1
ṙ together with (2.33).

Two Body Scattering Problem

With the help of (2.34), we will now discuss solutions of (2.30) with unbounded trajec-
tories. We will see in Sect. 2.2.2 that stable orbits are not of interest, since we consider
gases, where the time of interaction is ’short’ compared to the time of free flight (ideal
gas assumption).

Furthermore, we assume that the potential V is local, i.e.

V (r) → 0 for r → ±∞. (2.35)

Potentials that do not satisfy this assumption are unphysical.

In Fig. 2.1, we see the collision process: two particles are being infinitely apart from
each other before the collision and at a relative speed ẋ(−∞), determining the incoming
(normalized) asymptote ein. The resting center of mass together with ein determines
the plane of motion. The coordinates in this plane are chosen such that er(φ = 0) = ein
and the origin is the center of mass. The conserved energy is E = 1

2mẋ2. The parameter
b relates to the angular momentum. It describes the aberration, if b = 0, the particles
will experience a ’frontal collision’. b is perpendicular to ein and lies in the plane

9



2 Introduction

of motion. The conserved angular momentum, perpendicular to the plane of motion
becomes L = mx ∧ ẋ = mb ∧ ẋ, and its modulus l = |b|

√
2mE. eout is the outgoing

asymptote.

The quantity of interest is the collision angle θ = θ(b, V,E). According to (2.34b), with

b ein

eout

CoM

θ
θ er(φ = 0)

rmin

Figure 2.1: Binary collision in the plane perpendicular to L.

the replacements of l = |b|
√

2mE, we get

θ = ±
∫ ∞

rmin

|b|

r̃2
√

1 − |b|2
r̃2

− V (r̃)
E

dr̃, rmin : 1 − |b|2
r2min

− V (rmin)

E

!
= 0. (2.36)

We will evaluate this integral for the special cases of a hard sphere potential in the next
subsection.

If E and ein are given, the aberration b determines the outgoing asymptote eout. Math-
ematically, this relation allows for a mapping of the polar element ∆s := |b|∆b∆ψ to
the S2 surface element ∆Ω := sin(χ)∆χ∆ψ, with χ = π− 2θ, as shown in Fig. 2.2. The
angle ψ corresponds to deviations from b, see the left side of Fig. 2.2. In the limit, the
ratio ∆s

∆Ω defines the differential cross section

ds

dΩ
=

∣∣∣∣∣
|b|

sin(χ)

(
dχ

d|b|

)−1
∣∣∣∣∣ . (2.37)

Integrating (2.37) over the whole sphere, yields the total area s, that contributes to
non-trivial collisions. This area s is called ’cross section’,

s =

∫ 2π

ψ=0

∫ π

χ=0

ds

dΩ
dΩ. (2.38)
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Figure 2.2: Mapping of polar element ∆s to S2−surface element ∆Ω. The left figure
corresponds to the (3-dimensional) pre-collision situation, the right one to
the post-collision situation.

Two body scattering for hard spheres

In the case of hard spheres with diameter d, we have an interaction potential (see [51])

φhs(r) =

{
0 r > d

∞ r ≤ d
(2.39)

With this potential, the collision angle (2.36) can be determined analytically as

θ(b, E) = arcsin

( |b|
d

)
. (2.40)

Note, that collisions only occur if b < d.

The differential cross section becomes

ds

dΩ
=
d2

4
, (2.41)

leading to a total cross section of s = πd2. This would have been clear directly from the
model, since hard spheres collide with each other only if their distance is smaller than
their radius.
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Geometry of Collisions

We can summarize the description of collisions in a more geometric and intuitive way. We
call the given pre-collision velocities c1 and c2, and the unknown post collision velocities
c̃1 and c̃2. From molecular dynamics, we assume the conservations of momentum and
energy through a collision (with all equal particle masses m), namely

c1 + c2 = c̃1 + c̃2 (2.42a)

c2
1 + c2

2 = c̃2
1 + c̃2

2. (2.42b)

Since the precollision velocities c1 and c2 are given, this yields a total of 4 equations
for 4 × 3 − 6 = 6 parameters (in 3 dimensions), so we are left with a two-dimensional
solution manifold (1 dimensional in 2 dimensions, no freedom in 1 dimension).

There is a very nice geometrical representation of these solution manifolds, the Thalescir-
cle (2 dimensions) or the Thalessphere (3 dimensions). We construct it as follows:

1. Subtract c1 from all the velocities, and define new velocities c := c2 − c1, and
ĉi := c̃i − c1, i = 1, 2.

2. Draw a circle / sphere Θ of radius |c|/2 around the point c/2 (Thalescircle /
Thalessphere).

3. All possible combinations of shifted post collision velocities ĉ1 and ĉ2 that have
their endpoints on the circle / sphere solve the equations (2.42).8.

4. Shift the velocities back by adding c1.

ĉ1

ĉ2

c

Θ

α

Figure 2.3: Thalescircle.

8This is due to the construction of the Thalescircle, vectors starting at 0 and c meeting in the same
endpoint on the circle are orthogonal. This can be checked easily in R

2: take a circle centered around

0 with radius 1, denote the points on the circle as {

„

x
y

«

: x2 + y2 = 1} and observe that the scalar

product between the two vectors

„

x + 1
y

«

and

„

x − 1
y

«

is zero.
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2.2 Physics in the Boltzmann Equation

The above recipe describes a 2, resp. 1 parameter mapping

(c1, c2) 7→ (c̃1, c̃2) = T 2d
α (c1, c2) (2.43a)

(c1, c2) 7→ (c̃1, c̃2) = T 3d
α,β(c1, c2). (2.43b)

Geometrically it can be verified that T is an involution, i.e. T 2d
α ◦ T 2d

α = id2 and
T 3d
α,β ◦ T 3d

α,β = id3.

The representation of post-collision velocities in dependence on precollision velocities
with the Thalessphere is important computationally for the DSMC method (see [6] and
the end of Sect. 2.2.2).

Note here that we can also model an inelastic collision process (e.g. for granular media).
In that case, we would not have energy conservation through the collision, but some (to
be specified) energy dissipation, see e.g. [4].

2.2.2 In Between Particles and Continuum: the Boltzmann Distribution

Ludwig Boltzmann (1844-1906, see [12], [13] for mathematical and historical facts about
Ludwig Boltzmann) considers a model in between the continuum picture of Sect. 2.1.2
and the particle description of Sect. 2.1.1.

The Liouville Equation

To every space-time point (τ, ξ) ∈ R+ × R
3, we assign a probability density function9

R
3 ∋ c 7→ F(τ, ξ, c) ∈ R+. (2.44)

This description requires a limit of the particle system, where the number of particles
N → ∞ and the ’diameter’ or interaction radius of the particles R→ 0.

Physically, (2.44) means that F(τ, ξ, c)∆ξ∆c gives the number of particles at time τ in
a small cuboid centered around ξ of sidelengths ∆ξ, that have speeds in the cuboid

[c1 −
1

2
∆c1, c1 +

1

2
∆c1] × [c2 −

1

2
∆c2, c2 +

1

2
∆c2] × [c3 −

1

2
∆c3, c3 +

1

2
∆c3]. (2.45)

In order to determine the evolution of F , we consider particle trajectories (τ, ξ(τ), c(τ)),
with c(τ) = ξ̇(τ) and a (sufficiently smooth) evolution operator10

Φτ : R
3 × R

3 ∋ (ξ(0), c(0)) 7→ Φτ (ξ(0), c(0)) = (ξ(τ), c(τ)) (2.46)

9For a more mathematically profound derivation see [2]: while we are assuming that the probability
measure is absolutely continous with respect to the Lebesgue measure (with density F), Babovsky
in [2] does the analysis for more general probability measures.

10The mathematical existence of such an operator as a limit from a multiparticle system is not at all
trivial. Details can be found in [33].
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We postulate conservation of probability for any domain Ω0 ⊂ R
3 × R

3 as

d

dτ

∫

Φτ (Ω0)
F(τ, ξ, c)dξdc = 0, (2.47)

which, using Reynolds transport theorem ([55], p. 19), translates to the Liouville equa-
tion

∂τF(τ, ξ, c) + ∂ξiF(τ, ξ, c)ci + ∂ciF(τ, ξ, c)
Fi
m

= 0. (2.48)

Comparable to the splitting in (2.3), the forces F = mċ can be split into an interior
interparticle force Fint(τ, ξ, c) and an exterior contribution Fext(τ, ξ). This is leaves us
with a reformulation of the Liouville equation as

∂τF(τ, ξ, c) + ∂ξiF(τ, ξ, c)ci + ∂ciF(τ, ξ, c)
F exti

m
= −∂ciF(τ, ξ, c)

F inti

m
. (2.49)

From Liouville to Boltzmann - Coarse Graining

The Liouville equation (2.48) offers a fine scale description of particle interactions, the
scales (ξ, τ) are resolving collision distances and times.

Since this scale is too fine, we do ’coarse graining’ and average F to

f(x, t, c) =
1

4∆ξ∆τ

∫
x+∆ξ

x−∆ξ

∫ t+∆τ

t−∆τ
F(ξ, τ, c)dτdξ, (2.50)

This new scale (x, t) does not resolve the collisions anymore. The description f(x, t, c)
connects to the Boltzmann-Grad limit, where we let the particle number N → ∞ and
the potential range d→ 0.11

Expressions for the interior particle forces out of the collision process for F could be
derived. We will proceed a bit differently and take a limit directly from a particle
description of the collisions to the coarse scale distribution f(x, t, c). Like this, collissions
will produce a gain (G) and a loss term (L) to the evolution of f at speed c,

∂tf(x, t, c) + ∂icif(x, t, c) = G(collisions to c) − L(collisions away from c) (2.51)

For the computation of the gain and loss terms for (2.51), we consider only two particle
collisions. Ternary and higher order collisions are assumed to be negligible (dilute gas
assumption, see [33]).

11While N → ∞ and d → 0, N → ∞ the Boltzmann Grad limit requires Nd2 = const. For details see
[33].
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2.2 Physics in the Boltzmann Equation

Since the coarse graining idea of letting d → 0 includes the ideal gas assumption that
requires d to be small with respect to the mean free flight path12, it is sufficient to
consider only interactions of particles with unbounded trajectories. This has been done in
Sect. 2.2.1. With bounded trajectories, the particles would remain inside their potential
radius for comparably long times and would therefore violate the ideal gas assumption.

Given c and c2 the speeds of the two colliding particles, we can construct the situation
on the left of Fig. 2.2. Since in the Boltzmann Grad limit we will let the potential radius
go to zero, we will not distinguish the space points of the particles. We furthermore
assume that the potential range is very short (see above), so we can also assume that
the particle distribution function changes only at the very moment of the collision.

Stosszahlansatz

The number of center of masses of particles passing through the shaded area in the left
picture of Fig. 2.2 within a time intervall ∆t is

f (2)(x, t, c, c1)∆c∆c1︸ ︷︷ ︸
#particles per space volume

|c − c1|∆t∆s︸ ︷︷ ︸
space volume

. (2.52)

Here, f (2) is the two particle velocity distribution. The assumption of molecular chaos
(’Stosszahlansatz’) postulates that the particles are independent, meaning that f (2) fac-
torizes into

f (2)(x, t, c, c1) = f(x, t, c)f(x, t, c1) (2.53)

The validity of this assumption has been mathematically proven by Lanford in [33]
for short time-intervalls and given that the initial velocity distribution factorizes. The
’Stosszahlansatz’ is a very strong assumption, it decorrelates the particle velocities and
we will argue later that this is what destroys time reversibility of the Boltzmann equa-
tion.

With the molecular chaos assumption, (2.52) becomes

f(x, t, c)f(x, t, c1)∆c∆c1|c − c1|∆t∆s. (2.54)

Derivation of Gain and Loss Operators

With the differential crosssection ∆s
∆Ω(χ,ψ) (see (2.37)), we can rewrite (2.54) in a post-

collision form as

f(x, t, c1)∆c1f(x, t, c)∆c|c − c1|∆t
∆s

∆Ω

∆Ω︷ ︸︸ ︷
sin(χ)∆χ∆ψ . (2.55)

12The ideal gas assumption can also be interpreted as particles having a potential energy that is much
smaller than the mean kinetic energy, or that collision times are very short compared to free flight
times (see [51]).
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2 Introduction

To obtain the loss term L in (2.51), we need a number of collisions per unit time, so we
divide (2.55) by ∆t.

Since collisions to any velocities lead to a loss in c, we integrate over all possible collision
results and partner velocities c1. Normalized by dc, this integration yields

L(c,x, t) =

∫

c1∈R3

∫

ψ∈[0,2π]

∫

χ∈[−π/2,π/2]
f(x, t, c1)f(x, t, c)

· |c1 − c| ds
dΩ

(χ,ψ) sin(χ)dχdψdc1.

(2.56)

For the gain term G(c), we exploit the involution property of the collision mapping Tα,β
as defined in (2.43). For velocities (c, c1) and (c̃1, c̃2) that are linked through a collision,
we can show that

S(c, c1, c̃1, c̃2) = S(c̃1, c̃2, c, c1), (2.57)

where

|c1 − c| ds
dΩ

(χ,ψ) sin(χ) := S( c, c1︸︷︷︸
precollision

, c̃1(c1, c, χ, ψ), c̃2(c1, c, χ, ψ)︸ ︷︷ ︸
postcollision

). (2.58)

With this, the gain term becomes

G(c,x, t) =

∫

c1∈R3

∫

ψ∈[0,2π]

∫

χ∈[−π/2,π/2]
f(x, t, c̃1(c, c1, χ, ψ))f(x, t, c̃2(c, c1, χ, ψ))

· |c1 − c| ds
dΩ

(χ,ψ) sin(χ)dχdψdc1.

(2.59)

Balancing gain and loss, the full Boltzmann equation with a general particle interaction
potential is

∂tf(x, t, c) + ∂icif(x, t, c) =
∫

c1∈R3

∫

ψ∈[0,2π]

∫

χ∈[−π/2,π/2]
{f(x, t, c̃1(c, c1, χ, ψ))f(x, t, c̃2(c, c1, χ, ψ))

−f(x, t, c1)f(x, t, c)} · |c1 − c| ds
dΩ

(χ,ψ) sin(χ)dχdψdc1.

(2.60)

Observe here that a numerical evaluation of the collision integral requires extensive
computational ressources: for every c ∈ R

3, we have to compute a 5-dimensional integral.
In practice, Monte Carlo methods are used to stochastically approximate this integral
with the help of the geometric representation that we have seen in Sect. 2.2.1.13

13This is not yet the ’Direct Simulation Monte Carlo’ (DSMC) method, see Sect. 2.2.4.
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2.2 Physics in the Boltzmann Equation

To finish this derivation sketch, let us summarize again the assumptions:

• Ideal gas: The collision time is negligible compared to free flight time, in other
words: the potential has a short range compared to the mean free path.

• Dilute gas: we neglect all ternary or higher order collisions.

• Molecular Chaos / Stosszahlansatz: Two-particle distribution functions factorize.

In the frame of these assumptions, the coarse graining Boltzmann-Grad limit can be
taken and leads to the Boltzmann equation (2.60).

2.2.3 Collision Invariants, Equilibrium and Entropy

From now on, we will abbreviate the collision integral in (2.60) as

C[f̃ f̃1 − ff1](x, t, c) :=

∫

ψ∈[0,2π]

∫

χ∈[−π/2,π/2]
... dχdψ. (2.61)

Independent of the interaction potential, conservation of mass, momentum and energy
for the collisions on the molecular level translate into collision invariants φ(c) of the
Boltzmann collision kernel C,

∫
φ(c)C[f̃ f̃1 − ff1](x, t, c)dc = 0 (2.62)

The property (2.62) can be proven for φ(c) = 1, φ(c) = c and φ(c) = c2 by using the
microscopic relations (2.42).

One can show that, a collision invariant φ satisfies

φ(c1) + φ(c2) − φ(c̃1) − φ(c̃2) = 0, (c̃1, c̃2) = Tα,β(c1, c2) (2.63)

It can be proven (see [25]) that (1, c, c2) and their linear combinations are the only
(continuous) collision invariants14.

Equilibrium Distribution

The equilibrium distribution f (eq) is defined as one (not necessarily unique) function
that does not change anymore by further particle collisions, thus it satisfies

∫ 


1
c

c2


 C[f̃ (eq)f̃

(eq)
1 − f (eq)f

(eq)
1 ](x, t, c)dc = 0 (2.64)

14This can be seen by considering collisions with input velocities (c,−c) as well as (0, c) and deriving
from those that any continuous collision invariant φ(c) is either constant, linear or quadratic in c.
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2 Introduction

for the collision invariants 1, c, c2. This means that f̃ (eq)f̃
(eq)
1 − f (eq)f

(eq)
1 = 0, thus

ln f (eq) satisfies (2.63) and is therefore a collisional invariant. Hence, it must be a linear
combination of (1, c, c2),

ln f (eq) = a+ B · c +Dc2 (2.65)

By requiring that f (eq) produces the same first 5 moments as f ,

ρ :=

∫
fdc

!
=

∫
f (eq)dc,

ρv :=

∫
cfdc

!
=

∫
cf (eq)dc,

ρθ :=

∫
(c − v)2fdc

!
=

∫
(c − v)f (eq)dc,

(2.66)

we obtain the unique local Maxwellian equilibrium distribution in dimension d as

f (eq)(x, t, c) =
ρ(x, t)

√
2πθ(x, t)

d
exp

(
−(v(x, t) − c)2

2θ(x, t)

)
(2.67)

Entropy

Entropy is an important conceptional and mathematical quantity. It provides a link
between a macroscopic observable and the microscopic states of a gas (see (2.70)). This
linking idea motivated Boltzmann’s choice (see [51], p. 38)

η = −k
∫
f ln

f

y
dc, Φi := −k

∫
cif ln

f

y
dc, Σ :=

∫
C[−k ln

f

y
](x, t, c)dc, (2.68)

with some constants y and k, leading to the entropy transport equation

∂tη + ∂iΦi = Σ (2.69)

It can be shown that Σ ≥ 0, and thus (2.69) is in accordance with the second law of
thermodynamics, stating that entropy can never decrease in a closed system (see e.g.
[43], starting p. 70).

Boltzmann could show that, with a proper choice of the constant y, the total entropy
H :=

∫
ηdx is proportional to the number of possibilities W to distribute N particles

into a given number of cells in the phase space, leading to the famous statement that
Max Planck made carve onto Boltzmann’s grave stone,

H = k lnW. (2.70)

Note that the concept of non-decreasing entropy is in contradiction to time reversibility in
molecular dynamics (see Sect. 2.1.1). This is due to model assumptions in the derivation
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2.2 Physics in the Boltzmann Equation

of the Boltzmann equation, and can be mathematically located in the Boltzmann-Grad
limit of the so called BBGKY hierarchy as R→ 0 (see [33] for more details).

In more physical terms, the time irreversibility can be explained through the decorrela-
tion of particles by the stosszahlansatz. This decorrelation is plausible if the particles did
not interact with each other for some (long) time. Just after a collision, however, they
are strongly correlated, their respective speeds strongly depend on the other particle. If
we reverse time just after the collision, the assumption of molecular chaos will not be
valid, so the Boltzmann equation cannot be time reversible.

2.2.4 ’Approximative’ Collision Models

We have already argued that a full evaluation of the Boltzmann collision kernel (2.60)
is extremely expensive in computation time. In the next subsections, we are therefore
presenting some simplified collision models.

Ideally, simplified collision models should describe important physics as accurately as
possible. Major issues are the collision invariants, the entropy theorem and the equi-
librium Maxwellian distribution. There are also some physically motivated constants
that are desirable to be reproduced, but these also depend on the regimes that we are
interested in.

Most of the direct approximation qualities of simplified collision models are not strictly
mathematically proven, but heuristically motivated. This complies with the challenging
framework of modeling in the transition between molecular dynamics and continuum
physics that we have encountered in the derivation of the Boltzmann collision operator.

BGK-Approximation

The BGK (Bhatnagar-Gross-Krook) model (see [5]) assumes a non-linear approxima-
tion

C[f̃ (eq)f̃
(eq)
1 − f (eq)f

(eq)
1 ](x, t, c) ≈ 1

τ
(fM [f ](x, t, c) − f(x, tc)) , (2.71)

where τ is the mean free flight time or Knudsen number. This model satisfies an entropy
equation, its equilibrium distribution is very clearly a Maxwellian and it conserves mass,
momentum and energy. Its derivation can be heuristically motivated, see [51] p. 46.

The simplification (2.71) ofers a significant computational advantage (in trade of physical
accuracy) over the full collision kernel: no binary terms and collision angles need to be
integrated. Due to this advantage, we will use the BGK-approximation in Part 4.
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Discrete Velocity Models

Discrete velocity type models for the collision kernel are motivated through a pointwise
numerical discretization of the velocity space. They represent the velocity space R

d (d =
1, 2, 3) by a (small) set of velocity points {c1, ..., cN} and describe the collision operator
by setting rules for the collisions of two particles at speeds ci and cj , i, j = 1, ..., N .
In meaningful models, these rules can be constructed such that physically reasonable
collision invariants (mass, momentum and energy) are respected, and some notion of
(non-Maxwellian) equilibrium is possible. Typically, discrete velocity models lead to
collision kernels that are bilinear in f .

The first such models have been developed by Broadwell (see [10]), with e.g. N = 4.
Some more recent approaches by Babovsky (see [3]) use more velocity points and imitate
the geometric features of the collision process (compare Sect. 2.2.1).

In Sect. 3.9.2, we will consider a two dimensional 16-discrete velocity model. The collision
rules are illustrated in Fig. 2.4. If e.g. two particles at speeds c7 and c2 collide, their
post-collision velocities will be c6 and c3. Or, if we have a collision between particles
at speeds c7 and c15, we obtain post-collision velocities of c10 and c12. In (A.22) and
(A.23), we find the full bilinear collision operator for this model.

c5

c1

c6

c3
c4

c8

c12

c16
c15c13 c14

c9 c10 c11

c7

c2

Figure 2.4: 2-D velocity space with interactions in the 16 discrete velocities model.

It is clear that with discrete velocity models at small N , we cannot perform simulations
with precise quantitative agreement to physical reality. Such models are very interesting
for the study of qualitative effects or can serve as useful mathematical models like in
Sect. 3.9.2.
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2.2 Physics in the Boltzmann Equation

Direct Simulation Monte Carlo

The ’Direct Simulation Monte Carlo’ (DSMC) method is a statistical approach to ap-
proximate the physics of the Boltzmann equation (see [6]). It uses statistical ensembles
of particles that are evolved in time. Thus, this method does not only simplify the
expensive, high dimensional evaluation of the collision integral (2.60) by a stochastic
approximation. DSMC indeed consists of a complete, particle oriented approach to the
whole time evolution of the Boltzmann equation.

The DSMC method has proven very successfull for innumerous cases of extremely rarefied
gases (see Sect. 1.1).

The nature of the DSMC method is clearly compuational, it thus allows only little
insight into the physical processes involved. In this sense it is a very challenging play-
ground for implementations (parallelization, optimization) and also stochastic numerical
mathematics.

2.2.5 Relation to Macroscopic Balance Laws

After exploring the connections of the Boltzmann equation to molecular dynamics, we
would like to conclude this overview with linking the Boltzmann equation to the other
side of the scale, to macroscopic field equations as shown in Sect. 2.1.2.

The Boltzmann equation reproduces (2.28) out of averaging monomials over the whole
velocity space,

∂t

∫ 


1
ci

1
2c

2
i


 f(x, t, c)dc + ∂k

∫ 


1
ci
1
2c

2
i


 ckf(x, t, c)dc = 0. (2.72)

With the physically intuitive definitions of mass density, momentum density, stress tensor
and temperature (in energy units) as

ρ(xj , t) =

∫

R3

f(xj , t, cj)dc (2.73a)

ρvi(xj , t) =

∫

R3

cif(xj, t, cj)dc (2.73b)

σij(xj , t) =

∫

R3

(ci − vi)(cj − vj)f(xj, t, cj)dc (2.73c)

ρθ(xj, t) =

∫

R3

(ci − vi)
2f(xj, t, cj)dc = trace σ. (2.73d)

Calculations reveal that (2.72) is indeed equivalent to (2.28). Note that the closure
problem emerges out of (2.72) through the multiplication of ∂kf with ck. No matter how
many monomials we will be using, there will always be more unknowns than equations.
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2 Introduction

The closure problem is the source of challenges in modeling macroscopic equations that
imitate the physics of the Boltzmann equation as accurately as possible. In the present
work, we will explore several approaches to deal with these modeling issues, some of
them will give qualitative insights (Part 3), others will be more computationally oriented
(Part 4).
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3 Analysis of Approximations to the Linear

Boltzmann Equation

Most of this part has been published in [30], in collaboration with Manuel Torrilhon and
Michael Junk. The main elaboration of the publication has been done by the author
of this thesis, otherwise, contributions cannot be clearly allocated to the single authors.
The published work is a result of various discussions and compromises among all the
authors.

Note: The Knudsen number is called ’ε’ in this part. The variable name ’τ ’, as used
before, does not fit into the typical framework of mathematics and asymptotic expan-
sions.

3.1 Introduction

Kinetic theory describes the flow of gases by means of a stochastic description based
on the distribution function of the particle velocities, as we have seen in Part 1. The
distribution function obeys the Boltzmann equation - an integro-differential equation
that considers free streaming and collisions of the particles. This description of gases is
a detailed, complex, microscopic approach reflected in the fact that the state of the gas
at a spatial point is given by a function, i.e., an infinite dimensional object. In contrast,
gases in classical fluid dynamics are described by a low dimensional vector of variables,
typically density, velocity and temperature in each space point.

The aim of approximation methods in kinetic theory is to reduce the high dimensional
particle description rigorously to a low-dimensional continuum model. Classical ap-
proaches are given by asymptotic analysis and function approximation theory. The
Chapman-Enskog expansion conducts an asymptotic analysis where the smallness pa-
rameter is the Knudsen number, see for example the textbook [14]. This expansion
successfully derives the fluid dynamic laws of Navier-Stokes and Fourier, but fails to
produce useful higher order results beyond the first order. Instead, the Burnett- and
super-Burnett-equations have been shown to be unstable in [8]. Grad’s moment ap-
proach uses approximation theory and represents the distribution function as series of
Hermite functions, see [22, 23]. In the limit, this series is supposed to reproduce any
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3 Analysis of Approximations to the Linear Boltzmann Equation

distribution function. Truncations of the series give rise to moment equations that ap-
proximate Boltzmann’s equation. However, the approximation converges slowly and also
unphysical artifacts, like subshocks, are produced, see e.g. [59].

Various attempts exist to remedy the drawbacks of the Chapman-Enskog expansion. The
work [29] introduced a hyperbolic form of the Burnett equations which is stable, while
in [7] it was shown that a variable transformation may be able to remove unstable terms
from the second order Chapman-Enskog result. Moment equations have been popular for
their mathematical structure, see [36], and also for some success in describing physical
processes, see the textbook [40]. A combination of Grad’s moment method and an
asymptotic approach has been introduced in [52].

Recently, in [49], a new derivation of macroscopic equations was presented that was
claimed to be different from both Chapman-Enskog and Grad. This so-called order-of-
magnitude method is based on general moment equations and follows the scale of the
variables for a closure, see also the textbook [51]. The resulting equations exhibit an
inherent asymptotic accuracy in the sense of Chapman-Enskog and they are stable. The
method succeeded to derive generalized 13-moment-equations in [50] and also showed
that the R13-equations of [52] are a correct, stable, third order accurate approxima-
tion of Boltzmann’s equation. This may explain the success of the R13-equations as
demonstrated in [54, 57, 56, 59]. The R13-equations even allow to construct reasonable
boundary conditions, see [26, 53, 60].

In this part, we extend the order-of-magnitude method to the level of kinetic equations.
So far, this method was only applied to the full non-linear moment hierarchy with little
chance to gain insight into the general mathematical idea and structure of the closure.
Our aim is to develop a formal theory of the new closure and to apply it to general
kinetic equations. Here, we restrict ourselves to a linear kinetic model equation and
demonstrate the relation of the new method to the classical approaches of Chapman-
Enskog and Grad. We prove the asymptotic accuracy of the resulting closure and show
the existence of an entropy law and L2-stability, once specific variables are chosen. Our
findings clearly show how the method exploits the scaling of the distribution function
and the structures that this scaling creates in the phase space. Hence, it is reasonable
to call this method a scale-induced closure.

This part is organized as follows: The next section briefly resumes the order-of-magnitude
method as applied to the moment hierarchy in [51] and discusses the results. Sect. 3.3
introduces the linear kinetic model and Sect. 3.4 discusses the classical closure theories in
their application to the model. The new scale-induced closure is derived in Sect. 3.5, the
asymptotic accuracy and stability are proven Sect. 3.6 and Sect. 3.7. A generalization
to higher orders is sketched in Sect.3.8. As examples of the new method, Sect. 3.9
discusses the generalized 13-moment-system of [50], the application of the new closure
to a 16 discrete velocities scheme and an application to a more general, high dimensional
”kinetic type” equation. In that setting, the classical closures are compared to the scale
induced closure, and the advantage of the latter is clearly shown. We finish this part with
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3.2 Struchtrup’s Order-of-Magnitude Approach

a conclusion, Sect. 3.10. Some technical details are shown in an appendix to this part,
see Sect. A.3 and A.4. Some mathematical background about hyperbolicity, stability
and entropy is given in the appendix, Sect.A.2.

