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Abstract
Accumulating scientific evidence demonstrates that climate change causes higher agri-

cultural production risk – even when the potential for on-site risk mitigation is exploited.
Climate change reduces average crop yields, and causes an increase in weather and yield
variability. Faced with higher weather-related production risks, the demand by agribusi-
ness stakeholders for effective weather risk management solutions is expected to increase.
Suitable weather risk transfer products are needed to cope with the adverse financial con-
sequences of climate change. An overview of the latest scientific findings on this subject
is provided in chapter 1.

The main objective of this dissertation is to propose a method for structuring index-
based weather insurance such that it yields optimal hedging effectiveness for the insured.
In chapter 2, for a given weather index and an actuarially fair premium, the optimal
payoff structure is derived (in an expected utility framework) taking the non-linear rela-
tionship between weather and yields into account. The optimal index-based insurance
contract solves a constrained, stochastic optimization problem that models the insured’s
trade-off between the costs of obtaining a weather hedge (insurance premium) and the
benefits (risk reduction) without imposing functional form assumptions on the relation-
ship between crop yields and weather, using a fully non-parametric approach. In addi-
tion, to account for transaction costs, a weather contract is derived that maximizes an
insurer’s profits such that the insured still considers the loaded contract as a viable pur-
chase (for a given level of risk aversion). A computer-based algorithm is implemented
(in MATLAB) in order to derive the optimal index-based weather insurance contract (as
well as the profit-maximizing counterpart) for given yield and weather data. Since the
provision of agriculture-specific weather risk transfer products is still in its infancy, the
proposed structuring methodology contributes to the development of weather risk trans-
fer products that account for the agronomy-specific weather characteristics in crop yield
losses. Due to its generality, the structuring method can be applied to any crop and in any
location for which sufficient weather and yield data is available.

The model is then used to shed light on a number of timely questions. For that pur-
pose, simulated weather and crop yield data is used, which represents a maize-growing
region in Switzerland, and is derived from a process-based crop simulation model in com-
bination with a weather generator. In light of climate change, the potential of hedging
weather risk with index-based weather insurance is evaluated. In chapter 3, simulated
crop yield and weather data representing today’s climatic conditions and a climate sce-
nario is used to assess the hedging benefits (for the insured) and the expected profits (for
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the insurer) from buying, respectively selling, optimal index-based weather insurance un-
der both climatic conditions. Adjusted insurance contracts are simulated that account for
the changing distribution of weather and yields due to climate change. For the underly-
ing location, crop and climate scenario, I find that the benefits of hedging weather with
adjusted contracts almost triple for the insured, and insurers’ expected profits increase by
about 240% when offering adjusted contracts.

With climate change putting an end to stationarity of weather and yield time series,
a fundamental assumption underlying risk management is undermined. Climate change
thus challenges the insurance industry’s practice of using historical data for structuring
and pricing weather insurance products. The effect of this practice on risk reduction and
profits from hedging future weather risks with non-adjusted contracts, which are based
on historical weather and yield data, is evaluated. I find that when insurers continue to
rely on using backward-looking data for the contract design, the climate change induced
increase in the risk reduction and expected profits (from offering adjusted contracts) is
eroded. Thus, in times of climate change, the payoff structure of index-based weather
insurance requires regular updating to guarantee that the insured’s future weather risk is
reduced efficiently.

In the Over-the-Counter (OTC) weather derivative market, generic weather deriva-
tives are offered that possess a linear payoff structure in contrast to the non-linear con-
tracts considered here. In chapter 4, the loss in risk reduction from hedging agricultural
weather risk with linear derivatives is therefore evaluated. For insurers, the expected
profits from offering linear contracts to agricultural growers are compared to the profits
from selling an optimal non-linear contract that reflects the agronomic relationship be-
tween weather and yield. For that purpose, the contract parameters (strike, exit, cap, and
ticksize) needed to purchase a generic weather derivative in the OTC market are derived
from the optimal and profit-maximizing contracts. For the case study, I find that hedging
weather risk with linear contracts decreases the insured’s hedging benefits, as well as the
insurer’s profits, by about 20 to 24% compared to the optimal non-linear contracts. By de-
riving the contract parameters from the optimal contracts, a decision-support tool is pro-
posed, which facilitates the structuring process for entrepreneurs in weather-dependent
sectors wishing to buy linear weather derivatives in the OTC market.

Closing remarks are offered in Chapter 5, where the challenges for weather-dependent
industries and the benefits for weather market participants in light of climate change are
discussed.
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Zusammenfassung
Wissenschaftliche Erkenntnisse zeigen, dass der Klimawandel zu einer Zunahme von

landwirtschaftlichen Produktionsrisiken führt – selbst unter Ausschöpfung des Poten-
zials zur Risikominderung. Mit dem Klimawandel reduzieren sich die durchschnittlichen
Ernteerträge und die Variabilität des Wetters und der Erträge nimmt zu. In Anbetracht
der gestiegenen wetter-bedingten Produktionsrisiken steigt die Nachfrage im Agrarbe-
reich nach effektiven Lösungen, um Wetterrisiken abzusichern. Geeignete Risikotransfer-
produkte werden benötigt, um die negativen finanziellen Auswirkungen des Klimawan-
dels abzumindern. Kapitel 1 bietet einen Überblick über die neusten wissenschaftlichen
Ergebnisse auf diesem Gebiet.

In dieser Dissertation wird eine Methode vorgestellt, mit der der Versicherungsaus-
zahlungsverlauf einer index-basierten Wetterversicherung hergeleitet werden kann, so
dass eine optimale Absicherungseffektivität für den Versicherten erzielt wird. In Kapitel
2 wird für einen zugrundeliegenden Wetterindex und eine aktuarisch faire Versicherungs-
prämie die optimale Auszahlungsstruktur (im Rahmen eines Erwartungsnutzenmodells)
unter Berücksichtigung des nicht-linearen Zusammenhangs zwischen Wetter und Erträ-
gen hergeleitet. Der optimale index-basierte Versicherungsvertrag stellt die Lösung eines
beschränkten, stochastischen Optimierungsproblems dar, anhand dessen die Abwägung
des Versicherungsnehmers zwischen den Kosten zum Erwerb einer Wetterabsicherung
(Versicherungsprämie) und dem Nutzen (Risikoreduzierung) modelliert wird, ohne einen
bestimmten Funktionsverlauf für die Beziehung zwischen Ernteerträgen und Wetter an-
zunehmen und unter Verwendung eines gänzlich nicht-parametrischen Ansatzes.

Um Transaktionskosten zu berücksichtigen, wird darüber hinaus eine Wetterabsicher-
ung strukturiert, die die Gewinne des Versicherers maximiert, so dass der Versicherungs-
nehmer (für gegebene Risikoaversion) den um eine Gewinnmarge bereicherten Vertrag
gerade noch gewillt ist zu kaufen. Um die optimale index-basierte Wetterabsicherung,
sowie das gewinnmaximierende Pendant, für gegebene Ertrags- und Wetterindexdaten
herzuleiten, wurde ein Computergestützter Algorithmus (in MATLAB) implementiert.
Da sich das Angebot an agrarspezifischen Wetterrisiko-Transferprodukten noch in den
Anfängen befindet, trägt die hier vorgestellte Strukturierungsmethode zur Weiterentwick-
lung von solchen Produkten bei, die die agronomiespezifischen Wettereigenschaften von
Ackerfrüchten berücksichtigen. Aufgrund seiner Allgemeingültigkeit kann die Struk-
turierungsmethode auf jede Kultur und an jedem Standort angewendet werden, für die
ausreichende Wetter- und Ertragsdaten vorhanden sind.
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Das entworfene Strukturierungsmodell wird dann dazu verwendet, um einige aktuell
relevante Fragen zu beantworten. Dazu werden simulierte Wetter- und Ernteertrags-
daten verwendet, die mittels eines biophysikalischen Modells in Kombination mit einem
Wettergenerator hergeleitet werden, und die die Maisanbaubedingungen einer Region in
der Schweiz abbilden. In Anbetracht von Klimawandel, wird das Potenzial von Index-
basierter Wetterversicherung zur Reduzierung von Wetterrisiken bewertet. In Kapitel 3
werden simulierte Wetter- und Ertragsdaten, die die heutigen klimatischen Bedingungen
und ein Klimawandelszenario darstellen, verwendet, um die Absicherungsvorteile (für
den Versicherungsnehmer) und die zu erwartenden Gewinne (für die Versicherung) bei
Absicherung mit, bzw. Verkauf von, optimalen index-basierten Wetterversicherungen
in beiden Klimaszenarien zu bewerten. Dazu werden Versicherungsverträge simuliert,
die der durch den Klimawandel hervorgerufenen Veränderung der Wetter- und Ertrags-
verteilungsfunktionen Rechnung tragen. Für den zugrunde-liegenden Standort, die Kul-
tur, und das Klimawandelszenario, zeigt sich, dass sich die Vorteile der Wetterabsicherung
für den Versicherungsnehmer verdreifachen, und die zu erwartenden Gewinne der Ver-
sicherer um beinahe 240% ansteigen, wenn an den Klimawandel angepasste Verträge
angeboten werden.

Da sich mit dem Klimawandel die Annahme der Stationarität von Wetter- und Er-
tragsdaten nicht länger aufrechterhalten lässt, wird damit eine grundlegende Annahme
im herkömmlichen Risikomanagement ungültig. Der Klimawandel stellt die Versich-
erungsbranche somit vor eine Herausforderung, da die gängige Praxis, historische Daten
für das Strukturieren und die Festsetzung der Prämien zu verwenden, nicht länger fort-
gesetzt werden kann. Deshalb werden die Auswirkungen auf Risikoreduzierung und
Gewinne ermittelt, sollte die Branche an dieser Praxis festhalten und künftige Wetter-
risiken mit nicht-angepassten Verträgen absichern, welche auf historischen Wetter- und
Ertragsdaten basieren. Es zeigt sich, dass sich die durch den Klimawandel herbeigeführte
Zunahme in Risikoreduzierung und Gewinnen, die durch angepasste Verträge erzielt
werden könnten, verringert. In Zeiten von Klimawandel muss die Auszahlungsstruktur
von index-basierten Wetterversicherungen regelmässig angepasst werden, um das kün-
ftige Wetterrisiko der Versicherungsnehmer effizient zu reduzieren.

Im Markt für ausserbörslich gehandelte Wetterderivate besitzen typische Wetterderivate
eine lineare Auszahlungsstruktur im Gegensatz zu den hier betrachteten nicht-linearen
Verträgen. In Kapitel 4 wird deshalb die Risikoreduktionseinbusse ermittelt, die entsteht,
wenn Wetterrisiken im Agrarbereich mit linearen Derivaten abgesichert werden. Die
Gewinne der Versicherer, die Erzeugern im Agrarbereich lineare Verträge anbieten, wer-
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den mit den Gewinnen beim Vertrieb von nicht-linearen Verträgen verglichen, welche die
agronomische Beziehung von Wetter und Erträgen widerspiegeln. Zu diesem Zweck wer-
den die Vertragsparameter (Ausübungshürde, Ausstiegshürde, maximale Auszahlung
und Ticksize), die benötigt werden, um ein typisches ausserbörslich gehandeltes Wet-
terderivat zu kaufen, vom optimalen bzw. gewinnmaximierenden Vertrag abgeleitet. Für
die Fallstudie zeigt sich, dass die Absicherungsvorteile des Versicherungsnehmers bei
Verwendung eines linearen Vertrages (und die Gewinne des Versicherers) um 20 bis 24%
sinken im Vergleich zur Absicherung mit optimalen nicht-linearen Verträgen. Durch das
Ableiten der Vertragsparameter von optimalen Verträgen wird ein Modell zur Entschei-
dungsfindung vorgeschlagen, das den Strukturierungsprozess für Unternehmer in wetter-
abhängigen Branchen, die ein lineares ausserbörslich gehandeltes Derivat kaufen wollen,
erleichtert.

Abschliessend werden in Kapitel 5 die sich durch den Klimawandel ergebenden wirt-
schaftlichen Herausforderungen für wetterabhängige Industrien und die Vorteile für die
Teilnehmer am Wettertransfermarkt diskutiert.
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Chapter 1

Introduction

Weather patterns affect economic activity in many industries. Production as well as con-
sumption are directly and indirectly influenced by the prevailing weather conditions.
Depending on the nature of the business, anomalies of meteorological conditions such
as temperature, precipitation, frost, drought, snowfall or wind causes uncertainty in cash
flows and revenues. Entrepreneurs faced with weather risk, that is the sensitivity of rev-
enues to the vagaries of the weather, experience fluctuations in production or sales vol-
ume over time that are caused by fluctuations in weather events. In contrast to floods,
storms, and hurricanes, most of these weather events are considered non-catastrophic.
Nevertheless, non-catastrophic weather risks can have an enormous impact on the finan-
cial stability of companies. Managing weather risk is therefore of fundamental impor-
tance for entrepreneurs generating revenues in weather-dependent industries, and will
become even more important in a changing climate with an increasing number of ex-
treme weather events. Insurance has been an integral part in dealing with weather risk,
as it helps reduce the residual risk that cannot be prevented through cost-effective risk
mitigation strategies. The provision of proper weather insurance solutions to hedge the
volume risk caused by weather variability is one important step towards mitigating the
effects of climate change, and the subject of this dissertation.

1.1 Climate Change, Variability, and Changes in Agricul-

tural Production

Accumulating scientific evidence demonstrates that climate change is having an impact
on the frequency, intensity and geographic distribution of extreme weather events as a re-
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1.1. Climate Change, Variability, and Changes in Agricultural Production

sult of rising atmospheric concentrations of greenhouse gases.1 These trends are expected
to continue as the world warms, leading to, for example, more intense heat waves (Stott
et al., 2004), heavy precipitation events, and droughts (Easterling et al., 2000; Beniston
et al., 2007). Such changes in climatic conditions pose concerns for all industrial activi-
ties, and in particular agricultural production (Lazo et al., 2011). Agriculture is extremely
vulnerable to climate change as the weather is the primary determinant of production.

Crop yields respond to climate change through the direct effect of weather, atmo-
spheric CO2 concentration, and water availability. Changes in average temperature con-
ditions and increased climatic variability alter the prevailing growing conditions of plants.
In particular, within-season and inter-annual variability of precipitation, episodes of droug-
ht conditions, and heat stress, especially during critical development stages, negatively
affect biomass accumulation and cause variation in crop yields. Moreover, changes in
weather conditions impact the incidence and severity of pests and diseases, which then
indirectly affect the quantity, and quality of crop yields (Adams et al., 1998). An increase
in greenhouse gases such as carbon dioxide may positively affect the physiology of crop
growth by increasing biomass production (Tubiello et al., 2002; Rosenzweig and Iglesias,
1994), but is insufficient to offset the negative impacts.

The influence of climate change on agricultural crop yields has been widely studied
(Adams et al., 1998; Reilly and Schimmelpfennig, 1999; Mendelson, 2001; Olesen and
Bindi, 2002, 2004; Tubiello et al., 2002; Reilly et al., 2003; IPCC, 2007; Iglesias et al., 2009;
Bindi and Olesen, 2010). The general agreement is that some crops in some regions of the
world will benefit, while the overall impacts of climate change on agriculture are expected
to be negative, thus threatening global food security (Rosenzweig and Parry, 1994; Parry
et al., 2004; Lobell et al., 2008; Brown and Funk, 2008). The disparities in climate change
vulnerabilities of crops and regions is a result of differences in crop sensitivities to climate
change and in water availability.

Many studies indicate that climate change alters mean yields (Reilly et al., 2002; Desch-
enes and Greenstone, 2007; Schlenker and Roberts, 2009; Lobell and Field, 2007; Lobell et
al., 2008). In addition to the mean yield reduction, climate change contributes to a change
in crop yield variability (Mearns et al., 1992; Olesen and Bindi, 2002; Chen et al., 2004; Isik

1Although the IPCC, in their 2001 report, still presented no clear proof of the correlation between global
warming and the increased frequency and intensity of extreme atmospheric events, recent studies have
provided a good deal of evidence that the probabilities of various meteorological parameters reaching ex-
treme values are changing (Schär et al., 2004). The IPCC’s fourth assessment report in 2007 confirmed that
natural disasters have been occurring more frequently, with the number of extreme events expected to rise
each year owing to anthropogenic climate change (IPCC 2007). A new report “Managing the Risks of Ex-
treme Events and Disasters to Advance Climate Change Adaptation” (SREX) on extreme events and climate
change, expected to be published in February 2012, will shed more light on this question.
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1.2. Weather Risk Management in Agriculture

and Devadoss, 2006; McCarl et al., 2008; Bindi and Olesen, 2010). With climate change,
crop yields and weather time series are no longer stationary. The assumption of station-
arity has historically facilitated the management of risk since historic weather and yield
data could be used to derive probabilities of future weather-related yield losses. Climate
change thus undermines the insurance industry’s practice of relying on historical data to
design and price weather risk transfer products.

Risk mitigation strategies, such as the adaptation in planting and harvesting dates,
installation of irrigation systems, alteration of fertilizer and tillage practices, and the us-
age of new crop varieties, help to reduce some adverse effects (Smit et al., 2002; Finger
et al., 2011). The effectiveness and benefits of agricultural risk mitigation strategies will
depend on the severity of climate change (Howden et al., 2007). Even if farmers utilize all
available risk mitigation practices, however, it is expected that the weather risk exposure
increases with climate change (Ibarra and Skees, 2007; Trnka et al., 2011). To sum up,
agricultural production is becoming more risky with climate change and additional risk
transfer strategies are therefore needed to address the retained weather risk.

1.2 Weather Risk Management in Agriculture

1.2.1 Damage-based Insurance Products

Even in the absence of climate change, weather risk constitutes serious business risks for
many industrial sectors including agriculture. Agricultural insurance in the form of crop
or revenue insurance has therefore a long-standing tradition in developed countries, no-
tably the United States, Canada, and Europe (Glauber, 2004; Barnett et al., 2005, Bielza et
al., 2008). In its most fundamental form, an insurer will pay producers an indemnity in
the event that their yields fall below a pre-determined level. With damage-based insur-
ance, the claim is determined by measuring the percentage damage in the field soon after
the damage occurs, and applying it to a pre-agreed sum insured. The sum insured is de-
termined by the farmer based on his historical farm yields or expected revenues. Yield or
revenue insurance can be obtained to cover single-peril or multiple-peril weather events.2

The provision of farm-level yield (or revenue) insurance has, however, proven to be diffi-
cult for a number of reasons.

Farmers always know more about their risk exposure and their behavioral responses

2Damage-based insurance is best known for hail, but is also used for other named-peril insurance prod-
ucts (such as frost and excessive rainfall). Hail insurance and other named-peril insurance products have
been offered for many years without any public subsidies (Mahul and Stutley, 2010).
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to insurance purchasing than will the insurer (Barnett et al., 2005). This information asym-
metry creates both risk classification and moral hazard problems (Skees and Reed, 1986;
Coble et al., 1997; Hazell, 1992; Just et al., 1999). Efforts to address this information asym-
metry are quite expensive (Miranda, 1991). In the U.S., adverse selection and moral haz-
ard problems have contributed to actuarial under-performance with excess losses (Hazell
and Skees, 1995) and consequently the introduction of government support (Skees, 2001).
Premium subsidies are the most common form of public intervention in agricultural in-
surance. Almost all industrialized countries, and some developing countries, provide
premium subsidies in the order of 50− 300% of the original gross premium paid by the
farmer (Bielza et al., 2008; Mahul and Stutley, 2010). An alternative to damage-based in-
surance products, are index-based insurance products, which rely on a proxy for yield
losses, instead of actual farm-level yields.

1.2.2 Index-based Insurance Products

Index-based insurance products base their coverage on some aggregate index that con-
veys information about the (individual) losses. Unlike traditional crop insurance that
attempts to measure individual farm yields or revenues, index insurance makes use of
variables that are exogenous to the individual policyholder – such as area-level yields,
or some objective weather event – but have a strong correlation to farm-level losses. For
most insurance products, a precondition for insurability is that the losses across policy-
holders are uncorrelated (Rejda, 2001). A precondition for index-based insurance prod-
ucts is that the risk of policyholders within a defined geographical unit is spatially cor-
related. Weather patterns like drought or frost often affect yields of several farmers in a
given region, therefore yield losses are spatially correlated, and index-based weather in-
surance represents an effective alternative to traditional farm-level crop insurance (Ibarra
and Skees, 2007).

Problems associated with adverse selection and moral hazard are limited by index-
based insurance since an exogenous, verifiable weather event is being insured, rather
than the yield outcome (Skees et al., 1999). Administrative and transaction costs are also
minimized since index-based insurance does not require costly inspections, monitoring
and loss adjustment. Furthermore, index-based insurance comes without deductibles
and co-payments, which are used by insurers providing farm-level yield (or revenue)
insurance to mitigate adverse selection and moral hazard. The main disadvantage of
index-based insurance products, however, is the existence of so-called basis risk. With
insurance products that trigger payments based on some loss proxy, the insured faces the
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risk of not receiving any or only inappropriate indemnities that do not reflect the actual
incurred losses. A trade-off thus exists between damage-based insurance products that
induce moral hazard and adverse selection problems while providing a full-hedge, and
index-based insurance products that eliminate problems associated with asymmetric in-
formation, but come at the potential cost of only partially hedging the weather exposure.

In the literature, two index-based insurance solutions are widely analyzed: area-yield
insurance, and weather-based insurance. The work in index-based insurance dates back
to Halcrow (1949), who first proposed area-yield insurance as a solution to asymmetric
information problems. With area-yield insurance, coverage and indemnities are based on
aggregate yields in a given geographical unit. The insured yield is established as a per-
centage of the average yield for the area. An indemnity is paid if the realized yield for the
area is less than the insured yield – regardless of the actual yield (Miranda, 1991). Cover-
age of a weather-based insurance is based on realizations of a specific weather parameter
measured over a pre-specified period of time at a particular weather station. Index-based
weather contracts can be issued either in the form of an index-based weather insurance
or a financial weather derivative. The two types of contracts differ from a regulatory
and legal perspective, whereas from an economic perspective both instruments share the
common feature of triggering indemnities based on an underlying weather index.3

Both the United States and Canada started to experiment with agricultural insurance
products that trigger indemnities based on area-level (rather than farm-level) yield or
revenue shortfalls to circumvent asymmetric information problems. While agricultural
applications of index-based weather insurance are being widely discussed, their pene-
tration is still very low. Index-based weather insurance is only available in 20% of high-
income and 40% of middle-income countries (Mahul and Stutley, 2010). Except for India
and Mexico, most of the index-based weather insurance schemes are still at the stage of
implementing pilot projects (Hohl et al., 2007).4 Nonetheless, index-based weather insur-
ance has gained a lot of attention, and a number of empirical studies have investigated
the potential of weather index insurance in the agricultural sector (Richards et al., 2004;
Vedenov and Barnett, 2004; Deng et al., 2007; Martin et al., 2001; Miranda and Vedenov,
2001; Skees et al., 2001; Turvey, 2001; Chantarat et al., 2007; Breustedt et al. 2008; Zant,
2008; Berg et al., 2009; Musshoff et al., 2009; Turvey et al., 2010; Leblois et al., 2011).

3Throughout this dissertation, the term index-based insurance is used to describe existing products and
structuring methods. The optimal index-based insurance contract, developed to structure a weather hedge
with optimal hedging effectiveness, could also be issued as an “optimal” weather derivative. The term
weather derivative is used to refer to the linear contracts traded at exchanges and in the OTC market.

4The most visible applications have been sponsored by the Commodity Risk Management Group at the
World Bank, which has been piloting index-based weather insurance for developing country producers,
agricultural businesses, and banks in India, Peru, Ukraine, Ethiopia, and Malawi.
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1.2.3 Challenges in Designing Index-based Weather Insurance

The potential for index-based weather insurance in agriculture is large due to the sen-
sitivity of the sector to the vagaries of weather. For index-based weather insurance to
effectively transfer the risk, the contract has to be designed such that indemnities are trig-
gered when losses occur, and the amount of indemnities compensates for actual yield
losses. The degree to which weather risk exposure is reduced by hedging with a particu-
lar contract thus depends on the design of the product.

Acknowledging that there exists a relationship between the insurance design and the
resulting risk reduction, the design process can be decomposed in two steps: 1) deriving
an index that explains crop losses well (index design), and 2) designing the payoff structure
(contract design). Each step critically affects the risk reduction that can be achieved.

With respect to the index design, the efficiency of a contract depends on the relation-
ship between weather and yield (Goodwin and Mahul, 2004). Finding an index that ex-
plains crop losses well matters for reducing meteorological basis risk, i.e. the risk of the in-
dex not triggering any or insufficient payments despite the fact that crop losses occurred.
Weather-based insurance contracts therefore have to be crop- and location-specific, since
weather patterns, especially precipitation, are spatially variable, and the weather sensi-
tivity varies across different crops. Basis risk can arise due to a number of reasons: 1)
an imperfect correlation of the weather index with the weather-dependent output (yield
loss, revenues, or costs), and 2) due to spatial and temporal discontinuities in weather.

For a given index, the hedging effectiveness of the contract can then be optimized
through the design of the payoff structure. Vedenov and Barnett (2004) are the first to
emphasize the importance of the insurance payoff structure with respect to achieving
hedging effectiveness, i.e. the degree to which weather risk is being reduced by the insur-
ance product. The design of the payoff structure matters for minimizing structural basis
risk, i.e. the risk of receiving inadequate payments that do not fully cover the realized
losses despite the fact that the index triggers payouts.

Studies investigating the potential of index-based weather products for the agricul-
tural context have paid attention to the minimization of meteorological basis risk (Barnett
et al, 2005; Ibarra and Skees, 2007; Barrett et al., 2007). The minimization of structural
basis risk (for a given index) has so far received less attention in the literature. While dif-
ferent structuring methodologies have been proposed to determine the buyer’s choice of
the insurance parameters (Miranda, 1991; Mahul, 1999, 2001; Osgood et al., 2007; Berg et
al., 2009; Musshoff et al., 2009; Leblois et al., 2011), these models share the assumption of a
linear payoff function and they derive the payoff function by a priori imposing functional
form assumptions on the contract. Until now, the traditional linear payoff structure that
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has originated in the energy sector, which stems from financial derivatives more general,
has thus far been adopted in many agricultural studies and pilot projects (World Bank,
2011; IFAD, 2011).

1.3 Development of the Weather Risk Transfer Market

Recent years have witnessed rapid growth in the market for weather derivatives (WRMA,
2011; Roth et al., 2008). Weather derivatives originated first in the energy sector in 1997
and were used to hedge against temperature-related fluctuations in electricity demand.
An exchange-traded weather derivative market soon developed thereafter. Since 1998,
the Chicago Mercantile Exchange (CME) has offered standardized weather derivatives
based on temperature, rainfall, frost, and snowfall for major cities in the U.S., Asia, and
Europe. The available indices allow buyers to hedge against a range of straight-forward
weather events, such as frost days, the lack or excess of snowfall, or temperature condi-
tions exceeding certain thresholds. These standardized weather derivatives are available
for a limited number of locations. For entrepreneurs with a weather exposure that is not
explained by the conditions prevailing in major cities, or whose weather exposure is more
complex, hedging with these exchange-traded products will not reduce their weather risk
since these indices are uncorrelated with their company’s weather exposure.

Location-specific weather derivatives for a wider range of weather phenomena are
available in the Over-the-Counter (OTC) market. The OTC market offers the opportunity
to buy weather derivatives that are custom-tailored to a particular business need, where
only the number of weather phenomena measured by the meteorological stations restricts
the index design. Nowadays, a growing number of entrepreneurs in weather-dependent
industries, such as the energy sector, the retail sector, or the travel and leisure industry, are
using exchange- and OTC-traded weather derivatives to manage weather risk in the same
way as they manage their interest rate or exchange rate risk. Agribusiness stakeholders,
in particular farmers, are however not making use of these risk transfer products (Brockett
et al., 2005). A number of possible explanations exist explaining the low penetration of
weather derivatives in the agricultural context.

1.4 Weather Derivatives and Agriculture

The buyer of an index-based risk transfer product is always left with basis risk, which
is the risk of not receiving a payment, or an inadequate payment, in the event of a loss
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(Woodard and Garcia, 2008). Meteorological basis risk is therefore cited as the main dis-
advantage of weather-based products, as it reduces the hedging benefits (Skees and Bar-
rnett, 1999; Osgood et al., 2007; World Bank, 2011).

In the agricultural sector, where bad weather is the major determinant of crop losses,
the potential for basis risk is particularly high since the relationship between crop yields
and the weather is rather complex (Dischel, 2001). A number of weather events through-
out the growing season directly affect the physiological plant development, such as heat
stress or frost, and the growing conditions by influencing the soil moisture conditions
(Hanks, 1974; Nairizi et al., 1977; Meyer et al., 1993). Crop yields are not well explained
(or predicted) when using only a single weather variable. The predictive power of an in-
dex for agriculture can be improved by using multivariate weather indices that jointly ac-
count for temperature, precipitation and soil moisture conditions (Karuaihe et al., 2006).
The challenge thus lies in designing crop-specific weather indices that account for the
multiple-weather impacts and the varying vulnerability across the phenology phases
(Turvey, 2000).

A number of agriculture-specific weather indices have been proposed (Palmer, 1965;
McKee et al., 1993; Tsakiris and Vangelis, 2005; Steinmann et al., 2005; Narasimhan et al.,
2005; Tadesse, et al., 2005; Tsakiris et al., 2005, 2006). The OTC market however still fo-
cuses on providing hedging solutions for single-peril weather events. These named-peril
weather derivatives are only useful to protect against the negative consequences of a par-
ticular weather event, for instance against frost during pollination or excess precipitation
during harvest. Crop-specific, multi-peril indices that aggregate the influence of weather
over the entire growing season are however needed to hedge weather-related causes of
seasonal yield shortfall. Clearly, a tradeoff exists between choosing an index with a large
number of weather variables that can improve the efficiency of a contract (compared to
a single weather variable), and choosing a single-variable index that is easily understood
by the growers.

Unfamiliarity with the weather market has been found to be another major factor de-
termining the uptake of weather derivatives (CME Group, 2008). Potential buyers are
generally overwhelmed by the number of factors that need to be considered when struc-
turing a weather hedge. To obtain a weather derivative in the OTC market, a buyer has
to select: a weather station reporting daily weather observations, an underlying weather
index, the period over which the index accumulates (typically a season or month), and
the parameters defining the payoff structure (Cao and Wei, 2004; Zeng, 1999).

The contract parameters defining the payoff function of a generic weather derivative
are: strike, exit, cap, and tick size. Once the index realization passes the “strike” value, the
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derivative starts to pay off. The “tick size” is the monetary value attached to each move
of the index value by one unit. Once the realized index value exceeds the “exit” value
the maximum payout (“cap”) is triggered. The payoff for a particular index realization is
then defined as a specified monetary amount (tick size) multiplied by the difference be-
tween the strike level and the actual value of the index that occurred during the contract
period. The payoff structure of weather derivatives is hence linear, and takes the follow-
ing functional form in the case of a put option, where the concern is on the insufficiency
of the weather event:

X = min{cap, a×max[0, strike− index]},

where a is the tick size and X the stochastic indemnity.5 The selection of the insurance
parameters is of critical importance as it defines the payoff structure, which then deter-
mines not only the premium charged by the insurer for providing the protection, but
more importantly the risk reduction that can be achieved. In practice, this implies that
entrepreneurs intending to hedge their weather exposure with linear contracts first need
to select a powerful index, i.e. they need to quantify the time period(s) during which their
production (or revenues) suffer most from adverse weather conditions, as well as the me-
teorological phenomena responsible for their losses. Next, the relationship between the
loss caused by a unit change of the underlying indices needs to be quantified to determine
an appropriate payout (tick size). Furthermore, strike and exit values need to be deter-
mined such that the potential losses are adequately covered when bad weather strikes.
While subjective knowledge about the relationship between weather and losses is infor-
mative, the contract design process should ideally be supported by data-driven analysis
in order to analyze the non-trivial relationship between the costs of obtaining the weather
hedge (the premium) and the benefits (the risk reduction). The lack of such a decision-
support tool could further explain the under-investment in weather risk management
products.

Moreover, for a weather-exposed entrepreneur to be hedged with linear weather deriv-
atives, the damage caused by the weather event has to increase proportionally with the
underlying weather index. Otherwise, part of the weather risk remains unhedged by the
option. Many industries, such as the electricity sector, possess a linear weather risk expo-
sure, i.e. electricity demand increases steadily with high temperatures (to satisfy cooling
needs), and low temperatures (to satisfy heating demand). In agriculture, the relation-
ship between crop losses and weather events is non-linear (Schlenker and Roberts, 2006),

5The payoff function of a call option, where the concern of the hedger is on the excessiveness of the
weather phenomena, is analogously given by: X = min{cap, a×max[0, index− strike]}.

19



1.5. Objectives and Research Questions

which could further explain the low penetration of (linear) weather derivatives in the
agricultural context. Barnett et al. (2005) note for the first time that typical derivatives
that assume linear relationships for agricultural applications “simply may be the wrong
models to use”. The specific nature of agriculture requires designing crop-specific con-
tracts that mirror the functional relationship between weather and crop growth.

1.5 Objectives and Research Questions

In light of climate change and the increased need to hedge weather risk, and after careful
considering the current state of the weather risk transfer market, the purpose of this dis-
sertation is to contribute to the development of weather risk transfer products by propos-
ing a method that addresses the discussed problems related to the up-take of index-based
weather products in the context of agriculture. The research questions addressed along
this endeavor are outlined in the following.

1.5.1 Optimal Weather Insurance Design

In the second chapter, the focus is on designing weather insurance for agricultural risk
management with optimal hedging effectiveness. I investigate the following questions:

• How can an optimal index-based weather insurance contract be characterized and
empirically derived? Is the optimal index-based weather insurance contract sen-
sitive to changes in estimation parameters? How does the optimal index-based
weather insurance contract change its shape for different levels of risk aversion?

• How can an insurance contract that maximizes an insurer’s profit such that the in-
sured still considers it as a viable purchase be characterized and derived? How can
the maximum loading factor for different levels of risk aversion be determined?

To address these questions, I consider the decision-making problem of a risk-averse
economic agent faced with a stochastic, weather-dependent income. I assume that weather
risk can be transferred to insurance markets. Insurers operating at insurance markets are
risk-neutral economic agents willing to assume risk for adequate financial compensation
– an insurance premium. In order to derive the indemnity structure that a risk-averse
farmer requires to be optimally hedged against his weather-risk exposure from farming,
an expected utility framework is used. Agents maximize their expected utility that de-
pends on income from farming and the net-payments received from the insurer. The
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premium that a farmer has to pay to obtain coverage against weather risk is derived by
using the so-called “burn-rate method.” This pricing mechanism assumes that the pre-
mium is actuarially fair, i.e. the premium is equal to the expected payments made to the
insured. The burn-rate method is used due to its simplicity and wide-spread application
in similar work.6

By designing weather insurance products with optimal hedging effectiveness, I extend
an approach recommended by Goodwin and Mahul (2004) for designing index-based
weather products, build on work by Mahul (1999, 2000, 2001), and compute payments
for an index-based weather insurance solution in a more general way than Osgood et al.
(2007, 2009). To design an indemnity schedule, Goodwin and Mahul (2004) recommend
defining a pseudo-production function where e.g. rainfall or temperature levels are the
main inputs. Assuming a specific functional form, the individual yield function can be
estimated. Musshoff et al. (2009) use this approach to construct the payments from a
weather derivative (put) option by estimating a linear-limitational production function
(for a specific weather index). Based on the estimated production function, Musshoff et al.
(2009) calculate the revenue function, and define the payoffs from the weather derivative
by taking the inverse of the revenue function.

Using a parametric approach to establish the relationship between weather and yield
assumes that the conditional yield distributions at different levels of the weather index
are homogenous - an assumption that I do not find to be satisfied with weather and yield
data. Furthermore, the payoff function of the resulting weather derivative reflects the
functional form assumption made about the production function. To derive the opti-
mal indemnification schedule, I therefore abstain from specifying and testing different
functional forms to define the weather-yield relationship. Instead, I derive conditional
probabilities of yield for different levels of the weather index using a completely non-
parametric approach. The estimated conditional yield densities are then used to solve
the expected utility maximization problem of the insured subject to the actuarially fair
pricing condition.

