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Preface

This doctoral thesis at hand is only a small additional contribution to the already
existing scientific findings. It became possible with the help and great assistance of
many people that are explicitly mentioned in the acknowledgements. They know
that I know that — and vice versa. However, I hope this work may be a useful
tessera in the mosaic that depicts the area of its according expertise.

I would like to take the opportunity such a preface o↵ers to emphasize some-
thing that has not necessarily or directly to do with this thesis, namely, the perpetual
importance of:

Simultaneous Authenticity in Thinking, Feeling and Doing

correct — wrong — think about it
good — bad — feel it

everything — nothing — do it

Because – at the end – one has to take a decision. I always was fascinated by the
interaction of the triplet esprit, corps and âme. Awareness of how Körper, Geist and
Seele play together may be treated in many contexts such as in ethics, philosophy,
music or also decision analysis – amongst others.

I had many interesting discussions with colleagues and friends about what is
called here Simultaneous Authenticity in Thinking, Feeling and Doing. It must be
something that is strong and it seems to me, personally, that it always was - and
always is - worth it to pay some attention to that triplet.

Dübendorf, October 2011 Simon L. Rinderknecht
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Zusammenfassung der Doktorarbeit

Das Ziel der Entscheidungstheorie ist es, Entscheidende dabei zu unterstützen,
eine Entscheidungsalternative zu finden, die zur bestmöglichen Erfüllung ihrer Ziele
führt. Das braucht (1) die quantitative Bewertung möglicher Konsequenzen in
Funktion messbarer Systemattribute, (2) die Vorhersage von Wahrscheinlichkeits-
verteilungen dieser Attribute für alle Entscheidungsalternativen und (3) das Er-
stellen einer Rangliste aller Entscheidungsalternativen durch die Kombination von
(1) und (2). Um quantitative Vorhersagen zu erhalten, ist es oft unumgänglich, Wis-
sen über Einflussfaktoren, Modellparameter oder Attributwerte von Fachexperten
zu erheben. Leider kann die Charakterisierung subjektiver Überzeugungsgrade,
in einem Bayesianischen Kontext verstanden, oft mit Ambiguität behaftet sein.
Wir schlagen den Gebrauch von unpräzisen Wahrscheinlichkeiten vor, um Ambi-
guität in Bezug auf Unsicherheit zu beschreiben. In diesem robusten Bayesianischen
Konzept evaluierten wir diverse Wahrscheinlichkeitsverteilungsklassen. Wir befan-
den die Dichte-Verhältnis-Klasse als die geeignetste: (a) Sie kann intersubjektives
Wissen, welches den aktuellen Stand der Wissenschaft und der Technik beschreibt,
adäquat beschreiben, was typischerweise in naturwissenschaftlichen Modellierungen
gebraucht wird, und (b) sie weist einzigartige konzeptionelle Vorteile auf, welche
unten benannt werden. Die Dichte-Verhältnis-Klasse ist, nebst ihren vorteilhaften
Eigenschaften, für ihre nicht einfache Erhebung bekannt.

Um letzteres Problem anzugehen, entwickelten wir, erstens, eine Konstruk-
tionsmethode für Dichte-Verhältnis-Klassen, welche es den Fachexperten erlaubt,
Intervalle für Quantile oder Intervalle für Wahrscheinlichkeiten anzugeben. Um
die Anwendung und Praktizierbarkeit der Methode möglichst einfach zu gestal-
ten, erweiterten wir zu diesem Zweck etablierte Erhebungsmethoden. Zweitens,
um mehr Einsicht und eine quantitative Beschreibung der Ambiguität zu erlangen,
führten wir allgemein formulierte Metriken ein, welche auf beliebige Wahrschein-
lichkeitsverteilungsklassen anwendbar sind. Die Metriken messen die Ambiguität,
relativ zu einem im Voraus gewählten Vertrauensniveau, in Bezug auf wichtige
und spezifische Eigenschaften von Verteilungen wie zum Beispiel die Weite der
Verteilung, die Verteilungsform oder die Position des Modalwertes. Drittens, wir
zeigten, dass die Dichte-Verhältnis-Klasse (i) invariant unter Bayesianischer Pa-
rameterinferenz ist, (ii) invariant unter Marginalisierung ist, (iii) invariant unter
Propagation durch ein deterministisches Modell ist, und (iv) falls durch ein stochas-
tisches Modell propagiert, wiederum in einer Dichte-Verhältnis-Klasse eingebettet
ist, welche auch grösser als die propagierte Ur-Dichte-Verhältnis-Klasse sein kann.
Die Invarianzeigenschaften machen die Dichte-Verhältnis-Klasse konzeptionell einzig-
artig und erlauben konsistente, sequenziell iterierbare Bayesianische Lernprozesse.
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Wir machten auch einen Vorschlag, wie man die oben genannten Punkte
numerisch implementiert und entwickelten hierfür ein generisch ausbaubares R-
Software Packet (kostenlos erhältlich), welches (I) eindimensionale Dichte-Verhältnis-
Klassen bestimmt, so wie es in der vorgeschlagen Erhebungsmethode gemacht wird,
und welches (II) die vorgeschlagenen Metriken für Dichte-Verhältnis-Klassen berech-
net. Schlussendlich wurden alle Implementationsschemen exemplarisch in einer
Studie auf ein deterministisches Periphyton-Modell mit einem additiven stochas-
tischen Fehler angewandt. Diese Studie illustriert die Auswirkungen von unpräzisem
Vorwissen auf die Bayesianische Parameterschätzung und die Modellvorhersage.

Summary of the Ph.D. Thesis

The goal of decision theory is to support decision makers in finding alternatives
that lead to the best possible fulfillment of their objectives. This requires (1) the
quantitative valuation of possible outcomes as a function of measurable system at-
tributes, (2) the prediction of probability distributions of these attributes for each
alternative, and (3) the ranking of all alternatives by combining (1) and (2). To
obtain such quantitative predictions it is often necessary to elicit knowledge about
influence factors, model parameters or attribute values from subject matter experts.
Unfortunately, the characterization of subjective degrees of belief, in the Bayesian
context, can be ambiguous. We suggest the use of imprecise probabilities to describe
ambiguity of uncertainty. In this robust Bayesian concept we evaluated diverse clas-
ses of probability distributions. We found the Density Ratio Class the most ade-
quate: (a) being able to adequately represent intersubjective knowledge, describing
the state-of-the-art knowledge of science and technology, which is typically needed
in environmental modeling and (b) having unique conceptual properties that are
discussed below. Apart from the advantageous class properties, the Density Ratio
Class is known to be di�cult to elicit.

To address this last point, we developed a method for constructing Density
Ratio Classes based on intervals of quantiles or probabilities elicited from experts.
To enhance the method’s accommodation and practicability we extended established
elicitation techniques to become applicable for this purpose. Second, to get deeper
insight and a quantitative description of the ambiguity, we introduced generally
formulated metrics, applicable to any type of class of probability distributions. The
metrics measure, relative to a previously chosen credibility level, the ambiguity of
important specific probability distribution attributes such as the width, the shape
and the position of the mode. Third, we showed that the Density Ratio Class is (i)
invariant under Bayesian updating, is (ii) invariant under marginalization, is (iii)
invariant if propagated through a deterministic model, and is (iv) embedded again
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into a Density Ratio Class that can be larger than the set of propagated distributions
of the original class if the model is stochastic. These invariance properties make
the class unique with regard to conception and allows for a consistent sequential
Bayesian learning process.

We also made a proposition of how to numerically implement all the points
mentioned before and developed a generically extendable R software package (freely
available) that (I) numerically fits ready-to-use one-dimensional Density Ratio Clas-
ses according to the proposed elicitation method and (II) calculates the proposed
metrics for Density Ratio Classes. Finally, we illustrated the steps required for
considering imprecision by an exemplary application to a simple, deterministic peri-
phyton model with an additive stochastic error term. This demonstrates the e↵ect
of imprecise prior knowledge on parameter estimates and model predictions.
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Chapter 1

Introduction

1.1 Rational Decision Analysis and Support

In rational decision support it is fundamental to analytically structure the decision
problem by clearly separating objectives, a decision maker or a stakeholder group
would like to achieve, from predictions of the outcomes of the decision alternatives.
The overall objective the decision maker(s) would like to achieve is hierarchically
divided into complementary and more concrete sub-objectives. The degree of fulfill-
ment of the objectives is then quantified by a value or utility function as a function of
measurable attributes. The value function specifies directly the degree of fulfillment
of the objectives on a scale between zero and unity; the utility function additionally
considers risk attitudes and has to be elicited by asking preferences between lotter-
ies of outcomes rather than certain outcomes. The hierarchical structuring of the
objectives helps constructing such a function.

Rational decision support requires the combination of (1) the prediction of
probability distributions of outcomes and (2) the elicitation of a utility function as
a function of the outcomes. Alternatives are then ranked according to expected
utilities (Von Neumann and Morgenstern 1944; Savage 1954; Berger 1985; von Win-
terfeldt and Edwards 1986; Clemen and Reilly 2001; French and Ŕıos Insua 2000;
Eisenführ and Weber 2003). These theoretical concepts are also successfully applied
in practice.

It is well known that individual and group behavior may violate rational choice
theory (Allais 1953; Ellsberg 1961), and alternative behavioral theories have been
suggested (Kahneman and Tversky 1979). Nevertheless, for supporting decisions
that must be justifiable e.g. to authorities or the society, the framework of rational
decision making can be very useful.

1



2 CHAPTER 1. INTRODUCTION

1.2 The Mathematical Framework

In model-based decision support, especially with regard to environmental systems,
a model can only approximate the complex real system and thus leads always to
uncertain predictions. Therefore, uncertainty has to be rigorously evaluated and
carefully taken into account. Sources of uncertainty include: (i) non-deterministic,
potentially stochastic behavior of the true system - referred to as aleatory uncertainty
and (ii) lack of knowledge about the true system, its mathematical representation,
and specific parameter values - referred to as epistemic uncertainty (Parry 1996;
Walker et al. 2003; Refsgaard et al. 2007). Probability theory has long been the
well-accepted framework for describing aleatory uncertainty. However, epistemic
uncertainty is often the dominant source of uncertainty in environmental modeling
(Ayyub and Klir 2006). It was shown by Keynes (1921), de Finetti (1931), Ramsey
(1931), Cox (1946) and others that probability theory is also appropriate for de-
scribing epistemic uncertainty. We argue, independently of whether uncertainty is
aleatory, or epistemic, that probability is the natural mathematical construct for de-
scribing uncertainty (Rinderknecht et al. 2012, 3). The motivation to treat aleatory
and epistemic uncertainty in one and the same mathematical framework becomes
even stronger considering the fact that aleatory uncertainty can turn into epistemic
uncertainty. This is for instance the case if a random event has taken place but
its outcome is not yet observed. In this situation, having a unique mathematical
framework for both kinds of uncertainty also avoids unnecessary problems of in-
consistency between mathematical formalisms. Furthermore, if individuals quantify
their subjective degrees of belief with the aid of bets on lotteries between which
they are indi↵erent, and if their beliefs are consistent in the sense of avoiding sure
loss, then the resulting knowledge quantifications are consistent with the axiomatic
foundation of probability theory (Box and Tiao 1973; de Finetti 1974; Howson and
Urbach 1989; Seidenfeld et al. 1995; Kadane and O’Hagan 1995; Kadane et al.
1996). The logical framework for parameter inference and model prediction, con-
sistent with the reasonings above, is then Bayesian statistics (Rinderknecht et al.
2011; Rinderknecht et al. 2012; Rinderknecht et al. 2011, 2.1 3.1 4.1).

1.3 Ambiguity: Reason for Robustification

Uncertain quantities needed for predictive modeling and decision support are often
elicited from subject matter experts. It is common to use single, precise probability
distributions for this purpose although the trustworthiness is questionable. Inaccu-
racies in elicitation procedures, misrepresentation of elicitation results, problems in
expressing an individual’s beliefs quantitatively, di↵erent perception of information
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by di↵erent individuals, or disagreement between experts lead to so called ambigu-
ity in the probabilistic quantification of knowledge (Ellsberg 1961; Frisch and Baron
1988; O’Hagan and Oakley 2004; Rinderknecht et al. 2012, 3). Furthermore, the rel-
evance of ambiguity becomes even stronger if (potentially ambiguous) intersubjective
knowledge, characterizing the current state of knowledge of the scientific community
(Gillies 1991; Rinderknecht et al. 2012, 3), shall be specified. We are interested to
identify, describe, and seek to reduce ambiguity as a di↵erent aspect of uncertainty
apart from the probabilistically quantified uncertainty. Several methods were pro-
posed in the past for separating ambiguity in the choice of a probability specification
from the uncertainty contained within the specification itself. Amongst others, the
use of second-order probabilities or hierarchical probability models (Draper 1995) is
a possible attempt to address this problem. However, having in mind that second-
order uncertainty results e.g. from the problem that an expert has to express her
or his beliefs precisely in the form of a probability distribution, it does not seem
realistic that the knowledge about the second-order distribution (which is an even
more abstract concept) can then be expressed precisely (Rinderknecht et al. 2012,
3). Our preferred method to characterize ambiguity is to replace the precise sin-
gle probability distribution with a set of distributions. We developed three metrics
of imprecision, relative to a credibility level, with regard to specific attributes of
a distribution such as the width, shape and the mode, applicable to any type of
probability set definition to enhance assessment and communication of ambiguity
in quantified knowledge (Rinderknecht et al. 2012, 3.3). The set-based robustness
concept is an extension of the conventional probability theory and the literature
refers to as imprecise probability theory (Walley 1991; Caselton and Luo 1992,
http://www.sipta.org). In the context of imprecise probability theory, conventional
Bayesian statistics extend to what is called robust Bayesian statistics (Ŕıos Insua
and Ruggeri 2000; Berger 1994).

1.4 An Overview of Selected Classes of Probabil-
ity Distributions and its Definitions

As discussed above, we prefer the replacement of a single precise probability distri-
bution by a set of probability distributions - if ambiguity is to be described. Di↵erent
concepts have been proposed for specifying nonparametric sets of probability dis-
tributions. In Rinderknecht et al. (2011, 2) we evaluated five common classes of
probability distributions. Since these classes are not presented in detail in the fol-
lowing chapters, we briefly review their definitions. These classes, for reasons of
simplicity presented in their one-dimensional form, are the Probability Box, �PB

L,U

;

the Quantile Class, �QC

l,u

; the ✏-Contamination Class, �EC

✏

; the Density Bounded

http://www.sipta.org/
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Class, �DB

l,u

; and last but not least the Density Ratio Class, �DR

l,u

. These classes are
graphically illustrated in Figure 1.4. Note, all of these classes can be used for im-
proper probability densities in addition to proper densities. As we think that there
is no reasonable behavioral interpretation of improper densities, we will focus on
class specifications that only contain proper densities.

1.4.1 The Probability Box

Suppose L and U are cumulative distribution functions (CDFs) and L(✓)  U(✓)
for all ✓ in the parameter space. The set �PB

L,U

of CDFs F

(1.1) �PB

L,U

= {CDFs F : L(✓)  F (✓)  U(✓) 8✓}

is called a Probability Box or p-box. If the random variable ⇥ belongs to the class,
L(✓) and U(✓) are the lower and upper bounds for the probability of ⇥  ✓. This
gives the defining functions L and U a particularly simple interpretation. The
Probability Box is discussed more extensively in Ferson et al. (2003) and references
cited therein.

1.4.2 The Quantile Class

Let the parameter space be partitioned into m disjoint pieces I

1

[ ... [ I

m

. For
i 2 {1, ...,m}, let L

i

and U

i

satisfy 0  L

i

 U

i

and
P

m

i

L

i

 1 
P

m

i

U

i

. Then the
Quantile Class is defined as the set �QC

L,U

of probability densities (PDFs) f

(1.2) �QC

L,U

= {PDFs f : L

i


Z

Ii

f(✓) d✓  U

i

8i 2 {1, ...,m}}.

In words, Quantile Classes are defined by placing upper an lower bounds on the
probability that a parameter value ✓ lies within each of a finite number of subsets.
The Quantile Class is discussed more extensively in Lavine (1991a) and Moreno and
Pericchi (1993b).

1.4.3 The ✏-Contamination Class

For a fixed ✏ 2 [0, 1], a fixed PDF f

0

and a given class G of PDFs the ✏-Contaminated
Class �EC

f

0

,G,✏

is defined as:

(1.3) �EC

f

0

,G,✏

= {f = (1� ✏)f
0

+ ✏g : g 2 G}.



1.4. SELECTED CLASSES OF PROBABILITY DISTRIBUTIONS 5

−10 −5 0 5 10

0.
0

0.
4

0.
8

Probability Box

θθ

C
D

Fs

−10 −5 0 5 10

Quantile Class

θθ

PD
Fs

0 2 4 6 8 10

0.
0

0.
2

0.
4

Epsilon Contaminated Class

θθ

PD
Fs

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Density Bounded Class

θθ

PD
Fs

−10 −5 0 5 10

0.
0

0.
2

0.
4

Density Ratio Class

θθ

D
en

si
ty

 R
at

io
n 

PD
Fs

Figure 1.1: Graphical illustrations of the five classes of distributions: Probability
Box, �PB

L,U

; Quantile Class, �QC

L,U

; ✏-Contamination Class, �EC

G,✏

; Density Bounded
Class, �DB

l,u

; Density Ratio Class, �DR

l,u

. Thick solid lines indicate functions that
define the class, thin solid lines represent examples of probability densities (PDF)
or cumulative distribution functions (CDF) belonging to the class, and dotted lines
represent contamination distributions for �EC

✏

and unnormalized densities for �DR

l,u

.
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The fixed PDF f

0

is interpreted as the base distribution, ✏ is the assessed amount of
uncertainty in the base distribution, and G is the class of contaminations considered.
The ✏-Contaminated Class was introduced by Huber (1973) and has been studied
by Berger and Berliner (1986), Berger (1985), Berger (1990), Pericchi and Walley
(1991) and Walley (1991).

1.4.4 The Density Bounded Class

The Density Bounded Class is defined as the set �DB

l,u

of PDFs f :

(1.4) �DB

l,u

= {PDFs f : l(✓)  f(✓)  u(✓); 8✓}

where l and u are two bounded non-negative functions, such that l(✓)  u(✓) for all
✓,
R

u(✓)d✓  1 and 1 
R

u(✓)d✓ < 1. In words, a density bounded set consists of
all normalized densities between upper and lower bounds. This class is discussed in
Lavine (1991a) and Wasserman and Kadane (1992).

1.4.5 The Density Ratio Class

For uncertain continuous parameters ✓ 2 M ⇢ Rn, the Density Ratio Class, �DR

l,u

,
is defined as the set of probability density functions
(1.5)

�DR

l,u

:=

⇢

f̂(✓) =
f(✓)

R

f(✓0) d✓

0

�

�

�

�

l(✓)  f(✓)  u(✓) 8✓ ,

Z

l(✓) d✓ > 0 ,

Z

u(✓) d✓ < 1
�

,

where l and u are lower and upper bounded non-negative, non-normalized densities.
These upper and lower densities bound the shapes of the not normalized probability
densities in the class. If l(✓) > 0 8 ✓, this definition is equivalent to

(1.6) �DR

l,u

:=

⇢

f(✓) =
g(✓)

R

g(✓0) d✓0

�

�

�

�

g(✓)

g(✓0)
 u(✓)

l(✓0)
8 ✓, ✓0

�

.