3.2 Struchtrup’s Order-of-Magnitude Approach

In the papers [49] and [50], Struchtrup proposes an order-of-magnitude approach to de-
rive macroscopic transport equations in kinetic gas theory based on Boltzmann’s equa-
tion. We briefly summarize the results of his method which will be generalized in the
later sections. For details we refer to the original papers and the textbook [51].

The Boltzmann equation
∂f

∂t
+ ci

∂f

∂xi
=

1

ε
J(f, f) (3.1)

describes the evolution of the distribution function f of the particle velocities in a mon-
atomic gas. The value of f (x, t, c) dc gives the number density of particles in x at time
t with velocities in [c, c + dc] with c defined with respect to an absolute reference. The
collision operator J is an integral functional which depends quadratically on f (see, for
example, [12]). We assume, that the equation is normalized in such a way that the
Knudsen number, i.e., the ratio between the mean free path and a macroscopic length,
appears as scaling parameter ε.

Relevant for macroscopic equations are the equilibrium moments density, momentum
density and energy density

̺ = m

∫

R3

f dc, ̺v = m

∫

R3

c f dc,
3

2
ρθ +

1

2
̺v2 =

1

2
m

∫

R3

c2 f dc (3.2)

from which average velocity v and temperature θ (in energy units) are derived. Addi-
tional higher order non-equilibrium moments are defined as

usi1···in = m

∫

R3

C2sC〈i1 · · ·C in〉 (f − fM ) dC. (3.3)

Here, fM is the Maxwell distribution and C = c − v is the peculiar velocity. Indices in
angular brackets denote the symmetric and trace-free part of the corresponding tensor.
Evolution equations for the moments follow from integration of (3.1). They form an
infinite hierarchy with a closure problem.

The order-of-magnitude approach closes the system of equations in three steps. As first
step, a Chapman-Enskog expansion is conducted (e.g., usi = ε usi|1 + ε2 usi|2 + ...) on the
infinite hierarchy in order to assign an order of magnitude in terms of the Knudsen
number to all moments. In the first expansion, only vectorial and second degree tensors
with arbitrary number of traces are non-zero and we obtain

usi|1 = −κs ρθs
∂θ

∂xi
, usij|1 = −µs ρθs+1 ∂v〈i

∂x j〉
, usi1···in = 0 (n > 2). (3.4)
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3 Analysis of Approximations to the Linear Boltzmann Equation

The subscript 1 denotes the first expansion, κs and µs are pure numbers. All other
moments vanish to first order in ε. Obviously, heat flux qi|1 = 1

2u
1
i|1 and stress tensor

σij|1 = u0
ij|1 are among the first order moments. The coefficients κs and µs stem from

the production terms of the moment equations. For a more specific representation in
terms of quantities involving the collision operator, we refer to [52].

The fact that all vectorial and 2-tensorial moments are of the same order of magnitude
is used as constitutive relation in the second step of the method. Indeed, up to an error
of second order in the Knudsen number, two of all these moments suffice to calculate
the value of the others. As natural candidates for a basis we choose heat flux u1

i|1 and

stress tensor u0
ij|1 and eliminate the gradient expressions in (3.4). The result are local

constitutive equations for all higher moments accurate up to an error of second order in
ε. They read

usi|1 =
κs
κ1
θs−1u1

i|1 (s > 1), (3.5)

usij|1 =
µs
µ0
θsu0

ij|1 (s > 0), (3.6)

usi1···in |1 = 0 (s > 0, n > 2). (3.7)

In the last step of the method, these relations are inserted into the moment hierarchy
and all expressions that have been shown to be of higher order in ε than two, are simply
set to zero. The final equations form a closed system based on quantities and expressions
with consistent order of magnitude. It is important to note, that the closure (3.5)/(3.6)
depends on the collision integral through the parameters κs and µs.

The order-of-magnitude method is, in principle, capable to produce equations at any
order of Knudsen number, see [51]. However, only equations up to third order have been
derived, so far.

3.3 Linear Kinetic Model

In the following we will recast the order-of-magnitude approach into a general kinetic
framework and demonstrate attractive properties of the resulting equations.

The theory is developed for a generic linear kinetic model which includes discrete veloc-
ity models with finite velocity sets C ⊂ R

d as well as the continuous case C = R
d.

Definition 3.3.1 (Kinetic Model). Starting from an open spatial domain Ω ⊂ R
d, d ∈ N

and a velocity set C ⊂ R
d we identify distribution functions f : R

+ × Ω × C → R with
elements ft,x : C → R

+ of a suitable Hilbert space V of real valued functions on C. A
solution of the linear kinetic model is a distribution function which satisfies

∂tf(t,x, c) + c · ∇f(t,x, c) +
1

ε
Kf(t,x, c) = 0, (t,x, c) ∈ R

+ × Ω × C (3.8)
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3.3 Linear Kinetic Model

with Knudsen number ε and a linear collision operator K : V → V , independent of (t,x),
with the following properties:

1. K has a p-dimensional kernel (p ∈ N) injectively parametrized by an equilibrium
distribution

M : R
p → V, ρ 7−→M ρ (3.9)

satisfying KM = 0. The operator M does not depend on (t,x). The function
(Mρ)(t,x, c) plays the role of the Maxwellian distribution function. The compo-
nents of ρ are called equilibrium parameters.

2. There exists a surjective equilibrium operator generalizing the mapping to the equi-
librium moments, which is independent of (t,x)

E0 : V → R
p, f 7−→ ρ = E0f (3.10)

and satisfies the conservation property E0K = 0 as well as E0M = idRp . Note
that the combination Q = ME0 is a projection onto the kernel of K, the so called
equilibrium projection. Accordingly, P = id − Q is called non-equilibrium projec-
tion. With this projections we have the decomposition V = V0 ⊕ VNE with the
equilibrium space V0 = QV and the non-equilibrium space VNE = PV .

3. There exists a linear mapping K† : V → V with the properties

K†Q = 0, K†K = KK† = P (3.11)

The condition E0M = idRp clearly implies that E0 inverts the action of M , or in other
words, that E0 is a pseudo-inverse of M .

Definition 3.3.2. Let X,Y be vector spaces and A : X → Y be linear. A linear mapping
B : Y → X is called a pseudo inverse of A (abbreviated as B = A†), provided

ABA = A, BAB = B. (3.12)

If X,Y are Hilbert spaces, B is called Moore-Penrose-inverse of A if in addition to (3.12)
the operators AB and BA are self-adjoint, i.e.

(AB)∗ = AB, (BA)∗ = BA. (3.13)

One can show that the Moore-Penrose-inverse is unique (see, for example, [19] and
App.A.3) and, in the case of injective A and finite dimensional X, it is given by B =
(A∗A)−1A∗.

Applied to our situation with M = A and E0 = B, we first see that E0M = idRp implies
(3.12) so that E0 is indeed a pseudo-inverse of M . Moreover, the identity E0M is self-
adjoint with respect to any scalar product on R

p and the self-adjointness of the converse
product Q = ME0 is equivalent to the orthogonality of the projection Q. In particular,
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3 Analysis of Approximations to the Linear Boltzmann Equation

the Moore-Penrose-inverse M † = (M∗M)−1M∗ can serve as equilibrium operator E0

provided M †K = 0. Since

M †K = (M∗M)−1M∗K = (M∗M)−1(K∗M)∗,

we see that this condition is satisfied when K is self-adjoint, i.e. K∗ = K, because
KM = 0. This case will be of importance in section 3.7.

Using the properties of K and K† one can show (3.12)

KK†K = KP = K −KQ = K

K†KK† = K†P = K† −K†Q = K†

so that K† is really a pseudo-inverse of K. If K is self adjoint and E0 is chosen as
Moore-Penrose-inverse of M , then Q and P are also self-adjoint. In this case, K† is the
Moore-Penrose-inverse of K because (3.13) is also satisfied.

Further properties of K and K† which will be frequently used later can also directly be
deduced from the basic assumptions:

KQ = QK = 0, KP = PK = K,

K†P = PK† = K†, K†Q = QK† = 0.
(3.14)

In the case of the Boltzmann equation, the space V would be some weighted L2 space.
The equilibrium parameters are ρ = E0f =

∫
ψf with ψ = (1, c, c2)T and p = 2 + d.

Furthermore, M ρ would be given by the Maxwell distribution fM(̺,v, θ; c).

The vector of equilibrium parameters ρ is a mapping

ρ : Ω × R
+ → R

p. (3.15)

The modelling task in kinetic theory is to find reasonable evolution equations for ρ by
using a projected space with much lower dimension than V . The following theory will
achieve this goal.

3.4 Classical Approximations

Classical asymptotic limits and approximations of kinetic equations include the Euler
equations, Chapman-Enskog expansion and Grad’s method. We review these results here
for our model since the new approach is built upon them and shows various connections
to them.

In equation (3.8), the limit ε → 0 formally leads to Kf = 0 so that the distribution
function is asymptotically given by an equilibrium M ρ = Qf . Any extension beyond
equilibrium will be written

f = Qf + Pf = M ρ+ f (NE) (3.16)

with a non-equilibrium disturbance f (NE).
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3.4 Classical Approximations

3.4.1 Equilibrium Closure

The Euler equations arise if we apply the equilibrium operator E0 to (3.8) and obtain

∂tρ+ E0c · ∇Mρ+E0c · ∇f (NE) = 0 (3.17)

The closure assumption f (NE) = 0 produces the Euler equations.

3.4.2 Chapman-Enskog Closure

The Chapman-Enskog expansion asks for the structure of the disturbance f (NE) = Pf .
It is easy to find an evolution equation for this quantity by applying the non-equilibrium
projection P to (3.8) and observing (3.14)

∂tf
(NE) + Pc · ∇f (NE) + Pc · ∇Mρ+

1

ε
K f (NE) = 0. (3.18)

Inserting the expansion f (NE) = ε f
(NE)
1 + ε2f

(NE)
2 + . . . , applying K† and using (3.11)

and (3.14), we obtain under the condition that all coefficients f
(NE)
k and their derivatives

are bounded with respect to ε

Pf
(NE)
1 +K†c · ∇Mρ = O(ε). (3.19)

In the Chapman-Enskog approach, this necessary condition on f
(NE)
1 is replaced by the

sufficient but more strict requirement

f
(NE)
1 = −K†c · ∇Mρ. (3.20)

Using εf
(NE)
1 as approximation for f (NE) in (3.17), we can close the equation in a more

accurate way, leading to the general Navier-Stokes-Fourier equations

∂tρ+ E0c · ∇Mρ = εE0(c · ∇)K†(c · ∇)Mρ. (3.21)

Going one order further and using relation (3.20) for f
(NE)
1 , we get from (3.18)

Kf
(NE)
2 −K†c · ∇M∂tρ− Pc · ∇K†c · ∇Mρ = O(ε) (3.22)

which can be solved in the form

Pf
(NE)
2 = K†K†c∇M∂tρ+K†c · ∇K†c · ∇Mρ+O(ε) (3.23)

Again, dropping the non-equilibrium projection and the possible O(ε) contribution, the
necessary condition is replaced by a more strict requirement in the classical Chapman-

Enskog approach. In these so called Burnett relations for f
(NE)
2 , the time derivatives ∂tρ
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3 Analysis of Approximations to the Linear Boltzmann Equation

can be replaced by −E0c · ∇Mρ (Euler equations) with no loss of order. The equations
then read

∂tρ+ E0c · ∇Mρ =εE0(c · ∇)K†(c · ∇)Mρ

− ε2E0(c · ∇)K†(c · ∇)K†(c · ∇)Mρ

+ ε2E0(c · ∇)K†K†(c∇M)E0(c · ∇)Mρ.

(3.24)

However, (3.24) can be proven to be unstable in the realistic cases of the full Boltzmann
collision operator, see [8]. Higher order expansions like super-Burnett equations, turn
out to be unstable as well, [51]. This failure of the expansion indicates that the assump-
tions on the coefficients are too strict in the higher order cases. In fact, for a model
problem (see [11]) one can show that less rigid assumptions help to avoid the stability
breakdown.

There exist various attempts to stabilize the Burnett equations, for example [7] and [29]
which can be seen as particular choices of the right hand side in (3.23).

3.4.3 Grad Closure

Grad in [22] and [23] assumes a specific form of the distribution function which we
summarize as

f = M ρ+Gµ+ f̃ . (3.25)

Here, the non-equilibrium part is composed of the Grad distribution Gµ and a remainder
f̃ , where G : R

q → V maps certain non-equilibrium parameters µ ∈ R
q onto a distri-

bution function. The dependencies of G on the equilibrium variables ρ are neglected in
accordance with a linear theory. The range of the mapping G can be viewed as vectors
of the distribution space V opening a subspace additional to the equilibrium space given
by M . In the original Grad theory, this subspace is spanned by Hermite polynomials.
The parameters µ are typically defined in terms of higher order moments, for example,
as non-equilibrium parts of the fluxes of the equilibrium variables. More generally, we
assume that µ = E1f with a linear mapping E1 : V → R

q which satisfies

E1G = idRq , E1M = 0, E0G = 0. (3.26)

As a consequence, S = GE1 is a projection which decomposes P into two parts S and
R = P − S, the latter one being the projection onto the remainder term.

Application of E0 and E1 to the equation (3.8) yields evolution equations for ρ and µ.
We find

∂tρ+ E0c · ∇Mρ+ E0c · ∇Gµ+ E0c · ∇f̃ = 0 (3.27)

and

∂tµ+ E1c · ∇Mρ+ E1c · ∇Gµ+ E1c · ∇f̃ +
1

ε
E1KGµ+

1

ε
E1K f̃ = 0, (3.28)
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3.5 Scale-Induced Closure

where in Grad’s approach f̃ = 0 leads to a closure of the system. Grad’s equations can
typically be shown to be stable.

From a geometric point of view, Grad’s approach amounts to a splitting of the non-
equilibrium space VNE into a resolved and an unresolved subspace where the resolved
subspace V1 = Im(G) is parametrized through an - up to conditions (3.26) - arbitrary
choice of higher order moments E1 (see Figure 3.1). Hence, the asymptotic accuracy in
terms of Knudsen number remains unclear for Grad’s equations.

V

V0 VNE

V1
V2

Q P

S R

Figure 3.1: Splitting of the phase space into an equilibrium subspace V0 with projection
Q = ME0 and the non-equilibrium remainder VNE = PV which is again split
into the primary non-equilibrium subspace V1 = SV with Grad-projection
S = GE1 and the secondary non-equilibrium subspace V2 = RV .

3.5 Scale-Induced Closure

The order-of-magnitude approach wants to derive stable moment equations which are
asymptotically accurate in the sense of a Chapman-Enskog expansion. Burnett equations
satisfy the accuracy condition, but are unstable. On the other hand, Grad’s equations
are stable but the closure is based on a distribution function which is arbitrarily recon-
structed through higher moments and has no a-priori asymptotic properties.

3.5.1 Derivation

The Chapman-Enskog expansion implies a distribution function in the form

f = M ρ+ ε f
(NE)
1 + ε2f

(NE)
2 + O(ε3), (3.29)

while in Grad’s approach, the distribution function is structured according to

f = M ρ+Gµ+ fR (3.30)
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3 Analysis of Approximations to the Linear Boltzmann Equation

with equilibrium part Mρ ∈ V0, the primary non-equilibrium contribution Gµ ∈ V1 and
the secondary contribution fR ∈ V2 (see Figure 3.1).

A compatibility between the two representations (3.29) and (3.30) may be achieved if

V1 is constructed in such a way that it contains εf
(NE)
1 . Thus, the task is to appropri-

ately define G and moments µ with their operator E1 such that, apart from the basic
requirements

E1G = idRq , E1M = 0 E0G = 0, (3.31)

also εf
(NE)
1 = Gµ ∈ Im(G) = V1 is possible. In contrast to Grad’s moment approach

where the distribution function is specified, for example, as Hermite series independent

of the kinetic equation, the condition εf
(NE)
1 ∈ V1 combines the phase space splitting

with the structure of the kinetic equation.

Using the equilibrium projection Q, and the projections S = GE1 and R = P−S related
to the primary and secondary non-equilibrium, we can derive equations for ρ, µ and fR.
Applying R to (3.8) and using (3.30), we obtain

ε2∂tf̂R +Rc · ∇Mρ+ εRc · ∇Gµ̂+ ε2Rc · ∇f̂R +RKGµ̂+ εRK f̂R = 0, (3.32)

where we scaled the moments µ = εµ̂ and fR = ε2f̂R. If we choose the primary non-
equilibrium G such that for some suitable µ̂

Gµ = εG µ̂ = −εK†c · ∇Mρ (3.33)

we automatically satisfy the following equivalent requirements

1. the first expansion coefficient εf
(NE)
1 in (3.20) can be written in the form Gµ.

2. the evolution of the remainder fR in (3.32) is governed only by quantities at least
first order in ε.

3. the distribution Gµ is given by the leading order term of the expansion of the
distribution function f in powers of ε conducted on (3.18).

To see Item 2, we do a short calculation: combining the zeroth order terms in (3.32) we
have

Rc · ∇Mρ+RKGµ̂
(3.33)
= R (c · ∇Mρ− Pc · ∇Mρ)

RP=R
= 0. (3.34)

In order to derive an expression for G from (3.33) we will write it in the form

Gµ̂ = −K†c ·M ∇ρ, (3.35)

where now the operator −K†c ·M acts on p × d gradients ∇ρ =: A ∈ R
p×d according

to

−K†c ·MA = −K†
p∑

i=1

d∑

α=1

cαM eiAiα (3.36)
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3.5 Scale-Induced Closure

where ei are the R
p unit vectors. The same convention is applied to operators with the

same structure.

In the next two sections we consider two alternative paths to the specification of the
operators G and E1. In order to keep notation simple, we use µ for the scaled higher
moments µ̂ in the following.

3.5.2 Constructing the Distribution

In this section we choose a moment operator E1 : V → R
q with some restrictions

and determine the distribution function G from it. This point of view corresponds to
constructing a closure Gµ for the infinite moment hierachy by saying that f = Mρ +
Gµ for given moments µ = E1f . This directly corresponds to Struchtrup’s order-of-
magnitude approach. Note, that the moment production terms can be computed without
further assumptions on f , as long as the operator K†c ·M is not pathologic (see below).
This simplifies the process originally developed by Struchtrup in [50].

The projector E1 cannot be chosen entirely arbitrarily. Since we require E1G = idRq

and want to replace gradients by moments in (3.35) we have to choose E1 such that the
linear equation

µ = E1Gµ = −εE1K
†c ·M∇ρ (3.37)

is essentially solvable for ∇ρ. We expect that this leaves quite some freedom for the
choice of E1.

Let us make this restriction a bit more precise: In general, the operator K†c ·M has a
non-trivial nullspace ker

(
K†c ·M

)
∈ R

p×d. We define V1 := Im(K†c ·M) and choose E1

injective on V1, i.e. ker(E1) ∩ V1 = {0}, meaning that E1 should not enlarge the kernel
of K†c ·M . Furthermore we require the basic relation that E1M = 0 and define q such
that E1 : V1 → R

q is surjective.

Defining the projections T0 onto ker
(
K†c ·M

)
and T1 onto any subspace complementary

to ker(K†c ·M) in R
p×d, we can write ∇ρ = T0∇ρ+ T1∇ρ. We then solve

T1∇ρ = −1

ε

(
E1K

†c ·M
)†
µ, (3.38)

which now determines the relevant part of ∇ρ in terms of µ. The symbol † denotes
any pseudoinverse, see Sect. 3.3. This procedure should be compared to the elimination
of gradient expressions in Section 3.2 for the order-of-magnitude method conducted on
moments.

For G we then compute

Gµ = −εK†c ·M (T0∇ρ+ T1∇ρ) (3.39)

= −εK†c ·M
(
T0∇ρ−

1

ε

(
E1K

†c ·M
)†
µ

)
(3.40)
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3 Analysis of Approximations to the Linear Boltzmann Equation

= K†c ·M
(
E1K

†c ·M
)†
µ (3.41)

and thus

G = K†c ·M
(
E1K

†c ·M
)†
. (3.42)

Lemma 3.5.1 (Scale-Induced Distribution).
Under the assumptions ker(E1)∩V1 = {0} with V1 = Im

(
K†c ·M

)
and E1M = 0 for the

moment projector E1 : V → R
q with q = dimV1, we have for the distribution function

(3.42):

1. The construction is in accordance with the requirements (3.31). The non-equilibrium
space can be split into VNE = V1 ⊕ V2, with V1 := GR

q = GE1VNE = SVNE and
V2 = (P − S)VNE = RVE.

2. The construction satisfies Im (G) = Im
(
K†c ·M

)
= V1 in agreement with the

condition (3.35) as well as ker (G) = {0}.
3. V1 constains contributions to the distribution function up to order O(ε) and V2

contains all orders higher than ε2 in a Chapman-Enskog expansion.

Proof.

1. We clearly have E1G = E1K
†c ·M

(
E1K

†c ·M
)†

= idRq due to the requirement
ker(E1) ∩ V1 = {0}. The condition E1M = 0 was required for E1 a priori. Fur-
thermore PG = G follows from PK† = K† and implies that E0G = E0PG = 0.
The splitting follows from these three requirements. For the decomposition, we
observe that GR

q = V1 ⊂ VNE since QG = ME0G = 0. With E1M = 0 we
have that E1V0 = E1ME0V = {0} and with E1R = E1P − E1S = E1 − E1 = 0,
we have E1V2 = E1RV = {0} and thus ImE1 = E1V1 follows, and with this
V = V0 ⊕ V1 ⊕ V2.

2. Since ker
(
E1K

†c ·M
)

= ker
(
K†c ·M

)
, it follows that

Im
(
E1K

†c ·M
)†

∩ ker
(
K†c ·M

)
= {0},

and with that Im (G) = Im
(
K†c ·M

)
. It follows from the definition of q that

Gµ = 0 implies µ = 0.

3. The order of magnitude of the subspaces follows directly from the definition of Gµ
as in (3.42).

Herewith, the structure of the distribution function has been deduced from the kinetic
equation. It strongly depends on the collision operator K and arises from the require-
ment of a scale separation in the non-equilibrium subspace according to an asymptotic
expansion in ε.
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3.5 Scale-Induced Closure

The typical separation in the phase space of the distribution function is that into equilib-
rium and non-equilibrium as in (3.16). The order-of-magnitude method given above now
shows that there exists an additional natural separation of the non-equilibrium phase
space that follows from the kinetic equation itself. The first order contribution opens a
subspace V1 in non-equilibrium that can be described by a low-dimensional set of mo-
ments µ that all scale by ε. The remainder space V2 contains all high order contributions
to the distribution function when Chapman-Enskog expanded.

The result is a scale-induced closure whose distribution structure strongly depends on the
collision operator K. It is characterized not by slow and fast relaxation times but instead
through the scale of the contributions of the asymptotic expansions to the distribution
function.

Note that this construction is extendable to higher orders, leading to a more detailed
decomposition of the non-equilibrium phase space VNE .

In the derivation of G the higher moments µ = E1f are specified only by the solvability of
the system (3.37). This is possible, but E1 will not be unique. This situation is equivalent
to the result (3.4) for the order-of-magnitude method applied to the moments directly.
In (3.4) some moments had to be chosen as basis in which the others are represented. In
the calculation of this representation, gradient expressions of equilibrium variables had
to be eliminated.

3.5.3 Constructing the Moment Operator

To some extend the approach in Sect. 3.5.2 above mimics the procedure used in [49] and
[50] conducted on the moment equations. An alternative path to exploiting the condition
(3.35) is to first specify the distribution G and then derive the moment operator E1.

The easiest way to construct G in accordance with (3.35) is to just choose G = K†c ·M .
However, having condition (3.31) in mind, E1G = idRq cannot be fullfilled if K†c ·M
is not injective. To improve our definition of G, we introduce q linearly independent
vectors which generate a complementary subspace to ker(K†c ·M). Then we define the
surjective map

D : R
p×d → R

q, ∇ρ 7→ µ̂, (3.43)

such that D(ker(K†c ·M)) = {0}. Note that this leaves quite some freedom for the
choice of D.

With D we can adjust our definition of G to

GD = −K†cM (3.44)

as an operator acting on ∇ρ according to (3.36), giving

GD∇ρ = −K†cM∇ρ = −K†c · ∇M ρ (3.45)
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3 Analysis of Approximations to the Linear Boltzmann Equation

in agreement with condition (3.33). Using a pseudoinverse of D the distribution G is
explicitly given by

G = −K†cMD† (3.46)

as a mapping from R
q to V . In Sect. 3.5.4, we will compare (3.46) to (3.42), which was

resulting from the choice of a specific operator E1.

By construction, G is injective on the moment space R
q with

ImG = Im
(
K†cM

)
= V1 ⊂ V.

Hence G : R
q → V1 is bijective and we can use its inverse to construct E1 on V1.

We remark that this definition automatically entails the condition E0G = 0: In fact,
according to (3.14), we have K† = PK† so that G = PG and hence

E0G = E0PG = 0.

It remains to specify the moment mappingE1 in such a way that the remaining conditions
E1M = 0 and E1G = idRq in (3.31) are satisfied. While E1M = 0 fixes the behavior
of E1 on the equilibrium subspace V0, the condition E1G = idRq shows that E1 has
to invert G on V1 = Im(G). This can be summarized by saying that E1 has to be a
pseudoinverse of G whose kernel includes V0.

The only information about the behavior of E1 on subspaces complementary to V0 ⊕ V1

is that V2 should be the nullspace of the projection S = GE1. Since G is injective,
the nullspace of S is identical to the nullspace of E1. Hence, the complete construction
follows by choosing a space V2 with the property V1 ⊕ V2 = VNE and setting E1 = 0 on
V0⊕V2 and E1 = G−1 on V1. Then all conditions onG and E1 are satisfied. Summarizing,
we obtain a decomposition of V into generally non-orthogonal subspaces

V = V0 ⊕ V1 ⊕ V2, V0 = QV, VNE = PV = V1 ⊕ V2. (3.47)

and

E1f = E1(f0 ⊕ εf
(NE)
1 ⊕ fR) = G−1εf

(NE)
1 , with f0 ∈ V0, εf

(NE)
1 ∈ V1, fR ∈ V2. (3.48)

If we get orthogonal sums in (3.47), then S = GE1 is a symmetric projector. With that,
additional to (3.31) and (3.48), we obtain the unique Moore-Penrose-inverse E1 = G†,
see Sect. 3.3. For a proof see App.A.3 and [62].

In Sect. 3.7 we will show that the specific construction leading to E1 = G† as above
produces desirable properties of the evolution equation for ρ and µ. However, if not
stated otherwise, we will use a general non-orthogonal decomposition V = V0 ⊕ V1 ⊕ V2.

From the construction of E1 we can again clearly see that the order of magnitude method
is based on a natural separation of the non-equilibrium phase space VNE that follows
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3.5 Scale-Induced Closure

from the kinetic equation itself. It should be noted that, also here, the construction
of E1 is not unique due to some arbitrariness in the choice of D and, following from
this, the moment space R

q. This situation corresponds again to the result (3.4) for the
order-of-magnitude method applied to the moments directly. In (3.4) some moments
had to be chosen as basis in which the others are represented.

3.5.4 Comparison

In Sect. 3.5.2 we started with the construction of a projection E1 : V → R
q with certain

restrictions and computed G from it, whereas in Sect. 3.5.3 above, we started with the
specification of G : R

q → V by choosing the operator D and then determined E1 as
inverse of G. In both cases the restriction of Gµ as obtained in (3.35) was used.

The following Lemma shows how the constructions in Sect. 3.5.2 and Sect. 3.5.3 are
related.

Lemma 3.5.2 (Relation of Different Constructions).
Let Gµ be determined through (3.35).

1. Consider the derivation in Sect. 3.5.3. If an appropriate operator D as in (3.43)
gives rise to a distribution G as in (3.46) and a moment operator E1 as in (3.48),
then

D = −E1K
†c ·M and G = K†c ·M

(
E1K

†c ·M
)†

(3.49)

in agreement with the definition (3.42) of G in the derivation of Sect. 3.5.2.

2. Consider the derivation in Sect. 3.5.2. If a moment operator E1 satisfying the
condition described in Sect. 3.5.2 gives rise to the distribution G as in (3.42) and
additionally the projector GE1 is symmetric, then there exists an operator E5.3

1 =
G−1|V1 as in (3.48). In particular, E5.3

1 = G† = E1 and the two approaches agree.

Proof.

1. From (3.44) it follows D = −G†K†c ·M and since K†c ·M maps to V1, we have
D = −E1K

†c ·M . The second equality follows with (3.46).

