
ETH Library

W3Touch
Crowdsourced Evaluation and Adaptation of Web
Interfaces for Touch

Master Thesis

Author(s):
Speicher, Maximilian

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-007139741

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-007139741
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

W3Touch
Crowdsourced Evaluation and Adaptation of

Web Interfaces for Touch

Master’s Thesis

Maximilian Speicher
<speichem@student.ethz.ch>

Prof. Dr. Moira C. Norrie
Michael Nebeling

Global Information Systems Group
Institute of Information Systems

Department of Computer Science

1st March 2012

Copyright © 2012 Global Information Systems Group.

Abstract

The increasing range and diversity of novel touch devices makes it cumbersome for web
developers to cater for the wide variety of browsing contexts. While it is work-intensive to
create mobile versions of a website, non-optimised websites that were designed with desktop
computers in mind are usually scaled by mobile browsers so that text is rendered unreadable
and details are difficult to view. Moreover, hyperlinks typically yield too small touch areas,
as many interfaces are not designed for novel input modalities. Interacting with such pages
in an effective manner therefore requires extensive zooming and scrolling, which can become
major usability issues.
This thesis presents W3Touch—a lightweight website plug-in making use of crowdsourcing
to collect context-aware activity data specific to touch input. Based on this data, potentially
critical webpage components and suitable adaptations for different device characteristics are
inferred. Thanks to W3Touch, developers are provided with visualisations of these data for
identifying interface design issues related to touch input as well as an adaptation catalogue
for defining and fine-tuning adequate adaptations.
In two user studies, we investigate W3Touch’s capabilities to help providing touch-optimised
web interfaces. Results suggest that crowdsourced interfaces do not only improve user exper-
ience, particularly on small-screen mobile touch devices, but can also compete with existing
mobile websites to a certain extent. Moreover, a set of touch-specific usability metrics is
introduced that can complement the features of W3Touch for assessing web interfaces with
respect to touch input.

iii

iv

Acknowledgements

First of all, I would like to thank Prof. Moira Norrie and Michael Nebeling for their support
and giving me the opportunities to, not only write this thesis at the GlobIS group, but also
participate in projects that were very interesting and challenging to work on. Moreover, I
would like to thank Michael Nebeling again for being a demanding but fair supervisor and
for his valuable feedback.
This Master’s thesis is dedicated to my family and grandma, who always supported me
throughout my studies, and especially my parents, who believed in the plans I’ve had and
never said “No!” when I came and wanted to change university (again). Furthermore, this
thesis is also dedicated to Dénise, who always supported me ever since we met and came
with me to Zurich to study at ETH
Finally, I would like to thank Tim Church for his good company throughout the three
semesters at ETH and for all the pizza days.

v

vi

Contents

1 Introduction 1
1.1 Aims of Research . 3
1.2 Structure of this Thesis . 4

2 Background 5
2.1 Touch Input . 5
2.2 Crowdsourcing . 6
2.3 Adaptation of Websites for Mobile Devices 7

2.3.1 Automatic Layout Adaptation/Generation 7
2.3.2 Direct Manipulation . 8
2.3.3 Extended Input Techniques . 9

2.4 Automatic Usability Evaluation . 10
2.4.1 Client Side . 10
2.4.2 Server Side . 11

3 W3Touch 13
3.1 Concept . 13

3.1.1 Context-aware Interaction Tracking 14
3.1.2 Interaction-based Page Segmentation 14
3.1.3 Data Visualisation . 16
3.1.4 Adaptation Catalogue and Engine 17
3.1.5 Configuration . 19

3.2 Implementation . 20
3.2.1 Webpage preparation . 20
3.2.2 Zooming Detection . 22
3.2.3 Logging . 22
3.2.4 Context-aware Interaction Tracking 23
3.2.5 Interaction-based Page Segmentation 25
3.2.6 Context Engine . 26
3.2.7 Data Visualisation . 27
3.2.8 Configuration . 28
3.2.9 Adaptation Catalogue and Engine 29
3.2.10 Live Version . 31

4 Evaluation 33
4.1 Case Study: Wikipedia . 34
4.2 Expert Interviews . 36

vii

viii CONTENTS

4.2.1 Structure . 36
4.2.2 Findings . 36

4.3 User Study #1: Crowdsourced Adaptation of an Example Webpage 38
4.3.1 Method . 39
4.3.2 Results . 41

4.4 User Study #2: Comparison to Existing Mobile Version 48
4.4.1 Method . 48
4.4.2 Results . 49

4.5 jQMetrics4touch . 53
4.5.1 Implementation . 55
4.5.2 Results . 56

5 Conclusions 59
5.1 Contributions . 59
5.2 Limitations . 60
5.3 Future Work . 60

Bibliography 64

Appendices 67

A Source Code 67
A.1 Example Configuration . 67
A.2 Example Adaptation Catalogue . 68

B Expert Interviews 71

C User Study #1 77
C.1 Post-study Questionnaire . 77
C.2 Results . 81

D User Study #2 89
D.1 Text-related Questions . 89

D.1.1 2007–present: iPhone and iPad . 89
D.1.2 Culture . 89
D.1.3 Environmental Record . 89

D.2 Questionnaires . 90
D.3 Significance of Results . 95

1
Introduction

Nowadays, we experience an increased proliferation of novel mobile devices—such as smart-
phones or tablet computers—featuring touchscreens for operation. The most prominent ex-
amples for these might be Apple’s iPhone and iPad, which have been sold more than 146
million times (since April 2007) and more than 39 million times (since April 2010) respect-
ively, according to official press releases.1 But also other devices, e.g. those running the
Android OS, are becoming more and more popular, which adds to the great diversity. Since
this new generation of touch-operated devices typically offer Internet connectivity, e.g. via
WiFi or UMTS, and also feature a range of browsers including Safari Mobile, Mobile Firefox
or the Dolphin Browser, the user is able to access arbitrary websites from practically any-
where. However, the mobility and diversity of devices poses numerous challenges to web
developers, not only in terms of the smaller screen real estate available, but also in terms of
the novel input modalities and generally many differences between devices.
The majority of websites still appears to be designed with desktop computers in mind, i.e. they
are optimised for keyboard and mouse input and feature column widths oriented at popular
desktop screen dimensions (in particular 1024×768; Nebeling et al., 2011). Concerning the
adaptation of such websites for mobile devices, Bickmore and Schilit (1997) mention four
general approaches:

• Device-specific authoring, which means designing a page for a specific (family of)
device(s). Current examples are dedicated apps for different devices and mobile op-
erating systems or special, separate versions of a site (Charland and LeRoux, 2011).
Legacy examples include technologies like WML2 or cHTML3.

• Multiple-device authoring, where a single source document is mapped to a range of
different devices, as can be done with the help of CSS3 media queries4 (used by frame-

1http://www.apple.com/pr/library/
2http://www.wapforum.org/what/technical.htm
3http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
4http://www.w3.org/TR/css3-mediaqueries/

1

http://www.apple.com/pr/library/
http://www.wapforum.org/what/technical.htm
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/TR/css3-mediaqueries/

2

Figure 1.1: A website designed for desktop computers, as seen on a small-screen touch
device. The screenshots on the right show viewports in portrait and landscape mode, when
zoomed in for a readable size. The tiny red boxes at the very left indicate the touch areas of
exemplary text hyperlinks.

works such as Foundation5) as well as the entire range of model-based approaches (e.g.
Paternò et al., 2009).

• Client-side navigation, which offers users the possibility to interactively alter the por-
tion of a website that is displayed. Examples are Fishnet (Baudisch et al., 2004a), where
focus regions of a page are scaled to a readable size, and Collapse-to-Zoom (Baudisch
et al., 2004b), where users can collapse parts of a page so that the remaining contents
are given more space.

• Automatic re-authoring, where a website designed for desktop computers is dynam-
ically transformed in a way that it can be appropriately displayed on a certain target
device, taking into account given device characteristics. This has been realised in sys-
tems like PUC (Nichols et al., 2002) or Supple (Gajos et al., 2008).

However, in practice, only the first two of these principles—i.e. creating specific mobile ver-
sions of a website or using multiple stylesheets for one website that are selected based on the
current context—are commonly used by developers to also cater for mobile and touch-based
browsing contexts. But since it is cumbersome and time-consuming to maintain different

5http://foundation.zurb.com/

http://foundation.zurb.com/

CHAPTER 1. INTRODUCTION 3

versions of the same website or to develop pages with several stylesheets, the websites to
offer versions that are specifically optimised for touch-operated mobile devices are mostly
popular websites with sufficient resources, such as Facebook6, Twitter7 or FAZ8. In contrast,
the vast majority of regular websites are usually scaled by mobile browsers to fit the width
of the screen, thus often rendering text unreadable (cf. Figure 1.1). Moreover, text hyperlinks
are commonly not defined with sufficient horizontal and vertical spacing and, if turned into
touch-sensitive areas without further adjustments, result in targets that are difficult to hit on
touch-based small screens when using a finger instead of a mouse or pen (cf. Figure 1.1).
Using such websites in an effective manner therefore involves huge amounts of zooming as
well as both horizontal and vertical scrolling, which are common examples of client-side nav-
igation, but require considerable effort by the user and can lead to a bad website overview.
This is underpinned by a survey concerned with browsing on touch devices and carried out
by Nebeling et al. (2012b), where participants pointed out that touch input is often inaccur-
ate because of typically too small input elements, websites are often not optimised for touch
and there are issues regarding the amount of scrolling and zooming necessary. All of these
problems account for both viewing and reading contents as well as navigating through the
website, e.g. being able to easily find and activate desired hyperlinks.

1.1 Aims of Research

One new way of addressing the challenges for web developers resulting from the proliferation
of novel and diverse mobile touch devices is to use a crowdsourcing approach (Nebeling and
Norrie, 2011). In this case, lightweight end-user tool are proposed that are part of a dedicated
extension to common web application architectures and offer users the possibility to adjust
websites to their needs. That means, the web developer provides an initial web interface that
evolves over time through user emancipation while taking into account the different browsing
contexts the website is accessed with. Therefore, developers do not need to maintain different
versions of webpages or stylesheets since different adaptations are stored for different use
contexts (e.g. tablet PC or smartphone) and applied automatically for users of according
devices.
However, regarding the fact that this thesis focuses on touch-operated devices with smaller
screens than desktop computers, on which it is already considerably difficult to only interact
with regular websites, we present W3Touch—a lightweight website plug-in based on crowd-
sourcing ideas that is meant to complement the work by Nebeling and Norrie (2011). Our tool
aims at automatically inferring required adaptations for different browsing contexts based on
the users’ behaviours rather than providing means for direct manipulation, which would be
difficult to use on small-screen touch devices. Therefore, the aims of this thesis are as follows:

1. Develop a set of methods for collecting input data relevant for web browsing on touch
devices, such as taps and zoom gestures. These data shall be used to identify the most
important interaction components of a website as well as to aid developers identify key
design issues based on analyses and visualisations.

6http://m.facebook.com/
7http://mobile.twitter.com/
8http://m.faz.net/

http://m.facebook.com/
http://mobile.twitter.com/
http://m.faz.net/

4 1.2. STRUCTURE OF THIS THESIS

2. Conduct expert interviews in order to gain a better understanding of potential usability
issues when browsing regular websites on touch devices and to inform the design of
adequate adaptations.

3. Develop a set of context-aware layout adaptation techniques based on main interaction
components and tracking data, taking into account recommendations gained from the
expert interviews.

4. Design and carry out user evaluations in order to show that the developed adaptation
techniques can be successfully applied to existing websites. Goals are to identify the
main limitations and to demonstrate usability improvements over regular websites con-
cerning tasks that are potentially cumbersome to perform on touch devices. Addition-
ally, take into account existing mobile versions for comparison.

5. Develop a set of specific metrics based on jQMetrics (Nebeling et al., 2011), that sup-
port developers with assessing websites on mobile touch devices.

1.2 Structure of this Thesis

This thesis starts in Chapter 2 by discussing the background of this project and reviewing re-
lated work. Next, in Chapter 3, we describe the concepts and implementation of W3Touch—
the proposed tool for automatic usability evaluation and context-aware adaptation based on
user activity tracking. Chapter 4 describes expert interviews that give insight into potential
usability issues of current websites and how they could be addressed as well as a user study
that has been carried out to evaluate W3Touch. Moreover, the adapted website based on usage
data collected during the study is compared to an existing mobile and touch-optimised ver-
sion. This happens in terms of a second user study and specific metrics. Finally, we provide
concluding remarks in Chapter 5.

2
Background

W3Touch aims at the adaptation of web interfaces for mobile devices featuring touch input.
The application of context-aware adaptations shall thereby be based on a crowdsourcing scen-
ario and automatic usability evaluations involving client-side interactions and components of
interest inferred from these. Therefore, this project is related to a wide variety of existing
research that has been focusing on the corresponding aspects of adaptation and evaluation as
well as similar topics. The following chapter gives background information about the spe-
cifics of touch input and the principles of crowdsourcing. As well as providing a structured
overview of existing solutions and propositions dealing with adaptation to mobile devices and
usability evaluation, we point out differences to the approach presented in this thesis.

2.1 Touch Input

In addition to small screens, mobile devices nowadays often feature direct touch input. Since
interacting with websites using one or more fingers involves novel gestures and paradigms,
it is significantly different from mouse or pen input and thus poses specific requirements to
web developers. In particular, while it is possible to precisely target a link using a mouse or
pen, fingers produce a much larger contact area on a touchscreen (Holz and Baudisch, 2011).
Today’s capacitive touchscreens, as e.g. used for the iPhone, assume that the centroid of this
area is the intended target, but users rather align visual features on the top of their finger
with the link to be touched, which leads to offset errors (Holz and Baudisch, 2011). These
errors—with an average offset of 4 mm—are especially problematic if a user faces areas with
a huge number of densely packed, small links. To give an example, on an iPod touch with
a resolution of 163 pixels per inch1, these 4 mm (0.157 in) correspond to approximately 26
pixels, which is already as large as font sizes commonly used on websites (e.g. 12 pt ≈ 27 px,
at 163 pixels per inch), or even larger if a website has been scaled to fit the width of a small
screen (cf. Figure 1.1).

1http://support.apple.com/kb/sp496

5

http://support.apple.com/kb/sp496

6 2.2. CROWDSOURCING

Besides these conceptual differences regarding input modalities, direct touch also requires
changes concerning the implementation of websites. Since it is, e.g. not possible to hover
elements using a finger, the mouseover and mouseout DOM events are not suitable for
touch input. This means that developers cannot rely on interactions building on such mouse-
specific events, but rather have to employ novel events, including touchstart, touchmove
and touchend, as proposed by the W3C2. The Safari API3 introduces additional events
to be able to easily handle higher-level gestures as well. Additionally, since touch input also
triggers default browser behaviours, such as scrolling and zooming, developers have to ensure
that these do not interfere with any events or gestures that are necessary for interaction with
the web interface as well as to guarantee that no ambiguous gestures exist (cf. Nebeling and
Norrie, 2012).

2.2 Crowdsourcing

Rather than outsourcing tasks to dedicated employees in a company, crowdsourcing (Howe,
2006) means involving a huge number of (unknown) people—typically over the Internet—in
solving tasks through open calls. Howe (2006) describes crowdsourcing as a result of the
increased connectedness of people, which leads to huge amounts of contributions created for
fun or in one’s free time, which are of good enough quality—as compared to a professional’s
work—at a significantly lower price. In this way, it is e.g. possible to purchase a high-quality
amateur photograph at iStockphoto4 for $1, instead of paying a professional a hundred times
the amount. Even R&D departments of companies can make use of crowdsourcing by posting
unsolved problems to a platform called InnoCentive5, where anyone can try to contribute to
these research tasks. Although solvers receive comparably high payments ($10,000 upwards),
this is still cheaper for companies than costly in-house solutions (Howe, 2006).
In the context of computer science, crowdsourcing is especially useful for small tasks that
are difficult for computers, but can be easily solved by humans, such as photo recognition or
transcriptions (Howe, 2006). To give a famous example, Amazon took advantage of this by
developing Mechanical Turk6—a platform that is less specialised than the above mentioned
iStockphoto and InnoCentive and aimed at a larger amount of potential contributors. Anyone
can post tasks (along with a reward) and ask the crowd to solve them, while an API even
makes it possible to receive solutions programmatically. Because of this “simulation” of
computing power by crowdsourcing small problems from within running programs, as e.g.
done in Soylent (Bernstein et al., 2010), Amazon call their approach “Artificial Artificial
Intelligence”. While the described platforms realise explicit forms of crowdsourcing, it is
as well possible to employ it in an implicit way. As described in Section 3.1, W3Touch
collects interaction data and informs the design of suitable adaptations from these. Therefore,
interacting with a website can be seen as the crowd’s contribution to solving the problem of
adapting it for different browsing contexts.

2http://www.w3.org/TR/touch-events/
3http://developer.apple.com/library/IOs/#documentation/AppleApplications/

Reference/SafariWebContent/HandlingEvents/HandlingEvents.html
4http://www.istockphoto.com/
5http://www.innocentive.com/
6https://www.mturk.com/mturk/welcome

http://www.w3.org/TR/touch-events/
http://developer.apple.com/library/IOs/#documentation/AppleApplications/Reference/SafariWebContent/HandlingEvents/HandlingEvents.html
http://developer.apple.com/library/IOs/#documentation/AppleApplications/Reference/SafariWebContent/HandlingEvents/HandlingEvents.html
http://www.istockphoto.com/
http://www.innocentive.com/
https://www.mturk.com/mturk/welcome

CHAPTER 2. BACKGROUND 7

An example for a crowdsourcing solution whose architecture is similar to the one proposed by
Nebeling and Norrie (2011) is Adaptable GIMP (Lafreniere et al., 2011), which supports the
customisation of the GIMP7 user interface for specific tasks, such as creating a sepia effect.
However, the major difference to crowdsourcing web interfaces is that the use context (i.e.
the task a GIMP user wants to perform) cannot be determined automatically. Therefore, the
user has to use a search form to find and choose an adequate customisation for their desired
task before applying according adaptations.

2.3 Adaptation of Websites for Mobile Devices

Existing techniques concerning the adaptation of websites to mobile devices can be roughly
divided into three categories. The first one includes automatic adaptation of actual layouts
shown to the users as well as the generation of more device-specific layouts from these. The
second category comprises of techniques that allow users to directly adjust web interfaces to
their needs, while solutions extending the input capabilities of the user rather than focusing
on actual layouts fall into the third category.

2.3.1 Automatic Layout Adaptation/Generation

Summarisation

One approach to changing layouts in order to provide a better user experience on small-
screen devices is based on summarisation techniques. Buyukkokten et al. (2000, 2002) have
developed solutions for pen-based PDAs that generate single-column summary views taking
into account link structures of websites and semantic units within pages, thus giving users
a better overview of a website when searching for specific pieces of information. Users can
then “zoom into” more details if necessary. Although an improvement in user experience in
terms of less scrolling, less pen movements and better browsing speed Buyukkokten et al.
(2000) as well as better information discovery Buyukkokten et al. (2002) has been shown,
these approaches do not reflect the complexity of today’s websites and devices, e.g. images
are ignored to cater for monochrome displays.
In contrast to generating summary views, Lam and Baudisch (2005) propose “summary
thumbnails”, which means optimising the thumbnail view users see when a website is zoomed
out beyond readability in order to fit the available width on small screens (cf. Figure 1.1). This
means that font sizes of text fragments are increased, while the larger text is then shortened
to preserve the original line count. This can lead to lower error rates (as compared to single-
column views) and less zooming (as compared to original thumbnail views), while not sig-
nificantly increasing vertical scrolling efforts. However, user tests showed that, while parti-
cipants preferred summary thumbnails for tasks relying on the layout of a page (e.g. maps
or schedules), they did not for linear reading tasks (e.g. news websites or search results).
Moreover, since this approach is focused on adjusting text for small screens, it does not take
into account issues with novel input modalities, such as direct touch (cf. Section 2.1).