As �DR

l,u

= �DR

�l,�u

for any � > 0, we can normalize one of the bounds, l or u,
respectively. In contrast to the previous class that provides bounds on densities, the
focus of the density ratio class is on bounding shapes that then require normalization
to become probability density functions. DeRobertis and Hartigan (1981) introduced
the Density Ratio Class under the name of “intervals of measures”; Berger (1990)
called the class Density Ratio Class as it bounds ratios of densities as clarified by
the second definition above. Using the same shape for l = f

0

and u = kf

0

leads to
the special case �DR

f

0

,k

that may be thought of as a neighborhood around the target
prior f

0

(Wasserman 1992b).
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Figure 1.2: Lower and upper bounds (thin curves) and the not necessarily normalized
densities (thick curves) of a Density Ratio Class leading to the lower, P (A) (left),
and to the upper, P (A) (right), probability of the value to be in the interval A =
[�2.5, 2.5].

The lower and upper probabilities, P and P , for a random variable that is
characterized by the Density Ratio Class, �DR

l,u

, to take a value within a subset A of
its domain are given by

(1.7) P (A) =

R

A

l d✓

R

A

l d✓ +
R

A

c u d✓

and

(1.8) P (A) =

R

A

u d✓

R

A

u d✓ +
R

A

c l d✓

where A

c is the complement of A (see Figure 1.4.5). The proof for these equations
is given in 4.2.1.

1.5 Motivation for the Density Ratio Class

We believe that there are at least five desirable properties of classes of probability
distributions: (1) variety of shapes and absence of ‘unreasonable’ shapes, (2) in-
variance under Bayesian updating, (3) tractability of Bayesian updating, (4) ease of
assessment, and (5) invariance under marginalization. In Rinderknecht et al. (2011,
2.2.3) we discuss in detail how well each of the non parametric classes, described
above in 1.4, fulfils these properties and conclude that the Density Ratio Class, �DR

l,u

,
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has clear conceptual advantages over the other classes. In particular, its invariance
under updating and marginalization makes it the only class that can be used to
describe a consistent sequential Bayesian learning process.

A sixth desirable property of a class of probability distributions is the (6)
invariance if propagated through a model. In Rinderknecht et al. (2011, 4) we
study this explicitly with regard to predictions of models with parameters that
have the form of a Density Ratio Class and show also how this can be numerically
implemented. We have found, under mild regularity conditions, that the Density
Ratio Class is invariant if propagated through a deterministic model. Predictions
that are based on stochastic models with model parameters defined by a Density
Ratio Class are naturally embedded into a Density Ratio Class that can be larger
than the set of propagated distributions.

Hence, we evaluate the Density Ratio Class to be the most versatile with
regard to conception. The main disadvantage has been found to be the practical
di�culty of its assessment — which invited us to develop a practicable method that
fits Density Ratio Classes to elicited quantile or probability intervals (Rinderknecht
et al. 2011, 2).

1.6 The Structure of this Book

Chapter 2 contains the published paper Rinderknecht et al. (2011). We propose
an elicitation method for the Density Ratio Class that makes use of already known
and established elicitation methods - as far as this was possible. To facilitate the
elicitation of the Density Ratio Class, a software package was written and made freely
available for the R statistical programming environment. One may download the
package fitDRC.R on http://cran.r-project.org/ subject to the terms of agreement.

Chapter 3 contains the published paper (Rinderknecht et al. 2012). We make
an argument for using the mathematical concept referred to as imprecise proba-
bilities to represent epistemic, subjective or intersubjective knowledge, as possibly
revealed through a process of expert elicitation. We suggest to replace a precise
probability distribution with a set of distributions allowing for a continuous degree
of imprecision, such that the concept can form a bridge between total ignorance and
precisely characterized risk. Three metrics of imprecision, applicable to any type of
probability set definition, are developed to enhance assessment and communication
of ambiguity in quantified knowledge. Specific forms of the metrics are derived for
the Density Ratio Class. Three brief case studies are used to illustrate application
of the imprecise probability concept and the three developed metrics to represent
expert opinion.

http://cran.r-project.org/
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Chapter 4 contains the paper (Rinderknecht et al. 2011) that is ready for
submission. We mathematically show how Bayesian inference, marginalization and
model predictions are made with Density Ratio Class priors (or posteriors). We also
show the corresponding numerical implementation schemes. We apply our findings
to a simple deterministic periphyton model that has an additive stochastic error in
order to study the e↵ects of imprecise prior knowledge on parameter estimates and
predictions.

Finally, in Chapter 5 we draw our conclusions and give a brief outlook in the
form of further research questions.
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Eliciting Density Ratio Classes
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Abstract

The probability distributions of uncertain quantities needed for predictive model-
ing and decision support are often elicited from subject matter experts. However,
experts are often uncertain about quantifying their beliefs using precise probability
distributions. Therefore, it seems natural to describe their uncertain beliefs using
sets of probability distributions. There are various possible structures, or classes, for
defining set membership of continuous random variables. The Density Ratio Class
has desirable properties, but there is no established procedure for eliciting this class.
Thus, we propose a method for constructing Density Ratio Classes that builds on
conventional quantile or probability elicitation, but allows the expert to state inter-
vals for these quantities. Parametric shape functions, ideally also suggested by the
expert, are then used to bound the nonparametric set of shapes of densities that
belong to the class and are compatible with the stated intervals. This leads to a
natural metric for the size of the class based on the ratio of the total areas under

11
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upper and lower bounding shape functions. This ratio will be determined by the
characteristics of the shape functions, the scatter of the elicited values, and the ex-
plicit expert imprecision, as characterized by the width of the stated intervals. We
provide some examples, both didactic and real, and conclude with recommendations
for the further development and application of the Density Ratio Class.

Keywords

Probability assessment; probability elicitation; expert elicitation; elicitation of vague
knowledge; subjective probabilities; imprecise probabilities; decision theory; robust
Bayesian statistics; quantile elicitation; Density Ratio Class.

2.1 Introduction

Rational choice theory requires consideration of the probabilities of all possible out-
comes of decision alternatives, in addition to valuations of these outcomes, in order
to provide decision makers with a ranking of alternatives based on expected utilities
(Von Neumann and Morgenstern 1944; Savage 1954; Berger 1985; von Winterfeldt
and Edwards 1986; Clemen and Reilly 2001; French and Ŕıos Insua 2000; Eisenführ
and Weber 2003). In many contexts, the uncertainty of outcomes is not dominated
by aleatory uncertainty, due to randomness of a system, but by epistemic uncer-
tainty, due to lack of precise knowledge of system behavior. In such cases, scientific
knowledge is often elicited from experts in the form of their subjective degrees of
belief in the outcomes. If we decide to quantify such subjective degrees of belief with
the aid of bets on lotteries between which a person is indi↵erent, and if we require
these beliefs to be consistent in the sense of avoiding sure loss, then the mathemati-
cal construct for describing and updating such beliefs must be Bayesian probability
(de Finetti 1974; Howson and Urbach 1989; Seidenfeld et al. 1995; Kadane and
O’Hagan 1995; Kadane et al. 1996). It is well known that individual and group
behavior may violate rational choice theory (Allais 1953; Ellsberg 1961), and al-
ternative behavioral theories have been suggested (Kahneman and Tversky 1979).
Nevertheless this framework can still be useful for prescribing the transparent use
of scientific knowledge in support of societal decisions (Reichert et al. 2007; Corsair
et al. 2009). This makes elicited probability distributions an essential element of
societal decision support and makes it important to develop techniques to carefully
use and improve this instrument.

A significant problem in the application of rational choice theory is that in
many cases probability distributions characterizing knowledge and beliefs are them-
selves uncertain. This may also be the cause of some of the apparent violations
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of rationality mentioned above (Ellsberg 1961). The problem of uncertainty in
probability distributions is often especially relevant for priors in Bayesian inference
procedures (Berger 1985). For this reason, we are interested in the robustness of
the results to modifications in subjective uncertainties or beliefs. This can be done
systematically by employing a set of distributions that contains all those considered
to be feasible. Depending on the degree of ambiguity about a particular distribu-
tion, such a set can contain a large variety of shapes or can simply contain those
shapes in the neighborhood of a given distribution. This concept has been ad-
dressed under the topic of “imprecise probability” (Walley 1991; Caselton and Luo
1992, http://www.sipta.org). It can also be seen as generalizing “robust Bayesian
statistics” (Berger 1994; Ŕıos Insua and Ruggeri 2000) but it has been applied in
other fields as well (Huber and Strassen 1973; Cattaneo 2008; Fierens et al. 2009;
Maturi et al. 2010).

As it is not evident how to extend interval probabilities of discrete random
variables to continuous random variables, we focus in this paper on the latter case
that is of high practical relevance. A variety of structures or classes have been
proposed to characterize sets of distributions of continuous random variables. In
Section 2.2, we suggest that the Density Ratio Class is, from a conceptual point
of view, the most satisfying approach. However, this class is not currently well-
developed with respect to methods of expert elicitation. Therefore, in section 2.3 we
propose a practical procedure for eliciting this class. In section 2.4, we illustrate our
procedure with didactical examples and with an application to published elicitation
results to demonstrate the feasibility of the suggested approach. Finally, we discuss
our findings in section 2.5.

2.2 The Density Ratio Class

2.2.1 Definition

For continuous uncertain quantities, the Density Ratio Class of probability density
functions (PDFs), f (f � 0,

R

f(✓)d✓ = 1), is defined as the set

(2.1) �DR

l,u

= {PDFs f : 9c : l(✓)  cf(✓)  u(✓) 8✓}

where l and u are two bounded nonnegative functions (non-normalized densities)
such that l(✓)  u(✓) for all ✓ in the domain of the random variable and

R

u(✓)d✓ <

1. We limit the class to proper densities (with
R

f(✓)d✓ = 1) as the behavioral
interpretation of improper densities is questionable. If l(✓) > 0 8 ✓, this definition

http://www.sipta.org/
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is equivalent to:

(2.2) �DR

l,u

=

⇢

PDFs f :
f(✓)

f(✓0)
 u(✓)

l(✓0)
8 ✓, ✓0

�

The focus of the Density Ratio Class is on bounding shapes that then require normal-
ization to become probability density functions. DeRobertis and Hartigan (1981) in-
troduced the Density Ratio Class under the name of “intervals of measures”; Berger
(1990) called the class the Density Ratio Class, as it bounds ratios of densities, as
is clear from the second definition above.

As �DR

l,u

= �DR

↵l,↵u

for any ↵ > 0, we can normalize one of the bounds, l or u.
With f

l

= l/

R

l(✓0)d✓0 and f

u

= u/

R

u(✓0)d✓0 we can thus write

(2.3) �DR

l,u

= �DR

fl,fu

where the ratio

(2.4)  =

R

u(✓)d✓
R

l(✓)d✓
� 1

can be interpreted as a measure of the “size” of the class. For continuous densities,
 = 1 is only possible if u = l, and the class then reduces to the precise density
f = f

l

= f

u

. The larger , the larger is the variety of possible shapes. Using the
same shape for l = f

0

and u = f

0

leads to the special case �DR

f

0

,

that may be
thought of as a neighborhood around the target prior f

0

(Wasserman 1992b).

2.2.2 Bounds on Probabilities

Following from equation (2.1), the lower and upper probabilities, P and P , for a
random variable characterized by the Density Ratio Class, �DR

l,u

, to take a value
within a subset A of its domain are given by

(2.5) P (A) =

R

A

l d✓

R

A

l d✓ +
R

A

c u d✓

and

(2.6) P (A) =

R

A

u d✓

R

A

u d✓ +
R

A

c l d✓

where A

c is the complement of A.
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As a special case of equations (2.5) and (2.6), we can calculate the lower and
upper cumulative probabilities P (⇥ < ✓), F

l,u

(✓) and F

l,u

(✓), respectively. Using
the Density Ratio Class in the form l = f

l

, u = f

u

(2.3), we get

(2.7) F

fl,fu
(✓) =

F

l

(✓)

F

l

(✓) + (1� F

u

(✓))

and

(2.8) F

fl,fu(✓) =
F

u

(✓)

F

u

(✓) + (1� F

l

(✓))

where F

l

and F

u

denote the cumulative distribution functions of the normalized
lower and upper densities, f

l

and f

u

, respectively. Note that F and F represent
pointwise bounds of the cumulative distribution functions but are not in general
cumulative distribution functions of a class member.

2.2.3 Properties

We do not intend to suggest that the Density Ratio Class uniquely represents the
uncertain beliefs of an expert concerning the value of a quantity. However, we
think that it has some properties that give it advantages over other classes used for
this purpose. In particular, in this section we provide a comparison based on four
desirable properties: (1) the ability to accommodate a variety of shapes and exclude
“unreasonable” shapes, (2) invariance under Bayesian updating, (3) tractability of
Bayesian updating and posterior expectations, and (4) ease of assessment. The
other classes considered in this comparison are the ✏-Contamination Class (Huber
1973), the Probability Box (Williamson and Downs 1990), the Quantile Class (Lavine
1991a; Moreno and Pericchi 1993b), and the Density Bounded Class (Lavine 1991b)
(Berger 1994, gives an overview of imprecise probability classes). There may be
other properties we do not focus on, such as invariance under scale transformations
or other nonlinear mappings, that are important in certain applications.

Variety of Shapes and Exclusion of “Unreasonable” Shapes

Pericchi and Walley (1991) distinguish between a “reasonable class of prior densities”
and a “class of reasonable prior densities.” We believe that a class is reasonable if
and only if it contains reasonable shapes. That is, it should contain a wide variety
of shapes to provide su�cient degrees of freedom for representing ambiguity, but
should not allow for highly aberrant shapes that would not be deemed reasonable
by the expert.
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To fulfill the criterion of containing a su�cient variety of shapes, we focus on
non-parametric classes that contain at least a neighborhood of “interior” densities of
the class. Sets for which the members are parametrized, or Parametric Classes, seem
to be too limited with respect to such neighborhoods. In the case of the Density
Ratio Class the lower and upper parameterized shapes, l and u, are only used to
bound the non-parametric set of shapes.

Another important consideration is that the class allows a variety of tail behav-
iors, as such behaviors often fall outside the realm of past experience. By choosing
an upper function, u, that has heavier tails than the lower function, l, the Density
Ratio Class can contain densities that exhibit di↵erent tail behavior (Pericchi and
Walley 1991). The ✏-Contamination Class can also readily admit a range of di↵erent
tail behaviors if the set of contaminating distributions is chosen to be large enough
(e.g. if this set is the set of all probability distributions). However, with this choice,
the chance of including unreasonable shapes is also large, especially for large values
of ✏ (Borsuk and Tomassini 2005; Berger 1994; Walley 1991; Moreno and Cano 1991;
Moreno and Pericchi 1993a).

We believe that for most elicited distributions of continuous quantities, point
masses or extremely high peaks of densities may often not well represent the experts’
opinions. In contrast to the Probability Box and the Quantile Class (Pericchi 1998),
the Density Ratio Class excludes such probability distributions. It is worth noting,
however, that the Density Ratio Class still allows multiple local maxima and minima
that may not strictly represent the views of the expert. This situation is a common
feature of non-parametric classes unless additional constraints are imposed. The
✏-Contamination Class o↵ers the opportunity of a specific choice of deviations from
a reference distribution. This makes the choice of reasonable shapes more explicit.

Invariance under Bayesian Updating

A class is invariant under updating if the set of posteriors after Bayesian updating of
a prior class (this means updating all members of the prior class) is again represented
by a member of the same class (DeRobertis and Hartigan 1981; Wasserman 1992b).
This property is required to make sequential updating possible within the same
framework as more data become available. The Density Ratio Class is invariant
under updating as well as marginalization. Wasserman (1992a) showed that under
mild regularity conditions, this is the only class with these two properties. This
makes it possible not only to use this class for sequential updating, but also to
conveniently demonstrate the e↵ect of the learning process on marginals.
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Tractability of Bayesian Updating

Tractability of updating is the ease of calculating the posterior class and bounds
of posterior expectations and other posterior quantities given the prior class and
observed data. The invariance properties of the Density Ratio Class under Bayesian
updating and marginalization provide the basis for tractable numerical implemen-
tation with this class. Specifically, Wasserman and Kadane (1992) showed that it
is possible to derive numerical approximations to bounds of posterior expectations
from a random sample of a single member of the Density Ratio Class under the
special case with f

l

= f

u

= f

0

, �DR

f

0

,

. We are currently preparing a paper addressing
the general case (Rinderknecht et al. 2011).

Kriegler and Held (2005) conclude that Probability Boxes fulfill the tractability
criterion to some extent. Methods for calculating bounds on expectations for this
class are given by Basu and DasGupta (1995). The Quantile Class is not sensible
in higher dimensions unless shape constraints are introduced which make the model
less tractable for updating (Pericchi 1998). However, it is relatively easy to cal-
culate bounds of expectations for this class (Lavine 1991a). The ✏-Contamination
Class is popular because it is very tractable (Huber 1973; Berger and Berliner 1986;
Sivaganesan and Berger 1989). It is more di�cult to find posterior bounds for the
Density Bounded Class than for the Quantile Class or the ✏-Contaminated Class
(Lavine 1991a).

Ease of Assessment

A class should be as easy to assess and interpret as possible (Berger 1994). As-
sessment in this context is the process of constructing the class by formalizing prior
knowledge, often by expert elicitation. As experts generally recognize the ambiguity
contained in their own beliefs, ranges of probabilities or quantiles are often as easy
to elicit as exact values (Berger 1990). The problem is how to construct classes from
such assessments.

As distributions are often elicited by asking the experts for quantiles or cu-
mulative probabilities, the Probability Box and the Quantile Class are particularly
simple to elicit by simply asking for ranges for these quantities that are consistent
with the expert’s beliefs. The elicitation of an ✏-Contamination Class can consist
of a conventional elicitation of the reference distribution f

0

, followed by the class of
contaminations G and the choice of the value of ✏. Often, the contamination class G

will be chosen to consist of all densities. In such a case, the elicitation is not much
di↵erent from a conventional elicitation process for precise distributions. Therefore,
the ✏-Contamination Class is easy to work with and has a rather intuitively appeal-
ing interpretation (Borsuk and Tomassini 2005). Elicitation and interpretation of
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the Density Bounded Class and of the Density Ratio Class are more di�cult. The
main reason is that the bounds, l and u, do not have a similarly simple interpretation
as for the defining quantities of the other classes. To our knowledge, no elicitation
procedures have been published for these two classes.

Summary of Properties

The Density Ratio Class has clear conceptual advantages over the other classes. In
particular, its invariance under updating and marginalization makes it the only class
that can be used to describe a consistent sequential learning process. In addition,
it excludes unreasonable shapes to a much better degree than the other classes.
However, this comes with a requirement for additional information beyond simply
elicited ranges of probabilities or quantiles. This leads to the primary disadvantage
of the Density Ratio Class : the potential di�culty of its assessment. Consequently,
the development of a practicable elicitation technique for the Density Ratio Class is
the topic of this paper.

2.3 Eliciting Density Ratio Classes

It is relatively easy to elicit probability or quantile intervals by simply extending
existing elicitation procedures for precise distributions. However, as demonstrated
by the Probability Box and the Quantile Class, defining a class using such intervals
as the only constraint leads to the inclusion of distributions with shapes that are
unreasonable in most applications. This is because very high peaks and even point
masses are compatible with such intervals. To uniquely specify a class with more
stringent restrictions, more information must be provided. This cannot be accom-
plished without making the elicitation process somewhat more involved or making
additional assumptions.