2. E5.3
1 = G† = E1 follows from the symmetry of S together with condition (3.31),

stating E1G = idRq . In the case where V is finite dimensional, this is a standard
argument using singular value decomposition. For details see App.A.3. If V is a
generally infinite dimensional Hilbert space, we refer to Theorem 9.1.3 in [62].
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Remark: Note that starting with E1 as in Sect. 3.5.2, then, according to (3.42), con-

structing G = K†c · M
(
E1K

†c ·M
)†

, and finally defining Ẽ1 as in (3.48) does not

necessarily yield Ẽ1 = E1, unless the appearing pseudo-inverses are consistently chosen,
which automatically happens in the orthogonal case.

Usually, the approach in Sect. 3.5.3 is less practical since typically the distribution func-
tion is to be constructed after the choice of specific moments to describe the process.

Note once more that this situation is equivalent to the result (3.4) for the order-of-
magnitude method applied to the moments directly. In (3.4) some moments had to be
chosen as basis in which the others are represented. In the calculation of this represen-
tation, gradient expressions of equilibrium variables had to be eliminated.

Finally, we want to stress that the basic idea of the construction presented here is extend-
able to higher orders, leading to a more detailed decomposition of the non-equilibrium
phase space VNE , see Sect. 3.8.

3.6 Asymptotic Order

Assuming, as in Grad’s closure, f = M ρ+Gµ with G and E1 satisfying (3.48), we find
the evolution equations

∂tρ+ E0c · ∇M ρ+ E0c · ∇Gµ = 0 (3.50)

∂tµ+ E1c · ∇M ρ+ E1c · ∇Gµ+
1

ε
E1KGµ = 0. (3.51)

Note that in accordance with (3.29/3.30) and (3.33), µ = εµ1 + O(ε2). We have chosen
this scaling to compare (3.50/3.51) to Grad’s equations (3.27/ 3.28).
We are interested in the asymptotic accuracy in terms of powers of ε of the evolution of
ρ with respect to the full kinetic equation. The question is, whether the evolution for
µ in (3.51) when expanded in ε and inserted into (3.50) reproduces the equations for ρ
resulting from the Chapman-Enskog expansion of the full kinetic model.

3.6.1 Order Analysis

The following theorem completely characterizes the asymptotic behavior of the system
(3.50)/(3.51).

Theorem 3.6.1 (Asymptotic Accuracy).
The system (3.50)/(3.51) with primary non-equilibrium distribution G and moment op-
erator E1 satisfying (3.48) describes an evolution of ρ that is of the following Chapman-
Enskog orders:

1) first order in the Knudsen number ε, if the operator E1KG is invertible on R
q.
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2) second order in ε, if E1KG is invertible on R
q, and if

ẼK†R = 0 and ẼK†G = ẼG (E1KG)−1 , (3.52)

where Ẽ = E0c.

Proof.

1) The kinetic model produces an evolution for ρ that is given by (3.24). We have
to show that, up to first order, the asymptotic expansion of µ leads to the same
equation. We introduce µ = εµ1 + ε2µ2 into (3.51) and obtain for the first order
contribution

E1c · ∇M ρ+ E1KGµ1 = 0. (3.53)

We note that multiplying E1M = 0 with E0 from the right yields E1Q = 0 so that
E1P = E1. Using further KK† = P , we obtain E1 = E1KK

† and hence (3.53)
reads

E1K
(
K†c · ∇M ρ+Gµ1

)
= 0 (3.54)

The expression in the bracket is contained in V1 = Im(G) = Im(K†c · ∇M) and
since SV1 = V1, we have

E1KS
(
K†c · ∇M ρ+Gµ1

)
= 0. (3.55)

Using the definition S = GE1, the invertibility of E1KG and the relation E1G =
idRq , we conclude

µ1 = −E1K
†c · ∇M ρ (3.56)

and with it Gµ1 = −K†c · ∇M ρ.

Using this result, we can compute the leading order of the µ dependent expression
in (3.50)

E0c · ∇Gµ = εE0(c · ∇)Gµ1 +O(ε2) (3.57)

= −εE0(c · ∇)K†(c · ∇)M ρ+O(ε2) (3.58)

which is precisely the first order contribution given in (3.21).

2) Balancing the next order of (3.51) yields

∂tµ1 + E1(c · ∇)Gµ1 + E1KGµ2 = 0 (3.59)

where µ1 has to be inserted from above. The relevant term that enters the evolution
of ρ reads

Ẽ · ∇Gµ2 = −Ẽ · ∇G (E1KG)−1 (∂tµ1 + E1(c · ∇)Gµ1) (3.60)
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3 Analysis of Approximations to the Linear Boltzmann Equation

The relation corresponding to (3.59) within the Chapman-Enskog expansion of the
full kinetic equation can be written

∂t

(
−K†c · ∇M ρ

)
+ c · ∇

(
−K†c · ∇M ρ

)
+Kf

(NE)
2 = 0

where the expression in brackets can be replaced by Gµ1 in the current context.
As in Sect. 3.4.2, we can multiply by K† and drop the non-equilibrium projection

in front of f
(NE)
2 , which yields

f
(NE)
2 = −K†G (∂tµ1 + E1(c · ∇)Gµ1) −K†R (c · ∇)Gµ1

which influences the evolution of ρ in the form

Ẽ · ∇f (NE)
2 = −Ẽ · ∇K†G (∂tµ1 + E1(c · ∇)Gµ1) − Ẽ ·K†R (c · ∇)Gµ1. (3.61)

Equality with the expression obtained for µ2 is given if

Ẽ · ∇G (E1KG)−1 = Ẽ · ∇K†G− Ẽ ·K†R (c · ∇)G. (3.62)

This is guaranteed by the assumptions.

The theorem shows that the system resulting from the scale induced closure can be
of second order, that is, of the same accuracy as the Burnett equations, and as such
go beyond the first order Navier-Stokes equations. The scale induced closure combines
Grad’s method with the asymptotic properties of a Chapman-Enskog expansion.

Second order is given in non-trivial cases where the special conditions given in the the-
orem are satisfied. In general, additional expressions have to be added on the right
hand side of the system stemming from higher moment equations. This can be seen
in [50] where generalized 13-moment-equations are derived. Interestingly, for Maxwell-
molecules the condition for direct second order is satisfied, hence the original Grad
equations are of Burnett order, see [51]. For a given K, sufficient and also necessary
conditions for any order can be obtained through direct comparison of the asymptotic
expansion with the corresponding Chapman-Enskog expansion of (3.8). This is exem-
plified in App.A.4.3.

Note that the operator Ẽ = E0c can be interpreted as equilibrium projection of higher
moments. By asking that ẼK†R = 0, we demand in a weak sense that K† does not map
any elements of the secondary non-equilibrium V2 to a lower order (non-)equilibrium.
This is also related to condition 3) in Sect. 3.6.2 below.
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3.6 Asymptotic Order

3.6.2 Various Conditions for First and Higher Order

The conditions given in Theorem 3.6.1 are sufficient. In this section we give an overview
of some more sufficient conditions for first and even higher order.

We begin with analyzing the mapping KG. To check injectivity, we note that KGµ = 0
implies Gµ ∈ ker(K), i.e. Gµ = Mρ for some ρ ∈ R

p, so that condition (3.48) yields
µ = E1Mρ = 0. Hence, KGR

q = KV1 = PKV1 ⊂ VNE is a q-dimensional subspace of
VNE . Now there are two possibilities depending on whether the intersection of KV1 and
V2 is empty or not. Interestingly, this alternative decides about the first order accuracy
condition.

Lemma 3.6.2. The following conditions are equivalent

1)E1KG invertible 2)V1 = SKV1 3)KV1 ∩ V2 = {0}.

Proof. Assuming (1), we see that G(E1KG) is injective. Since S = GE1 is a projection
onto V1, we conclude that SKV1 = SKGR

q is a q-dimensional subspace of V1 and thus
identical to V1. Next, we assume (2) and KV1 ∩ V2 6= {0} for a proof by contradiction.
Then there exists some f = Gµ ∈ V1 such that 0 6= Kf ∈ V2 and hence SKf = 0
which shows that SKG : R

q → V1 is not injective. Consequently, it cannot be surjective
which contradicts the assumption (2). Finally assuming (3), we check the injectivity
of E1KG. If µ ∈ R

q satisfies E1KGµ = 0, then also SKGµ = GE1KGµ = 0 so that
KGµ ∈ ker(S) = V2. Since also KGµ ∈ KV1 we find KGµ = 0. The injectivity of KG
then yields µ = 0 which finally shows (1).

In view of this reformulation, we should recall the construction of the operator E1. In the
construction, we had the freedom to choose V2 and now we see that it may be beneficial
to select V2 in such a way that it intersects KV1 only at the origin.

In order to satisfy the second order condition (3.52) in Thm.3.6.1, we can choose V1 as
an invariant subspace of K, i.e.

KV1 = V1,

This works because

G = PG = K†KG = K†SKG = K†GE1KG,

and by applying the inverse of E1KG, we find

G(E1KG)−1 = K†G,

which is sufficient for the second condition in (3.52). If we have in addition ẼK†R = 0,
we get second order accuracy if V1 is an invariant subspace of K. Note that asking
KV1 = V1 is stronger a condition than just requiring SKV1 = V1.
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3 Analysis of Approximations to the Linear Boltzmann Equation

Another sufficient condition for first, and in fact also higher order is given by

G(E1KG)−1E1 = K†

which needs the invertibility of E1KG but is a much stronger condition. In fact, one
can show with asymptotic expansion that it implies V1 = VNE , or equivalently V2 = {0}.
Hence, we easily see that it leads to arbitrary accuracy, since higher order contributions
are trivial. For our purpose, however, this case is of little interest, because the complexity
of the kinetic equation is not reduced by applying the scale induced closure.

3.6.3 Regularization

The above construction uses the zeroth order of the evolution of the distribution f̂R
in (3.32). The first order gives additional accuracy and leads to regularized equations
similar to the R13-system in [49] and [52].

Under the first order accuracy condition, the evolution of f̂R in (3.32) reduces to

ε2∂tf̂R + ε2Rc · ∇f̂R + εRc · ∇Gµ̂+ εRK f̂R = 0 (3.63)

where zero-order terms have vanished. The first order terms in this equation are balanced
by choosing

RKf̂R = −Rc · ∇Gµ̂ (3.64)

Assuming that (RK)†RKf̂R = f̂R, we can write

f̂R = −(RK)†Rc ·G∇µ̂. (3.65)

This gives a first contribution to the secondary non-equilibrium in (3.30) based on gra-
dients of the non-equilibrium variables µ. The elaboration of this procedure is left for
future work. In fact, an additional first order term has been suppressed above. This
regularization procedure has been successfully conducted on the moment hierarchy for
Maxwell-molecules in [49].

3.7 Stability

In this section we assume that

1)V is a Hilbert space with scalar product 〈·, ·〉V .
2) The collision operator K and the equilibrium projection Q are self-adjoint.

Furthermore K is positive semi-definite.

3) The multiplication operator cα : V → V defined by (cαf)(v) = vαf(v)

is self-adjoint.

4) The projector S = GE1 as constructed in Sect. 3.5.1 - 3.5.4 is self-adjoint.

(3.66)
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3.7 Stability

The distributionM is defined in Sect. 3.3.1. After introducing symmetric positive definite
operators based on the adjoints of the distributions, we will show that the equations
(3.50)/(3.51) possess an entropy law and are therefore stable.

Definition 3.7.1 (Adjoint).
We denote 〈·, ·〉Rn the standard scalar product in R

n

1) We define the adjoint M∗ of M through the Riesz representation theorem as the
unique linear operator M∗ : V → R

p such that

〈x,M∗f〉Rp = 〈Mx, f〉V , ∀f ∈ V, x ∈ R
p (3.67)

2) Similarly we define G∗ : V → R
q, such that

〈y,G∗f〉Rq = 〈Gy, f〉V , ∀f ∈ V, y ∈ R
q (3.68)

3) Based on the adjoints we define

B := M∗M : R
p → R

p and L := G∗G : R
q → R

q. (3.69)

The matrices B and L are symmetric, positive definite by construction. They will give
rise to symmetric forms which constitute the entropy of the moment system. Again
we keep notation simple, and use µ for the scaled higher moments µ̂ in the following.
Generally the stability result does not depend on the scaling of µ.

In this orthogonal setting, the pseudoinverse G† is the unique Moore-Penrose inverse.
Due to injectivity of G, it can be computed as G† = (G∗G)−1G∗. Furthermore we have
through (3.66) 2) and 4) that indeed E0 and E1 are the unique Moore-Penrose inverses
of M and G respectively (see Sect. 3.3 and 3.5.4).

Theorem 3.7.2 (Stability).
Let the moment system (3.50)/(3.51) be given, based on the operators M,G and E0, E1

defined in Sect. 3.3 and 3.5.3. Then the system features the convex entropy

η =
1

2
〈ρ,Bρ〉Rp +

1

2
〈µ,Lµ〉Rq , ρ ∈ R

p, µ ∈ R
q (3.70)

with associated negative definite entropy production. In particular, the system is sym-
metric hyperbolic1.

Proof.

Convexity of η: 〈·, B·〉Rp and 〈·, L·〉Rq define scalar products based on the symmetric,
positive definite matrices from (3.69). The function η is therefore convex. Note that η
shows similarities with the entropies in [7] and [53].

1For an overview of hyperbolicity, entropy and stability, see Sect.A.2.
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3 Analysis of Approximations to the Linear Boltzmann Equation

Entropy law: Multiplying (3.50) with 〈ρ,B·〉 and (3.51) with 〈µ,L·〉 yields

〈ρ,B∂tρ〉Rp + 〈ρ,BE0c ·M ∇ρ〉Rp + 〈ρ,BE0c ·G∇µ〉Rp = 0 (3.71a)

〈µ,L∂tµ〉Rq + 〈µ,LE1c ·M ∇ρ〉Rq + 〈µ,LE1c ·G∇µ〉Rq = −1

ε
〈µ,LE1KGµ〉Rq (3.71b)

From the definition of B we immediately see

BE0 = M∗ME0 = M∗Q = (QM)∗ = M∗ (3.72)

since Q is self-adjoint.

For the product LE1 we analogously find with (3.66)4 that

LE1 = G∗GE1 = G∗S = (SG)∗ = G∗. (3.73)

Plugging in these expressions yields

〈ρ,B∂tρ〉Rp + 〈ρ,M∗c ·M ∇ρ〉Rp + 〈ρ,M∗c ·G∇µ〉Rp = 0 (3.74a)

〈µ,L∂tµ〉Rq + 〈µ,G∗c ·M ∇ρ〉Rq + 〈µ,G∗c ·G∇µ〉Rq = −1

ε
〈µ,G∗KGµ〉Rq (3.74b)

After adding the equations (3.74) and using the self-adjointness of L, B and c, we obtain

∂t

(
1

2
〈ρ,Bρ〉

Rp +
1

2
〈µ,Lµ〉

Rq

)

+ ∇ ·
(

1

2
〈ρ,M∗cM ρ〉

Rp + 〈ρ,M∗cGµ〉
Rp +

1

2
〈µ,G∗cGµ〉

Rq

)
(3.75)

= −1

ε
〈µ,G∗KGµ〉

Rq

which is an entropy law.

Negativity of entropy production: Since K is self-adjoint and positive semidefinite, we
haveG∗KG = (

√
KG)∗

√
KG. Hence, we can rewrite 〈µ,G∗KGµ〉Rq = 〈

√
KGµ,

√
KGµ〉V >

0, since K is positive on the range of G. Therefore the entropy production is negative
definite.

With Theorems 3.6.1 and 3.7.2 we have shown that the scale induced closure yields
equations which are physically accurate in terms of a Knudsen number expansion as
well as mathematically stable.

We have seen before that, in the new theory, the definition of the distribution function
Gµ depends on the structure of the collision operator. This is a natural outcome since
the scale decompostion of the non-equilbrium phase space is induced by the collision op-
erator. To find a symmetric projector GE1, additional constraints on the choice of the
variables µ follow. Hence, also the choice of variables µ is governed by K which is some-
what surprising. For the moments in (3.4) this results in an additional recombination of
the vectors and tensors to find an appropriate basis.
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3.8 Higher Order Scale Induced Closure

3.8 Higher Order Scale Induced Closure

The orignial order-of-magnitude method developed by Struchtrup in [49] is a 3rd order
approximation. In this section we sketch how to construct the scale induced closure
including contributions of order up to εn in our linear case. This is just an outline and
shall serve as starting point for future research. Many details remain unspecified.

Extending (3.30), we decompose

f = Mρ+ εG1µ̂1 + ε2G2µ̂2 + · · · εnGnµ̂n + εn+1f̂Rn , (3.76)

with moments µ̂k ∈ R
qk . The corresponding operators E1,...,En and G1,...,Gn are re-

quired to fulfill

EkGk = idR
qk , EkM = 0, E0Gk = 0, EiGj = 0, (3.77)

where i, j, k = 1, ..., n and i 6= j.

With these operators, we can construct the projections Sk = GkEk, k = 1, ..., n and
Rn = P − S1 − ...− Sn, such that our phase space is divided as in Fig. 3.2.

V0 S1V SnV RnV

Figure 3.2: The phase space is subdivided into various higher non-equilibrium parts.

In accordance with the construction in Sect. 3.5.1, we match orders as in (3.32) and
derive the equations determining the Gkµ̂k as

G1µ̂1 = −K†c ·M∇ρ
G2µ̂2 = −K†c ·G1∇µ̂1

...

Gnµ̂n = −K†c ·Gn−1∇µ̂n−1

(3.78)
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3 Analysis of Approximations to the Linear Boltzmann Equation

Under certain conditions on the relation between the image sets of K†c ·Gi and Sj, the
operators can be constructed analogously to Sect. 3.5.2 and Sect. 3.5.3.

The equations are derived by plugging (3.76) into the linear kinetic equation, applying
the operators E0,...,En and setting fRn = 0. Using scaled variables µk = εkµ̂k, k =
1, ..., n, they read

∂tρ+ E0c · ∇Mρ+ E0c · ∇G1µ1 + · · · + E0c · ∇Gnµn = 0

∂tµ1 + E1c · ∇Mρ+ E1c · ∇G1µ1 + · · · + E1c · ∇Gnµn

+
1

ε
E1KG1µ1 + · · · + 1

ε
E1KGnµn = 0

...

∂tµn + Enc · ∇Mρ+ Enc · ∇G1µ1 + · · · + Enc · ∇Gnµn

+
1

ε
EnKG1µ1 + · · · + 1

ε
EnKGnµn = 0

(3.79)

3.8.1 Stability for the Higher Order case

The stability analysis in the higher order case uses similar arguments as in Sect. 3.7. We
need the first 3 assumptions of (3.66), assumption 4) needs to be extended to all the
projectors S1,...,Sn, and the positive semi-definiteness of K will need some extension as
well. The entropy becomes

ηn =
1

2
〈ρ,Bρ〉Rp +

1

2
〈µ1, L1µ1〉Rq1 + · · ·+ 1

2
〈µn, Lnµn〉Rqn , ρ ∈ R

p, µk ∈ R
qk , (3.80)

where Lk = G∗
kGk and k = 1, ..., n.

We proceed analogously to the proof of Thm. 3.7.2 and get the entropy flux

1

2
〈ρ,M∗cMρ〉Rp +

n∑

k=1

〈ρ,M∗cGkµk〉Rp +
1

2

n∑

k=1

〈µk, G∗
kcGkµk〉Rqk

+
n∑

j=1

n∑

i=j+1

〈µj , G∗
jcGiµi〉Rqj .

(3.81)

On the right hand side of the entropy equation, we get

−1

ε

n∑

j=1

n∑

k=1

〈µj , G∗
jKGkµk〉Rqj . (3.82)

46



3.9 Examples

Since this quantity should be negative, assumption 2) in (3.66) extends to negativity
not only of −K, but of the above combination. This is satisfied, for example, if K is
self adjoint and negative definite on V ⊥

0 and if the subspaces SiV are K-invariant for
i = 1, ..., n.

If all these assumptions are met, we obtain an entropy law with negative entropy pro-
duction, and therefore symmetric hyperbolic and stable equations.

3.8.2 Order Analysis

The order analysis becomes even more technical for n ≥ 2 than it is in Sect. 3.6. A general
analysis is therefore beyond the scope of this work. For examples like the following 16
discrete velocities model in Sect. 3.9.2, the easiest way to check the order of accuracy
is a direct asymptotic expansion of the equations under consideration, see App.A.4.3.
Note however that the 16 discrete velocities models is not complex enough to serve as a
good testcase for higher orders in the scale induced closure.

3.9 Examples

As examples for the theory described above we discuss three specific cases. One displays
the generalized 13-moment-case. Then we consider a model with 16 discrete velocities
and show the approximation features of the various closures. The last case demonstrates
the accuracy of the closure approximations in the case of a generic linear model system.

3.9.1 Generalized 13-Moment-Equations

The generalized 13-moment-equations have been derived by Struchtrup in [50] by the
order-of-magnitude approach described above. In the derivation a general interaction
potential has been assumed and, hence, general production terms in the moment equa-
tions have been considered. The closure approximation takes into account the structure
of the production terms and the resulting coefficients could be identified with classical
Burnett coefficients.

The final equations for stress tensor σij and heat flux qi read

Dσij
Dt

+ σij
∂vk
∂xk

+ 2σk〈i
∂v j〉
∂xk

+ Pr
4̟3

5̟2

(
∂q〈i
∂x j〉

− ω q〈i
∂ ln θ

∂x j〉

)

+ Pr
4̟4

5̟2
q〈i
∂ ln p

∂x j〉
+ Pr

4̟5

5̟2
q〈i
∂ ln θ

∂x j〉
+
̟6

̟2
σk〈iS j〉k = − 2p

̟2µ

[
σij + 2µ

∂v〈i
∂x j〉

]
(3.83)

and
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Dqi
Dt

+ qk
∂vi
∂xk

+
5

3
qi
∂vk
∂xk

− 5

2Pr
σik

∂θ

∂xk
+

5θ3
4θ2 Pr

σik
∂ ln p

∂xk

+
5θ4

4θ2 Pr
θ

(
∂σik
∂xk

− ωσik
∂ ln θ

∂xk

)
+

15θ5
4θ2 Pr

σik
∂θ

∂xk
= − 5p

2θ2 Prµ

[
qi +

5µ

2Pr

∂θ

∂xi

]
(3.84)

where vi is the velocity, θ is the temperature (in energy units), p is the pressure, Pr
is the Prandtl number, µ viscosity and ̟α, θα are Burnett coefficients. Interestingly,
for Maxwell molecules the equations reduce to the 13-moment-system of Grad which
is based on a Hermite series of the distribution function. This is a mere coincidence
and related to the fact that the eigenfunctions of the linearized collision operator for
Maxwell molecules are Hermite functions. Hence, Grad’s equations form the accurate
second order system only for Maxwell molecules while the above system is the second
order accurate extension to general interaction potentials. I.e., it is a stable system that
reproduces the correct general Burnett relations when expanded in Knudsen number. In
that sense it is also related to the regularized Burnett equations in [29].

The system demonstrates the capabilities of the described scale-induced closure proce-
dure.

3.9.2 Linearized 16 Discrete Velocity Model

The following example considers a linearized 16 discrete velocities model in one space
and two velocity dimensions [3]. Such models are a generalization of models initially
developed in [10]. They have been more thoroughly investigated in [3].

Choosing the bilinear interactions according to Fig. 2.4 in the Introduction, Sect. 2.2.4,
we obtain the kinetic equations

∂tui(x, t) +

16∑

j=1

Vij∂xuj(x, t) +
1

ε
Knonlin
i [u] = 0, (3.85)

with Vij = δijc
(1)
i , Knonlin = Kdiag +Kstraight being positive semidefinite bilinear forms

(see Appendix A.4.1, equations (A.22) and (A.23)). We linearize (3.85) around a con-
stant equilibrium f0

i = 1 by the ansatz ui = 1 + εfi and neglect all higher order terms.
This leads again to a positive semidefinite linear map K : V → V . The linear equations
read

∂tfi(x, t) +

16∑

j=1

Vij∂xfj +
1

ε

16∑

j=1

Kijfj = 0, (3.86)

48



3.9 Examples

with K as in (A.24).
The nullspace of K defines the equilibrium moments2

ρ =

16∑

i=1

fi, ρvx =

16∑

i=1

c
(1)
i fi, ρvy =

16∑

i=1

c
(2)
i fi, e =

16∑

i=1

c2i fi. (3.87)

The orthogonal complement of the nullspace of K is spanned by the arbitrarily chosen
vectors r1,...,r12.

For the detailed computations leading to the form of the classical equations in the fol-
lowing subsections we refer to A.4.2. Here we only give the results.

Euler Equations

The Euler equations (3.17) become

∂t




ρ
ρvx
ρvy
ρe


+




0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0


 ∂x




ρ
ρvx
ρvy
ρe


 =




0
0
0
0


 (3.88)

Navier-Stokes-Fourier System

With the pseudoinverse of K we get the Navier Stokes Fourier equations according to
(3.21)

∂t




ρ
ρvx
ρvy
ρe


+




0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0


∂x




ρ
ρvx
ρvy
ρe


 = ε




0 0 0 0
0 4

5 0 0
0 0 289

20 0
−140

5 0 0 14
5


 ∂2

x




ρ
ρvx
ρvy
ρe


 (3.89)

Burnett Equations

From (3.24), the Burnett equations turn out to be

∂t




ρ
ρvx
ρvy
ρe


+




0 1 0 0
0 0 0 1

2
0 0 0 0
0 66

5 0 0


∂x




ρ
ρvx
ρvy
ρe


 = ε




0 0 0 0
0 4

5 0 0
0 0 289

20 0
−140

5 0 0 14
5


 ∂2

x




ρ
ρvx
ρvy
ρe




− ε2




0 0 0 0
−19

4 0 0 27
40

0 0 0 0
0 1354

125 0 14
5


∂3

x




ρ
ρvx
ρvy
ρe




(3.90)

2Note that left and right eigenvectors are equal since K is symmetric.
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We will see later in Fig. 3.3 and Fig. 3.5 that the Burnett equations lead to instabilities,
as is also observed in [7].

Grad Equations

To obtain a Grad Closure, we have to choose some higher moments through the operators
G and E1, satisfying the constraints given in section 3.4.3. We will argue that the scale
induced closure produces a set of 3 higher moments, so in order to have a fair comparison,
we chose the same number for Grad.

We will choose these moments once arbitrarily and, to compare, also as fluxes of lower
order equations.

Arbitrary Choice of Moments

Let arbitrarily µ1 = E1r1, µ2 = E1r2 and µ3 = E1r3, where r1, r2 and r3 are the first 3
basis vectors of the orthogonal complement to kerK (see comment after (3.87)). E1 and
G are chosen arbitrarily, as shown in App.A.4.2, fulfilling only the basic requirements
of proper separation to E0 and M , (3.26), but not necessarily the specific conditions
for the scale induced closure, (3.33). For details of the construction of G and E1, see
App.A.4.2.

With E1 and G, we use (3.27) and (3.28) and get the equations
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(3.91)

Kinetic Fluxes as Moments

A more natural way to construct E1 and G for the Grad equations is to consider those
variables that appear in the fluxes of the equations, see also the remark in section 3.4.3.
From the kinetic model, we obtain heat fluxes in x and y direction, as well as the pressure
tensor

qx =

16∑

i=1

c
(1)
i c2i fi, qy =

16∑

i=1

c
(2)
i c2i fi, σxy =

16∑

i=1

c
(1)
i c

(2)
i fi. (3.92)
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However, building E1 and G from these vectors, we can compute that their equilibrium
part is not zero, i.e. conditions (3.26) are not fullfilled in our model with 16 discrete
velocities. The remedy is to chose the non-equilibrium projections

Pqx, P qy, Pσ12. (3.93)

For more details, see App.A.4.2. The resulting equations are:
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(3.94)

We will later show solutions to the Grad equations arbitrarily chosen non-equilibrium
spaces span{r1, r2, r3}, as well as with span{r5, r6, r7} and compare them to Grad solu-
tions with kinetic fluxes as higher moments.

Scale Induced Closure

The operator −K†c ·M in (3.33) has a 3-dimensional image, its nullspace is (1, 0, 0, 10)T .
Therefore we get 3 higher moments µ1, µ2 and µ3. We choose D as parametrization of
the orthogonal complement of (1, 0, 0, 10)T

D =




10√
101

0 0 − 1√
101

0 1 0 0
0 0 1 0


 , D† =




10√
101

0 0

0 1 0
0 0 1

− 1√
101

0 0


 . (3.95)

Constructing E1 as the pseudoinverse G† and plugging all into (3.50/3.51), we obtain
the equations
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(3.96)

These equations are of second order accuracy since the conditions in Thm. 3.6.1 are met.
Another way of checking the accuracy is through direct asymptotic expansion of (3.96).
This furthermore shows that the equations are not of 3rd order (see App.A.4.3).