7http://www.gimp.org/

http://www.gimp.org/

8 2.3. ADAPTATION OF WEBSITES FOR MOBILE DEVICES

Segmentation

Chen et al. (2003) propose to segment websites rather than generating summaries of different
types. To achieve this, they split a page into semantically related units that fit the small screens
of mobile devices, taking into account visual separators and assumptions about commonal-
ities in the structures of different websites. The user is then presented a standard thumbnail
view highlighting the identified content blocks with different colours and can zoom into those
units. However, although this approach shows improvements in navigation and reading effi-
ciency, it does neither reflect the increasing complexity of today’s websites nor does it take
into account specific issues related to touch input (cf. Section 2.1)—as already mentioned for
the above solutions focusing on summarisation.
Hattori et al. (2007) propose a similar approach to segment a website, but employ a different
technique to discover semantically related content units. In particular, they use a hybrid solu-
tion that combines a higher-level structural analysis of the layout with lower-level segment-
ation via “content distances”, i.e. a method based on “the strength of connections between
content elements of the Web page based on the structural depth of HTML tags” (Hattori
et al., 2007), that is more robust against invalid HTML. Moreover, instead of providing a
thumbnail overview, they rely on “title lists” that are generated from the page segmentation
results. Regarding the similarity of this approach to the one proposed by Chen et al. (2003),
it accounts for the same strengths and has similar weaknesses.

Interaction-based

In contrast to all of the approaches described above, Leiva (2011) proposes to infer web inter-
face adaptations from user interactions and thus describes the approach that is most similar to
W3Touch so far. The developer of a website has to define page elements and associated CSS
properties that shall be adapted based on a user’s activities. These properties are then adjusted
according to a given function that calculates a weighting based on touch interactions with the
respective page element. For example, a weighting of 0.2 would increase the font size of an
element by 20%. However, the proposed solution also shows several differences as compared
to W3Touch. First of all, the gathered tracking data relies on hovering (which is not even
available with touch) and clicking elements, while not taking into account other interactions
that might indicate usability issues, such as zooming gestures. Second, adaptations are stored
individually for each user, thus not making use of crowdsourcing techniques or propagating
adaptations to users with similar browsing contexts. And third, since interaction data are not
expressed as metrics, but rather translated into a list of page elements (ordered by browsing
time), and the same given weighting function accounts for all adaptations, the developer can
only define numerical CSS properties that shall be adapted, but not in which way. In partic-
ular, this stands in contrast to W3Touch’s adaptation catalogue described in Section 3.1.4,
that provides developers access to interaction metrics for individual elements as well as with
richer means for influencing actual adaptations.

2.3.2 Direct Manipulation

In contrast to automatic methods, direct manipulation techniques allow users to adjust web-
sites to their specific needs and preferences by taking advantage of end-user tools provided on

CHAPTER 2. BACKGROUND 9

the client side. In this way, users can, e.g. move, remove and resize page elements or change
the font sizes of certain paragraphs of text.
Bila et al. (2007) propose a technique called REUC (Reusable End-User Customisation) that
has led to a prototype application developed for PDAs. It provides users a toolbar within
their mobile browser, allowing them to manipulate parts of the displayed webpage. The
customisations are then applied on subsequent visits to the same or similar pages within the
same website. Similarity between pages is thereby determined based on commonalities in
DOM structure. User tests have shown that customisations are reasonably accurate and can
be successfully reapplied to an average of 75% of pages of the same website which had been
found to be similar.
Unlike the approach just described, Nebeling and Norrie (2011) propose a more general
framework taking advantage of crowdsourcing techniques. It also employs visual tools that
give users the opportunity to create context-aware adaptations by, e.g. collapsing content or
changing the column count of text passages. These adaptations are then shared among users
with similar browsing contexts, involving a review and rating system to cater for quality.
However, as already mentioned in Section 1.1, this thesis aims at automatically inferring
adaptations from users’ activities since visual tools for direct manipulation would be cum-
bersome to use on touch-operated devices with small screens, where it is already difficult to
interact with non-optimised websites. Nevertheless, we make use of parts of the framework
proposed by Nebeling and Norrie (2011) since it describes useful principles to share context-
aware adaptations among users as well as sharing many similarities in implementation.

2.3.3 Extended Input Techniques

In contrast to adapting existing interfaces or generating new ones from these while relying
on available input techniques, other research has focused on extending input capabilities to
improve efficiency and effectiveness when working with standard, unadapted websites. This
can be achieved by, e.g. introducing novel paradigms for navigation (Baudisch et al., 2004b)
or multi-step selection techniques (Watanabe et al., 2011).
Baudisch et al. (2004b) have developed Collapse-to-zoom, a tool that enables users to collapse
irrelevant tiles of a webpage, while the remaining contents expand in size to fill the newly
available space. To be able to perform this, users are presented a so-called “marquee menu”
that consists of simple single-stroke gestures also allowing, e.g. to directly expand certain
parts of a webpage to fill the whole browser window. When re-accessing a webpage, it is then
presented in the state at which it was bookmarked. While Collapse-to-zoom can help users to
identify relevant parts of a webpage, it has been developed with pen-based devices in mind,
which makes it possible to offer the convenient marquee menu. However, when applying
this concept to mobile devices featuring direct touch input, the single-stroke gestures could
interfere with other standard gestures, such as scrolling and zooming. Moreover, it would be
more difficult to collapse and expand desired tiles of a webpage using a finger, given that they
might be too small and a pen is the more precise input method.
Watanabe et al. (2011) follow an entirely different approach by showing enlarged versions of
text hyperlinks when those are being touched by a user. This gives users the possibility to
ensure that the selected link is correct before releasing their finger to navigate to the link tar-
get or moving their finger away to cancel the interaction. Although this solution can decrease
the number of erroneously clicked links, it does not directly address the problem of unread-

10 2.4. AUTOMATIC USABILITY EVALUATION

able text and that of touch areas that are too small. In particular, a high number of densely
packed (and maybe too small) links would still require a decent amount of time-consuming
and inefficient “trial-and-error” swiping.
In general, the above and similar methods usually treat issues related to direct touch as a mat-
ter of input technique rather than of web interface design, which constitutes a major difference
to the approach presented in this thesis.

2.4 Automatic Usability Evaluation

Since the adaptations applied by W3Touch shall be inferred from user interactions, our system
builds on existing methods for automatic usability evaluation (Atterer et al., 2006; Carta et al.,
2011). The following shall give a rough overview of some approaches in this field, which we
divide into client-side and server-side solutions.

2.4.1 Client Side

Client-side approaches to usability evaluation focus on users’ interaction with web interfaces.
However, in this way it is only possible to evaluate individual webpages. In case the tracking
of a user shall span several pages of a website, additional server-side components (e.g. session
management) are necessary.
Atterer et al. (2006) propose JavaScript-based interaction tracking to ease the realisation of
usability tests, i.e. they gather mouse movements, clicks, keyboard input, elapsed time etc.
using a proxy server, so that no modification of an investigated website is necessary. In
this way, neither specific machines have to be set up for user tests, nor is it necessary to
invite participants or make use of cameras to collect information. The gathered events can
then be mapped to the respective page elements, which makes it possible to visualise, e.g.
interaction paths of users on a webpage and identify main components of interest. Although
this approach provides developers with useful data, it is not possible to automatically infer
implicit information from these, as is intended by W3Touch. In addition, possible adaptations
based on issues identified from the data have to be applied manually. While Atterer et al.
(2006) focus on evaluations on single webpages, Leiva and Vidal (2010) follow a different
approach also based on client-side interaction. Their solution makes use of the collected data
to form clusters of documents that trigger similar user behaviours. In this way it could be
possible to identify usability issues on one document and apply the corresponding adaptations
on multiple similar pages, which is, however, not considered in their work.
Carta et al. (2011) extend the principles described above by providing a complete framework
for remote usability testing. Their approach involves “optimal” logs defined for specific tasks
by the evaluator, which are then compared to the logs produced by participants. This solution
enables evaluations across websites and captures standard mouse and keyboard events as
well as additional jQuery events8 and the touch and gesture events present in the Safari API.
While novel input modalities are partly addressed here, the identification of usability issues—
supported with timeline visualisations of user interactions—is left to the developer.
Although the above solutions may provide good starting points for the aims of this thesis, they
still need to be enhanced with means for capturing higher-level touch events, such as scrolling

8http://api.jquery.com/category/events/

http://api.jquery.com/category/events/

CHAPTER 2. BACKGROUND 11

or zooming, as well as automatically inferring usability issues specific to touch input from
the collected interaction data.

2.4.2 Server Side

Contrary to the above, Hong et al. (2001) present WebQuilt, that is a logging and visualisation
tool based on server logs. Rather than tracking users’ interactions with an interface, as pos-
sible with client-side solutions, this approach records the communication between client and
server, i.e. navigation paths across websites, clicked links etc., which can then be visualised
in a graph showing webpages as nodes and actions as edges. In this way, it is also possible
to infer certain user interactions, such as clicking the browser’s back button. Concerning
the aims of this thesis, WebQuilt is of minor interest, since it is focused on detecting issues
with the document structure of websites rather than issues related to touch input. Moreover,
although the developers state that their framework is extensible, it has difficulties handling
dynamic actions based on JavaScript, which is a great disadvantage given the increased pop-
ularity of libraries such as jQTouch9 or Sencha Touch10—that are mainly based on dynamic
scripting—for developing mobile web applications.

9http://jqtouch.com/
10http://www.sencha.com/products/touch

http://jqtouch.com/
http://www.sencha.com/products/touch

12 2.4. AUTOMATIC USABILITY EVALUATION

3
W3Touch

According to the aims defined in Section 1.1, this chapter presents W3Touch—a lightweight
website plug-in that features context-aware tracking of user activity on touch devices, identi-
fication of main interaction components of webpages as well as the automatic inference and
application of suitable adaptations for different browsing contexts based on the crowdsourced
interaction data and an adaptation catalogue provided by the developer.

3.1 Concept

Conceptually, W3Touch consists of two high-level components (cf. Figure 3.1), i.e. 1) means
for tracking user activity on the client side and storing corresponding input data in a server-
side database, and 2) adaptive mechanisms aimed at fixing potential interface design issues
at run time. The first component employs the crowdsourcing ideas presented by Nebeling

Client 2

W3Touch

Client 1

W3Touch

Interaction Tracking

Adaptation Engine

Logging and Adaptation Service

Adaptation
CatalogTracking Data

Context
Engine

W3Touch Configuration

Figure 3.1: The W3Touch architecture, including core components and interaction between
two clients indicating the underlying crowdsourcing scenario.

13

14 3.1. CONCEPT

and Norrie (2011), extended with means for tracking touch-specific interaction on different
mobile devices. The second component makes use of the gathered data—associated with
context information—to support the inference of critical parts of webpages and automatically
apply adaptations, which are based on a set of design rules defined by the web developer
through an adaptation catalogue. The following will discuss the specifics of the W3Touch
architecture in more detail.

3.1.1 Context-aware Interaction Tracking

The techniques for user activity tracking used by W3Touch are based on the principles de-
scribed by Atterer et al. (2006). However, rather than relying on legacy DOM events designed
for keyboard and mouse input, these have been enhanced to cater for the specifics of mobile
touch devices. This means, in addition to considering raw touch events—as defined by the
W3C and e.g. introduced by Mozilla1—our system supports semantically richer types of
events. This is possible by keeping track of the position and dimensions of viewports above
a given zoom level—as triggered by double-tap and pinch-to-zoom gestures—, scrolling ges-
tures and orientation changes of the device. Moreover, while ignoring any single taps that
belong to higher-level gestures, W3Touch records, not only taps on interactive elements of a
webpage (e.g. hyperlinks and input fields), but is also able to recognise single taps that poten-
tially missed their intended targets. To achieve this, our system prepares a webpage by adding
underlays that span a specified range around interactive elements and record any taps which
missed the corresponding hyperlink, input field or similar. Additionally, W3Touch can com-
bine subsequent scrolls in the same direction in a single event, in order to reduce redundant
information and the amount of data to be processed.
On the client side, all of the collected information are associated with the URL of the webpage
as well as with the user’s browsing context—including device orientation, screen dimensions
and user agent string. Subsequently, the server-side context engine (cf. Figure 3.1) addition-
ally infers the type of device (e.g. tablet PC or smartphone) and the data is sent to a database
for future processing.

3.1.2 Interaction-based Page Segmentation

Based on the recorded user interaction data, W3Touch aims at partitioning webpages into the
main interactive components that contain critical elements in order to manage appropriate
scopes of adaptation (e.g. adjusting a complete navigation bar based on data collected for the
individual hyperlinks contained). To achieve this, we take into account the visual structure of
a webpage and—as a first simple approach—consider critical elements to be either interactive
elements which have been potentially missed (see above), or text and images that appeared in
viewports above a certain threshold, which could mean that a considerable amount of zoom-
ing was necessary to be able to easily read a piece of text or view certain details. What
is then marked as a critical component by W3Touch is either the critical element itself—
if associated with an id attribute—or the closest parent element in the DOM tree that has
an ID set, provided that it visually contains the critical element (cf. Figure 3.2). The idea
behind this segmentation into critical components is that wrapper elements (such as a nav-
igation bar, header or footer), which are often the components driving the structure of a

1https://developer.mozilla.org/en/DOM/Touch_events

https://developer.mozilla.org/en/DOM/Touch_events

CHAPTER 3. W3TOUCH 15

Home About Us Contact

id = “navigation”

s

s

Figure 3.2: The “Contact” link is an example for a critical element, with the red square
representing a single tap that missed its target. The critical component is the entire navigation
bar since it is the closest parent (including the individual links themselves) associated with
an ID. Therefore, adaptations inferred from the tracking data collected for the “Contact” link
can be applied to all hyperlinks in the navigation container.

webpage, are commonly assigned id attributes for dynamic scripting and styling rules based
on CSS. Therefore, relying on id attributes is a fairly effective and robust way for W3Touch
to uniquely identify interactive components in need of adaptation and access them within the
DOM tree. In the remainder of this thesis, “components” refers to all wrapper elements which
are associated with an id attribute, while “critical components” refers to only those which
are considered critical based on the associated tracking data.
In contrast to the approach just described, Bila et al. (2007) argue that id attributes are only
rarely used by web developers and it is not ensured that they refer to the same content over
time. Therefore, they propose an approach based on the position of an element within the
DOM tree. However, since the structure of a DOM tree tends to change more frequently than
the assignment of IDs, Bila et al. (2007) extend their approach with aspects of neighbourhood
search if an element cannot be found at the expected place, and also consider additional
context information of the DOM elements to be tracked. Although this solution has proved
to be working well—also when trying to find similarities between several pages of the same
website—, we have consciously decided to use the ID-based approach described above for
several reasons:

• The assignment of id attributes is nowadays evolving as a state-of-the-art practice to
mark the driving components of a webpage.

• Today’s websites increasingly emphasise a consistent user experience and branding,
which means that designs, and therefore also IDs, do not tend to change very frequently
(except for major redesigns).

• The approach by Bila et al. (2007) does only cater for tracking of elements over time,
but not for the page segmentation aspect. However, this is easily possible with id attrib-
utes while otherwise, additional techniques for page segmentation would be necessary
(see Section 2.3.1 for examples).

• The necessity for neighbourhood search and additional context leads to a consider-
able amount of overhead, which decreases the efficiency of the approach by Bila et al.
(2007).

16 3.1. CONCEPT

Moreover, the approach employed by W3Touch gives web developers additional means to
optimise and fine-tune the components of a webpage to be adapted (cf. Figure 3.2). It should
also be mentioned that it is technically possible to extend the segmentation process to support
class attributes in addition to IDs, which enables greater flexibility (cf. Nebeling and Norrie,
2011).

3.1.3 Data Visualisation

Figure 3.3: An example visualisation of actual tracking data collected by W3Touch for a
single user on a tablet PC.

Figure 3.4: An example visualisation of potentially critical components inferred from actual
tracking data for a single user on a tablet PC.

In contrast to other approaches for automatic usability evaluation (Atterer et al., 2006; Carta
et al., 2011; Hong et al., 2001) that provide visualisations of the gathered data in forms of user

CHAPTER 3. W3TOUCH 17

navigation paths, timelines of events or graph representations of websites, W3Touch focuses
on spatial aspects specific to touch input since we consider according usability issues with
respect to interface design. Therefore, our goal is to provide web developers with context-
relevant visualisations that support the processes of manually identifying core interaction
components of webpages, discovering the need for adaptations on different touch devices
and informing the design of appropriate adjustments. To achieve this, W3Touch supports
two additional views for web pages on which user interaction data have been collected, in
which these data—or interpretations thereof—are visualised using semi-transparent overlays
and colouring of affected elements.
To give an example, Figure 3.3 presents a possible visualisation of actual tracking data col-
lected by W3Touch. In this view, single taps that successfully hit an interactive element are
highlighted using a red “S” symbol (as can be seen in the left navigation bar), while single
taps that potentially missed their target are highlighted in grey (as can be seen in the top
navigation bar). Additionally, the blue rectangular overlays represent the exact viewports of
areas that have been zoomed in, while also showing the respective zoom factors. All of this
information can be used by a developer to, e.g. determine which hyperlinks are most popular
on a webpage or which parts of the content are zoomed in very frequently, thus indicating
that they might be of major interest and therefore need adjustments in size.
Accordingly, Figure 3.4 presents a visualisation of possibly critical components, as inferred
from the user activity data shown in Figure 3.3 and described in Section 3.1.2. In particu-
lar, all coloured components are associated with id attributes, whereas a yellow background
indicates small text that required zooming, a red hatching indicates components containing
links with small touch areas that have been potentially missed and a blue hatching indic-
ates a potentially too small image. Rather than visualising the low-level W3Touch tracking
data, this view draws the developer’s attention directly to a higher-level analysis of the parts
of a webpage in need of adaptation, thus removing the necessity to manually discover main
interaction components and potential usability issues. However, this approach relies on mech-
anisms for automatic analysis and might therefore be not as precise as manual inspection.
While the examples presented above make use of only a single user and browsing context to
illustrate the possibilities given to developers and the inference of critical components, a real
crowdsourcing scenario—such as described in Section 4.3—would generate a considerably
larger amount of data for different contexts (between which the developer could switch) and
therefore result in visualisations that are similar to heat maps, concerning the actual tracking
data. This means that the most interactive parts of a page would have the greatest emphasis
regarding the brightness of the colouring. Moreover, the identification of critical components
would be more accurate since more information is available. It would also be easily possible
to provide visualisation fine-tuning, such as considering only links that have been potentially
missed at least X times or only paragraphs that appeared in viewports above a zoom level of
Y .