We propose a relatively straightforward method for deriving the Density Ratio
Class. For simplicity, we concentrate on a one-dimensional random variable and
benefit as much as possible from established elicitation procedures for precise prob-
ability distributions. Hence, our suggested procedure starts with the elicitation of
quantile or cumulative probability intervals that represent the expert’s ambiguity.
To these intervals is added the selection of a parametric shape of the bounding den-
sities, or two shapes di↵ering, for example, in their tail behavior. We then construct
the smallest Density Ratio Class that is bounded by the specified parametric shapes
and yet contains the elicited quantile or cumulative probability intervals. This outer
approximation’ can be seen as a conservative representation of the expert’s opin-
ion, as the quantile intervals within the Density Ratio Class may be considerably
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larger than those specified by the expert. By potentially extending, rather than
contracting, the smallest set of densities consistent with the experts’ assertions, this
assumption is consistent with the understanding that experts tend to be overcon-
fident. If there is a large number of experts, it might be useful to eliminate the
most extreme views by using a specified quantile of the interval endpoints instead
of the minimum or maximum. If an expert is able to dispense with intervals by
asserting precise CDF points, then the method relies on the scatter of these points
around the optimized parametric shape to define the degree of imprecision of the
class. The reader interested in viewing graphical representations of some examples
is encouraged to look ahead to Figures 2.1, 2.3, 2.4 and 2.6.

2.3.1 Elicitation of Probability and Quantile Intervals

Generally, expert elicitation of the distribution of a continuous random variable ✓
relies on the quantile elicitation method (Wallsten and Budescu 1983; Cooke 2001;
Chaloner 1996; Kadane and Wolfson 1998; Garthwaite et al. 2005; Jenkinson 2005;
O’Hagan et al. 2006). According to this method, the analyst provides cumulative
probabilities, {p

i

}n

i=1

, and the expert estimates the corresponding quantiles, {✓
i

}n

i=1

(i.e., elicitation of the inverse CDF). This procedure, first suggested by Winkler
(1967), minimizes anchoring e↵ects (Tversky and Kahneman 1974; Kynn 2008) that
may be inherent in the probability elicitation procedure in which the analyst provides
values of the random variable and the expert estimates the corresponding cumulative
probabilities. We believe it is good practice to start by asking the expert for an
overall interval of the random variable for which the expert is convinced that it is
highly unlikely that the value ✓ could lie outside. It is important to clarify the
precise meaning of the specified overall interval, i.e., the estimated probability of
the random variable to be outside the interval (Alpert and Rai↵a 1982; Lichtenstein
et al. 1982). The analyst should be aware that experts tend to be overconfident in
assessing such an interval.

After asking for the overall interval of the random variable, we recommend to
follow the bisection method (see Garthwaite and Dickey (1985) for further technical
details). That is, ask the expert for the median, the lower quartile, the upper
quartile and more quantiles if necessary. However, based on our experience with
elicitation, we have found that experts recognize that they cannot make probability
judgments with absolute precision. Therefore, they often feel more comfortable if
they are allowed to express their assessments as ranges. This also seems to be a
natural way of eliciting information to construct imprecise probability distributions.
Hence, in our procedure, the experts are allowed to specify intervals but precise
estimates could be used as well. The interpretation of the intervals is that the entire
range of the interval is consistent with the scope of their beliefs.
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The result of this step for elicited quantiles is

QI: For probabilities {p
i

}n

i=1

selected by the analyst, lower and upper bounds on the
quantile {✓l

i

 ✓

u

i

}n

i=1

are estimated by the expert.

For elicited cumulative probabilities it is:

PI: For values of the random variable, {✓
i

}m

i=1

given by the analyst, lower and upper
bounds on the cumulative probabilities {pl

i

 p

u

i

}m

i=1

are estimated by the expert.

All endpoints of cumulative probability or quantile intervals can be summarized in
a set of probability-quantile pairs, {p

i

, ✓

i

}2(n+m)

i=1

. This set typically contains only
quantile intervals (n > 0, m = 0) or probability intervals (n = 0, m > 0); however,
it can also contain intervals of both types (n > 0, m > 0) or precise point estimates.

According to our procedure, these intervals are only a partial representation
of the expert’s beliefs. The determination of parametric shapes is discussed next.

2.3.2 Choice of Parametric Shapes

A set of cumulative probability or quantile intervals does not adequately constrain
the probability distributions that represent an expert’s knowledge. For this reason,
we next work with the expert to identify one or more parametric families of distribu-
tions, the shape of which can approximately represent his or her knowledge. Clearly,
the parametric families of distributions should be compatible with the probability-
quantile intervals elicited from the expert in the sense that they can be fitted to
pass approximately through the quantile intervals. However, at this stage, only the
allowable shapes, as represented by the parametric families of normalized densities
f , are selected, not particular parameter values. Nevertheless, it is important to
recognize that the choice of such a family of densities implies many assumptions
about the distribution that the expert did not initially assert with the assessed in-
tervals. Therefore, choosing the parametric families to represent the elicited data
should be combined with a rather detailed discussion of what the expert deems to be
reasonable and unreasonable shapes (see section 2.2.3). It should be kept in mind,
however, that these families will only be used to define the bounding densities, not
all members of the set, as we describe below.

There is no general rule for the choice of parametric families. However, the
procedure is similar to selecting (or confirming) a parametric family for fitting a
precise probability density to elicited points of a CDF (O’Hagan et al. 2006). Im-
portant properties are uni- versus multi-modality, skewness and bounds. Particular
emphasis should be on tail behavior, as this is particularly di�cult to capture with
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a small, discrete set of probability-quantile intervals. Three important cases to dis-
tinguish with respect to the domain of the elicited continuous random variable are
(O’Hagan et al. 2006):

Unrestricted random variable: For a random variable ⇥ which can take any
value, positive or negative, the most frequently used families are the normal
distribution or the Student t distribution. The t-distribution is important in
particular because it allows for heavier tails than the Normal distribution.

Random variable bounded on one side: For a random variable⇥ which is boun-
ded on one side, suitably shifted distributions of positive variables such as the
exponential, log-normal, gamma, inverse-gamma, chi-squared, Weibull and the
F-distribution are the most appropriate.

Bounded random variable: For a random variable ⇥ with bounded range, the
most widely used distributions belong to the beta family. Other distributions
used for bounded random variables are the bounded uniform, triangular and
trapezoidal distributions.

If an expert is especially uncertain about the tail behavior of the distribution,
then he or she should choose two families, f

1

and f

2

, with di↵erent tail behavior.
For an unrestricted random variable this means f

1

(✓)/f
2

(✓) !1 as |✓|!1.

This elicitation step results in two families of parametric distributions repre-
senting the extremes of shapes (e.g. of tail behavior) compatible with the expert’s
beliefs. These two families will represent the normalized lower, f

l

(✓, 
l

), and the nor-
malized upper, f

u

(✓, 
u

), densities partially characterizing the Density Ratio Class.
Here,  

l

and  

u

are the parameters characterizing the densities of the parametric
families. If their tail behavior is di↵erent, the one with heavier tails must be used
as the upper normalized density, f

u

.

If the expert is very confident in the set of reasonable shapes, the two families
can be identical. If the expert is not confident at all in the choice of shapes, then
multiple families can be used in various pairs to describe l and u, with parameters
 

l

and  
u

and  to be estimated empirically. The pair leading to the smallest class
size, as measured by the value of , that accommodates the elicited intervals can
then be maintained as the best description of the elicited Density Ratio Class. A
method for estimating the values of  

l

,  
u

, and  is discussed next.
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2.3.3 Construction of a Density Ratio Class Based on Elicited
Probability-Quantile Intervals and Parametric Shapes

From the elicitation steps described in sections 2.3.1 and 2.3.2 we get: (i) a discrete

set of endpoints of cumulative probability or quantile intervals, {p
i

, ✓

i

}2(n+m)

i=1

, and
(ii) two (or more) parametric families of distributions for the normalized lower,
f

l

(✓, 
l

), and the normalized upper, f

u

(✓, 
u

), densities defining the shapes of the
unnormalized densities, l and u that bound the Density Ratio Class.

Based on this information, we construct a Density Ratio Class as follows. We
search for the set of parameter values (, 

l

, 

u

) that satisfies the following three
conditions:

(2.9)

(i) f

l

(✓, 
l

)  f

u

(✓, 
u

) 8✓
(ii) F

fl,fu
(✓

i

, 

l

, 

u

)  p

i

for i = 1, ..., 2(n + m)

F

fl,fu(✓
i

, 

l

, 

u

) � p

i

for i = 1, ..., 2(n + m)

(iii)  should take the minimal value consistent with (i) and (ii)

(see equations 2.7 and 2.8 for the definitions of the functions F

fl,fu
and F

fl,fu).
Condition (i) guarantees that the densities l = f

l

and u = f

u

correctly define
a Density Ratio Class, condition (ii) guarantees consistency of the class with the
elicited cumulative probability or quantile intervals in the sense of being an ‘outer
approximation’. Condition (iii) requires the class to be of minimum size compatible
with conditions (i) and (ii) (see equation 2.4).

To facilitate the search for the parameter values fulfilling conditions (2.9), we
derive a function that calculates the minimum value of  fulfilling these conditions
for arbitrary given values of the parameters  

l

and  
u

(see equation 2.11 below). The
parameters  

l

and  
u

are then determined by numerically minimizing this function.

We first determine the smallest Density Ratio Class compatible with the two
shapes f

l

(., 
l

) and f

u

(., 
u

) as a function of the first argument. For this purpose,
we calculate

(2.10) �( 
l

, 

u

) = sup
✓

f

l

(✓, 
l

)

f

u

(✓, 
u

)

Note that if this supremum does not exist, there does not exist a Density Ratio
Class based on the shapes f

l

(., 
l

) and f

u

(., 
u

). If (for the parameter values  
l

and
 

u

) the supremum does not exist because f

l

has heavier tail(s) than f

u

, then f

l

and
f

u

can simply be interchanged. If (in the unrestricted case) one of the distributions
has heavier tails for ✓ ! +1 and the other for ✓ ! �1 and this characteristic
cannot be changed by choosing other parameter values for  

l

and  

u

, then the
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two distributions cannot be used to define a Density Ratio Class. The elicitation
process for adequate shapes has then to be repeated. If �( 

l

, 

u

) exists, the class
bound by l = f

l

(., 
l

) and u = �( 
l

, 

u

)f
u

(., 
u

) is the smallest Density Ratio Class
compatible with the shapes f

l

(., 
l

) and f

u

(., 
u

). It has now to be enlarged to
contain the elicited quantile or cumulative probability intervals.

To guarantee that all elicited intervals are within the class, we substitute each
of the 2(m + n) interval endpoints {p

i

, ✓

i

}2(m+n)

i=1

of the (m + n) elicited probability-
quantile intervals into equations (2.7) and (2.8) and solve for :

(2.11) 

i

( 
l

, 

u

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

F

l

(✓
i

, 

l

)(1� p

i

)

p

i

(1� F

u

(✓
i

, 

u

))
if p

i

< F

fl,�( l, u)fu
(✓

i

, 

l

, 

u

)

�( 
l

, 

u

) if

8

<

:

F

fl,�( l, u)fu
(✓

i

, 

l

, 

u

)  p

i

p

i

 F

fl,�( l, u)fu(✓
i

, 

l

, 

u

)

p

i

(1� F

l

(✓
i

, 

l

))

F

u

(✓
i

, 

u

)(1� p

i

)
if F

fl,�( l, u)fu(✓
i

, 

l

, 

u

) < p

i

The smallest Density Ratio Class based on the shapes f

l

(., 
l

) and f

u

(., 
u

) contain-
ing all elicited probability-quantile intervals is determined by the maximum of all
these factors:

(2.12) ( 
l

, 

u

) = max
i

{
i

( 
l

, 

u

)}2(m+n)

i=1

To determine the class according to (2.9), the function ( 
l

, 

u

) (2.12) is now
minimized over the parameters  

l

and  

u

. This then leads to the Density Ratio
Class with bounding functions l = f

l

and u = f

u

. The derivation procedure of this
class is graphically illustrated in Figure 2.1.

If there are multiple candidates for the choice of parametric family for l and/or
u, then the pair with the lowest estimated value of  seems to be a reasonable choice
for representing a Density Ratio Class that best corresponds to the elicited intervals.
When the expert does not state intervals, but only probability-quantile points, these
points can be considered as degenerate intervals with length zero. The method would
remain the same, and the Density Ratio Class would be defined according to the
scatter of points alone.

2.4 Examples

In this section, we illustrate the practicability of the suggested approach with two
examples. In the first example, we use a synthetic case to investigate the sensitivity
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Figure 2.1: Left panel: Hypothetical elicited probability-quantile intervals for a
quantity ✓ (horizontal lines bounded by markers) and lower and upper cumula-
tive probability bounds of the resulting Density Ratio Class, F

fl,fu
(✓, 

l

, 

u

) and

F

fl,fu(✓, 
l

, 

u

) (solid lines). Right panel: normalized l = f

l

(solid line) and
unnormalized u = f

u

(dashed) defining the Density Ratio Class. Hypotheti-
cal data: p = {0.05, 0.25, 0.50, 0.75, 0.95}, ✓

min

= {70, 135, 190, 230, 270}, ✓
max

=
{90, 155, 210, 250, 290}, f

l

⇠ Beta(2.29, 2.07) on [65, 300], f

u

⇠ Beta(1.24, 1.13) on
[55, 310] and  = 1.54.
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of the constructed Density Ratio Class to the di↵erence in shape between the lower
function, l, and the upper function, u, as well as to the width of assessed quantiles.
In the second example, we demonstrate the application of our procedure to actual
elicitation data from the literature (Borsuk et al. 2002).

2.4.1 The Sensitivity of Constructed Density Ratio Class
to Shapes of l and u and to Width and Position of
Elicited Quantile Intervals

Normal distributions are widely used for describing randomness in natural, social,
and technical systems. However, empirical evidence shows that the rapid decrease
of the Normal density in the tails may often be unrealistic. In such situations,
empirical description of data can be improved by using distributions with heavier
tails. The Student t distribution has heavier tails than a Normal distribution and
approaches the Normal distribution as the degrees of freedom, df , approach infinity.
With three or more degrees of freedom, the Student t distribution has finite variance
(of df/(df � 2)) and can be shifted and scaled to a distribution with any mean
and standard deviation. For these reasons, we use a Student t distribution in our
example to illustrate robustification of probability assessments using a Density Ratio
Class with di↵erent shapes of l and u. When using two Student t distributions, l

must always be the distribution with more degrees of freedom than u, otherwise we
cannot find a finite constant � with f

u

 �f

l

8✓ as required for construction of the
Density Ratio Class (see equation 2.10).

Sensitivity to Shapes of l and u

Even when precise points are elicited for the probability-quantile pairs, the use of two
di↵erent shapes for l and u will lead to a Density Ratio Class with a non-negligible
degree of imprecision. To explore this issue, we assessed the sensitivity of constructed
Density Ratio Classes to the choice of degrees of freedom of l and u. First, five
quantile points with cumulative probabilities p

1

= 0.05, p

2

= 0.25, p

3

= 0.5, p

4

=
0.75, p

5

= 0.95 were derived from a Student t distribution with mean µ

S

= 0,
standard deviation �

S

= 1 and 6 degrees of freedom. These synthetic data were
then treated as “elicited” values to construct Density Ratio Classes using Student t
distributions with a variety of degrees of freedom for l and u. Means of l and u were
held to zero, while standard deviations and the factor  were estimated according to
the method described in section 2.3. The factor  guarantees a proper Density Ratio
Class (u > l on the entire axis of ✓) as well as coverage of all “elicited” quantiles
within lower and upper cumulative probability bounds for the class. The resulting
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Table 2.1: Sensitivity of  and max�P to changes in the degrees of freedom of
Student t distributions used for l and u. Estimated standard deviations of l and u

are also given.
df

l

df

u

sd

l

sd

u

 max�P

6 6 1.00 1.00 1.00 0.00
7 5 0.96 1.05 1.03 0.01
8 4 0.91 1.11 1.06 0.03
9 3 0.85 1.30 1.11 0.05

degree of imprecision can be quantified (indirectly) by the factor  and (directly)
by the maximum di↵erence between upper and lower cumulative probability bounds
for the class over all values of ✓, max�P = sup

✓

�

F

l,u

(✓)�F

l,u

(✓)
�

. Table 2.1 shows
the growth in imprecision as the di↵erence between df

l

and df

u

grows.

Figure 2.2 summarizes the change in imprecision as a function of a broader
range of df

l

for four choices of df

u

. The measure max�P is increasing in df

l

for fixed
df

u

, and is decreasing in df

u

for fixed df

l

. Two specific examples at the extremes are
illustrated in Figure 2.3.

Sensitivity to Width and Position of Elicited Quantile Intervals

When intervals, rather than precise probability-quantile points, are elicited, the
constructed Density Ratio Class can be expected to be sensitive to the position and
width of the elicited interval. To explore this, we used the hypothetical elicited data
sampled from a Student t distribution with six degrees of freedom for probabilities
p

1

= 0.025, p

2

= 0.25, p

3

= 0.5, p

4

= 0.75, p

5

= 0.975 and superimposed intervals
centered around various values of ✓ with various widths �q. Density Ratio Classes
were then constructed according to the method described in section 2.3. Here, the
degrees of freedom of l and u were held at 8 and 4, respectively, while the means,
standard deviations, and  were estimated.