Comparison

In order to compare the results of the different closures, we look at the spatial Fourier
transform fj(x, t) =

∑
k∈Z

e−ikxf̂kj (t). This transforms the gradients into factors of −ik.
We apply the Fourier transform to (3.85), (3.88), (3.89), (3.91) and (3.96) and obtain
ordinary differential equations with the solution

∂tf̂
k
j (t) − i

16∑

j=1

Vijkf̂
k
j (t) +

1

ε

16∑

j=1

Kij f̂
k
j (t) = 0, f̂k(t) = exp[ikV − 1

ε
K]f̂k(0) (3.97)

As initial condition we choose f̂kj (0) = 1 for the wave number k = 2π and for all
j = 1, ...16, corresponding to Dirac peaks in the untransformed space. We show the
results obtained with the various closures for the real part of the Fourier transformed
mass density ρ̂k =

∑16
j=1 f̂

k
j (t) in Fig. 3.3.

For any ε, the Euler solution is oscillating without damping (no influence of the collision
term). In Fig. 3.3, we see that the damping in Navier-Stokes dominates already after
short time (ε = 0.1, ε = 0.5). Both, Euler and Navier-Stokes use 4 variables. For the
Grad solution, we have different options of chosing the closure. We compare some of
these choices in Fig. 3.4 (r1, r2, r3; r5, r6, r7; projected heat fluxes and pressure tensor).
Clearly, the choice of heat flux and pressure tensor projected onto the non-equilibrium
space (see Sect. 3.9.2), performs best for all ε.

The Grad solution, using 7 variables, shows damping, and there is a phase shift to the
kinetic solution. The scale induced closure performs better with the same number of
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variables for ε = 0.01 and ε = 0.1. We see hardly any difference between the scale
induced closure and the kinetic equation for ε = 0.01, ε = 0.1, only at ε = 0.5 some
deviations start to occur.

Summarizing, the choice of variables is the main point in all these methods - among the
totally 16 kinetic variables, we want to choose a few linear combinations to build macro-
scopic variables. These should mimic the microscopic behaviour as good as possible.
The scale-induced closure gives a hint how to choose the variables optimally in terms of
the underlying kinetic structure.

Burnett equations (3.90) are unstable for large relaxation times ε = 0.5. This is due to
the fact that the Burnett equations only consider an asymptotic expansion in ε, which
does not necessarily become more accurate by adding higher order terms. In the scale
induced closure, we are not only taking into account higher orders but additionally an
enrichment of the approximation space.

To validate our results, we also show the imaginary part of the Fourier transformed

velocity in x direction, v̂kx =
∑16

j=1 c
(1)
j f̂kj (t) in Fig. 3.5. Density and x-velocity are non-

trivial quantities in the model under consideration. The energy shows to be just a scaling
of the density. Usually, higher moments are more difficult to capture, however in our
case, the approximations for the velocity show the same qualities as for the density.
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Figure 3.3: The different Closures for Fourier coefficient k = 2π at ε = 0.01 (top), ε = 0.1
(middle) and ε = 0.5 (bottom).
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Figure 3.4: Various Grad closures for Fourier coefficient k = 2π at ε = 0.01 (top), ε = 0.1
(middle) and ε = 0.5 (bottom).
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Figure 3.5: The different Closures for Fourier coefficient k = 2π at ε = 0.01 (top), ε = 0.1
(middle) and ε = 0.5 (bottom).
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3.9.3 Linear Matrix System

The second example is more abstract and illustrates the fundamental range of the new
closure procedure. We consider a vector function y : R

+ → R
N satisfying an ordinary

differential equation

∂ty + T y +
1

ε
K y = 0, y|t=0 = y(0) (3.98)

with initial conditions y(0). The matrix T generalizes the transport operator, while K
can be viewed as collisional part. As for the kinetic model we assume that there exist
vectors or matrices M and E0 with KM = 0 and E0K = 0, as well as E0M = id.
Equilibrium variables are given by ρ = E0 y. The whole theory derived above can be
easily translated to the present case. The aim is to replace the high-dimensional system
(3.98) by a lower dimensional system for ρ with high accuracy.

To check the approximation quality we consider a concrete example and take N = 4
and

K =
1

54




45 −3 21 −21
−3 65 31 −31
21 31 53 1
−21 −31 1 53


 (3.99)

as collision matrix. This matrix was constructed such that it exhibits the eigenvalues
λi ∈ {0, 1, 1, 2} and a one-dimensional kernel given by M = (1, 1,−1, 1)tr with KM = 0.
In accordance with section 3.7, the equilibrium operator with E0K = 0 is given by
E0 = (M∗M)−1M∗ = 1

4(1, 1,−1, 1) and the equilibrium variable ρ = E0 y is scalar. T is
chosen to be

T =




0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0


 . (3.100)

We will solve the full system (3.98) with (3.99) and (3.100) numerically and compare
the numerical results of various approximations like a Chapman-Enskog-type or the
scale-induced closure to the full solution.

The kinetic variable (”distribution”) satisfies y = M ρ+y1 with a disturbance computed
in (3.20)

y1 = −εK†T M ρ. (3.101)

This leads to the equation (see (3.21))

∂tρ+ (E0T M) ρ− ε (E0T K
†T M) ρ = 0 (3.102)

in the sense of a first Chapman-Enskog expansion. Initial conditions are given by ρ|t=0 =
E0y

(0) = ρ(0). For our example, it turns out that E0T M = 0 and E0T K
†T M = 65

54 , so

we find ρ(t) = ρ(0) exp
(
−ε65

54 t
)

as first approximation. According to the theory above,
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a better approximation is given by equations for ρ coupled to a scalar higher moment
µ = E1y with the structure (compare (3.27), (3.28))

∂t

(
ρ
µ

)
+

(
E0T M E0T G
E1T M E1T G

)

︸ ︷︷ ︸
A

(
ρ
µ

)
= −1

ε

(
0 0
0 E1KG

)

︸ ︷︷ ︸
B

(
ρ
µ

)
(3.103)

and particular choices for G and E1.

Some of these choices are proposed through the Grad closure. As we have seen in the
previous example, not every choice of G and E1 just fulfilling (3.26) offers the same
accuracy. Thus we first choose E1 = E0T and with it G = (E1E

∗
1)−1E∗

1 , imitating the
selection of higher moments from the kinetic equations. Luckily, conditions (3.26) are
met, meaning that E0T contains no equilibrium part.

Out of curiosity, we construct arbitrary vectors

G =

(
−1

2
, 1,

1

14
,−3

7

)tr
, E1 =

(
1,

1

2
,−1,−5

2

)
(3.104)

satisfying the basic requirements E0G = 0, E1M = 0 and E1G = 1, for comparison.
In Grad’s approach, independent of the choice of non-equilibrium moments, the kinetic
structure given through K is not fully exploit. Instead, the new scale-induced order-of-
magnitude approach (D = 1) suggests to use

G = −K†TMD†, E1 = (G∗G)−1G∗ (3.105)

which is adapted to the structure of the kinetic equation.

In Fig. 3.6 we compare the evolution of ρ as predicted from the full system (3.98), from
the Chapman-Enskog-type result, the two Grad approaches and the order-of-magnitude
equations.

The relaxation times are chosen to be ε = 0.01, ε = 0.1 and ε = 0.5. The CE result
manages to predict a general decaying behaviour, while the random moment Grad ap-
proximation gives an initial behaviour that is qualitatively correct but fails for large
times t. The Grad approximation with E1 = TE0 performs much better, however also
fails in the low ε = 0.01 case, compared to the scale induced closure. The scale induced
closure result matches the full solution in a nearly perfect way for ε = 0.01 and ε = 0.1.
For ε = 0.5, the Grad method becomes slightly better, which is a surprising coincidence,
but not more than that: the behaviour of Grad is difficult to predict for different set-
tings of parameters and problems. The scale-induced closure behaves more steadily in
its approximation quality.
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Figure 3.6: Solution of the full matrix system (3.98) and various lower dimensional ap-
proximations at ε = 0.01 (top), ε = 0.1 (middle) and ε = 0.5 (bottom).
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We do not want to overstress this rather special example, but it indicates that the
scale-induced closure may considerably improve the accuracy of lower dimensional ap-
proximations of more general equations.

For completeness we give the resulting matrices in the system (3.103) for the random
moment Grad approach

A =

(
0 −41

28
5
4 −81

28

)
, B =

(
0 0
0 55

27

)
, (3.106)

the Grad approach with E1 = TE0

A =

(
0 1
−3

2 0

)
, B =

(
0 0
0 113

81

)
. (3.107)

and the scale induced closure

A =

(
0 65

57
−65

54 0

)
, B =

(
0 0
0 65

57

)
. (3.108)

As initial condition for the full system y(0) = (1, 4,−2, 1) was used which corresponds
to ρ(0) = 2.

3.10 Conclusion

This work supplements the work of Struchtrup in [49] and [50] where an order-of-
magnitude closure for moment equations in kinetic gas theory was developed. Here,
we generalize this approach to the level of kinetic equations and relate it to standard
methods of Chapman-Enskog and Grad. The new closure obeys a scaling of the non-
equilibrium phase space that is introduced by asymptotic expansion. This scaling struc-
tures the phase space and allows to formulate a distribution function based on moments
respecting the asymptotic properties of the kinetic equation. In this sense, it provides a
scale-induced closure. The resulting moment equations exhibit high asymptotic accuracy
in a natural way.

The theory is developed in the case of a linear kinetic model equation. The final equa-
tions can be shown to possess an entropy law and to be L2-stable. In future work the
results need to be extended to the non-linear case. This should be possible since the
original method was conducted on non-linear moment equations, however the necessary
mathematical tools in the non-linear setting will be more sophisticated. Our exam-
ple with a linearized discrete velocity model showed that the scale induced closure is
performing very well in approximating the high-dimensional kinetic evolution by low
dimensional equations, giving good reasons to also use it in more general settings.
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4 Multi-Scale Modeling for the non-linear

Boltzmann Equation

In this part, we are presenting a hybrid computational approach to the Boltzmann-BGK
equation. We are modelling a physical domain of medium Knudsen number, where (near)
equilibrium methods as Navier-Stokes-Fourier or Euler do not capture the particular
effects and DSMC methods are too costly to be applied.

We will first derive a Galilei invariant, sound speed scaled formulation of the Boltz-
mann equation. Then, the Boltzmann-BGK distribution function will be non-linearly
approximated through a multi-scale ansatz: we will use the equilibrium Gaussian and
multiply it with a series of higher order non-linear fluctuations. These fluctuations are
represented in terms of perturbation functions that have to be chosen a priori and cor-
responding coefficients that follow from a quasi-linear PDE system. We will discuss
an efficient Galilei-invariant and scaled formulation of this PDE system and consider
issues of microscopic-macroscopic compatibility. Conservation of macroscopic fields will
be ensured through a coupling of the PDE system to the macroscopic balance laws. To
validate these equations, we will derive Grad’s five moment equations, which will also
serve as test case of the numerical scheme designed to our PDE system. We will compare
various choices of perturbation functions in pure approximation of a given distribution
function, and then validate the PDE solutions resulting from these choices by comparison
to a fine scale discrete velocity Boltzmann-BGK solver.

4.1 Key Ideas

The Boltzmann equation poses challenges for numerical solutions because in addition to
time and space also the velocity variables need to be discretized. In moment equations
like Grad or in the equations of Euler or Navier-Stokes-Fourier, the velocity space is
replaced by a finite set of variables. The resulting equations can be viewed as an ap-
proximation to the phase space density f(x, t, c) that solves the Boltzmann equation.
Despite of the much smaller number of parameters these approximations are quite ac-
curate. This is due to scale separation and built-in physical asymptotics, see [30] and
Part 3.

As is well known, in rarefied gases scale separation breaks down and we need to extend
the number of moments to still capture the relevant physics (see [57]). However, the
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extension to higher order moments is rather complicated, as can be verified in the text-
book [51]. There are successfull approaches that build upon moment equations and use
a regularization procedure to get higher approximation order and stability (see [49], [50],
[52],[53] and Part 3). Another promising approach that is related to moment equations is
based on a parametrization with a distribution from the Pearson family instead of using
the equilibrium Gaussian, see [58]. This approach exhibits highly non-linear relations
between parameters and distribution approximation.

Discrete velocity schemes, as opposed to moment equations, are computationally expen-
sive discretizations of the velocity space. If the production term is reasonably simple
(e.g. in the BGK model), the accuracy of such schemes can be easily increased by adding
more discretization points to the velocity grid. In the setting of moment equations it is
not clear how to increase the accuracy in a simple and predictable way (see Part 3). In
more than one dimension, an accurate pointwise velocity space discretization becomes
very expensive. In the kinetic regime, where the Knudsen number Kn is large, this can
be overcome by the ’Direct Simulation Monte Carlo’ method (DSMC), as long as the
Mach number is not too low (see [6]). For lower Knudsen numbers or low Mach numbers,
the DSMC method fails and produces inaccurate results.

Another approach to make discrete-velocity-like schemes more feasible in higher dimen-
sions is described in [3]. Relatively few velocity gridpoints are used, but they are dis-
tributed in a very sophisticated way such that collisions can be simulated optimally.
This method is very successfull if we are interested in qualitative features, but lacks
quantitative accuracy. Further development on the design of discrete velocity schemes
can also be found in [38].

Approaches which allow for a hybrid treatment of the computational domain have been
developed in e.g. [15] or [31]. Such methods generally rely on splitting the spatial
domain into regions of various Knudsen numbers. Depending on the size of Kn, an
appropriate model (Euler, DSMC, BGK, etc.) is used, based on some switching rules.
Hybrid approaches clearly increase the computational efficiency and can describe differ-
ent physics in the spatial domain accurately. They furthermore overcome the problems
of breakdowns of discrete velocity schemes for low Knudsen numbers (see e.g. [34]).
The problem of finding ’good’ switching criteria between the different regions is however
challenging.

Our approach focuses conceptionally onto the closure problem of the balance laws of
mass, momentum and energy. In many approaches (e.g. discrete velocity schemes), the
conservation of these macroscopic fields poses problems. We are closing the balance laws
by computing anisotropic pressure and heat flux as moments of a model phase density
f(x, t, c), that approximates the Boltzmann-BGK density function.

Our model decomposes f in a setting of one space and one velocitiy dimension into an
equilibrium part and into higher order perturbations. In order to do this effectively, we
use a physically adaptive grid for the velocity space and then separate the equilibrium
contribution from the perturbation part. We specify:
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4.1 Key Ideas

Physical adaptivity: The shape of the distribution function f varies in space and time,
which is why a straight forward discretization of the velocity space will either have much
redundancy or will pose tedious challenges for adaptivity in every space time point. We
are using a scaled Galilei transform of the velocities

c 7→ ξ =
c− v(x, t)√

θ(x, t)

with mean velocity v and temperature θ.1 Thus we rescale f and obtain a quasi La-
grangian, moving discretization of the velocity space, where the grid automatically fo-
cusses on the support of f and therefore captures the relevant physics.

Decomposition into basis functions: Simple discretizations of f into point values do not
use any information about the shape of f . However, we have quite some information
about this shape, at least close to equilibrium, where f is (almost) a Maxwellian. Making
use of this information, we decompose the distribution function more effectively into
equilibrium and general perturbation factors,

f̂(x, t, ξ) =
ρ(x, t)√
2πθ(x, t)

exp

(
−(c− v(x, t))2

2θ(x, t)

)

︸ ︷︷ ︸
Maxwellian FM

(
1 +

N∑

α=1

κα(x, t)φα(ξ)

)
.

Observe that this decomposition gives way to a transition between discrete velocity
models (choosing Dirac functions for φα) and moment methods (choosing polynomials
for φα). Typically, this ansatz is capturing the shape of f in a more appropriate and
efficient way than either of the two. This shows well in the case of bimodal distribution
functions, where classical moment equations are known to be inaccurate or in the case of
Euler equations, where the one dimensional situation can be modelled with 3 parameters
instead of hundreds of point values.

In this context, our approach yields an intrinsically hybrid scheme for the Boltzmann
equation: it adapts automatically to regions with high non-equilibrium by increasing the
sizes of the perturbation factors, and sets these to (almost) zero in regions with (almost)
equilibrium. Like this, we can avoid the problem of finding appropriate switches, but
of course we do not gain computational efficiency, since we are solving equations for all
of the perturbation factors, even if they are close to zero. Unfortunately, asymptotic
properties of our approach are very difficult to obtain, so it is not clear so far, in which
sense the limiting scheme would indeed be a numerical approximation of the discretized
Euler equations.

Summarizing, we are reducing the computational complexity from a point value dis-
cretization to a few parameters for the functions φα. The resulting PDE system for

1These correspond to mean and variance of f .
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

κα, we call it ’constitutive equations’2, depends on the macroscopic density, velocity
and temperature, and is thus coupled to the corresponding balance laws. Its structure
is partially determined by properties of the perturbation functions φα. The choices of
these perturbation functions are almost unlimited (monomials, piecewise polynomials,
general wavelets), which poses some challenges in appropriate non-linear modelling.

Ideally, we can combine the advantages and accuracy of several models while avoiding
the major drawbacks from either of them.

This part is organized as follows: In Sect. 4.2 we will derive the PDE system for the
perturbation function coefficients κα in one space and one velocity dimension. There we
will also consider some mathematical features of this system and will take care about
compatibility between the microscopic quantities κα and the macroscopic fields ρ, v and
θ. We will then compare various perturbation functions in Sect. 4.3. Their approximation
features are examplified in a test situation of a strongly bimodal distribution function,
typically occuring in shock problems. In Sect. 4.4 we will present a numerical method to
solve the PDE system with coupling to the balance laws. Sect. 4.5 is dedicated to the
performance analysis of our numerical scheme in the setting of Grad’s 5 moment system,
which is contained as a special case of our PDE system. In Sect. 4.6, we will use our
approach with various choices of perturbation functions φα and compare the results to
those obtained through a fine scale discrete velocity BGK-solver. We will conclude in
Sect. 4.7 with an overview of what goals further research could aim at.

4.2 The Constitutive Equations

In this section, we are deriving the PDE system for the perturbation coefficients κα. We
call this system ’constitutive equations’ since it closes the balance laws with a specific
model, taking into account properties of the material that is described. First we will
transform the Boltzmann-BGK equations into a Galilei-invariant form (Sect. 4.2.1). In
Sect. 4.2.2 we will formulate our equilibrium / non-equlibrium ansatz for the distribution
function and derive (necessary and) sufficient conditions for its compatibility with the
macroscopic fields. Then, we will cast the resulting equations for κα into weak form
(Sect. 4.2.3) and couple them to the balance laws in Sect. 4.2.4.

4.2.1 Galilei-Invariant Boltzmann Equation

The Boltzmann-BGK equation (compare Part 2) reads

∂tf + c ∂x f = S(f)
BGK
=

1

τ

(
ρ√
2πθ

exp

(
−(c− v)2

2θ

)
− f

)
. (4.1)

2’Constitutive’ since these equations form a closure of the balance laws by modeling the heat flux, see
Sect. 4.2.4 for more details.
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4.2 The Constitutive Equations

As we see on the left in Fig. 4.1, the domain of dependence of f on the velocity c can
vary extensively in space and time, even in equilibrium (different temperatures and mean
velocities). This source of inefficiency for the numerical discretization can be overcome
with appropriate scaling. While (4.1) in its analytical form is Galilei-invariant, any
direct discretization with a finite velocity grid is not3. Therefore, we consider a Galilei-
invariant and sound speed scaled formulation of (4.1), which gives the proper physically
adaptive scaling for the discrete case:

c
Galilei-invariance−→ c− v(x, t)

scaling−→ c− v(x, t)√
θ(x, t)

:= ξ(x, t, c). (4.2)
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Figure 4.1: Two Gaussians, f1 with ρ1 = 1, v1 = −3, θ1 = 10 and f2 with ρ2 = 0.8,
v2 = 10, θ2 = 0.3, in dependence of c (left), and ξ (right).

The macroscopic quantities entering here are

ρ = m

∫
fdc, v = m

1

ρ

∫
cfdc, θ = m

1

ρ

∫
(c− v)2fdc. (4.3)

We denote f̂(x, t, ξ(x, t, c)) := f(x, t, c). Derivatives and integrals in (4.1) expand to

∂c f(c) =
1√
θ
∂ξ f̂(ξ), dc =

√
θ(x, t)dξ (4.4a)

∂t f = ∂t f̂ +

(
−∂t v√

θ
− 1

2

c− v
√
θ
3 ∂t θ

)
∂ξ f̂ (4.4b)

∂x f = ∂x f̂ +

(
−∂x v√

θ
− 1

2

c− v
√
θ
3 ∂x θ

)
∂ξ f̂ . (4.4c)

3In a finite grid, there are minimal and maximal velocities Cmin and Cmax. Shifting the equation
by some speed v would require a grid starting at Cmin + v and ending at Cmax + v, so the grid
formulation is not Galilei invariant.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

With the convective time derivative Dt := ∂t + v∂x, the Boltzmann-BGK equation (4.1)
turns into

Dt f̂ +
√
θξ ∂x f̂ + ∂ξ f̂

{
− 1√

θ

(
Dtv +

√
θξ ∂x v

)
− 1

2θ
ξ
(
Dtθ +

√
θξ ∂x θ

)}

= S(̂f , ρ, v, θ)
BGK
=

1

τ

(
ρ√
2πθ

exp
(
−ξ2/2

)
− f̂

)
.

(4.5)

The additional terms describe ’self-forcing’ to the invariant formulation. These terms
are the price to pay for physical adaptivity.

In the untransformed case, f contains all information about ρ, v, θ or higher moments.
From the Galilei tranformed and scaled f̂ alone we are not able to reconstruct f , since
information on v and θ is missing4. This shows by applying the transformation to the
moment definitions (4.3),

ρ =
√
θm

∫
f̂ dξ (4.6a)

ρv = m
√
θ

∫
(
√
θξ + v) f̂ dξ (4.6b)

ρθ = m
√
θ
3
∫
ξ2 f̂ dξ. (4.6c)

Observe here that (4.5) is not a closed system since it contains two more variables than
equations5. We will use and interpret (4.6) as compatibility conditions on the distribution
function f̂ and solve the problem of underdetermination in (4.5) through a coupling to
the balance laws for ρ, v and θ as derived from the untransformed Boltzmann equation
(4.1).

4.2.2 Ansatz and Compatibility Conditions

Knowing the equilibrium Maxwellian,

F̂M (x, t, ξ) =
ρ(x, t)√
2πθ(x, t)

exp
(
−ξ2/2

)
, (4.7)

we expand our distribution function f̂ into an equilibrium prefactor and a finite series of
perturbation factors6,

f̂ =
ρ√
2πθ

exp
(
−ξ2/2

)
{

1 +
N∑

α=1

κα(x, t)φα(ξ)

}
. (4.8)

4This is why the collision operator S(̂f, ρ, v, θ) depends not only on f̂, but also directly on ρ, v and θ.
5ρ can be expressed in terms of θ through (4.6).
6tThe exact mathematical meaning of this formal ansatz will be clarified in Sect. 4.2.3.
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4.2 The Constitutive Equations

The compatibility conditions (4.6) for f̂ translate into conditions on κ and φ as

N∑

α=1

κα(x, t)

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
φα(ξ)dξ = 0. (4.9)

The compatibility could also be imposed onto the perturbation functions by asking

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
φα(ξ)dξ = 0, (4.10)

which is a stronger condition than (4.9), we will see more on this in Sect. 4.3.2.

Plugging the Ansatz (4.8) into (4.5), we obtain equations for κα (use the Einstein sum
convention, see App.A.1),

(
Dtρ

ρ
− Dtθ

2θ

)
(1 + καφα) + φαDtκα +

√
θξ

{(
∂x ρ

ρ
− ∂x θ

2θ

)
(1 + καφα) + φα ∂x κα

}

+ {−ξ (1 + καφα) + κα ∂ξ φα}
{
− 1√

θ

(
Dtv +

√
θξ ∂x v

)
− 1

2θ
ξ
(
Dtθ +

√
θξ ∂x θ

)}

= S̃(κ; ρ, v, θ)
BGK
= −1

τ
(καφα) ,

(4.11)
with

S̃(κ, ρ, v, θ) =

√
2πθ

ρ
exp

(
ξ2/2

)
S(κ, ρ, v, θ)

4.2.3 Weak Formulation

The strong formulation for the Galilei-invariant and sound speed scaled Boltzmann-BGK
equation, (4.11), still contains the velocity variable ξ. With a weak formulation, a direct
discretization of ξ will not be necessary, all the information about the velocity space can
be encoded in φα and the equilibrium Maxwellian.

First, the decomposition (4.8) is to be understood in a weak L2-sense,

< φβ, f̂ >L2(ξ)=< φβ,
ρ(x, t)√
2πθ(x, t)

exp
(
−ξ2/2

)
{

1 +
N∑

α=1

κα(x, t)φα(ξ)

}
>L2(ξ), (4.12)

with < f, g >L2(ξ):=
∫∞
−∞ f(ξ)g(ξ)dξ. (4.12) corresponds to a linear system of equations

for κα with some given data < φβ , f̂ >L2(ξ).
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

In order to cast (4.11) into a weak form, we choose test functions ψβ , β = 1, ..., N and
form the scalar product 〈ψβ , (4.11)〉L2(ξ), for β = 1, ..., N . This yields (use again the
Einstein sum convention)

(
Dtρ

ρ
− Dtθ

2θ

)
(〈ψβ , 1〉 + κα〈ψβ , φα〉) +Dtκα〈ψβ, φα〉

+
√
θ

{(
∂x ρ

ρ
− ∂x θ

2θ

)
(〈ψβ , ξ〉 + κα〈ψβ , ξφα〉) + ∂x κα〈ψβ, ξφα〉

}

+
1√
θ

[
Dtv〈ψβ , ξ〉 +

√
θ ∂x v〈ψβ , ξ2〉

]
+

1

2θ

[
Dtθ〈ψβ, ξ2〉 +

√
θ ∂x θ〈ψβ, ξ3〉

]

+κα
1√
θ

[
Dtv〈ψβ , ξφα〉 +

√
θ ∂x v〈ψβ , ξ2φα〉

]

+κα
1

2θ

[
Dtθ〈ψβ, ξ2φα〉 +

√
θ ∂x θ〈ψβ, ξ3φα〉

]

−κα
1√
θ

[
Dtv〈ψβ , ∂ξ φα〉 +

√
θ ∂x v〈ψβ , ξ ∂ξ φα〉

]

−κα
1

2θ

[
Dtθ + 〈ψβ, ξ ∂ξ φα〉 +

√
θ ∂x θ〈ψβ, ξ2 ∂ξ φα〉

]

= 〈ψβ , S̃(κ, ρ, v, θ)〉 BGK= −1

τ
κα〈ψβ , φα〉

(4.13)

For simplifications of (4.13), let us define

Mµν := 〈ψµ, φν〉
M1
µν := (M−1)µλ〈ψλ, ξφν〉, M2

µν := (M−1)µλ〈ψλ, ξ2φν〉,
M3
µν := (M−1)µλ〈ψλ, ξ3φν〉

D0
µν := (M−1)µλ〈ψλ, ∂ξ φν〉, D1

µν := (M−1)µλ〈ψλ, ξ ∂ξ φν〉,
D2
µν := (M−1)µλ〈ψλ, ξ2 ∂ξ φν〉
V 0
µ := (M−1)µλ〈ψλ, 1〉, V 1

ν := (M−1)µλ〈ψλ, ξ〉,
V 2
µ := (M−1)µλ〈ψλ, ξ2〉, V 3

µ := (M−1)µλ〈ψλ, ξ3〉

Qµ :=
1√
2π

∫
ξ3e−ξ

2/2φµdξ (heat flux, used in (4.17))

(4.14)

We rename the summation index α in (4.13) to γ, multiply by (M−1)αβ , and use the
abbreviations (4.14) to obtain
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(
Dtρ

ρ
− Dtθ

2θ

)(
V 0
α + κα

)
+Dtκα

+
√
θ

{(
∂x ρ

ρ
− ∂x θ

2θ

)(
V 1
α + κγM

1
αγ

)
+ ∂x κγM

1
αγ

}

+
1√
θ

[
DtvV

1
α +

√
θ ∂x vV

2
α

]
+

1

2θ

[
DtθV

2
α +

√
θ ∂x θV

3
α

]

+κγ
1√
θ

[
DtvM

1
αγ +

√
θ ∂x vM

2
αγ

]
+ κγ

1

2θ

[
DtθM

2
αγ +

√
θ ∂x θM

3
αγ

]

−κγ
1√
θ

[
DtvD

0
αγ +

√
θ ∂x vD

1
αγ

]
− κγ

1

2θ

[
DtθD

1
αγ +

√
θ ∂x θD

2
αγ

]

= (M−1)αβ〈ψβ , S̃(κ, ρ, v, θ)〉 BGK= −1

τ
κα.