3.1.4 Adaptation Catalogue and Engine

To provide a simple, yet effective way of fixing design and layout issues that have been iden-
tified using W3Touch’s tools for usability evaluation, we support a server-side catalogue (cf.
Figure 3.1) through which it is possible for developers to define adaptation rules for different
components of a webpage. This adaptation catalogue provides several metrics, which are

18 3.1. CONCEPT

 #nav, text, 3.4, …

 #nav, text, 2.5, …

 #nav, link, 2.5, missed, …

 #nav, link, 2.5, missed, …

 #nav, link, 2.5, hit, …

 #main, text, 1.7, …

 #main, text, 2.2, …

 …

{

 landscape: {

 nav: {

 avg_zoom: 2.95,

 viewport_count: 2,

 missed_links: 2,

 hit_links: 1,

 missed_links_ratio: 0.67

 },

 main: {

 ...

 }

 },

 portrait: {

 ...

 }

}

SQL + PHP

Figure 3.5: Analysis of log entries to provide context-aware tracking data.

gathered from the tracking data associated with different critical components and contexts by
the adaptation engine (cf. Figure 3.5):

• average zoom factor

• number of appearances in zoomed-in viewports

• number of potentially missed links

• number of successfully hit links

• missed links ratio

These can be used to formulate conditional rules and define appropriate adjustments.

1 if (W3T.getTrackingData(’#navigation’).missed_links_ratio >= 0.5) {
$(’#navigation a’).css(’padding’, ’2em’);

} else {
$(’#navigation a’).css(’padding’, ’1em’);

}

Listing 3.1: An exemplary absolute adaptation based on tracking data.

A simple example for a conditional rule is given in Listing 3.1, which refers to the navigation
bar shown in Figure 3.2. In case the “missed links ratio” (i.e. number of taps that potentially
missed a link divided by number of all taps) over all links within the navigation bar is greater
than or equal to 50%, the padding of hyperlinks is increased to 2 em, in order to enlarge their
touch areas, while it is set to 1 em otherwise. Concerning this rule, the padding would be set
to 2 em since the missed links ratio of the example navigation bar is 50%, according to the
gathered tracking data (2 taps in total of which 1 tap missed a link).
While the above example relies on absolute values, it is also possible to directly incorporate
the given metrics into the values of relative adaptations, rather than using them in if-clauses
only. In this way, it is possible to let a web interface evolve over time, as more and more
user activity data are collected. An example for this is given in Listing 3.2, where the value

CHAPTER 3. W3TOUCH 19

of the missed links ratio is part of the calculation of the touch area size. For the navigation
bar shown in Figure 3.2, this would mean that the padding of links is set to 1.5 em, given the
missed links ratio of 0.5.

$(’#navigation a’).css(’padding’,
(1 + W3T.getTrackingData(’#navigation’).missed_links_ratio) + ’em’

);

Listing 3.2: An exemplary relative adaptation based on tracking data.

Once the developer has defined an adaptation catalogue for a webpage and saved it on the
server, it is fetched by the adaptation engine (cf. Figure 3.1) along with the tracking data for
the used browsing context when a user accesses the corresponding page. Subsequently, the
engine evaluates the contained rules and applies the associated adaptations on the client side.
We make use of the capabilities of the adaptation catalogue in Section 4.3, where we apply
a set of simple absolute and relative adaptations for different browsing contexts based on the
tracking data we gathered as part of a user study.
Contrary to the collected user interaction data, the rules defined in the adaptation catalogue
are generally independent of the context. However, to give developers more flexibility in
defining and fine-tuning rules, it is possible to incorporate aspects of the browsing context
into conditional rules, such as if(isSmartphone()) or if(isPortrait()).
In contrast to the examples shown above, it has to be noted that developers can make use of
the whole range of capabilities of JavaScript and jQuery2 within the adaptation catalogue.
Therefore, it is possible to formulate rules which are much more complex than rather simple
adjustments of, e.g. font size, line height or padding. In particular, a developer could re-
arrange the whole layout of a page based on the given tracking data and metrics, e.g. from
multiple columns to a single column, although this would require additional work concerning
the definition of the respective rules. Moreover, an adaptation catalogue does not have to
be specific to a certain webpage since we make use of critical components which are identi-
fied based on id attributes. These are often shared between pages and therefore, whenever
multiple pages assign the same IDs to certain components—e.g. if they use the same layout
template—a single adaptation catalogue could be applied to all of these.
Finally, we want to mention that the adaptation engine also provides options for default be-
haviour, e.g. automatically scaling the font sizes of all components according to the collected
zoom factors. It is either possible to have common adaptations, which are applied to all com-
ponents before the more specific rules from the catalogue, or to adapt all components that
remain unaffected by the rules defined in the catalogue. In this way, it is not required for
developers to define a rule for each critical component. The definition of the default beha-
viour is incorporated into the server-side configuration (see below), where it is also possible
to turn off default behaviour, so that only the components specifically used in the adaptation
catalogue are considered.

3.1.5 Configuration

The server-side configuration (cf. Figure 3.1) is used to inform the client-side components of
W3Touch about the location of the server-side installation, so that they are able to commu-
nicate. This would be especially important in cases where the website to be adapted resides

2http://jquery.com/

http://jquery.com/

20 3.2. IMPLEMENTATION

on a different server. Additionally, it is possible to provide options for default adaptation
behaviour as well as the definition of according default adaptations. The configuration of
W3Touch also provides more control over the tracking and adaptation process, i.e. it supports
the exclusion of certain components from being tracked and/or adapted.

3.2 Implementation

The concepts and features of W3Touch described above have been implemented in terms of
a fully working prototype that serves as a proof of concept. The development process has
happened in four iterative cycles during which three W3Touch prototypes have been imple-
mented. The first prototype (v0.1) was based on jQMultiTouch3 (Nebeling and Norrie, 2012)
for detecting taps and zooming gestures and featured user activity tracking as well as re-
spective visualisations. However, since default browser behaviour led to partly unpredictable
firing of events in some browsers, it was unreliable to detect zooming based on gestures.
Thus, the second prototype (v0.2) introduced a different approach to detecting zoom level
changes in addition to a first version of interaction-based page segmentation and visualisa-
tion of critical components. The third iteration involved the user study described in Section
4.3, for which the necessary subset of W3Touch (i.e. interaction tracking and page segment-
ation) was prepared and extended with the required server-side components for storing and
retrieving context-enhanced data (cf. Figure 3.1). Also, first basic versions of the adaptation
catalogue and engine were introduced. Based on the experiences from the user study, the
third and final prototype (v0.3) has been developed during the last iteration. It provides all of
the features described in Section 3.1 and serves as the basis for the following implementation
description.
The presented prototype has been implemented for WebKit4-based browsers since at least one
of these was provided on each of the devices available for testing: an Apple iPod touch 4G
(running iOS 4), an Apple iPad 1G (running iOS 4) and an Asus EeePad Transformer TF101
(running Android 3.2). In particular, Firefox Mobile5—which requires different approaches
in terms of, e.g. detecting zoom levels—was not available on Apple devices. The browsers
used for testing were Safari Mobile6, the Android native browser7 and Dolphin Browser HD8

v6.0.0 for Android.
The main technologies used to implement W3Touch were HTML, CSS3 and JavaScript in
combination with the jQuery library on the client side while relying on PHP and MySQL on
the server side. Concerning the source code listings shown in the remainder of this chapter,
omitted parts of the code are shown as /*[...] */.

3.2.1 Webpage preparation

For providing the desired features, W3Touch has to prepare certain elements of a webpage.
That is, 1) underlays need to be added to all hyperlinks and 2) all text nodes need to be
wrapped in elements.

3http://dev.globis.ethz.ch/jqmultitouch/
4http://www.webkit.org/
5http://www.mozilla.org/en-US/mobile/
6http://www.apple.com/safari/what-is.html
7http://www.android.com/about/
8http://www.dolphin-browser.com/

http://dev.globis.ethz.ch/jqmultitouch/
http://www.webkit.org/
http://www.mozilla.org/en-US/mobile/
http://www.apple.com/safari/what-is.html
http://www.android.com/about/
http://www.dolphin-browser.com/

CHAPTER 3. W3TOUCH 21

Hyperlink Underlays and Exit Links

To be able to track potentially missed links, each hyperlink on a webpage is enhanced with
a transparent <div> element that spans a pre-defined range (the underlay margin) around the
link. For this, we select all <a> elements9 and for each one append an according underlay to
the respective parent element (see listing below, ll. 1–6).

$(’a’).each(function(index) {
$(this).parent().append(

$(’<div class="w3t-underlay"></div>’)
.css(/* [...] */)

5 .data(’number’, index)
);

$(this)
.addClass(’link’ + index)

10 .css(/* [...] */);

/* [...] */
});

Listing 3.3: Adding special underlays to hyperlinks.

These underlays are absolutely positioned within the links’ parents and their CSS position
and dimensions are determined by taking into account the computed size and offset (relative
to the top left corner of the parent) of the associated hyperlink as well as the underlay margin
defined by the developer. The z-index property of underlays is set to 9998 while that of an
annotated link is set to 9999 in order to make sure that no link lies behind an underlay, but
that also no underlay is covered by non-link contents. Since CSS positioning is only possible
within elements that are CSS-positioned themselves, position:relative is added to the
style of all non-CSS-positioned parent elements, which does not affect their original placing
within the document. Any non-CSS-positioned links are given a relative CSS position as
well since otherwise the z-index property would have no effect. Finally, the actual link
and corresponding underlay are associated with the index number of the link (given as the
function argument in Listing 3.3, l. 1) to establish the relationship.

var href = $(this).attr(’href’);
2

if (href.indexOf(’#’) != 0 && href.indexOf(’javascript:’) != 0) {
$(this)

.addClass(’w3t-exit’)

.data(’href’, href)
7 .attr(’href’, ’javascript:;’);

}

Listing 3.4: Special treatment for links leading to other webpages.

Moreover, links that point to different webpages—i.e. their href attribute does not start with
“#” or “javascript:”—are annotated with a special CSS class and the original value of the
href attribute is stored and replaced with “javascript:;” (Listing 3.4). This has to be done to
make sure that the activation of such links can be intercepted so that collected tracking data
can be sent to the sever before the user leaves the current webpage.

9This can be easily extended to also take into account other interactive content, such as <input> elements
or elements associated with certain DOM handlers, such as touchdown or click.

22 3.2. IMPLEMENTATION

Wrapping Text Nodes

Since we want to determine pieces of text which have been zoomed in extensively and infer
possibly critical components from these, it is necessary to compute their intersections with
the browser viewport (i.e. the part of a document that is currently displayed by a mobile
browser). However, text nodes do not feature the same set of DOM properties as regular
HTML elements. In particular, they lack spatial information such as position and dimensions.
Therefore, it is necessary to wrap all text nodes in elements and annotate them with a
special CSS class, so that we have the possibility to use $(’.w3t-textnode’)[i].offset(),
$(’.w3t-textnode’)[i].width() etc. in order to compute intersections with viewports.

3.2.2 Zooming Detection

When trying to recognise zooming gestures based on streams of touchdown, touchmove
and touchup events using jQMultiTouch (Nebeling and Norrie, 2012), we found out that
the browsers used for testing showed different and partially unreliable behaviours in firing
the corresponding touch events, which is most probably due to interferences with default
browser behaviour. For example, the Dolphin Browser mostly triggered 3 touchdown, 2
touchmove and no touchup events for pinch-to-zoom gestures, where 2 touchdown, sev-
eral touchmove and 2 touchup events would be expected. However, without the respective
touchup events, it is not possible to determine where a zooming gesture ended and how
much a user zoomed in. Therefore, also to ensure cross-browser compatibility, W3Touch
follows a different approach in terms of zooming recognition.
In particular, the current zoom level is determined by dividing the fixed actual width of the
displayed document (document.documentElement.clientWidth) by the current width
of the mobile browser viewport (window.clientWidth). This means that the zoom level
is equal to 1 if no horizontal scrolling is possible. It is stored in a global variable and within
a pre-defined interval of 100 ms, W3Touch recurrently check for changes of this value. If
the new zoom level is greater than the previous one (i.e. we only consider zoom-in events)
and also exceeds a certain threshold of 1.5, W3Touch takes further action to handle the
change in zoom level, thus triggering a “pseudo” zoom changed event. Finally, the new zoom
level value is stored in the dedicated global variable for the next comparison. Following
this approach, W3Touch is able to, not only detect pinch-to-zoom gestures, but also zoom-
ing actions that were triggered by double taps. Moreover, if the zoom level stays constant
and lies above the defined threshold, W3Touch checks whether the position of the view-
port (window.pageXOffset and/or window.pageYOffset) has changed, e.g. through
scrolling or activating a page-internal link. If this is the case, the change in position is handled
the same way as zoom level changes.

3.2.3 Logging

W3Touch provides a dedicated function for logging, whose arguments are the database to
use (in terms of a string referring to a server-side PHP script that accesses the respective
database), the data packet to be stored (as an array)10 and an optional synchronous callback
function that is executed after the data have been received by the server. It is possible to

10This array will always be referred to as the data packet in the following

CHAPTER 3. W3TOUCH 23

choose between two databases, that are ’log’ for storing low-level W3Touch tracking data
and ’critical_elements’ for registering potentially critical components.
The specific data packet passed to the logging function is automatically enhanced with stand-
ard context data, that in the current state of the prototype consist of the current zoom level,
device orientation, user agent string, screen size and window dimensions. The device orient-
ation is a property of the JavaScript window object, but not supported by all current mobile
browsers. Therefore, we also consider the viewport dimensions, as they are a reliable way of
determining the current orientation if no window.orientation property is available (e.g. if
the viewport height is greater than the viewport width, the user is browsing in portrait mode).
Moreover, a timestamp and the URL of the corresponding webpage are added to each log
entry.
Once the data has been prepared, it is sent to the specified server-side PHP script. To enable
cross-site requests in case the server-side components do not reside on the same domain as the
webpage to be adapted, we make use of an <iframe> that is dynamically added to the page,
prepare the data as hidden input fields within that <iframe> and submit the corresponding
HTML form. Callback functions can be realised by preparing them as global variables and
adding an onload handler to the <iframe> after it has been added to the page and before
submitting the data. Finally, when the data is received by the PHP script, the type of device
(smartphone or tablet PC) is additionally inferred from the user agent string making use of the
MobileESP library11, before storing all of the data and context information in the database.
It is possible to specify suitable intervals in which data will be sent to the server side. If
the logging function is called and the elapsed time since the last data packet was sent is
not greater than that interval, the data to be logged is cached while otherwise (or in case
a callback function has been passed to the logging function) the next packet containing all
of the cached data is sent to the server. However, it can be problematic to specify such an
interval since data could get lost if a user leaves the webpage. Although hyperlinks leading
to other webpages are prepared by W3Touch in a way that prevents data loss, a user could
still leave the webpage by using the browser’s address bar or closing the browser. Since not
all mobile browser support the window.onbeforeunload feature12 that makes it possible
to ask a user if they really want to leave a page (e.g. in case there are unsaved data), only
specifying an interval of 0 seconds would eliminate any possibility of data loss, but would
also lead to communication overhead.

3.2.4 Context-aware Interaction Tracking

W3Touch makes use of the touchable function of jQMultiTouch (Nebeling and Norrie,
2012) to track touch interaction with hyperlinks or other parts of a webpage. Basically, to
track any touch event within the given document, only the <body> element needs to be made
touchable:

$(’body’)
.touchable({

touchDown: function(e, touchHistory) {
/* [...] */

5 log(’log’, [’down’, ’’]);
},

11http://blog.mobileesp.com/
12https://developer.mozilla.org/en/DOM/window.onbeforeunload

http://blog.mobileesp.com/
https://developer.mozilla.org/en/DOM/window.onbeforeunload

24 3.2. IMPLEMENTATION

touchMove: function(e, touchHistory) {
// Necessary to distinguish taps from other gestures.
/* [...] */

10 log(’log’, [’move’, ’’]);
},
touchUp: function(e, touchHistory) {

var coords = crossBrowserPageCoords(e);

15 /* [...] */
log(’log’, [’up’, ’missed,’ + coords.x + ’,’ + coords.y]);

}
});

Listing 3.5: Tracking general taps.

That is, any touch interaction with any element of the document will be propagated to the
<body> element, where it is registered as a stream of touchDown, touchMove and touchUp
events, which are logged individually in terms of the event name (first element of the data
packet) and additional information in string format (second element of the data packet). While
no additional data are logged for touchDown/Move events, log entries of touchUp events
are enhanced with event coordinates since these are relevant for data visualisations. The
crossBrowserCoords function returns the absolute coordinates of an event, which are rel-
ative to the top-left corner of the document. This is necessary since different mobile browsers
handle the coordinates contained in events in different ways (e.g. the event.clientX/Y

properties already contain scrolling offsets in Safari Mobile, which is not the case in the
Android native browser). Moreover, because the above code is intended to register general
interactions, the additional data of touchUp events contains the keyword “missed” (Listing
3.5, l. 16) to be able to later distinguish these from successful taps on hyperlinks. To log the
latter ones, the touchable function is called separately for all hyperlinks, whereas touchUp
events are not propagated to the <body> element by calling e.stopPropagation(). Rather,
the log function is called while this time indicating a successful “hit” within the additional
data, which will result in a different visualisation of a corresponding tap (cf. Section 3.2.7). If
a hyperlink has been marked as a link leading to an external page and prepared accordingly by
W3Touch (cf. Listing 3.6), an additional callback function is passed to the logging function,
which makes sure that all data is sent to the server before leaving the current webpage:

if ($(this).hasClass(’w3t-exit’)) {
var href = $(this).data(’href’);

log(’log’, [’up’, ’hit,’ + coords.x + ’,’ + coords.y], function() {
5 /* [...] */

location.href = href;
/* [...] */

});
}

Listing 3.6: Special treatment of external hyperlinks.

Moreover, zooming interaction is logged in terms of the corresponding viewports. That is,
if W3Touch detects a zoom changed event (as described in Section 3.2.2), the logging func-
tion is called while passing “zoom” as the event name (instead of, e.g. “up”, as can be seen
in the listing above) and the position of the current viewport (window.pageXOffset and
window.pageYOffset) as the second element of the data packet. The viewport dimensions

CHAPTER 3. W3TOUCH 25

do not need to be passed as part of the data since they are already contained in the standard
context information that is added to each log entry.

3.2.5 Interaction-based Page Segmentation

Inferring possibly critical components from users’ activities on a webpage does not happen
by analysing low-level tracking data after they have been logged. Rather, it takes place at the
same time that interactions are recorded and from within the same handler functions already
mentioned above. In particular, our interaction-based page segmentation logic makes use
of the same logging function, but rather than storing low-level tracking data (such as touch
event or viewport coordinates) in the log database—that is used for data visualisation only—
it sends data containing information about higher-level components to the critical elements
database.

1 function logMissedLink(i) {
var id = findIdOfClosestParent($(’.link’ + i));

if (id != null) {
log(’critical_elements’, [’link’, id, ’missed’]);

6 }
}

Listing 3.7: Logging a potentially critical component based on a missed link.