An alternative method used frequently in studies examining the potential of weather
derivatives in agriculture is to select strikes by deriving the levels of indices at which
the predicted yields were equal to the corresponding long-time average (Vedenov and

6The model can be extended by using any valid pricing mechanisms to compute the insurance premium.
Alternative pricing methods are: indifference pricing, burn-rate method, Monte Carlo simulation (Jewson,
2003, 2004; Cao et al., 2004). However, one of the main areas of controversy in the weather derivative market
is the choice of the pricing methodology in order to obtain the fair premium. To price financial derivatives
with a traded underlying, such as derivatives on stocks or bonds, the preference-free Black-Scholes model
can be used to price the contract. Weather derivatives are difficult to price since the underlying index, the
weather, is not traded, hence the Black-Scholes cannot be applied (Dischel, 1998).
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Barnett, 2004). In light of climate change, this approach is no longer adequate anymore (as
will be shown in chapter 4). To select the remaining insurance parameters of the contract,
namely the exit and the tick size, Vedenov and Barnett (2004) minimize an aggregate
measure of downside loss or semi-variance (Markowitz, 1991).7

Similar to Vedenov and Barnett (2004), Osgood et al. (2007) optimize over piecewise
linear contracts by minimizing the variance rather than maximizing expected utility. Os-
good et al. (2007) optimize contracts only locally, thus making a linear contract more
efficient, whereas I determine the global optimum by computing the optimal indemnifi-
cation structure non-parametrically for a given index.

My model is most closely related to Mahul (1999, 2000, 2001, 2003) who uses expected
utility models to investigate theoretically the optimal design of agricultural insurance for
different sources of risk (i.e. price risk, yield risk). Mahul (2001) shows that the parame-
ters of the optimal indemnity schedule (strike and cap) depend on the stochastic relation
between weather and idiosyncratic risk, and on the risk aversion of the insured, and notes
that “without further restrictions on the stochastic dependence (and the producer’s be-
havior), the indemnity schedule can take basically any form.” In contrast to Mahul (2000,
2001), I propose a more general method for deriving an optimal index-based weather in-
surance contract without imposing any functional form assumptions on the relationship
between weather and yields, nor on the error term structure. In addition, I numerically
compute the optimal indemnity schedule using actual weather and yield data.

As pointed out, designing index-based weather products necessitates an understand-
ing of the complex relationship between weather and crop yields. Therefore, I define
and quantify the sources of weather risk that cause crop losses in my case study region.
A multivariate ordinary-least-squares regression model is used to explain crop losses
accounting for changes in precipitation, potential evapotranspiration, and temperature
conditions. Based on the findings from the weather-yield models, I construct multi-peril
weather indices that are used to simulate the optimal and profit-maximizing insurance
contracts. Deriving the shape of the optimal weather insurance contracts empirically by
non-parametrically estimating yield distributions conditional on the weather index, I find
that the optimal pay-off structure is non-linear for the entire range of the index realiza-
tions.

7Minimization of the semi-variance instead of full variance is chosen because only downside losses are
of major concern to crop producers (Miranda, 1991; Miranda and Glauber, 1997). This approach has been
developed in the literature as an alternative to the traditional mean-variance analysis for situations where
reduction of losses or failure to achieve a certain target is of importance (Hogan and Warren, 1972). It has
also been shown to be consistent with the expected utility maximization (Selley, 1984).
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I also consider the more realistic scenario where insurers add transaction costs to cover
administrative and operational expenses to the premium. Instead of adding a fixed mark-
up to the fair premium, I determine the maximum loading factor that the insured (for a
given level of risk aversion) still considers as attractive by deriving the payoff function
that maximizes the insurer’s profits subject to the condition that the insured is at least as
well off (in expected utility terms) as in the unhedged situation.

For given contracts, I measure the risk reduction of optimal weather insurance con-
tracts for different weather indices and levels of risk aversion. For moderate levels of risk
aversion (coefficient of relative risk aversion around 2), I find that buying optimal index-
based weather insurance is equivalent to increasing the insured’s income (in all states of
the world) by 1.25 to 1.95% depending on the contract. For higher levels of risk aversion
(coefficient of relative risk aversion around 7), the insured’s income would need to be
increased by 10% to make the insured as well off (in expected utility terms) as in the un-
hedged situation. Considering profit-maximizing contracts, I find that at modest levels
of risk aversion (coefficient of relative risk aversion around 2), a loading factor of 10% of
the fair premium is possible such that the insurance contract remains attractive for the
insured. With higher levels of risk aversion (coefficient of relative risk aversion around
7), insurers can add a loading factor of more than 40% to the actuarially fair contract with
no effect on the purchase decision of the insured.

The structuring process that I propose to design optimal weather insurance contracts
depends on a number of exogenous parameters. For instance, to derive optimal indem-
nification payments for different levels of the weather index, the kernel estimation proce-
dure requires that weather and yield data is grouped into bins (“kernel bandwidth”) in
order to estimate conditional yield densities. I evaluate whether these modeling assump-
tions have a significant influence on the optimal indemnification schedule by conducting
sensitivity checks with respect to all modeling parameters. For that purpose, the effect of
model parameter changes on the hedging effectiveness of optimal contracts is evaluated.
Since insurance has an income smoothing effect, I test the sensitivity of model parame-
ters by quantifying the resulting changes of a risk measure. I find that the optimal and
profit-maximizing contracts are robust to changes in the estimation parameter used to
derive the conditional yield densities. Comparative static analysis is also performed with
respect to the relative risk aversion coefficient.

This part of the dissertation makes use of a computer-based simulation program,
which has been programmed in MATLAB, and that can be used for solving the con-
strained stochastic optimization problem in order to derive the optimal, as well as the
profit-maximizing index-based weather insurance contract for a given weather index and
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level of risk aversion.

1.5.2 Weather Insurance Design and Climate Change

In chapter 3, I focus on assessing the potential for index-based weather insurance in light
of climate change. The optimal index-based weather insurance model, outlined in chapter
2, is used to address the following research questions:

• To what extent do weather-exposed farmers benefit from hedging weather risk to-
day and with climate change using adjusted optimal contracts that represent the
prevailing weather and yield conditions? Are the results sensitive to the risk mea-
sure used to assess hedging benefits in both climatic conditions?

• To what degree can insurers expect to increase their profits from offering adjusted
profit-maximizing contracts with climate change?

• How does the insurance industry practice of offering non-adjusted contracts that are
priced and designed using historical weather and yield data affect the risk reduction
of the insured and expected profits of the insurer?

In 1992, Warren Buffet already pointed out that “catastrophe insurers can’t simply ex-
trapolate past experience. If there is truly global warming, the odds would shift since tiny
changes in atmospheric conditions can produce momentous changes in weather patterns”
(Charpentier, 2008). The insurance industry, which has so far relied on backward-looking
data to develop and price weather insurance contracts, is challenged by climate change
since the assumption that weather and yield time series data is stationary ceases to hold
true. In particular, the changing occurrence and frequency of extreme weather events im-
plies that historical return periods underestimate the likelihood of agricultural losses in
the future.

In light of climate change, I first examine the effects of using forward-looking data
to price and design weather insurance products on the hedging effectiveness and prof-
itability of insurance contracts. Simulated crop and weather data for today’s and future
climatic conditions is used to derive adjusted optimal weather insurance contracts, which
account for the changing distribution of weather and yields due to climate change. I find
that the payoff function of adjusted contracts changes its shape over time, and that ad-
justed contracts are defined over a wider range of so far unprecedented realizations of
the weather index. Next, the hedging effectiveness and profits of adjusted contracts is
assessed. For the case study region in Switzerland, I find that, with climate change, the
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benefits from hedging with adjusted contracts almost triple (for a coefficient of relative
risk aversion equal to 2), and that these findings are robust to the choice of the risk mea-
sure. The increase in weather risk due to climate change generates also a huge potential
for the weather insurance industry. With climate change, insurers can increase the load-
ing factor, and hence increase their expected profits by about 240%, when the insured is
moderately risk averse (coefficient of relative risk aversion equal to 2).

Furthermore, I investigate the effect on risk reduction (for the insured) and profits
(for the insurer) from hedging future weather risks with non-adjusted contracts, which
are based on historical weather and yield data. When offering non-adjusted insurance
contracts, I find that insurers either face substantial losses, or generate profits that are sig-
nificantly smaller than profits from offering adjusted insurance products. Non-adjusted
insurance contracts that create profits in excess of the profits from adjusted contracts cause
at the same time negative hedging benefits for the insured. I observe that non-adjusted
contracts exist that create simultaneously positive profits and hedging benefits, however
at a much larger uncertainty compared to the corresponding adjusted contracts. These
findings suggest that insurance companies need to regularly update the design of index-
based weather insurance products in light of climate change in order to guarantee that
weather risk transfer products maintain their hedging effectiveness.

1.5.3 Linear Weather Derivatives and Optimal Contracts

In the Over-the-Counter (OTC) weather derivative market, customized weather deriva-
tive contracts can be obtained that possess a linear payoff structure. In agriculture, crop
yields are affected by weather through a number of meteorological events. The relation-
ship between weather and crop losses is hence non-linear. In chapter 4, I investigate the
effect of hedging agricultural yield risk with linear weather derivatives in contrast to the
non-linear optimal products developed in chapter 2. In particular, I focus on addressing
the following research questions:

• How can the insurance parameters defining a linear weather derivative be derived
from the optimal and profit-maximizing contracts?

• How does hedging agricultural yield risk with generic linear weather derivatives
compared to non-linear optimal contracts affect the risk reduction of the insured?
Does offering linear weather derivatives to agribusiness stakeholders compared to
offering non-linear profit-maximizing contracts affect the insurers’ profits?
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• Are the findings robust to the methods proposed to approximate optimal and profit-
maximizing contracts? Are the losses in risk reduction and profits sensitive to
changes in climatic conditions?

In order to estimate the effect of hedging agricultural weather risk with linear weather
derivatives on risk reduction (for the insured) and profitability (for the insurer), I propose
two methods to approximate the optimal and profit-maximizing contracts. With the help
of the approximation methods, the contract parameters (strike, exit, cap and ticksize),
which define a generic linear weather derivative, are derived from the optimal and profit-
maximizing contract.

The proposed methods are then used to simulate linear contracts with an actuarially
fair premium that approximate the optimal contracts for today’s and future climatic con-
ditions. In addition, for both climate scenarios, approximated profit-maximizing contract
are simulated which satisfy the constraint that the insured is indifferent (in expected util-
ity terms) between hedging and remaining uninsured. A baseline approximation scenario
is established for which the loss in risk reduction from hedging agricultural weather risk
with linear contracts (in contrast to the non-linear optimal contracts) is derived.

For today’s climatic conditions, I find that hedging with approximated optimal con-
tracts reduces the risk reduction benefits of the insured by 20 to 23%, depending on the
index. Expected profits for the insurer decrease by 20 to 24% from offering approximated
profit-maximizing contracts. A sensitivity analysis is performed to evaluate the effect of
altering the approximation parameters on the resulting risk reduction. The findings are
robust to changes in the approximation parameters. For the climate change scenario, I
find that the loss in risk reduction and profits decreases compared to the situation today.
The increased weather variability improves the goodness of fit of the indices, and hence
reduces the approximation losses.

The findings demonstrate that structural basis risk exists and that the hedging benefits,
at a particular location and for a given crop, critically depend on the choice of the structur-
ing method. By proposing a robust approximation method for deriving the contract pa-
rameters of a generic (linear) weather derivative from the optimal and profit-maximizing
contract, the algorithm developed in chapter 2 is extended. In particular, a decision-
support tool for entrepreneurs intending to hedge weather risk with linear contracts is
proposed. Buyers no longer need to specify the critical contract parameters (strike, exit,
and cap) based on subjective knowledge about their weather risk management needs.
The optimal index-based insurance model, together with the proposed extension, can be
used to facilitate the buyers’ decision by identifying the contract parameters such that the
best hedging effectiveness with a linear contract is achieved.
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1.6 Data and Case Study Region

For the design of index-based weather products, data of historical yields measuring crop
variability over time and the corresponding weather data is needed. The availability and
credibility of data is central to the modeling of production risk and the structuring of
weather risk transfer products.

In practice, the length of historical yield time series data is often insufficient for sta-
tistical analysis and rules out the use of non-parametric methods. Especially for deriving
conditional yield probabilities a large enough yield data set is needed. For that reason, I
work with simulated yield data that has been derived from a deterministic crop physiol-
ogy growth model, named CropSyst (Stöckle et al., 2003). Process-based crop models are
calibrated for specific crops and are adapted to local regions with the aim of re-producing
historical crop yields (for historical weather conditions).8 As inputs, biophysical crop sim-
ulation models require information about soil conditions, farm management practices,
and daily observations of minimum and maximum temperatures, precipitation, and so-
lar radiation. As the calibration of model parameters is subject to uncertainty, projections
of biophysical models are also uncertain.

Biophysical crop growth models offer the possibility to generate large crop yield data
sets by running several crop simulations for varying climatic conditions. Furthermore,
process-based crop simulation models are widely used to study the effect of climate
change on crop yields. To simulate the changes in crop production due to global warm-
ing, data accounting for the changes in the climatic conditions is needed. Climate change
projections are derived from simulations with either General Circulation Models (GCMs)
or Regional Circulation Models (RCMs). GCMs and RCMs are developed by climatolo-
gists in an effort to assess the impacts of human activity, as measured by the increase in
atmospheric concentration of greenhouse gases, on the climate system. Climate models
generally agree in predicting that global average temperatures are increasing, that the in-
cidence of extreme climate events – such as droughts, hot spells and floods – is rising, and
that sea-levels increase. With regard to the rate of change, the extent of overall change,
and the effects in particular regions of the globe, predictions of some models differ from
predictions of others, which gives rise to uncertainty.

Regional climate predictions for Schaffhausen (latitude: 47.69, longitude: 8.62), Switzer-
land, for an IPCC A2 emission scenario, were downscaled to local conditions using a

8The CropSyst calibrations for maize production representing the local conditions of the case study
region, Schaffhausen, Switzerland, as well as the simulations of maize yields for the baseline and future
scenario were carried out by Annelie Holzkämper and Tommy Klein at the research group of Jürg Fuhrer
at Agroscope-Reckenholz-Taenikon (ART), Switzerland.
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stochastic weather generator. LARS-WG, a weather generator developed by Semenov et
al. (1998) was calibrated to local conditions using historical weather data representing
today’s conditions.9 With the help of LARS-WG, daily precipitation, minimum and maxi-
mum temperature, as well as solar radiation were simulated for a climate change scenario
representing climatic conditions at Schaffhausen around 2050. The daily weather projec-
tions were fed into CropSyst in order to derive maize yield projections for the baseline
(1981− 2001), and for the future scenario (2036− 2065).

While the numerical results in this dissertation specifically refer to the growing con-
ditions of maize in Schaffhausen, Switzerland, the methods developed in this disserta-
tion can be applied to other crops and locations. In particular, the optimal index-based
weather insurance model, together with the model to derive the contract parameters of a
linear weather derivative, can be used to simulate optimal contracts (non-linear or linear)
for any crop and at any location for which sufficient weather and yield data is available.

9The calibration of LARS-WG as well as the climate change projections for Schaffhausen, Switzerland,
were carried out by Pierluigi Calanca, at the research group of Jürg Fuhrer at Agroscope-Reckenholz-
Taenikon (ART), Switzerland.
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Chapter 2

Weather Insurance Design with Optimal
Hedging Effectiveness

Journal of Agricultural Economics, revise and resubmit

2.1 Introduction

Agricultural production and agribusiness are exposed to many weather-related influ-
ences that cause fluctuations in crop yields – so-called yield or production risk. The man-
agement of weather risk is of fundamental importance for weather-dependent sectors,
and will become even more important with increasing risk of extreme weather events.
Insurance has been an integral part in dealing with weather risk, as it helps reduce the
residual risk that cannot be prevented through cost-effective on-site (on-farm) risk man-
agement strategies. Traditional crop insurance schemes provide farmers with coverage to
manage weather-related yield risks. Insurance schemes where the insurance pay-offs are
based on an assessment of the crop yields – as is the case with individual, or multi-peril
crop insurance – are plagued by moral hazard, adverse selection and costly enforcement
(Smith and Goodwin, 1994; Skees et al., 1997; Goodwin, 2001). The use of index-based
weather insurance has recently emerged as an alternative as it avoids many of the prob-
lems associated with traditional insurance (Hazell and Skees, 2005). With index-based
insurance, an exogenous, verifiable weather event is being insured, rather than a yield
outcome. Problems of moral hazard and adverse selection are minimized, and adminis-
trative costs are reduced substantially since published (weather) data is used to settle a
claim (Ibarra and Skees, 2007).1

1The disadvantage of index-based weather insurance for the insured is that it comes at the cost of not
being perfectly insured against weather related losses due to the imperfect correlation of yields and the
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2.1. Introduction

The focus of this paper is on designing weather insurance for agricultural risk manage-
ment with optimal hedging effectiveness. An expected utility framework is used to model
the decision-making behavior of a representative farmer. The design of weather insurance
can be decomposed into two separate problems: finding a weather index that correlates
well with crop losses, and the derivation of the insurance contract for that given index.
I first derive weather indices taking the varying sensitivity of crops during the growing
season into account. Given the weather indices, I simulate optimal insurance contracts for
different levels of risk aversion. Compared to existing work, I aim at characterizing and
deriving the optimal pay-off structure by allowing for a non-linear stochastic relationship
between weather and yield. Previous approaches, such as Vedenov and Barnett (2004),
Osgood et al. (2007), and Musshoff et al. (2009) relied on specifying functional forms
to characterize the weather-yield relationship. By assuming a given (linear) relationship
between the index and yields, functional form assumptions are imposed on the optimiza-
tion problem, and the resulting pay-off structure reflects these assumptions. Instead, I
estimate conditional probabilities of yield for different levels of the weather index using
a fully non-parametric approach. The estimated conditional yield distributions are used
to compute the expected utility maximizing insurance contract. Rather than restricting
attention to piecewise linear contracts in the first place, I determine the classical param-
eters of a derivative contract (trigger2 and limit) from the optimization problem and in
addition derive the local slope of the pay-off function (tick size)3 at each realization of the
underlying index.

I implement the expected utility maximization problem numerically and apply the
novel model to derive optimal weather insurance contracts for maize farmers in Schaff-
hausen (SHA), Switzerland. While the magnitude of the numerical results are crop- and
location-specific, the insurance characteristics of the optimal weather insurance contract
described in the following are crop- and location independent.4 I propose a general
method for deriving optimal weather insurance contracts that can be applied to any crop
and to any location for which sufficient weather and yield data is available.

Examining the relationship between pay-offs and the frequency of payments, I find

weather index. The gap between the loss indicated by the index and the individual realized loss is known
as basis risk. However, basis risk exists with farm-level multi-peril crop insurance as well. For a discussion,
see Skees (2003).

2The trigger, or strike level, is the threshold level of the underlying meteorological index that triggers
payments from the contract.

3The tick size is the incremental change in the payment for a change in the index.
4I also simulated optimal weather insurance contracts for wheat, potatoes, rape seed and sugar beet at

two more locations in Switzerland, which confirmed the insurance characteristics of the optimal insurance
contract described here. Results are available upon request.
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that the optimal insurance contract offers high levels of protection for catastrophic weather
events that occur with very low probabilities. At the same time, the optimal insurance
contract offers moderate payments for small deviations from average weather conditions.
For all contracts considered, I find that the insured breaks-even, i.e. receives an indemnifi-
cation that compensates for the premium, in 48% of the cases. An insured with moderate
risk aversion (coefficient of relative risk aversion of around 2) benefits from the contract
as his income without insurance would need to be increased by 2% to offer him the same
expected utility as in the situation with optimal insurance. Significantly higher benefits
(equivalent to an income increase of up to 10%) from hedging with an optimal weather
insurance contract arise at higher levels of risk aversion.

Insurers are first assumed to make zero profits, which allows using the “burn rate”
method to price insurance contracts. Subsequently, I relax this assumption to determine
the maximum loading factor on fair premiums so that the optimal insurance contract
remains attractive to farmers in the sense that it yields the same expected utility as the no-
insurance scenario. Comparing the optimal weather insurance contract with the profit-
maximizing contract, I find that the profit-maximizing contract displays the same non-
linear shape as the optimal contract but has lower pay-offs. In the case study, loading
factors of 10% to 50% are possible depending on the level of risk aversion.

The remaining paper is organized as follows. I relate my approach to the literature
on index-based insurance in the remainder of this section. In section 2.2, I propose a
theoretical model that yields the optimal weather insurance contract as a solution. The
numerical implementation is explained in section 2.3.1, and the data used for simulat-
ing the weather insurance contracts is described in section 2.3.2. In section 2.4, suitable
weather indices are derived, and the simulated optimal weather insurance contracts are
presented in section 5 together with an evaluation of their hedging effectiveness. Profit-
maximizing contracts are derived in section 2.6, and the maximal amount of loading on
fair premiums is determined. Section 2.7 concludes and provides an outlook on further
research.

2.1.1 Relation to the Literature

Weather-based insurance contracts were firstly proposed by Turvey (2000, 2001) and Mar-
tin et al. (2001). The proposed pay-off structures are similar to the (linear) weather deriva-
tives that have been traded at the Chicago Mercantile Exchange since 1996. In these ini-
tial works, the tick size is determined by estimating the relationship between weather
and yield, and the strike and limit parameters, which are needed to define an indemnity
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function, have to be specified by the insured. Martin et al. (2001) develop precipitation
derivatives, and Turvey (2001) proposes derivative contracts based on cumulative precip-
itation and heat units.5 Both authors demonstrate that (for different contracts and values
of risk-aversion) the certainty equivalent gains from using weather insurance exceed the
no-purchase situation, and that the extent of the certainty equivalent gains from using
weather insurance depends on the chosen contracts.

To reduce farmers’ exposure to weather-related shocks, pay-offs from the weather in-
surance contract have to closely match incurred losses. In this context, Goodwin and
Mahul (2004) point out that the design of an efficient insurance contract depends on the
relationship between the individual yield and the underlying weather index, and Vede-
nov and Barnett (2004) specifically emphasize the importance of the weather insurance
parameters (tick size, strike, and limit) with respect to achieving hedging effectiveness,
i.e. the degree to which weather risk is being reduced by an insurance product. Since
then, formal models to determine the buyer’s optimal choice of the insurance parameters
with respect to risk reduction have been developed, as outlined in the following.

Weather insurance pay-off functions have been designed by minimizing an aggregate
measure of downside loss such as the semi-variance (Markowitz, 1991; Vedenov and Bar-
nett, 2004).6 Vedenov and Barnett (2004) derive the strike level by identifying the level of
the index where predicted yields corresponded to the long time average. The remaining
parameters are obtained by minimizing the semi-variance of loss assuming a linear rela-
tionship between index and insurance payments (between strike and maximum payout).

Another strand of literature maximizes the expected utility of the insured in order to
derive the critical insurance parameters (tick size, strike, and limit), and then evaluates
the insurance alternative based on their certainty equivalent gains7 (Karuaihe et al., 2006;
Berg et al, 2009; Leblois et al. 2011). These contributions share the assumption that the
weather insurance contract is linear between the strike level and the maximum payout
(limit). In contrast, I aim at deriving the entire pay-off structure optimally, without im-

5Martin et al. (2001) estimate the probability density function of the underlying precipitation index para-
metrically, and use a quadratic function for estimating the weather-yield relationship in order to determine
the tick size. Turvey et al. (2001) use a Cobb-Douglas production function with cumulative rainfall and
heat units as inputs for their design. Based on the chosen contract parameters, the insurance contracts are
priced using the “burn rate” method in both contributions.

6Minimization of the semi-variance instead of full variance is chosen because only downside losses are
of major concern to crop producers (Miranda, 1991; Miranda and Glauber, 1997). This approach has been
developed in the literature as an alternative to the traditional mean-variance analysis for situations where
reduction of losses or failure to achieve a certain target is of importance (Hogan and Warren, 1972). It has
also been shown to be consistent with the expected utility maximization (Selley, 1984).

7The certainty equivalent is the amount of certain income that a risk-averse individual finds equally
desirable to an alternative random income with a known probability distribution.
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posing a priori functional form assumptions on the contract.
Osgood et al. (2007, 2009) design index-based weather insurance contracts for several

African countries (Malawi, Tanzania, Kenya, and Ethiopia) that are implemented by the
World Bank and Oxfam America under pilot projects. The contract design chosen by Os-
good et al. allows the authors to optimize over piecewise linear contracts by minimizing
the variance. Osgood et al. (2007, 2009) are able to locally optimize contract parame-
ters of a linear pay-off structure, thus making the piecewise contract more efficient. I
derive instead the globally optimal, non-linear insurance contract without making use of
a piecewise linear structure, and the objective is to maximize the expected utility of the
insured.

Another design method is proposed by Musshoff et al. (2009), who use the weather-
yield relationship to construct the payments from a weather put option by estimating a
linear-limitational production function (for a given weather index). Based on the produc-
tion function, Musshoff et al. (2009) calculate the revenue function, and then define the
payoffs from the weather derivative by taking the inverse of the revenue function. Using
a parametric approach to establish the relationship between weather and yield assumes
that conditional yield distributions at different levels of the weather index are homoge-
nous - an assumption that I do not find to be satisfied in the data. Similar to the piecewise
pay-off structure assumed by Osgood et al. (2007, 2009), Musshoff et al.’s assumption
about the functional form of the production function has an effect on the insurance pa-
rameters, and thus affects the hedging effectiveness of the contracts. The objective is
therefore to derive the insurance parameters without assuming a linear relationship be-
tween weather and yield, and without relying on a parametric production function or
error term structure.

My work is most closely related to Mahul (1999, 2000, 2001, 2003) who uses expected
utility models to investigate theoretically the optimal design of agricultural insurance for
different sources of risk (i.e. price risk, yield risk). While the focus of Mahul (1999) is
on the design of area-yield crop insurance, his framework and findings can be translated
to the design of index-based weather insurance. To characterize the optimal area-yield
insurance, Mahul (1999) follows earlier work by Miranda (1991) and assumes a linear re-
lationship between weather and yield.8 Mahul (1999) demonstrates more generally than
Miranda (1991) that the optimal coverage with area-yield insurance depends on the sen-
sitivity of the individual yield to the area yield and is independent from risk aversion and

8 Individual yields are the sum of a weather (systemic risk) and an independent idiosyncratic compo-
nent. Mahul’s (1999) model would be more general if the beta-coefficient, which measures the sensitivity
of farm-yields to movements in the weather index, were allowed to depend on weather, but instead he
assumes that the covariance between weather and the error term is zero.
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premiums. Mahul (2001) expands this model to examine the implications of a weather-
yield production function that is decomposed into two separate components. Weather
and idiosyncratic risk enter as two separate inputs into an additive production function.9

Through the choice of the production function, yields depend on weather in a linear way
conditional on inputs. Under these assumptions, Mahul (2001) shows that the param-
eters of the optimal indemnity schedule (strike and coverage) depend on the stochastic
relation between weather and idiosyncratic risk, and on the risk aversion of the insured.
Mahul (2001) compares the optimal coverage for the situation where weather and id-
iosyncratic risk are independent, and when they interact. When the two sources of risk
are correlated, Mahul (2001) finds that “... without further restrictions on the stochastic
dependence and the producer’s behavior, the indemnity schedule can take basically any
form.” (Mahul, 2001, p: 596). Empirically deriving an optimal weather-based indemnity
schedule within this framework would require distinguishing the different cases outlined
by Mahul (2001). I therefore propose a more general method for deriving optimal weather
insurance contracts which also allows us to drop the assumption of a linear relationship
between weather and yields, and of a specific error term structure.

2.2 Theoretical Framework

2.2.1 The Insurance Problem

I consider ex ante identical farmers who face a stochastic yield y ∈ Y ≡ [y, y]. The dis-
tribution of output depends on the weather variable z, which can be cumulative rainfall
in the growing season, average temperature during particular phases, or an index com-
bining multiple such variables. Let the cdf of z ∈ Z ≡ [z, z] be denoted by G(z), and the
corresponding density function by g(z). Then the dependence of the distribution of yields
y on the weather index z is captured by the conditional cdf F(y|z) and the corresponding
conditional density f (y|z).

Farmers have preferences defined over consumption c given by u(c). I assume farmers
to be risk-averse with u′(c) > 0, u′′(c) < 0. There are risk-neutral insurers who offer
insurance to the farmers. The key restriction is that insurance contracts cannot directly
insure yields y, but only condition on the realization of the weather index z. Suppose the
net insurance payout to the farmer if weather index z is realized is given by p(z).10 Then I

9As before, weather impacts yields directly, and in addition through its effect on the idiosyncratic com-
ponent.

10One could separate the net payout to the farmer into the indemnity I(z) paid by the insurer in case of
weather realization z, and a fixed premium P, so that p(z) = I(z)− P for all z ∈ Z . Only the net payout
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require that the insurer does not make losses with the weather insurance contract {p(z)}
in expectation: ∫

Z
p(z)dG(z) ≤ 0. (2.1)

Constraint (2.1) requires the average net payout to the farmer to be non-positive, which
is equivalent to the insurer’s profits to be non-negative. The constraint can also be inter-
preted as a mechanism for pricing the insurance contract, and is known as “burn rate”
method.11 The “burn rate” method is widely used as the standard basis for calculating
insurance premiums due to its simplicity (Skees and Barnett, 1999; Mahul, 1999; Turvey,
2001; Martin et al., 2001 ; Vedenov and Barnett, 2004). More complicated cost functions
for the insurers could be adopted without effect for the following results.12 Administra-
tive and transactions costs born by the insurer can be considered in this framework by
adding a mark-up to the premium (see section 2.6 on profit maximizing loading factors).

Then the farmers’ expected utility maximizing contract {p∗(z)} solves

max
{p(z)}

∫
Z

∫
Y

u(y + p(z))dF(y|z)dG(z) (2.2)

subject to constraint (2.1).

2.2.2 Some Properties of Optimal Weather Insurance Contracts

Since Problem (2.2) is a strictly concave problem, it is immediate that there always exists
a unique global optimum and first-order conditions are necessary and sufficient. In fact,
setting up the Lagrangian

L =
∫
Z

∫
Y

u(y + p(z))dF(y|z)dG(z)− λ
∫
Z

p(z)dG(z) (2.3)

p(z), however, matters to the farmer and the insurer.
11Insurance actuaries calculate an expectation on future losses based on historical payouts for a given in-

surance contract. Expected losses are then considered as an expected breakeven premium rate. This method
assumes that the underlying index has a stationary distribution. With climate change this assumption may
no longer be valid, and alternative pricing mechanisms need to be considered.

12Pricing based on standard option valuation models is not possible since these models require that one
be able to construct (at least conceptually) a riskless portfolio of both the option and the asset which forms
the underlying index (Hull, 2000; Dischel, 1998). Given that there is no actively traded forward market for
the underlying index alternative pricing mechanisms have evolved, e.g. stochastic pricing for heat-degree
contracts (Turvey, 2001a), indifference pricing (Xu et al., 2007), equilibrium pricing method (Richards et al.,
2004).
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yields the pointwise first-order conditions∫
Y

u′(y + p(z))dF(y|z) = λ ∀z ∈ Z , (2.4)

where λ > 0 is the Lagrange multiplier on constraint (2.1). Optimality condition (2.4)
requires the expected marginal utility of the farmer conditional on a realization of the
weather index z to be equalized across all z at the optimal contract. This immediately
leads to the following result:

Proposition 1. Suppose y⊥z, i.e. yields y are independent from the weather variable z. Then
p(z) = 0 for all z ∈ Z .

Proof. If y and z are independently distributed, then the conditional yield distribution F(y|z) is in fact
independent of z, so that the first order condition (2.4) becomes∫

Y
u′(y + p(z))dF(y) = λ ∀z ∈ Z .

Since u′′(.) < 0, this can only be satisfied if p(z) is independent of z and thus p(z) = p where p is a constant.
Then constraint (2.1) can only be satisfied if p ≤ 0. Clearly the value of p that maximizes (2.2) subject to
p ≤ 0 is given by p = 0.

Proposition (1) demonstrates that weather insurance is ineffective if the weather index
does not contain predictive power for yields. In contrast, it crucially relies on weather
and yield being correlated. I next consider the opposite special case, in which weather is
perfectly predictive of yield:

Proposition 2. Suppose that each weather-yield observation (yi, zi) occurs only once in the data
set with i = 1, ..., n observations, i.e. Pr(yi, zi) = 1/n. Then p is a full insurance contract
independent of weather.

Proof. Under the assumptions in the proposition, the first order condition (2.4) becomes

∫
Y

u′(yi + pi(zi))
1
n
= λ ∀z ∈ Z .

Since u′′(.) < 0, this can only be satisfied if yi + p(zi) is independent of z and thus p(zi) = −yi + p where
p is a constant. Given that the insurer can only make non-negative profits, the constant p = y, such that
p(z) = −yi + y is a revenue insurance contract.

Intuitively, if the relationship between weather and yield is perfectly known, and
weather is the only input to crop production, then the insurance contract can be writ-
ten such that any difference between the realized yield, yi, and the expected yield, y is
perfectly reimbursed. In that case, the basis risk for the farmer is zero. In the real world,
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crop yields are influenced by a number of factors, such as management practices, fertil-
izer usage, soil quality. In addition, crop data is also subject to measurement errors so
that the conditions for Proposition (2) are not fulfilled. Forecasting crop yields with just
weather as input will therefore not fully explain the variation in yields. A special case of
such a stochastic dependence is considered in the following proposition:

Proposition 3. Suppose the stochastic dependence of yields on weather is given by

y = ψ(z) + ε,

where ε is a stochastic shock such that ε⊥z and with cdf H(ε). Then

p(z) = −ψ(z) + p,

where p is some constant.

Proof. Under the assumptions in the proposition, the first order condition (2.4) becomes

∫
ε

u′(ψ(z) + p(z) + ε)dH(ε) = λ ∀z ∈ Z .

Since u′′(.) < 0, this can only be satisfied if ψ(z) + p(z) is independent of z and thus p(z) = −ψ(z) + p
where p is a constant.

An example that would seem particularly natural for the case where z captures a mea-
sure of cumulative rainfall, for instance, would be a function ψ(z) that is hump-shaped:
yields tend to be low both for very high values of z (excessive precipitation) and very low
values (droughts), and highest for intermediate values. Then Proposition (3) shows that
the optimal weather insurance contract features a U-shaped pattern of net payouts that
is inversely related to ψ(z). Or, yields tend to increase in a non-linear way with the un-
derlying index, reflecting plant and phenology specific sensitivities to weather. In either
way, the intuition is clear: the contract is supposed to insure the farmer against low yield
realizations. Thus, net payouts to the farmer should be high whenever ψ(z) is low and
vice versa.

The assumptions in Proposition (3) are still quite restrictive, however. Not only may
extreme weather events as captured by high and low realizations of z reduce expected
yields. They may also change the distribution of yields in a more general way. Notably,
one may think of extreme weather events increasing the yield risk as captured by the vari-
ance of yields conditional on z. The following two results show how such more general
relationships between yields and weather affect the shape of the optimal weather insur-
ance contract (see also Mahul, 2001).
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Proposition 4. At some given z ∈ Z , p′(z) ≤ 0 if dF(y|z)/dz ≤ 0 for all y ∈ Y (first order
stochastic dominance). Conversely, p′(z) ≥ 0 if dF(y|z)/dz ≥ 0 for all y ∈ Y .

Proof. Since the first order condition (2.4) has to hold for all z ∈ Z , it can be differentiated w.r.t. z to obtain

p′(z) = −
∫
Y u′(y + p(z)) d f (y|z)

dz dy∫
Y u′′(y + p(z))dF(y|z)

. (2.5)

Integrating the numerator by parts yields

∫
Y

u′(y + p(z))
d f (y|z)

dz
dy = u′(y + p(z))

dF(y|z)
dz

∣∣∣∣y
y
−
∫
Y

u′′(y + p(z))
dF(y|z)

dz
dy. (2.6)

Note that the first term on the RHS is zero because dF(y|z)/dz = dF(y|z)/dz = 0. Hence substituting (2.6)
in (2.5) yields

p′(z) = −
∫
Y u′′(y + p(z)) dF(y|z)

dz dy∫
Y u′′(y + p(z))dF(y|z)

. (2.7)

Recall that the denominator is always negative since u′′(.) < 0. Hence the sign of p′(z) is equal to the sign
of dF(y|z)/dz, which is the result in the proposition.

Proposition (4) is a generalization of Proposition (2). It shows that net insurance pay-
outs to the farmer should be decreasing in the weather index if an increase in z induces
higher yields in the first order stochastic dominance sense (FOSD), and vice versa. In the
case of precipitation-based insurance, this again makes a non-linear shape of the optimal
insurance contract plausible.