Figure 2.4 shows that, as expected, the imprecision of the Density Ratio Class,
as measured by max�P , increases with the width of the elicited quantile interval.
Additionally, when moving from the center to the tails of the distribution, there is
first an increase and then a decrease of the size of the class. This phenomenon, as
well as broader patterns of sensitivity to the width and position of quantile intervals,
are detailed in Figure 2.5.
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Figure 2.2: Sensitivity of imprecision in the Density Ratio Class constructed from
hypothetical elicited probability-quantile pairs to a range of degrees of freedom df

l

2
{df

u

, ..., 50} and df

u

2 {3, ..., 6} for the Student t distributions used to define l and
u. As described in the text, means of l and u were held to zero while standard
deviations and  were estimated according to the method described in section 2.3.
Imprecision is quantified (indirectly) by the factor  (left panel) and (directly) by
the maximum di↵erence between upper and lower cumulative probability bounds
max�P (right panel). Two specific examples at the extremes are illustrated in
Figure 2.3. Note that  = 1 for df

l

= df

u

= 6 as the data points were derived from
a Student t distribution with six degrees of freedom.
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Figure 2.3: Examples of Density Ratio Classes constructed from hypothetical
elicited probability-quantile pairs (points) using Student t distributions with identi-
cal (top panels: df

l

= 3 = df

u

) and vastly di↵erent (bottom panels: df

l

= 50, df
u

= 3)
degrees of freedom for l and u. Left panels: Lower and upper cumulative probability
bounds of the resulting Density Ratio Class, F

fl,fu
(✓, 

l

, 

u

) and F

fl,fu(✓, 
l

, 

u

)
(solid lines). Right panels: normalized l = f

l

(solid lines) and unnormalized u = f

u

(dashed lines) defining the Density Ratio Class. Means of l and u were held to zero,
while standard deviations and  were estimated according to the method described
in section 2.3. Imprecision is quantified by the maximum di↵erence between upper
and lower cumulative probability bounds, max�P .
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Figure 2.4: Examples demonstrating the sensitivity of constructed Density Ratio
Classes to the width �q and position ✓ of hypothetical elicited probability-quantile
pairs (points) and hypothetical elicited quantile intervals (horizontal solid lines, the
triangle marks the centre of the elicited quantile interval and corresponds to the
quantile resulting from the Student t distribution with df = 6). We used Student t
distributions for l and u with degrees of freedom held at 8 and 4, respectively, while
the means, standard deviations, and  were estimated according to the method
of section 2.3. max�P is reported as the measure of imprecision of the resulting
Density Ratio Class. Left and right panels can be interpreted as in Figures 2.1 and
2.3.
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Figure 2.5: Detailed assessment of the sensitivity of constructed Density Ratio Clas-
ses to the width �q and position (✓ or P ) of hypothetical elicited quantile intervals.
As in Figure 2.4, we used Student t distributions for l and u with degrees of freedom
held at 8 and 4, respectively. The means, standard deviations, and  were estimated
according to the method of section 2.3. The value of  (left panel) and max�P

(right panel) are used to represent the imprecision of the constructed Density Ratio
Class.
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2.4.2 Example Based on Elicitation Data from the Litera-
ture

Borsuk et al. (2002) used an expert elicitation procedure to construct a model for
the distribution of times-to-death of a clam species as a function of dissolved oxy-
gen concentration in an estuary. Points on the cumulative distribution function of
times-to-death were elicited for multiple oxygen concentrations from two experts
simultaneously, using the fixed-probability protocol (Spetzler and Staël Von Hol-
stein 1975). Because of either minor disagreement between the experts or shared
imprecision, the experts stated intervals rather than points for many of the elicited
quantiles. These intervals were recorded and reported, but not used, in the original
study. Rather, Borsuk et al. used the midpoints of the intervals to fit precise dis-
tributions for each oxygen concentration. They fit a variety of parametric families
to the elicited data and found that the Lognormal provided the best fit, but went
on to use the Log-Logistic for computational convenience.

We construct a Density Ratio Class from the data of Borsuk et al. (2002)
using the technique described in section 2.3. Because the experts did not assert a
parametric family for l or u, we first log-transformed the elicited values and then fit
every combination of the Normal, logistic, t

3

, and t

10

distributed families that would
lead to a defined Density Ratio Class. (It would also be possible to empirically
estimate the degrees of freedom parameters of the Student t densities characterizing
l or u. For simplicity, we did not pursue this additional step for our example.) It
should be noted that the logarithmic transformation has no consequence for the
value .

A combination of the Normal density for l and the t

3

density for u provided
the best fit, as measured by the lowest average value of  across the four dissolved
oxygen concentrations (Figure 2.6). This is a useful class representation that allows
for a variety of tail behaviors. The imprecision contained in the elicited intervals
is fairly symmetric on the log-scale, with means of l and u being similar for most
cases. The imprecision is also fairly constant across di↵ering oxygen concentrations,
with similar relative values of the standard deviations l and u and similar values of
 and max�P .

2.5 Discussion

The comparison of various classes of probability distributions shows conceptual ad-
vantages for the Density Ratio Class. This class allows for a wide variety of shapes
(including tail behaviors) without allowing very unreasonable shapes, such as high
peaks and point masses. Additionally, based on some technical assumptions, Wasser-
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Figure 2.6: Density Ratio Classes constructed from the logarithm of assessed quan-
tile intervals on the number of days corresponding to each specified cumulative
mortality and ambient dissolved oxygen concentration (DO, [mgL�1]) according to
the data of Borsuk et al. 2002. In each case a Normal density was used for l and
a Student t density with three degrees of freedom was used for u. Left and right
panels can be interpreted as in Figures 2.1, 2.3 and 2.4.
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man (1992a) showed that the Density Ratio Class is the only class that is invariant
under Bayesian updating and marginalization. The former property is crucial for
representing incremental learning within a consistent framework, the latter for vi-
sualizing important aspects of the class.

Of course, we do not claim that experts have internal representations of uncer-
tainty that conform precisely with the Density Ratio Class. However, if an expert is
able to specify quantile or cumulative probability intervals for a quantity, select one
or two parametric families that are compatible with these intervals and his or her
general beliefs about possible values of the quantity, and wants to allow neighbor-
ing shapes but exclude extreme departures, then a Density Ratio Class constructed
according to our technique seems to yield a reasonable representation of his or her
beliefs. These considerations seem to be fulfilled for many continuous random vari-
ables typically elicited from experts. However, it may be that additional practical
experience will point to other representations.

Our suggested technique for constructing a Density Ratio Class is based on
well established elements of conventional elicitation procedures, including elicitation
of quantiles or cumulative probabilities and use of parametric shapes. Thus, the
procedure should not be too unfamiliar to experts or analysts. In fact, experts
may be even more comfortable with our proposed method because they can state
their judgments as intervals rather than being required to assert precise values.
Additionally, the parametric shapes that are selected are only employed to bound
the Density Ratio Class and not to define the nonparametric members. In this way,
robustification to deviations from parametric shapes is addressed. If the expert does
want to specify precise quantiles (intervals of zero length), then class boundaries are
derived from the scatter and systematic deviations of the assessed quantiles from
the parametric shape. Finally, if the expert specifies precise quantiles that are
compatible with a single parametric shape chosen as the bounding shape, then the
constructed Density Ratio Class simplifies to a precise member of that family. This
assures compatibility of results, as well as techniques, with conventional methods.

The size of the class constructed from our method is determined by three
elements: (i) Di↵erences in parametric shapes selected for bounding the shapes
already introduce an element of imprecision to the class. (ii) Scatter of the elicited
quantiles or incompatibility with the parametric shape(s) increase the size of the
class. (iii) Finally, explicit imprecision, as specified by the expert using quantile or
cumulative probability intervals, further increases the size of the class. This latter
element can be particularly influential if cumulative probability intervals (rather
than quantile intervals) are specified in the tails of the distribution.

There are also important interactions between the three elements of impreci-
sion described above. Our analysis of the sensitivity of the Density Ratio Class to
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the shapes of the bounding densities showed that increasing the ambiguity of tail
behavior leads to a comparable increase in imprecision in the central part of the
distribution as well (see Fig. 2.3). We also found that equally wide elicited quantile
intervals will have di↵ering e↵ects on overall imprecision depending on the shapes
chosen for bounding the class, as well as the location of the elicited intervals (see
Fig. 2.2 and 2.4). We make particular propositions for metrics characterizing the
imprecision of Density Ratio Classes in Rinderknecht et al. (2012).

In the description of our technique, we focused on the one-dimensional case,
but the Density Ratio Class can be readily defined for the multivariate case as well
(DeRobertis and Hartigan 1981). However, the construction of elicitation techniques
that appropriately capture covariance in an expert’s knowledge about multiple un-
certain quantities remains a challenge (Held et al. 2008).

When uncertainty is represented by imprecise probabilities, such as the Density
Ratio Class, then conventional decision theory based on expected utility maximiza-
tion may not provide a unique ranking of decision alternatives. This is because a
Density Ratio Class for an uncertain quantity will usually translate into an interval
for the resultant expected utility. If intervals on expectations overlap for two or more
alternatives, then there is not an established Bayesian decision rule for choosing be-
tween them. Alternate criteria include maximum lower expected utility, maximum
upper expected cost, or minimum upper regret. The need for careful consideration
in adopting an appropriate secondary decision rule is one cost to be paid for the
added descriptive capability provided by our proposed approach.

We are currently preparing an R package to facilitate elicitation and construc-
tion of the Density Ratio Classes (Rinderknecht et al. 2012). This package extends
concepts implemented in the She�eld Elicitation Framework (http://www.tony
ohagan.co.uk/shelf) to Density Ratio Classes.
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Abstract

Model-based environmental decision support requires that uncertainty be rigorously
evaluated. Whether uncertainty is aleatory or epistemic, we argue that probability
is the natural mathematical construct for describing uncertainty in predictions used
for decision-making. If expert knowledge is elicited using stated preferences between
lotteries, and the experts are rational in the sense of avoiding sure loss, then the
resulting knowledge quantifications will be consistent with the axiomatic foundation
of probability theory. This idea can be extended to the description of intersubjective
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knowledge when the intent is to characterize the state of knowledge of the scientific
community. Many methods for probability elicitation have been reported, but there
is nearly always some degree of ambiguity in translating elicited quantities into prob-
abilistic description. This would include: any lack of fit of a particular distributional
form to elicited data; incertitude in the elicited data themselves; and/or disagree-
ment in the elicited data across multiple experts. By replacing a precise probability
distribution by a set of distributions, the mathematical concept of imprecise prob-
abilities provides a means for representing this ambiguity. In this way, imprecise
probabilities can form a bridge between total ignorance and precisely characterized
risk by allowing for a continuous degree of imprecision to represent ambiguity. We
introduce three metrics to describe the relative ambiguity of important attributes of
probability distributions, namely their width, shape, and mode. These metrics are
applicable to sets of distributions characterized by using any available method, and
we derive the specific forms of these metrics for the Density Ratio Class, which we
have found to have many desirable properties. Based on these metrics and on elicita-
tion data from the literature, we use three examples to demonstrate the wide variety
of ambiguity that can be present in elicited knowledge. Imprecise probabilities allow
us to quantify this ambiguity and consider it in environmental decision-making. Our
examples were implemented using a package we recently developed and made freely
available for the R statistical programming environment.

Keywords

expert elicitation; subjective probabilities; intersubjective knowledge; interval prob-
abilities; qualitative expertise; quantitative expertise; robust Bayesian inference;
robust Bayesian statistics; quantile elicitation; imprecise probabilities; probability
box; quantile class; Density Ratio Class.

3.1 Introduction

Nature’s complexity and stochastic behavior imply that models of environmental sys-
tems are always approximations of reality and lead to uncertain predictions. Sources
of uncertainty include: (i) non-deterministic, potentially stochastic behavior of the
true system - referred to as aleatory uncertainty and (ii) lack of knowledge about
the true system, its mathematical representation, and specific parameter values -
referred to as epistemic uncertainty (Parry 1996; Walker et al. 2003; Refsgaard
et al. 2007). In environmental modeling, epistemic uncertainty is often dominant
(Ayyub and Klir 2006). Recognizing and quantifying both types of uncertainty is
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important because it allows modelers to e↵ectively allocate their resources toward
model improvement and allows decision-makers to assess the degree of confidence
they can have in model predictions (Warmink et al. 2010).

Probability theory has long been the well-accepted mathematical framework
for describing aleatory uncertainty. However, Keynes (1921), de Finetti (1931),
Ramsey (1931), Cox (1946) and others have shown by the so-called Dutch Book
argument that probability theory is also appropriate for describing epistemic uncer-
tainty: when an individual’s state of knowledge is quantified using stated preferences
between lotteries (with the requirement that such preferences be consistent in the
sense of avoiding sure loss), then the resulting knowledge quantifications adhere
to the laws of probability. Additionally, since aleatory uncertainty becomes epis-
temic uncertainty once a random event has taken place and if its outcome is not yet
observed, describing both kinds of uncertainty within the same mathematical frame-
work avoids problems of inconsistency between mathematical formalisms. This is
consistent with the viewpoint that Bayesian statistics is the logical framework for
inference and prediction (de Finetti 1974; Howson and Urbach 1989; Seidenfeld et al.
1995; Kadane and O’Hagan 1995; Kadane et al. 1996).

Of course, in most cases, a modeler will not be entirely familiar with the current
state of knowledge or opinion regarding the relevant uncertainties and so may seek
outside expertise (Pollino et al. 2007; Reichert et al. 2007). The formal approach
to obtaining expertise about an uncertain quantity within probability theory is re-
ferred to as probability elicitation, and a variety of pertinent approaches, guidelines,
and cautions have been published (e.g., Meyer and Booker (1991), O’Hagan et al.
(2006), James et al. (2010), and see also section 3.2 for further references). In the
case of models being used to inform public decisions, a modeler might be interested in
representing intersubjective knowledge, rather than the beliefs of individual experts.
Intersubjective knowledge in such a context represents the current state of knowl-
edge of the scientific community about an environmental system, its mathematical
description, or specific parameter values. Arguments in favor of a mathematical
formalism, such as probability theory, to represent both aleatory and epistemic un-
certainty are even further strengthened in the case of intersubjective knowledge
representation because of the need to maintain consistency and transparency. Note
that the importance of an intersubjective interpretation of probabilities to describe
scientific reasoning has already been discussed by Gillies (1991).

As outlined in the previous paragraph, there are convincing arguments for for-
mulating epistemic, subjective and, especially, intersubjective knowledge by prob-
abilities. However, inaccuracies in elicitation procedures, misrepresentation of elic-
itation results, problems in expressing an individual’s beliefs quantitatively, di↵er-
ent perception of information by di↵erent individuals, or disagreement between ex-
perts can all lead to uncertainty about the probabilistic quantification of knowledge



38 CHAPTER 3. BRIDGING UNCERTAINTY AND AMBIGUITY

(O’Hagan and Oakley 2004). This type of uncertainty has been referred to as am-
biguity (Ellsberg 1961; Frisch and Baron 1988). In particular, it has been discussed
in decision sciences where ambiguity aversion (aversion to unknown probabilities) is
distinguished from risk aversion (aversion to uncertainty that can be quantified prob-
abilistically) (Einhorn and Hogarth 1985; Camerer and Weber 1992). As ambiguity
is a di↵erent aspect of uncertainty than probabilistically quantified uncertainty, we
are interested to identify, describe, and seek to reduce this particular form of un-
certainty regardless of how much additional uncertainty may be embedded in the
elicited probabilities themselves.

One method for separating ambiguity in the choice of a probability specification
from the uncertainty contained within the specification itself is to replace the stan-
dard single probability distribution with a set of distributions. This is an extension
of conventional probability theory and the literature broadly refers to it as imprecise
probability theory (Walley 1991; Caselton and Luo 1992, http://www.sipta.org). In
the context of imprecise probability theory, conventional Bayesian statistics extend
to what is called robust Bayesian statistics (Ŕıos Insua and Ruggeri 2000; Berger
1994). Depending on the degree of ambiguity, a set of probability distributions
can contain a large variety of shapes or can simply contain those shapes in a small
neighborhood of a particular distribution. Multiple approaches, or classes, have been
proposed to define membership in such sets (see references in section 3.2), and we
believe it would be useful to have some standard metrics for describing the relative
ambiguity contained in any particular set, independent of the approach taken to set
specification.

In this paper, we propose metrics to describe the relative ambiguity contained
in a set of distributions defined according to imprecise probability theory, and we
apply these metrics to demonstrate the wide variety of ambiguity present across
di↵erent application cases. The paper is structured as follows. In section 3.2, we
briefly discuss probability elicitation and the relative merits of various classes of
imprecise probabilities. In section 3.3, we introduce some general metrics to quantify
the degree of relative ambiguity in any such class. In section 3.4, we implement these
metrics for a particular class that we have found most useful, the Density Ratio Class.
In section 3.5, we demonstrate the use of our metrics using elicitation data from the
literature. We present three cases of di↵ering degree of ambiguity in order to show
the wide range present in actual elicitation results. In section 3.6, we discuss (1) our
metrics of ambiguity relative to others, (2) the merits of using imprecise probabilities,
relative to second-order probabilities and (3) some implications of using imprecise
probabilities for environmental decision support. Finally, in section 3.7 we draw our
conclusions. In the section Software Availability, we present our elicitation software
written in R that is applicable to the Density Ratio Class.

http://www.sipta.org/
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3.2 Elicitation

A common technique for eliciting a probability distribution from an expert for a
continuous quantity is to employ the quantile method. According to this method,
the analyst provides a number of cumulative probabilities (e.g., 0.05, 0.25, 0.5, 0.75,
0.95) and the expert then estimates the corresponding quantiles of the uncertain
quantity. This procedure, first suggested by Winkler (1967), minimizes anchoring
and other biases that may be inherent in the “cumulative probability method”, in
which the modeler provides values of the uncertain quantity and the expert estimates
the corresponding cumulative probabilities.

We and others (e.g. Borsuk et al. (2002), Kriegler et al. (2009)) have found
that, whether the quantile or probability elicitation method is used, experts typically
feel more comfortable if they are allowed to express their assessments as intervals.
We take this as an indication that they cannot make probability judgments with
absolute precision, and we have usually recorded the intervals as stated. However,
using established techniques of summarizing expert elicitation results, we have then
generally proceeded by choosing a precise probability distribution to represent the
elicited data, ignoring the intervals (and the lack of fit to any individual data) ex-
cept to check that the chosen distribution generally “passes approximately through”
the data. But in cases as shown in our third example (see section 3.5.3) it seems
important to consider the high uncertainty about probabilities explicitly (Einhorn
and Hogarth 1985; Camerer and Weber 1992).

A natural way to use the intervals stated by an expert would be to interpret
them as upper and lower bounds on the scope of their beliefs about the quantiles or
cumulative probabilities being elicited. For example, Ferson and Hajagos (2004) take
stated intervals to define the edges of a p-box presumed to contain a feasible set of
cumulative distributions. This leads to a very broad set, including distributions with
sharp peaks or point masses in their probability density functions. Destercke et al.
(2008) further generalized the usual p-boxes. Alternative approaches to defining set
membership include the ✏-Contamination Class (Huber 1973), the Quantile Class
(Lavine 1991a; Moreno and Pericchi 1993b), the Density Bounded Class (Lavine
1991b), and the Density Ratio Class (DeRobertis and Hartigan 1981; Berger 1990).
Berger (1994) gives an overview of these classes, and Borsuk and Tomassini (2005)
and Rinderknecht et al. (2011) discuss their relative merits in the context of environ-
mental modeling. Although there are di↵erences in their particular mathematical
description, in theory any of these approaches to defining imprecise probabilities
might be used to capture ambiguity in elicited distributions. We, therefore, next
propose some general metrics for describing the relative ambiguity, or imprecision,
of important attributes of an imprecise distribution that results from any particular
set definition.
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3.3 Metrics of Imprecision

There seem to be at least three important attributes of probability distributions
for which we would be interested to quantify the ambiguity or imprecision: (i)
the width of the distribution, (ii) the shape of the distribution within its range,
and (iii) the position of the mode. We need metrics of ambiguity or imprecision
about these attributes that are independent of the particular definition used to
define the imprecise probability class. The focus on imprecision in specific attributes
complements more general measures of imprecision of the whole distribution (Klir
and Wierman 1998) that may be more di�cult to interpret.

We develop metrics of imprecision that are expressed relative to a specified
reference range (e.g., a credible interval) on the uncertain quantity in order to make
the metrics comparable across di↵erent applications and to emphasize how much
information is being added relative to a simple interval. It is important to note that
high relative imprecision may be less practically important if overall uncertainty, as
expressed by the reference range, is narrow.

3.3.1 Imprecision About the Width of a Variable

The width of an uncertain variable is typically characterized by a 1 � ↵ credible
interval which is denoted by I

1�↵ and defined as an interval that contains the value
of the variable with a probability of 1 � ↵. Typically, the significance level ↵ is
chosen to be 10%, 5%, or 1%. For a one-dimensional random variable ⇥, such
a credible interval is usually defined as being bounded by the ↵/2 and 1 � ↵/2
quantiles of the probability distribution of this random variable and hence one writes
I

1�↵ =
⇥

Q

↵/2

[⇥], Q
1�↵/2

[⇥]
⇤

. However, our metrics could easily be adapted relative
to any other definition of credible interval, i.e., the highest probability density region
of content 1� ↵.