To give an example, Listing 3.7 shows the function that is called when a user has tapped on
a hyperlink underlay. That is, the function is called from within the touchUp handler of the
touchable function, given the case that the last touch event was a touchDown. If it was a
touchMove instead, this would mean that a scrolling or zooming gesture happened instead
of a tap.
The parameter i is the index number of the corresponding hyperlink that has been asso-
ciated with the underlay and the hyperlink itself (cf. Listing 3.3). The helper function
findIdOfClosestParent returns either the ID of the hyperlink—given the case that it
has an id attribute set—or that of the closest parent element associated with an ID that visu-
ally contains the hyperlink (i.e. the coordinates of the link lie within the bounds of the parent
element). If an ID could be found that is not part of the list of components to be excluded
from tracking (see Section 3.2.8), a data packet is sent to the ’critical_elements’ database.
This packet contains the keyword “link” to indicate the kind of interaction, the id attribute of
the possibly critical component and the keyword “missed” as additional data to indicate that
a missed link is being recorded. Accordingly, successful taps on hyperlinks are recorded as
well to be able to provide the missed links ratio of a critical component, whereas the keyword
“hit” is sent instead of “missed”. To cater for links which lead to a different webpage, the
logging procedure is also incorporated into the code already shown in Listing 3.6 to make
sure that both databases receive their corresponding data before leaving the current webpage:

if ($(this).hasClass(’w3t-exit’)) {
var href = $(this).data(’href’);

log(’log’, [’up’, ’hit,’ + coords.x + ’,’ + coords.y], function() {
5 /* [...] */

log(’critical_elements’, [’link’, id, ’hit’], function() {
location.href = href;

26 3.2. IMPLEMENTATION

});
/* [...] */

10 });
}

Listing 3.8: Special treatment of external hyperlinks involving both types of logging.

In terms of potentially too small text, whenever W3Touch detects a zoom changed event (as
described in Section 3.2.2), it computes the intersections of all text nodes—which have been
wrapped in elements—with the current viewport. In case an intersection is found, a
function similar to the one in Listing 3.7 is called. However, in contrast, the data packet sent
to the critical elements database is [’text’, id, ’’], where ’text’ denotes the kind of
interaction (i.e. a piece of text that appeared in a viewport above a certain threshold) while id
again refers to the potentially critical component. The third element is an empty string since
we do not need additional information. Moreover, W3Touch also computes the intersections
of all images with the current viewport. In case an image spans at least than 75% of the
viewport area or at least 50% of the image are visible, it is logged in analogy to small text
while only replacing ’text’ with ’img’ to indicate the different kind of interaction.

3.2.6 Context Engine

$ua = new uagent_info();

// use MobileESP to determine device context
if ($ua->DetectTierIphone()) {

5 $device = "smartphone";
} else if ($ua->DetectTierTablet()) {
$device = "tablet";

} else {
$device = "?";

10 }

/* [...] */

$entries = mysql_query(
15 "SELECT zoom, wnd_w, wnd_h, event, msg FROM log WHERE (

url = ’$url’ AND
device = ’$device’ AND
wnd_w > wnd_h

)"
20);

Listing 3.9: Example request for getting context-aware log data for a particular webpage from
the database, taking into account device type and orientation.

The context engine is incorporated into several PHP scripts on the server side that deliver log
entries, information about potentially critical components and tracking data to the client-side
parts of W3Touch. It ensures that appropriate conditional statements for retrieving context-
aware data are included in the necessary SQL queries. Moreover, the context engine makes
use of the MobileESP library to automatically detect the type of device with which a user
is currently interacting with W3Touch (see listing above) and only delivers corresponding
context-matching data. Although MobileESP is able to distinguish more detailed types of
devices (e.g. iPhone vs. Android phone), we chose a broader distinction that is simple yet

CHAPTER 3. W3TOUCH 27

already very effective for our purposes, also regarding the user study described in Section
4.3.

3.2.7 Data Visualisation

W3Touch supports the separate visualisation of two types of data, that are the low-level track-
ing data stored in the log database (cf. Figure 3.3) and the higher-level information about
potentially critical components stored in the critical elements database (cf. Figure 3.4). The
client-side W3Touch script fetches the corresponding log entries for portrait and landscape
mode upon start-up making use of PHP scripts on the server side that return the requested
data in terms of JSON objects. The context engine ensures that only entries matching the
current device context (smartphone or tablet PC) are delivered. Subsequently, W3Touch it-
erates through the received data and then adds appropriate overlays to the document and/or
annotates affected components with special CSS classes for highlighting.

Tracking Data

In terms of visualising user activity data, we focus on general taps, taps which successfully hit
a hyperlink and zoom level changes. In the first instance, to be able to distinguish taps from
scrolling and zooming gestures, it is necessary to sequentially iterate through the log data
received for the used device context, taking into account only those entries that match the
current orientation. In case a touchUp event is being processed, W3Touch checks whether
the previous event was a touchDown and adds an overlay for visualising a tap (i.e. a semi-
transparent square containing an “s”) only if this is the case since a preceding touchMove

would indicate a non-tapping gesture. If the log entry indicates a successfully hit hyper-
link, the square is given a red background colour and a black background colour otherwise.
Moreover, W3Touch parses the coordinates of the touchUp event from the data contained in
the log entry and sets the absolute CSS position of the corresponding square accordingly.
For visualising zoom level changes, which are indicated as “zoom” events in the log,
W3Touch parses the coordinates of the corresponding viewport from the log entry. Moreover,
it gets the dimensions of the viewport and the related zoom level from the standard context
information associated with the log entry. The blue overlay which is subsequently added to
the document is placed at the exact position of the viewport and spans its exact dimensions.
Furthermore, it contains a string indicating the zoom level, from which also the opacity of the
overlay is inferred. That is, the opacity is proportional to the zoom level, up to a maximum
of 3.4. For example, viewports with corresponding zoom levels ≥ 3.4 are given an opacity of
0.5 while viewports with a corresponding zoom level of 1.5 are given an opacity of 0.22.
All overlays added to the document are marked with two CSS classes: 1) w3t-overlay and
2) w3t-portrait or w3t-landscape, according to their context. If the orientation of the
device used for viewing the visualisation changes, all overlays are hidden and the already
fetched log entries associated with the new orientation are processed, or the related overlays
are un-hidden, if they have already been added before, thus ensuring that each log entry is
only processed once.

28 3.2. IMPLEMENTATION

Critical Components

In terms of visualising potentially critical components, we focus on missed links, small text
and small images. First, W3Touch fetches the components which have been found to be
possibly critical for the current device context from the database in terms of pairs contain-
ing an id attribute and the kind of interaction (i.e. “link”, “text” or “img”), considering both
portrait and landscape mode. Next, the elements holding the respective IDs are associated
with two CSS classes, that are 1) w3t-link, w3t-text or w3t-img, according to the
associated interaction and 2) w3t-portrait or w3t-landscape. Finally, depending on
the current orientation, matching components which contain potentially missed links and/or
potentially too small text are given additional CSS classes, that are w3t-critical-link

and/or w3t-critical-text. These determine the actual visualisations. To ensure that a
component can be marked with both, w3t-critical-link adds a background image that is
a hatching with red and transparent stripes while w3t-critical-text sets the background
colour to yellow. Therefore, a component with potentially missed links and small text would
be highlighted with a red and yellow hatching. Components that contain potentially too small
images are treated in a different way. In particular, a hatched <div> overlay with blue and
transparent stripes is added to all images within the respective components. These overlays
are again marked with either w3t-portrait or w3t-landscape.
In case the orientation of the device used for viewing the visualisation changes, all CSS
classes that visualise missed links or small text are removed, while overlays are hidden. Ac-
cording to the new orientation, elements marked with the respective CSS class are again
highlighted as described above while also new image overlays are added or existing ones are
un-hidden. Again, each entry fetched from the database is only processed once.

3.2.8 Configuration

The W3Touch configuration is a JavaScript file that has to be included in a webpage along
with the actual W3Touch script, but must be executed beforehand since it introduces global
variables that are crucial for W3Touch to work properly. In particular, the configuration
defines the following:

• The path to the server-side installation of W3Touch.

• An array of component IDs to be excluded from tracking.

• An array of component IDs to be excluded from adaptation.

• A boolean variable to determine whether the adaptation catalogue shall use default
behaviour.

• A boolean variable to determine whether the default behaviour shall be applied as com-
mon adaptations (i.e. to all components of a webpage before the specific rules from the
adaptation catalogue are applied) or to all components that remain unaffected by the
adaptation catalogue.

• A function to define default behaviour. This function provides a variable selector

that acts as a placeholder for the affected components (see Listing 3.10).

CHAPTER 3. W3TOUCH 29

defaultBehaviour: function($, selector) {
$(selector).css(’background-color’, ’lightblue’);

}

Listing 3.10: An example for default behaviour.

An exemplary configuration file can be found in Appendix A.1.

3.2.9 Adaptation Catalogue and Engine

To provide developers with means for defining suitable adaptations, W3Touch first makes
use of a server-side PHP script to obtain the tracking data for the current webpage and device
context (smartphone or tablet PC) in terms of a JSON object, considering both portrait and
landscape mode. In particular, the PHP script fetches all context-matching entries from the
critical elements database and then computes the metrics introduced in Section 3.1.4 for each
potentially critical component, further divided by orientation (cf. Figure 3.5). The track-
ing data which will be available from within the adaptation catalogue (through a global
variable) is then set to the subset of the retrieved data that matches the current orienta-
tion of the device used to view the webpage. Next, W3Touch initialises an array called
W3T.unusedComponents that contains all elements of the webpage associated with an id

attribute that are not part of the list of components to be excluded from adaptation, which is
defined in the W3Touch configuration. Finally, to be ready for the actual adaptation process,
the implementation of the native css function provided by jQuery13 has to be temporarily
substituted by a different approach. This is necessary to be able to undo changes to the style
of HTML elements, which is required if the device orientation is changed while viewing the
webpage and the adaptation catalogue needs to be re-applied for the changed context.
In particular, the new temporary function changes the style of an HTML element by ap-
pending a new CSS declaration to the end of the element’s style attribute along with an
!important flag to make sure that it is not overwritten by an already present competing
declaration. For example, calling $(’div’).css(’font-size’, ’12pt’) would result in:

<div style="[oldDeclarations];font-size:12pt !important">

However, this guarantees that a rule from the adaptation catalogue can still overwrite a com-
mon adaptation which has been applied before by simply appending another declaration, even
if it has the same CSS attribute, e.g.:

<div style="[oldDeclarations];font-size:12pt !important;font-size:14pt
!important">

In this way, changes to the style of an element can be stored in terms of a simple text
string and the style of the corresponding element can be reset by deleting this string from
the style attribute. In case of the above example, this would mean deleting everything after
[oldDeclarations]. Moreover, whenever the style of an element is changed using the new
temporary function and the jQuery selector contains the ID of a webpage component, such as
$(’#thisIsAnID > a’), that component is removed from W3T.unusedComponents, along
with all of its descendants which also have an ID, because these might inherit the style from
the parent component and must therefore be considered used as well. It has to be noted that—
while jQuery’s css function is prepared so that changes can be automatically undone—if a

13http://api.jquery.com/css/

http://api.jquery.com/css/

30 3.2. IMPLEMENTATION

developer makes use of other functions to alter the layout of a webpage, they have to manu-
ally ensure that it is reset to its original state upon orientation changes. This can be realised
by incorporating checks for portrait and landscape mode into the adaptation catalogue and to
add appropriate else statements to conditional rules.
The adaptation catalogue itself, which resides on the server-side in terms of a JavaScript file
(see Appendix A.2 for an example), is fetched as a text string via an asynchronous HTTP
request and cached in a variable. Subsequently, the adaptation catalogue string is passed to
the eval function of JavaScript and therefore executed while accessing the context-aware
tracking data made available through a global function. In particular, it is possible to use
the following context and tracking data functions and properties from within the adaptation
catalogue:

• W3T.isSmartphone(), to check whether the user’s device is a smartphone.

• W3T.isTablet(), to check whether the user’s device is a tablet PC.

• W3T.isPortrait(), to check whether the user’s device is currently in portrait mode.

• W3T.isLandscape(), to check whether the user’s device is currently in landscape
mode.

• W3T.ignore(selector), to exclude a component (specified by its ID in terms of a
jQuery selector) from default behaviour without changing its style.

• W3T.getTrackingData(selector).x, to get the tracking data for a poten-
tially critical component (specified by its ID in terms of a jQuery selector),
with x being either avg zoom, viewport count, missed links, hit links or
missed links ratio, according to the metrics introduced in Section 3.1.4. If no
data for the requested component exist, standard values are returned, such as 1 for
avg zoom or 0 for viewport count.

If the adaptation engine is configured to support default behaviour in terms of common adapt-
ations, the corresponding rules are applied before the adaptation catalogue string is evaluated.
This affects all components of the webpage that have an id attribute set and are neither a des-
cendant of a different component associated with an ID14 nor part of the list of components
to be excluded from adaptation. In contrast, if the default behaviour is configured to adapt
components not used in the adaptation catalogue, the corresponding rules are applied after
the adaptation catalogue string has been evaluated, affecting all components which are left in
W3T.unusedComponents. Finally, after having applied the catalogue and possible default
behaviour, the css function of jQuery is set back to its original implementation.
In case the orientation of the device used to view the adapted webpage changes, all changes
made to the styles of webpage elements by the adaptation engine are undone, as already
described above. Moreover, W3T.unusedComponents is reset and the available tracking
data are changed to the subset of the data fetched for the current device context which matches
the new orientation. Subsequently, the catalogue (that has been cached and thus does not need
to be fetched again) as well as possible default adaptations are re-applied.

14This has to be done to ensure that a common adaptation cannot have higher priority than a rule from the
adaptation catalogue that is applied to a parent component and shall be inherited by its descendants.

CHAPTER 3. W3TOUCH 31

Finally, we want to note that we are aware of more advanced approaches to context-
awareness, such as XCML (Nebeling et al., 2012a). However, we decided for a less soph-
isticated approach since it is sufficient for the purpose of this thesis and does not introduce
additional dependencies.

3.2.10 Live Version

A live version of the final W3Touch prototype can be found at:

http://dev.globis.ethz.ch/w3touch/demo.html

Please append ?log to the above URL for the tracking data visualisation, ?analysis for the
visualisation of potentially critical components and ?adaptation to apply the adaptation
catalogue based on the tracking data.

http://dev.globis.ethz.ch/w3touch/demo.html

32 3.2. IMPLEMENTATION

4
Evaluation

The evaluation of W3Touch has been carried out in three steps. First, we conducted semi-
structured expert interviews. These were concerned with usability issues related to an exem-
plary webpage that had to be accessed using different touch devices, and how the identified
issues could be addressed. Second, we carried out a user study to evaluate W3Touch on
the same exemplary webpage within a crowdsourcing scenario. The recommendations given
by the experts were thereby taken into account regarding the design of suitable adaptations.
Finally, we compared the adapted webpage created with the help of W3Touch to a existing
mobile version of the same webpage. This happened in terms of a second internal user study
as well as specific metrics developed for the evaluation of websites in touch contexts.
The example webpage we chose for the evaluation was the Wikipedia article about Apple Inc.,
as retrieved on October 7, 20111. This decision was made for two reasons. First, the article
is optimised for reading on common desktop screens (1024×768 and above) and therefore
requires adaptations for convenient use on mobile touch devices. Furthermore, it features

1http://en.wikipedia.org/w/index.php?title=Apple_Inc.&oldid=454378296

Figure 4.1: Typical webpage components present in Wikipedia articles: header, sidebar nav-
igation, main text and footer.

33

http://en.wikipedia.org/w/index.php?title=Apple_Inc.&oldid=454378296

34 4.1. CASE STUDY: WIKIPEDIA

Figure 4.2: The native Wikipedia applica-
tion for iOS.

Figure 4.3: The Wikipedia mobile web-
site.

components which are representative for a wide range of today’s websites—a horizontal top
navigation, a vertical sidebar, a large amount of continuous text and numerous hyperlinks to
related topics contained in a footer (cf. Figure 4.1). Based on our choice of an exemplary
website, we start with a review of the differences between the regular and mobile versions of
Wikipedia before continuing with the actual evaluation.

4.1 Case Study: Wikipedia

The Wikimedia Foundation offers a native iOS application2 for offline access to the English
version of the Wikipedia, which is an example for device-specific authoring (Bickmore and
Schilit, 1997). It is mostly written in HTML5 and JavaScript, put into an Objective-C frame-
work (as required for iOS development3), and is therefore very similar to the specific mobile
version of the Wikipedia website4 (cf. Figures 4.2 and 4.3).
The following differences between the implementations of the Wikipedia interface are spe-
cific for touch-operated mobile devices:

• Wikipedia Mobile has been rearranged to a single-column layout, as compared to the
regular website. That is, the navigation bar on the left (cf. Figure 4.10) has been re-
moved and the according functionality is not available on mobile devices. Moreover,
the overview box (typically including images and statistical data) at the right side of
the introductory paragraph (cf. Figure 4.4) has been moved to the top of the column.

2http://wikitech.wikimedia.org/view/Mobile_iPhone
3http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/

GS_iPhoneGeneral/_index.html
4http://en.m.wikipedia.org/

http://wikitech.wikimedia.org/view/Mobile_iPhone
http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/GS_iPhoneGeneral/_index.html
http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/GS_iPhoneGeneral/_index.html
http://en.m.wikipedia.org/

CHAPTER 4. EVALUATION 35

Figure 4.4: The regular Wikipedia web-
site.

Figure 4.5: The regular Wikipedia web-
site, zoomed in to a readable size.

• In addition to a single-column layout, Wikipedia Mobile makes use of the viewport
meta tag5, which ensures that the initial width of the viewport fits the available screen
width and the initial scaling is 1.0. This renders readable text with an absolute height
of 0.080 in, although the same CSS font size as on the regular website (0.8 em) is used
(cf. Figures 4.3, 4.4 and 4.5).

• In the mobile versions, the header of the regular website has been reduced to the in-
cluded search form (cf. Figures 4.2 and 4.4). That means, it is not possible to edit pages
or view article revisions on mobile devices.

• The table of contents, as present on the regular website (cf. Figures 4.4 and 4.5), is
not provided in the mobile versions in its original form. Instead, it is incorporated
into the article text, i.e. all first-level sections of an article are collapsed (except for the
introductory paragraph that is located above the table of contents) and feature a show/-
collapse button next to their heading (cf. Figure 4.3). Therefore, the mobile versions
yield a table of contents that contains only the first-level headings.

• Wikipedia Mobile features a slightly larger line height (165%; cf. Figure 4.3) at the
same font size, as compared to the regular website (150%; cf. Figure 4.5), thus giving
hyperlinks more space, although not increasing their touch areas (as line height does
not count towards these).

• The footer parts of an article (typically containing cross-references to related articles
and article categories) are collapsed in the mobile versions. Moreover, the contained
links—originally aligned horizontally and vertically, thus being very densely packed—

5http://developer.apple.com/library/IOs/#documentation/AppleApplications/
Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html

http://developer.apple.com/library/IOs/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://developer.apple.com/library/IOs/#documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html

36 4.2. EXPERT INTERVIEWS

are presented as bullet point lists, which makes successfully hitting intended links
easier.