(4.15)

We replace the Dt derivatives of ρ, v and θ in (4.15) with the help of the balance laws,7

Dt



ρ
v
θ


 =




−ρ ∂x v
− θ
ρ ∂x ρ− ∂x θ

−2θ ∂x v − 1
ρ ∂x q


 , (4.16)

where the heat flux q is (compare Sect. 2.2.5)

q =

∫
(c− v)3fdc =

∫ √
θ
3
ξ3 f̂

√
θdξ = θ2 ρ√

2πθ

(
1 ·
∫
ξ3e−ξ

2/2dξ + κγ

∫
ξ3e−ξ

2/2φγdξ

)

= θ3/2 ρ√
2π
κγ

∫
ξ3e−ξ

2/2φγdξ,

(4.17)

and its derivative8

∂x q = Qγ

(
ρθ3/2 ∂x κγ + θ3/2κγ ∂x ρ+ ρκγ

3

2

√
θ ∂x θ

)
. (4.18)

Thus

Dt



ρ
v
θ


 =




−ρ ∂x v
− θ
ρ ∂x ρ− ∂x θ

− θ3/2

ρ Qγκγ ∂x ρ− 3
2

√
θQγκγ ∂x θ − 2θ ∂x v − θ3/2Qγ ∂x κγ


 . (4.19)

7The conservation laws in one space dimension can be derived analogously to the multi dimensional
recipe given in Sect. 2.2.5, σ = ρθ.

8Qγ is defined in (4.14).
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

With this substitution and some simplifications, (4.15) reformulates to

∂t κα +

(
vδαγ +

√
θM1

αγ −
√
θ

2

(
−V 0

α − κα + V 2
α + κµM

2
αµ − κµD

1
αµ

)
Qγ

)
∂x κγ

+ ∂x ρ

{
κγD

0
αγ −

1

2
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} √
θ

ρ

+ ∂x θ

{
V 3
α

2
+ κγ

M3
αγ

2
− κγ

D2
αγ

2
− 3

2
V 1
α − 3

2
κγM

1
αγ + κγD

0
αγ

−3

4
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} 1√
θ

= (M−1)αβ〈ψβ , S̃(κ, ρ, v, θ)〉 BGK= −1

τ
κα.

(4.20)

Observe that (4.20) does not depend on ∂xv anymore.

In order to densify notation and make the structure of (4.20) more clearly visible, we
introduce

W := (ρ, v, θ)T ∈ R
3, κ = (κ1, ..., κN )T ∈ R

N (4.21)

and

B(W,κ) ∈ R
N×N , C(W,κ) ∈ R

N×3 (4.22)

as

Bαγ(W,κ) := vδαγ +
√
θM1

αγ −
√
θ

2

(
−V 0

α − κα + V 2
α + κµM

2
αµ − κµD

1
αµ

)
Qγ ,

Cα1 :=

{
κγD

0
αγ −

1

2
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} √
θ

ρ
,

Cα2 := 0α

Cα3 :=

{
V 3
α

2
+ κγ

M3
αγ

2
− κγ

D2
αγ

2
− 3

2
V 1
α − 3

2
κγM

1
αγ + κγD

0
αγ

−3

4
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} 1√
θ
,

Rα(W,κ) := (M−1)αβ〈ψβ , S̃(κ, ρ, v, θ)〉 BGK= −1

τ
κα.

(4.23)

Now, (4.20) condenses to

∂tκ+B(W,κ)∂xκ+C(W,κ)∂xW = R(W,κ) (4.24)

70



4.2 The Constitutive Equations

4.2.4 Coupling to Conservation Laws

The proper balance of ρ, v and θ can be ensured, if we solve the underdetermination
problem in (4.24) by a heat flux coupling to the macroscopic balance laws. This way,
the constitutive equations (4.24) for κ become a closure of the conservation law sys-
tem – a closure that models the non-equilibrium phase space in adaptively riche scale
resolution.

The coupled system of balance laws and constitutive equations in one space and one
velocity dimensions then reads

∂tρ+ ∂x(ρv) = 0
∂t (ρv) + ∂x

(
ρv2 + ρθ

)
= 0

∂t
(

1
2ρθ + 1

2ρv
2
)

+ ∂x
[(

1
2ρθ + 1

2ρv
2
)
v + ρθv + 1

2q
]

= 0



 cons. laws

q = θ3/2ρκγQγ coupling

∂tκ+B(W,κ)∂xκ+ C(W,κ)∂xW = R(W,κ) const. equations

(4.25)

With this system, we have a formulation for any kind of perturbation functions φα.
Before we consider specific choices, we have a look at the structure of (4.25).

The conservation law part of the coupled system corresponds to Euler’s equations, ex-
tended by the heat flux q. For these equations, we call U = (ρ, ρv, ρv2+ρθ) the conserved
variables. There are one to one mappings from the primitive variables W = (ρ, v, θ) to
U and vice versa. It is usually simpler to express the flux function in the primitive
(non-conserved) variables,

F(W,κ) =




ρv
ρv2 + ρθ(

ρθ + ρv2
)
v + 2ρθv + q


 , (4.26)

For the constitutive equations, we can in general not define any flux functions, thus
structurally, (4.25) can be written as partially conservative system

∂t

(
U
κ

)
+

(
∂xF(W,κ)

B(W,κ)∂xκ+ C(W,κ)∂xW

)
=

(
0

R(W,κ)

)
(4.27)

In the case of φα being hermite functions (see Sect. 4.3.1), there exists a conservative for-
mulation of the constitutive equations. Knowing about its existence does unfortunately
not provide us with any recipe of how to construct a flux function. For general φα, we
do not even know, whether a conservative formulation exists.

It is not clear, what kind of mathematical properties we can expect for (4.27): Are
there solutions and are they unique? Are the equations (locally) hyperbolic? Is there an
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

entropy? Is there some stability? We could intuitively argue that, the coupled system
stems from the Boltzmann-BGK equation, which is hyperbolic and conservative, has an
entropy, and with that a unique entropy solution. Unfortunately, a direct translation of
these properties to our system seems unavailable. 9

To summarize, a simple standard numerical scheme for hyperbolic equations will not
be applicable to (4.27). We will design some mixed scheme in Sect. 4.4 and later vali-
date hyperbolicity, existence and stability numerically through comparisons to fine scale
discrete velocity BGK solutions. This validity will strongly depend on the strength of
dissipation we get from the right hand side, R(W,κ).

First, we are now considering more specific choices for the perturbation functions φα
and analyse their approximation features.

4.3 Choice of Perturbation Functions

The choice of appropiate perturbation functions φα is motivated through the shape of the
distribution function to approximate. One important class of distribution functions are
the bimodals. Physically, they stem from shock tube problems and occur in the (possibly
numerically diffused) shock region due to strong gradients in velocity and temperature.
It is known that e.g. moment equations have difficulty capturing bimodalities, as we will
see in more detail below.

Fig. 4.2 shows a typical bimodal distriubtion function,

f̂bimod(ξ) = 0.16241 exp
(
−0.45116(−0.8 + ξ)2

)

+ 0.812051 exp
(
−6.34444(0.6 + ξ)2

)
,

(4.28)

and the corresponding function to be approximated by φα, namely exp
(
ξ2/2

) (
f̂ −1

)
.

The bimodal (4.28) is constructed such that it satisfies the compatibility conditions
(4.9), furthermore it is normalized

∫
f̂bimod(ξ)dξ = 1. It will serve as a test case for the

approximation features discussed in the next sections. In addition to good approximation
features (mainly in the center of the plots since exp

(
−ξ2/2

)
decays very fast in the tails),

the combination of coefficients κα and perturbation functions φα also has to satisfy the
compatibility conditions. This ensures the correct micro-macro relations between f̂ and
its moments.

The discussion of approximation in the static case of f̂bimod will substantiate the approx-
imation analysis for the (time and space dependent) PDE in Sect. 4.6.

First, we now consider two choices of φα, Hermite polynomials and splines.

9An overview about hyperbolicity, stability and entropy is provided in App.A.2.
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Figure 4.2: Left: a typical bimodal distribution; Right: the effective function to approx-
imate

4.3.1 Hermite Polynomials

Hermite polynomials (see e.g. [63]) constitute a complete orthogonal set of functions in
a weighted L2 space with weight exp(−ξ2/2). They are functions of the form

f(ξ) =
1√
2π

exp(−ξ2/2)
(
a0 + a1ξ + a2ξ

2 + ...+ aN ξ
N + ....

)
, (4.29)

which (formally) corresponds to our Ansatz (4.8) with a0 = 1 and φα = ξα.

Grad (see [22]) was using a hermite series to approximate the Boltzmann distribution
function, and closed his moment systems with the help of this series (see Part 3). Intu-
itively, the hermite functions should be a good model for gas dynamics in a polynomially
disturbed equilibrium. Mathematically, they offer some nice properties (see below), but
their critical drawback is that they are functions global in ξ. As such, they are not
designed to model the multiscale behaviour of a bimodal distribution function.

Definition and Properties

The Hermite polynomials are defined as

Hn(ξ) = (−1)n exp
(
ξ2/2

) dn
dξn

exp
(
−ξ2/2

)
, (4.30)

which produces the first few polynomials
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

H0(ξ) = 1

H1(ξ) = ξ

H2(ξ) = ξ2 − 1

H3(ξ) = ξ3 − 3ξ

H4(ξ) = ξ4 − 6ξ2 + 3.
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−30

−20

−10

0
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20

30
First 5 Hermite Polynomials

One can show that the Hermite polynomials form an orthogonal set in the weighted L2

space with gaussian weight exp
(
−ξ2/2

)
, i.e.

∫ ∞

−∞
Hn(ξ)Hm(ξ) exp

(
−ξ2/2

)
dξ = n!

√
2πδnm. (4.31)

Indeed, they form a basis of this weighted L2 space.

The construction of the Hermite polynomials can be done recursively,

Hn+1(ξ) = xHn(ξ) −
d

dξ
Hn(ξ) (4.32a)

d

dξ
Hn(ξ) = nHn−1(ξ) (4.32b)

→ Hn+1(ξ) = xHn(ξ) − nHn−1(ξ). (4.32c)

Moments of a Hermite function Hn(ξ) exp(−ξ2/2) can be computed analytically with
the identities

1√
2π

∫ ∞

−∞
ξ2k exp

(
−ξ2/2

)
dξ = (2k − 1)!!,

1√
2π

∫ ∞

−∞
ξ2k+1 exp

(
−ξ2/2

)
dξ = 0, k = 0, 1, 2, ... .

(4.33)

Most practically, the Hermite polynomials satisfy the compatibility conditions (4.9):

Lemma 4.3.1.

(4.9)∀n ≥ 3 :

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
Hn(ξ)dξ = 0. (4.34)

Proof. Because of orthogonality (4.31), we immediatly obtain the result for 1 = H0,
ξ = H1 and ξ2 = H2 +H0.
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4.3 Choice of Perturbation Functions

Since the first 3 Hermite functions are absorbed into the compatibility conditions, our
first perturbation function is φ1 = H3, and for higher accuracy, we take as many more
Hermite functions as we wish. Since we want the integrals in (4.20) to remain finite,
we take weighted monomials as test functions ψα. In Grad’s approach, testing with the
first three moments 1, ξ and ξ2 yields equations for ρ, v and θ, formally equivalent to
the conservation laws. These are however already coupled to our constitutive equations,
in a convenient conservative formulation. So we choose

ψα(ξ) :=
1√
2π

exp
(
−ξ2/2

)
ξα+2, φα(ξ) := Hα+2, α = 1, 2, ..., N. (4.35)

All the matrices in (4.20) can be computed analytically with the identities (4.33).

Note that with (4.27) and (4.35), we can algorithmically construct Grad’s equations to
arbitrary orders - unfortunately not in conservative form.

Approximation Properties

In Fig. 4.3, we approximate our bimodal distribution (4.28) by a series of 4, 7 and 13 her-
mite functions. We observe a very limited capability of capturing the bimodal behaviour
with 4 functions. Using more hermite functions, we get a ’better’ approximation of the
overall behaviour, but oscillations are present, and the peak is not well resolved.

−4 −3 −2 −1 0 1 2 3 4 5
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0

0.2

0.4

0.6

0.8

1

Hermite approximation

ξ

f(
ξ)

 

 
fbimod

 4 polynomials
 7 polynomials
 13 polynomials

Figure 4.3: Examplified approximation features of Hermite functions.

In Fig. 4.4, we see the relative error

|| f̂bimod− f̂hermite ||
|| f̂bimod ||

(4.36)
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

for various numbers of Hermite functions, in the L1- and in the maximum-norm. As
expected, the convergence in the maximum norm is slower than in the L1-norm, due to
the small scale oscillations and the underresolution of the peak, observable in Fig. 4.3.
In the interesting cases of a few functions10, the convergence is rather poor, and we will
see that this can be overcome by a different choice of perturbation functions. Notice

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

#functions

re
l. 

er
ro

r

Convergence for Hermite approximation

 

 

L1 error
max error

Figure 4.4: Convergence of Hermite functions.

the slightly singular behaviour around 30 Hermite functions. This is due to numerical
instabilities in the computation of the L2-projection onto the space spanned by the
Hermite polynomials. The corresponding matrices have a very high condition number in
the area of 30 Hermite functions, which translates into oscillations in the approximation.
It is known that Hermite polynomials exhibit suboptimal numerical behaviour, as can
already be guessed from their definition, yielding (uncontrollably) high values in (4.33).

10We are focussing on not too high dimensional PDE systems in order to remain competitive with
discrete velocity solvers.
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4.3.2 Splines

The Hermite functions provide a piecewise global approximation of our distribution func-
tion. We have seen that they converge rather poorly if we are using only a few of them
(see Fig. 4.4). In this section we will consider a local, piecewise polynomial approxi-
mation through B-splines. B-splines have been developed for interpolation (see [47],
Chapter 3.7 for a general introduction), which is not what we are doing with them: in
interpolation, the task is to lay a curve through given data points. We want to model a
function without any data points given.

The locality of the B-splines will lead to a better convergence for only a few functions,
as we will carefully analyse in Sect. 4.3.4. Furthermore, B-splines exhibit some nice
mathematical features: they form a partition of unity and are (piecewise) differentiable.
In contrary to the Hermite functions, B-splines do not fullfill the compatibility conditions
(4.9), but this can be fixed (see following paragraphs).

The locality of the spline functions demands for one more discretization parameter: we
need to choose the spread of the spline functions. Since we are choosing equidistant
spline locations, spread and number of functions determine their location. The choice
of the spread is crucial, if it is too small or too large, we lose relevant information of
the distribution function. A reasonable spread is the interval ξ ∈ [−3, 3]. It can be
computed that 99.73% of the area under the Gaussian 1√

2π
e−ξ

2/2 is captured over this

interval11. With this interval, we can therefore capture the relevant information, if we
are using enough spline functions. What ’enough’ means will be discussed.

Definition and Properties

B-splines can be constructed to arbitrary polynomial order by recursion. They will
always exhibit the maximally possible degree of smoothness, given the number of pa-
rameters. We will use splines of orders 1, 2 and 3. They read

B(1)(ξ) =





1 − x
∆ξ

: 0 ≤ ξ ≤ ∆ξ

1 + x
∆ξ

: −∆ξ ≤ ξ < 0

0 : |ξ| > ∆ξ

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5
Linear B−splines with derivative

ξ
11In statistics, this fact is known as 3σ rule.
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B(2)(ξ) =





1

8

(
2 ξ

∆ξ
− 3
)2

: 1

2
∆ξ ≤ ξ ≤ 3

2
∆ξ

−
(

ξ

∆ξ

)2

+ 3

4
: − 1

2
∆ξ ≤ ξ < 1

2
∆ξ

1

8

(
2 ξ

∆ξ
+ 3
)2

: − 3

2
∆ξ ≤ ξ < − 1

2
∆ξ

0 : |ξ| > 3

2
∆ξ
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Quadratic B−splines with derivative

ξ

B(3)(ξ) =





− 1

6∆ξ3 (ξ − 2∆ξ)3 : ∆x ≤ ξ ≤ 2∆ξ
2

3
+ ξ2 ξ−2∆ξ

2∆ξ3 : 0 ≤ ξ < ∆ξ
2

3
− ξ2 ξ+2∆ξ

2∆ξ3 : −∆x ≤ ξ < 0
1

6∆ξ3 (ξ + 2∆ξ)3 : −2∆x ≤ ξ < −∆ξ

0 : |ξ| > 2∆ξ
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Cubic B−splines with derivative

ξ

In the figures next to the formulae we see the spline functions (solid line) and their
derivatives (dashed). For computational efficiency, it is crucial to have the invariant
formulation in ξ, allowing for an invariant set of splines at all space and time points.

In Fig. 4.5 we see how our bimodal test curve (4.28) is approximated through a set of 4, 7
and 13 splines. Whereas the hermite approximations had severe problems resolving the
’peak’ (compare Fig. 4.3), the splines exhibit higher accuracy there. Note that the choice
of 4, 7 and 13 splines is not just arbitrary, but follows a hierarchy principle. We are
using a minimum of 4 splines, a finer approximation uses the same 4 spline and fills the
gaps in between them, leading to 7 splines, and so on. Without this hierarchy, we would
not get any reasonable convergence behaviour for general distribution functions.

In Fig. 4.6, we compare the relative errors of approximation in numbers of splines in
the maximum and in the L1-norm. Both norms show approximately the same orders of
convergence. The choice of degree has more impact onto the maximum norm, but its
effect seems difficult to predict. Since the PDE approximation will be more delicate, it
is not evident that higher polynomial degrees will perform better there.

A full comparison between convergence rates of hermite and various spline approxima-
tions for the PDE system can be found later in Sect. 4.6.
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Figure 4.5: Various numbers of linear (left top), quadratic (right top) and cubic (bottom)
splines approximate a bimodal test curve. The grid of spline centers ranges
from ξ = −3 to ξ = 4.
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Figure 4.6: Convergence analysis for 4, 7, 13, 25, 49, 97 splines in maximum- (left) and
L1-norm (right).
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4.3.3 Compatibility Conditions

So far, we have not been considering any compatibility between the spline model for
f̂ and the macroscopic fields ρ, v and θ. Such compatibility can be obtained in two
ways: either by choosing a linear combination of B-splines that fullfills (4.10) (sufficient
condition), or by projecting the coefficients κα onto the linear subspace that satisfies
(4.9) (necessary and sufficient condition). We will analyze both methods in terms of
their approximation features.

Compatible Linear Combination

We can make any set of perturbation functions φα compatible by considering a linear
combination of four such functions,

φcompα = a0(α)φα(ξ) + a1(α)φα+1(ξ) + a2(α)φα+2(ξ) + a3(α)φα+3(ξ), α = 1, ..., N − 3.
(4.37)

To compute the coefficients ai(α), we consider ã3(α) = 1 and solve the following linear
systems for ã0(α), ã1(α), ã2(α):

2∑

j=0

ãj(α)

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
φα+j(ξ)dξ = −

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
φα+3(ξ)dξ

α = 1, ..., N − 3
(4.38)

These systems are well posed, if the perturbation functions φα are linearly independent
and not all contained in the orthogonal complement to (1, ξ, ξ2). Had we chosen only
3 coefficients in (4.37), the resulting system would either be homogenous (3 unknown
coefficients and zero right hand side) and yield only the trivial solution, or it would
be non-quadratic (2 unknown coefficients, 1 right hand side) and only two of the three
compatibility conditions could be satisfied.

After determinig ã0(α), ã1(α) and ã2(α) through (4.38), we balance

a0(α) =
ã0(α)√

ã0(α)2 + ã1(α)2 + ã2(α)2 + 1
, a1(α) =

ã1(α)√
ã0(α)2 + ã1(α)2 + ã2(α)2 + 1

a2(α) =
ã2(α)√

ã0(α)2 + ã1(α)2 + ã2(α)2 + 1
a3(α) =

1√
ã0(α)2 + ã1(α)2 + ã2(α)2 + 1

.

(4.39)
Determining ai(α) is quite some effort that, however, needs to be paid only once in every
(PDE) computation: due to the invariant formulation, φα is independent of space and
time, and the linear combinations can be computed once and for all in the beginning.

In Fig. 4.7, we see some typical shapes of the functions φcompα for various α. Note that
any effects occuring at the boundaries of the computational domain do not influence
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our results by much since the Gaussian e−ξ
2/2 exhibits a very fast decay. The loss of

information through using only N − 3 functions φcomp compared to N functions φ is not
relevant for high N , but can make a difference for small N .
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Constrained Quadratic Splines

Figure 4.7: Linear (left) and quadratic (right) compatible B-splines

Subspace Projection

We can also directly impose (4.9) on the coefficients κα. This yields a necessary and
sufficient condition for compatibility.

Mathematically, we satisfy (4.9) by orthogonally projecting the non-compatible parts of
the coefficients onto the kernel of the 3 ×N -matrix

A.,α =

∫ ∞

−∞




1
ξ
ξ2


 exp

(
−ξ2/2

)
φα(ξ)dξ. (4.40)

Technically, we do a singular value decomposition A = USV T , with orthogonal U and
V (see e.g. [42]). Since A will have rank 3 if the φα are linearly independent and not all
L2-orthogonal to (1, ξ, ξ2), the columns 4 till N of V are an orthogonal basis of the kernel
of A, and we can easily project our coefficients κα onto that space (µ = 1, ..., N − 3),

κprojα = Vγ,µ+3κγVα,µ+3. (4.41)

The projector P onto the kernel of A can thus be written as

Pαγ := Vα,µ+3V
T
µ+3,γ , (4.42)

and κproj = Pκ.12

12Remark that we could also construct a projector via the pseudo inverse of A, as done in Sect. 3.3. This
does not necessarily lead to the same projector as the above construction.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

Note, that the singular value decomposition of A is again done once in the beginning of
a PDE computation since the matrix A is space and time independent. The projection,
which is a matrix vector multiplication, needs to be done at every space-point and every
time step.

Fig. 4.8 shows the relative difference of the projected and unprojected coefficients for
spline degrees 1, 2 and 3. The compatible subspace grows richer and richer with the
number of perturbation functions since the number of constraints remains the same.
Therefore, we can expect that the difference between projected and unconstrained κα
will decrease if we are using more perturbation functions. Despite that the difference is
small in this setting of approximating one bimodal, it is essential to remain compatible
in the PDE system where the errors add up in every time step.
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Figure 4.8: Relative error of unconstrained and projected κ, approximating fbimod with
13 spline functions.

4.3.4 Discussion

Which Spline Approach?

In Fig. 4.9, we see that there is no significant difference between the 3 approaches (uncon-
strained spline, projected spline and constrained spline) up to the use of 25 perturbation
functions. There is no clear advantage in terms of approximation of the projected (neces-
sary and sufficient) compatibility and the (sufficient) compatibility enforced on the single
perturbation functions φα. Neither is there any significant difference in the polynomial
degree for the shown L1-errors. Given these figures, it seems reasonable to choose the
most simple version, i.e. the projected splines of polynomial degree 1.
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There are two more features that are nicely visible in Fig. 4.9. One is the saturation
effect that becomes more and more pronounced with higher polynomial degrees for the
unconstrained splines. This is due to two effects at the boundary: around the boundary
of the spline domain, the splines are not a partition of unity anymore (we do not consider
fractional splines). Cubic splines need an overlap of four functions to yield unity on some
interval, quadratic splines need three and linear splines need two functions. Therefore,
for higher polynomial degrees, the area at the boundary without the partition of unity
property is larger, this causes a part of the stagnation in convergence at high numbers
of splines. The more significant part comes from the tail contribution of fbimod. We only
have a finite intervall with splines, and therefore do always have some approximation
errors due to the non-zero (but exponentially decaying) tails.
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Figure 4.9: Convergence comparison for 4, 7, 13, 25, 49, 97 splines at polynomial degrees
1 (top left), 2 (top right) and 3 (bottom), unconstrained, projected and
constrained versions.

The other effect is the opening gap between constrained and unconstrained approxi-
mations. This gap becomes visible for higher numbers of splines due to the increased
accuracy (we see a loglog plot). One could wonder why there is a difference at all be-
tween the three methods since fbimod is compatible. When we project fbimod to the
spline functions (sub)space, this hapens L2-optimally in terms of approximation accu-
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racy. The compatibility projection now applies to the reduced spline space, which does
not necessarily gain approximation quality towards the full (compatible) function space
this way. Compatibility on the full space does not yield exactly the same restrictions
as compatibility on the subspace. The same argument holds for the compatible φα’s:
we again ensure compatibility on a subspace, which does not necessarily improve this
subspace’s approximation features in view of the full (compatible) space. But as we see
in Fig. 4.9, the difference is negligible in comparison to the conceptional advantage we
gain with compatible approximation.

Hermite or Splines?

Mathematically, Hermite functions offer very nice properties and seem a natural choice
because they fulfill the compatibility conditions without further ado. They also lead to a
very nice set of PDE’s, the Grad equations. Conceptionally, splines have the advantage of
being local approximations. This makes them much more flexible to adapt to multiscale
phenomena, as we have it in our bimodal distribution function. Mathematically they
may be inferior to the concept of Hermite functions, but modelwise they clearly are the
method of choice.

The numerical convergence analysis in Fig. 4.10 complies with these arguments: The
L1-convergence is significantly better for the splines in the interesting order of spline
numbers (10 to 20). The maximum-norm convergence depends on the polynomial degree
of the splines. For polynomial degree 1, we have no significant difference between the
splines and Hermite (again in the interesting regime); for polynomial degree 2 a small
difference in favour of the splines is visible also for the maximum-norm error.

It would be venturesome to conclude from this pure approximation analysis to a specific
choice of perturbation functions, namely B-splines – the PDE will most likely exhibit
features that are not captured here. The more realistic analysis of the PDE results in
Sect. 4.6 will indeed suggest, that splines exhibit good approximation features for shock
tube problems, but that Hermite functions on the other hand are more accurate for cases
with smooth solutions.
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Figure 4.10: Convergence comparison for 4, 7, 13, 25, 49, 97 splines at polynomial degrees
1 (top), and 2 (bottom) with Hermite functions.
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4.4 Numerical Methods

In this section, we will review some basics for numerical schemes to solve hyperbolic
conservation laws. Focusing on approximate Riemann solvers (Sect. 4.4.1), we will extend
the Rusanov scheme (Sect. 4.4.2) to yield solutions of our partially conservative system
(4.27). We will motivate this extension through a linear stability analysis in Sect. 4.4.3.

4.4.1 Basic Definitions

In order to motivate a discretization for our system (4.27), we first consider quasilinear
systems of hyperbolic conservation laws

∂tu+ ∂xf(u) = 0, u(x, 0) = u0(x) (4.43)

with R × R
+
0 ∋ (x, t) 7→ u(x, t) ∈ R

m a possibly discontinuous solution and R
m ∋ u 7→

f(u) ∈ R
m the flux function. Hyperbolicity means that the eigenvalues of the Jacobian

Df(u) are real, quasilinearity means that f depends on (x, t) only through u. Derivatives
are understood in the weak sense.

Solutions to (4.43) are not uniquely determined by initial data and flux function f . We
select so called vanishing viscosity solutions, which are limits as ε → 0+ of the viscous
system

∂tu+ ∂xf(u) = ε∂xxu. (4.44)

Such solutions satisfy an entropy inequality,

∂tη(u) + ∂xh(u) ≤ 0, (4.45)

with a convex entropy function R
m ∋ u 7→ η(u) ∈ R. R

m ∋ u 7→ h(u) ∈ R is called
entropy flux.

For the discretization of (4.43), we consider 3-point explicit finite volume schemes

un+1
j = unj −

∆t

∆x

(
Fj+1/2 − Fj−1/2

)
, (4.46)

where Fj+1/2 = F (unj , u
n
j+1), Fj−1/2 = F (unj−1, u

n
j ) is a numerical flux function.

Space and time are discretized by means of lattices {x0 + j∆x, j ∈ {0, 1, ..., J}} and
{n∆t, n ∈ {0, 1, ..., N}}, and unj is a cell average,

unj =
1

∆x

∫ xj+1/2

xj−1/2

u(x̃, n∆t)dx̃, (4.47)

with xj±1/2 = x0 +
(
j ± 1

2

)
∆x.
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Definition 4.4.1. (Consistency)
F is called consistent with f if F (u, u) = f(u).

Every consistent numerical flux F can be written as

F (u, v) =
f(u) + f(v)

2
+ d(u, v), d(u, u) = 0. (4.48)

Definition 4.4.2. (Stability)
An arbitrary explicit numerical time stepping scheme of the type

un+1
j = H∆t(u

n; )

is called stable (in the sense of Lax-Richtmeyer, see [35]), if for n evaluations of H∆t,
Hn

∆t, we have
||Hn

∆t(u)|| < CLR||u||.
Here, ||.|| is some norm and CLR ∈ R a constant independent of n..

A theorem by Lax and Wendroff (see [27]), states that limits of the scheme (4.46) solve
the weak form of (4.43) if the numerical flux is Lipschitz continuous, consistent with
the continuous flux and the scheme produces approximations with finite total variation
in space. Furthermore the discrete values converge to a vanishing viscosity solution of
(4.43), if there is a discrete entropy flux consistent with the continuous entropy flux and
a corresponding discrete version of (4.45).