If knowledge about ⇥ is characterized by a set of probability distributions, we
can determine the outer bounds on the 1� ↵ credible interval as

(3.1) I

1�↵[⇥] =
⇥

Q

↵/2

[⇥], Q
1�↵/2

[⇥]
⇤

where Q

p

[⇥] is the value, ✓, at which P (⇥  ✓) = p and Q

p

[⇥] is the value,

✓, at which P (⇥  ✓) = p. In these last expressions, P (.) is the supremum of
the probabilities of the statement in its argument over the distributions belonging
to the class, and P (.) is the infimum. In other words, we always have Q

p

1

[⇥] 
Q

p

2

[⇥] for p

1

 p

2

and I

1�↵[⇥] contains all 1 � ↵ credible intervals defined by
⇥

Q

↵/2

[⇥], Q
1�↵/2

[⇥]
⇤

within the set definition employed.
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We can define a relative measure of imprecision, r

width

1�↵ , on this interval by
dividing the average width of the imprecise interval for each of the two endpoints
by the length between the outer bounds on the credible interval given above:

(3.2) r

width

1�↵ [⇥] =

�

Q

↵/2

[⇥]�Q

↵/2

[⇥]
�

+
�

Q

1�↵/2

[⇥]�Q

1�↵/2

[⇥]
�

2
�

Q

1�↵/2

[⇥]�Q

↵/2

[⇥]
�

This relative measure of imprecision is zero for precise probability distributions and
can reach values close to unity in cases of extreme imprecision such as e.g. no
further knowledge than the random variable’s range. However, even in cases of
extreme imprecision, Q

↵/2

[⇥] and Q

1�↵/2

[⇥] are conservative (inclusive) estimates

of the range of the variable at the probability level 1� ↵.

3.3.2 Imprecision About the Distribution of the Variable
within its Range

Imprecision of a particular quantile at cumulative probability p can be characterized
by the length of the quantile interval characterizing the imprecision in that quantile:
Q

p

[⇥] � Q

p

[⇥]. Dividing the supremum of these imprecise quantile intervals (for

all p between ↵ and 1 � ↵) by the length between the outer bounds of the 1 � ↵

credible interval (see equation 3.1) leads to a non-dimensional relative measure of
imprecision, r

shape

1�↵ , about the distribution of ⇥ within this interval:

(3.3) r

shape

1�↵ [⇥] =
sup

↵/2p1�↵/2
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Again, if the shape of the distribution is precisely known, then r

shape

1�↵ [⇥] is zero,

whereas in the case of extremely imprecise distributions, r

shape

1�↵ [⇥] is close to unity.

3.3.3 Imprecision About the Mode of the Variable

Imprecision of a particular characteristic, such as the mode, can be characterized
by the length of the interval, I

mode

=
⇥

✓

m

, ✓

m

⇤

⇢ ⇥ considered to include that
characteristic. Expressed relative to the length of I

1�↵ we obtain the following
non-dimensional measure:

(3.4) r

mode

1�↵ [⇥] =
✓

m

� ✓

m

Q

1�↵/2

[⇥]�Q

↵/2

[⇥]
.

This measure is zero if the mode is precisely known and for typical shapes and small
values of ↵ it is below unity.
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3.4 Implementation for the Density Ratio Class

As already mentioned, a variety of imprecise probability classes have been proposed.
Rinderknecht et al. (2011) discuss the relative merits of the di↵erent classes and
conclude that the Density Ratio Class has clear conceptual and practical advan-
tages. In particular, the Density Ratio Class ’s invariance under Bayesian updating
and marginalization (Wasserman 1992a) makes it the unique class that allows for
simultaneously describing a consistent sequential Bayesian learning process and con-
veniently conveying higher dimensional cases. A Density Ratio Class can contain
a wide variety of not necessarily parametric shapes, including varied tail behav-
ior. Sharp peaks and points masses that are likely to be considered unreasonable
by an expert are typically excluded, which is a rather desirable feature for most
environmental modeling applications. When parameters are described by Density
Ratio Classes, then probabilistic predictions of even non-deterministic models can
be calculated without a large increase of computational burden.

The main disadvantage of the Density Ratio Class has been its elicitation.
However, Rinderknecht et al. (2011) suggest a practicable elicitation procedure for
the Density Ratio Class to overcome most di�culties. After giving the definition of
the Density Ratio Class, we briefly review this elicitation procedure. We then state
special cases of our metrics for the Density Ratio Class.

3.4.1 Definition of the Density Ratio Class

The Density Ratio Class of normalized probability density functions (PDFs), f , is
defined as the set

(3.5) �DR

fl,fu
= {PDFs f(✓) : 9c : f

l

(✓, 
l

)  cf(✓)  f

u

(✓, 
u

)  1 8✓}

where the bounding normalized densities, f

l

and f

u

(parameterized by  

l

and  

u

)
describe the lower and upper shapes of the class. The factor  obeys the following
inequality: 1  sup

✓

{f
l

/f

u

}   < 1 and can be used as a direct characterization
of class imprecision for given f

l

and f

u

. Put simply, a Density Ratio Class, �DR

l,u

, can
be interpreted as a set of measures with unnormalized densities between specified
unnormalized lower and upper bounds l  u. The set of probability densities is
then obtained by normalizing these measures. Thus, the lower and upper bounds
limit the shapes of allowable densities irrespective of their normalization. Note,
by the definition of the Density Ratio Class it follows that �DR

l,u

= �DR

�l,�u

for any
0 < � < 1. Historically, DeRobertis and Hartigan (1981) introduced the Density
Ratio Class under the name of intervals of measures whereas Berger (1990) called
the class the Density Ratio Class, as it bounds ratios of densities.
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3.4.2 Elicitation of the Density Ratio Class

Our elicitation concept for the Density Ratio Classes (Rinderknecht et al. 2011)
can be summarized by three steps:

1. The analyst provides n cumulative probabilities and the expert states his or her
beliefs by giving corresponding quantile intervals for each probability. The re-
sult of this step is a discrete set of endpoints of n quantile intervals, {p

i

, ✓

i

}2n

i=1

.

2. Possible parametric families of distributions for the normalized lower, f

l

(✓, 
l

),
and the normalized upper, f

u

(✓, 
u

), densities defining the shapes of the unnor-
malized densities bounding the Density Ratio Class are discussed, evaluated
and selected.

3. The smallest Density Ratio Class bounded by the specified parametric shapes
and containing the elicited quantile intervals is constructed by choosing the
parameters ( 

l

, 

u

) to minimize .

Sometimes it is useful if the analyst transforms the parameter ✓ before apply-
ing the method described above. In this case, the analyst ideally shows the expert a
larger set of possible shapes that include the transformation. This does not change
the procedure specified above. Alternatively, if the expert is familiar with trans-
forming probability distributions, the expert may suggest a transformation and a
parametric distribution for the transformed variable in step 2. (It is important to
note that the value of  is independent of invertible ✓-transformations.) A feed-
back session would then indicate whether the expert agrees with the result. This
approach is exemplified in our example 3.

3.4.3 Metrics of Imprecision Applied to the Density Ratio
Class

The metrics proposed to quantify relative imprecision in important characteristics
of the distributions in section 3.3 can be calculated for any type of imprecise prob-
abilities representable by a set of probability densities. In this section, we derive
specific formulas for calculating these metrics for the Density Ratio Class.

In a Density Ratio Class, �DR

l,u

, where l = f

l

and u = f

u

, the pointwise lower

and upper cumulative probabilities P (⇥ < ✓), F

l,u

(✓) and F

l,u

(✓), respectively,
describing together the envelope of all possible cumulative distributions within the
class, are given by

(3.6) F

fl,fu
(✓) =

F

l

(✓)

F

l

(✓) + (1� F

u

(✓))
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and

(3.7) F

fl,fu(✓) =
F

u

(✓)

F

u

(✓) + (1� F

l

(✓))

where F

l

and F

u

denote the cumulative distribution functions of the normalized
lower and upper densities, f

l

and f

u

, respectively (Rinderknecht et al. 2011).

It is then straightforward to derive the formula for the credible interval pre-
sented in equation (3.1) for a Density Ratio Class :

(3.8) I

DRC

1�↵ [⇥] =
⇥

F

�1
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(↵/2), F�1

fl,fu
(1� ↵/2)

⇤

.

The first metric introduced in equation (3.2) is then given by:
(3.9)
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Similarly, for equation (3.3) we obtain:
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Finally, imprecision in the mode according to equation (3.4) can be written as:

(3.11) r

mode,DRC

1�↵ [⇥] =
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where M

l

= f

l

(mode
l

) and f

�1

l

and f

�1

u

denote the set-valued inverse lower and
upper normalized distributions respectively with f

�1

.

(d) = {✓ 2 ⇥ : f

.

(✓) = d}.

3.5 Examples

3.5.1 Largely uncertainty: Date of maximum periphyton
biomass in a riverine ecosystem model

Schweizer (2007) developed a deterministic model with a stochastic error for river
periphyton biomass recovery after a flood. In reduced form, this model can be
expressed as

(3.12) B

�t

flood

(x, ✓) = b

�t

flood

(x, ✓) + Z(✓),
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where b

�t

flood

(x, ✓) is the deterministically modeled biomass of periphyton, consist-
ing multiplicatively of a Monod function, m(x, ✓), limiting terms, l(x, ✓), and a
seasonality term, s(x, ✓). Here, we focus on the model parameter describing the
Julian day within the year at which the potential biomass is greatest, t

max

jul

. It is
used in the seasonality term, s(x, ✓). From the literature, we know that the sea-
sonal e↵ect on periphyton for systems without other disturbance factors, such as
hydrodynamics or grazing, is mainly driven by the seasonal variation of light and
temperature (Biggs and Stokseth 1996). For the Swiss rivers originally represented
by this model, the temperature maximum occurs at approximately Julian day 170
and the light maximum at Julian day 210 (at locations where shading by riparian
vegetation is negligible). Our expert expects the maximum potential biomass to
occur slightly after the maximum of light and temperature and estimated precise
quantiles for standard cumulative probabilities. Therefore, any ambiguity is only
the result of mismatches between the elicited values and the fitted distribution. The
Density Ratio Class fit to the expert’s estimates based on beta distributions in the
interval [0, 365.25] as bounding densities is shown in Figure 3.1.

3.5.2 Both uncertainty and ambiguity: Sensitivity of a clam
species to low oxygen in an estuarine eutrophication
model

Borsuk et al. (2002) constructed a model for the times-to-death of a clam species as
a function of dissolved oxygen concentration in an estuary. Points on the cumulative
distribution function of times-to-death for four di↵erent oxygen concentrations were
elicited from two experts jointly. Because of either minor disagreement between the
experts or shared imprecision, for many of the elicited quantiles the experts stated
intervals rather than points. These intervals were recorded, but not used, in the
original study. Rather, Borsuk et al. used the midpoints of the intervals to fit
precise distributions for each oxygen concentration.

Rinderknecht et al. (2011) fit a Density Ratio Class to the data of Borsuk et al.
(2002) using the technique described in section 3.4.2. After a log-transformation, a
combination of the Normal density for l and the t

3

density for u provided the best
fit, as measured by the lowest average value of  across the four dissolved oxygen
concentrations. Figure 3.2 shows the results for the lowest dissolved oxygen value.
The ambiguity in this case is the result of both the fit of the distribution as well as
the ambiguity contained in the experts’ judgments themselves.
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Figure 3.1: Density Ratio Class, �DR

fl,fu
for the parameter t

max

jul

[Julian day]. Cumula-
tive probabilities are: p = (0.05, 0.25, 0.5, 0.75, 0.95); lower quantile points coincide
with upper quantile points: q

min

= q

max

= (80, 145, 200, 240, 280). Left panel: quan-
tile intervals with curves following equations (3.6) and (3.7). Right panel: Density
Ratio Class densities normalized l = f

l

and unnormalized u = f

u

defining the
class, where  = 1.20, f

l

: Beta(4.95, 4.52), f

u

: Beta(3.58, 3.21) with the ranges
[L, U ] = [0, 365.25].
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Figure 3.2: A Density Ratio Class was fitted to the logarithm of assessed quantile
intervals, q

min

= ln(1, 2, 4, 6, 10) and q

max

= ln(2, 3, 5, 9, 14), on the number of days
corresponding to each specified cumulative mortality p = (0.05, 0.25, 0.50, 0.75, 0.95)
and ambient dissolved oxygen concentration according to Borsuk et al. 2002. In this
case a Normal density was used for l and a Student t density with three degrees of
freedom was used for u. The factor  = 1.56 and the distributional parameters are
N

l

(µ
l

= 1.50,�
l

= 0.54), Student-t
u

(µ
u

= 1.44,�
u

= 1.31). In a second step, the
Density Ratio Class was back transformed to the natural metric (days) resulting
in the following distributional characteristics: the lower distribution has a mean of
µ

l

= 5.21 days and a standard deviation of �
l

= 3.03 days, the upper distribution
has a mean of µ

u

= 9.09 days and a standard deviation of �
u

= 23.3 days. Note
that this transformation does not a↵ect the value of . Left and right panels can be
interpreted as in Figure 3.1.
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3.5.3 Largely ambiguity: Economic damages caused by cli-
mate change

Nordhaus’ (1994) survey of experts regarding the economic damages of climate
change has frequently been used to parameterize the uncertainty of damages in
integrated assessment models. However, to our knowledge, all past uses of the data
have ignored the inherent ambiguity represented by experts’ di↵ering beliefs and by
the fact that the survey did not elicit a specific probability distribution.

The elicited damages in the Nordhaus (1994) survey are in the form of loss
of global economic output. Experts were asked to consider the uncertainty for two
warming scenarios by providing estimates of the 10th, 50th, and 90th percentiles of
the cumulative distribution of damages.

We used the data from the 6�C scenario to produce a Density Ratio Class. To
protect against highly anomalous experts, the 5th and 95th percentiles of elicited
values at each point in the cumulative distribution were used as absolute lower and
upper bounds.

Since the data are very coarse (the quantile intervals largely overlap) we trans-
formed ✓ according to tr(✓) = �(a/b

2)exp(�b✓) + c✓ + (a/b

2), where a, b, c and the
parameters for a lower and upper Gaussian distribution were estimated to minimize
. The results are given in Figure 3.3. This example largely demonstrates the role
of disagreement in generating ambiguity about intersubjective knowledge.

3.5.4 Comparison of Examples

Our three examples di↵er in the amount of ambiguity present in the elicited data.
The values of  can be used as a direct measure of imprecision for the Density Ratio
Classes fit to the data. These numerically confirm what can be inferred graphically:
the set constructed for example 3 is much less precise than those constructed for the
other two examples (Table 1).

Unfortunately, the interpretation of  is unique to the Density Ratio Class,
and its value does not provide any detail concerning the ambiguity in specific at-
tributes of the distribution. The metrics we propose give additional insight. For
example, we can see that the imprecision about the width of the elicited variable
is quite small for example 1 and is comparably large for examples 2 and 3. This is
because of the general disagreement between the experts elicited for example 3 and
the large di↵erence in tail behavior between the upper and lower bounding densities
for example 2. A similar conclusion can be drawn for imprecision about the dis-
tribution of the variable within its range; the set constructed for example 1 is the
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Figure 3.3: The variable ✓ was transformed according to tr(✓) = �(a/b

2)exp(�b✓)+
c✓ + (a/b

2) to minimize  of the fitted Density Ratio Class �
Nl,Nu for given cu-

mulative probabilities, p = (0.1, 0.5, 0.9), lower elicited quantile points, q

min

=
(�0.6, 1.0, 4.7), and upper elicited quantile points, q

max

= (11.5, 34.8, 68.1). The
numerical best estimates for the transformation and distributional parameters are:
a = 10.2, b = 0.67, c = 8.76, N

l

(µ
l

= 115.8, �
l

= 220.3), N

u

(µ
u

= 72.7, �
u

=
249.7). This gives a factor  = 13.12. The plot shows the back transformed Density
Ratio Class with the following distributional characteristics: the lower distribution
has a mean of µ

l

= 15.4% GDP and a standard deviation of �
l

= 18.8% GDP, the
upper distribution has a mean of µ

u

= 13.3% GDP and a standard deviation of
�

u

= 19.4% GDP. Left and right panels can be interpreted as in Figures 3.1 and 3.2.
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Table 3.1: Summary of metrics for the three examples (↵ = 0.05).

Example  r

width,DRC

1�↵ r

shape,DRC

1�↵ r

mode,DRC

1�↵

1 1.20 0.08 0.09 0.02
2 1.56 0.43 0.84 0.03
3 13.12 0.35 0.77 0.47

most tightly constrained, while the set constructed for example 2 is less precise than
the one for example 3. This is because the imprecision of example 2 is largely in
the tails, rather than the center, of the distribution. Regarding the mode, however,
the variable of example 1 is the most precisely defined, while example 3 remains the
most imprecise. Clearly, di↵erent metrics give complementary information.

3.6 Discussion

We see three issues that require further discussion: (1) a comparison of our metrics of
ambiguity relative to others that have been proposed in the literature, (2) the merits
of using imprecise probabilities to describe ambiguity in elicitation results, relative
to (precise) first and second-order probabilities or fuzzy distributions, and (3) the
implications of using imprecise probabilities for environmental decision support. The
third point will exemplify the bridging function we see imprecise probabilities serving
between ambiguous and uncertain knowledge.

A variety of overall uncertainty measures have been described in the literature
under the broad concepts of probability theory, classical set theory, fuzzy set theory,
possibility theory and evidence theory (Klir and Wierman 1998). One may specify,
for example, lower and upper bounds of a (di↵erential) entropy by extending the
concept of Shannon’s entropy (Shannon 1948) to imprecise probabilities. Alterna-
tively, one may calculate a metric deriving from Dempster-Shafer theory (Shafer
1976), such as the Shafer continuous belief function. Finally, for a Density Ratio
Class specifically, the ratio between the surfaces of the upper and lower densities,
 =

R

u(✓)d✓/
R

l(✓)d✓, can serve as a reasonable overall measure of uncertainty.
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Of course, the selection of a general metric depends on the underlying concept, the
final purpose, and the particular case.

Such general measures as those mentioned above are characteristically not
informative with regard to specific attributes of distributions (e.g., the mode). Our
metrics, in contrast, while applicable to any imprecise probability class are attribute-
specific: they characterize the degree of ambiguity in the width, the shape or the
mode relative to a particular credibility interval. The dependence on a credibility
level is hard to avoid since it acts as a reference for the distributional characteristics.
However, from an analyst’s perspective, this may be seen as a strength, as one can
investigate how ambiguity changes with di↵ering credibility levels.

Since our proposed metrics apply to all imprecise probability classes, di↵erent
classes that are obtained on the basis of the same elicited data can be compared
with regard to the three attributes: width, shape and mode. The most appropriate
class can then be chosen according to the specific attribute of concern. Further,
one could attempt to find the class that minimizes a chosen metric, while still being
compatible with the elicited data. Finally, our attribute-specific metrics allow for
deeper insight and a more specific description of the ambiguity represented by an
imprecise probability class than a more general metric, as shown by the examples.