4.2 Expert Interviews

Six experts have been asked to review the original design of the Wikipedia article with respect
to issues originating from its use on touch devices and possible adaptations for potentially
fixing those problems. Four of the interviewees were PhD students with research and teaching
activities in the fields of web engineering, interaction design and/or usability methods, one
had been working on web engineering projects in industry for several years and one was a
Bachelor’s student in Computer Science who just had completed an internship involving the
development of several (multi-)touch applications for both mobile and desktop devices.
The interviews took between 25 and 50 minutes and the interviewees were provided an Apple
iPod touch 4G (running iOS 4) and an Apple iPad 1G (running iOS 4) for reviewing the
Wikipedia article. The devices were chosen so that the evaluation involved at least two distinct
touch contexts, i.e. while an iPod touch features a considerably small screen, the larger iPad
has been specifically designed for better reading comfort. We also took into account different
device orientations.
The interview transcriptions in bullet point form can be found in Appendix B.

4.2.1 Structure

The interviews were of a semi-structured nature. First, we presented the participant the Wiki-
pedia article on one of the above mentioned devices, whereas the starting device was altered
in each interview to counterbalance ordering effects. Next, we asked the interviewee to have
a thorough look at all parts of the webpage while thinking aloud. Any potential issues con-
cerning the design of the article or the touch-based interactions should be directly expressed.
Moreover, we wanted the participant to also suggest potential fixes for any issues they would
find. In a second task, the interviewee was asked to have a closer look at specific components
of the article (cf. Figure 4.1), if they had not done so before, and again directly express any
potential issues and adequate adjustments while also considering differences between portrait
and landscape mode.
After having reviewed the Wikipedia article for a first time, the participant was presented the
remaining device and asked to proceed with the same two tasks as already described above.

4.2.2 Findings

In the first instance, the experts stated that—independent of the device used—the main com-
ponent of interest is the actual article text. In contrast, header, sidebar navigation and es-
pecially footer only take minor roles when interacting with the webpage. One interviewee
explicitly stated that they “never click on [the footer].” However, caused by the length of
the article, the experts in general also stated that vertical scrolling is a major issue when it
comes to interacting with the webpage, particularly in terms of gaining a good overview of
the article.

CHAPTER 4. EVALUATION 37

iPod touch

The general consensus of the interviewees was that the webpage—as initially displayed on
an iPod touch—is ”just not useful in any way” without zooming since the text is rendered
unreadable due to the fact that the article is zoomed out to fit the small display. Furthermore,
all but two experts pointed out that the amount of zooming necessary to interact with the
webpage posed a considerable problem to them since this made it difficult to get a good
overview of the page, also due to the increased amount of horizontal scrolling. This means
that the user has neither a good overview when the article is zoomed out nor when the zoom
level is adjusted to render text readable. Propositions for adjustment were therefore mainly
concerned with increasing the font size of the article text.
Moreover, the experts stated that hyperlinks were generally too small. All but one expert
pointed this out in particular regarding the sidebar navigation and footer. Since within these
components links are very densely packed and a finger covers several of them even if zoomed
in to a readable size, one interviewee particularly stressed that in any case, a developer has
to “make sure that all the interactive things you can touch have a reasonable size.” The
general recommendation for adaptation therefore was to give hyperlinks more space in order
to increase their touch areas and avoid erroneously tapped links.
When reviewing the header component, the interviewees generally saw least problems there.
This was due to the small number of links, which moreover feature a larger touch area based
on their box-like appearance. Also, the horizontal alignment counters the chance of erro-
neously tapping an undesired link.
Concerning differences in interaction between portrait and landscape mode, two of the experts
explicitly stated that the same adaptations should apply for both orientations since the use of
landscape mode does not significantly better the user experience.
Finally, more advanced suggestions for improvement included rearranging the webpage to a
single-column layout—similar to the Mobile Wikipedia—in which all the content is aligned
vertically, thus making horizontal scrolling unnecessary. In particular, when realising such
a solution, the vertical sidebar navigation would have to be transformed into a horizontal
bar and moved to the top of the webpage. Furthermore, another popular proposition was
to dynamically adjust the line width of the article text to the current size of the browser
viewport, as is already done by some browsers provided on certain mobile devices. Also,
three experts recommended to make use of pagination features while in contrast, one expert
explicitly stated that it would be convenient if the user would have to only scroll in the vertical
directions with one thumb while reading the article text.

iPad

The general consensus concerning the iPad was that the view of the webpage, as initially
displayed, is almost optimal due to the larger amount of screen real estate available. However,
while there is less need for zooming to be able to interact with the article, the differences
between portrait and landscape mode were found to be more significant as compared to the
iPod touch. In particular, two of the interviewees pointed out that the sidebar navigation could
be moved to the top of the page (as already proposed for the iPod touch) in portrait mode to
give the main text more horizontal space, whereas it should stay in place in landscape mode
to avoid too long lines of text. This also underpins one expert’s general statement that on

38 4.3. USER STUDY #1: CROWDSOURCED ADAPTATION OF AN EXAMPLE WEBPAGE

the iPad, “there’s more room for improvement” simply because a developer is given more
possibilities for adaptations if there is more screen space available.
Moreover, unlike on the iPod touch, font sizes were found to be good in landscape mode
while they were generally considered only “a little small” in portrait mode. However, in
contrast, most experts still pointed out that hyperlinks are comparably difficult to hit without
having zoomed in before. This accounts especially for densely packed links, as e.g. present
in the sidebar navigation and footer. Therefore, more spacing around the affected hyperlinks
was suggested regarding all components of the webpage. In accordance to what was already
reported for the iPod touch, the header component was again found to be the “best” part of
the article and would need least adjustments.
More advanced suggestions for improvement included removing less important parts of the
navigation and to let the sidebar navigation float to reduce scrolling efforts in vertical direc-
tions. One interviewee suggested dynamic sliders, so that a user would be able to adjust font
sizes according to their choice. As for the iPod touch, pagination was mentioned again as a
possible adjustment, which would help to reduce scrolling efforts.

Summary

To summarise our findings, the interviewed experts generally suggested that the Wikipedia
article would need adjustments in terms of larger font sizes and more spacing around densely
packed links, in order to better support access with touch devices. These propositions apply
more to smaller devices, on which it is desirable to counter excessive zooming, that was
found to be a major issue. Furthermore, while the suggested adaptations in general should
be applied to all components in equal terms (except for the header), the experts proposed to
rather focus on the main article text, as this is the main component of interest from the users’
perspective.

4.3 User Study #1: Crowdsourced Adaptation of an Example
Webpage

To evaluate W3Touch, we conducted an asynchronous remote usability study with two goals
in mind. First, we wanted to collect touch-specific user activity data for the aforementioned
Wikipedia article in a real crowdsourcing scenario to investigate which issues would be iden-
tified by our tool. Second, we wanted to define suitable adaptations based on the gathered
data, while also taking into account the recommendations gained from the expert interviews,
and investigate whether these could help improve the user experience. However, designing
such a study posed certain challenges in the technical as well as the conceptual dimension.
It was necessary to define a set of specific tasks that, while guiding a participant through the
study, still guaranteed that the obtained results could be generalised to the overall touch inter-
action. Moreover, since we wanted to let the layout of the Wikipedia article evolve through
user emancipation based on the collected interaction data, but still be able to control the study
as much as possible, we decided to split the study into two distinct phases. During the first
phase, it was intended to collect data necessary for adaptation while in the second phase, an
adequate adaptation catalogue was applied and we again collected tracking data based on the
same set of tasks for comparison.

CHAPTER 4. EVALUATION 39

Figure 4.6: Click link task (navigation). Figure 4.7: Click link task (footer).

We prepared a copy of the Wikipedia article on our server and enhanced it with W3Touch.
Since participants were allowed to take part in the study using their own touch devices, we
had to ensure as much as possible that our tools worked on a wide range of common devices
and mobile browsers. Therefore, if particular hardware or software could not be supported
(e.g. Firefox Mobile), we checked for this on an initial qualification page before redirecting
the participant to our copy of the article.

4.3.1 Method

A total of 84 participants took part in the user study that were recruited via internal mailing
lists and a number of social media services including Facebook, Google+, LinkedIn, Twitter
and Xing among others. Each participant was presented the same set of 33 tasks that were
randomised to counterbalance ordering effects. For each of the tasks, the webpage was auto-
matically scrolled to the required position, which ensured that participants only had to focus
on the actual interaction that was necessary to successfully complete the task. Moreover, cor-
responding instructions were displayed in a floating box, fix-positioned at the bottom centre
of the viewport. We made sure that this instruction box always covered the same amount of
screen space, independent of the current zoom level. However, it has to be noted that the box
appeared slightly larger in landscape mode due to the different aspect ratio and less viewport
height.
Participants were presented three different types of tasks, which are described below. Every
user action (e.g. missing or hitting a link) was recorded along with the current zoom level,
device orientation and time elapsed since the current task had started. For cases in which a
user was not able to complete a task, they were given the possibility to skip it by clicking a
button in the instruction box, which was logged accordingly.

40 4.3. USER STUDY #1: CROWDSOURCED ADAPTATION OF AN EXAMPLE WEBPAGE

Figure 4.8: Reading task. Figure 4.9: Find link task.

Click Link Task

A particular text hyperlink, highlighted in red and further marked with an arrow pointing at it
in a distance of 40 pixels, had to be clicked by the participant (cf. Figures 4.6 and 4.7). These
measures were taken to not bother the participant with having to find the link prior to clicking
it. However, we intentionally did not involve borders in highlighting the link in order to not
reveal the bounding box of the touch area, which would have biased the user. All hyperlinks
contained in the article were deactivated, except for internal links and the links used to show
or collapse panels of links in the sidebar navigation (such as “Toolbox” or “Languages”).
This made sure that one would not be redirected to webpages other than the Wikipedia article
prepared for the study. Every time the participant failed to hit the intended link, this was
recorded in the log by W3Touch, also taking into account whether a different link or the
respective link underlay (cf. Section 3.1.1) was tapped. A total of 25 click link tasks that had
been carefully selected to provoke these issues were distributed over the different components
of the article page.

Reading Task

A particular section of the article text that the participant was asked to read was highlighted
with a light green background colour (cf. Figure 4.8). Again, the webpage was automatically
scrolled to the required position prior to starting the actual task and measuring the time needed
for reading. The floating instruction box contained a “Done” button for this kind of task, that
the participant had to hit once they had finished reading. Two pieces of text of similar length
had to be read during the study, which were the section “iPad” (172 words) and the first two
paragraphs of the section “Corporate Affairs” (188 words).

CHAPTER 4. EVALUATION 41

Find Link Task

The participant was asked to find a particular link within the article text that was bordered in
black in order to make the highlighting not too obvious (cf. Figure 4.9). For this, the webpage
was scrolled to the very top prior to starting the task and measuring the time until the link was
found and tapped. Although not typical for interaction with Wikipedia articles, we included
this type of task as a control task since we expected the article page to increase in length based
on the adaptations that would be applied during the second phase of the study. Therefore, we
wanted to measure the impact on user experience resulting from higher scrolling effort and a
worse website overview. Four of these tasks were included in the study, with links selected
from the top, middle and bottom of the main article text (“NeXT” in the section “1994–1997:
Attempts at reinvention”, “iPod Shuffle” in the section “2007–present: iPhone and iPad”,
“FaceTime” in the section “iPhone” and “Mercury” in the section “Environmental Record”).

The participants who completed all of the 33 tasks were presented a post-study questionnaire
that asked them to rate statements concerned with the efficiency and easiness involved in
solving the different types of tasks based on a 5-point Likert scale (5 = strongly agree, 1 =
strongly disagree). Furthermore, in terms of background information specific for the study,
we wanted to know which touch devices participants used to complete the study, how often
they use these devices in general and for web browsing specifically and how they rate their
expertise in the fields of web design, web development and web usability based on a 4-point
scale (3 = expert knowledge, 0 = no knowledge). The complete post-study questionnaire can
be found in Appendix C.1.
In case a participant aborted the user study before completing all of the 33 tasks and pro-
ceeding to the questionnaire, they still contributed valid data for the subset of tasks they
completed. Therefore, these data are as well considered in the following analysis of results.

4.3.2 Results

Out of the 84 participants overall, 39 took part in the study during the first phase and 45 took
part during the second phase. 50 completed the post-study questionnaire, 42 were male and
8 were female at a median age of 25. According to the background information given in
the questionnaire, participants used their touch devices several times a day for both general
purposes as well as for web browsing. Moreover, they were knowledgeable in web design and
development (median = 2) while having passing knowledge in web usability (median = 1). A
total of 64 participants used a smartphone to take part in the study, including iPhone, HTC
Desire, Motorola Defy, Samsung Galaxy S and Nokia N9. The remaining 20 participants took
part using a tablet PC, including iPad, Lenovo ThinkPad, Motorola Xoom and Archos 70. The
results have been grouped according to these two high-level classes of devices, further divided
by device orientation (portrait/landscape), which makes a total of four different use contexts
to be considered. In this way, we take into account general trends in mobile device usage
while not applying a too fine-grained differentiation and thus obtaining reasonable amounts
of data for all considered contexts. We note that this is however not a technical limitation
since the underlying context engine could distinguish at a much finer level (Nebeling and
Norrie, 2011).
In the second phase of the study, the applied adaptations were mainly based on the zoom levels
collected during phase 1 (cf. Appendix A.2). In fact, the Wikipedia article was adjusted on a

42 4.3. USER STUDY #1: CROWDSOURCED ADAPTATION OF AN EXAMPLE WEBPAGE

Figure 4.10: The regular version of the
Wikipedia article on an iPod touch.

Figure 4.11: The adapted version of the
Wikipedia article on the same device.

per-component basis taking into account the zoom factors to scale the font sizes accordingly
(cf. Figures 4.10 and 4.11). However, the resulting font sizes for sidebar navigation and footer
component were weighted at 67% only since the interviewed experts considered the article
text to be the main component of interest. Also, the navigation bar would otherwise have
taken too much horizontal space, particularly on small-screen devices such as smartphones.
In addition to a larger touch area through bigger font sizes, we set the line height of hyperlinks
to 2 em (or 133% of the standard value) for additional spacing, as is also done in the mobile
version of the Wikipedia, for which many of the interviewed experts noted that it contains
good adaptations for touch.
The header component is excluded from the results presented below because it was not ad-
apted for the second phase of the study. This is based on the fact that its layout involved
fixed-size images and would therefore be difficult to adjust using only features of W3Touch.
However, this is still in line with the expert suggestions, where the header was considered to
be the “best” part of the regular webpage and thus requires least adaptations.

Zoom Factors and Missed Links

In Figure 4.12, we present the average zoom levels collected for the main article text during
phase 1 of the study. As can be seen, the text was zoomed by an average factor of 2.73 on
smartphones if used in portrait mode, and by an average factor of 1.95 if used in landscape
mode. We detected comparably lower zoom levels on tablet PCs, where participants zoomed
by an average factor of 1.78 in portrait mode and by an average factor of 1.05 in landscape

CHAPTER 4. EVALUATION 43

0

0.5

1

1.5

2

2.5

3

3.5

portrait** landscape* portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Zoom (Phase1) Avg. Zoom (Phase 2)

Figure 4.12: Average zoom levels for the article text. (* p < 0.01; ** p < 0.001)

0%

20%

40%

60%

80%

100%

120%

portrait landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Missed Links (Phase 1) Missed Links (Phase 2)

Figure 4.13: Missed links per click link task for the article text.

44 4.3. USER STUDY #1: CROWDSOURCED ADAPTATION OF AN EXAMPLE WEBPAGE

mode. Regarding missed links per task in the article text, we recorded fairly high rates for
all four contexts (cf. Figure 4.13). The intended target was missed in 25 out of 102 cases
(25%) on smartphones held in portrait mode while even missing in 20 out of 28 (71%) cases
in landscape mode. Similar results account for tablet PCs, where the link to be hit was missed
in 25% (5 out of 20) of the cases in portrait mode and in 43% (12 out of 28) of the cases in
landscape mode. It can be seen that the ratio of missed links tends to be higher in landscape
mode, although it yields better readability at the same zoom level, as compared to portrait
mode. An explanation for this could be that participants zoomed less (and therefore probably
not enough) when being in landscape mode, thus raising the chance of missing links.
In general, the results concerning average zoom levels in phase 1 of the study are very sim-
ilar for all components. In contrast, the results concerning missed link differ considerably
between components and also feature a greater statistical dispersion. Since these are omitted
here, the interested reader might refer to Appendix C.2 for the complete results.
When comparing the tracking data collected in the first phase with that collected during the
second phase, the average zoom levels used for viewing the article text went down signific-
antly on smartphones, independent of the orientation (cf. Figure 4.12). This shows a positive
effect of the font size enlargement. In general, we found significant differences on smart-
phones for sidebar navigation and footer component as well. While we could not detect sig-
nificant results when comparing the average values recorded on tablet PCs—probably due to
the smaller number of participants and the fact that the crowdsourced adaptations were least
drastic—most of the differences suggest that the average zoom factors might decrease when
using the adapted version of the article. When reviewing the differences between missed link
ratios, no significant results can be found (cf. Figure 4.13), except for the footer component,
where smartphones in portrait mode performed significantly worse. While there were also
some better missed link ratios recorded during phase 2—especially in the sidebar naviga-
tion and article text—which might indicate that some links can be hit more precisely, this
also shows that the adaptations applied to hyperlinks were not enough and might need, e.g.
additional padding to further increase touch areas.

Reading

0

10

20

30

40

50

60

70

80

90

portrait* landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure 4.14: Average reading times for the “iPad” text section. (* p < 0.05)

CHAPTER 4. EVALUATION 45

0

20

40

60

80

100

120

140

160

portrait* landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure 4.15: Average reading times for the “Corporate Affairs” text section. (* p < 0.01)

Figure 4.14 shows the average reading times collected for the “iPad” section of the Wikipe-
dia article. As can be seen, during the first phase, participants needed about 54 seconds on
smartphones in portrait and tablet PCs in landscape mode while the average times for smart-
phones in landscape and tablet PCs in portrait mode were about 64 seconds. In phase 2, these
times dropped to 30 seconds (smartphone/portrait), 44 seconds (smartphones/landscape), 34
seconds (tablet/portrait) and 46 seconds (tablet/landscape), whereas only the improvement
on smartphones in portrait mode was statistically significant. However, these results indicate
that the reading performance was better in the second phase of the study due to the larger
initial font size that resulted in less zooming and horizontal scrolling, especially concerning
the small screens of smartphones.
The data collected for the second piece of text to be read (cf. Figure 4.15) are considerably
different from those described above, although both sections were almost equal in length. In
particular, the average times on smartphones in portrait mode—although showing a signi-
ficant improvement—are about twice as high, as compared to the “iPad” section. Moreover,
although the average times in phase 1 are similar between the two text sections for the remain-
ing three contexts, times collected in the second phase did not decrease as much regarding the
“Corporate Affairs” text. Reasons for this might include outliers in combination with small
sample sizes (e.g. N = 3 for smartphone/landscape with a range of [13.869; 135.879]), as is
also indicated by the high statistical dispersions. However, while we cannot assume signific-
ant improvements on tablet PCs—where also the interviewed experts found the default font
sizes to be already comparably good—our results still suggest that reading performance can
be improved particularly on small-screen devices such as smartphones with our crowdsourced
version of the Wikipedia article.
Concerning the information we collected about device orientations, it could be seen that parti-
cipants preferred portrait mode on smartphones during the first phase, except for the reading
tasks. In contrast, participants primarily used portrait mode for reading in phase 2, which
might indicate that font sizes were already of a good enough size without switching to land-
scape mode. Regarding tablet PCs, the majority of participants preferred landscape mode for
all tasks during both phases.