The following proposition captures the effect of changes in the variability of yields due
to changes in the weather index on the shape of the optimal insurance scheme.

Proposition 5. Suppose u′′′(c) > 0 for all c. Then, at some given z ∈ Z , p′(z) ≤ 0 if∫ y
y

dF(s|z)
dz ds ≤ 0 for all y ∈ Y (second order stochastic dominance). Conversely, p′(z) ≥ 0 if∫ y

y
dF(s|z)

dz ds ≥ 0 for all y ∈ Y .

Proof. Integrating the RHS of equation (2.6) by parts again yields

∫
Y

u′′(y + p(z))
dF(y|z)

dz
dy = u′′(y + p(z))

∫ y

y

dF(s|z)
dz

ds

∣∣∣∣∣
y

y

−
∫
Y

u′′′(y + p(z))
∫ y

y

dF(s|z)
dz

dsdy

= u′′(y + p(z))
∫ y

y

dF(s|z)
dz

ds−
∫
Y

u′′′(y + p(z))
∫ y

y

dF(s|z)
dz

dsdy. (2.8)

Substituting the RHS of (2.8) in the numerator of (2.5) and the assumption u′′′(.) > 0 yields the result.

Proposition (5) captures the case where an increase in z increases the riskiness of yields
in the second order stochastic dominance (SOSD) sense. It shows that the optimal insur-
ance net payout increases with z if the additional condition is satisfied that the farmer is
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prudent, as characterized by u′′′(.) < 0. Conversely, the net payout decreases with z if a
decrease in z makes yields riskier. This again pushes towards a non-linear shape of p(z)
given the realistic case that extreme weather occurrences not only reduce expected yields,
but also increase yield variability.

In summary, for a given crop and a given weather index the shape of the optimal
weather contract, p(z), depends on the shape of the conditional cdf F(y|z), and can be
determined empirically by solving the nonlinear, constrained optimization problem (2.2)
subject to (2.1) numerically. I use a non-parametric estimation procedure to determine
F(y|z) in order to to avoid that p(z) may reflect assumptions contained in the functional
form of the relationship between y and z. I describe how I derive the solution to this
problem in the following section.

2.3 Implementation and Data

2.3.1 Implementation of the Optimization Problem

The optimization problem is implemented in its discrete form. A discrete weather vari-
able, zi, such as rainfall can take i = 1, ..., Nz possible realizations. Then the optimization
problem has Nz + 1 first-order-conditions in Nz + 1 unknowns and can be solved numer-
ically (using a mathematical programming tool such as Matlab). For the weather index,
Nz defines the number of points for which to produce a density estimate. Similarly, Ny

defines the number of density estimates to be produced for the yield data. The size of the
conditional yield density matrix f (y|z) is thus Ny × Nz. Nz and Ny can be set to any finite
number, restricted by the size of the data. Increasing Nz or Ny implies that fewer yield
observations fall within one kernel grid cell, which explains why a sufficiently large data
set is needed for estimation. It follows that Nz has an effect on the precision of p(z) since
the number of first order conditions increases, and thus the number of payments p(zi)

that are determined for different realizations of the index zi. The effect on the hedging
effectiveness of the optimal contract due to changes in either Nz or Ny is demonstrated in
section 2.5.4.

The optimization problem is solved by defining a specific functional form for the
farmer’s preferences. I assume that farmers have preferences of the following form:
u(c) = c1−σ/(1− σ), i.e. the utility function is characterized by constant relative risk
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aversion (CRRA).13 I use a coefficient of relative risk aversion of σ = 2 as a benchmark14,
but demonstrate how the results change for different levels of risk aversion (see section
2.5.3).

Both the conditional yield density matrix, f (y|z), and the density of the weather index,
g(z), are estimated using a Gaussian kernel density estimation procedure. Given that
yield and weather data follow different statistical distributions, and differ in their range,
I allow the conditional yield density matrix f (y|z) to be non-quadratic (Härdle, 1991).
Moreover, I allow for kernel bandwidths for the weather index, bw(z), and for yields,
bw(y). Once all input parameters are determined, the optimization problem is solved
numerically.15

2.3.2 Description of Data

Historic yield time series data is often not sufficiently large for empirical applications as
complex as the one I aim at. Following Torriani et al. (2007a, 2007b), I use a process-
based crop simulation model to simulate 1, 000 yield observations.16 For the purpose of
this study, CropSyst, which is a multi-year, multi-crop, daily time step growth simulation
model developed by Stöckle et al. (2003), is used to simulate crop development and total
biomass accumulation of maize (Zea mays L.). The simulation of crop development is
mainly based on the thermal time required to reach specific development stages. Thermal
time is calculated as growing degree days (GDD) accumulated throughout the growing
season (starting from sowing until harvest). With process-based crop models, the user
can input management parameters such as the sowing date, cultivar genetic coefficients,
soil profile properties (soil texture, depth), fertilizer and irrigation management, tillage
and atmospheric CO2 concentration, and the growing degrees needed to complete each

13CRRA preferences are supported in the literature by Pope and Just (1991), Chavas and Holt (1990),
Martin et al. (2001), Zuniga et al. (2001), Wang et al. (2004), Karuaihe et al. (2006), Berg et al. (2009), Leblois
and Quirion (2011).

14Arrow (1971) argues that the coefficient of relative risk aversion is near 1. Chetty (2006) shows that the
coefficient of relative risk aversion is around 2 in his data. For agriculture, Pope and Just (1991) suggest that
the relative risk aversion is constant.

15The nonlinear constrained optimization problem is solved by “shooting for lambda”, i.e. I assume a
starting value for λ and solve the first order conditions given this λ. Next, I check whether the output of
the optimization problem (p(z),z) satisfies the constraint (1). If the constraint is not satisfied, the procedure
is repeated until a λ-value is found for which the constraint is fulfilled. The optimal values, p∗(z), satisfy
the necessary and sufficient FOCs as well as the constraint (1), and thus constitute a global optimum.

16Process-based crop models are deterministic models that simulate crop physiological growth for given
environmental and management conditions. In theory, their precision in estimating crop yields is greater
compared to regression models, but they require detailed time series data in order to calibrate model pa-
rameters and for evaluating the model’s ability of predicting historic crop yields (Lobell et al., 2010).
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phenological period.17

To simulate 1, 000 yield observations, daily weather data was obtained from a stochas-
tic weather generator.18 LARS-WG, a weather generator developed by Semenov (1997,
2002), was first calibrated for the current weather conditions (from 1981 to 2001) pre-
vailing in at the weather station Schaffhausen (SHA) (latitude: 47.69, longitude: 8.62)
in Switzerland.19 For the time period from 1981 to 2001, 1, 000 years of daily weather
observations were simulated and daily observations of minimum (Tmin) and maximum
temperatures (Tmax) in Celsius, rainfall (Ri) in millimeters, and solar radiation (Soli), with
i = 1, ..., 365 indicating the day of the year, were obtained.20

To derive the revenues from maize production per hectare, I use the average price
for maize from 2006 to 2009, which was 41.00 CHF/100kg (SBV, 2010). This allows us to
derive the insurance contract in monetary units.21

2.4 Constructing a Suitable Weather Index

Finding a suitable weather index involves identifying the source of weather risk that the
insurance contract is intended to hedge. One way of identifying the risks that cause crop
losses is by interviewing farmers. I use instead a quantitative approach to identify the
weather events that explain deviations in yields. The objective is to create weather in-
dices that possess a high correlation with yields as this affects the hedging effectiveness
(Miranda, 1991; Vedenov and Barnett, 2004; Musshoff et al., 2009).

While it is well known that the susceptibility of crops to meteorological stress (such
as heat stress or shortage of available water) varies during the growing season (Meyer et
al., 1993), the use of fixed calendar time periods for the construction of weather indices is
common in the literature (Turvey, 2001; Martin et al., 2001; Musshoff et al. 2009). Hanks
(1974) notes that there is a strong relationship between total water consumption by a plant

17The calibrations of CropSyst for maize production in Switzerland have been carried out by Agroscope-
Reckenholz-Taenikon Research Station (ART) in Switzerland. An overview of the calibration parameters
for maize, winter wheat, and canola in Switzerland can be found in Torriani et al. (2007) together with a
comparison of simulated yields with historical observations.

18Weather generators generate synthetic weather series which have statistical properties similar to the
observed series. Means and variance of daily synthetic weather data are required to be not significantly
different from those calculated from observed series, and the synthetic weather series should follow a prob-
ability distribution which is not statistically different from the observations.

19 The weather data for SHA from 1981 to 2001 was obtained from MeteoSwiss.
20The calibration of LARS-WG for the weather measurement station SHA has been carried out by

Agroscope-Reckenholz-Taenikon Research Station (ART) in Switzerland.
21A higher (lower) price for maize yields will shift the insurance contract up (down), but will not change

the shape of the contract due to the assumption of CRRA preferences. Production costs are not considered
here.
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over the growing season and final yields. However, Hanks (1974) also points out that “...
it is essential for any study dealing with the estimation of future yield to take into account
the element of time when referring to the effects of stress.” In the same vein, Jensen
(1968) and Nairizi et al. (1977) show that the yield response of a crop to soil moisture
stress depends on the crop being studied, and the phenology during which the stress
occurs. In the context of index construction, Turvey (2000) is the first to mention that “ ...
(it) would be advantageous to correlate weather events to specific phenological events.”
Leblois et al. (2011) also note that using the actual sowing date together with information
about the different growing stages improves the predictive power of the index. In their
study examining the potential of rainfall insurance in Niger, Leblois et al. (2011) simulate
growth phases (following a method developed by Sivakumar, 1988), and create indices
that weigh the effect of rainfall depending on the growing phase. The authors find that
indices that account for growing phases improve the gains from weather insurance.

In my study, I measure weather events at each phenology stage considering year to
year shifts in phenology stages due to to inter-annual weather variability. For the index
design, I estimate the individual effect of weather events on yields to account for the dif-
ferences in the weather susceptibility of maize during the growing period. Based on this
information, I construct indices using the estimated coefficients obtained from multivari-
ate weather-yield regression models as weights.

2.4.1 Identifying the Phenology Phases

The concept of Growing Degree Days (GDDs) is used to identify the different phenolog-
ical phases during plant development. Growing degrees (GD), also referred to as heat
units, are defined as the number of temperature degrees above a certain threshold tem-
perature, Tbase, and below an upper level, Tcut, and are frequently used to describe the
timing of biological processes (Neild, 1982; McMaster, 1997).22 I use the following for-
mula to calculate GDDs, starting at the sowing date, with i = 1, until the end of the
growing season, with i = n at the harvest time:

GDD =

∑n
i=1(

Tmax,i+Tmin,i
2 − Tbase) if Tmax,i+Tmin,i

2 < Tcut

∑n
i=1(Tcut − Tbase) if Tmax,i+Tmin,i

2 > Tcut

The day of the year (DOY) when sowing takes place is known from CropSyst, since a
fixed planting mode is chosen. For maize in SHA, sowing takes place at DOY = 130. I use

22Tbase is the temperature below which development stops, and Tcut is the upper threshold which still
contributes to plant growth.
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Figure 2.1: GDD during the growing phase.

the daily GDDs throughout the entire growing period to find the day of the year when a
given phenology stage ends. The number of GDDs needed to complete each phenology
stage are also known from the CropSyst calibration.23 For maize production, 4 phenology
phases are distinguished: the emergence, the vegetative growth period with flowering,
the grain filling period, and maturity. Table 2.1 summarizes the GDD levels that corre-
spond to each phenology phase for maize in Schaffhausen until maturity is reached, and
reports the range of days, as well as the mean DOY, when the phenological stages end.
For example, the grain filling phase ends on average on DOY = 217. Depending on
the particular weather conditions in a given year, I observe that grain filling came to an
end 9 days before, or 10 days after the average end date (i.e. between DOY = 208 to
DOY = 227). For maturity, the range of possible end dates is even wider. When using
fixed calender periods for index construction (based on average start and end dates), the
weather index may not adequately capture the weather deviations in extreme years, thus
creating additional basis risk.

Figure 2.1 shows the relationship between GDD values for each DOY starting at emer-
gence (DOY = 130) to harvest (DOY = 243-275) for maize in SHA for 30 different years.
The histograms display the frequency of end dates for the 4 phenological stages and are

23For information about the CropSyst maize calibration used, see Torriani et al. (2007a). It should be
noted that the approach recommended here for constructing phenology-specific weather indices can also be
applied to historic yield data, since GDD requirements of plants at each phenology stage are often reported
by breeding companies or agricultural extension services.
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derived from the entire data.

Table 2.1: Timing of phenology phases and corresponding GDDs

Phases Emergence Vegetative Period Grain Filling Maturity
GDD 40 700 840 1250
DOY 133-142 195-213 208-227 243-275
Expected DOY 137 204 217 259

Crop: maize, location: SHA, sowing date: DOY=130.

2.4.2 Measuring Weather Risks

I measure different weather risks using weather indicators from the literature. The sim-
plest quantifiers of the prevailing weather conditions in a given time period are the av-
erages of daily precipitation, and minimum and maximum temperature values. Average,
or respectively cumulative, precipitation and temperature measures are often found in
weather-yield models (Martin et al. 2001; Turvey, 2001; Musshoff et al, 2009; Berg et al.,
2009; Leblois et al., 2011). Their use is however criticized on the basis that sub-seasonal
variations, such as long dry spells or short heat waves, which are critical to crop growth,
are not captured (Lobell and Burke, 2010). Since I divide the growing period into 4 sub-
periods, the use of average measures at each growing stage can be justified.

When using precipitation averages, the water consumption by the plant is however
not adequately reflected by the index since low precipitation may evaporate – especially
on hot days – or run off with excess precipitation. To construct an index that takes the
actual water availability to the plant into account, I calculate the daily values of poten-
tial evapotranspiration (ETo) using the Priestley-Taylor radiation-based method recom-
mended by the FAO (1998), and a temperature-based method by Hamon (1963). This
allows us to construct the Reconnaissance Drought Index (RDI) proposed by Tsakiris and
Vangelis (2005, 2006), which is the ratio between the cumulated quantities of precipitation
and ETo (given a time period), using both ETo methods as inputs. In addition, I construct
a Moisture Deficit Index (MDI), which is the difference between daily precipitation and
ETo, to approximate for the moisture deficit.

2.4.3 Index Construction

I use a multivariate regression framework to evaluate the effect of the above-stated weather
variables on crop yields. While three different weather related sources of yield risk exist –
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drought, excess precipitation, and heat stress – I find that in Schaffhausen (SHA), weather
events causing drought-like conditions explain the largest fraction of variation in maize
yields. Some findings worth noting are that variations in maize yields are better explained
by multivariate regression models which capture the effect of different weather events
during the growing cycle, compared to bivariate models. Purely temperature based mod-
els were not further considered in the analysis since they can only explain a very small
fraction of yield variation compared to precipitation-based models. Regression models
that use measures of potential evapotranspiration in addition to precipitation perform
the best, i.e. these models explain large fractions of yield variability. Including squared
precipitation measures further increases the prediction accuracy of the model, and thus
improves the quality of the weather index.

I select 4 multivariate regression models with different weather phenomena occurring
at different phenology stages to construct weather indices. The 4 models vary in the time
periods and weather events covered, and therefore in the complexity of communicating
the index to the insured. For the contract design, working with 4 indices allows us to
examine the effect of the goodness of fit of an index on risk reduction (see section 2.5.3
and 2.6.3). Table 2.2 provides an overview of which weather variables are used in each of
the 4 models and shows the phenology phases at which these variables are measured.24

To construct Index 1, I only use mean precipitation during the vegetative period,
which explains 37.1% of the variation in maize yields. Taking minimum temperatures
during emergence and flowering, as well as the maximum temperatures during grain
filling and maturity into account, Index 2 explains 49.3% of total maize yield variabil-
ity.25 Using the difference between mean precipitation and potential evapotranspiration
to measure the water availability, I construct Index 3 with an adjusted R2 of 47.1%. Con-
sidering the fact that precipitation has a nonlinear effect on crop growth, the squared
mean precipitation is used in addition to the Reconnaissance Drought Index in Index 4.
The rank correlation of Index 4 with yields is 78.9% and the adjusted R2 is 62.5%. The
goodness of fit of each of the 4 indices is described in Table 2.3, showing (Spearman) rank
correlation, the adjusted R2, and the Akaike Information Criterion (AIC).

24Table 2.11 in Appendix shows the estimated coefficients and the t-statistics for the 4 regression models.
Only models with weather variables that are significant at 10% or less are considered for constructing
weather indices.

25I report the adjusted R2 to make the comparison with other studies possible. The adjusted R2 is however
not the optimal measure for evaluating the quality of an index for non-linear regression models. Therefore,
I also report the Akaike Information Criterion (AIC) and the rank correlation coefficients.
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Table 2.2: Description of weather indices

Index Weather No. of Phenology
variable variables Phase

Index 1 m.precip∗ 1 2
Index 2 m.precip, m.tmax∗∗, m.tmin∗∗ 7 1-4
Index 3 P.ETo(Priest)∗∗∗ 3 2-4
Index 4 m.precip, m.precip2+, RDI(Hamon)++ 9 2-4

Note: ∗ m.precip is the mean of daily precipitation values. ∗∗ m.tmax and m.tmin are respectively the means
of daily maximum and minimum temperatures. ∗∗∗ P.ETo(Priest) is the difference between daily precipi-
tation and daily evapotranspiration (ETo), where ETo is measured using the Priestley-Taylor formula. +

m.precip2 are the squared daily mean precipitation values. ++ RDI(Hamon) is the Reconnaissance Drought
Index derived using daily potential evapotranspiration, where ETo is measured using the Hamon formula.

Table 2.3: Goodness of fit of weather indices and yields

Index Rank Adj.R2 AIC
correlation

Index 1 64.7 37.1 16876
Index 2 74.1 49.3 16712
Index 3 71.3 47.1 16751
Index 4 78.9 62.5 16422

2.5 Results

2.5.1 Conditional Yield Distributions

In section 2.2, I showed that the optimal payoff structure has to reflect the information
contained in the conditional yield distributions. Figure 2.2 shows the conditional yield
densities for maize in SHA estimated with a two-dimensional kernel procedure for the
four indices described in section 2.4. In particular, I observe that changes in the riskiness
of yield production due to changes in the weather index have an effect on the local slope
of the contract (p′(z)).

Maize yields in SHA range from 4,190 to 11,878 kilo per hectare (kg/ha), with an aver-
age of 9,241 kg/ha.26 The weather index is measured in the same units (kg/ha) since the
index has been constructed such that it possesses a high correlation with crop yields, and
thus represents predicted yields for the given realizations of the weather index. Unless
otherwise noted, the conditional yield densities are estimated using ny = 25 and nz = 50,
and the Kernel bandwidth for the index, bw(z), is set to 300, and for the yield data a

26Revenues from maize production thus range from 1,718 to 4,870 CHA per hectare.
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Figure 2.2: Conditional yield density for weather indices 1 to 4. Kernel estimates with
nz = 50, ny = 25, bw(z) = 300, bw(y) = 100.

Kernel bandwidth, bw(y), of 100 is used.
It can be seen that for all indices, low values of the index are associated with low ex-

pected yield levels. As the value of the index increases, maize yields tend to increase as
well, albeit in a non-linear way. For Index 1 to 3, the conditional mean yield tends to
increase rapidly for low values of the weather index. Once the weather index has reached
its mean value, the increase in the conditional mean yield flattens out for a further in-
crease in the underlying index. The conditional yield density for Index 4 behaves slightly
different. For low values of Index 4, yields tend to increase only slowly, and almost lin-
early. The flattening of the conditional mean only occurs for very high values of the index
(compared to Indices 1 to 3). Most notable is that the shape of the conditional yield distri-
butions changes for different values of the weather index. This observations holds for all
indices.27In particular, the riskiness of the conditional maize distributions may change in
a non-continual way for small changes in the weather index. These changes in the risk-
iness explain why the optimal weather insurance contract is neither perfectly linear nor
U-shaped, as will be demonstrated in the following.

27For further empirical research, it is worth noting that when estimating the relationship between weather
and yields, one should account for the fact that the assumption of homogenously distributed error terms is
not valid, as is obvious from Figure 2.2.
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2.5.2 Optimal Insurance Contract

The optimal weather insurance contract for Index 2 (Index 4) is shown together with the
conditional yield density in Figure 2.3 (Figure 2.4).28 The shape of both contracts reflects
closely the changes in the respective conditional yield distributions. Both contracts pay
out for low values of the index, and have negative net-payments for high values of the
index. Net-payments for contract 2 decrease faster than for contract 4 since for low values
of the weather index 4 the probability of getting high yields is low. The maximum net-
payment from contract 2 is 1,660.60 CHF per hectare of insured maize production. The
minimum of the indemnification curve is at -828.36 CHF, which can be interpreted as
the premium (P), or the amount of money a farmer would have to pay to obtain the
weather insurance contract. Assuming that the insured pays a premium of 828.36 CHF to
purchase the contract at the beginning of the growing season, the gross-payments for a
given weather realization are determined by adding the premium to each net-payment.29

Figure 2.3: Conditional yield density and insurance contract for Index 2.

In Figure 2.5, all 4 optimal weather insurance contracts are shown together. The
weather insurance contracts for Indices 1 to 3 possess similar contract shapes and con-
tract parameters.

At the point where the net-payment is equal to zero, the purchaser of the contract re-
covers the premium. Once the weather index has reached values smaller than the “recov-
ery point”, the contract is “in the money” or has positive net-payments. The probability
of this event (“recovery probability”) can be derived from the probability density function

28For Index 1 and 3, the optimal contracts together with the conditional yield densities are shown in the
Appendix (Figures 2.11 and 2.12).

29In the Appendix (see Figure 2.13), I show the gross-payments from the insurance contract for Index 4.
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Figure 2.4: Conditional yield density and insurance contract for Index 4.

Figure 2.5: Weather insurance contracts for Index 1 to 4 and sigma=2.

of the underlying weather index. As shown in Table 2.4, the probability of the weather
index being equal to or lower than the recovery point is between 46− 49% (depending on
the index), i.e. the contract pays out (in net terms) almost every second year.30 Further-
more, the premium and maximum payout, and the realization of the weather index at
which the insured recovers the premium are shown in Table 2.4. Contract 4 has the small-
est premium with 668.90 CHF, and at the same time the highest maximum net-payment
with 1,775.60 CHF and in 49% of the cases the insured fully recovers the premium.

30The frequency of (historical) pay-outs has been found to be a critical factor influencing farmers’ decision
to purchase protection against adverse weather conditions (Patt et al., 2009). The optimal weather insurance
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Table 2.4: Contract parameters

Index Premium max. Recovery Recovery
Payout Point Probability

Index 1 776.30 CHF 1,207.20 CHF 9.081 0.48
Index 2 828.36 CHF 1,666.60 CHF 8.971 0.46
Index 3 821.10 CHF 1,762.50 CHF 8.003 0.47
Index 4 668.90 CHF 1,775.60 CHF 9.183 0.49

Note: Premium and maximum payout are measured in CHF. The recovery point is in the same units as the
index. Recovery probability is the probability of realizing index values equal or smaller than the recovery
point. Crop: Maize; Location: SHA; Contract parameters: σ = 2, nz = 50, ny = 25, bw(z) = 300, bw(y) =
100.

To describe the insurance properties of an optimal insurance contract, the information
contained in the recovery point (trigger), maximum payout (cap) and premiums is insuf-
ficient. For a complete picture of the insurance coverage inherent in an optimal weather
insurance contract, the relationship between the pay-out probabilities at different levels
of the weather index and the respective net-payments has to be analyzed. For that pur-
pose, I compare the net-payment curve with the probability distribution of the underlying
weather index. In Figure 2.6, these two functions are shown for index 4. I find that very
high net-payments only occur with low probabilities, and at the same time the probabil-
ity of having to pay the full premium is also very low. The intuition for this observation
is clear: the insured receives very high-payments for catastrophic weather events such
as droughts that cause substantial losses. These events however only occur with a very
low probability. Similarly, perfect growing conditions (as indicated by high values of the
weather index) also occur only with a low probability, and therefore the insured faces a
very low probability of paying the full premium. The optimal contract provides moder-
ate payments between 0− 500 CHF for very likely deviations from the recovery point,
and therefore comes in most years at moderate costs of 0 to −500 CHF for Index 1 and 2,
which are even lower for Index 3 and 4.

To characterize the optimal insurance contract in terms of pay-out frequencies, I com-
puted the probabilities of realizing net-payments that range between the maximum pay-
out (limit) and 500 CHF, between 500 and 0 CHF, 0 and −500 CHF, and between −500
and the premium. Table 2.5 summarizes the pay-out probabilities for all 4 insurance con-
tracts. In the case of contract 2, the probability of net-payments between 500 and 0 CHF is
39.60%, and together with the probability of 43.30% for net-payments between 0 and−500
CHF, this contract has net-payments between 500 CHF and −500 with a probability of

contract should thus be quite attractive to farmers given its high recovery probability.
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Figure 2.6: Probabilities of net-payments from insurance contract 4.

82.80%. At the same time, this contract offers high indemnities in times of severe weather
events. The extended coverage comes at a cost of having to pay between −500 CHF and
the premium when weather conditions are excellent, which occurs in 7.40% of the cases.
Overall, all optimal insurance contracts are characterized by moderate net-payments of
500 to −500 CHF occurring with a probability of 78.60% (Index 4) to 86% (Index 1 and
3). Thus, optimal weather insurance offers protection for catastrophic, infrequent-high-
loss events and compensates the insured on a regular basis for moderate fluctuations of
yields.

Table 2.5: Pay-out probabilities of optimal insurance contracts

Net-Payment 500 to 0 to -500 to premium
(in CHF) max.payout 500 0 to -500
Index 1 probability 6.60% 39.20% 47.20% 7.10%
Index 2 probability 9.80% 39.60% 43.20% 7.40%
Index 3 probability 11.00% 39.60% 46.80% 2.60%
Index 4 probability 14.60% 34.50% 44.10% 6.80%

Note: Payments are measured in CHF. Crop: maize, location: SHA, contract parameters: σ = 2, nz = 50,
ny = 25, bw(z) = 300, bw(y) = 100.
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2.5.3 Evaluation of Hedging Effectiveness

The risk-reduction that can be achieved from using an optimal weather insurance con-
tract can be evaluated by comparing the revenue distribution without insurance to the
situation where the farmer hedges the weather exposure by buying insurance. In the sit-
uation without insurance, the income from maize production (per hectare) is equal to the
revenues from maize production, i.e. maize yields yi (kg/ha) in a given year i multiplied
by the respective price pm, which is 0.41 (CHF/kg). The income per hectare of maize pro-
duction in SHA thus ranged from 1,718 to 4,870 CHF, with mean revenues of 3,696 CHF
and standard deviation of 576.90 CHF. To derive the income of a maize farmer in SHA
for the situation with insurance, the net-payments in each year are added to the revenues
from selling maize. If the farmer hedges the weather risk, the lowest income realizations
range from 2,162 to 2,376 CHF depending on the contract. By hedging, the farmer thus
receives 25 to 38% more income in the worst possible year (depending on the contract)
than without hedging. At the upper end of the income distribution, incomes of 4,821 to
4,959 CHF/ha are possible (depending on the contract).

Table 2.6 summarizes the statistical properties (mean, standard deviation, skewness,
and the 10%, 25%, 50%, 75%, and 90% quantiles) of the income distributions with and
without insurance. As expected, the mean income is the same in all scenarios since insur-
ance reduces the risk of realizing low incomes, but does not cause a change in the mean
income due to the zero profit condition (2.1).31 Without insurance, the risk of realizing
an income that is lower than 2,865 CHF is 10%. With insurance, in 10% of all cases the
income falls below 3.109 to 3.268 CHF depending on the chosen contract, i.e. the risk of
low incomes (in the 10% quantile) is substantially reduced.

All weather insurance contracts greatly reduce the standard deviation and skewness
of the income distribution. Overall, farmers face less risk of obtaining low incomes.32 The
contract based on Index 4 almost halfs the standard deviation. While the incomes for the
10% and 25% quantiles increase with insurance, the incomes at the 75% and 90% quantiles
decrease. As a result of facing less risk at the lower end of the income distribution, the
insured faces now lower probabilities for realizing extremely high incomes (compared
to the situation without insurance). The compression of the income distribution with
insurance can also be seen in Figure 2.7, which shows the income distributions for the 4
insurance contracts, and for the scenario without hedging. Insurance contract 4 performs

31The fact that the reported mean incomes for the situations with insurance are by 5-7 CHF smaller than
in the situation without insurance is due to numerical imprecision from solving the optimization problem.

32An Ansari-Bradley test has been performed, and for all weather insurance contracts we can reject at the
5% level the hypothesis that the income distribution with insurance has the same dispersion as the income
distribution without insurance.
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Table 2.6: Income with and without insurance for 4 weather insurance contracts

Not Index 1 Index 2 Index 3 Index 4
Insured

mean 3696 3691 3691 3691 3689
std 576.9 436.0 369.0 379.3 338.2
skw -0.73 -0.65 -0.54 -0.41 -0.50
10% 2865 3109 3211 3203 3268
25% 3337 3448 3478 3471 3501
50% 3815 3749 3725 3713 3708
75% 4147 4000 3946 3946 3908
90% 4349 4193 4138 4135 4094

Note: Units: CHF/ha, crop: maize, location: SHA, model parameters: σ = 2, ny = 25, nz = 50,
bw(1) = 100, bw(2) = 300.

the best.
To measure the effect of hedging, I compute the percentage increase (of all income

realizations) in the situation without insurance that makes the farmer equally well-off
as in the situation with insurance. In equation (2.9), the farmers expected utility from
insurance is set equal to the expected utility in the situation without insurance when all
income realizations are multiplied by (1 + δ). I solve the expression in the following
equations (2.10-2.11) for δ.

∫
z

g(z)
∫

y
f (y|z) (p(z) + y)1−σ

1− σ
dydz =

∫
z

g(z)
∫

y
f (y|z) ((1 + δ)y)1−σ

1− σ
dydz (2.9)

⇔
∫

z
g(z)

∫
y

f (y|z)(p(z) + y)1−σdydz = (1 + δ)1−σ
∫

z
g(z)

∫
y

f (y|z)y1−σdydz (2.10)

⇔ δ =

(∫
z g(z)

∫
y f (y|z)(p(z) + y)1−σdydz∫

z g(z)
∫

y f (y|z)y1−σdydz

) 1
1−σ

− 1 (2.11)

The percentage increase (of all income realizations) in the situation without insurance
that would lead to the same level of expected utility as in the situation with insurance, δ, is
a measure of the value of weather insurance. I compute δ for the 4 contracts described in
section 2.5.2 with risk aversion of σ = 2. Buying optimal weather insurance is equivalent
to increasing the insured’s income (in all states of the world) by 1.25 to 1.95 % depending
on the contract. The benefit from hedging with weather insurance can reach considerable
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Figure 2.7: Income distribution without insurance and for 4 weather insurance contracts.

values (δ > 10%) for higher levels of risk aversion (σ > 5).33 Table 2.7 shows δ (in
percent) for the 4 indices and different levels of risk aversion. I also observe that δ tends
to be higher for contracts for which the quality of the weather index is high (see Table
2.3). For Index 1, which has a (Spearman) rank correlation coefficient of 64.7%, a δ of
0.57% to 10.2% can be achieved. For Index 4, which possesses the highest rank correlation
of 78.9%, I find δ’s in the range of 0.89% to 16.92% depending on the level of risk aversion.

The contracts shown in Figure 2.3 to 2.5 are derived for a risk aversion of σ = 2. For
Figure 2.8, I computed the optimal contract for Index 4 for different levels of risk aversion
(σ = 1, 2, 5, 7, 10). The more risk averse the insured, the more protection is being sought in
the optimum, which can be seen in a shift in the recovery point, and higher compensation
(in the form of positive net-payments) for medium deviations of the weather index from
its mean. To compensate for the increased protection, a higher premium has to be charged
since moderate deviations tend to occur quite frequently. The hedging effectiveness as
expressed by δ increases by factor 8 when sigma increases by factor 5 (from σ = 2 to σ =

10). For low levels of risk-aversion (σ = 1, 2), the optimal contract focuses on providing
high payments in times of catastrophic weather events, as soon as yields tend to increase,

33The observation that benefits from risk reduction increase with risk aversion is in line with related
findings in the literature. For instance, in an empirical analysis of the incentives to participate in the U.S.
multi-peril crop insurance scheme Just et al. (1979) find that risk-avers farmers generally have larger risk
premiums (compared to risk-neutral farmers).
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Table 2.7: δ (in %) for different levels of risk aversion

Index 1 Index 2 Index 3 Index 4
σ = 1 0.57 0.80 0.79 0.89
σ = 2 1.25 1.76 1.72 1.95
σ = 4 3.06 4.29 4.23 4.75
σ = 5 4.22 5.94 5.88 6.56
σ = 7 6.78 9.69 9.68 10.7
σ = 10 10.2 15.31 15.47 16.92

Note: δ is the percentage increase of all income realizations without insurance compared to the situation
with insurance. Crop: maize, location: SHA, model parameters: ny = 25, nz = 50, bw(1) = 100, bw(2) =
300.

net-payments tend to decrease sharply. The reduced protection for moderate deviations
from the mean, which a farmer with low risk aversion seeks, is at the same time available
at a lower premium.

Figure 2.8: Optimal weather insurance contract for different levels of risk aversion.

2.5.4 Effect of Kernel Density Estimation Parameters

The robustness of the optimal insurance contract, p(z), is finally evaluated for changes in
the parameter choice of the nonparametric kernel density estimation. It turns out that the
choice of the kernel function does not have an effect on the results, so I use a standard
bivariate normal kernel for all my analysis. The choice of the bandwidth in both dimen-
sions (bw(z) and bw(y)) is however an important factor affecting the estimates since it
controls the amount (and orientation) of smoothing induced (Wand and Jones, 1995). It
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can be shown that increasing the kernel bandwidth for both the weather index (bw(z))
and yields (bw(y)) has an effect on the smoothness of the contract, and consequently on
the measure of risk reduction δ. The smoother the contract p(z) is, due to high values
for bw(z) and bw(y), the lower the risk reduction as measured by δ. With less smooth-
ing, the net-payment curve responds more to small changes in the weather index, i.e. the
noise in the data receives more attention. At the same time, the income distribution with
insurance becomes smoother. When over-smoothing the contract, less weather-related
variability in the income is hedged. Consequently, the income distribution becomes less
smooth.

Table 2.8: δ (in %) for different kernel estimation parameters

Index 1 Index 2 Index 3 Index 4
specification 1 1.25 1.76 1.72 1.95
specification 2 1.57 2.19 1.84 2.31
specification 3 1.31 1.83 1.75 2.01
specification 4 1.40 1.92 2.03 2.03

Note: All results are for a risk aversion of σ = 2.
specification 1: nz = 50, ny = 25, bw(z) = 300, bw(y) = 100
specification 2: nz = 50, ny = 25, bw(z) = 100, bw(y) = 40
specification 3: nz = 20, ny = 15, bw(z) = 300, bw(y) = 100
specification 4: nz = 20, ny = 15, bw(z) = 100, bw(y) = 40

Increasing ny increases the number of yield density estimates that are derived for a
given value of z. It can be shown that changes in ny have only small effects on risk
reduction. In contrast, the choice of nz has a bigger effect on δ.34 I find that increasing nz
decreases the risk reduction as measured by δ. Overall, changes in either of the estimation
parameters have a small impact on risk reduction as can be seen in Table 2.8. I derived
δ for different specifications of the estimation parameters for all contracts considered.
In particular, when comparing specification 1 with 2 (and 3 with 4), the effect of over-
smoothing can be seen.35 Increasing the kernel bandwidth from bw(z) = 100 and bw(y) =
40 to bw(z) = 300 and bw(y) = 100 decreases δ by about 10% on average. Comparing the
specification 1 with 3 (and 2 with 4), the effect of increasing nz on δ can be seen.

34In general, when estimating the conditional yield densities at more points (higher nz) – while holding
ny constant – fewer weather-yield observations are available at the various evaluation points. To derive the
density estimates, the kernel procedure has to interpolate more.

35Specification 1 constitutes the baseline scenario which is used throughout the paper.