If, as we argued, it is reasonable to describe uncertain knowledge by probability
distributions, then it also seems natural to describe uncertainty about the parame-
ters of such distributions again by probability distributions. This leads to so-called
second-order probabilities or hierarchical probability models (Draper 1995). How-
ever, having in mind that second-order uncertainty results e.g. from the problem
that an expert has to express her or his beliefs precisely in the form of a probability
distribution, it does not seem realistic that the knowledge about the second-order
distribution (which is an even more abstract concept) can then be expressed pre-
cisely. Of course, imprecise probability distributions based on interval cumulative
probabilities or quantiles also have this problem since the bounds of the intervals
will not be known precisely (Howson and Urbach 1989). However, at least they allow
for a wide variety of distributional shapes, and the bounds can be chosen to be on
the cautious side in order to analyze the robustness of results to these distributions.
O’Hagan (2012) warns that set-based robustness methods may be overcautious by
not allowing the expert to distinguish between more or less likely members of the
set. We believe that this is a particular concern for liberal set definitions such as
p-boxes (Ferson and Hajagos 2004). However, when extreme density functions are
excluded using parametric families to define bounds on a Density Ratio Class, ambi-
guity can be represented without necessarily being overcautious (see Rinderknecht
et al. (2011) for more discussion of this point). Possibility theory (Zadeh 1978)
based on fuzzy sets (Zadeh 1965) is an alternative approach to address the issue of
describing uncertain knowledge (see e.g. Page et al. (2012). We prefer to use the
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probabilistic framework, extended to imprecision, because of its axiomatic founda-
tion, the consistent formulation of conditional beliefs (which are very important e.g.
for scenario analyses), and its compatibility with aleatory uncertainty as outlined in
the introduction.

A decision-maker who wants to follow basic axioms of rationality should ac-
count for uncertainty by choosing the action that maximizes his or her expected
utility. This requires assessment of probability distributions for the outcomes of all
decision alternatives (Von Neumann and Morgenstern 1944; Savage 1954). When
using imprecise rather than precise probability distributions, intervals of expected
utilities are obtained instead of point values. For overlapping intervals, there exists
no established decision rule to select the most appropriate decision alternative. The
size of expected utility intervals depends on: (i) the degree of ambiguity in uncertain
quantities and on (ii) the sensitivity of model predictions to these quantities. If the
ambiguity and/or sensitivity are small, we may still get non-overlapping expected
utility intervals that allow for a unique ranking of decision alternatives. However,
in the case of high ambiguity and/or sensitivity, overlapping intervals indicate that
there is not su�cient quantitative knowledge available to reach a decision among the
considered alternatives. In this way, the quantification of ambiguity by imprecise
probabilities makes it possible to bridge between decidable and non-decidable deci-
sion situations based on expected utility theory. In such situations decisions may rely
on other principles such as the precautionary principle or reversibility of outcomes.
This is in contrast to first or second-order probabilities which imply that there is
always su�cient knowledge to obtain a unique ranking of decision alternatives.

3.7 Conclusion

Imprecise probabilities allow us to characterize the degree of ambiguity in proba-
bility distributions elicited from subject matter experts. Because of the variety of
approaches taken to specifying imprecise probabilities, some generic metrics appli-
cable to all approaches are required. Besides overall measures of imprecision of a
class of distributions, we are interested in the imprecision of specific attributes of
the class. In particular, important attributes are the width, shape and position of
the mode of distributions. We propose three corresponding metrics and formulate
them more specifically for the Density Ratio Class.

In previous analyses, we have found that the size of a Density Ratio Class
constructed from elicitation data is determined primarily by three aspects: (i) the
choice of parametric shapes selected for the bounding non-normalized densities, l

and u, (ii) the scatter of the elicited data relative to the parametric shape(s), and
(iii) the explicit imprecision, as specified by the expert(s) using quantile or cumu-
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lative probability intervals or by accounting for the disagreement across multiple
experts. Our examples demonstrate all three of these contributions. The examples
also show that, depending on the application, ambiguity can be rather small or very
large. This indicates that its separate representation from uncertainty may be use-
ful, in particular when used in decision support to analyze whether it may a↵ect the
generation of a unique expected utility ranking.

Information on the imprecision of probability distributions constructed by ex-
pert elicitation can be useful for a variety of purposes. For example, the degree
of ambiguity or disagreement in intersubjective knowledge can be quantified. The
modeler can then use this information to decide how much e↵ort to expend on a
more careful or extensive elicitation process. Alternatively, a di↵erent, or more re-
fined, decomposition of variables might be considered to improve precision. Finally,
even when imprecision cannot be practicably reduced, it is valuable to assess the
implication for final results by propagating imprecision through the model. We
are currently working on establishing methods of propagation for the Density Ratio
Class.

Software Availability

The example results in section 3.5 were generated using our recently implemented
software package for R (Ihaka and Gentleman 1996) that is able to calculate the
Density Ratio Class for given quantile intervals according to the method described
in section 3.4.2 (Rinderknecht, Borsuk, and Reichert 2011). Possible lower and upper
densities are the Gaussian, Student-t, Logistic, Gamma, Weibull, F, Beta, Uniform,
Log-Normal, Log-Student-t and the Log-Logistic. Additionally, two transformations
for the variable ✓ are implemented: a simple logarithmic transformation, tr

1

(✓) =
log(✓), and a general transformation of the form: tr

2

(✓) = �(a/b

2)exp(�b✓) + c✓ +
(a/b

2) with a > 0, b > 0 and c � 0. This transformation has the following qualities:
tr

2

(0) = 0, tr

0
2

(✓) > 0 and tr

00
2

(✓) < 0 8✓ 2 ⇥ where tr

00
2

(✓) drops to zero as ✓ !1.
These two transformations allow the analyst to find a possibly better fit of the
Density Ratio Class to given quantile intervals using the implemented densities.
Templates from the example sections can be used to implement distributions and
transformations that are not implemented in the standard package. The R package is
freely downloadable at http://cran.r-project.org/ subject to the terms of agreement.

http://cran.r-project.org/
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Abstract

Prior probability distributions needed for Bayesian model analysis can rarely be
formulated precisely based on existing knowledge. The concept of imprecise proba-
bilities is an attempt to characterize this ambiguity in prior beliefs and the e↵ect on
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model parameter inference and prediction. We elaborate on the Density Ratio Class
of probability measures, which has important conceptual advantages over alternative
classes for describing imprecise knowledge about continuous model quantities. In
particular, we show that, under weak regularity conditions, the Density Ratio Class
is invariant under (i) Bayesian inference, (ii) marginalization, and (iii) propagation
through deterministic models. We also show that (iv) predictions of a stochastic
model with parameters defined by a Density Ratio Class are naturally embedded in
a Density Ratio Class. These invariance properties are desirable because they allow
the process of sequential Bayesian learning and prediction with imprecise probabil-
ities to proceed within a unified framework. They also minimize the computational
burden of numerical implementation relative to using precise probabilities. Concepts
and numerical methods are exemplified by application to a simple empirical ecolog-
ical model. This example reveals the care required to select the model quantities
bearing a measure of ambiguity, as there is the potential, in some cases, for model
predictions to become ine↵ectually imprecise.

Keywords

intersubjective knowledge; interval probabilities; imprecise probabilities; robust Bayes-
ian analysis; Density Ratio Class; Bayesian inference, marginalization and predic-
tion.

4.1 Introduction

Bayesian statistical inference o↵ers a mathematical framework to describe a learning
process by combining prior knowledge with new data (Box and Tiao 1973; de Finetti
1974; Howson and Urbach 1989; Gelman et al. 2003). In this framework, prior
knowledge is typically formulated with a precise probability distribution to describe
the subjective belief of either an individual expert or the joint belief of several experts
about the value of a specified variable or model parameter. In practice such belief
statements are often ambiguous (Einhorn and Hogarth 1985; Camerer and Weber
1992). This is particularly the case if intersubjective belief is being expressed that
is intended to represent the current state of knowledge of the scientific community
(Gillies 1991; Rinderknecht et al. 2012). One way to take this ambiguity into account
is to replace a single prior probability distribution by a set of distributions that spans
the range of appropriate distributions. Many specifications of such sets of probability
distributions over continuous variables, so-called classes of distributions or imprecise
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probabilities, have been proposed (Ŕıos Insua and Ruggeri 2000; Walley 1991; Berger
1994; Caselton and Luo 1992; Ŕıos Insua and Ruggeri 2000, http://www.sipta.org).

Despite this theoretical development, the concept of imprecise probabilities,
which leads to a robustification of probability statements, is still very rarely ap-
plied. A reason for this may be that it is felt to be too di�cult to implement.
Di�culties could occur during elicitation, when updating priors with data, or when
propagating imprecise distributions through models. To overcome the first of these
potential di�culties, we developed an elicitation technique for the Density Ratio
Class, which we believe to be the most satisfying class of probability distributions
from a conceptual point of view (Rinderknecht et al. 2011). This technique was then
applied to several case studies, to demonstrate that a wide range of ambiguity can
occur in practical applications (Rinderknecht et al. 2012). Finally, in the present
paper, we address the remaining potential obstacles by showing how Bayesian in-
ference, marginalization, and model propagation with Density Ratio Class priors
works and how it can be easily implemented numerically. The ease of these imple-
mentations relies on the resourceful definition of the Density Ratio Class.

The paper is structured as follows. Section 4.2 is dedicated to methodological
development. Subsection 4.2.1 briefly reviews the Density Ratio Class. Next, we
show in Subsection 4.2.2 how the Density Ratio Class can be used for Bayesian in-
ference, in Subsection 4.2.3 how it can be marginalized, and in Subsection 4.2.4 how
it can be propagated through a model to quantify prediction uncertainty. Section
4.3 discusses the numerical implementation of these tasks. In Section 4.4 we demon-
strate the suitability of the approach through application to a simple empirical river
periphyton model. Finally we draw our conclusions in Section 4.5.

4.2 Methods

4.2.1 Formulation of Imprecise Prior Knowledge as a Den-
sity Ratio Class

DeRobertis and Hartigan (1981) introduced the Density Ratio Class under the name
of Intervals of Measures, whereas Berger (1990) later called the class the Density
Ratio Class. Wasserman (1992a) asserted that, under mild regularity conditions, it
is the only probability class to be invariant under Bayesian updating and marginal-
ization. Update invariance is an important property, as it allows for the represen-
tation of sequential learning within a common framework. This gives an important
advantage to the Density Ratio Class relative to other representations of imprecise

http://www.sipta.org/
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probabilities. The Density Ratio Class also has the ability to accommodate a variety
of density function shapes, while limiting ‘unreasonable’ shapes, such as sharp peaks
or point masses that might not be deemed reasonable by an expert (Rinderknecht
et al. 2011) (depending on the size of the class, weak or even strong oscillations are
still possible).

For uncertain continuous parameters ✓ 2 M ⇢ Rn, the Density Ratio Class
with lower bound l � 0 and upper bound u � l is defined as the set of probability
density functions

(4.1) �DR

l,u

:=

⇢

f̂(✓) =
f(✓)

R

f(✓0) d✓

0

�

�

�

�

l(✓)  f(✓)  u(✓) 8✓

�

,

where we assume that 0 <

R

l(✓) d✓ 
R

u(✓) d✓ < 1. The non-normalized den-
sities l and u bound the shapes of the non-normalized probability densities in the
class. The class then consists of the normalized densities that fulfill these shape
restrictions. In this paper, we shall exclude improper densities since we consider
their interpretation questionable (Rinderknecht et al. 2011). Note that the Density
Ratio Class has the following property:

(4.2) �DR

l,u

= �DR

�l,�u

8� > 0 .

This implies that one of the “non-normalized” densities, l or u, can still be chosen
to be normalized.

Following from (4.1), the lower and upper probabilities, P and P , for a random
variable characterized by the Density Ratio Class, �DR

l,u

, to take a value within a
subset A of its domain are given by

(4.3) P (A) = inf
ˆ

f2�

DR
l,u

Z

A

f̂(✓) d✓ =

R

A

l(✓) d✓

R

A

l(✓) d✓ +
R

A

c u(✓) d✓

and

(4.4) P (A) = sup
ˆ

f2�

DR
l,u

Z

A

f̂(✓) d✓ =

R

A

u(✓) d✓

R

A

u(✓) d✓ +
R

A

c l(✓) d✓

where A

c is the complement of A. The first of these equations follows as for any
f̂ 2 �DR

l,u

,
R

A

f̂ d✓ can be written in the form
R

A

f d✓/

�R

A

f d✓ +
R

A

c f d✓

�

and
x/(x+ y) is decreasing in y for fixed x > 0 and increasing in x for fixed y > 0. Note
that the equation is obviously also true if either

R

A

l(✓) d✓ = 0 or
R

A

c u(✓) d✓ = 0,
and both integrals cannot be zero because of the condition

R

l d✓ > 0. The second
equation follows analogously.

In the following three Subsections we elaborate important properties about
Bayesian inference, marginalization and prediction with the Density Ratio Class.
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4.2.2 Bayesian Parameter Inference with Density Ratio Class
Priors

The first property we discuss is the invariance of the Density Ratio Class under
Bayesian inference, or updating. In Bayesian terminology, the likelihood function,
L(y|✓) = p(y|✓), is the probability density of model results, y, given the model pa-
rameters, ✓. For statistical inference, we substitute observations for the argument
y and are interested in the dependence of L on the parameters. For this reason, we
simplify the notation in the following Sections to L(✓) and do not explicitly indi-
cate the dependence on the observations, y, which in the context of inference are
assumed to be fixed. We will return to the full notation, p(z|✓), where y is replaced
by z to clarify that not observations y are substituted for the argument of the prob-
ability density function, in the context of probabilistic prediction in Subsection 4.2.4.

Let D = {f(✓) � 0 8✓ 2 M ⇢ Rn | 0 <

R

M

f(✓) d✓ < 1} be the set of all not
necessarily normalized density functions and let LD = {L(✓) � 0 |

R

f(✓)L(✓) d✓ <

1 , f 2 D} . We introduce the operator �
L

(4.5) �
L

[f ](✓) = f(✓)L(✓)

to map a not necessarily normalized prior density function f 2 D to its not normal-
ized posterior according to Bayes law for a likelihood function L 2 LD. A hat on
top of an operator indicates composition with the normalization operator. Applied
to the operator �

L

this leads to

(4.6) �̂
L

[f ](✓) =
f(✓)L(✓)

R

f(✓0)L(✓0) d✓

0 .

Thus, this operator produces the posterior probability density function based on a
not necessarily normalized prior, f , and a likelihood function, L. Note that for given
L this operator is only defined for functions in D that fulfill

R

fL d✓ > 0. Thus we
make

R

lL d✓ > 0 a requirement for the lower bound of the Density Ratio Class to
be considered a prior class of the parameters used in L.

The first statement reflects the invariance property of the Density Ratio Class
under Bayesian updating and consists of a constructive description of the posterior
class:

(4.7) �̂
L

[�DR

l,u

] = �DR

�
L

[l],�
L

[u] ,

which implies that the lower and upper densities of the inferred class can be con-
structed by applying the operator �

L

to the lower and upper densities of the prior
class.
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The proof of property (4.7) has two parts: first,

(4.8) l  f  u ) �
L

[l]  �
L

[f ]  �
L

[u] ,

which follows from L � 0, and second,

(4.9) �
L

[l]  g  �
L

[u] ) 9 f : l  f  u and �
L

[f ] = g .

For the second part, define the density function f as

(4.10) f(✓) :=

8

>

>

<

>

>

:

g(✓)

L(✓)
if L(✓) > 0

l(✓) if L(✓) = 0 .

It follows then directly that f̂ 2 �DR

l,u

and that �
L

[f ] = g which completes the proof.

Note that a direct consequence of the definition of �
L

and equation (4.7) is
that the ratio of lower to upper densities is invariant under updating:

(4.11)
l

u

=
�

L

[l]

�
L

[u]

(we assume here that the set M on which the densities is defined, is restricted to
those values of ✓ for which u is strictly positive). Therefore, the set of posteriors
does not shrink down to a single distribution, even if a large amount of data is
available for inference.

A further property reveals that if one prior-posterior pair, {f,�
L

[f ]}, f > 0
on {✓|u(✓) > 0} is known, it is possible to derive its posterior, �

L

[g], for any other
given prior, g, as:

(4.12) �
L

[g] =
g

f

�
L

[f ] .

This property becomes obvious by applying the definition of the operator �
L

(4.5).
The properties (4.2), (4.7) and (4.12) can be combined to construct the posterior
class from the update of a single strictly positive prior f :

(4.13) �̂
L

[�DR

l,u

] = �DR

l

f

�
L

[f ],
u

f

�
L

[f ]
= �DR

l

f

�̂
L

[f ],
u

f

�̂
L

[f ]
.

Multiplication of l/f and u/f with the not necessarily normalized (see equation
4.2) posterior density of f results in the lower and upper densities, respectively,



4.2. METHODS 61

of the posterior Density Ratio Class. This is one of the core properties that make
the use of imprecise probabilities tractable with a relatively modest increase in the
computational burden. Note that choosing f = u in equation (4.13) leads to the
useful special case

(4.14) �̂
L

[�DR

l,u

] = �DR

l

u

�̂
L

[u], �̂
L

[u]
.

The second form of equation (4.13) and its special case (4.14) are of particular
interest as they make it possible to use a normalized posterior which is usually easier
to construct numerically (e.g. by applying a kernel density estimator to a posterior
MCMC sample) at least if the dimension of the parameter space is not large. An
alternative to this equation would be to switch to normalized posteriors directly in
equation (4.7)

(4.15) �̂
L

[�DR

l,u

] = �DR

r �̂
L

[l] , �̂
L

[u]
,

where equation (4.2) has been used and r is the ratio of the normalizing constants
of the posteriors:

(4.16) r :=

R

�
L

[l](✓0) d✓

0
R

�
L

[u](✓0) d✓

0 .

A further discussion about the use of these equations for numerical implementation
schemes will be given in Section 4.3 together with a discussion of possibilities of
numerically estimating the ratio r (which can be di�cult in high dimensions).

4.2.3 Marginalization of the Density Ratio Class

The next properties concern marginalization of the Density Ratio Class. For a
given nonnegative integrable function f(✓) = f(✓

1

, ✓

2

), we denote the marginalizing
operator by

(4.17)  
1

[f ](✓
1

) :=

Z

f(✓
1

, ✓

2

) d✓

2

= f

1

(✓
1

) .

The first important property concerns marginalization invariance:

(4.18)  
1

[�DR

l,u

] = �DR

 
1

[l], 
1

[u] .
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The proof of (4.18) has two parts. First,

(4.19) f̂ 2 �DR

l,u

)  
1

[f̂ ] 2 �DR

 
1

[l], 
1

[u] ,

which follows directly from the definition of the Density Ratio Class. Second,

(4.20) ĝ

1

2 �DR

 
1

[l], 
1

[u] ) 9 f̂ 2 �DR

l,u

:  
1

[f̂ ] = ĝ

1

,

which is less obvious to prove. From the left-hand side of equation (4.20) we have
by definition of the Density Ratio Class a non-normalized g

1

such that  
1

[l]  g

1


 

1

[u] 8✓

1

. Now, define f as follows

(4.21) f(✓) :=

8

>

>

<

>

>

:

 
1

[u]� g

1

 
1

[u]� 
1

[l]
l +

g

1

� 
1

[l]

 
1

[u]� 
1

[l]
u if  

1

(l) <  
1

(u)

l if  
1

(l) =  
1

(u) .