46 4.3. USER STUDY #1: CROWDSOURCED ADAPTATION OF AN EXAMPLE WEBPAGE

Finding Links

0

20

40

60

80

100

120

portrait* portrait landscape

Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure 4.16: Average times needed for finding the link “FaceTime”. (* p < 0.001)

Figure 4.16 shows results for average times needed to find a particular link within the main
text in terms of the link “FaceTime”, that is roughly located in the middle of the article. In par-
ticular, the average time increased for tablet PCs and even significantly for smartphones, both
in portrait mode, while decreasing for tablet PCs in landscape mode. The smartphone/land-
scape context is missing since it was not used in the second phase of the study. These results
are very similar to those of the remaining links to be found, whereas the difference is also
significant for the link from the top part of the article (“NeXT”) on smartphones in portrait
mode. Interestingly, the data for tablet PCs in landscape mode suggest improvements, with
one difference being significant (“NeXT”). This shows that, while the vertical scrolling ef-
fort increased as expected on smartphones and tablet PCs in portrait mode, the crowdsourced
adaptations were least drastic on tablet PCs in landscape mode, which was also the context
considered to be best in the expert interviews. The complete data for the find link tasks can
be found in Appendix C.2.

Perceived User Experience

While above we aimed at measuring user experience based on several metrics, participants
were also asked in the post-study questionnaire to rate the easiness and efficiency of each type
of task (cf. Appendix C.1). Considering smartphone users (cf. Figure 4.17), we could not find
differences between the two phases regarding the click link tasks and only a tendency that
participants endorsed the adaptations concerning the reading tasks. However, the perceived
easiness and efficiency of the find link tasks decreased significantly, which underpins our
findings above regarding the increased efforts in vertical scrolling.
Concerning tablet PC users (cf. Figure 4.18), there is no clear trend regarding the click link
tasks since the perceived easiness improved while the perceived efficiency decreased slightly.
Also, there is not much of a difference between the two phases of the study regarding the
reading tasks, which might be due to the fact that ratings were already very good during
phase 1. In contrast to smartphones, the perceived user experience concerning the find link
tasks did not decrease significantly.

CHAPTER 4. EVALUATION 47

0

1

2

3

4

5

Phase 1 Phase 2

Figure 4.17: Perceived user experience of smartphone users. (* p < 0.01)

0

1

2

3

4

5

Phase 1 Phase 2

Figure 4.18: Perceived user experience of tablet PC users.

48 4.4. USER STUDY #2: COMPARISON TO EXISTING MOBILE VERSION

In general, the findings drawn from perceived user experience support the results of our quant-
itative measurements. By this we mean that the touch areas of links were not enlarged enough
to yield significant improvements while participants tend to experience better reading com-
fort due to larger font sizes, less zooming and less horizontal scrolling. Moreover, increased
scrolling effort caused by the adaptations affects the user experience particularly on smart-
phones. Finally, participants show the tendency to perform better on tablet PCs, where also
the differences between the two phases of the study were smaller due to less drastic adapta-
tions as compared to smartphones.

4.4 User Study #2: Comparison to Existing Mobile Version

The goal of the second user study was to compare the regular and adapted Wikipedia articles
from the first study to the existing mobile version of the same article that is optimised for
smartphones. This happened in terms of measures based on particular tasks described below.
The main consideration behind this comparison was that a crowdsourced adaptation involving
W3Touch requires comparably low effort by the developer, whereas a version specifically
designed for mobile touch devices includes a much higher amount of manual work.

4.4.1 Method

The usability tests were carried out in terms of a follow-up lab study for which 13 parti-
cipants were recruited. They were provided an iPod touch 4G (running iOS 4) for completing
the study. We chose three sections of text that a participant had to find and read, each one
using a different version of the Wikipedia article. The order of versions was randomised and
counterbalanced to avoid ordering effects. Also, which piece of text had to be found and
read using which version was randomised and counterbalanced to ensure evenly distributed
conditions. Furthermore, we prepared a particular text section in which participants had to se-
quentially click all the links contained, whereas the current link to be clicked was highlighted
and underlined in red. This particular section had to be found and processed using each of the
versions of the article, resulting in a total of two sections to be found per version, of which
one was prepared to click links and one had to be read. The order in which the two sections
had to be processed was randomised and counterbalanced to avoid ordering effects. Unlike in
the first user study, we did not take into account hyperlinks from the sidebar navigation and
footer component of the desktop version since these were not contained in the mobile version
of the Wikipedia article.
The chosen text sections were taken from the first, second, third and fourth quarter of the main
article text (“1981–1985: Lisa and Macintosh”, “2007–present: iPhone and iPad”, “Culture”
and “Environmental Record”). From the times needed to find these, we computed, for each
version of the article, one average time needed for finding a section based on all involved
pieces of text. The section “1981–1985: Lisa and Macintosh” was prepared for clicking links
while the remaining three had to be read. Therefore, the sections were adjusted to be similar
in length (489, 498 and 490 words respectively) and equal in terms of contents across all three
article versions.
Concerning each text section to be read, participants were told to read carefully since they had
to answer five questions afterwards (to be found in Appendix D.1). It was not necessary to
remember answers by heart, but rather, participants had to point at the corresponding sentence

CHAPTER 4. EVALUATION 49

within the text and read the correct answer aloud. This decision was made since people
who had preliminary knowledge about Apple products could have known some answers even
without reading the text, but in this way were required to pay equal attention to reading
and answering as participants without the same knowledge. We randomised the order of the
questions to ensure that participants had to scroll through the text and could not answer in
a linear manner. The times needed for reading and answering were recorded as a measure
regarding user experience. However, we did not measure the time needed for clicking links
since the different versions of the article yielded different latencies for detecting a click, which
made corresponding measures incomparable. Instead, for each clicked or missed link6, we
recorded the zoom level as a measure regarding user experience. Finally, independent of
particular tasks, we recorded the device orientation with which a task was accomplished.
Participants had to fill out a questionnaire prior to the study that asked for demographic in-
formation as well as background information specific for the user study. In particular, we
asked for providing information on how often participants use their touch device(s) in general
and specifically for web browsing. Moreover, we wanted to know whether they were familiar
with the regular and/or mobile version of the Wikipedia and how they would rate their know-
ledge concerning web design, web development and usability/HCI based on 4-point scales
(4 = expert, 1 = no knowledge). Additionally, after having finished the tasks for a version of
the article, participants had to fill out a post-task questionnaire in which they rated statements
about the perceived user experience as well as interaction with the webpage in general, based
on 5-point Likert scales. In particular, we asked how efficient and easy the tasks were to
solve7 and whether in general they had a good webpage overview (1 = strongly disagree, 5 =
strongly agree). Furthermore, we asked about the effects of the involved amounts of zooming
and scrolling (1 = strongly agree, 5 = strongly disagree). The complete questionnaires can be
found in Appendix D.2.

4.4.2 Results

Of the 13 participants, 9 were male and 4 were female at an average age of 29 years. In
general, they used their touch device(s) several times a day, and several times a week for
web browsing. 12 of the participants were familiar with the regular version of Wikipedia and
5 were familiar with the mobile version; one did not provide feedback on these questions.
Participants were knowledgeable in web design and development and had passing knowledge
in usability/HCI.

Finding Sections

We found significant differences between the three versions of the article when trying to find
a particular section within the text (cf. Figure 4.19). In particular, the difference between
desktop and crowdsourced version results from the larger amount of vertical scrolling neces-
sary in the latter one, due to the scaled font sizes. Contrary to the desktop and crowdsourced
versions, the mobile version of Wikipedia employs a different approach concerning the table
of contents, in which only the first-level headings are shown and the corresponding sections

6Based on hyperlink underlays (cf. Section 3.1.1).
7Except for answering questions since easiness and efficiency of answering a question does not only rely

on the layout of the corresponding text, but also on the individual participant’s ability to remember certain text
passages.

50 4.4. USER STUDY #2: COMPARISON TO EXISTING MOBILE VERSION

0

5

10

15

20

25

30

35

find* [sec]

Desktop Crowdsourced Mobile

Figure 4.19: Average times needed for finding a particular section within the article. (* see
Appendix D.3 for pair-wise significances)

and subsections can then be shown/collapsed in-place if wanted. We took into account that
the different tables of contents would most probably affect the results for finding particular
sections. However, it is not possible to remove the table of contents from the mobile version
where it is tightly coupled with the actual text. Since we also did not want to confuse users
familiar with the Mobile Wikipedia by initially extending all collapsed sections, we decided
not to alter any version of the article.

Reading Text & Answering Questions

0

20

40

60

80

100

120

140

160

180

200

read [sec] answer [sec]

Desktop Crowdsourced Mobile

Figure 4.20: Average times needed for reading a particular section and answering 5 text-
related questions.

The results concerning text sections that had to be read by the participants did not yield
significant differences between the different versions of the article (cf. Figure 4.20). However,
they still suggest that reading requires most time when using the regular Wikipedia since

CHAPTER 4. EVALUATION 51

zooming in to a readable font size leads to horizontal scrolling, which is not the case for the
crowdsourced and mobile versions. Furthermore, no clear tendencies can be extracted from
the times needed to answer text-related questions.

Clicking Links

0

2

4

6

8

10

12

14

16

missed links

Desktop Crowdsourced Mobile

Figure 4.21: Average numbers of missed links.

0

0.5

1

1.5

2

2.5

3

3.5

avg. zoom*

Desktop Crowdsourced Mobile

Figure 4.22: Average zoom levels for clicking links. (* see Appendix D.3 for pair-wise
significances)

When reviewing the average zoom levels collected during clicking links, significant differ-
ences between all versions of the article can be found (cf. Figure 4.22). In combination with
the average amounts of missed links, which yield no significant differences (cf. Figure 4.21),
this shows that for each version, users zoomed in as much as necessary to be able to easily
hit all the links. Therefore, the finding to be drawn from this is, that it is most difficult to hit
links in the desktop version (although the measured amount of missed links was the smallest)
while it is easiest in the mobile version, with the crowdsourced version laying in between.

52 4.4. USER STUDY #2: COMPARISON TO EXISTING MOBILE VERSION

Device Orientation

Regarding the device orientations used for completing the different tasks (cf. Table 4.1), we
found that portrait mode was preferred for finding particular sections within the article. While
reading took place mostly in landscape mode in the desktop version, the preference switched
to portrait mode when using the crowdsourced or mobile version, which can be explained by
the initially better readable font sizes. The same tendency accounts for answering questions.
Finally, in terms of clicking links, the orientations used were almost equal in the desktop
version with a slight preference for portrait mode regarding the crowdsourced and mobile
versions. In general, landscape mode was least popular in the mobile version.

Table 4.1: Numbers of times the two device orientations were used for completing a task,
separated by article version.

#
Desktop Crowdsourced Mobile

portrait landscape portrait landscape portrait landscape
find 22 4 18 8 22 4
read 2 11 8 5 11 2

answer 5 8 8 5 11 2
click links 7 6 8 5 9 4

Perceived User Experience

0

1

2

3

4

5

Desktop Crowdsourced Mobile

Figure 4.23: Perceived user experience based on post-task questionnaires. (* see Appendix
D.3 for pair-wise significances)

Based on the post-task questionnaires filled out by the participants, Figure 4.23 shows the
perceived user experience in terms of easiness and efficiency of the tasks to be solved (except
for answering questions) as well as other aspects important for interaction, including website
overview and the amount of zooming. In particular, participants gave lower ratings for find-
ing a particular section of text in the mobile version, which can be explained by the different

CHAPTER 4. EVALUATION 53

table of contents that provides less details. When it comes to reading, the crowdsourced and
mobile versions have been rated significantly higher than the desktop versions, which shows
that participants appreciated that no horizontal scrolling was required. However, there was no
statistical difference between the two higher-ranked versions in this respect. Regarding click-
ing links, participants found the mobile version to be significantly better as compared to the
other versions. This might be due to the lower amount of zooming involved, as shown by the
measured zoom factors. Concerning website overview and amount of vertical scrolling, we
could not find significant differences between all of the versions with medians ranging from
2 to 4, which suggests that neither version is optimal in these respects. Finally, participants
in general stated that the crowdsourced and mobile versions affected their efficiency way less
by zooming and horizontal scrolling. This stands in contrast to the desktop version, which
got median ratings of 2 and 1 respectively. The ratings given for the reading task, where the
crowdsourced and mobile versions perform significantly better as well, clearly support this
finding.

Overall, the second study indicated that the adaptations applied in the crowdsourced version
can compete with the existing mobile version in several aspects, which is very positive given
the fact that they involve considerably less effort for the developer. First of all, participants
found it (from a statistical perspective) equally good to read a text on both the crowdsourced
and mobile version, because both initially render text at a readable size without the necessity
of horizontal scrolling. This is also supported by the measured reading times, which show
no significant differences. While overview and amount of vertical scrolling can not be con-
sidered to be optimal in both the crowdsourced and mobile versions, participants found that
the crowdsourced version yields the same advantages in terms of less zooming and horizontal
scrolling, as compared to the mobile version. A negative point regarding the adapted article is
clearly the performance in clicking links, which is underpinned by the measured zoom factors
necessary for a successful hit as well as the questionnaire feedback. The Mobile Wikipedia
was found to be clearly better in this respect.
When furthermore comparing the results of the two user studies, it is possible to find several
similarities. First, the second study underpinned our findings that the adaptations applied to
the crowdsourced version of the article result in less zooming and horizontal scrolling efforts,
which is indicated by both the measured zoom factors and the perceived user experience.
Moreover, although the measured times from the second study do not show significant differ-
ences, the questionnaire feedback tells that reading is to be considered better in the crowd-
sourced version of the article, as compared to the desktop version. This seems to be also in
line with the findings from the first study. In terms of clicking links, both studies showed that
the applied adaptations could not lead to significant improvements. Finally, it has to be noted
that no task equivalent to the find link task from the first study was included in the second
one since finding an entire section of text is less difficult (due to its size and headline) than
finding one particular inline link. Therefore, we cannot compare results in this regard.

4.5 jQMetrics4touch

To develop metrics for the evaluation of webpages on touch devices, we built on jQMetrics,
that implement a set of metrics originally designed by Nebeling et al. (2011) to assess text-
intensive webpages, such as news sites, in large-screen contexts. However, since large screens

54 4.5. JQMETRICS4TOUCH

pose considerably different requirements to developers, in contrast to mobile touch devices,
we had to perform a series of adjustments to be able to obtain reasonable results. Moreover,
we compute the metrics for a “snapshot” of a webpage, i.e. the current content of the mobile
browser viewport, rather than for the entire content of a page, which is reasonable given the
limited processing power of mobile devices.
In the first instance, individual metrics that were specific for large screens (e.g. by focusing
on “wasted” screen real estate) and therefore would not contribute to an assessment on mobile
touch devices, were deactivated. The affected metrics were content-window ratio, wide text
ratio and visible links ratio. In particular, the visible links ratio was removed since on touch
devices, it is more important that links displayed in the current viewport are easily hittable
rather than being able to view as many links as possible where the user has no chance to
precisely tap on a desired target. This consideration is in line with the results of the expert
interviews and first user study. Moreover, we deactivated the media-content ratio since the
webpages to be assessed were Wikipedia articles and we therefore focused on aspects of text
rather than images or videos.
The metrics to be left activated were document-window ratio, small text ratio and visible
text ratio, whereas we modified the document-window ratio to only consider the horizontal
dimension, thus effectively yielding the horizontal scroll factor, which is equal to the zoom
level. We decided to ignore the vertical dimension here, because the vertical scroll factor
can be seen as a possible approximation for the amount of content currently contained in the
browser viewport. However, since we intended the assessment of a text-intensive webpage,
this measure is already logically contained in the visible text ratio and can therefore be left
out. Moreover, we modified the small text ratio to be based on the text currently displayed in
the viewport rather than being based on the entire text of the document. Therefore, if all of
the displayed text can be considered to be not too small, the value should be 1.
The above set of metrics was complemented by two new metrics specifically designed for
mobile touch devices. First, we added a small links ratio in analogy to the small text ratio to
cater for the novel input modalities involving less precise fingers instead of mouse cursors.
Second, we introduced overall quality, that is an overall value based on the other four metrics
and should make it possible to compare user experience approximations for different snap-
shots of webpages using a single value. In particular, the overall quality is determined by the
following formula (whereas the small links ratio is only considered if links are contained in
the viewport; otherwise also the divisor is changed to 5):

visible text ratioN + 2 · small text ratioN + 2 · horizontal scroll factorN + small links ratioN
6

A subscript N thereby indicates that the respective value has been normalised to a value
between 0 and 1, if not already the case. For example, the normalised value of the horizontal
scroll factor is computed by dividing 1 by the original value, thus obtaining a normalised
value that converges to 0 for large scroll factors. The small text ratio is weighted twice,
because we consider it more important to have readable text than to have a large amount of
text that the user cannot read. This is in accordance with the findings of the interviewed
experts who stated that the initial view of the regular Wikipedia is completely useless on an
iPod touch, although it displays a comparably large amount of text. On the other hand, if a
text is zoomed in too much and not too small, but more “useless” than at a reasonable zoom

CHAPTER 4. EVALUATION 55

3.220 in

1.963 in
2.

55
2

in

Figure 4.24: Browser viewport diagonal on an iPod touch.

level, this is counterbalanced by the horizontal scroll factor which gets worse the more a user
zooms in. Therefore, the horizontal scroll factor is weighted twice as well.

4.5.1 Implementation

In order to determine what a small link or small text is, appropriate thresholds needed to
be defined beforehand. Concerning links, we oriented at the findings of Holz and Baudisch
(2011), who state that the average offset error resulting from touch input is 4 mm, or 0.157 in.
Therefore, as a first simple heuristic, we consider links with an absolute height of less than
0.157 in to be small.
Concerning text, we asked the participants of the second user study (described in Section 4.4)
to adjust the zoom level of a sample page showing a large amount of text on an iPod touch 4G.
The goal was to adjust it in such a way that they would say the size of the characters is optimal
for reading in terms of being neither too small nor too large. The threshold resulting from this
was a character height of 0.115 in (with a standard deviation of 0.026 in). Therefore, again as
a first simple heuristic, we consider text with an absolute character height of less than 0.115
in to be small.
When computing the absolute heights of links or characters in terms of inches for comparison
with the respective thresholds, it is not possible to rely on the given resolution of a device,
which is, e.g. 163 pixels per inch for an iPod touch 2G. Rather, the viewport of a mobile
browser effectively displays different amounts of pixels, depending on the current zoom level.

56 4.5. JQMETRICS4TOUCH

(a) Desktop version. (b) Crowdsourced version. (c) Mobile version.

Figure 4.25: Comparison between quality of initial views.

For example, when displaying a website designed for desktop screens that has a fixed width
of 800 px, Mobile Safari would initially scale the page to fit the width of the small screen,
thus squeezing 800×1040 pixels into the browser viewport in portrait mode. Then, when
zooming in to read a piece of text, these values could change to, e.g. 320×416 pixels that are
effectively displayed. Obviously, the absolute height of a character depends on this variable
resolution of the browser viewport, which can be obtained using window.innerWidth and
window.innerHeight in Mobile Safari. Moreover, it is necessary to take into account the
browser viewport diagonal, which is 3.220 in on an iPod touch in portrait mode (cf. Figure
4.24) and 3.337 in in landscape mode, to calculate the effectively displayed pixels per inch
within the viewport (which might be different from 163 pixels per inch) and compute absolute
heights of links and characters based on this value.