64



2.6. Optimal Insurance Contract for the Insurer

2.6 Optimal Insurance Contract for the Insurer

2.6.1 The Profit-Maximization Problem

Contrary to the assumption stated in the theoretical model (see section 2.2), expected
profits from offering weather insurance are in reality not found to be zero. The insurer
requires a positive expected-return to cover his administrative and transaction costs. De-
pending on the nature of the transaction and the degree of systemic risk in the insured
pool, the insurer must factor costs for re-insurance in the premium. Therefore, weather in-
surance contracts must sell at a price above the expected pay-outs so that location-specific
weather insurance coverage can be provided in the long-run. For the insured, the differ-
ence between the fair premium, which reflects his expected losses, and the additional
costs represent the price for transferring weather-related risks. For the insured to be wil-
ing to buy insurance, this cost must not be excessive compared to bearing the weather
risk himself.

One mechanism to examine whether a profit-making (loaded) weather insurance con-
tract is attractive for the insured is by comparing the risk reduction achieved from a fair
insurance contract with the risk reduction from a contract that includes a mark-up, i.e.
factors additional costs into the premium. Berg et al. (2009) add a mark-up of around
10% to the premium to address this question. Vedenov and Barnett (2004) evaluate the
effect of transaction costs on risk reduction by adding different loading factors on the pre-
mium and comparing the changes in the insured’s income under these loaded contracts.

I derive instead the optimal weather insurance contract, pm(z), that maximizes profits
of the insurer subject to the constraint that the insured is indifferent between buying the
contract and remaining uninsured. This allows us to numerically determine the maxi-
mum loading factor on fair premiums that the insured is still willing to bear. Hence, the
insurer is faced with the following constraint:

∫
Z

∫
Y

u(y + pm(z))dF(y|z)dG(z) ≥
∫
Z

∫
Y

u(y)dF(y|z)dG(z). (2.12)

The insured’s expected utility in the situation with the profit-maximizing contract has to
be equal to or greater than his expected utility without insurance. Otherwise, the insured
would not be willing to buy the insurance contract. The net-payments pm(z) constitute
liabilities for the insurer. Thus, the insurer maximizes his expected profits by selecting a
contract, {p∗m(z)}, for which the expected net-payments are as small as possible given the
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constraint (2.12). The insurer’s profit-maximizing contract {p∗m(z)} solves

max
{pm(z)}

−
∫
Z

pm(z)dG(z) (2.13)

subject to constraint (2.12). The Lagrangian can be written as follows:

L = −
∫
Z

pm(z)dG(z)+λm

{∫
Z

∫
Y

u(y + pm(z))dF(y|z)dG(z)−
∫
Z

∫
Y

u(y)dF(y|z)dG(z)
}

(2.14)
which yields the pointwise first-order conditions

∫
Y

u′(y + pm(z)) f (y|z)dy =
1

λm
∀z ∈ Z , (2.15)

where λm > 0 is the Lagrange multiplier of constraint (2.12). Optimality condition (2.15)
requires that the expected marginal profit of the insured conditional on a realization of
the weather index z is equalized across all z by the optimal contract. I implement the
profit-maximization problem by assuming CRRA preferences for the insured with σ=2.
The implementation is analogous to the one described in section 2.3.

2.6.2 The Profit-Maximizing Insurance Contract

Comparing the profit-maximizing insurance contract with the optimal (zero-profit) in-
surance contract in Figure 2.9 (top panel), we find that the profit-maximizing contract
pm(z) displays the same shape as the optimal insurance contract p(z). As pointed out in
section 2.5.1, the shape of p(z) is influenced by the changes in the riskiness of the condi-
tional yield distributions. With respect to the shape of pm(z), Propositions 1 to 5 apply
analogously. While both contracts possess the same shape, they differ in their absolute
amount of net-payments. For the entire range of the weather index, net-payments are
lower for the profit-maximizing contract. In Figure 2.9 (bottom panel), the difference be-
tween the net-payments from the optimal contract and the profit-maximizing contract
are shown (for Index 4). The optimal insurance contract pays between 69 to 71.50 CHF
more depending on the realized value of the index. The insurer can capture the absolute
difference in net-payments because the profit-maximizing contract makes the insured as
well-off (in expected utility terms) as in the situation without insurance.
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Figure 2.9: Optimal and profit-maximizing insurance contract (top panel) and profit mar-
gin (bottom panel) for Index 4 and σ = 2.

2.6.3 Evaluation of the Profit-Maximizing Insurance Contract

The profits that an insurer can expect to earn by offering the profit-maximizing insurance
contract are calculated by

∏ = −
∫
Z

p∗m(z)dG(z). (2.16)

Expected profits for the 4 insurance contracts are derived for different levels of risk aver-
sion and are summarized in Table 2.9. For low levels of risk aversion, such as σ = 2,
the insurer can expect to earn between 43.30 to 69.70 CHF per hectare of insured maize
production (depending on the contract offered). Expected profits increase to substantial
values (123 to 207 CHF) the higher the coefficient of relative risk aversion (σ = 5).

Profits are found to be positively correlated with the goodness of fit of the underlying
weather index. The higher the correlation coefficient of an index (see Table 2.3), the better
the hedging effectiveness as measured by δ (see section 2.5.3). With rational insurers,
I expect an insurance contract similar to contract 4 to be offered since it possesses the
highest expected profits. At the same time, insurance contract 4 delivers the highest risk
reduction, as measured by δ, and is therefore also the most attractive risk management
tool for the insured.

As I set out to determine the maximum amount of loading on fair premiums, I com-
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Table 2.9: Expected profits for different levels of risk aversion

Index 1 Index 2 Index 3 Index 4
σ = 1 20.10 30.60 29.10 34.90
σ = 2 43.30 57.80 59.90 69.70
σ = 4 100.20 141.80 139.78 154.33
σ = 5 123.00 182.80 181.20 207.90
σ = 7 179.30 267.60 267.30 298.10
σ = 10 221.90 349.60 355.70 389.40

Note: Profits are measured in CHF/ha. Crop: maize, location: SHA, model parameters: ny = 25, nz = 50,
bw(1) = 100, bw(2) = 300.

pare the premium of the profit-maximizing contract to the premium of the fair (optimal)
contract. The loading factors (in percent) of fair premiums are presented in Table 2.10 for
different levels of risk aversion. I find that at moderate risk aversion, it is possible to add
a 10% mark-up on the fair premium (for Index 4). As before, with a higher levels of risk
aversion, loading factors of 30 to 50% become possible (for Index 4).

Table 2.10: Loading of fair premium for different levels of risk aversion

Index 1 Index 2 Index 3 Index 4
σ = 1 2.89 4.02 3.89 5.63
σ = 2 5.93 7.72 7.75 10.88
σ = 4 12.90 17.32 17.18 23.24
σ = 5 15.41 21.90 21.88 30.72
σ = 7 (32.63) 31.03 31.16 41.77
σ = 10 23.88 36.65 39.32 53.38

Note: The loading factor is expressed in % of the optimal premium. Crop: maize, location: SHA, model
parameters: ny = 25, nz = 50, bw(1) = 100, bw(2) = 300.

Finally, I evaluate the benefits for the insured from hedging with a profit-maximizing
insurance contract. The income distribution of the situation without insurance is com-
pared to the income situation where the insured bought a profit-maximizing contract, and
to the situation with a fair contract.36 Figure 2.10 shows the different income distributions
for Index 4. As can be seen, the income distribution from a profit-maximizing contract is
less risky (compared to the un-hedged situation), but has a lower mean income. With
profit-maximizing insurers, the income distribution from the optimal contract is shifted
to the left and the difference between the two mean incomes is captured by the insurer.

36 The changes in the statistical properties (mean, standard deviation, skewness and the 10%, 25%, 50%,
75%, and 90% quantiles) are reported in the Table 2.12 in the Appendix.
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Figure 2.10: Income distributions for optimal and profit-maximizing weather insurance
contracts for Index 4.

2.7 Conclusion

2.7.1 Summary and Outlook

I propose a new method to derive an index-based weather insurance contract with opti-
mal hedging effectiveness. To illustrate it, I apply it to simulated crop and weather data
of maize production in Switzerland, and derive nonparametrically the shape of the opti-
mal contract, and demonstrate that the slope of an optimal weather insurance contract is
characterized by changes in the estimated conditional yield distributions.

I show how to quantify the risk reduction from hedging weather-related production
risk with my novel approach. By comparing the income distribution without insurance
to a hedged situation, I find that income without insurance can be increased (depending
on the underlying index) by 1.8 to 2.2% for the benchmark level of risk aversion (σ = 2),
and that benefits can become quite substantial (equivalent to a more than 10% increase
in incomes) for higher levels of risk aversion (σ = 5). Furthermore, I demonstrate the
robustness of the optimal contract to changes in the parameters used to derive the condi-
tional yield densities.

In an extension of the model, I show how to derive a profit-maximizing insurance
contract in order to determine the maximum amount of loading on fair premiums so that
the contract remains attractive to the insured. I find that loading factors can become quite
substantial (120 to 200 CHF/ha, and, respectively, 15 to 30%) depending on the weather
index and the level of risk aversion (σ = 5). The question of how the efficiency gains
from hedging farmers’ weather exposure are shared between the insurer and the insured
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is a matter of market power in the weather insurance sector, and depends on the cost
of obtaining re-insurance. The analysis provides the bonds between which insurance
contracts will be located for any distribution of bargaining power.

Due to the spatial correlation of weather, small (localized) insurers are faced with sys-
temic risk, i.e. they face high pay-outs in the situation of extreme weather events, which
requires them to obtain re-insurance. The presence of systemic risk can therefore be an
obstacle of insurability (Quiggin, 1991). While we cannot answer the question whether
the optimal loading factors are large enough to cover re-insurance (and administrative
costs), the approach characterizes the entire set of mutually-feasible insurance contacts
(by deriving both the optimal and the profit-maximizing contract).

By construction, the proposed optimal weather insurance contract implies that no
other insurance contract can achieve more risk reduction. In future work, this advantage
remains to be quantified. In particular, using the same weather and yield data – ideally for
different crops – weather insurance contracts can be derived using the classical derivative
structure proposed by Turvey (2000, 2001) and Martin et al. (2001), the semi-optimization
approaches described by Berg et al. (2009) and Leblois et al. (2011), and the parametric
method proposed by Musshoff et al. (2009). Differences in the hedging effectiveness from
these contracts are then solely attributable to the new methodology used for the pay-off
structure design.

I realize that optimizing an insurance contract and evaluating its hedging effective-
ness on the same data exposes the results to the risk of over-fitting. One way of dealing
with over-fitting is by conducting a cross-validation analysis (Vedenov and Barnett, 2004).
Given the size of the data, I rate this risk as rather small. In contrast, the risk of over-fitting
from using simulated crop yield data should be analyzed. I therefore propose to compare
the hedging effectiveness from an insurance contract, which has been derived using sim-
ulated yield data, to the risk reduction of contracts which were designed using historical
yield and weather data (for the same region and crop). I leave this to be demonstrated in
future applications.

It is well known that the wealth level of the insured has an effect on the risk reduction
sought. In my study, I implicitly assume that the wealth of the insured is entirely earned
from the production of the insured crop. I leave the question of how initial wealth affects
the optimal contract to future research.

To my knowledge, I am the first to propose a method for implementing weather in-
surance contracts based on phenology-driven weather indices. While I found that these
more complex indices outperform indices based on fixed time windows, a more thorough
investigation of this observation with data from different crops may be insightful.
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Weather insurance is by construction a specific-peril insurance. I account for the in-
fluence of different weather events (occurring throughout the growing season) by con-
structing indices that weight these events and their respective impacts on crops. I then
use the statistical distribution of the index to design and price the insurance contracts.
This procedure may not adequately account for the fact that the probability of a given
weather phenomena occurring at the beginning of the season impacts the likelihood of
other weather events occurring later in the season. Future research could explore the de-
sign of multi-peril index-based weather insurance where the conditional probabilities of
sequential weather events are explicitly modeled.

2.7.2 Practical Considerations for Implementing Optimal Weather In-

surance

I conclude with some remarks on how the proposed optimal insurance contracts could
be implemented. Weather insurance is intended to hedge against production risk rather
than price risk, therefore choosing the crop price for converting net-payments in mone-
tary units is a critical aspect. I recommend to use the crop price at the end of the growing
season to determine the insurance payments. Using the end-of-season crop price helps
reduce price uncertainty, and farmers’ decisions to obtain weather insurance are indepen-
dent from price variability and thus speculation. Farmers’ individual yields will usually
not be correlated with the crop price if the commodity sector is engaged in international
trade and the total production supplied is small relative to world production, i.e. the
country is a price taker.37 Farm revenues are therefore subject to price volatilities. Using
a crop price different from the end-of-season price exposes the farmer unnecessarily to
price risk. In practice, the insured and the insurer sign a contract before the growing sea-
son, which stipulates the index and pay-off structure in yield units, and agree that yield
units are converted into monetary units using the end-of-season crop price. Alternatively,
if future-markets exist for the crop to be insured, the future price can be used.

I argued that the use of weather indices that consider the phenological timing im-
proves the goodness of fit between index and yields. As shown, the insurer and the
insured benefit from using more accurate weather indices since both profits and risk re-
duction are enhanced. To derive phenology-sensitive weather indices, the farmer has to
correctly report the sowing date of the insured crop to the insurer. The insured has a
self-interest in correctly reporting the sowing date as this information affects the correct

37Otherwise, a “natural hedge” exists, which compensates negative yield variations through higher
prices.
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measurement of the index, and thus insurance payments. Based on the sowing date, the
insurer can determine the start and end dates of the phenology phases with the help of
a process-based crop simulation model – as demonstrated in this paper – or by using the
GDD levels corresponding to the crop’s phenology phases.
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2.8 Appendix

Table 2.11: Weather-yield regression outputs

Weather Index 1 Index 2 Index 3 Index 4 Phenology
variable Phase
m.precip.2 969.8∗∗∗ 13.6∗∗∗ 4446.2∗∗∗ 2
m.precip.3 224.5∗∗∗ 430.2∗∗ 3
m.precip.4 304.2∗∗ 975.5∗∗ 4
m.tmin.1 −13.3∗ 1
m.tmin.2 214.2∗∗ 2
m.tmax.3 34.6∗ 3
m.tmax.4 108.6∗∗ 4
P.ETo.2 12.8∗∗∗ 2
P.ETo.3 15.5∗∗∗ 3
P.ETo.4 6.9∗∗ 4
RDI.2 −111810.6∗∗∗ 2
RDI.3 −3949.2∗ 3
RDI.4 −2447.5∗∗ 4
m.precip.22 −282.7∗∗∗ 2
m.precip.32 −16.2∗∗∗ 3
m.precip.42 −51.8∗∗ 4
Adj.R2 37.1 49.3 47.1 62.5

Note: ∗ ∗ ∗ significant at the 1% level. ∗∗ significant at the 5% level. ∗ significant at the 10% level.
m.precip is the mean of daily precipitation values.
m.tmax and m.tmin are, respectively, the means of daily maximum and minimum temperatures.
P.ETo(Priest) is the difference between daily precipitation and daily evapotranspiration (ETo), where ETo is
measured using the Priestley-Taylor formula. m.precip2 are the squared daily mean precipitation values.
RDI(Hamon) is the Reconnaissance Drought Index derived using daily potential evapotranspiration, where
ETo is measured using the Hamon formula.
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Figure 2.11: Conditional yield density and insurance contract for index 1.

Figure 2.12: Conditional yield density and insurance contract for index 3.

Figure 2.13: Gross and net-payments for insurance contract 4.
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Figure 2.14: Gross-payments with payment probabilities for insurance contract 4.

Table 2.12: Comparison of income distributions for the optimal and profit-maximizing
insurance contracts

Not Index 1 Index 2 Index 3 Index 4
Insured

mean 3696 3691 3691 3691 3689
- (3648) (3630) (3630) (3619)

std 576.9 436.0 369.0 379.3 338.2
- (436.2) (369.0) (379.4) (338.2)

skw -0.73 -0.65 -0.54 -0.41 -0.50
- (-0.65) (-0.54) (-0.41) (-0.50)

10% 2865 3109 3211 3203 3268
- (3066) (3151) (3143) (3199)

25% 3337 3448 3478 3471 3501
- (3404) (3417) (3411) (3431)

50% 3815 3749 3725 3713 3708
- (3706) (3665) (3653) (3638)

75% 4147 4000 3946 3946 3908
- (3956) (3885) (3886) (3839)

90% 4349 4193 4138 4135 4094
- (4150) (4078) (4075) (4024)

Note: In brackets are the results for the profit-maximizing contract. Units: CHF/ha, crop: maize, location:
SHA, model parameters: σ = 2, ny = 25, nz = 50, bw(1) = 100, bw(2) = 300.
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Chapter 3

Climate Change, Weather Insurance
Design, and Hedging Effectiveness

with P. Calanca and A. Holzkämper
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3.1 Introduction

Climate change causes shifts in average weather conditions and an increase in the weather
variability due to changes in the frequency and occurrence of extreme events.1 Some of
the extreme weather events that occurred between 2001 and 2010 exceeded already in in-
tensity, duration, and geographical extent the most significant historical events on record
(WMO, 2011). Evidence is mounting that with climate change, the frequency of heat-
waves is increasing, for instance, Stott et al. (2004), Beniston (2004), Meehl and Tebaldi
(2004), Schär et al. (2004), Fischer and Schär (2010).2 As a consequence, the return period
of events like the pan-European heatwave of 2003 are becoming shorter.

Agricultural production, as well as many other industrial sectors, are sensitive to
changes in climatic conditions. An increase of prolonged drought-like conditions, caused
by higher temperatures or more frequent heatwaves, has implications for the productiv-
ity of the agricultural sector. Scientific evidence, showing that climate change shifts the

1According to IPCC (2007), is is very likely (90− 99% probability) that there will be higher maximum
temperatures, more hot days, higher minimum temperatures, fewer cold days, and more intense precipi-
tation events over many land areas. It is likely (67− 90% probability) that there will be increased summer
drying over most mid-latitude continental interiors and associated risk of drought.

2Stott et al. (2004) find an increased probability of hot summers like the 2003 heatwave. Stott et al. (2004)
state that it is very likely that human influence on climate has doubled the current risk of a heatwave such
as the one that occurred in 2003, compared to preindustrial times.
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mean and variance of crop yields, is accumulating. The effect of changes in climatic vari-
ables on mean crop yields has been studied widely (Reilly et al., 2002; Deschenes and
Greenstone, 2007; Schlenker and Roberts, 2009). The year-to-year change in climatic con-
ditions is found to be a major determinant of crop yield fluctuations (Mearns et al., 1992;
Olesen and Bindi, 2002; Chen et al., 2004; Isik and Devadoss, 2006; McCarl et al., 2008).3

Climate change thus makes agricultural production more risky (IPCC, 2001; IPCC, 2007),
and without risk management less profitable.4 Consequently, agricultural insurance so-
lutions become more important to protect against a climate change induced increase in
weather-related losses.

The changing occurrence and frequency of extreme weather events implies, however,
that historical return periods underestimate the likelihood of agricultural losses in the
future. In the context of water-resource risk management, Milly et al. (2008) were the
first to note that “climate change undermines a basic assumption that historically has
facilitated management of [...] risks.” Risk analysis and management relied on the as-
sumption that distributions are stationary over time in order to estimate return periods of
weather-related events.5 In the context of agriculture, McCarl et al. (2008) examine histor-
ical crop yield data and find that the stationarity assumption is no longer valid. McCarl
et al. (2008) conclude that risk analysis in light of climate change requires to use dis-
tributions with non-stationary means and variances along with possibly shifting higher
order moments. In conclusion, future agricultural losses cannot be predicted any longer
by extrapolating historical trends of weather and yield data.

Insurers have historically provided insurance solutions for weather-related losses, and
are going to play an integral role for society to cope with the consequences of climate
change. Weather-related insurance losses have increased in recent years, according to
Mills (2005), much faster than non-weather related events.6

The insurance industry started to pay attention to the implications of climate change
for their business (Lloyds of London, 2006; Hawker, 2007; Clemo, 2008; Maynard, 2008;
Dlugolecki 2008; Mills, 2009). Traditionally, insurers have used historical data to design

3Mearns et al. (1992) investigate how climate variability affects agricultural production. The authors
find that increases in variability of temperature and precipitation result in significant increases in yield
variability and that precipitation changes have an even more pronounced effect.

4The pan-European heatwave of 2003 caused, for example, uninsured crop losses of around USD 12.3
billion (Schär and Jendritzky, 2004).

5Milly et al. (2008) defines stationarity as follows: “Stationarity is the idea that natural systems fluctuate
within an unchanging envelope of variability. Stationarity implies that any variable has a time-invariant (or
a one year periodic) probability density function, whose properties can be estimated from the instrument
record.”

6According to Munich Re (2005), weather-related insurance costs have risen continuously (from 1950 to
2005).
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and price insurance products.7 However, as noted by Hawker (2007) “a changing cli-
mate has the potential to reduce the insurance industry’s capacity to calculate, price, and
spread weather-related risk.” Therefore, according to Mills (2009) “insurers’ traditional
modeling techniques are ill-suited for understanding the implications of climate change
...”. Only within natural catastrophe modeling, insurers started to couple climate models
with catastrophe models to examine the financial implications of climate change on in-
sured risk (Bresch et al., 2000; ABI, 2009; Wuest et al., 2011). The impact of climate change
on other insurance lines, such as index-based weather insurance, however remains to be
demonstrated. The aim of this paper is to fill in this gap.

The literature examining the link between climate change and insurance focuses on
damage-based forms of weather insurance, such as property and liability insurance (Clemo,
2008; Ward et al., 2008). For damage-based insurance products, climate change implies
that new extreme events may occur that cause damages which exceed the extent of pre-
viously known damages, and in addition the frequency of weather-related losses is in-
creasing.8 These studies share the view that if weather related insurance losses continue
to rise, insurers will need to respond by increasing premiums, possibly restricting cover-
age and increasing deductibles for their damage-based weather insurance products. Less
attention has been devoted to climate change and parametric weather insurance, which is
the focus of this work.9

Index-based weather insurance is attractive from the perspective of insurers since no
uncertainty regarding the extent of payments (i.e. the losses for the insurer) exists. The
payoff structure defines the range of all possible payments. Climate change only affects
the uncertainty of incorrectly estimating the underlying weather (index) distribution, and
thus charging an inadequate premium. For the insured, however, this implies that losses
beyond the maximum payment are not insured. In contrast to damage-based insurance,
the risk reduction of parametric weather insurance depends on the weather distribution
(by affecting the premium) and on the pay-off structure, which determines the indemnity
for given realizations of the underlying weather index. With this in mind, we also aim
at shedding light on the consequences of using historical data for designing and pricing
parametric weather insurance products with respect to risk reduction.

7According to Mills (2005), insurers’ weather related loss models focus on catastrophic events, and loss-
frequency curves are predicted on extrapolating historical trends.

8Damage-based insurance products indemnify the insured for weather-related losses based on an in-
spection of the loss. The insured is thus guaranteed an indemnification according to the terms of the con-
tract, and the insurance product thus delivers the desired risk reduction. Uncertainty about the extent and
frequency of losses is born by the insurer.

9Parametric insurance, such as index-based weather insurance, indemnify the insured based on the
realization of an exogenous, verifiable weather event.
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The objective of this paper is twofold. First, we determine the potential for weather
insurance in light of climate change. To do so, we evaluate the benefits from hedging
weather risk given today’s climatic condition, and compare them to the benefits from
hedging weather risks with adjusted insurance contracts in a warming and more variable
future climate. An adjusted insurance contract explicitly takes the expected changes in the
mean and variability of both weather and crop yields into account. To design an adjusted
weather insurance contract, we use simulated (forward-looking) weather and yield data
representing a possible climate change scenario.

Second, we assess the effect on risk reduction from hedging weather risk in a chang-
ing climate with non-adjusted weather insurance contracts. Non-adjusted insurance con-
tracts are designed using historical (backward-looking) data.

We use a process-based crop simulation model to derive maize yields for today’s and
future climatic conditions. In particular, we use simulated maize yields for Schaffhausen
(SHA, latitude: 47.69, longitude: 8.62), Switzerland, that are derived with a process-based
crop simulation model, for the current climatic conditions (1981-2001), and for an IPCC
A2 emission scenario reflecting climatic conditions around 2050.

To derive weather insurance contracts, we simulate the pay-off structure using the
method developed by Kapphan (2011). Other methodologies for deriving weather in-
surance contracts exist, and could be used in general to address the research questions
outlined here. We use the model by Kapphan (2011) since the resulting contracts are de-
signed to yield optimal hedging effectiveness for the insured, or maximal profits for the
insurer. The optimal contracts are derived by non-parametrically estimating yield distri-
butions conditional on weather, and maximizing the expected utility of the insured, or
by maximizing expected profits for the insurer. Optimal weather insurance contracts are
characterized by a non-linear payoff structure (for the entire range of weather realiza-
tions).

Given the insurance contracts, we evaluate the benefits from hedging weather risk
for today’s climate by using an insurance contract that has been simulated for today’s
conditions, and then compare the findings with the benefits from hedging weather risk
in a future climate. To account for the increase in the weather and yield variability due
to climate change, we apply the insurance contract that has been derived using future
(projected) yield and weather data to future weather conditions. This comparison sheds
light on the potential of using weather insurance to hedge weather risks in a changing
climate under the assumption that insurers account for the non-stationarity of the un-
derlying weather and yield distributions. We find that, with climate change, the benefits
from hedging with adjusted contracts almost triple, and that expected profits increase by
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about 240% (depending on the contract).
To address our second research question, we use insurance contracts that are designed

for today’s climate and evaluate the risk reduction that can be achieved with them in a fu-
ture climate, i.e. we determine the risk reduction of non-adjusted insurance contracts. By
comparing the risk reduction of non-adjusted contracts with the benefits from adjusted
insurance contracts, we quantify for the first time the effect of not adapting insurance
contracts on risk reduction (expected profits) for the insured (the insurer). Our results
indicate that insurers may either face substantial losses or generate profits that are signif-
icantly smaller than profits from offering adjusted insurance contracts. While our numer-
ical results are crop- and location-specific, our approach for evaluating the potential of
parametric weather insurance in a changing climate and for assessing the consequences
of offering non-adjusted contracts can be applied to any crop or location for which suffi-
cient data (for calibrating a process-based crop model) exists.

A large strand of literature exists that examines the potential of index-based weather
insurance to hedge agricultural yield risk using historical weather and yield data (Ve-
deneov and Barnett, 2004; Breustedt et al, 2008; Musshoff et al., 2009; Berg et al., 2009;
Leblois and Quirion, 2011). By using simulated weather and yield data, we follow Torri-
ani et al. (2007b), who first used climate change data to analyze the benefits from hedging
drought risk in today’s and future climatic conditions. The idea to use “forward-looking
risk models that take climate change into account” is supported, for instance, by Mills
(2009). We extend the work by Torrini et al. (2007b) in two aspects. First, we use an
optimal weather insurance model to simulate the payoff structure and to determine the
hedging benefits for the insured, as well as the expected profits for the insurer, under
both climates. Second, and more importantly, we compare for the first time the benefits
from hedging future weather risk with an adjusted contract to the risk reduction from a
non-adjusted contract.

The remaining paper is structured as follows. In section 3,2, the theoretical approach
together with the insurance model and its numerical implementation is explained. The
data and climate change scenario used in this study are discussed in section 3.3. The
design of the underlying weather indices is outlined in section 3.4. In section 3.5, the
results for adjusted insurance contracts are presented, and section 3.6 shows the effect
of using non-adjusted contracts to hedge future weather risk. Section 3.7 concludes and
provides an outlook on further research.
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3.2 Theoretical Approach

We use the model developed by Kapphan (2011) to numerically derive the pay-off struc-
ture of an index-based weather insurance with optimal hedging effectiveness for today’s
and future climatic conditions. For the numerical analysis, we consider five time periods
with different climatic conditions, indexed by c. In each climatic period, the insured is
faced with a stochastic revenue y ∈ Yc ≡ [y

c
, yc].

10 We assume for the moment that c
only represents either today’s, t, or future climatic conditions, f , i.e. c = {t, f }.11 Then,
for a given climatic scenario c, yields in a given year i are represented by yc,i and zc,i rep-
resents the corresponding realization of a weather index. The influence of weather on
yields under given climatic conditions is captured through the conditional distribution
of yields with cdf Fc(y|z) with density fc(y|z). The distribution of the weather index,
z ∈ Zc ≡ [zc, zc] is characterized by the cdf Gc(z) and density gc(z). Following Kapphan
(2011), the conditional distribution of yields Fc(y|z) and the cdf of the weather index Gc(z)
are estimated non-parametrically using a Gaussian kernel function.

The insured is risk-averse and has preferences over consumption, θ, with θ = y +

pc(z), which are characterized by constant relative risk aversion (CRRA), i.e. u(θ) =
θ1−σ

1−σ with σ > 0.12 To derive the optimal weather insurance pay-off structure pc(z) the
insured’s expected utility is maximized subject to the constraint that risk-neutral insurers
charge an actuarially fair premium for the contract.13 Formally, p∗c (z) solves the expected
utility of the insured

max
pc(z)

∫
Zc

∫
Yc

u(y + pc(z))dFc(y|z)dGc(z) (3.1)

subject to the constraint ∫
Zc

pc(z)dGc(z) = 0. (3.2)

Constraint (3.2) implies that insurers make on average zero profits, which is a widely used
method, known as the ”burn rate“ method, to price insurance contracts. The premium P
is then determined by the minimum of the net-payment function p∗c (z).

10The insured generates revenue solely from selling the production output. An average price is used to
compute the revenue, and production costs are not considered in this framework.

11In the numerical section 3.6.2, we add 3 more climatic scenarios that represent the transition period, so
that in total 5 periods are analyzed.

12To numerically derive the optimal insurance contract, we use a moderate coefficient of relative risk
aversion, i.e. σ = 2. For explorations of how σ affects the shape of the optimal weather insurance contract,
see Kapphan (2011).

13 p(z) represent the net-insurance payments, i.e. the difference between the premium, P, and the insur-
ance indemnity.
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Solving (3.1) subject to (3.2) with today’s conditional yield cdf, Ft(y|z), and the cdf of
today’s weather index, Gt(z), yields p∗t (z). To obtain the optimal weather insurance con-
tract for future climatic conditions p∗f (z), the optimization problem is solved analogously
with Ff (y|z), and G f (z), which are obtained from simulated weather and yield data that
takes climate change into account. In reality, the insurer may add a mark-up on fair pre-
miums to cover additional costs associated with offering weather insurance. In order to
determine to which extent fair contracts can be loaded such that the insured still finds the
contract attractive, we also derive insurance contracts that maximize the insurer’s profit.
Formally, for given climatic conditions, c, the profit-maximizing insurance contract p̃∗c (z)
is derived by solving

max
p̃c(z)

Πc ≡ −
∫
Zc

p̃c(z)dGc(z) (3.3)

subject to the constraint that the insured’s expected utility is equal to or greater than his
expected utility in an uninsured situation, i.e.∫

Zc

∫
Yc

u(y + p̃c(z))dFc(y|z)dGc(z) ≥
∫
Zc

∫
Yc

u(y)dFc(y|z)dGc(z). (3.4)

Maximum loading factors (in percent) are then determined by comparing the pre-
mium of the optimal (zero-profit) contract P with the premium of the profit-maximizing
contract P̃ (see Kapphan, 2011). By deriving both the optimal (zero-profit) insurance con-
tract and the profit-maximizing contract, the range of insurance contracts that could fea-
sibly be traded is fully characterized.

To quantify the risk reduction potential of an optimal insurance contract, we compute
the percentage increase of all income realizations in the situation without insurance that
makes farmers equally well-off (in expected utility terms) as in the situation with insur-
ance (see Kapphan, 2011). Formally, this percentage increase δc(pc) solves

∫
Zc

gc(z)
∫
Yc

fc(y|z)
(pc(z) + y)1−σ

1− σ
dydz =

∫
Zc

gc(z)
∫
Yc

fc(y|z)
((1 + δc(pc))y)1−σ

1− σ
dydz,

(3.5)
with solution:

δc(pc) =

(∫
Zc

gc(z)
∫
Yc

fc(y|z)(pc(z) + y)1−σdydz∫
Zc

gc(z)
∫
Zc

fc(y|z)y1−σdydz

) 1
1−σ

− 1. (3.6)

Thus, δc(pc) measures the insured’s value of weather insurance for a given optimal in-
surance contract pc and given climatic conditions c. Furthermore, the statistical moments
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of the income distribution with insurance are compared to the situation without insur-
ance to evaluate the benefits from hedging. In addition, we compute the relative Value
at Risk (VaR) for the situation with insurance, which is the 5% Value at Risk (denoted
VaRI

c,5%) of the income distribution relative to the mean income, and compare it to the
relative VaRNI

c,5% of the situation without insurance. To obtain a complete assessment of
the hedging effectiveness of weather insurance, we eventually derive the conditional VaR,
which is also referred to as the Expected Shortfall, for the hedged (ESI

c,5%) and unhedged
situation (ESNI

c,5%).
For the insurer, we determine the expected profit from offering a profit-maximizing

insurance contract for given climatic conditions as follows:

Πc( p̃c) = −
∫
Zc

p̃c(z)dGc(z). (3.7)

By construction, the benefits from hedging with a profit-maximizing contract for the in-
sured, δc( p̃c), and the expected profits for an optimal insurance contract, Πc(pc), are zero.
The benefits from hedging with an optimal (zero-profit) insurance contract for today’s cli-
matic conditions, δt(pt), are derived by evaluating the risk reduction in today’s climate,
δt, using an optimal contract pt(z). The benefit from hedging weather risk in the future
with an optimal contract, p f (z), is then given by δ f (p f ).

Comparing the future hedging effectiveness of an optimal contract, δ f (p f ), with to-
day’s hedging effectiveness of an optimal contract, δt(pt), allows us to quantify the bene-
fits from using adjusted weather insurance contracts to cope with future weather risk (for
the insured). Similarly, by comparing today’s expected profits, Πt( p̃t) with the expected
profits from offering a profit-maximizing contract in the future, Π f ( p̃ f ), we quantify the
profitability of offering weather insurance in light of climate change.

The risk reduction of a non-adjusted, optimal insurance contract is then given by
δ f (pt), and Π f (pt) measures the expected profits from offering non-adjusted, optimal
insurance contract with climate change.14 We also derive the expected profits for the
insurer if he continues to offer today’s profit-maximizing contract with climate change,
Π f ( p̃t) , i.e. if the today’s profit-maximizing contract is not adjusted over time. Similarly,
we evaluate the hedging effectiveness of today’s profit-maximizing contract with climate
change, δ f (pt).

By comparing future expected profits from adjusted, profit-maximizing contracts,
Π f ( p̃ f ), with the expected profits from offering non-adjusted, profit-maximizing con-

14If an optimal insurance contract is offered in climatic conditions that are different from the ones used
to design and price the contract, Π f (pt), is not necessarily equal to zero.
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tracts, Π f ( p̃t), we evaluate the effect of offering non-adjusted insurance contracts on
expected profits. Similarly, by comparing the risk reduction of an adjusted, optimal in-
surance contract, δ f (p f ), with the risk reduction from a non-adjusted, optimal contract,
δ f (pt), the effect of hedging with non-adjusted weather insurance contracts for the in-
sured is quantified. Table 3.1 provides an overview of the notation and the different com-
parisons outlined.

Table 3.1: Notation for profits and deltas from adjusted and non-adjusted contracts

Climate Contract Profits Delta
today adjusted optimal pt 0 δt(pt)

profit-maximizing p̃t Πc( p̃t) 0
future adjusted optimal p f 0 δ f (p f )

profit-maximizing p̃ f Πc( p̃ f ) 0
non-adjusted optimal pt Π f (pt) δ f (pt)

profit-maximizing p̃t Π f ( p̃t) δ f ( p̃t)

Note: Insurer’s profit (Πc) and insured’s benefit (δc) in a given climate scenario (c = t, f ) depend on the
contract type (pc, or p̃c), and the climatic condition for which the contract was designed (for c, or c − 1).
If contract pc or, respectively p̃c, is used for risk reduction in the climate scenario c, then δc(pc) represents
the risk reduction of an adjusted, optimal contract. δc( p̃c) represents the risk reduction from an adjusted,
profit-maximizing contract. δc(pc−1) represents the risk reduction of an optimal, non-adjusted contract.
δc( p̃c−1) represents the risk reduction of a profit-maximizing, non-adjusted contract.