Thus,  
1

[f ] = g

1

. Consider now l in the form

(4.22) l =

8

>

>

<

>

>

:

 
1

[u]� g

1

 
1

[u]� 
1

[l]
l +

g

1

� 
1

[l]

 
1

[u]� 
1

[l]
l if  

1

(l) <  
1

(u)

l if  
1

(l) =  
1

(u)

to conclude that l  f . Similarly, by writing u in a form analogously to equation
(4.22) it follows that f  u which completes the proof.

We now will concentrate on marginalization of posterior Density Ratio Clas-
ses. A combination of (4.7) and (4.18) leads directly to the marginalized posterior
Density Ratio Class :

(4.23)  
1

� �̂
L

[�DR

l,u

] = �DR

 
1

� �
L

[l],  
1

� �
L

[u] .

Update and marginalization invariance are extremely useful properties of the Den-
sity Ratio Class, as marginals are much more tractable than high-dimensional dis-
tributions and are important tools for communication. The invariance expressed
by equation (4.23) allows us to communicate and represent priors, posteriors and
posterior marginals all in the same way using Density Ratio Classes.

To further prepare for the numerical techniques discussed in Section 4.3, we
derive expressions for posterior Density Ratio Class marginals based on normalized
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joint or marginal posterior densities. Applying equation (4.23) to equation (4.13)
leads to the following form for the posterior Density Ratio Class marginals:

(4.24)  
1

� �̂
L

[�DR

l,u

] = �DR

 
1



l

f

�̂
L

[f ]

�

,  
1



u

f

�̂
L

[f ]

�

.

This equation allows us to derive posterior marginals from the normalized posterior
of a single prior, f . In analogy to equation (4.14), the special case f = u of this
equation is of particular interest:

(4.25)  
1

� �̂
L

[�DR

l,u

] = �DR

 
1



l

u

�̂
L

[u]

�

,  
1

h

�̂
L

[u]
i

.

Applying equation (4.23) to the posterior in the form of equation (4.15) leads to an
alternative form for the posterior marginals:

(4.26)  
1

� �̂
L

[�DR

l,u

] = �DR

r 
1

� �̂
L

[l],  
1

� �̂
L

[u]

which relies on the ratio, r, of normalizing factors defined by equation (4.16). Again,
we refer to Section 4.3 for a discussion of the use of these equations for numerical
implementation of the Density Ratio Class.

Finally, there is a special case in which it can be avoided to calculate the ratio
r of normalizing factors. If there exists a strictly positive function q(✓

1

), such that

(4.27)
l(✓

1

, ✓

2

)

u(✓
1

, ✓

2

)
= q(✓

1

)

then one can use q to calculate the lower posterior measure from the upper. This
can easily be seen by substituting equation (4.27) into equation (4.25):

(4.28)  
1

� �̂
L

[�DR

l,u

] = �DR

q 
1

� �̂
L

[u] ,  
1

� �̂
L

[u]

where we assume that u is strictly positive over all ✓ (if this is not the case, we
can restrict the set M to those values). Note that this applies only to the marginal
corresponding to the component(s) ✓

1

. However, having obtained the lower and
upper marginals of this component according to equation (4.28), we can combine
equation (4.26) with equation (4.28) to get an estimate of the ratio r of normalizing
factors from the relationship

(4.29) r 
1

� �̂
L

[l] = q(✓
1

) 
1

� �̂
L

[u] .
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This estimate can then be used to calculate the other marginal bounding densities
using equation (4.26) as we will discuss in detail in Section 4.3. Note that the most
distinctive case in which (4.27) is fulfilled is an independent combination of a Density
Ratio Class prior for the component(s) ✓

1

with a precise prior for the component(s)
✓

2

.

4.2.4 Prediction with the Density Ratio Class

To get an (imprecise) probabilistic description of model predictions based on a prior
or posterior in the form of a Density Ratio Class, we have to propagate such a
class through the model. We will distinguish the cases of a deterministic model and
a stochastic model. In Subsection 4.2.4 we will show that under weak regularity
conditions the predictions by a deterministic model will again be in the form of a
Density Ratio Class. This is not anymore true for the predictions of a stochastic
model. However, in Subsection 4.2.4 we will show that the predictions of a stochastic
model are naturally embedded in a Density Ratio Class so that we at least can get
conservative bounds of predictions by a Density Ratio Class. We will also show that
this class can in fact be larger than the set of predicted densities obtained from
propagating all elements of the Density Ratio Class of model parameters.

Prediction with a Deterministic Model Function

We consider the case of a deterministic model, given by a smooth function

(4.30)
g : M ⇢ Rn ! Rm

✓ 7! y := g(✓)

and we show that, under weak regularity conditions, if the model parameters are
defined by a Density Ratio Class then predictions also have the form of a Density
Ratio Class.

If f⇥(✓) is a density function of the parameters, and the square root of the
determinant of the product of the Jacobian of the model function, g, with its trans-
pose

(4.31) =g(✓) =

s

det

✓

Jg(✓) · Jg(✓)T

◆

is not equal to zero except on a set of Lebesgue measure zero, then, according to the
coarea formula of geometric measure theory (cf. formula (5.3.28) in Stroock (1999)),
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the model predictions, Y = g(⇥), have the following density:

(4.32) ⌅g[f ](y) := fY (y) =

Z

{✓| g(✓) = y, =g(✓) 6= 0}
f⇥(✓)

=g(✓)
d�y(✓) .

In this equation, d�y is the surface (Hausdor↵) measure on {✓ | g(✓) = y} = g

�1(y)
and =g is defined in equation (4.31).

The class of model predictions is obtained by applying the transformation
given by equation (4.32) to the non-normalized lower and upper measures defining
the Density Ratio Class of model parameters:

(4.33) ⌅g[�
DR

l,u

] = �DR

⌅g[l],⌅g[u] .

By the definition of the Density Ratio Class there exists for each random
variable ⇥ in the class a non-normalized density function f⇥ such that l⇥(✓) 
f⇥(✓)  u⇥(✓) is true for all ✓ 2 M ⇢ Rn. By writing this statement in terms of
equation (4.32), it follows for all y 2 Rm

(4.34)

Z

g

�1(y)

l⇥(✓)

=g(✓)
d�y(✓)

| {z }

lY (y)


Z

g

�1(y)

f⇥(✓)

=g(✓)
d�y(✓)

| {z }

fY (y)


Z

g

�1(y)

u⇥(✓)

=g(✓)
d�y(✓)

| {z }

uY (y)

.

This demonstrates that the class defined by the lower and upper measures lY (y)
and uY (y) contains the propagated Density Ratio Class of the parameters.

To show the converse, namely, for each fY satisfying lY (y)  fY (y)  uY (y),
we can find a density f⇥(✓) 2 �DR

l⇥,u⇥
such that fY (y) =

R

g

�1(y)
f⇥(✓)

=g (✓)

d�y(✓), define

the convex form
(4.35)

f⇥(✓) :=

8

>

>

>

>

<

>

>

>

>

:

uY (g(✓))� fY (g(✓))

uY (g(✓))� lY (g(✓))
l⇥(✓) +

fY (g(✓))� lY (g(✓))

uY (g(✓))� lY (g(✓))
u⇥(✓)

if lY (g(✓)) < uY (g(✓))

l⇥(✓) if lY (g(✓)) = uY (g(✓))

Easy calculations show that this function satisfies the required conditions which
concludes the proof.
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Prediction with a Stochastic Model

We consider the case of a stochastic model that maps each ✓ 2 M to a random
variable Z

(4.36) ✓ 7! Z(✓) ,

where the respective probability densities of the random variables Z(✓) are given
by the likelihood function which we now write in the detailed notation

(4.37) f̂Z(✓)

(z) = p(z|✓) .

For a given not necessarily normalized density f⇥(✓) we define the operator ⌅
p

to
express the propagated density fZ(⇥)

(z) as follows

(4.38) ⌅
p

[f ](z) :=

Z

M⇢Rn

p(z|✓)f⇥(✓) d✓ .

Note that the case of a deterministic model with function g discussed in Subsection
4.2.4 can be viewed as a special case of a stochastic model with a likelihood function
p(z|✓) = �

�

z � g(✓)
�

. If a not necessarily normalized density f⇥(✓) is bounded
by the lower density l⇥ and upper density u⇥ in the sense that the inequality
l⇥(✓)  f⇥(✓)  u⇥(✓) holds 8✓, we can prove:

(4.39) ⌅
p

h

�DR

l, u

i

✓ �DR

⌅
p

[l],⌅
p

[u] .

For a non-normalized f fulfilling the inequality l  f  u, for all ✓, it follows
immediately

(4.40) ⌅
p

[l](z)  ⌅
p

[f ](z)  ⌅
p

[u](z)

for all z which means

(4.41) lZ(⇥)

(z)  fZ(⇥)

(z)  uZ(⇥)

(z)

and thus concludes the proof.

A simple one dimensional example, wherein the distribution of Z is indepen-
dent of ✓, already strengthens the intuition that the converse inclusion is not gen-
erally true: In that case, ⌅

p

[�DR

l,u

] consists of a single distribution whereas ⌅
p

[l] =
R

l

⇥

(✓) d✓ and ⌅
p

[u] =
R

u

⇥

(✓) d✓, so the Density Ratio Class that is bounded by
⌅

p

[l] and ⌅
p

[u] contains infinitely many densities.
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We also provide a counterexample with a non-trivial likelihood function. To
start, consider the real valued triangular probability density function

(4.42) f̂

X

(x) :=

8

<

:

1� |x| if |x|  1

0 if |x| > 1

and derive its characteristic function, �(!), defined as the expected value of e

i!X

(4.43) �(!) =

Z 1

�1
e

i!x

f̂

X

(x) dx =
sin2(!/2)

(!/2)2

= 2
1� cos(!)

!

2

� 0 8!.

Since �(!) is the Fourier transform of f̂

X

(x), we can get f̂

X

back by the inverse
Fourier transform

(4.44) f̂

X

(x) =
1

2⇡

Z 1

�1
e

�i!x

�(!) d! .

As a special case of this equation, we get

(4.45)
1

2⇡

Z 1

�1
�(!) d! = f̂

X

(0) = 1.

which implies that �(!)/(2⇡) is a probability density function.

Define now the likelihood function

(4.46) p(z|✓) = �(z � ✓)

with ✓ 2 [0, 1] and the Density Ratio Class, �DR

1, c

, for ✓ with a lower uniform density
l(✓) = 1 and an upper uniform density u(✓) = c > 1 restricted to [0, 1]. Using
equation (4.39) we get for the lower and upper densities of the propagated class,
⌅

p

[�DR

1,c

] = �DR

l

Z

, u

Z

(4.47) l

Z

(z) =

Z

1

0

�(z � ✓) · 1 d✓ , u

Z

(z) =

Z

1

0

�(z � ✓) · c d✓ = c · l
Z

(z) .

Note that l

Z

(z) is continuous over R and decays according to c

0
/z

2 if z ! ±1
where c

0 is a constant. Therefore, we can find a c

00 such that l

Z

(z)  c

00

1+z

2

 u

Z

(z)
for c large enough. Or in other words, the Cauchy-Distribution is included in the
propagated Density Ratio Class ⌅

p

[�DR

1,c

]. To accomplish the proof it is su�cient to

show that there exists no function h(✓) 2 �DR

1,c

such that
R

1

0

�(z�✓) ·h(✓) d✓ = c

00

1+z

2

.

This is obviously the case because the characteristic function of
R

1

0

�(z� ✓) ·h(✓) d✓
writes

(4.48)

Z 1

�1
e

i!z

Z

1

0

�(z � ✓)h(✓) d✓dz = 2⇡ f̂

X

(!) ·
Z

1

0

e

i!✓

h(✓) d✓
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and hence is equal to zero for all |!| > 1 — meanwhile the characteristic function
of the Cauchy-Distribution is equal to e

�|!| that clearly is greater than 08!. With
this contradiction we have shown that the Density Ratio Class is not invariant if
propagated through a stochastic model.

4.3 Numerical Implementation

4.3.1 Numerical Implementation of Bayesian Inference

Markov chain Monte Carlo (MCMC) techniques allow us to generate a sample of
the posterior of any prior, f̂ 2 �DR

l,u

(for a standard MCMC procedure using e.g. the
Metropolis sampling technique, see Metropolis et al. (1953), Gelman et al. (2003)
or Gamerman and Lopes (2006)). Hence, according to equation (4.12) (note the

importance of the condition f > 0), assigning such a sample,
�

✓

i

 

N

i=1

, with weights

(4.49) w

i

=

g(✓
i

)

f(✓
i

)
N

X

j=1

g(✓
j

)

f(✓
j

)

makes it a sample of the posterior of any other prior, g. Note that the {w
i

}N

i=1

may be very unbalanced and that the e↵ective sample size decreases with increasing
di↵erence between the densities f and g.

According to equation (4.7) the set of all posteriors of the priors belonging to
a Density Ratio Class is again a Density Ratio Class. We propose two methods to
obtain a numerical approximation to this posterior Density Ratio Class : The first
method is based on a sample of the posterior corresponding to a single prior and
constructs the class using weights, whereas the second method is based on samples
of the posteriors of the upper and lower density and uses the ratio (4.16) to construct
the class.

The first method consists of constructing a Markov chain of the posterior cor-
responding to a single prior, f , satisfying f(✓) > 0 where u(✓) > 0, and calculating
in a second step weighted samples of the posteriors of l and u applying (4.49) with
g = u and g = l, respectively (note that an obvious choice will be to propagate the
upper measure f = u). These samples can be transformed to unweighted samples
by resampling. As will be shown in Section 4.3.2, the non-normalized ratios l/f

and u/f can then be used to construct the lower and upper marginals defining the
posterior class. The weights in (4.49) for g = l and f = u will be unbalanced if l(✓)
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is close to u(✓) for some value ✓, but l is much smaller than u near the mode of the
✓

i

’s. On the other hand, if u is a multiple of l, then the weights are constant.

The second method consists of constructing Markov chains of the posteriors
corresponding to the lower and upper bounds, l and u, of the Density Ratio Class.
This leads directly to unweighted samples of these two posteriors. According to
equation (4.15) to construct the posterior Density Ratio Class, we need additionally
the ratio r of normalizing factors which can be approximated using a sample of the
posterior of the prior corresponding to u (Gelman and Meng 1998). If

�

✓

i

 

N

i=1

is
such a sample:

(4.50) r =

R

�
L

[l] d✓

0
R

�
L

[u] d✓

0 =

R

l

u

uL d✓

0
R

uL d✓

0 =

Z

l

u

�̂
L

[u] d✓

0 ⇡ 1

N

N

X

i=1

l(✓
i

)

u(✓
i

)
.

Again, the error in this estimate might be larger than the sample size suggests if
the weights are unbalanced.

4.3.2 Numerical Implementation of Marginalization

Posteriors are often visualized by their low-dimensional marginals. According to
(4.18), the set of posterior marginals is again a Density Ratio Class. Applying a
kernel density estimator to a component of the samples of the posteriors of l and u

leads to the normalized marginal densities

(4.51)  
1

� �̂
L

[l] ,  
1

� �̂
L

[u] .

Following the first method we generate a sample from a posterior of a single prior,
f , {✓

i

}N

1=i

, and obtain from (4.24) the approximation for the (non-normalized) lower
bound of the marginal posterior Density Ratio Class

(4.52)  
1



l

f

�̂
L

[f ]

�

(✓1) ⇡ 1

Nh

N

X

i=1

l(✓
i

)

f(✓
i

)
K((✓1 � ✓

1

i

)/h)

where K is a kernel and h is a bandwidth. An analogous formula holds for the upper
bound.

Following the second method, we generate two samples {✓
i,l

}N

i=1

and {✓
i,u

}M

i=1

from the posteriors corresponding to l and u respectively, and obtain from (4.26)

(4.53)  
1

⇥

�̂
L

[u]
⇤

(✓1) ⇡ 1

Mh

M

X

i=1

K((✓1 � ✓

1

i,u

)/h)
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a similar formula for l instead of u. The class can then be constructed by multiplying
the lower normalized bound by the numerical estimate of r obtained from (4.50).

In the special case of a prior class fulfilling condition (4.27), we do not need the
approximation of the ratio of the normalizing factors (4.50) but can directly apply
equation (4.28) to calculate the marginal posterior class of the first component from
a single sample of the posterior corresponding to the prior proportional to u. By
seeking for the ratio r with the help of the over-determined system of linear equations
given by equation (4.29),

(4.54) r = q(✓
1

)
 

1

� �̂
L

[u]

 
1

� �̂
L

[l]
,

we get an estimate of the ratio r that can be used to calculate the posterior classes
of the other marginals. This can either be done by averaging or by fitting the ratio,
r, of normalizing factors based on equation (4.54). If (4.27) holds, we can avoid
the use of weights using the second method and equation (4.54). Otherwise the
advantage of the second method seems to be small.

4.3.3 Numerical Implementation of Model Prediction

Given model parameters in the form of a Density Ratio Class, �DR

l⇥,u⇥
, we propagate

a sample of the lower density, {✓
i,l

}N

i=1

, and a sample of the upper density, {✓
i,u

}M

j=1

,
through the model, by drawing from the likelihood, which yields two samples of the
respective normalized densities of predictions

(4.55) ⌅̂
.

[l⇥], ⌅̂
.

[u⇥].

Note that this is independent of whether the model is probabilistic or not.

To specify the Density Ratio Class embodying the entire set of distributions of
predictions, reconsider it in the form of �DR

r

0 ⌅̂
L

[l⇥], ⌅̂
L

[u⇥]
, analogous to the Density

Ratio Class representation we used in (4.15), where r

0 is the ratio of normalizing
factors
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that in turn can be numerically approximated similarly to (4.50). However, it is
worthwhile noting that, if posteriors are propagated through the model, r

0 = r as
defined in (4.16). In other words:

(4.57) ⌅
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where l and u denote in this case the bounds of a prior Density Ratio Class.

Following the first method, non-normalized upper and lower bounds of the
prediction Density Ratio Class are estimated from a sample of the posterior of any
prior f . The lower bounding density is given by

(4.58) ⌅
p

⇥

�
L

[l]
⇤

(z) ⇡ 1

N

N

X

i=1

l(✓
i

)

f(✓
i

)
p(z|✓

i

),

the upper by the same expression with substituting u for l.

Following the second method the normalized upper and lower bounds are es-
timated from two samples of posteriors for u and l, respectively, according to

(4.59) ⌅
p

⇥

�̂
L

[l]
⇤

(z) ⇡ 1

N

N

X

i=1

p(z|✓
i,l

)

and the same expression with substituting u for l. In the latter case the ratio r

needs to be estimated according to equations (4.50) or (4.54) and multiplied with
the normalized lower bound to construct the class.

4.4 Application to a Simple Periphyton Model

We use a simple, empirical model of river periphyton dynamics to illustrate the
suggested techniques. Periphyton is a part of benthic biofilms that consist of algae,
bacteria, fungi, protozoa and polysaccharides and detritus attached to submerged
surfaces in most aquatic ecosystems (Uehlinger 1991). It acts as a primary producer
in running water, dominating the first levels of the trophic pyramid in many small
and intermediate size rivers (Biggs 1994). Our periphyton model consists of a de-
terministic, algebraic model that describes the loss and recovery of periphyton in
rivers based on the time of year, the time since the last flood, and typical values of
flow velocity, water depth and median gravel size. Schweizer (2007) developed this
model to describe periphyton dynamics in streams based on data sets that were col-
lected in several previous studies at the Swiss rivers Necker (four sites) and Sihl (two
sites), and the French river Garonne (two sites). Table 4.1 contains the references
to the literature describing the corresponding surveys and investigations, including
descriptions of the study sites, the sampling procedures and biomass measurements.