4.5.2 Results

We have taken two metrics snapshots for each investigated version of the Wikipedia article
(desktop, crowdsourced and mobile); one for the initial view without having zoomed the page
and one when zoomed in to a piece of text, so that it can be easily read according to the given
threshold. Regarding the latter one, we tried to zoom in to a similar absolute character size in
all versions.
The evaluation of the initial views (cf. Figure 4.25) shows no considerable differences
between the three versions. In particular, the horizontal scroll factors and small links ra-
tios are 1 in all cases and the small text ratios lie above 96% for all snaphots. Therefore, the
small variations in overall quality are effectively determined by the amount of visible text,
which has the highest value in the desktop version.
The font sizes in the crowdsourced and mobile versions are considered to be too small based
on the threshold determined by the participants of the second user study. This is interesting
since both versions feature significantly larger font sizes than the desktop version and in
particular, the Mobile Wikipedia has been designed to provide readable text without zooming.

CHAPTER 4. EVALUATION 57

(a) Desktop version. (b) Crowdsourced version. (c) Mobile version.

Figure 4.26: Comparison between quality of zoomed-in views.

However, this shows that the threshold for small text needs further adjustments. In case it
would be changed accordingly, the initial view of the mobile version could earn a significantly
better rating similar to the one in Figure 4.26(c), given that the small text ratio would be 0%
in this case.
Concerning the zoomed-in views of the versions of the Wikipedia article (cf. Figure 4.26),
in which the text is readable according to the pre-defined threshold, the rating of the crowd-
sourced version (56.3%) is slightly worse than that of the mobile version (60.5%). However,
both versions are clearly better than the regular Wikipedia (42.4%). In particular, the small
links ratios stay at 100% since the threshold for small links is larger than the one for small
text. Threfore, the overall quality is effectively determined by horizontal scroll factor and vis-
ible text ratio. Clearly, the mobile version earns the best rating since it yields least horizontal
scrolling and most visible text (collapsed text does not count towards this value) while the
crowdsourced version performs slightly worse in both. The bad rating of the desktop version
is mainly due to its extensive horizontal scroll factor.
We have also investigated snapshots of initial and zoomed-in views in landscape mode. How-
ever, these are omitted here since the results are almost equal to those described above in all
respects.
Finally, we want to note that the metrics have been specifically developed for assessing the
different versions of the Wikipedia and their use is still highly experimental. Therefore, the
above results should be interpreted with caution. In particular, the thresholds for small text
and small links, which were meant to be first simple heuristics, need further adjustments.
This is underpinned by the fact that there were effectively no differences between the metrics
for initial views. However, it would be especially desirable if the Mobile Wikipedia received
a higher rating compared to the desktop version since it clearly features better readable text
without zooming.

58 4.5. JQMETRICS4TOUCH

5
Conclusions

In this thesis, we presented W3Touch—a tool to support crowdsourced evaluation and ad-
aptation of non-optimised web interfaces concerning the specifics of mobile touch devices.
The basic idea is to extend existing approaches to usability evaluation with more advanced
means for tracking high-level context-aware data that is related to touch input. Based on this
information about users’ activities, our tool tries to infer critical components of a webpage
and to inform suitable adaptations for various contexts to improve the user experience. This
happens in terms of visualisations to provide information about potentially critical and often
used components to the developer as well as automatic adjustments. Regarding the great di-
versity of today’s touch devices, which makes it difficult for web developers to cater for all of
these, we have shown that implicit crowdsourcing can help to optimise an existing web inter-
face for many different contexts with typically less manual efforts than required by existing
mobile websites. Thereby, responsibilities are split between users—who deliver the relevant
data—and developers—who make use of that data through an adaptation catalogue that can
contain basic rules or even rearrange a whole web interface.

5.1 Contributions

In a user study that investigated a real crowdsourcing scenario, we have shown that it is pos-
sible to realise a self-adjusting webpage for several browsing contexts that yields improve-
ments in user experience—particularly in terms of less zooming and horizontal scrolling—by
applying one basic adaptation catalogue. This adaptation catalogue was equivalent to the
one shown in Appendix A.2 and already led to good results although containing only rel-
atively simple rules. While an internal lab study underpinned our findings, it also showed
that our crowdsourced web interface could already compete with an existing mobile web-
site to a certain extent. This is especially positive regarding the fact that individual mobile
websites usually involve expensive and time-consuming manual work to cater for various
browsing contexts, as opposed to defining more general rules and letting a non-optimised
web interface evolve through user emancipation. In general, W3Touch could help to provide

59

60 5.2. LIMITATIONS

touch-optimised websites for a wider range of browsing contexts, although they might not
be as optimised as specifically developed mobile websites. Moreover, crowdsourcing web
interfaces with the help of W3Touch can save a considerable amount of work for developers,
especially regarding the fact that the diversity of devices used for web access tends to be
steadily increasing.
Finally, we have extended a set of usability metrics to further support developers with as-
sessing their web interfaces on touch devices. The resulting set of metrics can complement
W3Touch by delivering additional evaluations of the aspects of a webpage that are of partic-
ular interest when it comes to touch input.

5.2 Limitations

Concerning the evaluation of W3Touch, several points have to be noted:

1. In the first user study, participants had to click a “Done” button provided in the in-
struction box when having finished reading a text. However, in some rare cases, ex-
traordinarily short or long reading times suggest that the respective participant might
not have found the button (probably because they did not thoroughly read the instruc-
tions) or clicked it instead of the “Skip” button when they did not want to complete
the task. Since this influences average values and statistical dispersion and therefore
also the quality of our results, we introduced the necessity to answer questions in the
second user study as a stimulus to read texts more carefully. Yet, in an asynchronous
remote usability test, this poses additional technical challenges and still cannot help to
guarantee that participants pay more attention to instructions.

2. The enlargement of hyperlink touch areas by increasing font sizes could not lead to
clear improvements in successfully hitting links, as our results do not show signific-
ances in this respect. Therefore, additional spacing in terms of CSS padding would
have been necessary. However, this poses certain challenges concerning inline links
contained in continuous text. In particular, individual horizontal or vertical padding for
those links leads to odd occurrences of white space which affect consistent line spa-
cing and aesthetic appearance of text paragraphs. Regarding this, also reading comfort
could suffer from larger touch areas.

3. The lack of significant results concerning tablet PCs is caused by two main reasons.
First, the number of participants taking part in the first study using these particular
devices was comparably small, thus yielding too much statistical dispersion. And
second, the Wikipedia article needed least adaptations for the corresponding brows-
ing contexts (i.e. portrait and landscape). Therefore, the differences in user experience
between the regular and the crowdsourced version tend to be smaller, as compared to
smartphones. This makes a larger amount of data necessary to be able to obtain signi-
ficant results, if possible at all.

5.3 Future Work

Since W3Touch is currently only implemented in terms of a proof of concept and is related
to comparably novel fields of research in terms of crowdsourcing and touch input modalit-

CHAPTER 5. CONCLUSIONS 61

ies, there are several aspects that require improvement, further investigation or could not be
covered in this thesis.

• So far, W3Touch has only been evaluated for text-centric webpages, as represented by
an exemplary Wikipedia article, while taking into account only relatively basic adapt-
ations that were, however, adequate for the investigated webpage. Therefore, further
investigations are necessary, that involve other types of websites, such as web portals,
and also different and more complex adaptations. In particular, future work should
take into account more advanced ideas for adjustment, such as rearranging the overall
layout to a single column, removing less important items from the navigation bar, or
reorganising links based on their popularity. All of these have already been mentioned
in the expert interviews.

• The reduced amount of zooming which results from the adaptations applied in the
crowdsourced version leads to a considerably larger amount of vertical scrolling. Since
excessive scrolling can become a major usability issue, future work could investigate
possibilities to mitigate this shortcoming.

• Although W3Touch is able to recognise scrolling gestures, we currently make use of
this only in terms of position changes of zoomed-in viewports, which are handled the
same way as zooming gestures, also concerning visualisations. However, since ex-
tensive scrolling in both directions has to be considered a usability issue, it should be
investigated how scrolling gestures could be visualised and contribute to the identi-
fication of potentially critical components. Moreover, additional tracking data could
be provided in the adaptation catalogue that are based on scrolling interaction to an-
swer questions like “How many changes in scrolling direction occurred with a specific
component being present in the viewport?”

• Since W3Touch splits responsibilities between users and developers, evaluation should
not only happen from the users’ perspective, i.e. “Can users benefit from crowdsourced
adaptations in terms of usability?” Therefore, the developers’ perspective could be
investigated in terms of exemplary deployments of W3Touch on real-world websites.
This would help to assess the feasibility of W3Touch for developers, especially in terms
of using the adaptation catalogue.

• As described above, in the current state it is the responsibility of the developer to
provide an adaptation catalogue, or at least basic default behaviour defined in the
W3Touch configuration. However, it could also be possible to set up a server-side
installation of W3Touch on an arbitrary domain and let users enhance webpages with
W3Touch through bookmarklets (similar to the approach described by Nebeling and
Norrie, 2011). Regarding this, a user could manage their own adaptation catalogues, or
public adaptation catalogues could be set up for different webpages, which would be a
scenario similar to Greasemonkey user scripts1.

• Currently, the adaptation catalogue provides only a rather limited amount of pre-
defined context information, i.e. smartphone vs. tablet PC and portrait vs. landscape.

1http://userscripts.org/

http://userscripts.org/

62 5.3. FUTURE WORK

However, to provide more flexible and fine-grained contexts, the catalogue could be ex-
tended to a fully-fledged domain-specific “language”, taking into account the principles
of XCML (Nebeling et al., 2012a). This would in particular also affect the context en-
gine, as it delivers the context information that are available from within the catalogue
as well as the configuration, that is responsible for default behaviour.

• We have extended a set of usability metrics to be able to assess webpages on touch
devices. However, these metrics are still experimental and have only been tested with
the different version of the Wikipedia article. Therefore, jQMetrics4touch requires
additional fine-tuning, taking into account various types of websites. In particular, this
accounts for the thresholds defining small text and small links as well as for the overall
quality formula.

Bibliography

Richard Atterer, Monika Wnuk, and Albrecht Schmidt. Knowing the User’s Every Move –
User Activity Tracking for Website Usability Evaluation and Implicit Interaction. In Proc.
WWW, 2006.

Patrick Baudisch, Bongshin Lee, and Libby Hanna. Fishnet, a fisheye web browser with
search term popouts: a comparative evaluation with overview and linear view. In Proc.
AVI, 2004a.

Patrick Baudisch, Xing Xie, Chong Wang, and Wei-Ying Ma. Collapse-to-Zoom: Viewing
Web Pages on Small Screen Devices by Interactively Removing Irrelevant Content. In
Proc. UIST, 2004b.

Michael S. Bernstein, Greg Little, Robert C. Miller, Bjrn Hartmann, Mark S. Ackerman,
David R. Karger, David Crowell, and Katrina Panovich. Soylent: A Word Processor with
a Crowd Inside. In Proc. UIST, 2010.

Timothy W. Bickmore and Bill N. Schilit. Digestor: Device-independent Access to the World
Wide Web. In Proc. WWW, 1997.

Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N. Truong, and Eyal de Lara. PageTailor:
Reusable End-User Customization for the Mobile Web. In Proc. MobiSys, 2007.

Orkut Buyukkokten, Hector Garcia-Molina, Andreas Paepcke, and Terry Winograd. Power
Browser: Efficient Web Browsing for PDAs. In Proc. CHI, 2000.

Orkut Buyukkokten, Oliver Kaljuvee, Hector Garcia-Molina, Andreas Paepcke, and Terry
Winograd. Efficient Web Browsing on Handheld Devices Using Page and Form Summar-
ization. TOIS, 20(1), 2002.

Tonio Carta, Fabio Paternò, and Vagner Figuerêdo de Santana. Web Usability Probe: A Tool
for Supporting Remote Usability Evaluation of Web Sites. In Proc. INTERACT, 2011.

Andre Charland and Brian LeRoux. Mobile Application Development: Web vs. Native.
CACM, 54(5), 2011.

Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. Detecting Web Page Structure for Adaptive
Viewing on Small Form Factor Devices. In Proc. WWW, 2003.

Krzysztof Z. Gajos, Jacob O.Wobbrock, and Daniel S. Weld. Improving the Performance of
Motor-Impaired Users with Automatically-Generated, Ability-Based Interfaces. In Proc.
CHI, 2008.

63

64 BIBLIOGRAPHY

Gen Hattori, Keiichiro Hoashi, Kazunori Matsumoto, and Fumiaki Sugaya. Robust Web Page
Segmentation for Mobile Terminal Using Content-Distances and Page Layout Information.
In Proc. WWW, 2007.

Christian Holz and Patrick Baudisch. Understanding Touch. In Proc. CHI, 2011.

Jason I. Hong, Jeffrey Heer, Sarah Waterson, and James A. Landay. WebQuilt: A Framework
for Capturing and Visualizing the Web Experience. In Proc. WWW, 2001.

Jeff Howe. The Rise of Crowdsourcing. Wired, 14(6), 2006.

Ben Lafreniere, Andrea Bunt, Matthew Lount, Filip Krynicki, and Michael Terry. Adaptable-
GIMP: Designing a Socially-Adaptable Interface. In Proc. UIST (Poster), 2011.

Heidi Lam and Patrick Baudisch. Summary Thumbnails: Readable Overviews for Small
Screen Web Browsers. In Proc. CHI, 2005.

Luis A. Leiva. Restyling Website Design via Touch-based Interactions. In Proc. MobileHCI,
2011.

Luis A. Leiva and Enrique Vidal. Assessing Users’ Interactions for Clustering Web Docu-
ments: A Pragmatic Approach. In Proc. HT, 2010.

Michael Nebeling and Moira C. Norrie. Tools and Architectural Support for Crowdsourced
Adaptation of Web Interfaces. In Proc. ICWE, 2011.

Michael Nebeling and Moira C. Norrie. jQMultiTouch: A Lightweight Toolkit and Rapid
Prototyping Framework for Multi-touch/Multi-device Web Interfaces, 2012. Submitted for
review.

Michael Nebeling, Fabrice Matulic, and Moira C. Norrie. Metrics for the Evaluation of News
Site Content Layout in Large-Screen Contexts. In Proc. CHI, 2011.

Michael Nebeling, Michael Grossniklaus, Stefania Leone, and Moira C. Norrie. XCML:
Providing Context-Aware Language Extensions for the Specification of Multi-Device Web
Applications. WWW, pages 1–35, 2012a. DOI: 10.1007/s11280-011-0152-2.

Michael Nebeling, Maximilian Speicher, and Moira C. Norrie. Methods and Tools for Crowd-
sourced Evaluation and Adaptation of Web Interfaces for Touch, 2012b. In submission.

Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K. Harris, Roni
Rosenfeld, and Mathilde Pignol. Generating Remote Control Interfaces for Complex Ap-
pliances. In Proc. UIST, 2002.

Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA: A universal, declarative,
multiple abstraction-level language for service-oriented applications in ubiquitous envir-
onments. TOCHI, 16(4), 2009.

Willian Massami Watanabe, Renata Pontin de Mattos Fortes, and Maria da Graça Campos Pi-
mentel. The Link-Offset-Scale Mechanism for Improving the Usability of Touch Screen
Displays on the Web. In Proc. INTERACT, 2011.

Appendices

65

A
Source Code

A.1 Example Configuration

var W3TConfig = {

path: ’http://www.yourdomain.com/w3touch’,

5 excludeFromTracking: [’header’, ’footer’],

excludeFromAdaptation: [’header’],

useDefaultBehaviour: true,
10

useAsCommonAdaptations: false,

defaultBehaviour: function($, selector) {
if (W3T.isSmartphone()) {

15 $(selector).css(’font-size’, ’150%’);
} else {
$(selector).css(’font-size’, ’100%’);

}
}

20
};

67

68 A.2. EXAMPLE ADAPTATION CATALOGUE

A.2 Example Adaptation Catalogue

function getCssValue(selector, property) {
return parseInt($(selector).eq(0).css(property).replace(/px/, ’’));

}
4

var oldFontSize, oldWidth, zoom;

/* Navigation */
9

oldFontSize = getCssValue(’#mw-panel’, ’font-size’);
oldWidth = getCssValue(’#mw-panel’, ’width’);
zoom = W3T.getTrackingData(’#mw-panel’).avg_zoom;

14 // weighting of adaptation
zoom = (zoom * 0.67 >= 1) ? (zoom * 0.67) : 1;

$(’#mw-panel’).css({
fontSize: (oldFontSize * zoom) + ’px’,

19 width: (oldWidth * zoom) + ’px’
});

$(’#mw-panel a, #mw-panel h5’).css(’line-height’, ’2em’);

24 $(’#content, #mw-head-base’).css(’margin-left’,
(oldWidth * zoom) + ’px’

);

$(’#left-navigation’).css(’left’,
29 (oldWidth * zoom) + ’px’

);

/* Main Text */
34

oldFontSize = getCssValue(’#main-article’, ’font-size’);
zoom = W3T.getTrackingData(’#main-article’).avg_zoom;

$(’#main-article’).css({
39 fontSize: (oldFontSize * zoom) + ’px’,

lineHeight: ’2em’
});

44 /* Footer */

oldFontSize = getCssValue(’#collapsibleTable0’, ’font-size’);
zoom = W3T.getTrackingData(’#collapsibleTable0’).avg_zoom;

49 // weighting of adaptation
zoom = (zoom * 0.67 >= 1) ? (zoom * 0.67) : 1;

$(’#collapsibleTable0’).css(’font-size’,
(oldFontSize * zoom) + ’px’

54);

APPENDIX A. SOURCE CODE 69

oldFontSize = getCssValue(’#collapsibleTable1’, ’font-size’);
zoom = W3T.getTrackingData(’#collapsibleTable1’).avg_zoom;

59 // weighting of adaptation
zoom = (zoom * 0.67 >= 1) ? (zoom * 0.67) : 1;

$(’#collapsibleTable1’).css(’font-size’,
(oldFontSize * zoom) + ’px’

64);

$(’#collapsibleTable0 a, #collapsibleTable1 a’).css(’line-height’, ’2em’);

70 A.2. EXAMPLE ADAPTATION CATALOGUE

B
Expert Interviews

Expert #1 iPod touch iPad

Header
no need for adaptation, zooming is
enough

Navigation increase size of links
Article Text increase size of links

Footer

no need for adaptation, zooming is
enough;
not enough space available if links
were bigger

increase size of links according to
users choice

Hyperlinks
links have proper size, only increase
in portrait mode

General website too small in general

initial zoom level is appropriate;
too much scrolling;
“There’s more room for improve-
ment on the iPad.”

