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Abstract—Terence Tao recently developed a series of new
inequalities for the (discrete) Shannon entropy, which parallel
sumset and inverse sumset bounds in additive combinatorics. We
examine some of their natural analogs for differential entropy.
Since the main ingredient in Tao’s proofs (the submodularity of
the entropy function) fails in the continuous case, interesting new
phenomena arise. We review some known results and present a
series of new differential entropy inequalities. These results are
based, in part, on joint work with Mokshay Madiman.

I. ADDITIVE COMBINATORICS AND ENTROPY

The field of additive combinatorics [see, e.g., [7] for an in-
troduction] is the theory of additive structures in sets equipped
with a group structure. The prototypical example is the study
of arithmetic progressions in sets of integers, as opposed to
the multiplicative structure that underlies prime factorization
and much of classical combinatorics and number theory.
There have been several major developments and a lot of
high-profile mathematical activity in additive combinatorics in
recent years, with perhaps the most famous example being the
celebrated Green-Tao theorem on the existence of arbitrarily
long arithmetic progressions within the primes.

An important collection of tools in the study of additive
combinatorics is a variety of sumset inequalities. Here, the
sumset A + B of two discrete sets A and B is defined as,
A+B ={a+b:a€ Abe B}, and a sumset inequality
is an inequality connecting the cardinality |A + B| of A+ B
with the cardinalities of A and B. Therefore, roughly and
somewhat incorrectly speaking, it might be said that additive
combinatorics gives bounds on the sizes of discrete additive
sets.

In this setting, we recall the natural connection between
entropy and set cardinality established by the AEP: The en-
tropy H (X)) can be thought of as the logarithm of the effective
cardinality of the alphabet of a discrete random variable
X. This suggests a correspondence between bounds for the
cardinalities of sumsets like, e.g., |A + B|, and corresponding
bounds for the entropy of sums of discrete random variables,
e.g., H(X +Y). This connection appears to have first been
identified by Imre Ruzsa, and in the last few years it has also
been explored in different directions by, among others, Tao and
Vu [6], Lapidoth and Pete [1], Ruzsa [4], Madiman, Marcus
and Tetali [3], Madiman and Kontoyiannis [2], and Tao [5].

II. SUMSET BOUNDS AND DIFFERENTIAL ENTROPY

This analogy can be carried further: The continuous AEP
states that the differential entropy h(X) of a continuous
random vector X can be thought of as the logarithm of the
(Euclidean or Lebesgue) “volume of the effective support” of
X. It is then natural to consider whether the recent discrete
sumset entropy bounds can be extended to the continuous case.

Taking as our starting point the results in Tao’s recent work
[5], we provide natural differential entropy analogs for the
following inequalities:

o Rusza triangle inequality

o Sum-difference inequality

o Pliinnecke-Rusza inequality

o Iterated sum bound

o Balog-Szemerédi-Gowers lemma

o Rusza’s covering lemma

o Green-Rusza-Freiman inverse-sumset theorem

The difficulty as well as the excitement of this work
stem from the fact that, in the continuous case, the natural
generalizations of the proofs of the discrete versions of many
of these results fail at a deep level. One reason is that
the main ingredient in earlier proofs is the submodularity
of the discrete entropy functional, which does not hold for
differential entropy. And, further, it is the overall structure
of the proofs that does not carry on to the continuous case:
Not the method, but the actual intermediate steps fail to hold
for differential entropy. Therefore, it is necessary to employ
different tools and fundamentally new proof strategies.
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