Scalar linear Advection

To construct specific schemes, let us consider a scalar linear advection equation with
constant velocity a,

∂tu+ ∂x(au) = 0, u(x, 0) = u0(x). (4.49)

The solution to this equation reads u(x, t) = u0(x− at) and describes the advection of a
profile u0(x) at (signal) velocity a. The solution at time t in the point x is influenced by
the values of u0 in the (analytic) domain of dependence [x−at, x], [x, x−at] respectively
for a > 0 and a < 0.

A necessary condition for convergence of any numerical scheme is that the numerical
domain of dependence is included in the analytical domain of dependence. A useful tool
to verify this property is the CFL number:

Definition 4.4.3. (CFL number)
The CFL (Courant-Friedrich-Lewy) number of a scheme is

CFL = a
∆t

∆x
. (4.50)
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

If CFL < 1, the inclusion property is satisfied and within one time step ∆t, the profile
does not travel further than the size of a space cell ∆x. Note that the CFL condition
gives us a maximal possible time step depending on ∆x and a for 3-stencil schemes like
(4.46). The faster the signal velocity or the finer the space grid, the smaller we must
choose ∆t.

A straight forward discretization of (4.49) can be achieved through a central difference
scheme in space,

un+1
j − unj

∆t
+ a

unj+1 − unj−1

2∆x
= 0. (4.51)

A Taylor expansion in space of unj+1 − unj−1 around xj yields the modified equation

∂tu+ a∂xu = −a1

6
∆x2∂3

xu. (4.52)

Apart from other drawbacks, the discretization through central differences does not lead
to a vanishing viscosity solution, there is no diffusive term ε∂xx involved in (4.52). We
therefore correct the central difference scheme (4.56) in order to obtain such a contribu-
tion,

|a|
∆x

(
unj+1 − 2unj + unj−1

)
−→ |a|∆x∂xxu (4.53)

and obtain

un+1
j − unj

∆t
+
a

2

unj+1 − unji−1

∆x
=

1

2
|a|∆x

unj+1 − 2unj + unj−1

∆x
. (4.54)

This scheme is called ’upwind scheme’ and can be written as

un+1
j = unj −

∆t

∆x

[
a−
(
unj+1 − unj

)
+ a+

(
unj − unj−1

)]
, (4.55)

with a+ = max(a, 0) = 1
2 (a+|a|) and a− = min(a, 0) = 1

2(a−|a|). Depending on the sign
of a, this corresponds to using a forward difference unj+1 − unj (upwind) or a backward
difference unj − unj−1 (downwind).

With the diffusive correction, we obtain the desired form of the modified equation,

∂tu+ a∂xu = |a|∆x∂2
xu+ O(∆x3). (4.56)

Diffusion has a stabilizing effect on a numerical scheme, as can be seen through a von
Neumann analysis. For this, consider the Fourier transform u(x, t) =

∫
eikxû(k, t)dk and

derive an ordinary differential equation in time for û. For the upwind scheme (4.54),
this yields a stable ordinary differential equation,

∂tû(k, t) = −aikû(k, t) − ∆xk2û(k, t). (4.57)

For the central difference scheme (4.56), we would obtain

∂tû(k, t) = −aikû(k, t) + i∆xk3û(k, t), (4.58)
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which causes oscillations without stabilization.

The equation (4.54) can be written in flux-form (4.46) with the numerical flux function

F (u, v) =
a

2
(u+ v) +

1

2
|a| (u− v) . (4.59)

System of Linear Advection Equations

With the form (4.59), we can generalize the upwind scheme for the linear scalar case
(4.49) to a linear system

∂tu+ ∂x(Au) = 0. (4.60)

Now we have u ∈ R
m and a constant matrix A ∈ R

m×m. We can solve this sys-
tem analytically by decoupling it into m equations according to the eigendecomposition
A = TΛT−1. Λ is the diagonal matrix of the eigenvalues λ1, ..., λm of A and T the
corresponding transformation13. With the definitions |A| = T |Λ|T−1, we can construct
a consistent numerical (upwind) flux

F (u, v) =
1

2
A (u+ v) − 1

2
|A| (v − u) . (4.61)

The CFL condition now translates into a relation between the largest absolute eigenvalue
of A and the space-time discretization.

Non-linear Systems

Generalizations of the numerical schemes to the non-linear case (4.43) require more
sophisticated ideas. In [21], S. K. Godunov designed a scheme that considers non-linear
Riemann problems with the analytic flux function f between all space cell interfaces,

∂tu+ ∂xf(u) = 0, u(x, 0) =

{
unj x < xj + 1/2∆x

unj+1 x > xj + 1/2∆x

⇓
uRiemannj+1/2 (x, tn + ∆t).

(4.62)

At every time step, these intercell Riemann problems are solved, and new cell averages
are computed. The time step has to be chosen such that the Riemann problems do not
interact between more than one cell, which corresponds to CFL < 1.

Solving all these non-linear Riemann problems exactly is very costly and not always
mathematically easy: depending on the structure of f , we get a solution that is a
combination of shock waves, rarefaction waves and contact discontinuities, see [16]. In

13Note that hyperbolicity requires diagonalizability of A.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

the case where f is a linear function, f(u) = Au, this simplifies to a combination
of discontinuities according to the eigendecomposition of A, and the Godunov scheme
reduces to the upwind scheme (4.59).

Since cell averageing smears out a lot of details of the exact Riemann problem solutions,
we want to design approximate Riemann solvers. For this, we consider the integral
consistency condition (see [27])

∫ xj+1

xj

wapprj+1/2(x, t+ ∆t)dx
!
=

∫ xj+1

xj

uRiemannj+1/2 (x, t+ ∆t)dx

=
∆x

2

(
unj + unj+1

)
− ∆tf(unj+1) + ∆tf(unj ),

(4.63)

where the second equation follows from integration of (4.43) over t ∈ [t, t + ∆t] and
x ∈ [xj ,Xj+1].

One specific approximate Riemann solver is proposed in [27] by Harten, Lax and van Leer
(HLL scheme). There, we need lower and upper bounds aL and aR for the largest signal
velocities and approximate the exact Riemann solution by one intermediate state,

wapprj+1/2(x/t, u
n
j , u

n
j+1) =





uj : x/t < aL(unj )

ũ : aL(unj ) < x/t < aR(unj+1)

uj+1 : aR(unj+1 < x/t

(4.64)

The value of ũ follows from the consistency condition (4.63) and leads to a numerical
flux function

FHLL(uL, uR) =
1 + α

2
f(uL) +

1 − α

2
f(uR) +

β

2
(uR − uL) , (4.65)

with

α =
|aL| − |aR|
aL − aR

, β =
aR|aL| − aL|aR|

aL − aR
. (4.66)

The HLL scheme can be simplified by taking a = max(|aL|, |aR|) and then setting
aL = −a and aR = a. This yields the Rusanov scheme (see e.g. [35]) with the numerical
flux function

FRUS(uL, uR) =
1

2
(f(uL) + f(uR)) − a

2
(uR − uL) , (4.67)

In full, the Rusanov scheme reads

un+1
j − unj

∆t
+
f(unj+1) − f(unj−1)

2∆x
=

1

2
a
unj+1 − 2unj + unj−1

∆x
. (4.68)

This exactly corresponds to the upwind scheme in the scalar, linear advection case (4.54).
So the Rusanov scheme is again a diffusion stabilized central difference approximation
of the space derivatives, combined with an explicit Euler time update.

The diffusion operator for a (non-linear) system is simply approximated through the
largest signal speed. The application of this approximate Riemann solver is much simpler
than using a very complicated operator derived from the flux function f or using some full
matrix diagonalization of the flux jacobian as examplified in the linear case of (4.61).
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4.4.2 Scheme for the Coupled System

We will now use the ideas behind the Rusanov scheme to construct a diffusion stabilized
central difference scheme for our equations (4.27). We had

∂t

(
U
κ

)
+

(
∂xF(W,κ)

B(W,κ)∂xκ+ C(W,κ)∂xW

)
=

(
0

R(W,κ)

)
,

with

F(W,κ) =




ρv
ρv2 + ρθ(

ρθ + ρv2
)
v + 2ρθv + q


 .

We suggest the following mixed scheme

Un+1
j = Unj +

∆t

∆x

(
FRUS(W n

j−1,W
n
j ;κnj−1, κ

n
j ) − FRUS(W n

j ,W
n
j+1;κ

n
j , κ

n
j+1)

)

κn+1
j = κnj +B(W n+1

j , κnj )
∆t

2∆x

(
κnj−1 − κnj+1

)
+

1

2
s(n)

(
κnj−1 − 2κnj + κnj+1

)

+ C(W n+1
j , κnj )

∆t

2∆x

(
W n+1
j−1 −W n+1

j+1

)
+R(W n+1

j , κnj )

(4.69)

with

FRUS(Wl,Wr;κl, κr) =
1

2
(F(Wl, κl) + F(Wr, κr))

− s(Wl,Wr)

2
(U(Wr) − U(Wl)) .

(4.70)

As in Sect. 4.2.4, we use the primitive variables W = (ρ, v, θ)T and the conservative ones
U = (ρ, ρv, ρv2 + ρθ)T .

The maximum signal velocity a(Wl,Wr) can be obtained through the primitive formu-
lation of Euler’s equations, which are the conservation laws without the heat flux q,

∂t



ρ
v
θ


+




v ρ 0
θ/ρ v 1
0 2θ v




︸ ︷︷ ︸
A

∂x



ρ
v
θ


 =




0
0
0


 . (4.71)

The eigenvalues of the matrix A are v, v+
√

3θ, v−
√

3θ, with the sound speed
√

3θ. If
we are just choosing the Euler speeds for s, we will in general underestimate the effective
signal velocities, that are also influenced by non-linear terms. We are choosing a safety
factor of

√
3 for the conservation law update,

s(Wl,Wr) = max
(
|vr + 3

√
θr|, |vl − 3

√
θl|
)
. (4.72)

The value of s(n) in the diffusive part for the κ update is chosen as maximum signal
velocity of all space points,

s(n) = max
j∈{0,1,...,J−1}

(
s(W n

j ,W
n
j+1)

)
. (4.73)
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

The time step ∆t can then be chosen adaptively according to the given CFL-condition
and the computed value of s(n). If s(n) has been underestimated, this will show through
instabilities in the numerical solution, in such a case, the CFL-condition can be adapted
to a smaller value or the safety factor in (4.72) can be increased.

System (4.69) mimics the construction of the Rusanov scheme: The balance law part is
discretized through the Rusanov scheme, additionally we put the heat flux q(W,κ) inside
the physical flux function F . This corresponds to a direct central difference discretization
of q.

The equation for the perturbation coefficients κ is discretized through a central difference
in the κ and W variables. Adding diffusion only to the κ part and not to the W variables
is the same as adding diffusion to the diagonal only, which is what happens in the
Rusanov scheme.

A stability analysis for a linear model is done next in Sect. 4.4.3 and will motivate the
choice of W n+1 in the time-update of κ. Numerical justification for our scheme will come
from the results in Sect. 4.5 and Sect. 4.6.

Physically, the additional diffusion term is motivated by the regime of moderate Knudsen
numbers that we are interested in. In this regime, shocks are smoothed by physical
diffusion from the right hand side term, so the problems caused by strong discontinuities
can be essentially avoided.

There are approaches to more generally deal with non-conservative systems, however it
seems that there, a lot of additional information about the underlying physical structure
of the system (dissipation mechanisms) becomes necessary (see [18]).

4.4.3 Stability Analysis in a Linear Model

In this section, we are considering a stability analysis for the scheme derived in Sect. 4.4.2
in a linear setting,

∂t

(
u
v

)
+

(
a b
c d

)
∂x

(
u
v

)
=

(
0

− 1
τ v

)
, a, b, c, d > 0. (4.74)

Adding diffusion to one spatial derivative corresponds to using a linear upwind discretiza-
tion instead of a central difference approximation for that derivative.

Solving (4.74) with the scheme (a, b, c, d > 0)

un+1
i = uni +

∆t

∆x
a(uni−1 − uni ) +

∆t

2∆x
b(vni−1 − vni+1)

vn+1
i = vni +

∆t

2∆x
c(un+1

i−1 − un+1
i+1 ) +

∆t

∆x
d(vni−1 − vni ) − 1

τ
vni

(4.75)

thus corresponds to solving our full equation with the scheme described in Sect. 4.4.2.

92



4.4 Numerical Methods

For the stability analysis of this scheme, we consider the two parameters

ν := a
∆t

∆x
, r :=

∆t

τ
(4.76)

ν and r describe the freedom in the choice of discretization (∆x, ∆t) and relaxation time
τ . A von Neumann analysis allows us to compute the L2-norm of the update operator
and plot the combinations of ν and r where this norm is less than one. We see the
domain of stability for the above scheme on top in Fig. 4.11 (parameters a = c = d = 1,
b = 2).

In order to motivate the choice of (4.75), we compare this scheme to two slightly varied
schemes. For a first variation, we replace the values un+1 in the equation for v by un,
which yields the scheme

un+1
i = uni +

∆t

∆x
a(uni−1 − uni ) +

∆t

2∆x
b(vni−1 − vni+1)

vn+1
i = vni +

∆t

2∆x
c(uni−1 − uni+1) +

∆t

∆x
d(vni−1 − vni ) − 1

τ
vni

(4.77)

Another version can be obtained by leaving the time updates as in (4.75), but using a
diffusionless central difference approximation for the v-equation:

un+1
i = uni +

∆t

∆x
a(uni−1 − uni ) +

∆t

2∆x
b(vni−1 − vni+1)

vn+1
i = vni +

∆t

2∆x
c(un+1

i−1 − un+1
i+1 ) +

∆t

2∆x
d(vni−1 − vni+1) −

1

τ
vni

(4.78)

In order to compare the 3 different schemes, we choose the parameters a = c = d = 1
and b = 2 and plot the domain of stability in dependence of r and ν in Fig. 4.11. Scheme
(4.75) (top) allows us to use the highest CFL for very high τ values (small r values),
and is therefore the scheme of our choice. Scheme (4.78) (middle) performs better for
smaller τ (large r values), but that is not our primary interest. The performance of
scheme (4.77) (bottom) is worse than the one of the other schemes.

The analysis presented in this section motivates the choice of our scheme (4.69) in a
linear setting. Even though there are highly non-linear effects in our coupled system
(4.27), the linear parts still contribute an important part to stability considerations. In
this sense, the above results for the linear analysis are extended to the non-linear case.

4.4.4 Second and Higher Order

The HLL or Rusanov schemes as presented in Sect. 4.4.1 are of first order in space and
time. An extension to second order is usually done with so called ’flux limiters’ (see e.g.
[35]). Our system, that is not in conservation form, can also be discretized to second
order. We simply take the scheme (4.69), keep the central difference terms (which are
already of second order) and do a second order reconstruction for the diagonal diffusive
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Figure 4.11: Domains of stability for the schemes (4.75) on top, (4.78) in the middle and
(4.77) at the bottom. The parameters are a = c = d = 1 and b = 2.

part. The time update can then be done with the Heun method or other second order
(Runge-Kutta) schemes, see [47]. Since modeling, and not numerics is our main focus,
we will not consider second order extensions in the present work.
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4.5 Grad5 - A Test Problem

In this section we will validate that the coupled system (4.25) contains Grad’s equations
for 5 moments if we choose the perturbation functions φα as Hermite functions. However,
the resulting Grad system will not be in conservative form.

Grad’s equations can be derived in conservative form directly from the Boltzmann equa-
tion (see [22]). There are various numerical solvers that work very well with these
equations, among others the Rusanov and the HLL scheme from Sect. 4.4.

We will use the scheme (4.69) as developed in Sect. 4.4 and compare the results to
Rusanov and HLL computations on the conservative formulation of Grad. Our test
cases are a periodic system with smooth initial conditions and a shock tube problem.
This way, we can get an idea of the scheme induced numerical error.

4.5.1 Grad Equations for 5 Moments

The derivation of Grad’s equations directly out of the Boltzmann equation is straight
forward, but needs some calculative efforts, especially in higher dimensions or for com-
plicated collision kernels (see [22]). We can obtain a reformulation of Grad’s equations
through our PDE system (4.25), if we consider Hermite functions as perturbation func-
tions φα and weighted monomials 1√

2π
e−ξ

2/2ξβ as test functions ψβ . We will now explic-

itly do this for the 5 moment case in one space and one velocity dimension with a BGK
collision kernel.

For simplification, we are using normalized Hermite functions

H3(ξ) =
1√
6

(
ξ3 − 3ξ

)
, H4(ξ) =

1√
24

(
ξ4 − 6ξ2 + 3

)
. (4.79)

and define

ψ1(ξ) =
1√
2π

exp
(
−ξ2/2

)
ξ3, φ1(ξ) =

1√
6

(
ξ3 − 3ξ

)
,

ψ2(ξ) =
1√
2π

exp
(
−ξ2/2

)
ξ4, φ2(ξ) =

1√
24

(
ξ4 − 6ξ2 + 3

)
.

(4.80)

With the help of a computer algebra programm like Mathematica, it is easy to analyti-
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cally compute the corresponding matrices (4.14) and obtain the equations14,

∂tκ1 +

(
v − 3

√
3

2

√
θκ1

)
∂xκ1 + 2

√
θ∂xκ2 +

√
θ

ρ

(
−3

√
3

2
κ2

1 + 2κ2

)
∂xρ

+
1√
θ

(√
3

2
− 9

2

√
3

2
κ2

1 + 4κ2

)
∂xθ = −1

τ
κ1

∂tκ2 +

(
5
√
θ −

√
3

2

√
θ
(√

6 + 4κ2

))
∂xκ1 + v∂xκ2 +

√
θ

ρ

(
3κ1 −

√
3

2
κ1

(√
6 + 4κ2

))
∂xρ

+
1√
θ

(
21

2
κ1 −

3

2

√
3

2
κ1

(√
6 + 4κ2

))
∂xθ = −1

τ
κ2.

(4.81)

Considering the full set of coupled equations, (4.25), we obtain a primitive formulation
of Grad’s 5-moment-equations, if we combine (4.81) with the conservation laws15 in
primitive form,

∂tρ+ v ∂xρ+ ρ ∂xv = 0

∂tv + v ∂xv +
θ

ρ
∂xρ+ ∂xθ = 0

∂tθ + v ∂xθ + 2θ ∂xv +
√

6θ3/2∂xκ1 +
3
√

6

2

√
θκ1∂xθ +

√
6

ρ
θ3/2κ1∂xρ

︸ ︷︷ ︸
1
ρ
∂xq

= 0.
(4.82)

A direct derivation of Grad’s equations in conservative form for the BGK model leads
to (compare e.g. [58])

∂tρ+ ∂xρv = 0

∂tρv + ∂x
(
ρv2 + ρθ

)
= 0

∂t
(
ρv2 + ρθ

)
+ ∂x

(
ρv3 + 3ρθ v + q

)
= 0

∂t
(
ρv3 + 3ρθv + q

)
+ ∂x

(
ρv4 + 6ρθ v2 + 4q v + ∆ + 3ρθ2

)
= −1

τ
q

∂t
(
ρv4 + 6ρθ v2 + 4q v + ∆ + 3ρθ2

)

+∂x
(
ρv5 + 10ρθ v3 + 10q v2 + 5(∆ + 3ρθ2) v + 10 θ q

)
= −1

τ
(∆ + 4v q) ,

(4.83)

14For some intermediate steps, see App.A.5
15with the replacement of q in terms of κ according to (4.85)
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and in primitive form

∂tρ+ v ∂xρ+ ρ ∂xv = 0

∂tv + v ∂xv +
θ

ρ
∂xρ+ ∂xθ = 0

∂tθ + v ∂xθ + 2θ ∂xv +
1

ρ
∂xq = 0

∂tq + v ∂xq + 3ρ θ ∂xθ + 4q ∂xv + ∂x∆ = −1

τ
q

∂t∆ + v ∂x∆ + 6q ∂xθ + 5∆ ∂xv + 4θ ∂xq − 4
q θ

ρ
∂xρ = −1

τ
∆.

(4.84)

One can compute that these variables relate to the κ variables in (4.81) through

q =

∫ ∞

∞
(c− v)3fdc =

√
6ρθ3/2κ1, ∆ =

∫ ∞

∞
(c− v)4fdc− 3ρθ2 = 2

√
6ρθ2κ2, (4.85)

where q is the physical heat flux. The fourth order moment ∆ has no direct physical
meaning.

With the relations (4.85) and the help of the balance laws for replacing time derivatives
of ρ, v, θ, we can indeed show the equivalence of (4.84) to (4.81) combined with (4.82).

Note here that with the general formulation of (4.25), we can derive Grad’s equations
algorithmically to arbitrary order. This can be useful for a numerical convergence anal-
ysis in number of functions of the Hermite series ansatz, which we will do in Sect. 4.6.2.
The resulting PDE system will not be in conservative form which, as we will see in the
next section, increases the discretization error.

4.5.2 Numerical Comparison for Grad5

We will now numerically compare schemes for the 5-moment-system of Grad.

We are considering the HLL scheme (see (4.64) and (4.65)) for the conservative form
(4.83) and check whether the slightly more simple Rusanov scheme (see (4.68)) performs
similarly well. We then compare these two numerical solutions for the conservative
formulation to the mixed scheme that we derived in Sect. 4.4.2, (4.69).

This comparison will yield an idea of the error induced through the different formulations
of Grad solved with different schemes, before we apply the mixed scheme (4.69) to more
general Hermite and spline discretizations in Sect. 4.6.

Systematically, we will observe two sources of errors:

1) The equations for the perturbation coefficients κ are different to the conservative
system of Grad, they relate as q =

√
6ρθ3/2κ1, ∆ = 2

√
6ρθ2κ2. This formulations

are not equivalent if we consider general weak solutions. We expect that the
difference of the two schemes varies with the relaxation time τ .
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

2) Discretization error (finite ∆x, finite ∆t). Also this error can vary with τ .

Error source 1) will combine with source 2). To analyze this combination, we look at
comparisons between the schemes in a sequence of various discretizations ∆x. As soon
as we get a staable plateau in this sequence, we have a clear picture of 1). We will
analyze 2) separately with convergence studies in ∆x.

More precisely, for the convergence analysis we define relative discretization errors (der),
i.e. errors of the type 2) as

der(∆x) :=
||f∆x − fexact||

||fexact||
(4.86)

Since fexact is usually not known, we use the finest scale discretization as a reference
solution.

We define the relative model and discretization error mder as a combination of errors of
types 1) and 2) between functions f (a) and f (b) from different models as

mder(∆x, a, b) :=
||f (a)

∆x − f
(b)
∆x||

||f (b)
∆x||

. (4.87)

In order to estimate the model errors, we will look at sequences of decreasing ∆x. If we
observe stationarity after a certain level of ∆x, then this stationary picture reflects the
error caused by the different models a and b. If there is no stationary behaviour in this
sequence, the (main) source of error can be both, modeling or numerical discretization.

We will see that the difference in approximation quality of all the three approaches
(conserved HLL, conserved Rusanov and mixed scheme) varies with the problem that
we discretize. We will examine this for the two cases of a periodic boundary value
problem with smooth initial conditions and a shock tube problem with open boundaries
and discontinuous initial conditions.

If nothing else is indicated, the space variable x will be in the intervall [−1, 1] and the
time point is Tend = 0.2.

Smooth Initial Data

For x ∈ [−1, 1], we consider periodic boundary conditions and smooth initial data,
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ρ0 = 2 +
1

2
cos(πx)

v0 = 1 +
1

2
sin(πx)

p0 = 1, θ0 =
p0

ρ0

higher moments = 0.
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Fig. 4.12 shows the solution for τ = 0.1 in ρ, v, θ, q and ∆ at time T = 0.2 (Rusanov and
HLL scheme16). With a CFL number of 0.9, this takes approximately 1600 time steps
at ∆x = 0.0005. For τ in the transition regime, we have physical damping of the initial
periodic waves. Since we are using schemes at first order, there is additional numerical
damping in the solution17.
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Figure 4.12: The solution (ρ, v, θ, q, ∆) at τ = 0.1, ∆x = 0.0005, CFL = 0.9.

In Fig. 4.13, we consider the convergence rate of the HLL- and of the Rusanov scheme
for a given value of τ = 0.1 in ρ. The quantity plotted is the relative discretization error,
as described in (4.86). We use the discretization at ∆x = 0.0005 as reference solution.
We observe a fast rate in both, L1- and maximum-norm and no significant difference
between the schemes. Our studies revealed that indeed, the convergence behaviour is
independent of τ , as long as we stay in the transition regime.

16The Rusanov and HLL schemes optically produce the same picture at this discretization level.
17The damping is not visible in this case here.
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Figure 4.13: HLL (left) and Rusanov (right) scheme in ρ at τ = 0.1 in various ∆x
(smooth case). CFL = 0.9. We consider the L1-norm (solid) and the max-
norm (dashed). The reference solution is approximated with ∆x = 0.0005

Fig. 4.14 shows the convergence of the mixed scheme. On the right side, we see again
the relative error at a given τ = 0.1 varying in ∆x. There is almost no difference to the
behaviour of the Rusanov scheme. On the left, we show the last point in the convergence
diagram for several τ (e.g. 10−4 for τ = 0.1 as shown on the right). In this plot, we see
very clearly that the convergence is not depending on τ for τ ≥ 0.01. For very small
τ (0.001 and below), the numerical scheme experiences difficulties. This complies with
the need for more sophisticated methods in the small τ regime, see [34].18 A second fact
that is well visible on the right plot of Fig. 4.14 is that accuracy decreases with higher
moments. For ρ, the convergence rate is around two magnitudes better than the one
for the heat flux q. This is expected since higher moments depend in more and more
complicated, non-linear ways on the lower moments and thus numerical errors as well as
modeling errors can build up (compare also to the figures in Sect. 3.9.2).

In Fig. 4.15, we consider the combination of modeling and discretization error between
the Rusanov scheme and our mixed scheme, mde(∆x,Rusanov,mixed). We consider a
sequence of ∆x = 0.001 (left) and ∆x = 0.0005 (right). We see that in the transition
regime there is no significant difference between the two discretization levels, so the errors
observed are essentially due to the differences in the schemes and not due to numerical
discretization.

We see that the modeling error in Fig. 4.15 is τ -dependent: in ρ, we observe an increase
towards τ = 0.1 and then a decrease for larger τ . This τ -dpendence means that the
models work differently on varying scales, something that is indeed expected.

We again note that the heat flux q is captured several orders of magnitudes less accu-
rately. Also in q we observe a strong dependence on τ .

18We will see instabilities occuring in the small τ regime also in future calcualtions and will not comment
them there anymore.
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Figure 4.14: Convergence for the mixed scheme at CFL = 0.9. On the left for various
∆x at fixed τ = 0.1, on the right for various τ , ∆x = 0.001. In both plots,
we consider the L1-norm (solid) and the max-norm (dashed), the reference
solution is approximated with ∆x = 0.0005

10
−4

10
−2

10
0

mixed vs RUS, smooth

τ

m
de

(D
x=

0.
00

1)

 

 

ρ
q

10
−3

10
−2

10
−1

1

10
−4

10
−2

10
0

mixed vs RUS, smooth

τ

m
de

(D
x=

0.
00

05
)

 

 

ρ
q

10
−3

10
−2

10
−1

1

Figure 4.15: Modeling and discretization error (mde, see (4.87)) of the Rusanov and the
mixed scheme in ρ and q for various τ , in L1-norm (solid) and max-norm
(dashed) at ∆x = 0.001 (left), ∆x = 0.0005 (right). CFL = 0.9.

101



4 Multi-Scale Modeling for the non-linear Boltzmann Equation

Shock Tube Problem

We have seen an excellent match between the mixed scheme and the schemes for the
conservative formulation for the smooth problem. Now, let us pose a more delicate
non-smooth problem: For x ∈ [−1, 1], we propose shock initial conditions19 with open
boundaries,

ρ0 =

{
3 : x < 0

1 : x > 0

v0 = 0

θ0 = 1

higher moments = 0.

−1 −0.5 0 0.5 1

0

1

2

3

shock initial condition

x

m
om

en
ts

 

 

ρ
v
θ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

solution (HLL and Rusanov) at τ = 0.1

x

so
lu

tio
n

 

 

ρ
v
θ
q
∆

Figure 4.16: The solution (ρ, v, θ, q, ∆) at τ = 0.1, ∆x = 0.0005, CFL = 0.9.

Fig. 4.16 shows the solution for τ = 0.1 in ρ, v, θ, q and ∆ at time T = 0.2 with the same
parameters as in Fig. 4.12. Here, physical (and numerical) damping are better visible,
the initial shock structure is smoothed. In Fig. 4.17, we consider the convergence rate
of the HLL- and of the Rusanov scheme for a given value of τ = 0.1 in ρ. The quantity
plotted is the relative discretization error, as described in (4.86). We approximate the
exact solution with ∆x = 0.0005. This figure compares to Fig. 4.13 for the smooth case.