3.3 Data and Climate Change Simulations

To derive maize (Zea mays L.) yield data for today’s climatic conditions and a climate
scenario, we follow Torriani et al. (2007a, 2007b) and use a process-based crop simula-
tion model in connection with a weather generator to simulate 1, 000 yield realizations
for each climate scenario. Synthetic weather data needed as input are generated with the
stochastic weather generator LARS-WG (Semenov et al., 1998). Observed daily weather
data collected between 1981 and 2010 at Schaffhausen (latitude: 47.69, longitude: 8.62)
were used to condition LARS-WG, and baseline statistics were modified according to a
climate change scenario to yield daily weather series representing future climatic condi-
tions.

As for the climate change scenario (2036-2065), we refer to the same data as used by
Lazzarotto et al. (2010) and Finger et al. (2011), that is regional projections for Europe
developed by Vidale et al. (2003) with the CHRM regional model in the framework of
the PRUDENCE project (Christensen et al., 2007) on the basis of a A2 emission scenario
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(Nakicenovic et al., 2000). In practice, differences in monthly averages for the length of
wet and dry spells, total rainfall, daily minimum and maximum temperature, and daily
totals of solar radiation were first inferred for the time span between 1961-1990 and 2071-
2100 originally addressed by PRUDENCE. The differences were then re-scaled in time
to yield a corresponding climate change signal for our baseline (1981-2010) and selected
future time window (2036-2065).

The synthetic daily weather data feeds into the process-based crop model CropSyst
(Stöckle et al., 2003) for maize. CropSyst is a deterministic crop physiological growth
model that simulates crop yields for given environmental and management conditions.
The calibration for maize is based on Torriani et al. (2007a, 2007b) and was adapted for
the newer CropSyst version 4.13.09.15 Process-based crop simulation models are widely
used to study the response of plants to climate change, and to evaluate possible adaption
options (Bindi et al., 2010; Finger et al., 2011). Except for the sowing date, all input param-
eters in CropSyst are kept constant. In today’s climate, sowing takes place on calender
day 130 (DOY). With climate change, the sowing data was shifted by 7 days following
Schmid (2006), and takes place on DOY = 123.

Table 3.2: Climatic interim scenarios

Climatic scenarios Today Scenario 1 Scenario 2 Scenario 3 Future
1981-2001 moderate medium strong 2036-2065

Weights (t%/f%) 100/0 75/25 50/50 25/75 0/100
Contracts pt(zt) p75/25(z) p50/50(z) p25/75(z) p f (z f )

Note: Interim scenarios for both weather and yields are created by interpolation of today’s and future data.
t% is the percent of data used from today’s yield and weather distribution, and f % is the percent of data
drawn from the simulated weather and yield distribution for the 2036-2065 climate scenario.

For the purpose of this study, three additional weather and yield scenarios were cre-
ated using weighted random drawings from today’s and 2050’s weather series. Weights
of 75% and 25% (today and future), 50% and 50%, and 25% and 75% were assumed to
create interim scenarios.16 Table 3.2 summarizes the notation for the interim scenarios,
and the interpolation weights used for their creation. These interim scenarios cannot be
related to particular years between today and 2050, since the climate system may not
change linearly from today’s conditions to the projected climate around 2050.

Table 3.3 summarizes the statistical moments of the simulated maize data for the base-
line and the four climate scenarios. Average maize yields decrease from 9, 266 kilo per

15Further details on the parametrization of CropSyst and of LARS-WG can be found in Torriani et al.
(2007a, 2007b), together with a comparison of simulated yields with historical yield observations.

16Thus, c reflects 5 possible climate scenarios with c = {t, 75/25, 50/50, 25/75, f }.
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hectare (kg/ha) under today’s climatic conditions to 8, 190 kg/ha for the full 2036-2065
climate change scenario. At the same time, the standard deviation (std) increases from
1, 456.5 to 2, 105.7 kg/ha, with a corresponding increase in the coefficient of variation
(CV) from 0.157 to 0.257. Overall, we observe that mean yields decrease and maize pro-
duction is becoming more risky. This tendencies can also be inferred from Figure 3.1. This
can also be inferred from Figure 3.1 (left), which shows the boxplots for the 5 yield distri-
butions, and the change in the revenues from maize production (right).17 Hence, without
adaptation, maize production is not only becoming less profitable, but also more risky
over time.

Figure 3.1: Evolution of the maize yield and revenue distribution over time.

Table 3.3: Descriptive analysis of simulated maize yields

Climatic Today Scenario 1 Scenario 2 Scenario 3 Future
scenario 1981-2001 moderate medium strong 2036-2065
mean (kg/ha) 9266 9038 8762 8449 8190
std (kg/ha) 1456.5 1681.7 1885.7 2022.2 2105.7
CV 0.157 0.186 0.215 0.239 0.257
skewness -0.6881 -0.5992 -0.2615 -0.0042 0.1840

Note: Evolution of maize yield statistics for SHA over time.

17Revenues from maize production are derived by multiplying crop yields with the average price for
maize from 2006 to 2009, which was 41.00 CHF/100kg (SBV, 2010). Production costs are not considered.
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3.4 Weather Index Design

The core assumption underlying weather insurance is that there exists a co-variate rela-
tionship between crop yields and the underlying weather index. The design of an index-
based weather insurance product thus involves identifying a weather index that predicts
crop yields well. By creating weather indices that possess a high correlation with crop
yields, basis risk is minimized.18 Since plant development is affected throughout the
growing phase by various weather events, multi-peril weather indices tend to predict
crop yields better than single weather events (such as cumulated precipitation or mean
temperature). We therefore use a phenology driven approach developed by Kapphan
(2011) to create weather indices that provide risk protection for a number of weather
events occurring throughout the growing period.

To account for the fact that with climate change phenology phases occur earlier in
the season, weather variables are derived at each phenology phase for both climatic sce-
narios (c, f ). Phenology stages are estimated based on growing degree days (GDDs),
the sowing date, and the number of GDDs needed to complete each phenology phase.
For maize, 4 phenology phases are distinguished: emergence, vegetative period, grain
filling, and maturity. Table 3.4 shows the GDD levels that correspond to each phenology
phase and the corresponding calender dates for today’s and future climatic conditions. In
particular, we use the following variables: averages of maximum and minimum tempera-
tures (m.tmin, and m.tmax), mean precipitation (m.precip), the moisture availability to the
plant (P.ETo), and the potential evapotranspiration (RDI), which were set in accordance
with GDD thresholds used in CropSyst.19 Next, multivariate regressions are performed
to identify weather events that explain a large fraction of the maize yield variability in
both climates. The estimated coefficients are then used to construct weather indices. The
resulting weather indices thus represent predicted yields, and are measured in kg/ha.

We use this approach to construct multi-peril weather indices for today’s and future
climatic conditions using the respective weights, as shown in Table 3.15 in the Appendix.
For the purpose of this study, we select 4 weather indices – single as well as multi-peril
indices – that offer risk protection for different weather phenomena and vary in their
goodness of fit. Since precipitation is found to be a major driver of maize growth in
Schaffhausen, all indices use precipitation as an input.20 Figure 3.2 shows the densities of

18Basis risk is defined as the risk that the payoffs for a given insurance contract do not correspond to the
yield shortfall.

19For more information about the weather variables, see Kapphan (2011).
20Precipitation enters either directly as an average (as in Index 2), or indirectly via the computation of

potential evapotranspiration (as in Index 3), or for deriving the moisture deficit measure (as in Index 4).
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Table 3.4: Timing of phenology phases and corresponding GDDs

Phenology Emergence Vegetative Grain Maturity
Phases Period Filling
GDD level 40 700 840 1250
Today (DOY) 133-142 195-213 208-227 243-275
avg. DOY 136 204 217 257
Future (DOY) 126-133 186-200 199-212 230-244
avg. DOY 128 192 204 236

Note: Crop: maize, location: SHA, Sowing date for today’s climatic conditions: DOY=130, Sowing data for
future conditions: DOY=123.

Index 2 and 4 for today’s and future climatic conditions. We observe a leftward shift of
all index densities, which is caused by a decrease in precipitation in our climate scenario.
Further, we find that with climate change the effect of weather on maize yields increases.
For example, for today’s weather condition, Index 2 explains 50.3% of maize yield varia-
tions, while with climate change 68.3% are explained. For Index 3, the Spearman rank
correlation coefficient increases from 46.3% to 67.8% with climate change. Overall, a
larger fraction of maize yields is explained by weather, which implies that the potential
for hedging yield risk with weather-based insurance products improves. Table 3.5 sum-
marizes the Spearman correlation coefficients and adjusted R-Square for the 4 weather
indices for both climate scenarios.

We derive interim scenarios for the weather indices (predicted yields) by interpolating
the distributions gt(z) and g f (z) in the same manner as for crop yields (see section 3.3). As
with crop yields, we observe over time a decrease in mean index values, and a widening
of the standard deviation over time for all indices.21

3.5 Results: Adjusted Weather Insurance Contracts

3.5.1 Comparison of Optimal Contracts Today and with Climate Change

We start by comparing the optimal adjusted weather insurance contract for today’s con-
ditions, pt, with the optimal adjusted contract for future conditions, p f . The shape of the
optimal contracts, pt and p f , reflects the changes in the riskiness of the respective condi-
tional yield distributions, as explained in Kapphan (2011), and is non-linear for the entire

21In the Appendix, Table 3.16 reports the statistical moments over time for all indices. Thus, we find that
neither the maize yield data, nor the data of the underlying (predicted) weather indices is stationary over
time.
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Table 3.5: Descriptive statistics of weather indices

in % Index 1 Index 2 Index 3 Index 4
Today Corr 60.8 70.9 68.1 78.9

adj.R2 37.0 50.3 46.3 62.2
Future Corr 62.6 82.6 82.3 86.3

adj.R2 39.2 68.3 67.8 74.5

Note: Today’s weather indices are selected based on the Spearman rank correlation coefficient (Corr) and
the adjusted R-Square (adj.R2) from the weather-yield regression for today’s conditions. Future weather
indices are constructed using the same weather variables, measured during future phenology phases, and
using the coefficients from future weather-yield regressions as weights.

Figure 3.2: Densities of weather Index 2 and 4 for today’s (green) and future (red) cli-
matic conditions. Estimates of the mean and standard deviation at each realization of the
weather index are shown as boxplots.

range of weather realizations. All optimal contracts pay out for low values of the weather
index, and have negative net-payments (corresponding to a premium payment) for very
high values of the index. At the point where the net-payment is equal to zero, the insured
fully recovers the premium. The minimum of the pay-off function defines the premium.22

Figure 3.3 shows the optimal weather insurance contract for Index 2 for today’s and
future climatic conditions.23 We obtain estimates of the standard deviation for pc(z) (at
each realization of z) by 10 times randomly drawing 900 observations with replacement

22The gross-payoff function can be obtained by adding the premium to each net-payment. The recovery
point of the net payoff function thus represents the trigger level of a stylized (linear) weather derivative.
Analogously, the maximum payment of the optimal gross-payoff function can be interpreted as the cap of
a stylized weather derivative contract.

23In the Appendix, Figure 3.10 shows the optimal weather insurance contracts for all indices for today’s
and future climatic conditions. The results described here for Index 2 are similar for the other indices.
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from the data, and solving (3.1) subject to (3.2) as described in section 3.2.24 The standard
deviation of pt for moderate z is on average equal to 68.7 CHF/ha, and with climate
change, std(p f ) is on average equal to 67.9 CHF/ha. The standard deviation of pt and
p f increases only for very extreme realizations of the weather index, i.e. std(pt) = 119.2
CHF/ha, and respectively, std(p f ) = 150.3 CHF/ha, i.e. for very high, and rare weather
events. Our method for simulating optimal weather insurance contracts thus produces
robust results.

Figure 3.3: Optimal contracts (dashed line) for Index 2 with standard deviation (solid lines)
given today’s (green) and future (red) climatic conditions.

As pointed out in section 3.4, the density of the weather index, gc(z), shifts to the left
with climate change (see Figure 3.2), which is due to a decrease in precipitation during the
growing season. In addition, the weather density widens with climate change (i.e. from
c = t to c = f ), which is due to an increase in the number of drought-like weather events.
The optimal future contract accounts for these new weather conditions in two ways: i)
the payoff function covers these additional weather extremes, and ii) the shape of the
payoff function changes (for each realizations of the index). In particular, we find that the
future optimal payoff function, p f , is defined over a wider range of index realizations that
covers these additional drought-like conditions. Under today’s climatic conditions, pt for
Index 2 is defined for values of z between 2, 749 CHF/ha and 5, 707 CHF/ha. With climate
change, the smallest value of z is 1, 791 CHF/ha and the maximum is 5, 941 CHF/ha.

While the range of weather events covered increases, the magnitude of each net-payoff
decreases with climate change for the entire range of the weather index. The maximum
net-payment decreases from 1, 399 CHF for today’s contract to 1.133 CHF for an adjusted

24This procedure is also used to obtain estimates for the standard deviation of the risk reduction, as
measured by δc, and the expected profits, as measured by Πc, discussed in sections 3.5.2 to 3.5.3.
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optimal contract (given Index 2). Note that the probability of having to pay the full pre-
mium is in both climate scenarios very small, as can be seen from Figure 3.4, which shows
today’s optimal contract and the future optimal contract together with the densities of the
respective weather indices.25 At the same time, the premiums for optimal adjusted con-
tracts more than double (depending on the index). For instance, in today’s conditions an
optimal insurance contract costs 593.0 CHF, and with climate change, an adjusted optimal
contract costs 1, 645 CHF (based on Index 2).

Figure 3.4: Optimal (solid line) and profit-maximizing (dashed line) insurance contracts for
Index 2 with density, for today’s (green) and future (red) climatic conditions.

We also find that while the recovery point of adjusted future contracts shifts to the
left, the recovery probability increases.26 Given today’s climate, the insured recovers the
premium almost every second year (49.5− 51.5%), and with climate change the recov-
ery probability increases to 51.9 − 57.7% (depending on the index). Table 3.6 provides
an overview of the premiums, maximum payments, and the recovery probabilities for
today’s and future climatic conditions. For today’s climate, high net-payments (pt ≥ 500
CHF) only occur with low probabilities (11.5 − 16.7%), and the likelihood of weather
events that cause net-payments less than −500 CHF (pt ≤ −500) is between 2.6% and
10.2% (depending on the index). With climate change, the probability of the contract pay-
ing more than 500 CHF almost doubles (for Index 2 and 3), and ranges from 15.6− 27.2%
(depending on the index). This explains why we observe an increase in the premiums and

25In the Appendix, Figure 3.11 to 3.13 show the optimal and profit-maximizing insurance contracts for
Index 1, 3, and 4 together with the density of their underlying weather indices for today’s and future
climatic conditions.

26The recovery probability is the probability of realizing index values equal or smaller than the the recov-
ery point.
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in their likelihoods. For all indices, the probability of moderate net-payments between
500 CHF and 0 CHF decreases, together with the probability of having to pay between 0
and −500 CHF. Figure 3.4 shows in addition the adjusted, profit-maximizing insurance
contracts. While the profit-maximizing contracts, p̃t and p̃ f , possess the same shape as
their actuarially fair counterparts, pt and p f , they pay out less at each realization of z. The
difference in net-payments (p̃c − pc) is captured by the insurer. With climate change, the
difference in net-payments increases, and hence profits increase (see section 3.5.2).

Future optimal contracts thus offer an increased protection against extreme events (i.e.
higher probability of high net-payments with p f ≥ 500), while they provide slightly re-
duced moderate payments (between 500 and −500 CHF) for moderate deviations from
the mean of the weather index. The increased coverage against the more frequent occur-
rence of extreme events is partially financed by decreasing net-payments over the entire
range of all weather realizations and by substantially increasing the premiums in those
rare years with excellent weather conditions.

Table 3.6: Contract parameters of optimal, adjusted contracts

Net-Payment Premium max. recovery 500 to 0 to -500 to premium
payout probab. max.payout 500 0 to -500

Index 1 today 640.3 971.8 51.2% 11.5% 39.2% 42.1% 7.2%
future 1.634 776.2 51.9% 15.6% 36.6% 37.4% 10.7%

Index 2 today 593.0 1.399 49.6% 12.8% 36.7% 40.3% 10.2%
future 1.645 1.133 57.7% 24.2% 33.6% 23.1% 19.1%

Index 3 today 624.7 1.579 51.5% 13.4% 38.1% 45.9% 2.6%
future 1.640 1.149 55.6% 26.6% 29.1% 23.8% 20.5%

Index 4 today 602.9 1.650 49.5% 16.7% 32.9% 41.8% 8.6%
future 1.675 1.141 55.2% 27.2% 28.1% 23.6% 21.1%

Note: Payments and maximum payout are measured in CHF/ha.

3.5.2 Hedging Effectiveness of Optimal Adjusted Contracts

We evaluate the risk reduction from hedging weather risk by deriving δc for all climatic
scenarios as described in section 3.2, for a moderate risk aversion level (σ = 2). Buying
optimal weather insurance today is equivalent to increasing the income of the insured in
all states of the world by 1.37− 2.09% (depending on the index). We observe that with
climate change, δc from hedging with adjusted optimal contracts increases continually
over time, and more than doubles up to the year 2050. When buying an adjusted optimal
contract in the future, the insured’s income in the situation without insurance would need
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to be increased by 3.00− 5.42% (depending on the index) to make the insured as well off
(in expected utility terms) as in the situation with insurance.

Thus, with climate change, the insured attributes a higher value of hedging weather
risk with an optimal adjusted contract. The standard deviation for these estimates does
not increase significantly over time. We have restricted the analysis to a moderate level
of risk aversion. The hedging benefits for a more risk-averse individual (σ > 2) under
both today’s and future climate conditions are even more substantial.27 Table 3.7 shows
the estimates of δc with the corresponding standard deviation for all indices and climatic
scenarios, and in Figure 3.5, we show boxplots of δc over time for all indices.

Table 3.7: δ (in %) for optimal adjusted contracts over time

Index 1 Index 2 Index 3 Index 4
today 1.37 1.83 1.82 2.09
(std) (0.15) (0.18) (0.23) (0.24)
moderate 2.23 3.04 2.98 3.31
(std) (0.19) (0.18) (0.18) (0.16)
medium 2.78 3.90 3.86 4.20
(std) (0.00) (0.12) (0.11) (0.15)
strong 3.01 4.57 4.54 4.92
(std) (0.17) (0.10) (0.11) (0.11)
future 3.00 4.99 4.98 5.42
(std) (0.20) (0.25) (0.28) (0.26)

We also compare the income distribution without insurance to the situation where
the farmer uses an optimal adjusted contract, pc, and, respectively, a profit-maximizing
contract, p̃c, to hedge his weather risk in today’s and future climatic conditions. Given
today’s weather conditions, the mean income without insurance is 3, 696 CHF/ha with
a standard deviation of 186.3 CHF/ha. The optimal insurance contract, pt, preserves
the mean income, but greatly reduces the standard deviation to 106.6 − 139.9 CHF/ha
(depending on the index). The income distribution with a profit-maximizing contract,
p̃t, possess the same standard deviations as with pt, but the average income is reduced
by 49 − 75 CHF/ha (depending on the index). With climate change, the mean income
without insurance decreases by more than 10% (to 3, 294 CHF/ha), while the standard
deviation increases by 49.9% (to 279.4 CHF/ha). An adjusted optimal insurance contract,
p f , such as the one based on Index 4, can reduce the future standard deviation by factor
2 (to 130, 6 CHF/ha). The profit-maximizing adjusted contract, p̃ f , achieves the same risk

27Kapphan (2011) shows for today’s climatic conditions using the same weather indices and optimal
contracts that with a coefficient of relative risk aversion of σ ∈ [5, 7], δt is between 4.2% and 10.7%.
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Figure 3.5: Evolution of δ (in %) over time for all optimal adjusted contracts.

reduction, but lowers the average future income (by 88− 163 CHF/ha, depending on the
index) compared to the future un-hedged situation. Table 3.8 summarizes the statistical
properties (mean, standard deviation, skewness) of the income distributions with and
without insurance for today’s and future climatic conditions.28 Figure 3.6 shows the in-
come distributions with insurance, for both the optimal and profit-maximizing contract,
and for the scenario without hedging for both climate scenarios.29

When hedging weather risk today and in the future with climate change, the insured
faces less risk of realizing very low incomes, and lower probabilities of realizing very high
incomes, i.e. the insurance contracts compresses the income distribution. An optimal
weather insurance contract thus redistributes incomes over time from good harvest years
to bad years.

The relative Value at Risk (VaRα) is another preference-free risk measure, and is de-
fined as follows:

rel.VaRα% =
(ȳ− yα%)

ȳ
, (3.8)

where ȳ represents the mean income and yα% the income at the α% quantile. We evaluate
the effect of weather insurance by comparing the relative VaR of the income distribution

28In Table 3.17 in the Appendix, we report changes in the statistical moments of the income distribu-
tions with and without insurance over time for Index 3 and Figure 3.14 shows the boxplots of the income
distribution with and without insurance for Index 3.

29A comparison of the income distributions with and without insurance for both climate scenarios and
all indices can be found in Figure 3.15 in the Appendix.
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Table 3.8: Income without and with insurance

optimal no insurance Index 1 Index 2 Index 3 Index 4
today mean 3.696 3.696 3.696 3.696 3.696

std 186.3 139.9 116.0 120.0 106.6
skw -0.222 -0.192 -0.075 -0.030 -0.042

future mean 3.294 3.294 3.294 3.294 3.294
std 279.4 208.2 147.2 146.3 130.6
skw 0.061 0.149 -0.024 -0.008 0.025

profit no insurance Index 2 Index 2 Index 3 Index 4
today mean 3.696 3.647 3.627 3.630 3.621

std 186.3 139.9 116.0 120.1 106.6
skw -0.222 -0.191 -0.074 -0.030 -0.042

future mean 3.294 3.206 3.145 3.145 3.131
std 279.4 208.4 147.4 146.5 131.3
skw 0.061 0.149 -0.027 -0.010 0.021

Note: Descriptive statistics of income without and with optimal and profit-maximizing insurance contracts
for all indices and today’s and future climatic conditions. Units: CHF/ha.

Figure 3.6: Income distributions with optimal (solid line) and profit-maximizing (dashed
line) insurance based on Index 2 and without insurance (pointed line) for today’s (green)
and future (red) climatic conditions.

without insurance (VaRNI
α%) with the relative VaR of the income distribution with insur-

ance (VaRI
α%) and thus measure the reduction in the likelihood of income loss for the

extreme weather events that occur with a probability α%. In Table 3.9, we report VaRNI
α%

and VaRI
α% for all climatic scenarios and indices, for α = 5%.

For today’s climatic conditions, there is a 5% probability that the insured realizes
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an income (loss) that is 31.1% lower than the average income without insurance, i.e.
VaRNI

t,5% = 31.1%. With climate change, the income loss increases gradually to 38.7%
(with respect to ȳ) with a 5% likelihood. An optimal insurance contracts reduce the in-
come loss today to 16.7 − 22.8% (depending on the index). With a profit-maximizing
contract, today’s income loss is also reduced, but VaRI

t,5%( p̃t) is on average 2 percentage
points higher, compared to VaRI

t,5%(pt). Under future climatic conditions, hedging with
an optimal adjusted contract reduces the income loss to 29.1 − 21.1% compared to the
future average income (ȳ f ).

Table 3.9: Relative 5%-Value at Risk for adjusted contracts

VaRNI
5% VaRI

5% Index 1 Index 2 Index 3 Index 4
today 31.1 optimal 22.8 18.8 18.5 16.7

0.65 std 0.93 1.09 1.05 1.03
- profit 24.2 20.6 20.3 18.7
- std 0.95 1.10 1.12 0.96

moderate 35.5 optimal 24.5 20.1 19.9 18.0
1.04 std 0.44 0.43 0.38 0.41
- profit 27.3 25.3 25.1 19.2
- std 0.65 1.02 0.86 0.65

medium 38.1 optimal 25.9 20.8 20.4 18.7
0.62 std 0.70 0.77 0.65 0.63
- profit 26.6 21.4 21.0 19.3
- std 0.61 0.87 0.77 0.67

strong 39.1 optimal 27.7 22.2 21.7 20.0
0.67 std 0.84 0.75 0.53 0.62
- profit 27.6 22.3 22.0 20.2
- std 0.75 0.72 0.51 0.59

future 38.7 optimal 29.1 22.9 22.7 21.2
1.13 std 0.60 0.77 0.73 0.53
- profit 29.0 23.5 23.3 21.4
- std 0.78 0.62 1.02 0.68

Note: VaRI
5% (in %) of the income distribution for adjusted optimal and profit-maximizing insurance con-

tracts, and VaRNI
5% (in 5%) for the income situation without insurance are derived for all climatic scenarios.

We finally derive the average magnitude of income loss given that an extreme weather
event occurs (for the α = 5%-level). The expected shortfall (ES) is the probability weighted
average of the worst α = 5% incomes and thus represents the expectation of income in
the case that a tail event occurs.30 We derive the ES for the income scenarios with ad-

30The ES is a measure of tail-risk and is also referred to as the conditional tail expectation, expected tail
loss, worst conditional expectation, or tail conditional VaR.
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justed insurance contracts (ESI
c,5%) and for the situation without insurance (ESNI

c,5%) for
today’s and future climatic conditions.31 Table 3.10 shows the 5%-VaR and the expected
shortfall for today’s and future climatic conditions. Without insurance, the ESNI

t,5% is equal
to 3, 292 CHF/ha for today’s conditions. With optimal adjusted insurance, the expected
income ESI

t,5% given that the lower 5%-extreme weather events happen is between 3, 390
and 3, 475 CHF/ha, i.e. optimal adjusted insurance increases the expected income given
an extreme event by 100 to 180 CHF/ha. With climate change, the expected unhedged
income is 2, 727 CHF/ha for the situation with the 5%-extreme event. With an adjusted
contract, the expected income in that 5%-event is 2, 886 to 3, 023 CHF/ha.

Table 3.10: 5%-VaR and expected shortfall (ES) for adjusted contracts

no. ins. contract Index 1 Index 2 Index 3 Index 4
today 3,377 optimal VaRI

t,5% 3,415 3,502 3,503 3,518
- profit 3,402 3,434 3,437 3,443
3,292 optimal EXI

t,5% 3,390 3,453 3,447 3,475
- profit 3,341 3,385 3,381 3,399

future 2,839 optimal VaRI
f ,5% 2,954 3,052 3,052 3,081

- profit 2,865 2,903 2,905 2,915
2,727 optimal EXI

f ,5% 2,886 2,981 2,990 3,023
- profit 2,797 2,832 2,840 2,858

Note: 5%-VaR and Expected Shortfall (ES) at the 5% level of the income distribution with (ESI
c,5%) and

without insurance (ESNI
c,5%) are shown for today’s and future climatic conditions and for all indices. Unit:

CHF/ha.

In conclusion, both types of adjusted insurance contracts reduce the risk of realiz-
ing low incomes. When comparing the hedging effectiveness of our contracts over time,
we find that the benefits from using weather insurance increases significantly with cli-
mate change, which is due to the fact that with climate change weather exerts a stronger
influence on crop yields. That is, with climate change, the preconditions for hedging
yield risk with an index-based weather insurance product improves. We have shown that
these findings are robust across indices and independent from the risk measure used. If a
mark-up is added to the fair premium, the insured gets the same risk reduction benefits
(as with a zero-profit contract) but at the cost of a reduced (average) income. By evaluat-
ing the hedging benefits of a profit-maximizing contract, we have considered the extreme
case where the insurer captures the entire gain from hedging, so that the insured is (in ex-

31In contrast to the literature (Dowd and Blake, 2006), where the ES is derived for the loss distribution, we
derive the ES for the income distributions with and without insurance, and compare the expected shortfall
from hedging, ESI

c,5%, to the situation without hedging, ESNI
c,5%.
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pected utility terms) indifferent to the un-hedged situation. In practice, these gains can be
shared between the insurer and the insured. For all risk measures, we observe that there is
a variation of hedging benefits across contracts. In general, the better the goodness-of-fit
of the underlying index with crop yields, the better the risk reduction.

3.5.3 Expected Profits from Profit-Maximizing Adjusted Contracts

We derive the expected profits, Πc, that an insurer can expect to earn from offering a
profit-maximizing insurance contract by solving (4.8) for all climatic conditions given
p̃c and gc(z).32 Table 3.11 shows the expected profits for all indices over time together
with the estimated standard deviation, for σ = 2. For today’s climatic conditions, the
insurer can expect to earn between 41.6 to 67.2 CHF/ha of insured maize. We find that
with climate change, expected profits increase gradually over time and reach substantial
values. For instance, expected profits for Index 1 double, and they increase by 240% for
the other three indices by the year 2050. In Figure 3.7, we present boxplots of expected
profits over time for all indices.

Table 3.11: Profits (Π) from profit-maximizing adjusted contracts over time

Index 1 Index 2 Index 3 Index 4
today 41.61 61.29 58.78 67.29
(std) (4.24) (5.84) (4.96) (6.42)
moderate 74.80 103.08 100.94 112.56
(std) (6.10) (5.99) (6.01) (5.30)

medium 89.51 126.93 125.62 137.32
(std) (2.94) (3.85) (3.58) (4.64)
strong 92.20 142.2 141.48 153.84
(std) (5.32) (3.23) (3.51) (3.43)
future 88.28 149.56 149.20 163.30
(std) (5.92) (7.42) (8.30) (8.00)

Note: Profits are measured in CHF/ha.

We observe that the variation in expected profits across indices as well as the varia-
tion of δc across indices (as seen in section 3.5.2), is related to the goodness-of-fit of the
underlying weather indices with maize yields (see section 3.4, Table 3.5). The higher the
correlation of the weather index with yields, the better the hedging effectiveness (as mea-
sured by δ) and the higher are expected profits (as measured by Π).

32Note that the expected profits from an optimal adjusted insurance contract are zero by construction.
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Figure 3.7: Evolution of profits (in CHF/ha) over time for all profit-maximizing adjusted
contracts.

3.6 Results: Non-Adjusted Weather Insurance Contracts

3.6.1 Comparison of Adjusted and Non-Adjusted Contracts

We now examine the risk reduction from hedging future weather risk with non-adjusted
insurance contracts. For that purpose, we first analyze the payout probabilities of non-
adjusted contracts, which were initially priced and designed for today’s weather con-
ditions, but are used under future climatic conditions. We then compare the payout-
probabilities of non-adjusted contracts to the payout characteristics of adjusted contracts
in future climatic conditions (see Table 3.12).

We find that the non-adjusted contracts based on Index 1 and 4 have higher recovery
probabilities than the corresponding adjusted contracts. For instance, the insured recov-
ers the premium of an adjusted contract (based on Index 4) with a probability of 55.2%,
while the premium is recovered with a probability of 84.6% with the non-adjusted con-
tract. The increase in the recovery probability of non-adjusted contracts 1 and 4 is a result
of an increase in the occurrence of weather events that trigger very high net-payments.
For Index 4, the probability of net-payments above 500 CHF increases from 27.2% (given
an adjusted contract) to 55.2% with the non-adjusted contract.

For Indices 2 and 3, we find that the likelihood of fully recovering the premium de-
creases. The adjusted contract based on Index 2 triggers very high net-payments (p f (z) >

104



3.6. Results: Non-Adjusted Weather Insurance Contracts

500 CHF) with 24.2%, while the non-adjusted contract delivers high net-payments only
with a probability of 10.0%. This implies that the non-adjusted contracts based on Index
2 and 3 do not provide sufficiently high net-payments when needed.

The non-adjusted contracts based on Index 1 and 4, provide however very high net-
payments even in situations where smaller payments would have been sufficient to cover
the losses. For Index 1 and 4, the non-adjusted contracts trigger net-payments of less
than −500 CHF (p f (z) ≤ −500) less often than the corresponding adjusted contracts.
For instance, the probability of net-payments that are less than −500 CHF is 2.2% with
the non-adjusted contract, compared to 21.1% with the adjusted contract. With future
weather conditions, an actuarial fair contract implies that the insured can expect to pay
the full premium approximately every 5th year (given that excellent weather conditions
have a return period of 21.1%).

With non-adjusted contracts (based on Index 4), this event happens only every 50th
years. This already suggests that the non-adjusted contract will no longer be profitable to
the insurer (see section 3.6.2).

Comparing the payout probabilities of non-adjusted contracts with those from ad-
justed contracts provides a first impression of the weather events that are being hedged
by non-adjusted contracts. Non-adjusted contracts 1 and 4 provide positive net-payments
with a higher probability, while the probabilities of negative net-payments decreases
(compared to the corresponding adjusted contract). For contracts 2 and 3, it is less clear
if the insured is better or worse off with the non-adjusted contracts. For that purpose,
we turn to the evaluation of the hedging effectiveness of non-adjusted contracts. Risk
measures are better suited to discriminate between different insurance contracts. For the
remaining analysis, δc is our preferred measure for comparing the risk reduction of ad-
justed with non-adjusted insurance contracts.33

33In section 3.5.2, we showed that it produces the same qualitative results as the other preference-free
risk measures, and that it is better suited for comparing the hedging effectiveness across climatic scenarios
as it considerers the effect of insurance on the entire income distribution.
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3.6. Results: Non-Adjusted Weather Insurance Contracts

3.6.2 Hedging Effectiveness and Expected Profits of Non-Adjusted Con-

tracts

To determine the hedging effectiveness of non-adjusted contracts, we derive δc from hedg-
ing with the optimal and profit-maximizing non-adjusted contracts, and compare it with
the hedging effectiveness of the adjusted contract. For a more realistic comparison, we
take into account that insurers are updating the design (and pricing) of their insurance
products over long time periods, such as the one considered here, i.e. between 1990 and
2050. In particular, we assume that insurers adapt their weather insurance products at the
end of each climatic scenario, i.e. they use the new weather and yield data that is becom-
ing available to update their contracts for the coming scenario. For that purpose, we use
the interim scenarios and simulate first the adjusted insurance contracts (pc and p̃c) for
all scenarios c ∈ {t, 75/25, 50/50, 25/75, f }. We derive the income distributions in each
climatic scenario c from hedging with the non-adjusted (optimal and profit-maximizing)
contracts from the previous period c− 1. We then determine δc for hedging weather risk
in c with non-adjusted optimal insurance products, i.e δc(pc−1(z)), and for hedging with
a non-adjusted profit-maximizing contract, i.e. δc( p̃c−1(z)).34 Table 3.13 summarizes the
results, and Figure 3.8 shows the evolution of δc for adjusted and non-adjusted contracts
over time for all indices. We find that δc(pc−1(z)) can be bigger or smaller than δc(pc(z)).
In contrast to hedging with adjusted contracts, we observe that δc(pc−1(z)) takes on neg-
ative values, i.e. the expected utility of the insured is reduced through insurance. As a
result, such non-adjusted contracts would not be purchased.

Furthermore, we determine the expected profits for insurers from offering non-adjusted
weather insurance contracts. For that purpose, we derive the expected profits, Πc, in each
climatic scenario from offering the non-adjusted, optimal (pc−1(z)) and non-adjusted,
profit-maximizing contract (p̃c−1(z)). We then compare Πc(pc−1(z)) and, respectively,
Πc( p̃c−1(z)) with the expected profits from the adjusted profit-maximizing contract,
Πc( p̃c(z)). Table 3.14 reports the profits from non-adjusted contracts together with the
profits from adjusted contracts (from section 3.5.3, Table 3.11), and Figure 3.9 shows the
evolution of profits from adjusted and non-adjusted contracts over time for all indices. We
find that some non-adjusted contracts create losses for the insurer, and as a result would
not be offered. By evaluating the risk reduction (for the insured) from non-adjusted con-
tracts, and simultaneously assessing the profitability (for the insurer), we capture over
time the effect of using backward looking data to design and price weather insurance
products in light of climate change.