Advanced
Suggestions

pagination would be helpful;
collect links separately per para-
graph;
equalize horizontal and vertical
scrolling

pagination;
sort links in footer;
zoom individual components in-
stead of whole site (e.g., using a
slider)

71

72

Expert #2 iPod touch iPad

Header fine (large touch areas)

Navigation
zooming necessary (difficult to hit
exact line);
easier if clustered horizontally

Article Text
when zoomed in, text lines don’t fit
screen (major issue)

difficult to hit links that are close to
each other;
zoom in only for difficult links, oth-
erwise no “harm” when missing a
link

Footer

“forget about hitting a particular
link”;
zooming necessary & worth the ef-
fort b/c densely packed;
costly to hit wrong link;
more vertical spacing;
larger box for each link (e.g., grid)

Hyperlinks issues similar to iPad

General

used portrait mode only;
not able to do anything at default
zoom level;
would expect to adapt to mobile ver-
sion;
increase font size or zoom automat-
ically;
zooming more of an issue than
scrolling b/c less precise;
scrolling (active usage) is perceived
to be faster than navigating (short
delay);
difficult for designer to know con-
straints of platform

used portrait mode only;
def. zoom level not optimal, but able
to read text;
article very long

Advanced
Suggestions

create columns of text that fit screen
width;
initial viewport that shows 1st para-
graph + headline;
separate gallery for images that re-
peats relevant parts of text;
pagination might be solution for
long text, but likes scrolling more

detect zoom gesture on imgs, then
adjust resolution (async);
back-to-top links

APPENDIX B. EXPERT INTERVIEWS 73

Expert #3 iPod touch iPad

Header
“could probably stay”;
adjust font size to text

Navigation
adjust font-size to text;
maybe add spacing b/c of high link
density

readable w/o larger font size;
increase spacing b/c of link density

Article Text
adapt to screen width;
increase font size for better readab-
ility w/o zooming

more spacing around densely
packed links (e.g., footnote links)

Footer

issues w/ font size (smaller than in
main text) and density of links;
adjust font size to text;
add padding / margin

density still very high;
increase spacing

Hyperlinks
better hittable w/ larger font size;
additional spacing only necessary
for densely packed links

General

same adaptations for portrait and
landscape;
difficult to find things even if you
know where they are (excessive
zooming necessary);
scrolling is possible issue w/ larger
font size;
Wikipedia mobile leaves out certain
features that one would like to use

used landscape mode;
able to read text immediately w/o
zooming;
even footer is readable;
issues w/ length of article / scrolling;
font size could be kept;
certain features should not be hid-
den from mobile users (“not fair to
exclude mobile users from editing
Wikipedia”);
portrait might need different adapt-
ations than landscape (e.g., move
navigation);
landscape similar to desktop experi-
ence;
text has enough space in landscape,
otherwise lines would be too long

Advanced
Suggestions

place navigation bar on top, maybe
w/ floating button for fast access
(more space for text);
leave out less important parts (e.g.,
languages) & put them into drop-
down menu;
collapse parts of text;
pagination;
use lightbox feature for imgs, show
caption only in fullscreen mode

collapse parts of text;
pagination;
use lightbox feature for imgs;
leave out less important parts (e.g.,
languages) & put them into drop-
down menu

74

Expert #4 iPod touch iPad

Header

too small, but still the easiest to click
on whole page;
difficult to read even in landscape
mode

no real issue;
could be a bit optimized for touch;
easier to click than the other links on
the page

Navigation

lager font size;
spread out links more;
“more forgiving for those of us with
fat fingers”

should be a bit more spread out;
font size a little small

Article Text

have font size large enough to be
readable w/o zooming;
increase line-spacing;
use easy-to-read font

links very close;
larger font size, more line-spacing /
padding

Footer

finger covers about 20 links;
hitting links even difficult w/ max-
imum zoom;
use more space for each link (e.g.,
grid);
larger font;
more spacing

small, very close links;
“my finger covers about 6 words”;
more structured layout (e.g., grid)
would be important;
give links more space

Hyperlinks same issues as on iPad, but worse

General

mostly used landscape mode;
portrait: completely unreadable;
landscape: slightly better, but still
not readable w/o zooming;
zooming makes horizontal scrolling
necessary (panning in 2 directions is
annoying);
bigger font size necessary

layout a bit narrow in portrait mode
(give text more space);
text a little small to read in portrait
mode; very long article;
most statements apply to portrait
& landscape (limited width applies
more for portrait)

Advanced
Suggestions

simplify layout (use full width for
content);
rearrange navigation in horizontal
way;
zoom in and have text adjus-
ted to screen width (no horizontal
scrolling necessary);
overlay w/ zoomed-in img of higher
resolution;
collapse navigation panel and ex-
pand on demand

overlay w/ zoomed-in img of higher
resolution;
use navigation bar on top for most
important links;
difference between portrait & land-
scape could be solved using media
queries

APPENDIX B. EXPERT INTERVIEWS 75

Expert #5 iPod touch iPad

Header
fine;
large touch area

Navigation

always stays at top (user has to scroll
back);
links easily visible;
easy to hit links with help of zoom-
ing;
no changes necessary

collapse links are nice

Article Text
too small;
even difficult to read in landscape;
if zooming, text is outside margins

Footer
too much information to go through;
only rarely used

Hyperlinks
used to zooming in and then clicking
a link w/o problems

no issues in portrait & landscape

General

would never read such a long text
on iPod but rather look for keywords
only;
huge amount of scrolling / zooming
involved;
page is only fine if you know what
you’re looking for;
would like to remove unnecessary
information from page;
zooming is not an issue (focus on
certain parts of text);
less content would give the user a
better overview

better readability;
would probably not use zooming
very often;
would use iPad to really read this
page;
you lose overview when you have to
scroll a lot;
portrait would need more adapta-
tions than landscape

Advanced
Suggestions

collapse paragraphs like in mobile
Wikipedia;
CTRL+F;
fit text to width of viewport;
reorganize footer based on viewport;
use dropdown menu instead of TOC

floating navigation (less scrolling);
CTRL+F;
feature that helps to remember
where you stopped reading (maybe
pagination);
adjust text according to viewport in
portrait mode;
remove parts that you have already
read (keep track of what you did)

76

Expert #6 iPod touch iPad

Header portrait: link size too small

Navigation

doesn’t use much space in landscape
mode;
links too small;
enlarge touch areas

Article Text
even zoomed-in text is too small if
line width fits viewport

portrait: small font-size and links;
size of links not as important (focus
on text)

Footer “I never click on that.”

Hyperlinks
portrait: too small, zooming neces-
sary

General

used landscape mode (usual way of
reading an article);
horizontal scrolling is an issue;
try to use all the available space;
crucial to make sure that text is read-
able;
different versions for portrait &
landscape would not make a big
change;
zooming even less convenient than
on iPad

all interactive things must have a
reasonable size (avoid zooming);
slower performance than dedicated
apps;
try to use all the available space;
scrolling on tablet is convenient (no
need for pagination);
“You have to be aware of the tar-
get device.” (would have separate
smartphone & tablet app)

Advanced
Suggestions

move navigation to top (make use of
drop-down menus);
fit viewport to width of text;
single-column layout;
less options in navigation;
proxy touch points wouldn’t have
enough space on an iPod;
goal must be interaction w/ one
thumb (usual way of holding a
smartphone in portrait mode);
interaction w/ two thumbs easier on
tablet;
fast-scrolling feature (e.g., using art-
icle preview)

one column, collapsed paragraphs;
fewer menu options;
proxy touch points for links;
full-screen version of imgs (after
tapping);
menu button (cf. Android) instead of
navigation;
remove less important items from
navigation;
landscape: floating left column nav-
igation;
portrait: move to top (e.g., using
pull-down menus);
back-to-top feature (maybe using
gestures);
menu options when page swiped to
left / right (cf. Fennec);
article preview for fast scrolling

C
User Study #1

C.1 Post-study Questionnaire

77

Final step: Please provide feedback in terms of the 10 short questions below!

Use of touch devices

1. How often do you use your touch device(s)?

several times a
day

once a
day

several times a
week

once a
week

less than once a
week

2. How often do you browse the Web using your touch device(s)?

several times a
day

once a
day

several times a
week

once a
week

less than once a
week

3. Which touch device have you used to complete the user study?

Your feedback

4. Please assess the following statments with respect to clicking links.

I found it easy to click the links.

Strongly
agree

Strongly
disagree

I felt efficient at clicking the links.

Strongly
agree

Strongly
disagree

5. Please assess the following statments with respect to reading text.

I found it easy to read the pieces of text.

Strongly
agree

Strongly
disagree

I felt efficient at reading the pieces of text.

Strongly
agree

Strongly
disagree

6. Please assess the following statments with respect to finding details in images.

I found it easy to find the details that were necessary to answer the questions.

Strongly
agree

Strongly
disagree

I felt efficient at finding the details that were necessary to answer the questions.

Strongly
agree

Strongly
disagree

7. Please assess the following statments with respect to finding links within the
text.

I found it easy to find the links within the text.

Strongly
agree

Strongly
disagree

I felt efficient at finding the links within the text.

Strongly
agree

Strongly
disagree

About you

8. What is your gender?

 female

 male

9. What is your year of birth?

10. What is your level of expertise in the following areas?

Design (User Interface Design, Web Design, Graphics Design, etc.)

Expert No Knowledge

Development (Software Engineering, Web Development, etc.)

Expert No Knowledge

Usability and HCI (Usability Engineering, Interaction Design, User Experience Design,
etc.)

Expert No Knowledge

Is there anything else you would like to tell us? Please let us know whether you
had difficulties understanding or performing a task, in case of general concerns or
if you have suggestions for improvement.

APPENDIX C. USER STUDY #1 81

C.2 Results

For determining the significance of zoom level differences (Table C.1), we applied Wilcoxon
signed-rank tests since we could not assume normal distributions. Moreover, the font sizes
in the second phase of the study were based on the actual zoom levels collected in phase 1,
which made the compared samples dependent. The samples compared in Tables C.2, C.3 and
C.4 are independent, but we could not assume normal distributions as well. Therefore, we
conducted preliminary Kolmogorov–Smirnow tests to ensure that two samples had the same
distribution before applying a Mann–Whitney U test. If the distributions were different, we
used a Median test instead (separately indicated in the tables). The samples in Table C.5 are
independent and based on an ordinal scale, wherefore we applied Mann–Whitney U tests.
All tests of significance have been performed using IBM SPSS Statistics 20. The a priori
significance levels of all tests were α = 0.05. Significant results are highlighted with an
asterisk.

Error bars contained in bar charts indicate standard error (σ√
N

).

82 C.2. RESULTS

0

0.5

1

1.5

2

2.5

3

3.5

portrait** landscape* portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Zoom (Phase1) Avg. Zoom (Phase 2)

Figure C.1: Average zoom levels for the sidebar navigation. (* p < 0.05; ** p < 0.001)

0

0.5

1

1.5

2

2.5

3

3.5

portrait** landscape* portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Zoom (Phase1) Avg. Zoom (Phase 2)

Figure C.2: Average zoom levels for the article text. (* p < 0.01; ** p < 0.001)

0

0.5

1

1.5

2

2.5

3

3.5

4

portrait** landscape* portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Zoom (Phase1) Avg. Zoom (Phase 2)

Figure C.3: Average zoom levels for the footer component. (* p < 0.05; ** p < 0.001)

APPENDIX C. USER STUDY #1 83

Table C.1: Significance of differences in average zoom levels per component between phase
1 and phase 2 of the study, p values (2-tailed).

p
Smartphone Tablet

portrait landscape portrait landscape
Navigation 0.000∗ 0.026∗ 0.509 0.339
Main Text 0.000∗ 0.007∗ 0.130 0.203

Footer 0.000∗ 0.037∗ 0.260 0.677

0%

10%

20%

30%

40%

50%

60%

70%

80%

portrait landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Missed Links (Phase 1) Missed Links (Phase 2)

Figure C.4: Missed links per click link task for the sidebar navigation.

0%

20%

40%

60%

80%

100%

120%

portrait landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Missed Links (Phase 1) Missed Links (Phase 2)

Figure C.5: Missed links per click link task for the article text.

84 C.2. RESULTS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

portrait* landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Missed Links (Phase 1) Missed Links (Phase 2)

Figure C.6: Missed links per click link task for the footer component. (* p < 0.05)

Table C.2: Significance of differences in missed links per component between phase 1 and
phase 2 of the study, p values (2-tailed).

p
Smartphone Tablet

portrait landscape portrait landscape
Navigation 0.731 0.677 0.371 0.861
Main Text 0.279 0.478 0.924 0.691

Footer 0.019∗ 0.870 0.931 0.895

0

10

20

30

40

50

60

70

80

90

portrait* landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.7: Average reading times for the “iPad” text section. (* p < 0.05)

APPENDIX C. USER STUDY #1 85

0

20

40

60

80

100

120

140

160

portrait* landscape portrait landscape

Smartphone Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.8: Average reading times for the “Corporate Affairs” text section. (* p < 0.01)

Table C.3: Significance of differences in reading time per text between phase 1 and phase 2
of the study, p values (2-tailed).

p
Smartphone Tablet

portrait landscape portrait landscape
“iPad” 0.014∗ 0.769 0.333 0.318

“Corporate Affairs” 0.004∗a 0.769 1.000 1.000
a p value based on Median test

0

20

40

60

80

100

120

portrait portrait landscape

Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.9: Average times needed for finding the link “Mercury”.

86 C.2. RESULTS

0

20

40

60

80

100

120

portrait* portrait landscape

Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.10: Average times needed for finding the link “FaceTime”. (* p < 0.001)

0
10
20
30
40
50
60
70
80
90

100

portrait portrait landscape

Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.11: Average times needed for finding the link “iPod shuffle”.

0

10

20

30

40

50

60

70

80

90

portrait* portrait landscape*

Smartphone Tablet Tablet

Avg. Time (Phase 1) [sec] Avg. Time (Phase 2) [sec]

Figure C.12: Average times needed for finding the link “NeXT”. (* p < 0.05)

APPENDIX C. USER STUDY #1 87

Table C.4: Significance of differences in time needed for fining a particular link between
phase 1 and phase 2 of the study, p values (2-tailed).

p
Smartphone Tablet

portrait landscape portrait landscape
“Mercury” 0.054a no data for phase 2 samples too small 0.927

“FaceTime” 0.000∗a no data for phase 2 0.200 0.295
“iPod shuffle” 0.082 no data for phase 2 0.200 0.731

“NeXT” 0.011∗a 0.333 0.200 0.035∗
a p value based on Median test

0

1

2

3

4

5

Phase 1 Phase 2

Figure C.13: Perceived user experience of smartphone users. (* p < 0.01)

0

1

2

3

4

5

Phase 1 Phase 2

Figure C.14: Perceived user experience of tablet PC users.

88 C.2. RESULTS

Table C.5: Significance of differences in perceived user experience (based on the question-
naire) between phase 1 and phase 2 of the study, p values (2-tailed).

p Smartphone Tablet
click links easy 0.265 0.200

click links efficient 0.703 0.673
find links easy 0.005∗ 0.236

find links efficient 0.004∗ 0.114
read text easy 0.087 0.606

read text efficient 0.250 0.481

D
User Study #2

D.1 Text-related Questions

D.1.1 2007–present: iPhone and iPad

1. Because of what did Apple become the third-largest mobile handset supplier in the
world?

2. How many iPad units were sold on release day?

3. For how long did Apple attend the Macworld Expo?

4. Which operating system does the iPad run?

5. On which date was the iPhone announced?

D.1.2 Culture

1. What is the annual event for Mac developers?

2. Which other firms have cultural aspects similar to Apple?

3. What is Apple’s store in the 5th avenue in New York City called?

4. What did Apple create to award extraordinary contributions?

5. At which European trade show would Mac users meet?

D.1.3 Environmental Record

1. Against which chemicals has Greenpeace campaigned?

2. Which agency rates Apple highest among producers of notebook computers?

89

90 D.2. QUESTIONNAIRES

3. Which status do all Apple computers have?

4. What was Apple’s score in Greenpeace’s Guide to Greener Electronics in October
2010?

5. Since when are MacBook Pro units mercury- and arsenic-free?

D.2 Questionnaires

W3Touch
Userstudy #2

Pre­study Questionnaire

1) How often do you use your touch device(s)?

Several times a

day

Once a day Several times a

week
Once a week

Less than once a

week

2) How often do you browse the web using your touch device(s)?

Several times a

day

Once a day Several times a

week
Once a week

Less than once a

week

3) Are you familiar with using the regular Wikipedia website?

 yes no

4) Are you familiar with using the Wikipedia iPhone app or the Wikipedia Mobile website?

 yes no

5) What is your level of expertise concerning design (user interface design, web design, graphics
design etc.)?

Expert

Knowledgeable Passing knowledge

No knowledge

6) What is your level of expertise concerning development (software engineering, web
development etc.)?

Expert

Knowledgeable Passing knowledge

No knowledge

7) What is your level of expertise concerning usability and HCI (usability engineering, interaction
design, user experience design etc.)?

Expert

Knowledgeable Passing knowledge

No knowledge

8) What is your gender? female male

9) What is your year of birth? 19_____

W3Touch
Userstudy #2

Post­task Questionnaire

1) It was easy to find particular sections within the article.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

2) Finding particular sections within the article was efficient.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

3) It was easy to read the sections of the article.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

4) Reading the sections of the article was efficient.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

5) It was easy to click the links.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

6) Clicking the links was efficient.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

7) I had a good overview of the webpage.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

8) The amount of zooming involved in solving the tasks affected my efficiency.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

9) The amount of vertical scrolling (top–down) involved in solving the tasks affected my
efficiency.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

10) The amount of horizontal scrolling (left–right) involved in solving the tasks affected my
efficiency.

Strongly disagree

Somewhat
disagree

Neutral Somewhat agree

Strongly agree

APPENDIX D. USER STUDY #2 95

D.3 Significance of Results

For determining the significance of differences between the three versions of the Wikipedia
(D = Desktop, C = Crowdsourced, M = Mobile) in terms of the measured data (Table D.1), we
applied k-samples Median tests since all compared samples were independent, but we could
not assume normal distributions and an explorative data analysis suggested that compared
samples did not have the same distribution. If we found no significant results, we give an
overall p value for all three samples, otherwise we give the individual pair-wise p values.
Each participant of the study had to fill out the same post-task questionnaire for each of the
three versions of the Wikipedia, which means that the given ordinally scaled answers are
dependent. Therefore, we applied pair-wise Wilcoxon signed-ranks tests to determine the
significance of differences (Table D.2).
All tests of significance have been performed using IBM SPSS Statistics 20. The a priori
significance levels of all tests were α = 0.05. Significant results are highlighted with an
asterisk.

96 D.3. SIGNIFICANCE OF RESULTS

Table D.1: Significance of differences between the three versions of Wikipedia in terms of
the measured data, p values (2-tailed).

p D vs. C D vs. M C vs. M
time find 0.017∗ 0.000∗ 0.001∗

time read 0.290
time answer 0.488
missed links 0.488

avg zoom 0.000∗ 0.000∗ 0.017∗

Table D.2: Significance of differences between the three versions of Wikipedia in terms of
questionnaire answers, p values (2-tailed).

p D vs. C D vs. M C vs. M
find easy 0.305 0.017∗ 0.022∗

find efficient 0.666 0.024∗ 0.004∗

read easy 0.020∗ 0.007∗ 0.427
read efficient 0.021∗ 0.005∗ 0.155

click links easy 0.357 0.011∗ 0.027∗

click links efficient 0.337 0.003∗ 0.065
overview 0.472 0.107 0.204

vertical scrolling 0.792 0.230 0.248
horizontal scrolling 0.007∗ 0.005∗ 0.398