19The shock sizes are in accordance with the Rankine-Hugonito conditions, see [16].
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There, the L1-convergence was one magnitude better (10−4), and the maximum-norm
error was even below the L1-error. Now, typically for shock tube problems, the L1-error
is smaller than the maximum-error, this can be due to a slight miscatch of the shock
speeds, leading to relatively high deviations of solutions at different discretization levels.
The relative error of 10−3 at the lowest level is still quite accurate. Between the two
schemes, HLL and Rusanov, there is no significant difference.
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Figure 4.17: HLL (left) and Rusanov (right) scheme in ρ at τ = 0.1 in various ∆x, shock
tube problem. CFL = 0.9. We consider the L1-norm (solid) and the max-
norm (dashed). The reference solution is approximated with ∆x = 0.0005

Fig. 4.18 shows the convergence of the mixed scheme for the shock tube case. On the
left side, we see again the relative error at a given τ = 0.1 varying in ∆x. Again, there
is almost no difference to the behaviour of the Rusanov scheme. On the right, we show
the last point in the convergence diagram for several τ (e.g. 10−3 for τ = 0.1 as shown
in the left plot). In this plot, we see a minor dependence of the convergence on τ in
the regime of our interest. For very small τ (0.01 and below), the numerical scheme
experiences difficulties as before in the smooth case. The accuracy decrease for higher
moments compares to Fig. 4.14 in the smooth case: for ρ, the convergence rate is again
around two magnitudes better than the one for the heat flux q.

In Fig. 4.19, we consider the combination of modeling and discretization error between
the Rusanov scheme and our mixed scheme, mde(∆x,Rusanov,mixed). This figure
compares to Fig. 4.15 in the smooth case. Like there, we consider a sequence of ∆x =
0.001 (left) and ∆x = 0.0005 (right). We see that in the transition regime there is no
significant difference between the two discretization levels, so the errors observed are due
to the differences in the schemes and not due to numerical discretization.

In analogy to the smooth case, we see that the modeling error in Fig. 4.19 is τ -dependent,
and again, the heat flux q is resolved less accurately than ρ.
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Figure 4.18: Convergence for the mixed scheme at CFL = 0.9. On the left for various
∆x at fixed τ = 0.1, on the right for various τ , ∆x = 0.001. In both plots,
we consider the L1-norm (solid) and the max-norm (dashed), the reference
solution is approximated with ∆x = 0.0005
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Figure 4.19: Modeling and discretization error (mde, see (4.87)) of the Rusanov and the
mixed scheme in ρ and q for various τ , in L1-norm (solid) and max-norm
(dashed) at ∆x = 0.001 (left), ∆x = 0.0005 (right). CFL = 0.9.

104



4.6 Assessing the Model Quality

4.6 Assessing the Model Quality

In this section we apply the mixed numerical scheme (4.69) to equations with several
choices of perturbation functions (splines, Hermite functions), and compare the results
to a fine grid discrete velocity BGK-solver.

The errors involved can be split into 3 contributions:

1) Modeling error of the perturbation function ansatz.

2) Numerical discretization error of the perturbation function schemes.

3) Numerical discretization error of the discrete velocity scheme.

The limiting accuracy is given through the errors 2) and 3), we can estimate their size
through comparisons of the respective numerical results for various ∆x and extend this
to analyze 1) in terms of sequences in ∆x, as done before in Sect. 4.5.2. We will consider
the same periodic and shock tube problems as in that section.

If nothing else is indicated, the space variable x is again in the intervall [−1, 1] and the
time point is Tend = 0.2.

4.6.1 Discrete Velocity Solver for BGK

The results of our perturbation function approach will be compared to a fine scale
discrete velocity solution of the Boltzmann-BGK equations (see (2.71)),

∂tf + c∂xf =
1

τ
(FM − f) (4.88)

The numerics for such a solver are accurately manageable (at not too low τ , see [34])
since the advection is linear. For very precise results, numerical errors in the collision
term would have to be compensated by the solver (see [38]). This leads too far here
since the perturbation function scheme will not be that accurate.

To solve (4.88), we are using a Strang splitting (see [48]) between the advection part
∂tf + c∂xf = 0 and the interaction process ∂tf = 1

τ (FM − f).

In detail, we consider a discretization of the distribution function f on space and time as
in Sect. 4.4.1, where xj ∈ {x0 + j∆x, j ∈ {0, 1, ..., J}} and tn ∈ {n∆t, n ∈ {0, 1, ..., N}}.
In addition, we need a discretization of the velocity space through

ck ∈ {c0 + k∆c, k ∈ {0, 1, ...,K}}. (4.89)

Thus the discrete distribution will carry 3 indices,

fnj,k := f(xj, tn, ck). (4.90)
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The first step of the Strang splitting uses ∆t
2 for the advection part,

f
(n,1)
j,k = fnj,k −

1

2

∆t

∆x

(
Fnj+1/2,k − Fnj−1/2,k

)
, (4.91)

with Fnj±1/2,k a (second order) minmod limited Lax-Wendroff flux (see e.g. [35]). The
next step adds the interaction through a Heun update,

f̃
(n,2)
j,k = f

(n,1)
j,k +

∆t

τ

(
FM [f (n,1)]j,k − f

(n,1)
j,k

)

︸ ︷︷ ︸
Aj,k

f
(n,2)
j,k = f̃

(n,2)
j,k +

1

2

∆t

τ

(
Aj,k + FM [f̃ (n,2)]j,k − f̃

(n,2)
j,k

)
.

(4.92)

The interaction update is non-local in c, since the Maxwellian FM depends on ρ, v and
θ, which are computed through numerical quadrature (in our case the trapeze rule, see
e.g. [47]) from the discrete distribution values20.

The final update for one time step consists of another advection step with ∆t
2 ,

fn+1
j,k = f

(n,2)
j,k − 1

2

∆t

∆x

(
F

(n,2)
j+1/2,k − F

(n,2)
j−1/2,k

)
. (4.93)

All the ingredients are of second order in space and time, the structure of the Strang
splitting makes the splitting error also second order, so in total, we have a second order
scheme.

Note that in one space and one velocity dimension this discrete velocity scheme for the
Boltzmann-BGK equations works in reasonable CPU time. In higher dimensions, a fine
velocity grid becomes computationally very expensive.

Discrete Velocity Convergence

We consider a velocity grid with ∆c = 0.001 between [−8, 8]. This grid has to be chosen
large enough such that for all space grid points in all time, all the essential parts of the
distribution function can be resolved. As CFL number we choose 0.9. Since the advection
part is linear, even diagonal, the maximal signal velocities are directly available, and
stability should not be an issue at CFL numbers close to one for appropriate sizes of
τ .

A typical solution for shock and smooth initial conditions at τ = 0.1, Tend = 0.2,
computed with ∆x = 0.001 on an intervall of x ∈ [−1, 1] is shown in Fig. 4.20. We see a
strong damping in the shock tube problem (right figure) due to the high value of τ .

In Fig. 4.21, we see the relative discretization errors in ρ for the smooth and the shock
initial conditions. We compare all the levels of ∆x to the reference solution at ∆x =

20Due to the non-locality in c, it is essential for efficiency that the operator Aj,k is computed just once.
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Figure 4.20: Smooth (left) and shock (right) solutions at τ = 0.1, computed with ∆x =
0.001, CFL = 0.9, ∆c = 0.001 between [−8, 8]

0.001. The plots show a stable convergence order. We observe that the accuracy in
the shock case is worse for the maximum norm, while it remains comparable for the
L1 norm. As explained in Sect. 4.5.2, this is to be expected. Similarly, it is expected
that the accuracy becomes worse for higher order moments (not shown in the figure),
which indeed happens also for the discrete velocity case. For q we observed maximal
accuracies of approximately 10−2 for the same setting as in Fig. 4.21, in the smooth and
schock case.

In the regime that interests us, the results for the L1 norm do not depend on τ , the
results for τ = 0.1, τ = 0.4 and τ = 0.5 are essentially identical.
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Figure 4.21: Rel. discretization errors of smooth (left) and shock (right) solutions in ∆x
as compared to a fine scale reference solution at ∆x = 0.001. CFL = 0.9,
∆c = 0.001 between [−8, 8], various τ .
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With these results, we can now proceed to analyse the model errors of the perturba-
tion function schemes with confidence in the accuracy of the discrete velocity reference
solution.

4.6.2 Perturbation through Hermite Polynomials

In this section, we are comparing our perturbation function scheme with Hermite poly-
nomials to the results obtained from the discrete velocity calculations in Sect 4.6.1. The
parameters are the same as before.

In Fig. 4.22, we analyze the purely numerical convergence of the mixed scheme with
Hermite perturbation functions in dependence of τ . We use 13 perturbation functions
and observe that the convergence rate does not depend significantly on τ in the regime
that we are interested in. As before, we observe that the maximum-norm error is higher
in the shock tube case (right plot). The finest scale relative error for both, smooth and
shock initial conditions is in the same order of magnitude of 10−3. The convergence rates
as examplified in Fig. 4.22 look similar for all the numbers of perturbation functions (not
shown).

Note that we are using CFL = 0.4 in the case of Hermite perturbation functions. Com-
putations revealed that this setting is rather sensitive on the maximum signal velocities
and that the safety factor of

√
3 in (4.72) is not large enough. This shows more and more

clearly as the number of perturbation functions is increased. For 13 perturbation func-
tions, the shock case could not be resolved with CFL = 0.4, but only with CFL = 0.2.
For more functions, the CFL condition becomes even more restrictive. We will see in
Sect. 4.6.4 that splines offer significant advantages in this view.
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Figure 4.22: Rel. errors (maximum, dashed and L1, solid) of smooth (left) and shock
(right) solutions between ∆x = 0.005 and ∆x = 0.001, CFL = 0.4 (smooth)
and CFL = 0.2 (shock), 13 perturbation functions.
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In Fig. 4.23 we compare ρ as computed with the mixed Hermite scheme to the discrete
velocity result at ∆x = 0.001. We consider relative model errors as described in (4.87).
An analysis of the sequence of ∆x → 0.001 (not shown) reveals that we do not yet
observe a stable picture in the smooth case, but the shock tube case shows the same
behaviour at ∆x = 0.005 as the one we see in Fig. 4.23 at ∆x = 0.001. This indicates,
that for the shock case we indeed see an effective modelling error, whereas the smooth
case might still be (significantly) influenced by discretization errors at this level of ∆x.

The plots in Fig. 4.23 look as expected, the modelling error decreases with the number
of perturbation functions used21, and the smooth case is approximated much more ac-
curately in terms of the modeling error. We expect that this is due to the non-locality
of the Hermite functions. As explained in Sect. 4.5.2, the non-locality of the Hermite
functions is more disadvantageous if we have shocks with strong bimodalities or irregu-
lar shapes of the distribution function. The disadvantage of the non-local approach also
shows in the maximum-norm modeling error, which is larger than the L1 error for the
smooth and the shock case.
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Figure 4.23: Rel. model errors (maximum, dashed and L1, solid) of Hermite mixed
scheme for smooth (left) and shock solutions (right) at ∆x = 0.001 and
CFL = 0.4 for 4 and 7 functions, CFL = 0.2 for 13 functions. Discrete
velocity as reference solution (same ∆x).

We will come back to the Hermite results in Sect. 4.6.4, where we will compare them to
the spline results.

21The specific number of Hermite functions corresponds to the number of splines we will use in Sect. 4.6.3.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

4.6.3 Perturbation through splines

We have intuitively argued in Sect. 4.3 that the globality of Hermite polynomials can be a
disadvantage. This indeed showed through stability problems at already moderate CFL
numbers. In this section, we are considering splines. We will first give evidence that
degree one splines are a good choice. Then we will consider the compatibility conditions,
as examplified in Sect. 4.3. We will not see significant differences between compatible
splines and spline combinations projected onto a corresponding compatible subspace.
Generally, the splines will allow for higher CFL-numbers than the Hermite functions
and do not experience severe stability problems for higher numbers of perturbation
functions.

The size of the spread for the splines has already been discussed in Sect. 4.3.2. Like
there, we are using the interval [−3, 3] for the equidistant spline centers.

Which order of Spline Functions?
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Figure 4.24: Relative errors (dashed = maximum norm, solid = L1 norm) of spline
approximation (compatible by projection) to discrete velocity solution.
∆x = 0.001, 7 spline functions (equally spaced in [−3, 3]), smooth initial
data. Degree 1 performs best over the range of interesting τ .

The aproximation features as shown earlier in Fig. 4.5 suggested that increasing the
spline order from linear to quadratic or cubic is not really worth the effort. The same
suggestion manifests itself in the PDE setting. Fig. 4.24 shows approximations of the
discrete velocity density ρ with various spline degrees (for the case of smooth initial
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4.6 Assessing the Model Quality

data), in dependence on τ with 7 spline functions (equally centered between ξ = −3 and
ξ = 3). The best approximation is given by the linear spline. During the computations,
we could observe that choosing higher order spline functions can even lead to numerical
instabilities. Note here again, that we are not interpolating a set of points, for which
cubic splines would fulfill some optimality conditions (see [47]).

We can expect that an increase of polynomial degree would be more worthwhile in the
smooth case than in the shock case. Strong bimodalities or even discontinuities, as they
can appear in shock tube problems, will be resolved worse by higher polynomial degrees.
In this sense it is sufficient to consider the smooth case, where higher order polynomials
would have a chance to work better. From Fig. 4.24 we can thus conclude that higher
degree splines should not be used.

Projected Splines

From now on, all splines will be of degree one.

We introduced the concept of projected splines (’PS’) in Sect. 4.3.2. We will discuss the
convergence of these with Fig. 4.25 and then consider the model error in Fig. 4.26 and
Fig. 4.27.

For Fig. 4.25, we have chosen 13 perturbation functions to illustrate the convergence
of the projected splines in ∆x. The convergence for other numbers of perturbation
functions looks very similar. We observe that also for splines, the relative discretization
errors for the shock tube problem are higher than those for the smooth case. Whereas
the difference is minor in the L1 norm, it shows significantly in the maximum norm.
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Figure 4.25: Rel. discretization errors (dashed = max.-norm, solid = L1-norm) of smooth
(left) and shock (right) solutions with projected splines (PS), 13 perturba-
tion functions. CFL = 0.9, final time T = 0.2. Reference solution at
∆x = 0.001.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

Next, we consider the combination of modeling and discretization error (4.87). In
Fig. 4.26 (smooth case) and Fig. 4.27 (shock tube problem), we compare various numbers
of perturbation functions with the discrete velocity results. The perturbation functions
are chosen in the same hierarchical way as in Sect. 4.3.2. We show the relative errors at
∆x = 0.005 (left sides) and ∆x = 0.001 (right sides) in the L1-norm. The maximum-
norm is omitted for the sake of legibility of the figures. In both, smooth and shock
cases, we observe a stable, comparable picture for both space discretizations (for τ in
the transition regime), indicating that the modeling error dominates over the discretiza-
tion error in the compared schemes. Comparing the two figures, we observe that the
model accuracies in the shock case are slightly lower than in the smooth case.

In the shock, as well as in the smooth case, an approximation with 13 perturbation
functions is optimal in terms of accuracy. Between 4 and 7 functions there is a significant
difference, 7 and 13 functions produce almost the same results. Most interestingly, 25
functions produce results of again lower accuracy. We think that this is due to the
increasing complexity of the system of PDE’s and corresponding non-linear effects in
the errors.

Notice that for 4 perturbation functions in the smooth case in Fig. 4.26, we get an
instability on the lowest discretization level ∆x = 0.001, around τ = 0.6. We observed
the build up of this instability in the maximum-norm for τ values approaching τ = 0.6.
This instability could be flattened with the use of lower CFL numbers. It is surprising,
that the approximation with 4 perturbation functions works at all, be it in the smooth
or in the shock case, because the resolution of the non-equilibrium distribution space is
rather poor. So it is not unexpected that we observe problems in regimes far away from
equilibrium.
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Figure 4.26: Rel. model errors (L1 norm) between projected splines and discrete velocity
scheme for smooth solutions at ∆x = 0.005 and ∆x = 0.001. CFL = 0.9,
equally spaced spline centers in [−3, 3].

One more noticeable problem occurs with the use of 7 perturbation functions in the
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4.6 Assessing the Model Quality

shock tube problem at the lowest scale ∆x = 0.001: in Fig. 4.27 we observe a stability
problem that is not resolvable with choosing lower CFL numbers. Such problems can
occur in highly non-linear equations, as we have them, and are due to adverse non-linear
effects on the discretization errors. We found a remedy to this problem through adjusting
the spline spread from the interval [−3, 3] to [−2.4, 2.4] for the setting of 7 perturbation
functions. Evidently, this means that we violate the hierachy of splines for this case.
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Figure 4.27: Rel. model errors (L1 norm) between projected splines (PS) and discrete
velocity scheme for the shcok tube problem at ∆x = 0.005 and ∆x = 0.001.
CFL = 0.9, equally spaced spline centers in [−3, 3] (4,13,25 PF), [−2.4, 2.4]
(7 PF).

Compatible Splines

In Sect. 4.3.2 we have seen how to impose the compatibility conditions (4.9) directly onto
the perturbation functions, yielding compatible splines (’CS’). In that same section, we
have examined the pure approximation properties of projected spline combinations and
compatible splines. There were no significant differences. The same shows in the full
PDE case. If we are using the same spline hierarchy as before, namely we put the spline
centers equally spaced into the intervall [−3, 3] with 7, 13 and 25 spline functions, we
can form quartetts of splines, leading to total numbers of 4, 10 and 22 perturbation
functions.22

In terms of discretization and model errors, the results are equivalent to the ones for
projected splines. However here, the compatible splines have the disadvantage of being
less flexibel for the interesting settings of only very few perturbation functions (we will
always need at least 4 splines to form the quartetts).

22The case with 4 splines would yield only one quartett and is not considered here.

113



4 Multi-Scale Modeling for the non-linear Boltzmann Equation

In terms of CPU time, the compatible splines are a bit more effective since the projection
after each time step is not necessary.

We will not repeat the analysis already done for the projected splines, since the figures
look the same. Also the stability problem with 7 projected splines, corresponding to 4
compatible spline quartetts occurs analogously. Some results of the compatible splines
are shown below in Sect. 4.6.4, where we directly compare the modeling errors of splines
and Hermite functions.

4.6.4 Direct Comparison of Hermite and Splines

Finally, we want to directly compare the performance of the various strategies discussed
above. For this, we consider the most accurate approximations for projected splines
(’PS’), compatible splines (’CS’) and Hermite functions at ∆x = 0.001 in the same
settings as in the previous sections. We have seen that for the projected splines this
optimal choice was 13 perturbation functions, with Hermite functions, it was also 13. For
Hermite functions, we did not consider using more functions, since the CFL restriction
is getting more and more severe, leading to an increase of CPU time. Splines did not
exhibit this strong restrictions.

In this section, we will not only consider the approximation of ρ, but also of the heat
flux q. The two figures, Fig. 4.28 and Fig. 4.29 show the same settings for ρ and q, once
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Figure 4.28: Rel. model errors in ρ and q (maximum, dashed and L1, solid) between
spline mixed scheme (projected and compatible), Hermite mixed scheme
and discrete velocity scheme for smooth solutions at ∆x = 0.001. CFL =
0.9 (splines, discrete velocity) and CFL = 0.4 (Hermite).

for the smooth initial conditions, and once for the shock tube problem. In both cases, it
is evident that the heat flux is approximated with far less accuracy than ρ. This general
fact has been observed several times before, see Sect. 4.5.2 and Sect. 3.9.2. The Hermite
functions completely fail to capture the heat flux q in both, smooth and shock case. This
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4.6 Assessing the Model Quality

indicates that their global approach is much less adapted to capture higher moments of
the distribution function, as we would have expected.

We also observe that indeed the results for the projected and the compatible splines do
not differ, as was mentioned in the above section.

In the smooth case of Fig. 4.28, ρ (on the left) is best approximated with Hermite func-
tions. They are one order of mangitude more accurate than the splines, both in L1- and
maximum-norm.

In the shock case, Fig. 4.28, as expected, splines outperform the Hermite approach in
both, ρ and q. Note again that for stability reasons, the mixed scheme with Hermite
functions is used at CFL = 0.4. Splines did not show stability problems depending on
the CFL number, CFL = 0.9 is used in the plots. Therefore, the CPU time to obtain
the spline solutions is considerably shorter than the one for the Hermite computations
in this plot and the results of the splines are still more accurate, except for a small dip
at τ = 0.1.

Also in the shock case, the superior quality of the splines becomes even more evident if
we consider the heat flux q. The accuracy of the spline solution is one order of magnitude
better than the one of the Hermite functions.
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Figure 4.29: Rel. model errors in ρ and q (maximum, dashed and L1, solid) between
spline mixed scheme (projected and compatible), Hermite mixed scheme
and discrete velocity scheme for the shock tube problem at ∆x = 0.001.
CFL = 0.9 (splines, discrete velocity) and CFL = 0.4 (Hermite).

We can conclude from the figures in this section that our mixed scheme with spline
functions approximates the discrete velocity solutions with rather high accuracy. Given
computational time that is several orders shorter than the time necessary fo discrete
velocity schemes, our mixed schemes offer a significant improvement in efficiency.
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4 Multi-Scale Modeling for the non-linear Boltzmann Equation

From the analysis in this Section, we cannot make a final conclusion on some optimal
choices for φα. We have seen that approximation quanlity is case dependent and that
our approach works well if we choose the perturbation functions adequately.

4.7 Conclusion

We have derived a very general weak formulation of the Boltzmann equation. In this
formulation, we have chosen combinations of functions to approximate equilibrium and
non-equilibrium perturbations. For the resulting equations, we have developed a stable
numerical scheme and shown convergence results for different physical problems.

Further research should aim in two main directions:

• Are there more optimal sets of perturbation functions than Hermite functions and
splines?

• How can the current ideas be generalized to 2 and 3 dimensions?

The first point requires transdisciplinary experience in approximation theory, kinetic
theory and numerical analysis. It will be challenging to construct such functions, not to
mention to prove some kind of optimality theorems. We expect that some space- and
velocity-adaptive choices of function hierarchies could be an interesting idea. Such a hi-
erarchy would allow us to use more functions for parts of the distribution function with
more details and save storage for parts that are very close to the equilibrium Gaussian.
On the other hand, such constructions would involve space and time dependent per-
turbation functions φα, making the corresponding equations more complicated. Other
possibilities could aim for different sets of (possibly local) orthognal polynomials. It
could also be interesting to consider a non-linear ansatz with a different structure, as
e.g. presented in [58]. There, the equilibrium Gaussian is replaced by a more flexible
distribution function of the Pearson family.

Concerning the second point, an effective generalization of our numerical scheme to 2
and 3 dimensions will be highly relevant in competition to ’classical’ (extended) moment
equations and solvers for the full Boltzmann equation. It is promising that moment
equations manage to capture high dimensional behaviour without using full tensorization
of the one dimensional setting. In the one dimensional case, they manage to capture
a significant part of the physical behaviour with extremely few parameters and this
one dimensional advantage is strongly amplified for higher dimensions. A thorough
understanding of the physical effects and symmetries allowing for this low number of
parameters is a starting point to develop similarly effective generalizations to our scheme.
Another very effective way of generalizing one dimensional problems to higher dimensions
is tensorization with sparse grids. This approach is numerically motivated and hase been
successfully used in [64] for (stationary) radiative transfer.
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4.7 Conclusion

Even though our computations are one dimensional, they form a solid basis to further
develop the perturbation function approach. An improvement of the ansatz for the
approximation of the Boltzmann distribution functions would be more conceptionally
interesting, whereas an extension to higher dimensions, including more complex geome-
tries, could offer significant advantages over existing methods in the trasition regime.
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5 Future Projects

We have seen several approximations to the Boltzmann equation. The case of linear
collision operators was extensively studied in Part 3 and in Part 4, we have seen a com-
putational approach. The results presented there lead to several open questions, gener-
alizations and applications. We want to summarize some of them here.

5.1 Linear Collision Operators

One of the most important questions in the analysis of the linear collision operator con-
cerns the generalization to (certain classes of) non-linear operators. Henning Struchtrup
developed an ’order of magnitude’ approach for non-linear moment equations (see [49]),
a rigorous mathematical generalization, especially of convergence and stability results
would underline the success of this method.

Another interesting mathematical question concerns the approximation order of the
scale induced closure in the linear setting. We have seen conditions for Navier-Stokes-
Fourier and also for Burnett order in Thm. 3.6.1. The conditions for Burnett order,
(3.52) seem very technical. Could they be reformulated into ’more physical’ statements?
And how does the technicality translate into the increased setting, including higher non-
equilibrium spaces (Sect. 3.8)? Are there intuitive answers to this question? And how
can they be proven mathematically?

The approximation order is also related to ’regularizations’, see Sect. 3.6.3. We have
only shortly discussed this topic, due to many unclear points. Also here, a rigorous
mathematical analysis would validate existing approaches (see [59]).

A practically very relevant question concerns the generalization of the scale induced
closure to other differential equations. Stiff relaxation terms are occuring in various
fields and are usually treated by means of asymptotic expansion (see e.g. [46]). Given
the results in Sect. 3.9.2, applications to other fields are promising.

A next question that is interesting in relation to our closure is the construction of ’asymp-
totic preserving schemes’. The Boltzmann equation and Euler’s equations are related
through the limit τ → 0. It has been shown that numerical schemes for BGK at mod-
erate τ fail if τ → 0. There are remedies to this problem, ensuring that the discrete
scheme for the Boltzmann equation converges to a stable scheme for the Euler equations
as τ → 0, see [34]. It would be very interesting to develop schemes that preserve the
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asymptotics of the scale induced closure. A mathematical analysis, first in the toy model
of a 16 discrete velocity model, could reveal more insights into the asymptotic behaviour
of various numerical schemes for the Boltzmann-BGK equations.

Another, huge field of possibilities lies with hybrid schemes. There are very interesting
approaches, where the computational domain is split into a DSMC part, a generalized
BGK part and an equilibrium part (Euler equations), see [44]. There, computational
cost could be saved by using higher order non-equilibirum approaches in between Euler
and the BGK part. Whereas the switches between Euler, BGK and DSMC seem to work
well, corresponding switches between higher order methods would have to be invented
and tested.

5.2 Perturbation Function Approximation

We have implemented our weak formulation of the Boltzmann equation for splines of
various orders and for Hermite functions. The most interesting question is, whether
there are more optimal choices for the perturbation functions and whether optimality of
some choices could be physically motivated or even mathematically proven.

Then, we would like to use the perturbation functions in practice, meaning in more than
one dimensions. Whereas Grad’s approach generalizes extremely efficiently (but also
loses a lot of approximation quality), it remains to be seen how the spline perturbation
functions have to be extended to model 2− and 3−dimensional velocity distributions.
Simple tensor products are not the method of choice due to the decrease in computational
efficiency. Ideally, some symmetries could be used to reduce the necessary amount of
functions in higher dimensions, but maybe this will be very case dependent. A very
effective way of reducing the dimensionality for tensor products is the use of sparse
grids, see e.g. [64]. It is however not clear, whether this approach is also interesting for
cases with only few functions per dimension.

Another interesting direction is the generalization of our method to more complicated
collision kernels. In principle, it is straight forward to insert the ansatz for the distribu-
tion function into the corresponding kernel. Concretely, it will be advisable to ’adapt’
the structure of our ansatz to the structure of the kernel, as we have done for the BGK
kernel.

Of course, any mathematically provable statements about hyperbolicity, stability, or
other features of the equations developed (or even just for the numerical schemes) would
be very desirable. Ideally, the general form with any kind of perturbation functions
could be analysed, realistically, this will only be possible for some specific choices of
perturbation functions.

Hybrid schemes, as mentioned in the last paragraph of Sect. 5.1, can be direct competi-
tors to our perturbation function approach, or they can be used together. Hybrid schemes
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rely on switches between the parts of different discretizations, our method switches au-
tomatically by modeling higher order non-equilibrium with more and more non-zero
coefficients for the perturbation functions, but of course this way, we do not reduce
storage, as real hybrid schemes do. Also here, some combination may be possible, our
method could e.g. be used as intermediate scheme between full DSMC and equilibrium
Euler.
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A Appendix

A.1 Notation

Vectorial quantities are typed in boldface x or in index notation, xk. If there are several
vectorial quantities, we use boldface variables with an index, xi. If not stated differently,
x describes a scalar quantity.

We apply Einstein’s sum convention, meaning that we sum over indices appearing twice
in a product, xijkaisbjl :=

∑
i,j xijkaisbjl. We also extend this to x2

i := xixi =
∑

i(x
2
i ).

Derivatives are denoted as ∂t := ∂
∂t , ∂k := ∂xk

, or as ∇ := (∂1, ..., ∂n)
t. If there are

variables involved that do not enter the derivative, we specify the derivatives, e.g. ∇x1
.