34Note that δc( p̃c−1) is in contrast to δc( p̃c) not necessarily equal to zero.
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Table 3.13: δ (in%) for adjusted and non-adjusted insurance contracts

Index 1 Index 2 Index 3 Index 4
today adjusted optimal 1.37 1.83 1.82 2.09

(std) (0.15) (0.18) (0.23) (0.24)
moderate adjusted optimal 2.23 3.04 2.98 3.31

(std) (0.19) (0.18) (0.18) (0.16)
non-adjusted optimal -2.42 -6.98 -5.34 12.93

(std) 1.10 1.37 1.38 2.67
profit -3.82 -8.95 -7.23 10.81
(std) 1.10 1.38 1.38 2.67

medium adjusted optimal 2.78 3.90 3.86 4.20
(std) 0.00 0.12 0.11 0.15

non-adjusted optimal 9.28 6.23 6.56 5.88
(std) 1.60 1.39 1.67 2.04
profit 7.23 3.40 3.76 2.76
(std) 1.60 1.38 1.67 2.04

strong adjusted optimal 3.01 4.57 4.54 4.92
(std) 0.17 0.10 0.11 0.11

non-adjusted optimal 6.31 8.87 8.74 9.39
(std) 1.16 0.53 1.19 1.60
profit 3.37 6.07 4.87 5.21
(std) 1.17 0.52 1.19 1.58

future adjusted optimal 3.00 4.99 4.98 5.42
(std) 0.20 0.25 0.28 0.26

non-adjusted optimal 5.36 8.12 8.14 10.04
(std) 1.82 0.97 3.04 1.93
profit 2.24 3.39 3.43 4.92
(std) 1.82 0.95 3.02 1.92

Note: δ is the percentage increase of all income realizations without insurance compared to the situation
with insurance. Deltas (δc(z)) from non-adjusted contracts in a given climate scenario (c) are derived by
applying the optimal (pc−1(z)) or the profit-maximizing (p̃c−1(z)) insurance contract from the previous
climatic scenario (c − 1) to the current climate scenario. Deltas from adjusted contracts are derived by
applying the optimal insurance contract (pc(z)) to the conditions for which it is derived, namely to c.

In the moderate scenario, we observe that non-adjusted optimal and profit-maximizing
contracts, based on index 1, 2 and 3 generate positive profits. These profits, Π75/25(pt(z))
= 145.8− 310.1 CHF/ha and, respectively, Πi( p̃t(z)) = 192.9− 375.9 CHF/ha, are sub-
stantially higher than the profits from the adjusted profit-maximizing contracts.
Π75/25( p̃75/25(z)) ranges between = 74.8 to 112.5 CHF/ha depending on the index. In
contrast, the non-adjusted contracts based on Index 4 generate negative profits (−260.6
to −332.8 CHF/ha, depending on the type of contract) for the insurer. At the same time,
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3.6. Results: Non-Adjusted Weather Insurance Contracts

Figure 3.8: Delta (in %) for adjusted (blue) and non-adjusted optimal (pink, solid line) and
non-adjusted profit-maximizing contracts (pink, dashed line) are shown over time for all
indices. The non-adjusted δc from hedging with an optimal contract δc(pc−1(z)) is derived
by determining the risk reduction in climatic scneario c from hedging with an optimal
contract (pc−1(z)) from the previous period c− 1. Hedging in c with a non-adjusted profit-
maximizing contract from the previous period yields δc( p̃c−1(z)).

δ75/25(pt(z)) is between −2.42% and −6.98%, for Index 1, 2 and 3. The non-adjusted
profit-maximizing contract makes the insured in the moderate scenario even worse off,
i.e. δ75/25( p̃t(z)) is between −3.82% and −8.95% for contracts based on Index 1, 2, and 3.
Therefore, contracts 1, 2, and 3 would not be bought by the insured.

Hedging with an adjusted contract, δ75/25(p75/25(z)), in contrast generates positive
hedging benefits of 2.23− 3.31% (depending on the index). With the non-adjusted con-
tracts based on Index 4, which generate a 4-times higher δc than the corresponding ad-
justed contract, the insured’s crop losses would be overcompensated. Since this contract
generates losses of −260.6 to −332.8 CHF/ha (depending on the type of contract), it will
however not be offered by the insurer.

The situation changes in the medium scenario. For all indices, δ50/50(p75/25(z)) takes
on values that are higher than δ50/50(p50/50(z)) from the adjusted contracts. The hedg-
ing effectiveness of the non-adjusted contract 3 (6.55%) is almost twice as high as for the
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Figure 3.9: Profits (in CHF/ha) for adjusted (blue) and non-adjusted, optimal con-
tracts (pink, solid line) and non-adjusted, profit-maximizing (pink, dashed line) are shown
over time for all indices. The Πc from hedging with an optimal non-adjusted contract
Πc(pc−1(z)) is derived by determining the expected profits in climatic scenario c from of-
fering an optimal contract (pc−1(z)) from the previous period c− 1. The Πc from offering
a non-adjusted profit-maximizing contract from the previous period yields Πc( p̃c−1(z)).

corresponding adjusted contracts (3.86%), and the non-adjusted profit-maximizing con-
tract yields almost the same hedging benefits (3.76%) as the adjusted contract (3.85%). All
non-adjusted optimal contrasts generate losses for the insurer.

While the non-adjusted optimal contracts generate losses for the insured, some non-
adjusted profit-maximizing contracts (based on Index 2 and 4) generate positive profits.
Expected profits for non-adjusted profit-maximizing contracts, Π f ( p̃75/25(z)), range be-
tween 13.8 and 46.4 CHF/ha (depending on the index). In addition, we observe that the
insured is (almost) indifferent between the non-adjusted profit-maximizing contract and
the adjusted optimal contract.35 Since δ50/50( p̃75/25(z)) and Π50/50( p̃75/25(z)) are both
positive, these non-adjusted contracts would be traded. We observe this pattern also in
the future scenario.

35When taking the standard deviation of δc into account, which is 1.6% for the non-adjusted contract,
compared to 0.11% for the adjusted contract, it turns out that the hedging performance of the non-adjusted
contract is more variable, making the non-adjusted contracts less attractive.
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In the future scenario, both non-adjusted contracts generate a higher δc than the ad-
justed contract. The non-adjusted optimal contract produces a higher δc than the non-
adjusted profit-maximizing contract. Given that expected profits for the non-adjusted op-
timal contracts, ∏ f (p25/75(z)), is negative, these contracts will not be offered. The insurer
could generate positive profits by offering the non-adjusted profit-maximizing contracts,
as they yield a positive risk reduction. In the future scenario, δ f ( p̃ f (z)) is 5.42%, while
δ f ( p̃25/75(z)) is 4.92%. We observe however for all climatic scenarios that the standard
deviation of δc(pc−1(z)), or respectively δc( p̃c−1(z)), is bigger than the standard devia-
tion of δc(pc(z)). For the insured, this implies that insuring with non-adjusted contracts
is more risky compared to hedging with an adjusted contract.

While expected profits from non-adjusted profit-maximizing contracts are positive
(in the medium and future scenario, for certain indices), they are significantly smaller
than the profits from offering adjusted profit-maximizing contracts. Non-adjusted profit-
maximizing contracts in the future scenario generate profits of 13.8 to 46.4 CHF/ha, which
reflects approximately the expected profits in today’s conditions. By offering an adjusted
contract, the insurer could generate profits that are 3 times higher. Π f (p f (z)) ranges
between 88.2 and 163.3 CHF/ha. The standard deviation for all non-adjusted contracts
is also quite large compared to the standard deviation of the adjusted contracts. Thus,
offering non-adjusted contracts is more risky than offering adjusted profit-maximizing
contracts.

To sum up, evaluating the effect of hedging with non-adjusted insurance contracts
for the insured revealed that non-adjusted contracts exist that generate higher hedging
benefits than their adjusted counterparts in certain scenarios (medium, and strong), but
may make the insured worse off in others (future). In some cases, insuring with non-
adjusted contracts may make the insured even worse off than in the situation without
insurance (moderate).

We show that non-adjusted contracts that generate a higher hedging effectiveness than
their adjusted contracts are not going to be offered by the insurer as these contracts create
losses. Similarly, for the situation where expected profits from non-adjusted contracts
are higher than profits from adjusted contracts (moderate), an evaluation of the hedging
effectiveness shows that these contracts (based on Index 1, 2, and 3) produce a negative
δ. These contracts would re-distribute wealth from the insured to the insurer and the
insured would not buy them. As a result, insurers may not be able to sell non-adjusted
weather insurance contracts any longer.

Focusing on non-adjusted contracts that produce simultaneously positive profits and
hedging benefits, we find that the insurer (and the insured) could be better off with an
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Table 3.14: Profits (in CHF/ha) for adjusted and non-adjusted contracts

Index 1 Index 2 Index 3 Index 4
today adjusted optimal 41.61 61.29 58.78 67.29

(std) 4.24 5.84 4.96 6.42
moderate adjusted optimal 74.80 103.08 100.94 112.56

(std) 6.1 5.9 6.0 5.3
non-adjusted optimal 145.8 310.1 257.7 -332.8

(std) 36.4 39.6 42.6 93.4
profit 192.9 375.9 321.1 -260.6
(std) 36.4 39.7 42.7 93.5

medium adjusted optimal 89.51 126.93 125.62 137.32
(std) 2.94 3.85 3.58 4.64

non-adjusted optimal -212.8 -79.1 -91.0 -57.1
(std) 51.6 44.3 54.7 65.0
profit -146.4 13.0 0.15 45.0
(std) 51.6 44.3 54.6 65.0

strong adjusted optimal 92.20 142.2 141.48 153.84
(std) 5.32 3.23 3.51 3.43

non-adjusted optimal -102.8 -135.4 -132.5 -140.7
(std) 36.83 16.8 36.2 48.8
profit -12.6 -47.7 -11.5 -9.6
(std) 36.7 17.1 36.2 48.7

future adjusted optimal 88.28 149.56 149.20 163.30
(std) 8.0 7.42 8.30 8.0

non-adjusted optimal -71.9 -95.6 -97.0 -140.6
(std) 53.1 31.0 92.5 61.3
profit 19.8 46.4 44.4 13.8
(std) 53.0 30.8 92.2 61.1

Note: Expected profits from adjusted and non-adjusted contracts (in CHF/ha) for all indices are shown
over time, together with the standard deviation Expected profits from non-adjusted contracts (Πc(pc−1),
or Πc( p̃c−1), ) in a given climatic scenario (c) are derived by calculating the net-payments from offering an
optimal (pc−1(z)), or a profit-maximizing (p̃c−1(z)) insurance contract from the previous climatic conditions
(c− 1) in c. Crop: maize, location: SHA, model parameters: ny = 25, nz = 50, bw(1) = 100, bw(2) = 300,
and σ = 2.

adjusted profit-maximizing contract (optimal contract), because these contracts generate
on average similar expected profits (expected δ) at a lower standard deviation. By not
adapting weather insurance contracts on time, insurers face the risk of huge losses (as in
the strong scenario), and the risk reduction for the insured is no longer guaranteed (as in
the moderate scenario).
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3.7 Conclusion

We shed light on the consequences of using historical data for designing (and pricing)
weather insurance products for the resulting hedging effectiveness for the insured, and
the profitability for insurers. The objective of this paper is twofold: First, we evaluate
the potential of using weather insurance to manage the climate change induced increase
in weather risk. A process-based crop simulation model is used to simulate crop yield
data for today’s weather conditions, and for a climate change scenario for the time period
2036-2065. The stationarity assumption is not valid for the yield and weather data used
in this study. We simulate adjusted weather insurance contracts for today’s and future
climatic conditions using an insurance model developed by Kapphan (2011). Adjusted
insurance contracts are developed using weather data that represents the weather risk to
be hedged. We find that the payoff function of adjusted contracts changes its shape over
time, and that adjusted contracts are defined over a wider range of so far unprecedented
realizations of the weather index. For stylized (linear) weather derivatives, our findings
imply that insurance parameters (strike, exit, tick size, and cap) have to be adjusted over
time to effectively hedge future weather risk.

We show that the increase in weather risk due to climate change generates a huge
potential for the weather insurance industry. In particular, we find that the insurance
industry can expect profits to increase by up to 240% (depending on the contract) when
offering adjusted contracts. At the same time, the benefits in terms of risk reduction from
hedging with adjusted weather insurance contracts almost triple for the insured.

Second, we analyze the effect of offering non-adjusted risk management products to
cope with the expected increase in weather risk in light of climate change, i.e. we take
into account that the insurance industry prices and designs contracts using historical
(backward-looking) data, despite the fact that the stationarity assumption is no longer
valid. We demonstrate that the payoff function of weather insurance products requires
regular updating in times of climate change in order to guarantee that the product de-
livers the expected hedging benefits. Otherwise, we find that non-adjusted contracts ei-
ther create substantial losses, or that profits from non-adjusted contracts are substantially
smaller than profits from the corresponding adjusted contracts. While increasing the pre-
miums of today’s insurance products helps insurers build up liquidity that can be used
to cover the increase in future indemnities, this is not sufficient in order to provide clients
with adequate risk management products. In contrast to damage-based insurance prod-
ucts, parametric insurance products require in addition that contract characteristics are
regularly adapted in light of climate change.
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Our results are driven by the changes in the distribution of the underlying weather in-
dex. These changes affect the frequency and extent of payments. Adjusted insurance con-
tracts account for the new climatic conditions by providing higher payments at a higher
frequency, and in return charge a higher premium. With non-adjusted contracts, we ob-
serve that (depending on the index and the climatic conditions), the insured is either over-
or under-compensated relative to the payments needed to cover the actual loss. The dif-
ferent patterns in which payout probabilities of non-adjusted contracts change (relative
to the adjusted contracts), cannot be attributed to particular climatic conditions, since
multi-peril weather indices were used to predict crop yields. More research is required
to analyze how climate change is affecting the risk reduction from univariate weather
indices, and how to best adapt (simple) insurance contracts.

Our results have been derived by studying the effect of a single climate change sce-
nario, on one crop, at one geographical location. Future research should extend the
methodology outlined in this paper to other crops and other regions using multiple cli-
mate projections to assess the effect of climate change on insurance design and risk re-
duction. The use of a process-based crop simulation in combination with climate pro-
jections represents one possible method for dealing with non-stationary yield data. In
future work, statistical methods for dealing with non-stationary time series data should
be used to replicate our approach for evaluating the effect of hedging with non-adjusted
insurance contracts.

Climate change projections are informed by General Circulation Models (GCM) and
Regional Circulation Models (RCM), which are subject to uncertainty due to a number
of factors such as the representation of the physical system, or the future boundary con-
ditions which depend on the global economic development. From a risk management
perspective, the state of the art knowledge on generating local climate change projections
should be used to determine the effect of uncertainty in anthropogenic warming estimates
on our results, i.e. the effect of emission scenario uncertainty, as well as GCM/RCM
model uncertainty on the simulated insurance contract, and respectively the effect of the
uncertainty on the hedging effectiveness.

These uncertainties propagate to the crop model, which is subject to very similar un-
certainties in itself. In general, not all processes and process interactions affecting crop
growth can be fully represented with a process-based crop model. For example, indirect
weather-related impacts of pests and diseases are not considered. Also, the calibration of
crop parameters is subject to uncertainty. Even if a crop model was found to reflect the
patterns of observed yields reasonably well under current climate conditions, it cannot
be evaluated how reliable the predictions for changed climate conditions are. In this con-
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text it has to be noted that possible impacts of CO2 increase were not considered in this
study. Future work should investigate how sensitive the derived weather indices are to
uncertainties in climate projections, crop model parameters and model assumptions. Fur-
thermore, it should be analyzed how such uncertainties affect the hedging effectiveness
of adjusted contracts.
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3.8 Appendix

Figure 3.10: Optimal contracts (dashed line) with standard deviation (solid lines) for today’s
(green) and future (red) climatic conditions for all indices.

Figure 3.11: Optimal (solid line) and profit-maximizing (dashed line) insurance contracts
for Index 1 with density, for today’s (green) and future (red) climatic conditions.
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Figure 3.12: Optimal (solid line) and profit-maximizing (dashed line) insurance contracts
for Index 3 with density, for today’s (green) and future (red) climatic conditions.

Figure 3.13: Optimal (solid line) and profit-maximizing (dashed line) insurance contracts
for Index 4 with density, for today’s (green) and future (red) climatic conditions.
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Figure 3.14: Transition of boxplots from the income distributions without and with opti-
mal insurance for Index 3.

Figure 3.15: Income distributions with optimal (solid line) and profit-maximizing (dashed
line) insurance, for all indices, and without insurance (pointed line) for today’s and future
climatic conditions.
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3.8. Appendix

Table 3.16: Descriptive statistics of weather indices

Climatic scenarios today Scenario 1 Scenario 2 Scenario 3 future
1981-2001 moderate medium strong 2036-2065

Index 1
mean 3792 3700 3591 3477 3381
std 346.1 456.7 517.7 531.7 558.9
skewness 0.450 0.091 0.359 0.396 0.831
Index 2
mean 3785 3705 3589 3477 3369
std 400.4 533.7 635.6 681.4 720.4
skewness 0.428 0.023 0.131 0.271 0.553
Index 3
mean 3779 3700 3585 3478 3371
std 386.7 524.9 631.3 677.9 718.9
skewness 0.401 -0.125 0.015 0.209 0.425
Index 4
mean 3797 3696 3588 3468 3353
std 467.1 563.1 665.2 714.3 729.9
skewness -0.274 -0.453 -0.105 0.112 0.316

Note: Mean (in kg/ha), standard deviation (in kg/ha), and skewness of all weather indices for all climatic
scenarios.
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3.8. Appendix

Table 3.17: Descriptive analysis of income distribution with and without insurance

Climatic Today Scenario 1 Scenario 2 Scenario 3 Future
scenarios 1981-2001 moderate medium strong 2036-2065
mean no insurance 3.696 3.598 3.497 3.387 3.294
(CHF/ha) optimal 3.696 3.598 3.497 3.387 3.294

profit 3.630 3.497 3.371 3.245 3.145
std no insurance 186.3 273.3 300.3 301.1 279.4
(CHF/ha) optimal 120.0 130.9 137.0 141.3 146.3

profit 120.1 130.9 137.0 141.3 146.5
skew no insurance -0.222 -0.813 -0.375 -0.020 0.061

optimal -0.03 0.019 0.09 -0.12 -0.01
profit -0.03 0.019 0.09 -0.12 -0.01

quantile no insurance 3.449 3.210 3.083 2.998 2.937
10% optimal 3.541 3.435 3.323 3.207 3.109

profit 3.475 3.334 3.198 3.065 2.959
25% no insurance 3.574 3.455 3.267 3.168 3.106

optimal 3.611 3.509 3.402 3.288 3.194
profit 3.545 3.408 3.276 3.146 3.045

50% no insurance 3.704 3.640 3.534 3.385 3.292
optimal 3.697 3.598 3.492 3.392 3.297
profit 3.631 3.497 3.366 3.250 3.146

75% no insurance 3.835 3.791 3.724 3.611 3.485
optimal 3.777 3.684 3.586 3.484 3.398
profit 3.711 3.584 3.461 3.343 3.248

90% no insurance 3.932 3.911 3.858 3.787 3.644
optimal 3.852 3.764 3.671 3.556 3.482
profit 3.787 3.663 3.545 3.415 3.332

Note: Statistical moments of the income distribution without insurance and for the situation with optimal
and profit-maximizing insurance for all climatic scenarios.
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Chapter 4

Approximating Optimal Weather
Insurance Contracts

American Journal of Agricultural Economics, submitted

4.1 Introduction

The agribusiness sector is exposed to meteorological weather events that affect output
and cause inter-annual yield variability. In the U.S, for instance, the agricultural GDP
(in 2000 US$) varies by 12.1% due to weather variability (Lazo et al., 2011).1 Global cli-
mate change may induce the variability of the agricultural productivity to increase. With
climate change, average temperature conditions and the weather variability are on the
rise, which manifests itself as an increase in the number of extreme events such as floods,
heatwaves, and prolonged drought conditions (IPCC, 2007). As a result, the frequency
and severity of weather-related crop losses are expected to increase in all regions. Farm-
level adaption strategies and improvements in plant breeding can mitigate some impacts,
but nevertheless, agricultural production is becoming more risky over time (Trnka et al.,
2011). To manage the residual weather risk, sound risk transfer products are needed. The
aim of this paper is therefore to compare the hedging benefits of the linear weather risk
transfer products available to farmers in the OTC market with the insurance contracts
recently developed by Kapphan (2011), who proposes a methodology to derive optimal
index-based weather insurance.

1For comparison, the inter-annual variability of the utilities sector that is attributable to weather is 7.0%,
and the weather variability of the entire U.S. economy is 3.4% (Lazo et al., 2011).
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4.1. Introduction

4.1.1 Overview of Index-based Weather Products

Even without the threat of climate change, agricultural production is inherently risky
due to its weather exposure. Historically, farmers have managed weather risk using a
wide range of agricultural insurance products. Named and multi-peril damage based
insurance, or revenue insurance, are used to compensate crop yield shortfalls, and to
smooth income fluctuations over time (Coble et al., 2000). Since these insurance schemes
are plagued by problems of asymmetric information, governments often subsidize pre-
miums (Hazell, 1992; Skees et al., 1999). Recently, index-based, or parametric, weather
insurance has received attention as an innovative risk management instrument to deal
with weather risk.

Compared to traditional agricultural insurance, such as the multi-peril crop insurance
(MPCI) scheme in the US, parametric weather insurance determines payments based on
the difference between an underlying weather index and a pre-specified threshold (mea-
sured during a pre-defined period). Index-based weather insurance exploits the fact that
weather events are predictors for crop losses, and are exogenously verifiable events. Since
payouts are determined by the realized weather, problems of moral hazard and adverse
selection are eliminated as the insured retains an incentive to mitigate crop losses (Mi-
randa and Vedenov, 2001). Another advantage of index-based weather insurance is that
crop loss verifications are no longer needed to determine the eligibility of a claim, which
reduces the administrative cost of providing insurance (Richards et al., 2004). A major
drawback of an index-based product is that the index may not perfectly track the crop
losses of the insured, which leaves the insured with so-called basis risk.2

The idea of using an index to predict yield losses and to determine payouts goes back
to Halcrow (1949), and was further developed by Miranda (1991), and Skees et al. (1997),
who propose area-based yield insurance as an alternative to the U.S. federal crop in-
surance programm. The principle of using an area-based index to trigger payouts was
later extended from area yields to rainfall (Skees et al., 1999). At that time, a market for
weather derivative started to originate in the energy sector (Dischel, 1998; Brocket et al.,
2005). In 1997, energy suppliers first used (temperature-based) weather derivatives to
hedge against abnormal weather conditions, which cause electricity demand, and hence
electricity prices, to spiral. Similar to index-based weather insurance, weather deriva-
tives provide protection against weather-related changes in production quantity. From

2Basis risk results due a difference between the weather measured at the station, and the weather that
prevails at the farming site. Ideally, a weather derivative should be written on an index that is measured
at the same location where the derivative is used, thereby completely eliminating basis risk (Vedenov and
Barnett, 2004).
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a risk management perspective, weather derivatives are essentially equivalent to index-
based weather insurance since both products can be used to hedge weather risk. With
each, the buyer pays a premium and receives a commitment of compensation from the
seller if predefined conditions occur. Weather derivatives are financial products, which
can be bought at an exchange, like the Chicago Mercantile Exchange (CME), or are avail-
able in the over-the-counter (OTC) market. Exchange-traded contracts are standardized
and available for a number of major cities (in the North America and Europe) and simple
weather indices, whereas in the OTC market customers can obtain derivative contracts
custom-tailored to their particular hedging needs. Due to its flexibility to structure con-
tracts that address complex weather risks, the OTC market grew by almost 30% in 2010,
while the overall market for weather derivatives grew by 20% (WRMA, 2011).

Despite the advantages of index-based weather insurance, and the rapid development
of the weather market, the penetration of index-based weather products in agriculture, is
rather low, especially when compared to other weather-dependent sectors. Basis risk
is often the main argument used to explain the slow uptake of index-based insurance
products in agriculture, as the risk remains with the grower (World Bank, 2011). Another
possible explanation why farmers hesitate to adopt weather risk management, either in
the form of an insurance product or weather derivatives, is the unfamiliarity with the
weather marketplace.

4.1.2 Hedging with Index-based Weather Products

Obtaining a customized weather hedge requires that the insured selects a measurement
station, a weather index, possibly thresholds defining the index, a time period, and the
parameters that define the payoff function (Zeng, 1999; Vedenvo and Barnett, 2004). The
payoff structure of a generic derivative contract is characterized by a strike and exit value,
a tick size and cap. The choice of each component affects the resulting contract, the pre-
mium charged by the seller, and most importantly the weather coverage obtained. To
obtain a desired coverage, a buyer needs to assess a number of possible combinations
of index, location, and contract parameters with respect to their hedging benefits. Leav-
ing aside the possible combinations of insurance parameters, Vedenov and Barnett (2004)
already note that “various combinations of weather variables, (crops), and weather mea-
surement stations create an enormous number of potential weather derivatives, ... ” need
to be considered for an informed decision.

In general, the design of a parametric weather hedge can be decomposed into two
steps: creating an index, and structuring the payoff function. Finding an index that ex-
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plains crop losses well matters for reducing meteorological basis risk, i.e. the risk of the
index not triggering any payments despite the fact that crop losses occurred. The design
of the payoff structure matters for minimizing structural basis risk, i.e. the risk of receiv-
ing inadequate payments that do not fully cover the realized losses. Ideally the contract
is structured such that the insured receives a compensation from the insurer that reflects
the actual accrued crop losses. To structure such a contract both sources of basis risk need
to be minimized.

In the energy sector, simple indices, such as heating degree days (HDD) and cooling
degree days (CDD), are good predictors of electricity demand. In agriculture, the rela-
tionship between crop yields and weather is more complex as manifold weather events
affect the plant development throughout the growing period. Therefore, agriculture spe-
cific indices have been proposed to minimize basis risk. (Steinmann et al., 2005; Tsakiris
et al., 2005; Narasimhan et al., 2005; Keller et al., 2011; Kapphan, 2011). While the under-
lying indices have been adapted to the agricultural context, the generic payoff structure,
that originated from the energy sector, has so far been adopted.

Numerous studies exist that evaluate the potential of index-based weather insurance
at a given location, for one ore more crops (Turvey, 2001; Breustedt et al. 2008; Torriani
et al., 2008; Zant, 2008; Berg et al., 2009; Musshoff et al., 2009; Leblois et al., 2011). Often
these studies propose a few indices and compare them based on their hedging benefits,
while relying on one methodology to structure the payoff function. The findings from
these studies are hence location- and crop-specific, and more importantly, depend on the
chosen structuring method. All contributions, however, share the assumption of a linear
payoff function. The issue of addressing structural basis risk has so far been neglected in
the literature. I aim to fill the gap by comparing for the first time -for a given crop and
location - different structuring methodologies with respect to their hedging effectiveness.

In particular, I assess the loss in risk reduction from hedging with linear weather in-
surance contracts compared to optimal weather insurance contracts, which are non-linear
as the payout function reflects the agronomic relationship between weather and yields,
developed by Kapphan (2011). As the weather market offers at the moment only lin-
ear (standardized) contracts, I first derive methodologies to approximate the optimal and
profit-maximizing insurance contracts. By approximating I derive the insurance param-
eters (trigger, tick size, and cap) that define the payoff function of an approximated opti-
mal, and respectively, profit-maximizing contract. I then compare the hedging benefits of
the optimal with the approximated counterpart, and thus derive the loss in risk reduction
from hedging agricultural weather risk with linear weather derivative contracts.

For the empirical analysis, simulated crop yield and weather data for Schaffhausen,
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Switzerland, derived from a process-based crop simulation model in combination with
a weather generator, representing today’s climatic conditions and a climate scenario is
used. Using the same weather and crop yield data, as well as the same underlying indices
as in Kapphan et al. (2011) allows me to compare the benefits of hedging today’s weather
risk with a linear contract (δt(at(z))) with the risk reduction potential of linear contracts
with climate change (δ f (a f (z))), and to assess the findings of Kapphan et al. (2011) using
a different insurance design method.3 Moreover, in light of climate change, the loss in
risk reduction from hedging agricultural weather risk with linear contracts (compared to
non-linear optimal contracts) is evaluated over time.

The remaining paper is structured as follows: In Section 4.2, I propose two method-
ologies for approximating the optimal and profit-maximizing insurance contracts, and
explain the approach taken to estimate the loss in risk reduction (for the insured), and the
loss in profits (for the insurer). Section 4.3 outlines the yield and weather data sets used in
this study, and describes the underlying weather indices. In section 4.4.1, the properties
of the optimal contract and the approximated counterparts are described, and in section
4.4.2 the loss in risk reduction from hedging with approximated contracts compared to
optimal contracts is assessed for both climatic conditions. The sensitivity of the results is
evaluated in section 4.5. In section 4.6, I offer a conclusion and outlook of the potential
application of the insurance design lessons learnt in this paper.

4.2 Theoretical Approach

4.2.1 Optimal and Profit-Maximizing Insurance Contracts

The objective of this section is to propose a robust methodology for deriving the insur-
ance parameters (trigger, exit, cap and tick size) from the optimal and profit-maximizing
insurance contracts, that are needed to define a linear weather derivative payoff structure.
Before the approximation methods are explained, I offer a brief review of the optimal
weather insurance design.

The model developed by Kapphan (2011) is used to numerically derive the payoff
structure of an index-based weather insurance contract with optimal hedging effective-

3Kapphan et al. (2011) assessed the benefits from hedging weather risk with optimal insurance contracts
for today’s and future climatic conditions. The authors find that with climate change the benefits from
hedging, as measured by δ, almost triple for the insured, and that insurers can expect profits to increase
by about 240% from offering optimal adjusted weather insurance contracts (for a relative coefficient of risk
aversion of σ = 2). An adjusted insurance contract accounts for the changes in the crop yield and the
weather distributions that are due to climate change.
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ness for the insured and with maximum profits for the insurer. Yields are represented by
y and z measures the corresponding realization of the weather index in a given climatic
scenario c, with c ∈ {t, f } and t representing today’s and f future climatic conditions.4

The influence of weather on yields under given climatic conditions is captured through
the conditional distribution of yields with cdf Fc(y|z) with density fc(y|z), which are es-
timated parametrically using Gaussian kernel function. The distribution of the weather
index z ∈ Zc ≡ [zc, zc] is characterized by the cdf Gc(z) and density gc(z). The optimal
weather insurance payoff structure pc(z) is derived by maximizing the expected utility
of the insured subject to the constraint that the risk-neutral insurers charge an actuarially
fair premium. As only the payout after the premium Pc matters to the insured, p(z) rep-
resents the net-payout, so that pc(z) = Ic(z) − Pc for all z ∈ Z, with Ic(z) representing
the indemnity, or gross payment, for a given z. Following Kapphan (2011), the insured is
risk-averse and has preferences over consumption, θ, with θ = y + pc(z), which are char-
acterized by constant relative risk aversion (CRRA), i.e. u(θ) = θ1−σ/1− σ with σ > 0.
Formally, p∗c (z) maximizes the expected utility of the insured

max
pc(z)

∫
Zc

∫
Yc

u(y + pc(z))dFc(y|z)dGc(z) (4.1)

subject to the constraint ∫
Zc

pc(z)dGc(z) = 0. (4.2)

Constraint (4.2) implies that insurers make on average zero profits, i.e. the premium is
actuarially fair. Furthermore, a profit-maximizing contract p̃∗c (z) solves

max
p̃c(z)

Πc ≡ −
∫
Zc

p̃c(z)dGc(z) (4.3)

subject to the constraint that the insured’s expected utility is equal to or greater than his
expected utility in an uninsured situation, i.e.∫

Zc

∫
Yc

u(y + p̃c(z))dFc(y|z)dGc(z) ≥
∫
Zc

∫
Yc

u(y)dFc(y|z)dGc(z). (4.4)

I thus consider the realistic situation where insurers add a loading factor to the premium
to cover transaction costs of providing weather insurance. From the profit-maximizing in-
surance contract, the loading factor at which the insured is indifferent between hedging
his weather risk and not obtaining any protection can be derived by comparing the pre-

4Alternatively, yc can represent revenues from selling crop yields at a given price p with z representing
predicted revenues.
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mium of the optimal contract p∗c (z) with the premium of the profit-maximizing contract
p̃∗c (z).

4.2.2 Approximating Optimal and Profit-Maximizing Contracts

For the optimal and profit-maximizing contracts, I propose 2 different methods to derive
a piecewise linear contract, that approximate those optimal contracts. I then evaluate how
well the approximated contract, that looks more like a classical weather derivative payoff,
reduces the risk compared to the optimal contract. For the profit-maximizing contract, I
also propose an approximation, and evaluate how well the approximated counterpart
maximizes the insurer’s expected profits compared to the profit-maximizing contract.

To approximate the optimal and profit-maximizing insurance contracts, trigger τc and
exit ηc values are chosen with respect to the statistical moments of the index distribution
gc(z). The optimal approximated contract is represented by ac(z), and the approximated
profit-maximizing contract by ãc(z).

In a baseline approximation scenario, the trigger is set to be equal to the z value of the
90% quantile of gc(z), denoted as τc,90%. The exit level is set to be equal to the 20% quantile
of gc(z), denoted by ηc,20%.5 Later, a sensitivity analysis is performed to analyze the effect
of the selection of the approximation parameters on the results (see section 4.5). Finally,
to fully characterize the approximated payoff functions, the payouts corresponding to the
trigger and exit values, denoted by µc and κc respectively, need to be defined. This also
implies a tick size (slope) of

φc =
κc − µc

τc − ηc
. (4.5)

The net-payout at τc, given by µc, is referred to as the minimum payment (“minpay”),
and the net-payout at ηc, given by κc, is called the “cap.” Figure 4.1 illustrates the insur-
ance parameters of the approximated contract. In the following, I propose two different
methods to derive these insurance parameters.

Method 1: For given trigger and exit values, the corresponding net-payout values
are determined from pc(z), and respectively p̃c(z), via interpolation as the optimization
problem is solved in its discrete form as described in Kapphan (2011). The optimal net-
payout value at τ1

c is represented by µ1
c and the profit maximizing net-payout by µ̃1

c . The
net-payout values corresponding to η1

c are then given by κ1
c and κ̃1

c , respectively. The tick

5For the indices used in this study, the yield outcome improves for higher levels of the index. Therefore
the weather insurance contract has to trigger payments as soon as the weather index falls below a critical
threshold. Consequently, τc > ηc as the contract follows a put option-style payout. For call option-style
payouts with τc < ηc, the trigger could be set equal to the 10% quantile and the exit could be defined by the
80% quantile of gc(z).
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size of the optimal approximated contract φ1
c is then given by (4.5).

While the resulting contract parameters (φ1
c , τ1

c , and η1
c ) fully define a contract, the

resulting payoff function no longer necessarily satisfies the zero-profit condition.6 For
the approximated optimal contract a1

c(z) to still be actuarially fair, I shift the entire func-
tion vertically such that the zero-profit constraint is exactly satisfied. Similarly, the pay-
off function resulting from φ̃1

c , τ̃1
c , and η̃1

c is shifted to generate an approximated profit-
maximizing contract such that the insured’s expected utility from hedging with ã1

c(z) is
equal to the expected utility from not hedging.

Figure 4.1: Notation of the insurance parameters defining the approximated contract.

Method 2: Alternatively, to approximate the optimal contract pc(z), I propose a second
method to determine the cap κ2

c , i.e. the maximum payout corresponding to the exit value
η2

c , and the min-payout µ2
c , corresponding to the trigger level τ2

c . In a first step, the linear
trend between yields y and the index z of the corresponding climate scenario is estimated
using OLS regression, i.e. y = αc + βcz + εc. The slope φ2

c of the approximated optimal
contract is then given by the estimated β̂c. Next, the net-payout values at the exit (η2

c )
and at the trigger value (κ2

c ) are determined using the fitted relationship. As before, the
resulting payoff function is shifted to ensure that the approximated optimal contract a2

c(z)
is actuarially fair. Similarly, an approximated profit-maximizing contract ã2

c(z) can be
derived by shifting the resulting payoff function such that the insured’s expected utility
from hedging with ã2

c(z) is equal to the unhedged situation.7

6Note that the optimal contract pc(z) by construction generates zero profits. However, this is not nec-
essarily true for the approximated optimal contract as defined so far, since the approximation may lead to
profits that deviate from exactly zero.

7As it turns out that Method 1 better approximates the optimal contract, and that the magnitude of
the loss in the risk reduction from approximating optimal contracts via Method 1 and Method 2 are quite
similar, I do not show the loss in profitability for Method 2. Additional results are available from the author
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The difference in the two approximation methods is that the slope (ticksize) φ1
c is the

result of the selection of µ1
c and κ1

c , whereas µ2
c and κ2

c are determined by evaluating ŷ =

α̂ + β̂z at τc,90% and respectively ηc,20%. The second approximation method allows us to
evaluate the sensitivity of the results with respect to the chosen approximation method.
Furthermore, Method 2 is inherently similar to the method proposed by Karuaihe et al.
(2006), Berg et al. (2009), and Leblois et al. (2011) to derive the payoff function of an
index-based weather insurance contract. This strand of literature computes the expected
utility of the insured for a given set of the critical insurance parameters (τc,µc, φc), and
then evaluates the choice of the insurance parameters based on the certainty equivalent
gain. The set of τc,µc, and φc that yields the highest certainty equivalent gain constitutes
the optimal contract, given the functional form assumption that ac(z) is linear between τc

and ηc, and that ac(z) is capped once z < ηc.
In order to compare the payout function of the approximated contracts, that are de-

fined by the insurance parameters, with the optimal and profit-maximizing contract, I
also derive a trigger, exit, cap, and minimum payout for the optimal and profit-maximizing
contract. The premium Pc, which is equivalent to µc, is given by the minimum of pc(z).
The exit levels, ηc and η̃c, are given by the minimum of gc(z). The trigger value τc is
derived by evaluating the gross payout function Ic(z) = pc(z) + Pc, at Ic(z) = 0, i.e. the
trigger value is given through the index value z where pc(z) = Pc. To derive τ̃c the (gross)
payout function is evaluated at Ĩc(z) = 0. As for the approximated contracts, κc and κ̃c

correspond to the highest payout of pc(z) and p̃c(z) respectively. Table 4.1 summarizes
the notation of insurance parameters corresponding the approximated and optimal con-
tracts.

Table 4.1: Notation of contract parameters for optimal and approximated contracts

Approximation Contract Trigger Exit Cap Minpay Tick
optimal pc(z) τc ηc κc µc n.a.
profit p̃c(z) τ̃c η̃c κ̃c µ̃c n.a.

Method 1 optimal a1
c(z) τ1

c η1
c κ1

c µ1
c φ1

c
profit ã1

c(z) τ̃1
c η̃1

c κ̃1
c µ̃1

c φ̃1
c

Method 2 optimal a2
c(z) τ2

c η2
c κ2

c µ2
c φ̃2

c

Note: The notation proposed to characterize optimal and profit-maximizing contracts, together with their
corresponding approximated contracts applies to put option-style (ηc < τc) and call option-style (τc < ηc)
payoff structures. By construction τ1

c = τ2
c = τ̃1

c , and that η1
c = η2

c = η̃1
c .

upon request.
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4.2.3 Loss in Risk Reduction and Profitability

To compute the loss in risk reduction from hedging with linear (weather derivative) con-
tracts instead of using an optimal weather insurance contract, I first evaluate the risk
reduction of the insured from hedging with a particular contract. Similarly, to derive
the loss in profits from offering approximated contracts compared to profit-maximizing
contracts, the expected profits of the different contracts are derived.

To quantify the risk reduction potential, for instance, of an optimal insurance contract,
I compute the percentage increase of all income realizations in the situation without insur-
ance that makes the insured equally well-off (in expected utility terms) as in the situation
with the optimal insurance (see Kapphan, 2011). Formally, this percentage increase δc(pc)

solves∫
Zc

gc(z)
∫
Yc

fc(y|z)
(pc(z) + y)1−σ

1− σ
dydz =

∫
Zc

gc(z)
∫
Yc

fc(y|z)
((1 + δc(pc))y)1−σ

1− σ
dydz,

(4.6)
with solution:

δc(pc) =

(∫
Zc

gc(z)
∫
Yc

fc(y|z)(pc(z) + y)1−σdydz∫
Zc

gc(z)
∫
Zc

fc(y|z)y1−σdydz

) 1
1−σ

− 1. (4.7)

For given climatic conditions, the benefits from hedging with an approximated opti-
mal insurance contract are derived, δc(a1

c(z)) and δc(a2
c(z)) , and compared to the benefit

from hedging with an optimal contract δc(pc(z)).8 Similarly, I derive the profits an insurer
can expect to earn from offering a particular insurance contract (for given climatic condi-
tions). For the profit-maximizing insurance contracts, expected profits are determined by
solving:

Πc( p̃c) = −
∫
Zc

p̃c(z)dGc(z). (4.8)

For the insurer, the benefits from offering the profit-maximizing contract, Πc( p̃c) , are
compared to the benefits from providing linear profit-maximizing contracts, Πc(ãc). The
loss in risk reduction is then given by

∆j
c =

δc(pc(z))− δc(aj
c(z))

δc(pc(z))
, j = 1, 2. (4.9)

8 Furthermore, to evaluate the benefits from hedging with different types of weather insurance contracts,
I compare the statistical moments of the income distribution without insurance to the statistical moments
of the situation with different contracts.
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∆j
c measures (in percent) the loss in risk reduction from hedging weather risk with lin-

ear approximated contracts (using Method 1 (j = 1), or Method 2 (j = 2) compared to
hedging with optimal weather insurance contracts.

For the insurer, the loss in profits from offering linear weather insurance contracts,
ã1

c(z), compared to the profit-maximizing contracts, p̃c(z), is then given by

Θ1
c =

Πc( p̃c(z))−Πc(ã1
c(z))

Πc( p̃c(z))
. (4.10)

Table 4.2: Notation for profits and deltas from optimal and approximated contracts

Contract Delta Profits Loss of δ Loss of Π
optimal pc(z) δ(pc(z)) 0
profit p̃c(z) 0 Πc( p̃c(z))

Method 1 optimal a1
c(z) δ(a1

c(z)) 0 ∆1
c 0

profit ã1
c(z) 0 Πc(ã1

c(z)) 0 Θ1
c

Method 2 optimal a2
c(z) δ(a2

c(z)) 0 ∆2
c 0

Note: The insured’s benefit (δc) from hedging weather risk in a given climate scenario (c = t, f ) depends on
the contract type (pc(z), and a1

c (z) or a2
c (z)). Insurer’s profit (Πc) in a given climate scenario depends on the

contract offered (p̃c(z), or ã1
c (z)). By construction, the benefits for the insured from hedging with a profit-

maximizing contract, δc( p̃c), or an approximated profit-maximizing contract, δc(ã1
c ), are zero. Similarly,

the insurer’s expected profits from offering an optimal insurance contract, Πc(pc), or form offering an
approximated optimal contract, Πc(ã1

c ), are equal to zero by construction.

Table 4.2 summarizes the notation used for the loss in risk reduction for the insured
and the loss in profits for the insurer. Comparing ∆j

t with ∆j
f allows us to then assess

whether climate change alters the loss in risk reduction. Similarly, whether the loss in
profits for the insurer from approximating profit-maximizing contracts is becoming worse
or better can be evaluated by comparing Θ1

t with Θ1
f .

4.3 Data and Weather Indices

The same weather and yield data as in Kapphan et al. (2011) is used. The data set con-
sists of 1, 000 simulated maize (Zea mays L.) yield realizations, which are generated with
CropSyst, a process-based crop simulation model (Stöckle et al., 2003) in connection with
1, 000 years of daily synthetic weather data, generated with a stochastic weather genera-
tor LARS-WG (Semenov, 1997; Semenov et al., 2002), for today’s climatic conditions and a
climate scenario. The climate change scenario (2036-2065) represents regional projections
for Europe developed by Vidale et al. (2003) with the CHRM regional model in the frame-
work of the PRUDENCE project on the basis of a A2 emission scenario (Nakicenovic et
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al., 2000). Observed daily weather data from 1981 to 2010 at Schaffhausen, Switzerland,
(SHA: latitude: 47.69, longitude: 8.62) was used to condition LARS-WG. The baseline
statistics of LARS-WG were then modified to represent the climate change scenario and a
daily weather series of a 1, 000 years was generated.

The CropSyst calibration for maize is based on Torriani et al. (2007a, 2007b) and was
adapted to the newer CropSyst version 4.13.09. The synthetic weather series represent-
ing today’s and future climatic conditions were fed into CropSyst (Stöckle et al., 2003)
to simulate maize yields under both climatic conditions. With climate change, average
maize yields decrease from 9,266 kilogram per hectare (kg/ha) to 8,190 kg/ha, while the
coefficient of variation increases from 0.157 to 0.257. Without adaptive measures, grow-
ing maize in Schaffhausen is becoming more risky and less profitable. Further details on
the parametrization of CropSyst and of LARS-WG, the climate change scenario, together
with descriptive analysis of the simulated maize yields for today’s and future climatic
conditions can be found in Kapphan et al. (2011).

Furthermore, I use the same underlying weather indices as in Kapphan et al. (2011) to
simulate optimal and the corresponding approximated insurance contracts. In particular,
the 4 indices take either single or multiple weather events into account that occur during
the growing season. All indices are derived from weather-yield regression models where
the estimated coefficients serve as weights to construct a multi-peril index. Index 1 uses
mean precipitation during vegetative period of maize growth to measure the water sup-
ply, and explains 37.1% of the yield variability in today’s climatic conditions, and 39.2%
with climate change. Considering in addition the influence of heat stress, as measured
by the average maximum temperatures during the grain filling period, Index 2 explains
50.3%, and with climate change 68.3%. Index 3 measures the actual water availability,
i.e. the difference between mean precipitation and potential evapotranspiration, and ex-
plains 46.3%, and 67.8% in the climate change scenario, of the yield variability. Taking the
influence of multiple weather events at different phenology stages into account, Index 4
explains the largest fraction of the yield variability with 62.5%, and 74.5%. All weather
indices represent predicted yields (measured in kg/ha), and are converted into predicted
revenues (in CHF/ha) using the crop price of 0.41 CHF/kg for maize (CHF/kg).9 For a
detailed description of the index selection and design, see Kapphan et al. (2011), Table 4.3
summarizes the goodness of fit of the 4 indices for today’s and future climatic conditions.

9The average price for maize from 2006 to 2009 in Switzerland, which was 41.00 CHF/100kg (SBV, 2010)
is used, as in Kapphan (2011), and Kapphan et al. (2011).
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Table 4.3: Descriptive statistics of weather indices

in % Index 1 Index 2 Index 3 Index 4
Today Corr 60.8 70.9 68.1 78.9

adj. R2 37.0 50.3 46.3 62.2
Future Corr 62.6 82.6 82.3 86.3

adj. R2 39.2 68.3 67.8 74.5

Note: Today’s weather indices are selected based on the Spearman rank correlation coefficient (Corr) and
the adjusted R-Square (adj.R2) from the weather-yield regression for today’s conditions. Future weather
indices are constructed using the same weather variables, measured during future phenology phases, and
using the coefficients from future weather-yield regressions as weights.

4.4 Results

4.4.1 Comparison of Optimal and Approximated Insurance Contracts

For the baseline approximation scenario, Figure 4.2 (left) shows the optimal, pt(z), and
approximated, a1

t (z), insurance contract for today’s weather conditions based on Index 2.
The shape of pt(z) reflects the changes in the riskiness of the respective conditional yield
distributions, ft(y|z), as explained in Kapphan (2011), and is non-linear along the entire
range of the index realizations. Payouts of pt(z) and a1

t (z) are increasing with lower val-
ues of the weather index, as these realizations correspond to low predicted revenues. The
optimal payout function flattens for very high index realizations, as they indicate high
revenues. At the point where pt(z) and a1

t (z) are equal to zero, the insured fully recovers
the premium. The break-even point is defined as ξ. For z ≤ ξ, the insured’s indemni-
fications I(z) exceed the premium and net-payouts are positive. For z > ξ, net-payouts
are negative, i.e. the insured receives payments that are smaller than the premium. The
premium is given by the minimum of pt(z), and a1

t (z) respectively. By definition, the ap-
proximated contract at(z) has a linear slope between τt and ηt, and maximum payments,
κt, are capped once z < ηt is reached. Similarly, net-payouts of at(z) do not further de-
crease for z > τt, i.e. for index realization that are higher than the trigger, it follows that
It(z) = 0, or µt = Pt. Figure 4.2 (right) shows the pdf of the underlying index z together
with the trigger, τ1

t , and exit, η1
t , levels of my baseline approximation scenario.

The most notable differences between pt(z) and a1
t (z) are that 1) the maximum payout

of the approximated contract is much lower compared to optimal, 2) the premium of
the approximated contracts is slightly smaller, and 3) the approximated contract tends to
over-compensate the insured for index realizations between the trigger and exit. These
observations hold for all the other indices.10

10In the Appendix B, Figure 4.9 shows the optimal and profit-maximizing contracts with their approxi-
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Figure 4.2: Optimal and approximated (based on Method 1) weather insurance contracts
for today’s climate scenario derived for Index 2 (left), pdf of the Index 2 together with the
exit and trigger levels for the baseline approximation scenario (right). Both the weather
index and net-payouts are measured in CHF/ha.

In particular, a1
t (z) (based on Index 2) starts to pay out once (predicted) revenues τ1

t

fall below 4300.0 CHF/ha. Once η1
t of 3449.9 CHF/ha is reached, net-payouts are capped

at 426.3 CHF/ha. The premium for a1
t (z) is 566.6 CHF/ha. In contrast, the maximum

payout of pt(z) is with 1672.1 CHF/ha much higher, while the exit level is with 2627.8
CHF/ha much lower. The profit-maximizing contract p̃t(z) also offers a higher maxi-
mum payout of 1557.4 CHF/ha, relative to ã1

t (z), which caps net-payouts 359.0 CHF/ha.
By construction, the difference between η̃t and η̃1

t is the same as for ηt and η1
t . I also

observe for pt(z) and p̃t(z) that these contracts possess higher strike values compared to
their approximated counterparts. As soon as z < τt = 5036.8 CHF/ha, the optimal (gross)
contract triggers payments. Given that these payments do not let the insured break even
as long as z > ξ, the difference in τt ≥ τ1

t can be neglected from a risk reduction perspec-
tive. Table 4.4 summarizes the insurance parameters (τc, ηc, κc, φc, and Pc) of pc(z), a1

c(z),
a2

c(z), and for p̃c(z) and ã1
c(z) based on Index 2 for both climatic scenarios.

Furthermore, I observe that a1
t (z) tends to overcompensate the insured (relative to

pt(z)) for all weather events between τt and ηt, i.e. the insured receives a slightly higher
payout for z ∈ [ηt, ξt], or has to make slightly smaller payments for z ∈ [ξt, τt] to the
insurer, than suggested by the optimal contract. Thus, a1

t (z) and ã1
t (z) provide less cov-

erage in years where the weather is really bad, and hence revenues are low, compared to
pt(z) and p̃t(z). While extremely bad weather events are rare, these are the events when
adequate compensation is needed the most. Furthermore, the linear payout structure of

mated counterparts for all indices.
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Table 4.4: Contract parameters for Index 2

TODAY pt(z) a1
t (z) a2

t (z) p̃t(z) ã1
t (z)

Pt -641.9 -566.6 -510.1 -711.2 -618.8
(std) (23.8) (16.3) (20.5) (97.9) (28.8)
τt 5036.8 4300.0 4300.0 4953.8 4300.0
(std) (46.9) (23.1) (23.1) (41.4) (23.1)
ηt 2627.8 3449.9 3449.9 2627.8 3449.9
(std) (89.7) (11.2) (11.2) (89.7) (11.2)
κt 1627.1 426.3 344.6 1557.4 359.0
(std) (172.3) (32.2) (29.6) (171.1) (33.3)
φt n.a. 1.13 1.01 n.a. 1.13
(std) n.a. (0.05) (0.03) n.a. (0.05)
FUTURE p f (z) a1

f (z) a2
f (z) p̃ f (z) ã1

f (z)
Pf -1688.6 -1047.7 -946.5 -1725.5 -1187.9
(std) (67.8) (97.7) (43.3) (59.60) (106.6)
τf 3933.9 4364.3 4364.3 3272.9 4364.3
(std) (96.1) (56.85) (56.85) (83.52) (56.85)
η f 1657.7 2780.8 2780.8 1657.7 2780.8
(std) (102.1) (21.37) (21.37) (102.1) (21.37)
κ f 1191.9 709.0 625.5 1022.1 544.7
(std) (62.7) (34.46) (20.27) (70.04) (43.06)
φ f n.a. 1.09 0.99 n.a. 1.09
(std) n.a. (0.06) (0.02) n.a. (0.06)

Note: Contract parameters (τc, ηc, κc, φc) of optimal (pc(z)) and approximated insurance contracts (a1
c (z),

a2
c (z)), and profit-maximizing (p̃c(z)) and approximated profit-maximizing (ã1

c (z)) together with the pre-
mium (Pc) for Index 2 under today’s and future climatic conditions. All contract parameters are measured
in CHF/ha. By construction τ1

c = τ2
c = τ̃c, and η1

c = η2
c = η̃c. Estimates of the standard deviation for pt(z)

and at(z), and thus for the contract parameters, are obtained by 10 times randomly drawing 900 observa-
tions with replacement from the data, and solving (4.1) subject to (4.2) as described in section 4.2. For more
information, see Kapphan et al. (2011).

a1
t (z) for z ∈ [ηt, τt] neglects the non-linear influence of weather on yields, and tends to

overcompensate these losses. The extended coverage of pt(z) and p̃t(z) during bad years
is available at slightly higher premiums of Pt = 641.9 CHF/ha, and P̃t = 711.2 CHF/ha
respectively, compared to P1

t = 566.6 CHF/ha, and P̃1
t = 618.8 CHF/ha.11 The differ-

ence between Pt(z) and Pj
t (z) is mostly explained by κo

t > κ
j
t, since more coverage in bad

years causes premiums to rise. However, the fact that a1
t (z) provides excess coverage for

11As suggested by Kapphan (2011), premiums do not necessarily have to be paid upfront at the beginning
of the growing season. Instead, the insurer offers the insured a swap contract, which specifies the net-
payoff function and the underlying index. At the end of the growing season, once the weather is realized,
payments are exchanged. If the farmer has experienced a good harvest, he pays the insurer ex-post for
assuming the downside weather risk. Alternatively, in a bad year, the insured receives an indemnification
from the insurer.
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weather events between τt and ηt causes P1
t to be higher compared to an approximated

contract with κt and µt that followed the net-payoff structure of pt(z) for z ∈ [ηt, τt].

Approximated Contracts and Climate Change

Deriving the optimal weather insurance contract, p f (z), for the climate change scenario, I
observe that the p f (z) covers additional weather events, and that the magnitude of pay-
ments decreases for those weather realization that existed already today. Figure 4.3 (left)
shows the optimal, pt(z) and p f (z), and approximated, a1

t (z) and a1
f (z), weather insur-

ance contracts based on Index 2 for today’s and future climatic conditions. The change in
the shape of p f (z) and the extended coverage for drier weather conditions is explained
by the change in the pdf of the underlying weather index.12

Figure 4.3: Optimal and approximated (Method 1) weather insurance contracts for to-
day’s climatic conditions based on Index 2 (left) and Index 1 (right). Both the weather
index and net-payouts are measured in CHF/ha.

The approximated contract a1
f (z) covers similar to p f (z) a wider range of weather

events. In particular, the future optimal contract offers an extended coverage against
drier conditions since z takes on even smaller values with climate change. Therefore,
η f is smaller than ηt, which is then also reflected by eta1

f > η1
t for the approximated

contract. At the same time, I observe that κ f > κt, and correspondingly κ1
f > κ1

t for the
approximated contract, which results in P1

f > P1
t , and correspondingly in P̃1

f > P̃1
t . While

these observations hold for all indices, the direction of change for the trigger level is not
consistent across indices. For Index 2, I observe that τ1

f > τ1
t , while for Index 1 τ1

f < τ1
t .

12For a complete analysis and discussion of the changes in the optimal weather insurance contract due to
climate change, see Kapphan et al. (2011).
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Figure 4.3 shows the the optimal and approximated contracts for both climate scenarios
based on Index 2 (left) and Index 1 (right). These observations confirm, as suggested by
Kapphan et al. (2011), that the insurance parameters of the stylized linear contract (τ1

f ,
η1

f , and κ1
f ) need to be a adjusted with climate change. In order to approximate the future

optimal contract, the direction of change for τf and η f depends on the change in g f (z)
with respect to gt(z) of the underlying index.

Comparison of Approximation Methods

While the two approximated contracts have by definition the same strike, τ1
c = τ2

c = τc,
and exit, η1

c = η2
c = ηc, the two contracts differ in κc, i.e. the net-payout at which pay-

ments are capped once z ≤ ηc. Figure 4.4 shows a1
t (z) and a2

t (z) based on Index 2 for
today’s weather conditions.13 Comparing the insurance parameters, I find that a1

t (z) pos-
sesses a higher cap than a2

t (z) for all indices. While the probabilities of receiving the max-
imum payments are the same for both approximated contracts, the fact that κ1

t (z) > κ2
t (z)

explains why P1
t (z) > P2

t (z). Given that the pt(z) and p̃t(z) provide even higher payouts
in very bad years, this already suggest that Method 1 is better suited to approximate the
optimal and profit-maximizing contracts. In order to determine which method is better
suited, the loss in risk reduction for the insured when hedging with a1

c(z), as measured
by ∆1

c , will be compared to the loss in risk reduction from hedging with a2
c(z), given by

∆2
c , for both climatic scenarios in the next section 4.4.2. The method which minimizes the

loss in risk reduction is better suited to approximate the optimal contract.

Figure 4.4: Comparison of approximated optimal insurance contracts for Method 1 and 2
based on Index 2 for today’s climate scenario.

13For the climate change scenario, the difference in the approximation methods described here are the
same.
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4.4.2 Loss in Risk Reduction and Profitability

I evaluate the risk reduction for the insured from hedging with the optimal pc(z) and
the approximated optimal aj

c(z) contracts by deriving δc(pc(z)), δc(a1
c(z)) and δc(a2

c(z))
for all indices.14 Furthermore, I assess the expected profits for the insurer from offering
the profit-maximizing contract p̃c(z) and the approximated profit-maximizing contract
ã1

c(z) by deriving Πc( p̃c(z)) and Πc(ã1
c(z)). The trigger and exit values of aj

c(z) and ã1
c(z)

represent the baseline approximation scenario outlined in section 4.2. In Table 4.5, I report
the deltas and profits of all contracts and indices and both climate scenarios. Figure 4.5
(left) shows the boxplots of δt(pt(z)), δt(a1

t (z)) and δt(a2
t (z)) based on Index 4, and Figure

4.5 (right) shows the boxplots of Πt( p̃t(z)) and Πt(ã1
t (z)).

Figure 4.5: Boxplots of risk reduction, as measured by δ in %, for pt(z) (Optimal), a1
t (z)

(Method 1), and a2
t (z) (Method 2) based on Index 4 (left). Boxplots of expected profits,

as measured by Π in CHF/ha, for p̃t(z) (Profit) and ã1
t (z) (Method 1) based on Index 4

(right).

For today’s climate scenario, buying pt(z) is equivalent to increasing the income of
the uninsured in all states of the world by 2.39 − 2.11%, with standard deviation of
0.12− 0.17%, depending on the index. I find that when hedging with a1

t (z), this increase is
only 1.11− 1.70%, with standard deviation of 0.10− 0.13% (depending on the index). The
insured attributes an even lower value to hedging weather risk with a2

t (z), i.e. δt(a2
t (z)) is

1.06− 1.67%, with standard deviation of 0.10− 1.13%. The differences between δt(a1
t (z))

and δt(a1
2(z)) are rather small, but indicate that Method 1 is slightly better suited to ap-

14The benefits of insurance for the insured could alternatively be assessed using a different risk measure,
such as the 5%-Value at Risk (VaR5%), the Conditional VaR5%, which is also known as the expected shortfall,
or as suggested by Kapphan et al. (2011), the relative VaR5%. Since δ evaluates the effect of insurance on
the entire income distribution compared to the other risk measures, which only consider the effect on the
lower end of the income distribution, δ is my preferred risk measure. Qualitatively, it can be shown that
the results obtained from using δ also hold for the other risk measures. In the Appendix A, the statistical
moments from hedging with pt(z) and the approximated optimal aj

c(z) are shown for Index 4.
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proximate the optimal contract as it achieves a slightly higher hedging effectiveness for
the insured. For the insurer, I find that offering p̃t(z) yields expected profits of 50.2− 76.8
CHF/ha, with standard deviation of 4.4− 6.0 CHF/ha depending on the index, and that
expected profits from ã1

t (z) range only between 39.9− 61.7 CHF/ha, with standard devi-
ation of 3.5− 4.7 CHF/ha.

Table 4.5: δ (in %) and Π (in CHF/ha) for different contracts

TODAY δt(pt(z)) δt(a1
t (z)) δt(a2

t (z)) Πt( p̃t(z)) Πt(ã1
t (z))

Index 1 1.39 1.11 1.06 50.28 39.95
(std) (0.12) (0.10) (0.10) (4.45) (3.52)
Index 2 1.86 1.42 1.36 67.70 51.43
(std) (0.15) (0.10) (0.10) (5.21) (3.34)
Index 3 1.92 1.52 1.45 69.9 54.94
(std) (0.15) (0.10) (0.11) (5.47) (3.69)
Index 4 2.11 1.70 1.67 76.8 61.73
(std) (0.17) (0.13) (0.13) (6.04) (4.75)
FUTURE δt(p f (z)) δ f (a1

f (z)) δ f (a2
f (z)) Π f ( p̃ f (z)) Π f (ã1

f (z))
Index 1 3.0 2.46 2.48 91.33 75.44
(std) (0.20) (0.24) (0.19) (5.62) (5.48)
Index 2 5.0 4.64 4.50 152.97 141.24
(std) (0.25) (0.30) (0.24) (8.50) (9.60)
Index 3 4.99 4.61 4.52 153.34 141.48
std (0.24) (0.25) (0.23) (7.61) (7.74)
Index 4 5.42 5.07 4.91 167.41 156.28
(std) (0.26) (0.28) (0.27) (8.21) (8.77)

Note: The trigger values of the approximated contracts are defined by τc,90%, and the exit values for the
approximated contracts are given by ηc,90%, for c ∈ t, f .

For the climate change scenario, I find that the insured attributes a higher value to
hedging weather risk compared to today’s conditions. For p f (z), the hedging effec-
tiveness, as measured by δ f (p f (z)), increases to 3.0− 5.42%, with standard deviation of
0.20− 0.26%. Similarly, I observe that δ f (a1

f (z)) increases to 2.46− 5.07%. This confirms
findings of Kapphan et al. (2011), that hedging weather risk becomes more viable for the
insured with climate change. The increase in δ f compared to δt is observed across indices
and insurance contract types, i.e. the insurance design method does not drive the results
of Kapphan et al. (2011).

For the insurer, I find that with climate change offering p̃ f (z) yields expected profits
of 91.3− 167.4 CHF/ha depending on the index, and that the insurer can expect to earn
profits of 75.4− 156.2 CHF/ha with ã1

f (z). Again, this confirms findings of Kapphan et
al. (2011), that with climate change insurers can expect to earn higher profits due to the
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increase in weather variability, and that the increase in Π f compared to Πt holds for all
indices and contract types.

While all contracts, pc(z), a1
c(z) and a2

c(z), achieve positive hedging benefits, the risk
reduction realized by the approximated contracts is significantly smaller compared to the
risk reduction realized by the optimal contracts in both climate scenarios. To evaluate
the loss in risk reduction, ∆1

c and ∆2
c are derived using (4.9) and the δc’s reported in Table

4.5. For Index 4, I find that ∆1
t is 19.4%, i.e. approximating the optimal contract (based

on Index 4) using Method 1 with τt,90% and ηt,20% causes a decrease in risk reduction by
19.4%. For today’s climatic conditions, the loss in risk reduction is between 19.4− 23.6%
for Method 1 (∆1

t ), and between 20.8− 24.4% for Method 2 (∆2
t ) depending on the index.

Table 4.6 shows the loss in risk reduction and profits for all indices and both climate
scenarios.

With climate change, I find that the loss in risk reduction from approximating p f (z) is
becoming smaller, i.e. ∆1

f is 6.45− 18.0%, for all indices. Thus, the increase in weather risk
due to climate change, which causes an increase in the goodness of fit of the weather index
(see Table 4.3, section 4.3) reduces the loss in risk reduction, that I observed for today’s
climatic conditions. Given that ∆2

c > ∆1
c for all indices, I conclude that Method 1 better

approximates the optimal contracts, and hitherto also the profit-maximizing contracts.
For today’s climate, the losses in profits, as measured by Θ1

t , range between 19.6−
24.0% depending on the index. With climate change, the loss in profits, Θ1

f , ranges be-
tween 6.6− 17.3% depending on the index, and is smaller compared than Θ1

t . The in-
crease in weather variability makes hedging with linear weather insurance contracts less
unattractive compared to hedging with the optimal contracts. Similarly, offering approx-
imated contracts instead of the profit-maximizing counterparts causes a smaller loss in
profits with climate change.

Table 4.6: Loss in risk reduction and profits

∆1
t ∆2

t Θ1
t ∆1

f ∆2
f Θ1

f
Index 1 20.1% 23.7% 20.5% 18.00% 17.33% 17.39%
Index 2 23.6% 26.8% 24.0% 7.20% 10.0% 7.66%
Index 3 20.8% 24.4% 21.4% 7.61% 9.41% 7.73%
Index 4 19.4% 20.8% 19.6% 6.45% 9.40% 6.64%

Note: Loss in risk reduction (in %) for the insured, and loss in profits for the insurer (in %) are derived for
the baseline approximation scenario for all indices and both climate scenarios.
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4.5 Sensitivity Analysis

Both approximation methods require to select quantiles of gc(z) to define the exit and
trigger value. The choice of τc and ηc determines the range of weather events covered by
the resulting contract and consequently affects the hedging effectiveness of the contract.
Therefore, the loss in risk reduction, as well as the loss in profits, also depends on the
choice of the approximation parameters. In order to evaluate the sensitivity of the results
outlined in section 4.4, which are derived for the baseline approximation scenario (τc,90%

and ηc,20%), I perform a sensitivity analysis with respect to the approximation parameters.

Figure 4.6: Optimal contract with approximated contracts (Method 1) based on Index 2
for today’s climatic conditions. Left: Approximated contracts share the same strike value
(τt,90%) and differ in the exit value (ηt,10%, ηt,20%, ηt,30%, and ηt,40%). Right: Approximated
contracts share the same exit (ηt,20%) and differ in the strike value (τt,60%, τt,70%, τt,80%, and
τt,90%).

Increasing the trigger value, for instance from τc,60% to τc,80% implies that the contract
starts to payout earlier, i.e. as soon as predicted revenues fall below the 80% quantile
of the weather index z, the insured receives payments. Figure 4.6 (right) shows pt(z)
based on Index 4 together with approximated contracts that share the same η1

t,20% and
differ in τ1

t . Contracts that compensate moderate shortfalls with respect to the highest
yield potential (e.g ηt,90%) come at a higher cost (Pt,90% > Pt,60%). Decreasing the exit
value, for instance from ηc,30% to ηc,20% implies that the contract provides more coverage
in the event of bad weather. Figure 4.6 (left) shows pt(z) based on Index 4 together with
approximated contracts that share the same τ1

t,90% and differ in η1
t . Since the probability of

these bad weather events is small, the increased coverage causes only a marginal increase
in premiums. Consequently, increasing both τ1

c and lowering η1
c simultaneously creates a
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weather hedge with extensive coverage and frequent net-payments.
To assess how the insured evaluates the increased coverage given that it comes at a

higher premium, I derive δc for a range of τc and ηc values. In particular, the hedging
benefits (as measured by δc) for the insured are derived for τc equal to the quantiles of
gc(z) ∈ [60 − 95%], and ηc equal to the quantiles of gc(z) ∈ [5 − 40%]. Similarly, the
expected profits (as measured by Πc) for the insurer are derived for the same range of
exit and trigger values. Figure 4.7 shows δt(a1

t (z)) and Πt(ã1
t (z)) based on Index 4 for

today’s climatic conditions for a range of possible exit and trigger values.

Figure 4.7: Risk reduction from hedging with a1
t (z) as measured by delta with τ1

t =
gc(z) ∈ [60 − 95%] and η1

t = gc(z) ∈ [5 − 40%] (left), and expected profits (Πt) from
offering p̃1

t (z) with τ̃1
t = gc(z) ∈ [60− 95%] and η̃1

t = gc(z) ∈ [5− 40%] based on Index 4
(right) for today’s climatic conditions.

I find that increasing the coverage of a1
t (z) either by increasing τ1

t while keeping η1
t

constant, or by decreasing η1
t while keeping τ1

t constant, increases the hedging effective-
ness δt(a1

t (z)). To put the results of the sensitivity analysis in context, for the baseline
approximation, I found that δt(a1

t (z)) based on Index 4 is 1.70%, and that Πt(ã1
t (z)) is

61.73 CHF/ha, see Table 4.5. For a contract that covers, for instance, only moderate devi-
ations from the mean, as defined by τ1

t,90% and η1
t,30%, the risk reduction as measured by

δt(a1
t (z)) is 1.43%. Keeping τ1

t,90% constant, and choosing an exit level of η1
t,10% creates a

contract that offers more protection against extreme dry conditions. The risk reduction
of the extended coverage is equal to 1.81%, i.e. the insured values the extended coverage
more despite the fact that it comes at a higher premium. The observation is in line with
a fundamental principle of insurance economics, which states that the insured selects full
insurance compared to partial insurance if the insurance policy is available at an actuari-
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ally fair premium.15 Similarly, a contract with η1
t,35% that triggers payouts based on τ1

t,65%

yields hedging benefits for the insured of 1.37%, while the hedging benefits increase up
to 1.41% with τ1

t,80% (keeping η1
t,35% constant). However, a further increase of the trigger

level up to τ1
t,95% changes δt(a1

t (z)) only marginally. For all indices, I observe that the
change in δt(a1

t (z)) from increasing τ1
t,60% to τ1

t,95% is marginal compared to the change in
δt(a1

t (z)) that can be realized by decreasing η1
t,40% to η1

t,5%. The highest δt(a1
t (z)) is equal to

1.94% and is achieved by the approximated contract with τ1
t,90% and η1

t,5%. Furthermore,
I observe that Π1

t (ã1
t (z)) responds similarly to changes in τ̃1

t and η̃1
t . Increasing τ̃1

t while
holding η̃1

t constant, or decreasing η̃1
t while holding τ̃1

t constant, causes expected profits
to increase. The highest Π1

t (ã1
t (z)) with 71.3 CHF/ha is realized for the approximated

profit-maximizing contract with τ̃1
t,80% and η̃1

t,5%.16

The analysis thus shows that the magnitude of δt(a1
t (z)) and Π1

t (ã1
t (z)) critically de-

pends on the selection of τ1
t and η1

t . With the baseline approximation of τ1
t,90% and η1

20%,
I therefore underestimated the risk reduction potential of a1

c(z). An approximated in-
surance contract with extended coverage would cause a smaller loss in risk reduction,
as measured by ∆j

c. Similarly, the losses in profits are overestimated by the baseline ap-
proximation for ã1

c(z). By altering the approximation parameters, neither the hedging
effectiveness achieved by pc(z) could be replicated with ac(z), nor the expected profits of
p̃c(z) could be replicated with ãc(z).

4.6 Conclusion

I compare for the first time the benefits from hedging weather risk in agriculture with
a linear payoff structure, such as the weather derivatives that can be obtained in the
customized over-the-counter (OTC) market, and a non-linear, optimal payoff structure
proposed by Kapphan (2011). The optimal contract mirrors the agronomic relationship
between weather and yields and offers the best risk reduction to the insured. To assess
the effect of hedging weather risk in agriculture with linear contracts, I propose two dif-
ferent methods to derive the insurance parameters (strike, exit, cap, and tick size) from
the optimal contract.

15 Given that the insured is risk-averse (σ = 2), it can be shown that a range of loading factors exists at
which the insured prefers the extended weather coverage despite the fact that the contract is not actuarially
fair. The range of loading factors for which this is true can be determined with the help of the profit-
maximizing contract. From p̃c(z), the maximum loading factor at which the insured is indifferent between
hedging his weather risk and not insuring can be determined. The statement is then true for any loading
factor smaller than the maximum loading factor.

16The results described here are qualitatively the same for the climate change scenario, and are available
upon request from the author.
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The proposed methods are used to simulate, for given strike and exit values, a linear
contract with an actuarially fair premium that approximates the optimal contract. For
the profit-maximizing contract, I propose a method that simulates a linear contract which
fulfills the constraint that the insured is indifferent (in expected utility terms) between
hedging and remaining uninsured. The methods differ in their selection of the cap and
minimum payout. For Method 2, the fitted relationship between weather and yields is
used to determine the cap and minimum payout, whereas Method 1 uses the optimal,
respectively profit-maximizing contract to guide the payoff structure design.

Next, using maize and weather data from Schaffhausen, Switzerland, that has been
simulated with a process-based crop simulation model for today’s climatic conditions,
and a climate scenario, I simulate optimal and profit-maximizing contracts. For a base-
line approximation scenario, the corresponding approximated contracts are simulated.
Next, the hedging effectiveness of the approximated contracts is compared to the risk
reduction of the optimal contracts for both climatic conditions. Similarly, the expected
profits from profit-maximizing contracts are compared to the profits of the approximated
counterparts.