We will sometimes denote time derivatives with super dots, ẍi = ∂2

∂t2
. Total derivatives

are denoted as d
dt , and the convective derivative along a velocity field v as Dt := ∂t +

v∂x.
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A Appendix

A.2 Appendix: Relations between Entropy, Hyperbolicity and

Stability

Thm. 3.7.2 classifies a first order linear system of PDE’s to be symmetric hyperbolic
because there is a convex entropy with associated negative definite entropy flux. In this
section we want to give a short overview of relations between hyperbolicity, entropy and
stability.1

For this, consider the first order quasilinear system of partial differential equations

A(u)∂tu+B(u)∂xu = 0, (A.1)

with R × R
+
0 ∋ (x, t) 7→ u(x, t) ∈ R

m the (classical) solution and matrices R
m ∋ u 7→

A(u), B(u) ∈ R
m×m.

A.2.1 Features of a Quasilinear System

Balance Law form

The system (A.1) is said to have a balance law form / conservative form, if it can be
written as

∂tv + ∂xF (v) = 0, v = T (u) (A.2)

with a flux function F : R
m → R

m and a variable transformation T : R
m ∋ u 7→ v ∈

R
m.

Hyperbolicity

The system (A.1) is said to be globally hyperbolic, if the generalized eigenvalue prob-
lem

det (A(u) − λB(u)) = 0 (A.3)

has only (finite) real solutions λ for all u ∈ R
m, and the corresponding eigenvectors form

a basis of R
m. Hyperbolicity is independent of possible variable transforms of (A.1).

The (generalized) eigenvalues λ are physical ’information’ velocities (see [16], p. 51).

If for all u ∈ R
m, A and B are symmetric matrices and A is positive definite, then the

system is called symmetric hyperbolic, and A is called symmetrizer. The (generalized)
eigenvalues in this case are automatically real (see [16], p. 51).

The system (A.1) is said to be locally hyperbolic, if the generalized eigenvalue problem
has finite real solutions for some u ∈ R

m.

1The author acknowledges valuable inputs from [39].
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Convex Entropy

An entropy of the system (A.1) is a scalar, convex function R
m ∋ u 7→ η(u) ∈ R, that

satisfies an equation

∂tη(u) + ∂xh(u) = 0, (A.4)

with an appropriate entropy flux R
m ∋ u 7→ h(u) ∈ R (see [16]). For weak solutions, we

generalize (A.5) to an entropy inequality,

∂tη(u) + ∂xh(u) ≤ 0. (A.5)

Stability

Stability manifests itself in various (non-equivalent) definitions. Intuitively, a system is
stable if for (possibly all) times t, a certain (space-)norm of the solution remains finite.
There are various theorems for the L1-norm of scalar Cauchy-problems (see [16]). A
more physical understanding of stability is defined through associated quantities like
energy or entropy that remain finite as time evolves, possibly translating to L2-bounds
of the solution,

||u(·, t)||L2(R < C ∈ R for all t ∈ R+. (A.6)

A.2.2 Relations

The Godunov-Mock Theorem

The Godunov-Mock theorem ([20]) tells us that the existence of a convex entropy is
equivalent to (global) symmetric hyperbolicity if our system is in conservation law form.
In terms of Fig. A.1, this corresponds to the intersection of the convex entropy and
symmetric hyperbolic set. In the general case of systems that are not in conservation
law form, we may have convex entropies without the system being symmetric hyperbolic,
or vice-versa.

Entropy and Stability

Thm.A.2.1 tells us that a convex entropy implies the existence of an L2 bound for the
solution.

Theorem A.2.1 (L2 bound).
Let u be a weak solution of (A.1) and η(u) a convex entropy with corresponding entropy
flux h(u), fulfilling (A.5). Then, under very weak assumptions, ||u(·, t)||L2(R) is bounded.
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Proof. The function η̄(u) := η(u) + β · (u− u0) is also a convex entropy for (A.1) with
some corresponding entropy flux h̄(u). The parameter β is a vector in R

m (to be chosen
later), and u0 is a state close to u with

∣∣∫ η(u0)dx
∣∣ < ∞. From (A.5), it follows with

minor restrictions on u, namely integrability of η(u(x, t)) in x, that

∂t

∫

R

η̄(u(x, t))dx ≤ C1, (A.7)

with C1 ∈ R independent of t. With an elementary estimate, we can find C2(T ) such
that for all t ∈ [0, T ], T ∈ R

∫
η̄(u(x, t))dx =

∫
η(u(x, t))dx + β ·

∫
(u(x, t) − u0(x, t))dx ≤ C2. (A.8)

Now, we do a Taylor expansion of η around u0,

η(u) = η(u0) + (u− u0) · ∇η(u0) +
1

2
(u− u0)

T ·Hη(Θ) · (u− u0), (A.9)

with the Gradient vector ∇η and the Hesse matrix Hη. Θ is some intermediate state
between u and u0, its existence follows from the mean value theorem (see [32], p. 284).
Since we assume η to be convex, the Hesse matrix Hη is positive definite. We can use
the Taylor expansion (A.9) in (A.8) and obtain

C2 ≥
∫
η(u(x, t))dx + β ·

∫
(u(x, t) − u0(x, t))dx

=

∫
η(u0(x, t))dx + β ·

∫
(u(x, t) − u0(x, t))dx+

∫
∇η(u0) · (u− u0)dx

+
1

2

∫
(u− u0)

T ·Hη(Θ) · (u− u0)dx

(A.10)

Now, we choose the components of β such that they compensate
∫
∇η(u0) · (u− u0)dx.

SinceHη is symmetric, it can be orthogonally diagonalized intoHη(Θ) = T (Θ)TD(Θ)T (Θ).
The eigenvalues are uniformly positive, and with

λmin := min
x

{λ ∈ spectrum(Hη(Θ))} , (A.11)

we obtain that

(u− u0)
T ·Hη(Θ) · (u− u0) = (u− u0)

T · T (Θ)TD(Θ)T (Θ) · (u− u0)

≥ λmin(u− u0)
T (u− u0).

(A.12)

Alltogether, the estimate (A.10) becomes

C2−
∫
η(u0(x, t))dx ≥ 1

2

∫
(u−u0)

T ·Hη(Θ) ·(u−u0)dx ≥ λmin

∫
(u−u0)

T ·(u−u0)dx.

(A.13)
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Since ||u||L2 = ||u− u0 + u0||L2 ≤ ||u− u0||L2 + ||u0||L2 , we obtain

||u||L2 ≤ C3, (A.14)

with C3 =
1

λmin

(
C2(T ) − min

t∈[0,T ]

∫
η(u0(x, t))dx

)
+ ||u0||L2

Note that in this proof, we have not been using anything but the existence of a convex
entropy (and some very weak conditions on the solutions2). Most noticeable is that we
do not need any hyperbolicity or conservation law form for the L2-bound.

In the case of a linear system of advection equations, we can directly obtain an L2 bound,
as done in the proof of Thm. 3.7.2.

Consider

∂tu+B∂xu = 0. (A.15)

A convex entropy / entropy flux pair for this system is η(u) := uTu and h(u) := uTBu.3

The entropy (in)equality, integrated in space, then reads

∂t||u||L2 ≤ −∂x
∫
uTBudx. (A.16)

If B is symmetric positive definite, meaning that (A.15) is globally symmetric hyperbolic,
the right hand side stays negative and we directly get an L2-bound for u and all times
t ∈ [0,∞].

In Thm. 3.7.2, we also have a term on the right hand side. In the proof there, we take
this term into account, it yields a negative definite entropy production. For this case,
Thm.A.2.1 can be directly generalized to the following

Corollary A.2.2 (L2-bound with right hand side).
Let u be a weak solution of the system

A(u)∂tu+B(u)∂xu = K(u, x, t).

If we can find a triplet of a convex entropy η(u) with corresponding entropy flux h(u)
and a negative semidefinite entropy production Pη fulfilling4

∂tη(u) + ∂xh(u) = Pη(u, x, t),

then, under the same very weak assumptions on u as in Thm.A.2.1, we get that ||u(·, t)||L2(R)

is bounded.

2It may be possible to find rather special counter examples based on these assumptions, but they will
be practically irrelevant.

3If B is not symmetric, we choose 1
2
(B + BT ) instead of B for the entropy flux.

4The only, but quite strong assumption on K(u, x, t) is that we can indeed find such a triplet.
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Proof. We can simply extend the constant C1 in (A.7) by the entropy production.

If the right hand side does not have any specific structure, we cannot conclude on stability
from the existence of a convex entropy / entropy flux pair.

A.2.3 Summary

We summarize the connections between hyperbolicity, stability and entropy in Fig. A.1.
A general quasilinear system of partial differential equations does not have any generic

Figure A.1: Relations between hyperbolicity, entropy and stability.

properties. It can be locally hyperbolic (e.g. the Grad system) or globally hyperbolic
(e.g. Euler for positive temperatures). We call a system symmetric hyperbolic, if it
is globally hyperbolic and the flux matrix is symmetric. For symmetric hyperbolic
equations that possess a balance law form, the Godunov-Mock theorem provides us
with the existence of a convex entropy / entropy flux pair, and with that we get an L2

bound. On the other hand, if we have the conservative form and a convex entropy /
entropy flux pair, the same theorem yields symmetric hyperbolicity. If we do not have a
conservative form, symmetric hyperbolicity does not necessaryly imply the existence of
a convex entropy / entropy flux pair.

We can also imagine systems that are symmetric hyperbolic and have a convex entropy
but are not stable due to production terms. In the linear case, the only sets that coincide
in Fig. A.1 are those of local and global hyperbolicity.
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There are many stable systems that are not hyperbolic at all, or that are hyperbolic
but do not posses a conservation law form or a convex entropy / entropy flux pair. On
the other hand, a system can also posses an entropy / entropy flux pair without being
stable, e.g. if the right hand side is inappropriate.

Providing all sorts of counter examples to justify the non-overlaps in Fig. A.1 exceeds
the frame of this work and is left to the enthusiastic reader.
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A.3 Appendix: Proof of E1 = G†, Sect. 3.5.3

We proove that E1 = G† given symmetry of S = GE1 and conditions (3.31). Denote
N := dim(V ) <∞.

A singular value decomposition of G yields

G = U




Σ ∈ R
q×q

0 ∈ R
(N−q)×q


W ∗, (A.17)

with U ∈ R
N×N andW ∈ R

q×q orthogonal, and Σ ∈ R
q×q the diagonal matrix containing

the non zero singular values of G. Any left inverse E1 of G is of the form

E1 = W
(

Σ−1 C ∈ R
q×(N−q) )U∗, (A.18)

with C an arbitrary matrix. Now

GE1 = U

(
id ∈ R

q×q Σ ·C
0 · Σ−1 0 ·C

)
U∗. (A.19)

This can only be symmetric if C = 0, which yields the Moore-Penrose-inverse G† in
(A.18). For the case of a general Hilbertspace, we refer to Theorem 9.1.3 in [62].

A.4 Appendix: Details for the 16 Velocities Model

For reference we give the detailed expressions for the distribution functions and the
moment operator for different closures of the 16-velocity model.

A.4.1 Matrices

The velocities are ordered by

c1 = (−3, 3), c2 = (−1, 3), c3 = (1, 3), c4 = (3, 3),
c5 = (−3, 1), c6 = (−1, 1), c7 = (1, 1), c8 = (3, 1),
c9 = (−3,−1), c10 = (−1,−1), c11 = (1,−1), c12 = (3,−1),
c13 = (−3,−3), c14 = (−1,−3), c15 = (1,−3), c16 = (3,−3).

(A.20)

which gives

V = Diag (−3,−1, 1, 3,−3,−1, 1, 3,−3,−1, 1, 3,−3,−1, 1, 3) (A.21)
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for the advection operator. The diagonal interactions are defined by

Kdiag[u] = −

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

u2u5 − u1u6

u1u6 + u3u6 − u2u5 − u2u7

u2u7 + u4u7 − u3u6 − u3u8

u3u8 − u4u7

u1u6 + u6u9 − u2u5 − u5u10

u2u5 + u2u7 + u5u10 + u7u10 − u1u6 − u3u6 − u6u9 − u6u11

u3u6 + u3u8 + u6u11 + u8u11 − u2u7 − u4u7 − u7u10 − u7u12

u4u7 + u7u12 − u3u8 − u8u11

u5u10 + u10u13 − u6u9 − u9u14

u6u9 + u6u11 + u9u14 + u11u14 − u5u10 − u7u10 − u10u13 − u10u15

u7u10 + u7u12 + u10u15 + u12u15 − u6u11 − u8u11 − u11u14 − u11u16

u8u11 + u11u16 − u7u12 − u12u15

u9u14 − u10u13

u10u13 + u10u15 − u9u14 − u11u14

u11u14 + u11u16 − u10u15 − u12u15

u12u15 − u11u16

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(A.22)

and the straight interactions are taken to be

Kstraight[u] = −




0
u5u7 − u2u10

u6u8 − u3u11

0
−(u5u7 − u2u10)

−(u6u8 − u3u11) − (u6u14 − u9u11)
−(u5u7 − u2u10) − (u7u15 − u10u12)

−(u6u8 − u3u11)
u6u14 − u9u11

u5u7 − u2u10 + u7u15 − u10u12

u6u8 − u3u11 − (u9u11 − u6u14)
u7u15 − u10u12

0
u9u11 − u6u14

u10u12 − u7u15

0




(A.23)

131



A Appendix

Fig. 2.4 displays the interactions in the velocity grid. The linearized collision operator
becomes

K = −

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

-1 1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
1 -3 1 0 0 2 0 0 0 -1 0 0 0 0 0 0
0 1 -3 1 0 0 2 0 0 0 -1 0 0 0 0 0
0 0 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0
1 0 0 0 -3 2 -1 0 1 0 0 0 0 0 0 0
-1 2 0 0 2 -6 2 -1 0 2 1 0 0 -1 0 0
0 0 2 -1 -1 2 -6 2 0 1 2 0 0 0 -1 0
0 0 0 1 0 -1 2 -3 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 -3 2 -1 0 1 0 0 0
0 -1 0 0 0 2 1 0 2 -6 2 -1 -1 2 0 0
0 0 -1 0 0 1 2 0 -1 2 -6 2 0 0 2 -1
0 0 0 0 0 0 0 1 0 -1 2 -3 0 0 0 1
0 0 0 0 0 0 0 0 1 -1 0 0 -1 1 0 0
0 0 0 0 0 -1 0 0 0 2 0 0 1 -3 1 0
0 0 0 0 0 0 -1 0 0 0 2 0 0 1 -3 1
0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 -1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(A.24)

which is a symmetric positive definite matrix in R
16×16.

A.4.2 Construction of the Operators for the Classical Closures:

The orthogonal complement of ker(K) is spanned by vectors r1,...,r12. The matrix M0

consisting of equilibrium and r1,...,r12 (see also (3.87)) gives an equivalent formulation
of (3.86) in terms of moments

∂tM0f(x, t) +M0VM
−1
0 ∂xM0f +

1

ε
M0KM

−1
0 M0f = 0. (A.25)

The complete moment operator M0 can be computed to be

M0 =

(
M

(1)
0

M
(2,1)
0 id

)
∈ R

16×16 (A.26)

with submatrices

M
(1)
0 =

0

B

B

B

B

@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3
3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3
18 10 10 18 10 2 2 10 10 2 2 10 18 10 10 18
-1 3 -3 1 0 0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

A

(A.27)

and

M
(2,1)
0 =




1 1 0 0 1 1 0 -1 0 0 -1

-1 0 3 2 1 2 5 6 5 6 9

0 -1 -3 -1 -1 -2 -4 -3 -3 -4 -6

0 0 0 0 0 0 0 0 0 0 0

-1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3




T

(A.28)
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and id ∈ R
11×11. In the complete moment representation the production term then

becomes

M0KM
−1
0 = −

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 ∈ R
4×4 0 ∈ R

4×12

0 ∈ R
12×4

-4 7 -7 1 0 -3 3 0 0 0 0 0
0 -11 3 -1 -1 3 1 0 0 -1 0 0
-2 -1 -7 2 -1 1 3 0 0 0 -1 0
-2 3 -3 -3 -1 -3 3 1 0 0 0 0
-1 0 0 0 -5 0 0 0 1 0 0 0
-1 -1 1 0 0 -7 3 -1 -1 2 0 0
-2 0 0 0 -3 0 -4 2 0 0 2 -1
-4 6 -6 1 -2 -6 6 -3 0 0 0 1
-3 7 -3 0 -2 -7 3 0 -1 1 0 0
-3 3 -3 0 -3 -3 3 0 1 -3 1 0
-4 6 -6 0 -3 -6 6 0 0 1 -3 1
-6 13 -9 0 -3 -9 5 1 0 0 1 -1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(A.29)

We now are using M0 to construct the operators for the various closures.. The equilib-
rium distribution Mρ is parametrised by the four equilibrium moments only

Mρ = M−1
0

(
id ∈ R

4×4 0 ∈ R
4×12

)T
ρ =

(
1
80M̃

)T
ρ (A.30)

with

M̃ =




-3
2 5 5 -3

2 5 7
2

7
2 5 5 7

2
7
2 5 -3

2 5 5 -3
2

-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3

3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3
5
4 0 0 5

4 0 -5
4 -5

4 0 0 -5
4 -5

4 0 5
4 0 0 5

4




(A.31)
Correspondingly, we construct the equilibrium operator as

E0f =
(
id ∈ R

4×4 0 ∈ R
4×12

)
M0f, (A.32)

This operator turns out to be

E0 =

0

B

B

@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-3 -1 1 3 -3 -1 1 3 -3 -1 1 3 -3 -1 1 3
3 3 3 3 1 1 1 1 -1 -1 -1 -1 -3 -3 -3 -3
18 10 10 18 10 2 2 10 10 2 2 10 18 10 10 18

1

C

C

A

.

(A.33)

Grad

Arbitrary Moments

For the higher moments in Grad’s closure, we arbitrarily chose µ1 = E1r1, µ2 = E1r2
and µ3 = E1r3, with the again arbitrary choices of G and E1 as

G = M−1
0

(
0 ∈ R

3×4 id ∈ R
3×3 0 ∈ R

3×9
)T

= M−1
0

(
1
80G̃

)T
(A.34)
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with

G̃ =

0

@

-15 -11 -17 47 1 5 -1 -17 7 11 5 -11 3 7 1 -15
-1 -9 -7 5 -9 63 -15 -3 -7 -15 -13 -1 5 -3 -1 11
5 -7 -9 -1 -3 -15 63 -9 -1 -13 -15 -7 11 -1 -3 5

1

A

(A.35)

and

E1 =
(

0 ∈ R
3×4 id ∈ R

3×3 0 ∈ R
3×9

)
M0 (A.36)

=




-1 3 -3 1 0 0 0 0 0 0 0 0 0 0 0 0

1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

1 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0


 . (A.37)

As mentioned in 3.9.2, these operators fullfill the requirements (3.26), but not necessarily
(3.33).

Kinetic Fluxes as Moments

The additional moments can be directly computed as

qx =
`

-54 -10 10 54 -30 -2 2 30 -30 -2 2 30 -54 -10 10 54
´

qy =
`

54 30 30 54 10 2 2 10 -10 -2 -2 -10 -54 -30 -30 -54
´

σxy =
`

-9 -3 3 9 -3 -1 1 3 3 1 -1 -3 9 3 -3 -9
´

To fullfill the conditions (3.26), we project these moment vectors to the non-equilibrium
phase space by applying P = (id −ME0). The resulting vectors are then normalized
and form the lines of E1.

Correspondingly we chose G = ET1 , and construct the equations according to (3.27) and
(3.28).

A.4.3 Direct Asymptotic Expansion

The conditions for 2nd order in Thm. 3.6.1 are met in the case of the 16 discrete velocities
model.
Nontheless, in this section we show how to directly do the asymptotic expansion of
(3.50/3.51) in ε.

Let us abbreviate (3.50) and (3.51) as

∂t

(
ρ
µ

)
+

(
A B
C D

)(
ρ
µ

)
+

1

ε

(
0 0
0 E

)(
ρ
µ

)
=

(
0
0

)
, (A.38)

with A = E0c · ∇M , B = E0c · ∇G, C = E1c · ∇M , D = E1c · ∇G,
E = E1KG.
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Inserting the expansion µ = εµ1 + ε2µ2 into (A.38) yields

∂tρ+Aρ+B
(
εµ1 + ε2µ2

)
= 0

∂t
(
εµ1 + ε2µ2

)
+ Cρ+D

(
εµ1 + ε2µ2

)
+

1

ε
E
(
εµ1 + ε2µ2

)
= 0

(A.39)

and short calculations reveal that

µ1 = −E−1Cρ,

µ2 = −E−1Dµ1 − E−1∂tµ1 = E−1DE−1Cρ+ E−1E−1C∂tρ

Euler
= E−1DE−1Cρ− E−1E−1CAρ.

(A.40)

Plugging this into (A.39) yields

∂tρ+Aρ = εBE−1Cρ+ ε2B
(
−E−1DE−1Cρ+ E−1E−1CAρ

)
, (A.41)

or, by using the definitions of A,...,E:

∂tρ+ E0c · ∇Mρ = εE0c · ∇G (E1KG)−1E1c · ∇Mρ

− ε2E0c · ∇G (E1KG)−1E1c · ∇G (E1KG)−1E1c · ∇Mρ

+ ε2E0c · ∇G (E1KG)−1 (E1KG)−1E1c · ∇ME0c · ∇Mρ.

(A.42)

This compares to the asymptotic expansion of the original kinetic equations, as given in
(3.24)

∂tρ+ E0c · ∇Mρ = − εE0(c · ∇)K†(c · ∇)Mρ

− ε2E0(c · ∇)K†(c · ∇)K†(c · ∇)Mρ

+ ε2E0(c · ∇)K†K†(c∇M)E0(c · ∇)Mρ.

(A.43)

Using now the special structure of the 16-discrete velocities model (A.20), we can com-
pute the coefficient matrices for first and second order, and get:

∂tρ+ E0VM∂xρ = εE0V G (E1KG)−1E1VM∂2
xρ

− ε2E0V G (E1KG)−1E1V G (E1KG)−1E1VM∂3
xρ

+ ε2E0V G (E1KG)−1 (E1KG)−1E1VME0VM∂3
xρ

(A.44)

Computing the products shows equivalence with the Chapman-Enskog expansion of the
original kinetic equations. Furthermore one can compute that this equivalence breaks
down for third order (super-Burnett).
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A.5 Details for the Derivation of Grad’s 5-Moment-System

The matrices (4.14) with Hermite functions read

Mµν = 〈ψµ, φν〉 =

(√
6 0

0 2
√

6

)
, M1

µν = (M−1)µλ〈ψλ, ξφν〉 =

(
0 2
5 0

)
,

M2
µν = (M−1)µλ〈ψλ, ξ2φν〉 =

(
10 0
0 15

)
, M3

µν = (M−1)µλ〈ψλ, ξ3φν〉 =

(
0 30

105
2 0

)
,

D0
µν = (M−1)µλ〈ψλ, ∂ξ φν〉 =

(
0 2
3 0

)
, D1

µν = (M−1)µλ〈ψλ, ξ ∂ξ φν〉 =

(
6 0
0 10

)
,

D2
µν = (M−1)µλ〈ψλ, ξ2 ∂ξ φν〉 =

(
0 20
45
2 0

)
,

V 0
µ = (M−1)µλ〈ψλ, 1〉 =

(
0√

3
8

)
, V 1

ν = (M−1)µλ〈ψλ, ξ〉 =

(√
3
2

0

)
,

V 2
µ = (M−1)µλ〈ψλ, ξ2〉 =

(
0

5
√

3
8

)
, V 3

µ = (M−1)µλ〈ψλ, ξ3〉 =

(
5
√

3
2

0

)
,

Qµ =
1√
2π

∫
ξ3e−ξ

2/2φµdξ =

(√
6

0

)
.

(A.45)

With these matrices, we can compute the matrixfunctions as defined in (4.23)

Bαγ(U, κ) = vδαγ +
√
θM1

αγ −
√
θ

2

(
−V 0

α − κα + V 2
α + κµM

2
αµ − κµD

1
αµ

)
Qγ

=


 v − 3

√
3
2

√
θκ1 2

√
θ

5
√
θ −

√
3
2

√
θ
(√

6 + 4κ2

)
v




(A.46)

and

Cα1 =

{
κγD

0
αγ −

1

2
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} √
θ

ρ

=

√
θ

ρ


 −3

√
3
2κ

2
1 + 2κ2

3κ1 −
√

3
2κ1

(√
6 + 4κ2

)


 ,

(A.47)

as well as

Cα2 = 0α =

(
0
0

)
(A.48)
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and

Cα3 =

{
V 3
α

2
+ κγ

M3
αγ

2
− κγ

D2
αγ

2
− 3

2
V 1
α − 3

2
κγM

1
αγ + κγD

0
αγ

−3

4
Qγκγ

(
−V 0

α − κα + V 2
α + κγM

2
αγ − κγD

1
αγ

)} 1√
θ

=
1√
θ




√
3
2 − 9

2

√
3
2κ

2
1 + 4κ2
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The production vector reads

Rα(U, κ)
BGK
= −1

τ

(
κ1

κ2

)
. (A.50)
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A Appendix

A.6 Photonic Crystals

Together with Kersten Schmidt, the author of this thesis was working on finite element
computations for photonic crystals. Since this work is not strictly related to the research
projects for this thesis, we refer to the published paper [45] and give a short summary
of that project. It is worth mentioning that there are further projects with publications
(see [9]) going on, building substantially on the results obtained in [45].

Short Summary: Computation of the band structure of two-dimensional Photonic

Crystals with hp-Finite Elements

Photonic crystals are periodic materials with discontinuous dielectrical properties. Their
band structure and corresponding eigenmodes can be efficiently computed with the fi-
nite element method (FEM). For second order elliptic boundary value problems with
piecewise analytic coefficients it is known that the solution converges extremly fast,
i.e. exponentially, when using p-FEM for smooth and hp-FEM for polygonal interfaces
and boundaries. In our project, we discretised the variational eigenvalue problems for
photonic crystals with smooth and polygonal interfaces in scalar variables. We used
quasi-periodic boundary conditions by means of p- and hp-FEM for the transverse elec-
tric (TE) and transverse magnetic (TM) modes. Our computations showed exponential
convergence of the numerical eigenvalues in settings of smooth and polygonal lines of
discontinuity for the dielectric material properties.
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[46] Kersten Schmidt and Sébastien Tordeux. Asymptotic Modelling of Conductive Thin
Sheets. Z. Angew. Math. Phys., 61(4):603–626, 2010.

[47] H. R. Schwarz. Numerische Mathematik. B. G. Teubner, Stuttgart, 4th edition,
1997.

[48] G. Strang. On the Construction and Comparison of Difference Schemes. SIAM
Journal on Numerical Analysis, 5(3):506 – 517, 1968.

[49] H. Struchtrup. Stable Transport Equations for Rarefied Gases at High Orders in the
Knudsen Number. Phys. Fluids, 16(11), 2004.

[50] H. Struchtrup. Derivation of 13 Moment Equations for Rarefied Gas Flow to Sec-
ond Order Accuracy for Arbitrary Interaction Potentials. Multiscale Model. Simul.,
3(1):221–243, 2005.

141



References

[51] H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows. Interac-
tion of Mechanics and Mathematics. Springer, Heidelberg, 2005.

[52] H. Struchtrup and M. Torrilhon. Regularization of Grad’s 13-Moment-Equations:
Derivation and Linear Analysis. Phys. Fluids, 15/9:2668–2680, 2003.

[53] H. Struchtrup and M. Torrilhon. H-theorem, Regularization, and Boundary Condi-
tions for Linearized 13 Moment Equations. Phys.Rev. Letters, 99(014502), 2007.

[54] P. Taheri, M. Torrilhon, and H. Struchtrup. Couette and Poiseuille Microflows: An-
alytical Solutions for Regularized 13-Moment Equations. Phys. Fluids, 21(017102),
2009.

[55] R. Temam and A. Miranville. Mathematical Modeling in Continuum Mechanics,
volume 38 of Interaction of Mechanics and Mathematics. Cambridge University
Press, Cambridge, 2005.

[56] M. Torrilhon. Regularized 13-Moment-Equations. Proceedings of 5th
Intl. Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2006.

[57] M. Torrilhon. Two-Dimensional Bulk Microflow Simulations Based on Regularized
13-Moment-Equations. SIAM Multiscale Model.Simul., 5(3):695–728, 2006.

[58] M. Torrilhon. Hyperbolic Moment Equations in Kinetic Gas Theory Based on Multi-
Variate Pearson-IV-Distributions. Comm. Comput. Phys., 7(4):639–673, 2010.

[59] M. Torrilhon and H. Struchtrup. Regularized 13-Moment-Equations: Shock Struc-
ture Calculations and Comparison to Burnett Models. J. Fluid Mech., 513:171–198,
2004.

[60] M. Torrilhon and H. Struchtrup. Boundary Conditions for Regularized 13-Moment-
Equations for Micro-Channel-Flows. J. Comput. Phys., 227 (3):1982–2011, 2008.

[61] C. Wagner, C. Hoffmann, R. Sollacher, J. Wagenhuber, and B. Schürmann. Second-
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