For the baseline approximation scenario, I find that approximating optimal contracts
reduces the insured’s hedging effectiveness by 20 − 23%, and diminishes the insurer’s
expected profits by 20− 24% given today’s climatic conditions. With climate change, the
loss in risk reduction (and profits) from hedging with approximated contracts decreases
to 6 − 18% (and the loss in profits decreases to 6.6 − 17.3%) due to an increase in the
weather variability. These findings show that structural basis risk exists and that the
hedging benefits, at a particular location and for a given crop, critically depend on the
design method.

Since the approximation methods require to select strike and exit values, which affects
the weather events covered and thus the hedging effectiveness of the approximated con-
tracts, I perform a sensitivity analysis with respect to the selection of the strike and exit
values on the results. To minimize the loss in risk reduction from approximating optimal
(put option-style) contracts, I find that the insured needs to select a low exit level, and a
high trigger level to obtain an extensive coverage. I show that my findings are robust to
changes in approximation parameters.

The analysis provides useful insights for the selection of insurance parameters when
buying standardized linear weather derivative contracts. Within the weather insurance
industry, the trigger value is often set to represent historical average conditions τc,50%

(Vedenov and Barnett, 2004; Musshoff et al., 2009), and the exit is determined by average
conditions plus (for call options) or minus (for put options) 1 to 3 standard deviations
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of the weather index distribution. Weather insurance contracts are then often structured
such that the ratio of maximum payout and premium is between 10 and 20%. My analy-
sis shows that such structuring rules-of-thumb are not backed by optimal risk reduction
considerations, as the optimal as well as the approximated contracts exceed by far the
industry’s structuring benchmark.

One possible explanation of why farmers have been reluctant to use weather products
is the lack of understanding of these more complex contracts, and the need to set the in-
surance parameters based on individual weather exposure. Given that the relationship
between weather and yields is rather complex due to the manifold influence that weather
can have on crop growth, a data driven decision is advised to make an informed decision
when buying weather protection. The algorithm developed by Kapphan (2011) to sim-
ulate an optimal weather insurance contract, together with the approximation methods
developed in this paper, constitute a decision-support tool for entrepreneurs intending to
hedge weather risk. The benefit of this approach is that buyers do not need to specify the
critical insurance parameters (strike, exit, and cap) based on subjective knowledge about
their weather risk management needs. As long as the OTC market does not offer opti-
mal parametric weather insurance products, the method proposed facilitates the buyers’
decision by identifying the insurance parameters such that the best hedging effectiveness
with a linear contract is achieved.
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4.7 Appendix A

The benefits from hedging with pt(z) versus a1
t (z) and a2

t (z) are compared based on the
statistical moments of the income distribution. In a given year, the income of the insured
consists of the revenues from selling maize yields plus the net-payout from the insurance
contract. In Figure 4.8, the income distribution without insurance and from hedging with
pt(z) and a1

t (z) based on Index 4 are shown. Compared to the unhedged situation, both
insurance products (pt(z) and a1

t (z)) reduce the risk of realizing very low incomes. I find
for all indices that hedging with the optimal contract causes the income distribution to be
compressed the most. Without insurance, farmers growing maize in the respective case
study region can expect to earn 3788.4 CHF/ha. The average income without insurance
varies with a standard deviation of 598.3 CHF/ha. Hedging weather risk with pt(z) re-
duces the standard deviation to 351.1 CHF/ha, while preserving the mean income given
that the insurance contract is actuarially fair. Hedging with a1

t (z) reduces the standard
deviation to 410.8 CHF/ha, and 413.8 CHF/ha for a2

t (z) respectively. Table 4.7 shows
the statistical moments (mean, standard deviation, skewness, and quantiles) for the un-
hedged situation and the different weather insurance contracts proposed based on Index
4. While farmers can expect to receive incomes of 2901.9 CHF/ha or lower with a proba-
bility of 10%, hedging increases the income in the worst 10%-years to 3352.6 CHF/ha for
pt(z) and to 3223.0 CHF/ha for a2

t (z). Only the optimal (and profit-maximizing) contract
reduces the skewness.

Figure 4.8: Income distribution with optimal (dotted line) and approximated (dashed line)
insurance based on Index 4, and without insurance (solid line) for today’s climatic condi-
tions.

While hedging with p̃t(z) also reduces the standard deviation to 351.1 CHF/ha, the
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average income with p̃t(z) is with 3711.6 CHF/ha smaller. The reduction in the mean
income is due to the fact that the insurer generates positive profits from offering p̃t(z).
Hedging with ã1

t (z) also decreases the standard deviation to the same extent as a1
t (z), and

in addition reduces the mean income, similar to the situation with p̃t(z). Analyzing the
hedging benefits by means of comparing the statistical moments of the unhedged with the
hedged income situation thus yields qualitatively the same results. The optimal insurance
contract yields the highest risk reduction compared to the approximated counterparts.

Table 4.7: Income without insurance and with different contracts

no insurance pt(z) a1
t (z) a2

t (z) p̃t(z) ã1
t (z)

mean 3788.4 3788.4 3788.4 3788.4 3711.6 3726.7
std 598.3 351.1 410.8 413.8 351.1 410.6
skw -0.73 -0.5 -0.7 -0.8 -0.5 -0.72
10% 2901.9 3352.6 3235.7 3223.0 3275.9 3174.1
25% 3422.5 3594.9 3587.3 3586.9 3517.9 3525.4
50% 3909.6 3807.6 3828.9 3833.7 3730.6 3767.0
75% 4253.8 4017.5 4061.6 4062.1 3940.7 3999.7
90% 4459.6 4207.4 4260.8 4258.0 4130.3 4199.0

Note: Descriptive statistics of income without insurance and with different insurance contracts based on
Index 4 for today’s climatic conditions. Units: CHF/ha.

4.8 Appendix B
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Figure 4.9: Optimal pt(z) and approximated contracts a1
t (z) for all indices and today’s

weather conditions.
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Chapter 5

Insuring Against Bad Weather: Benefits
and Challenges in Light of Climate
Change

Stanford Institute for Economic Policy Research (SIEPR), Policy Brief, Nov. 2011

5.1 Weather and the Economy

Weather affects almost all industries through both consumption and (directly or indi-
rectly) production. In the power industry, energy demand rises with cooling needs in hot
summers, forcing energy companies to produce electricity at higher costs, whereas the
beverage industry benefits in hot summers from skyrocketing sales. Every industry faces
a different form of weather risk. A recent study by the National Center for Atmospheric
Research (NCAR) in Boulder, Colo. shows that the productivity of the entire economy
fluctuates with extreme weather events (Lazo et al., 2011). After mining, agriculture is the
second most weather-sensitive sector. Weather sensitivity of different sectors ranges from
2.2 percent (for wholesale)to 14.4 percent (for mining). Considering the relatively small
share of agriculture in total GDP (1.5 percent), its absolute weather fluctuations amount
to US$ 15.4 billion (in year 2000 dollars) and are comparable to what is at stake in the util-
ities sector (US$ 14.8 billion). The financial sector, accounting for 20 percent of the total
GDP, has by far the largest absolute weather sensitivity. If the weather is good in one year
for a particular sector, the same weather can mean bad times for another sector. When the
sector-specific weather impacts are aggregated nationally, they tend to offset each other
to some extent. The overall U.S. weather sensitivity is therefore smaller than the simple
average of the individual sectors’ weather sensitivities. Overall, the study found that U.S.
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economic output varies by up to US$ 485 billion a year, or about 3.4 percent of the 2008
GDP, due to weather variability. NCAR’s findings show that adverse weather conditions
could push the economy into a recession. In any year, a decline in the GDP by 3.4 per-
cent represents an enormous amount of lost output. While protective action can help to
mitigate some losses, other impacts, such as those owing to extreme weather events, may
not easily be prevented. Insurance or hedging can reduce the financial impacts from bad
weather.

5.2 Insuring Against Bad Weather

Weather risk can be managed either by weather insurance or weather derivatives, index-
based financial products where payouts are triggered by an exogenous weather event. For
derivatives, payments are not based on actual losses as with traditional insurance, but on
observed weather data. Index-based weather insurance exploits the fact that weather ob-
servations can be used as a proxy for the losses suffered through reduced sales, lower
production, or increased costs due to spiraling input prices. Weather observations ob-
tained from meteorological services are used to determine payouts. Once a predefined
threshold (trigger) of the underlying weather index has been reached during a specified
time period, the contract starts to pay out. A put option on rainfall, for instance, starts to
pay out if cumulative precipitation falls below the trigger. A call on temperature during
the winter months pays out if temperatures exceed a predetermined threshold. The buyer
of the call pays a cash premium to the counterparty willing to assume the risk that the
winter will be mild.

Weather derivatives can be settled quickly compared with loss-based insurance con-
tracts. Weather insurance requires a proof of loss attributable to weather, which can be
time-consuming. With weather derivatives, in contrast, the natural buyer has no guaran-
tee that the derivative contract pays out when his business experiences weather-related
losses. When using weather derivatives, natural buyers are thus left with so-called basis
risk, i.e., the risk of not receiving payments, or inadequate payments, in the event of a
loss. Basis risk can arise due to a number of reasons: spatial and temporal discontinuities
in weather or an imperfect correlation of the weather index with revenues.

The major advantage of index-based insurance over traditional insurance is that prob-
lems arising from asymmetric information, such as moral hazard and adverse selection,
are avoided and administrative costs are lower. When payouts are triggered by an ex-
ogenous event that is correlated with the insured output, these additional costs can be
completely avoided as no incentives exist for the natural buyer to change his behav-
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ior. Weather derivatives constitute an innovative risk-transfer product to protect against
weather-related revenue fluctuations.

5.3 The Origins of the Weather Derivatives Market

The first official weather transaction occurred between Enron Corporation and Koch In-
dustries (Myers, 2008). The two companies swapped the risk of abnormal temperature
conditions in Milwaukee, Wis., during winter 1997− 1998, with Koch getting a put on
temperature falling below average conditions. Soon after, the Chicago Mercantile Ex-
change (CME) started to offer standardized weather derivatives in the form of options
and futures for a number of major cities in the United States. Today, the CME group
offers weather derivatives based on temperature, rainfall, frost, and snowfall for major
cities in the U.S., Asia, and Europe. In 2005, the CME expanded its product portfolio with
the introduction of hurricane futures and options, providing an alternative for insurers to
transfer claims risk to the capital markets.

5.3.1 Over-the-Counter Versus Exchange-Traded Products

Weather derivatives are available for a wide range of weather risks. In addition to the
exchange products, the over-the-counter (OTC) market offers alternative opportunities
to buy weather derivatives tailored to a particular business need. While standardized
derivatives possess the benefit that the exchange (e.g., CME) provides transparency and
liquidity and eliminates counterparty risks, they are not ideal solutions for every busi-
ness. Many companies possess complex weather risk that is uncorrelated with the weather
in major cities and desire very specific weather hedges that are now available through the
OTC market.

5.3.2 Weather Risk Management at the Corporate Level

The rapid expansion of the weather derivatives market was facilitated by the expanding
scientific skill for modeling and predicting weather phenomena. The management of
weather and climate risk requires sophisticated and reliable information about weather
and its variability. Despite the technological advances made and the increasing number
of products available, paired with the need to manage weather risk due to climate change,
the number of companies managing weather risk is still low.
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CME Group and Storm Exchange Inc., surveyed 205 senior finance and risk managers
across a number of weather-sensitive companies in the United States (CME Group, 2008)
and found that 82 percent believe that the emergence of climate change with its accom-
panying volatile weather patterns mandates changes to their corporate risk management
approach. And 51 percent admitted that their companies are not well prepared to cope
even with the current weather risk, while only 10 percent of the respondents declared
that their companies are already managing weather risk. Seldom have executives been
so united in recognizing a threat to their businesses and at the same time hesitant about
addressing it. One of the reasons companies hesitate to adopt weather risk management
practices is the unfamiliarity with the weather marketplace. Companies seem to be un-
certain about what type of weather contracts are needed given their unique exposure and
in particular how to evaluate the trade-off between costs faced from obtaining protection
and the benefits.

5.4 Hedging Effectiveness of Weather Derivatives

For the weather hedge to be most effective, all available information about a company’s
weather exposure should be used to structure an appropriate contract. In general, struc-
turing a weather hedge can be decomposed into two components: the selection of the
index and the parameters that define the payoff structure for a given index. In particular,
the hedging effectiveness of weather derivatives depends on the quality of the index in
predicting losses and on the parameters that define the payoff function (trigger, tick size,
and cap). The “tick size” is the monetary value of one index point. The “trigger” is the
threshold level beyond which the contract starts to pay out, and the “cap” specifies the
maximum payout per contract.

To select a powerful index, the buyer needs to quantify the time period(s) during
which his business suffers most from adverse weather conditions, i.e., which meteoro-
logical phenomenon is responsible for the fluctuations and the location(s) at which the
weather matters. Based on this information, the underlying weather index can be de-
signed. In order to minimize basis risk, the index has to possess a high correlation with
the economic output to be hedged. Often an imperfect correlation of the index with losses
is cited as the main drawback of index-based weather products and blamed for not ade-
quately hedging weather exposure. While it is true that there is little scope for weather
hedging if it is based on a poorly designed weather index, the way the payoff is structured
matters as well for the hedging effectiveness.

The payoff function is determined through the choice of the trigger, tick size, and
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cap. When structuring the contract, the focus of buyers and sellers alike often lies on the
relationship between the premium and the maximum payoff (cap). Contracts tend to be
evaluated based on the ratio between the premium and the cap, with a premium ranging
between 1/10 to 1/5 of the cap. Thinking about a weather derivative like a lottery, i.e. US$
1 invested may yield benefits of US$ 5− 10, neglects the fact that the likelihood of getting
the maximum payoff depends on the probability of getting hit by really bad weather.
Taking a closer look at such rules shows that they are not backed by considerations for
efficiently reducing risk.

Weather derivatives are priced by assessing how often the contract would have paid
out in the past. To compensate the seller for assuming the risk, a margin is added to the
premium. With this logic, increasing a cap implies that more money is paid out in the
event of really bad weather, causing the premium to increase. Usually adding tail risk
coverage causes premiums to go up only slightly, because the probabilities of tail events
are low. Lowering a cap decreases maximum payouts in the event of bad weather. To
manage weather risk effectively maximum payoff needs to be adequate to compensate
the losses in the event of bad weather.

The choice of the trigger level also affects the pricing of the contract. Increasing (low-
ering) the trigger level of a put (call) option causes premiums to go up, but it also im-
plies that the insured is more likely to receive (small) payments at a higher frequency.
The strike level thus determines the type of losses that are covered by the contract. For
businesses with a low tolerance of revenue volatility a contract that generates smaller
payments regularly can be valuable in order to smooth fluctuations in cash flows. If the
weather hedge is intended to protect only against major events, the trigger can be set such
that the contract pays out only under extreme weather conditions.

The buyer needs to assess how much his business suffers in the event of bad weather,
i.e., the damages caused by a one-unit change in the weather index. When hedging with a
standardized weather derivative from the exchange, this information helps to determine
how many contracts to buy since the tick size is predetermined. For instance, at the CME
the tick size of temperature-based contracts is equal to US$ 20 per heating degree day
(HDD) or cooling degree day (CDD). In the OTC market, the tick size can vary.

Most weather derivative contracts assume a linear relationship between weather and
the economic output at stake. For many businesses, it is fair to assume such a linear rela-
tionship. In the energy sector, heating and cooling demand varies linearly with weather.
Crops are however affected in a non-linear manner by changes in temperature and pre-
cipitation conditions. Adequate risk management with weather derivatives for agricul-
ture therefore requires a synthetic financial product that mimics the relationship between
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weather and yields. By combining for instance weather derivatives with different strikes
and tick sizes, a weather derivative portfolio can be created where the portfolio pay-
offs compensate for the crop losses. Natural buyers thus need to carefully evaluate the
outlined trade-offs and obtain a weather contract that efficiently meets the companies’
objectives in managing weather risk. For the case of agriculture, Kapphan (2011) has de-
veloped a mechanism that accounts for the non-linear impact of weather on crops and
that can be used to obtain – for a given index – the parameters defining the payoff struc-
ture that delivers an optimal risk reduction.

5.5 Weather Risk Management and Climate Change

With climate change, the number of extreme events and the seasonal variability is ex-
pected to increase (WMO, 2011). For weather-sensitive industries, climate change implies
that new extreme events are expected to occur, causing damages that may exceed the ex-
tent of previously known damages. In addition, the frequency of extreme weather events
is increasing and driving up weather-related losses. Munich Re (2011), which maintains
a comprehensive database of global natural catastrophes, shows that the number of ex-
treme weather events like windstorms, floods, and forest fires has tripled since 1980 and
the trend is expected to persist.

Many industries are seeing the first signs of climate change already today: Ski resorts
are faced with less reliable snow conditions; rainfall and temperature variability affect
agriculture output; transportation and airline companies experience more business dis-
ruption due to an increase in the number of snowstorms and floods.

The number of companies with weather risk on their balance sheets is rising, and the
industry will see more natural buyers operating in the market. While these scenarios
represent gloomy prospects for the industry, insurers (and reinsurers) are however faced
with a new challenge. Climate change is putting an end to stationarity. The assumption
that historical (data) records can be used to assess future probability does not hold any
longer (McCarl et al., 2008). In particular, the changing occurrence and frequency of ex-
treme weather events imply that historical return periods underestimate the likelihood of
losses in the future. Climate change thus undermines a basic assumption that historically
has facilitated risk management (Milly et al., 2008).

Traditionally, the insurance industry uses historical data to design and price insurance
products. These modeling techniques are, however, illsuited for understanding the im-
plications of climate change (Mills, 2009). Within natural catastrophe modeling, insurers
couple climate models with catastrophe models to examine the financial implications of
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climate change on insured risk. With the current trend, insurers will need to respond by
increasing premiums, possibly restricting coverage and increasing deductibles for their
damage-based weather insurance products if the number of weather-related losses con-
tinues to increase.

Climate change also matters for the design and pricing of weather derivatives. With
weather derivatives, the insurer only has to correctly estimate the underlying weather
index distribution. Compared with traditional insurance, weather derivatives specify the
maximum payout, i.e., the risk taker does not face the uncertainty of future claim pay-
ments exceeding historical ones. From the risk taker’s point of view, weather derivatives
are therefore becoming more attractive. For the insured, however, increased business dis-
ruptions due to more severe weather extremes imply that losses beyond the maximum
payout specified by the contract are not insured. With climate change, to maintain a
given weather risk management objective, the buyer therefore needs to adjust the cap as
well as the trigger level over time.

Kapphan et al. (2011) examine the effect of hedging weather risk for maize farmers
with weather derivative contracts that are adjusted over time. Adjusted weather deriva-
tive contracts are derived by using simulated crop and weather data that includes the
climate change signal. For the derivative design, multi-peril weather indices are con-
structed to predict the fluctuations in maize yields. To hedge the revenue fluctuations
of maize growers, assuming a given risk management objective, the payoff structure is
designed such that it yields optimal risk reduction (Kapphan, 2011). Weather derivative
contracts are simulated for today’s (baseline) and future climatic conditions. To maintain
a desired risk reduction over time, it turns out that the payoff structure will need to cover
a wider range of weather events, i.e., the trigger decreases and the cap increases over
time.

The benefits from hedging are then evaluated for a baseline scenario, representing to-
day’s climate conditions, and for future climatic scenarios to model the transition from
today’s climate to the projected climate prevailing around the year 2050. With climate
change, the authors find that the benefits from hedging weather risk with adjusted con-
tracts increase over time and more than double in 2050 compared with today’s baseline.
An increase in weather-related revenue variability makes hedging weather risk more vi-
able. They also evaluate the profitability for the risk taker of assuming weather risk in
a changing climate. When incorporating climate change projections in the pricing and
design of the contracts, insurers can expect profits to increase by 240 percent from selling
adjusted weather derivative contracts.

The hedging effectiveness of adjusted contracts is then compared with the benefits
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from hedging future weather risk with non-adjusted contracts. Nonadjusted contracts
are derived using the current design and pricing approach of the industry, i.e., using
backward-looking historical data. Similarly, the profitability of offering nonadjusted weather
derivatives is evaluated for the risk taker. Depending on the type of weather risks cov-
ered, it turns out that some non-adjusted contracts would make the insured farmers
better-off than the adjusted contracts. In those situations, the risk taker generates losses
from offering these products. Contracts that cause losses will however not be offered by
the risk taker in the long run. The authors also found that some non-adjusted contracts
make the insured farmer even worse off than in the situation without hedging. Contracts
that do not achieve any risk reduction clearly will not be purchased by farmers.

The study shows that the increased weather variability makes hedging weather risk
more worthwhile for both the insurer and the insured. Not adjusting the pricing and
design of weather derivatives may not only generate losses for the risk taker, but it pos-
sibly undermines the risk reduction that can be achieved with weather derivatives. To
capture the benefits of hedging weather risk in a more volatile climate, weather deriva-
tive providers need to revise their structuring and pricing in order to offer their clients
efficient weather protection.

5.6 Putting an End to the Weather Excuse

In an era with a growing awareness that weather and climate change affect financial per-
formance, companies should no longer be allowed to justify bad performance due to bad
weather. Companies with a weather-dependent business can reduce their exposure to
weather-related fluctuations by hedging. Weather risk thus should no longer be viewed
as an idiosyncratic entrepreneurial risk. Weather management should become an integral
part of corporate risk management. Income statements should show the weather expo-
sure, and companies should actively manage weather risk in the same manner as they
manage their foreign-exchange, interest-rate and commodity risks.
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Chapter 6

Conclusion and Outlook

6.1 Key Results and Conclusion

With the need to manage weather risk in light of climate change, the current practice
for designing weather risk transfer products has been examined, and a novel method has
been developed to design index-based weather insurance contracts with optimal hedging
effectiveness for the insured. For insurers, the method has been adapted such that the
contract maximizes profits while taking the insured’s purchasing decision into account.
The dual approach of designing index-based weather insurance, using the extremes of an
actuarially fair contract and the maximum profit counterpart, offers bookends of the set of
possible insurance contracts (for a given level of risk aversion). Maximum loading factors
can then easily be derived by comparing the premiums of the two contracts. How gains
from hedging weather risk are partitioned, between insurers and the policy holders, is
then a matter of market power and depends on the insurer’s cost of offering the product.

The structuring method is in particular useful for designing agriculture-specific wea-
ther insurance products, since the proposed kernel estimation for deriving the conditional
yield density functions captures the non-linear relationship between weather and yield.
Apart from agriculture, the method can be applied more generally to determine an index-
based weather hedge for any weather-dependent industry. For the case of agriculture, I
observe that the indemnity functions of the optimal and profit-maximizing contracts are
found to be non-linear due to the agronomy-specific crop response to weather fluctua-
tions.

Optimal contracts are characterized by offering relatively high indemnities in the rare
event of extremely bad weather and by frequently providing moderate payments for the
common deviations of mean yields. Thus, optimal contracts combine the benefits of catas-

167



6.1. Key Results and Conclusion

trophe crop insurance, while off-setting any medium crop losses, which provides the in-
sured with financial stability. Optimal and profit-maximizing contracts share the same
shape and differ in the absolute indemnity provided at each index realization. Moreover,
the more risk averse the insured, the more protection is being sought for moderate yield
shortfalls, which comes at the cost of a higher premium. This observation thus suggests
that insurance companies need to offer different payout structures (for the same index)
so that policy holders with different risk attitudes can self-select the contract that meets
their hedging needs. Insurers benefit from offering index-based weather contracts that
differ in the payout frequencies for moderate yield deviations since higher mark-ups can
be charged from more risk averse policy holders.

With climate change, the benefits from hedging future weather risk increase signifi-
cantly. I show that when the weather exposure is hedged with adjusted contracts, which
account for the changing distribution of weather and yield distributions in light of climate
change, the hedging benefits for the insured almost triple. These results were derived for
a moderate level of risk aversion, consequently the benefits can be even larger for higher
levels of risk aversion. In the same vein, the insurers’ profits increase by almost 240%
when an adjusted profit-maximizing contract is offered. Again, the increase in profits can
even be higher with more risk averse policy holders.

While these findings are promising given that farmers face an increase in the residual
weather risk with climate change, the realization of these benefits depends on the insur-
ance industry. Insurers need to discontinue the practice of using backward-looking data
for the design and pricing of weather insurance products. The consequences of using
historical data for the structuring, given that climate change undermines the assump-
tion of time series stationarity, were examined. I find that with non-adjusted contracts
the hedging effectiveness for the insured is no longer guaranteed, and that insurers even
face the risk of losses from selling non-adjusted contracts. With climate change, index-
based weather insurance products have to be updated regularly to guarantee that future
weather risk is reduced effectively.

In practice, insurers will need to account for the uncertainty in climate change projec-
tions, and the uncertainty in crop yield responses due to climate change. Climate change
projections are inherently uncertain due to a number of factors such as the representation
of the climate system, or the future boundary conditions, which depend on the global
economic development and the advancements made in reducing greenhouses gases. To
update the pricing and design of optimal index-based weather insurance contracts, the
effect of climate change uncertainties on the distribution of the weather index has to be
considered. More importantly, the uncertainty regarding the effect of climate change on
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crop yields, which has implications for the shape of the optimal indemnification structure
through the conditional yield densities, has to be evaluated.

By construction, the proposed optimal index-based weather insurance contract im-
plies that no other insurance contract can achieve a higher level of risk reduction for the
insured. The advantage is demonstrated by comparing the hedging benefits of an optimal
(non-linear) contract with linear weather derivatives available in the OTC market, using
the same weather index and yield data. For that purpose, two approximation methods are
proposed in order to derive the contract parameters of a generic weather derivative from
the optimal (profit- maximizing) contract, such that the approximated counterpart satis-
fies the assumption of actuarially fair contracts while maximizing the insured’s hedging
effectiveness (yielding maximum profits while considering the insured’s purchase deci-
sion). For a baseline approximation scenario, I find that when hedging today’s agricul-
tural weather risk with linear contracts, the hedging benefits of the insured decrease by 20
to 23% compared to the optimal contract. Similarly, insurers’ profits shrink by 20 to 24%
from selling linear contracts to agricultural growers, compared to the profit-maximizing
contracts.

To simulate optimal and profit-maximizing insurance contracts, I used 4 weather in-
dices that account for different weather events throughout the growing season, and which
differ in their goodness of fit of predicting crop yields. I observe that indices that explain
a large fraction of the crop yield variability yield a higher degree of risk reduction for the
insured. In addition, I observe that insurers can charge higher loading factors when offer-
ing profit-maximizing contracts where the underlying index reliably predicts crop yield
losses. With climate change causing an increase in weather variability, I find that the
same indices explain a larger fraction of crop yields. Due to the improvement in predict-
ing crop losses in light of climate change, hedging weather risk becomes more viable for
the insured and also more profitable for insurers. Furthermore, I observe that the losses
in risk reduction from hedging agricultural weather risk with linear weather derivatives
decrease with climate change. Since the (linear) relationship between crop yields and
weather indices improves in light of climate change, the consequences of approximating
optimal (non-linear) contracts become less severe. These observations confirm the general
consensus of the literature that minimizing meteorological basis risk, that is improving
the index quality, improves the hedging effectiveness.

Since the selection of the approximation parameters (strike and exit) affects the payoff
function of the linear weather derivative, and therefore the weather protection provided,
a sensitivity analysis was conducted. I find that the losses in risk reduction and profits
can be minimized (compared to the baseline approximation scenario) by increasing the
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strike and decreasing the exit level. The risk reduction realized by the optimal contract
could, however, not be replicated even with linear contracts that provide an extensive
weather coverage. The same holds true for the profits of the insurer. These findings
demonstrate for the first time that – even when using an index that perfectly predicts crop
yields - the hedging effectiveness can still be improved through the structuring method.
The optimal index-based weather insurance model, in combination with the methods
for deriving the contract parameters of a generic weather derivative, is hence a robust
decision-support tool, which facilitates the structuring process for buying linear OTC-
style weather derivatives.

Alternatively to approximating the optimal contracts with a generic derivative, a syn-
thetic financial weather derivative could be created which replicates the non-linear payoff
structure of the optimal contract more closely. The optimal contract could be replicated
by combining existing weather derivatives, with different strike and exit levels, into a
portfolio of linear weather derivatives. The synthetic payoff may still not perfectly re-
semble the optimal indemnification structure. Nevertheless, the losses in risk reduction
from hedging with the synthetic weather derivative may be smaller than the losses in risk
reduction from hedging with a single linear derivative.

The analysis furthermore provided insights for structuring a linear weather deriva-
tive. For instance, I observe that the contract parameters have to be set such the contract
triggers indemnities as soon as the realized index is smaller than the maximum predicted
revenues (index). Furthermore, from the point of view of the insured, capping the maxi-
mum payouts is undesirable as this implies that the actual yield losses in extremely bad
years are not compensated by the contract. In practice, not capping the payouts in the
event of bad weather may be difficult to implement, since this practice serves to keep
premiums moderate. Oftentimes, the probabilities of extreme events can only predicted
with a high level of uncertainty. Insurers minimize the risk of facing excess payments at
an unpredicted rate by capping payouts. These observations can however only be gener-
alized to the extent that the insured relies solely on the index-based weather product to
manage his weather-related losses.

To sum up, this dissertation highlights the need to manage agricultural weather risk in
light of climate change and shows that hedging with well-designed index-based weather
risk transfer products is beneficial for both the insured and the insurer. In particular, a
robust decision-support tool has been proposed that can be used to facilitate the struc-
turing process for buying non-linear and linear weather risk transfer products. More
importantly, the superiority in terms of risk reduction and profits from hedging agri-
cultural weather risk with optimal index-based insurance compared to linear weather
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derivatives has been demonstrated. The proposed method for structuring optimal index-
based weather insurance can be extended in a number of dimensions.

6.2 Outlook

In future research, it would be interesting to model in more detail some real-world deci-
sion factors that affect farmers’ insurance purchase. In particular, the decision to transfer
risk to an external party is influenced – for agents with preferences marked by constant
relative risk aversion – by the policy holder’s initial wealth. Agents with high initial
wealth tend to hedge a smaller portion of their risk exposure, compared to agents with
low wealth (assuming the same risk aversion) and given that insurance is only avail-
able at a cost that exceeds the fair premium. The consequences of an initial wealth de-
composition, into a weather-sensitive and non-sensitive component, on the shape of the
optimal payoff function, could be examined in future work. Moreover, the existence of
alternative insurance products, or income from non-farming activities, affects the degree
to which farmers seek to reduce their weather risk exposure (from growing a particular
crop) with an index-based weather insurance product. In particular, in countries where
subsidized farm-level yield (or revenue) insurance programs are available, or where di-
rect payment schemes exit, farmers will only seek to hedge the remaining weather risk
that is not already compensated by the damage-based insurance product. In order to de-
sign index-based weather insurance products that account for the existence of competing
risk management practices, prior information about the wealth set-up of the insured is
needed.

Furthermore, the insurance product design should account for the fact that farmers
face different sources of weather-related production risk, due to the fact that more than
one crop is grown. Different weather risk sources jointly affect the revenues of the insured
and as a result the average revenue from farming is less variable – compared to sum of
the revenues from individual yields – due to a diversification of weather risk across crops
with different weather sensitives. In future work, it would be interesting to consider the
diversification effect (from growing different crops) on the degree of protection sought
for a particular crop.

Farmers are not only faced with weather-related production risk, they are also con-
fronted with price risk. Climate change with its implications for global food produc-
tion may lead to a sharp increase in global commodity prices, as demonstrated by the
food-commodity crisis in 2008. While revenue insurance schemes address these two
risks jointly, classical index-based weather insurance products address only production
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risk. Future contract design should consider that increased prices function as a “natu-
ral hedge” for farmers faced with reduced outputs. Increased prices may partially offset
the decrease in revenues. The existence of the “natural hedge” could be used to offer
index-based weather insurance at a lower premium. Instead of claiming insurance pay-
ments in the situation of reduced yields, an insurer could offer farmers the option to
offset their revenue losses by first benefiting from the increased commodity prices. To
create incentives for farmers to take advantage of the “natural hedge” revenue compen-
sation, insurers could offer to re-fund part of the premium if farmers decline to receive
(full) indemnification. Such a product incorporates aspects of revenue insurance, while
still avoiding problems associated with asymmetric information.

The proposed structuring method was calibrated and tested on a large yield and
weather time series data set, due to the fact that a biophysical crop growth model in
conjunction with a weather generator could be used. The entire data set was used for the
contract design and to evaluate the risk reduction benefits, which exposes the results to
the risk of over-fitting. Ideally weather insurance contracts should be designed and eval-
uated on different data sets in order to avoid the risk of over-fitting. However, given the
size of the data set, this risk is rated as rather small. This remains to be verified in future
work by conducting a cross-validation analysis.

Instead of using simulated crop yield and weather data, optimal index-based weather
insurance contracts can also be simulated with historical observations. Historical weather,
and in particular yield observations are often only available for 20 to 30 years, which
poses a challenge since the use of a non-parametric estimation procedure requires a suf-
ficiently large data set. Clearly, the more weather and yield observations are available,
the more precisely one can estimate the weather index density and the conditional yield
densities. When working with historical crop yield and weather observations, a panel
data set of crop yield observations from farms located in the same region, which were ex-
posed over time to the same weather conditions, can be used for the structuring process.
In future work, the size of the data set needed, and the implications for the hedging effec-
tiveness when working with smaller data sets, should be investigated more thoroughly.

172


	Introduction
	Climate Change, Variability, and Changes in Agricultural Production
	Weather Risk Management in Agriculture
	Damage-based Insurance Products
	Index-based Insurance Products
	Challenges in Designing Index-based Weather Insurance

	Development of the Weather Risk Transfer Market
	Weather Derivatives and Agriculture
	Objectives and Research Questions
	Optimal Weather Insurance Design
	Weather Insurance Design and Climate Change
	Linear Weather Derivatives and Optimal Contracts

	Data and Case Study Region

	Weather Insurance Design with Optimal Hedging Effectiveness
	Introduction
	Relation to the Literature

	Theoretical Framework
	The Insurance Problem
	Some Properties of Optimal Weather Insurance Contracts

	Implementation and Data
	Implementation of the Optimization Problem
	Description of Data

	Constructing a Suitable Weather Index
	Identifying the Phenology Phases
	Measuring Weather Risks
	Index Construction

	Results
	Conditional Yield Distributions
	Optimal Insurance Contract
	Evaluation of Hedging Effectiveness
	Effect of Kernel Density Estimation Parameters

	Optimal Insurance Contract for the Insurer
	The Profit-Maximization Problem
	The Profit-Maximizing Insurance Contract
	Evaluation of the Profit-Maximizing Insurance Contract

	Conclusion
	Summary and Outlook
	Practical Considerations for Implementing Optimal Weather Insurance

	Appendix

	Climate Change, Weather Insurance Design, and Hedging Effectiveness
	Introduction
	Theoretical Approach
	Data and Climate Change Simulations
	Weather Index Design
	Results: Adjusted Weather Insurance Contracts
	Comparison of Optimal Contracts Today and with Climate Change
	Hedging Effectiveness of Optimal Adjusted Contracts
	Expected Profits from Profit-Maximizing Adjusted Contracts

	Results: Non-Adjusted Weather Insurance Contracts
	Comparison of Adjusted and Non-Adjusted Contracts
	Hedging Effectiveness and Expected Profits of Non-Adjusted Contracts

	Conclusion
	Appendix

	Approximating Optimal Weather Insurance Contracts
	Introduction
	Overview of Index-based Weather Products
	Hedging with Index-based Weather Products

	Theoretical Approach
	Optimal and Profit-Maximizing Insurance Contracts
	Approximating Optimal and Profit-Maximizing Contracts
	Loss in Risk Reduction and Profitability 

	Data and Weather Indices
	Results
	Comparison of Optimal and Approximated Insurance Contracts
	Loss in Risk Reduction and Profitability

	Sensitivity Analysis
	Conclusion
	Appendix A
	Appendix B

	Insuring Against Bad Weather: Benefits and Challenges in Light of Climate Change
	Weather and the Economy
	Insuring Against Bad Weather
	The Origins of the Weather Derivatives Market
	Over-the-Counter Versus Exchange-Traded Products
	Weather Risk Management at the Corporate Level

	Hedging Effectiveness of Weather Derivatives
	Weather Risk Management and Climate Change
	Putting an End to the Weather Excuse

	Conclusion and Outlook
	Key Results and Conclusion
	Outlook