The model was chosen as an example for this paper because its empirical nature
makes it di�cult to establish unambiguous priors and its simple form makes it easy
to run long Markov chains.
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Table 4.1: Literature about the data sets used for the periphyton model. The
letters A-H refer to the plots of predictions in Figures 4.2, 4.4 and 4.6.

Study Site Author(s)
Panel in
Figures

Sihl, upstream Elber et al. (1992) A
Sihl, downstream Elber et al. (1996) B
Necker at Achsäge, main channel

Uehlinger (1991)
C

Necker at Achsäge, gravel bar D
Necker, side channel

Uehlinger et al. (1996)
E

Necker, downstream F
Garonne at Gagnac

Boulêtreau et al. (2006)
G

Garonne at Aouach H

4.4.1 Model Formulation

The Deterministic Part of the Model

The deterministic part of the model consists of a self-limiting Monod factor, a factor
describing the limiting influence of stream velocity, water depth and gravel size, and
a seasonality factor (Schweizer 2007):
(4.60)
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A brief overview of the model parameters is given in Table 4.2. For times shortly
after a flood, this model behaves as

(4.61) B
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and for long times after the last flood, the model asymptotically approaches a
biomass that depends only on the limiting factor L

v,h,d

50

and the seasonality fac-
tor S

tjul

(4.62) B
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⇡ B
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· L
v,h,d

50
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flood

>>
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max

k

B

!

.

The Likelihood Function of the Model

As in Schweizer (2007), we used a normally distributed error model that is additive
on a Box-Cox transformed scale (Box and Cox 1964) to address the heteroscedas-
ticity of the results. This transformation is given by ((data + �

2

)�1 � 1)/�
1

where
�

1

= 0.3 and �

2

= 1 gAFDM/m2. The standard deviation of the additive error
model was included as a parameter in the Bayesian inference process.

4.4.2 Prior Information about Model Parameters

In the case of our periphyton model, most parameters represent unobservable quan-
tities. Therefore, to develop our prior we elicited the knowledge of an expert
in mechanistic benthos modeling. Quantile intervals {[qi

1

, q

i

u

]}5

i=1

for probabilities
{p

i

}5

i=1

= {0.05, 0.25, 0.5, 0.75, 0.95} were elicited using the classic quantile elicita-
tion method (Wallsten and Budescu 1983; Cooke 2001; Chaloner 1996; Kadane and
Wolfson 1998; Garthwaite et al. 2005; Jenkinson 2005; O’Hagan et al. 2006), al-
lowing the expert to answer using intervals, not only point values. These elicitation
results are presented in Table 4.3. Further discussions about the appropriate distri-
butional family for each parameter were conducted with the expert such that Density
Ratio Classes could be deduced according to the method described by (Rinderknecht
et al. 2011). The R software package fitDRC was used to support the elicitation.
This package is freely available from http://cran.r-project.org/.

4.4.3 Bayesian Inference, Marginalization, and Prediction
with Three Di↵erent Priors

Bayesian inference was based on Markov chain Monte Carlo using the Metropolis
algorithm (Gelman et al. 2003; Gamerman and Lopes 2006) and the techniques
described in Section 4.3. In what follows, we present three di↵erent cases showing the
e↵ect of imprecise prior knowledge on parameter estimates and model predictions.

http://cran.r-project.org/
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Table 4.2: Overview of Model Parameters and Inputs.

Parameter Description Unit
use in
model

B

max

maximum (with respect to h, v and d

50

)

[gAFDM m�2] parameter
and mean (with respect to seasonality)
asymptotic biomass after the last flood
occurred

k

B

maximum (with respect to h, v and d

50

)

[g m�2 d�1] parameter
and mean (with respect to seasonality)
coe�cient describing biomass (immedia-
tely) after the last flood occurred

t

max

jul

day within the year at which standing
[Julian Days] parametercrop would be maximum for constant

values of the other influence factors

k

d

50

grain size with half saturation for k

B [m] parameter
and B

max

� coe�cient for limitation by h [m�1] parameter
� coe�cient for limitation by v [m s�1] parameter

↵

relative amplitude of the seasonal variation [-] parameter
(relative to the mean) parameter

�

err

standard deviation of the error model
[�] parameter

of observations
h mean water depth [m] input
v stream velocity [m s�1] input
d

50

grain size (median diameter) [m] input
t

jul

julian day [Julian Days] input
�t

flood

time after the last bed-moving flood [Days] input
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Table 4.3: Elicited quantile intervals for standard probabilities {p
i

}5

i=1

=
[0.05, 0.25, 0.50, 0.75, 0.95].

name ql

1 qu

1 ql

2 qu

2 ql

3 qu

3 ql

4 qu

4 ql

5 qu

5

B
max

20.0 60.0 50.0 100.0 100.0 140.0 160.0 210.0 300.0 400.0
k

B

0.75 1.0 2.0 3.0 4.0 5.0 7.0 10.0 18.0 25.0
tmax

jul

70.0 90.0 135.0 155.0 190.0 210.0 230.0 250.0 270.0 290.0
k

d50 0.02 0.03 0.05 0.075 0.08 0.125 0.175 0.25 0.38 0.625
� 0.3 0.7 0.9 1.5 1.0 3.0 3.0 4.5 7.0 20.0
� 0.3 0.5 0.6 1.3 1.3 4.0 2.0 4.0 5.0 10.0

Table 4.4: Distributions fitted to midpoints of quantile intervals given in Table 4.3.

name distribution and parameters

B

max

LN(µ = 147.38, � = 108.38)
k

B

LN(µ = 7.07, � = 8.56)

t

max

jul

�(sh
1

= 2.45, sh

2

= 5.04)
range [0, 365.25]

k

d

50

LN(µ = 0.169, � = 0.195)
� LN(µ = 3.81, � = 7.02)
� LN(µ = 2.74, � = 2.61)
↵ Unif(min = 0, max = 1)
�

err

LN(µ = 1.6, � = 0.5)
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Table 4.5: Fitted Density Ratio Classes based on quantile intervals given in Table
4.3. The value  expresses the ratio of normalizing constant of the upper distribution
divided by the normalizing constant of the lower distribution.

name distribution and parameters 

B

max

LN

l

(µ = 161.57, � = 97.91)
1.83

LN

u

(µ = 127.81, � = 122.13)

k

B

LN

l

(µ = 6.246, � = 5.634)
1.32

LN

u

(µ = 7.435, � = 10.023)

t

max

jul

�

l

(sh
1

= 5.476, sh

2

= 5.188)
1.44�

u

(sh
1

= 3.048, sh

2

= 2.566)
range [0, 365.25]

k

d

50

LN

l

(µ = 0.162, � = 0.152)
1.51

LN

u

(µ = 0.17, � = 0.27)

�

LN

l

(µ = 3.279, � = 3.228)
2.03

LN

u

(µ = 4.456, � = 13.767)

�

LN

l

(µ = 1.923, � = 1.179)
1.81

LN

u

(µ = 2.583, � = 3.483)

↵

Unif(min = 0, max = 1)
1

Unif(min = 0, max = 1)

�

err

LN

l

(µ = 1.6, � = 0.5)
1

LN

u

(µ = 1.6, � = 0.5)

Precise Priors in All Marginals

As a first example, we used precise prior distributions in all marginals for Bayesian
inference. Therefore, midpoints of the elicited quantile intervals were used. For
each parameter, inverse cumulative distributions were fitted to these quantile points
using non-linear least squares (Table 4.4). An independent combination of the fitted
distributions results in a precise multivariate prior distribution. Figure 4.1 shows
marginalized priors and posteriors for each component and Figure 4.2 shows the
associated model predictions resulting from the precise posterior distribution.

Ambiguity in One Marginal

As a second example, we used an imprecise prior consisting of an independent com-
bination of precise priors for all parameters listed in Table 4.4, except for the pa-
rameter t

max

jul

which was in the form of a Density Ratio Class. The Density Ratio
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Class of the imprecise parameter t

max

jul

, see Table 4.5, was calculated based on the
elicited quantile intervals summarized in Table 4.3. This prior fulfills the simplifying
assumption given by equation (4.27) and thus makes it possible to derive the ratio
of normalizing constants, r, from just one component, as described in Subsections
4.2.2 and 4.3.1. Figure 4.3 shows the corresponding priors and posteriors. By using
equation (4.54), the ratio of normalizing constants is r ⇡ 0.786. By applying the
numerical approximation given in (4.50) one gets r ⇡ 0.785 which is insignificantly
smaller. The Density Ratio Class of the predictions is shown in Figure 4.4.

Ambiguity in All Marginals

As a third example, Table 4.5 lists the marginal Density Ratio Classes which were
derived on the basis of the elicited quantile intervals given in Table 4.3. An indepen-
dent combination of the upper and lower bounds of these one-dimensional Density
Ratio Classes leads to a multivariate Density Ratio Class. It is not di�cult to see
that this is the smallest class which contains all product densities of members of the
univariate classes. But marginalizing this class produces new classes which are larger
than the univariate ones we started with. Figure 4.5 shows the corresponding priors
and posteriors, and Figure 4.6 shows the corresponding plot of model predictions.
We have used both methods from Section 4.3. Several calculations with di↵erent
sample sizes have shown that with samples of size 800,000 we obtain estimates that
contain enough information for our purposes although there remains still some un-
certainty e.g. about the exact value of the ratio of normalizing constants. The
Density Ratio Class of the priors and posteriors has a ratio of normalizing constants
r ⇡ 0.00108 as calculated using equation (4.50). The inverse r

�1 =  ⇡ 920 even
more clearly indicates the high ambiguity in this case.

4.4.4 Results and Discussion

As the model used in our example is largely empirical, there is little prior knowledge
available concerning the parameter values. As a consequence, prior marginal distri-
butions were rather wide, yet these narrowed substantially after Bayesian updating
using measured data. This was the case independently of using a precise or an im-
precise prior (see Figures 4.1, 4.3 and 4.5). However, taking into account more and
more of the ambiguity expressed by the expert, makes these posterior classes larger
and larger as seen by the increasing di↵erence between lower and upper bounds of
the marginal posterior classes (see Figures 4.1, 4.3 and 4.5). In the case of consider-
ing ambiguity in all parameters, this size becomes so large, that the lower measure
of the marginal posterior class is hardly distinguishable from zero on a scale that is
adjusted to display the upper measure (see Figure 4.5).
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Figure 4.1: Marginalized posteriors (lines) after the Bayesian parameter inference
with a precise prior (dotted) corresponding to the example discussed in 4.4.3.
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Figure 4.2: Measurements (dots) of periphyton biomass in gram ash free dry mass
per square meter [gAFDM/m2] and model predictions based on a precise prior show-
ing quantiles (lines) for standard probabilities at each time. Each row corresponds
to the entries of Table 1, respectively. The vertical lines indicate the beginning of a
year.
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Figure 4.3: Marginalized lower and upper posteriors (lines) of the Bayesian pa-
rameter inference for the example in which only the prior of the parameter t

max

jul

was imprecisely defined in the form of a Density Ratio Class. The prior marginals
are plotted as dotted lines. The fitted ratio of normalizing constants used for the
inference was r ⇡ 0.837.
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Figure 4.4: Imprecise predictions based on the posterior shown in Figure 4.3. Lower
and upper quantiles for standard probabilities (lines) indicate the imprecise model
prediction. The vertical lines indicate the beginning of a year.
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Figure 4.5: Upper posteriors (lines) of the Bayesian parameter inference for the
example in which the multivariate prior (dotted) was imprecise. The lower measure
of the marginal posterior class is hardly distinguishable from zero on the scale that
is adjusted to display the upper measure. The approximated ratio of normalizing
constants was r ⇡ 0.00108 according to (4.50).
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Figure 4.6: Model predictions based on the imprecise prior shown in Figure 4.5.
Lower and upper quantiles for standard probabilities (lines) indicate the imprecise
model prediction. The vertical lines indicate the beginning of a year.
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As a consequence, there is increasing ambiguity in the corresponding model
predictions (see Figures 4.2, 4.4 and 4.6). Already the consideration of ambiguity
in one parameter leads to considerable ambiguity in model results (compare Figure
4.4 with Figure 4.2). When multiple parameters were allowed to have imprecise
prior marginals, the ratio of normalization constants between the upper and lower
densities of the prior and consequently of the posterior of parameters and predictions
became very large (⇡ 900), indicating a very high degree of ambiguity. Figure 4.6
demonstrates these results. It is remarkable, for example, that the upper 5-percentile
has higher values than the lower 95-percentile.

This example demonstrates that ambiguity formulated as imprecision in prior
marginals can be considered in Bayesian inference and the corresponding posterior
class can be propagated to the model results. This is possible without significantly
increasing the computational burden of the analysis. The sequence of examples also
demonstrates that care is needed when constructing a prior class as the product
of prior marginals. Ambiguity can easily become so large that the results indicate
that no meaningful prediction can be made. This indicates the necessity of limiting
the use of imprecise priors to those marginals for which the prior knowledge is
really controversial. If this is true for many marginals, the likely result will be that
prediction uncertainty bounds are very uncertain.

4.5 Discussion and Conclusions

Growing computing power and increasingly e�cient algorithms have made Bayesian
inference and prediction commonplace in science and engineering applications. How-
ever, in many cases, there is insu�cient knowledge or experience to formulate precise
prior distributions on model parameters. Alternately, there may be many experts,
any one of whom may not admit to imprecision personally, but whose collective
disagreement generates substantial ambiguity for the analyst. We have previously
described methods for using expert elicitation of one or multiple experts to construct
a Density Ratio Class (Rinderknecht et al. 2012), which we have found to be an
attractive approach for characterizing imprecise probabilities. In particular, the fact
that this class is invariant under Bayesian inference — and thereby can represent
incremental learning in a consistent framework — makes it satisfying conceptually.
The fact that it is also invariant under marginalization is convenient for visualiza-
tion. In the present paper, we review the proofs of these two invariance properties,
first noted by Wasserman (1992a). To our knowledge, our proof of Density Ratio
Class invariance under propagation through a deterministic model (Section 4.2) is
novel. We also show that when a stochastic model is being used a Density Ra-
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tio Class can be constructed to represent a conservative estimate of the predictive
distribution resulting from propagation through the model.

The invariance properties of the Density Ratio Class lead to significant advan-
tages regarding numerical implementation of inference, marginalization, and model
prediction, which we describe in detail in Section 4.3. In particular we show that,
through judicious use of sample weights and ratios of normalizing constants, the
MCMC samples generated using precise priors can be used to approximate the up-
per and lower bounds resulting from imprecise priors, thereby minimizing additional
computational burden. This should open up many more opportunities for using the
imprecise probabilities framework than have existed in the past.

We show by the third example in Section 4.4 that the number of parameters
bearing imprecision has to be chosen carefully to avoid extreme ambiguity in results.
Combining imprecision in marginals by constructing a joint class that contains all
possible combinations of priors leads to very high imprecision in this joint class. It
is an inconvenient and unavoidable ‘feature’ of this approach that marginalizing this
class leads to a higher imprecision in the marginal than the one used to construct
the joint distribution (see Subsection 4.4.3). Second-order probabilities can easily
be combined with imprecise probabilities; it seems to be a reasonable strategy to
use imprecise probabilities only for those marginals for which it seems to be di�-
cult to specify a unique probability measure. This avoids “unnecessarily” extreme
ambiguity in the results. On the other hand, extreme ambiguity is allowed by this
framework. This is a very important additional element that is missing in decision
support formulated probabilistically, even if second-order probabilities are used.

Extreme ambiguity as observed in our third example implies that model pre-
dictions have little practical value for decision support. For example, according to
standard decision theory, a decision-maker who wants to follow basic axioms of ra-
tionality should account for uncertainty by choosing the action that maximizes his
or her expected utility (Von Neumann and Morgenstern 1944; Savage 1954). When
imprecise probability distributions are used to represent uncertainty, intervals of
expected utilities result. Overlapping intervals imply that there is not su�ciently
precise knowledge available to obtain a unique ranking among decision alternatives
according to expected utility theory. In this way, imprecise probabilities provide a
measure of the ‘decidability’ of a decision problem, as informed by model predictions.
This is an important consideration that is missing in decision support formulated
using only precise probabilities. For situations in which there is too much ambiguity
to rely exclusively on expected utility theory, secondary criteria such as probabilities
of improvement (Reichert and Borsuk 2005) or the precautionary principle (Foster
et al. 2000; Gollier and Treich 2003) may be required.
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Chapter 5

Conclusions and Further Research
Needs

5.1 Conclusions

In rational decision analysis and decision support the decision making process is
divided into the steps of (1) structuring objectives and quantifying their degree of
fulfillment by a utility function that depends on measurable system attributes, (2)
predicting the consequences of decision alternatives in the form of probability dis-
tributions of these attributes, and, finally, (3) ranking the alternatives according
to decreasing values of expected utility. The derivation of probabilistic predictions
often requires the elicitation of knowledge about influence factors, model parameters
or directly predicted attributes from subject matter experts. This is especially the
case in environmental modeling since epistemic uncertainty is often dominant. If
we quantify subjective degrees of belief of experts with the aid of bets on lotteries
between which a person is indi↵erent, and if we assume that the experts want to
avoid sure loss, then the resulting knowledge quantifications will be consistent with
the axiomatic foundation of probability theory and the mathematical construct for
describing and updating such beliefs must be Bayesian statistics. Unfortunately, the
expert(s) often are unable to characterize(s) her/his/their uncertain degrees of belief
without ambiguity. Ambiguity becomes even more relevant if experts are asked to
specify knowledge in terms of intersubjective knowledge, representing the current
state of knowledge of the scientific community about an environmental system, its
mathematical description, or specific parameter values. We therefore suggest to
use imprecise probabilities that allow us to continuously characterize the degree of
ambiguity, ranging from total ignorance to precise probability distributions. This
extends our framework to robust Bayesian statistics. Many concepts have been pro-
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posed for specifying sets of probability distributions. The Density Ratio Class has
unique conceptual advantages, as we have shown in Rinderknecht et al. (2011, 4):
it is (i) invariant under Bayesian updating, (ii) invariant under marginalization, (iii)
invariant if propagated through a deterministic model, and (iv) embedded again into
a Density Ratio Class that can be larger than the set of propagated distributions of
the initial class if the model is stochastic. In particular, the Density Ratio Class ’s
invariance under Bayesian updating and marginalization makes it the unique class
that allows for simultaneously describing a consistent sequential Bayesian learn-
ing process and conveniently conveying higher dimensional cases. Furthermore, the
class is nonparametric but naturally excludes extremely variable probability den-
sities that seem unreasonable (such as densities with extreme peaks or even point
masses). Because the Density Ratio Class is di�cult to elicit, we developed an
elicitation technique that fits a Density Ratio Class with given parametric bounds
to elicited quantile or probability intervals. We do not claim that experts have in-
ternal representations of uncertainty that conform precisely with the Density Ratio
Class but our technique seems to yield a reasonable representation of the expert’s
(possibly ambiguous) beliefs. For deeper insight and a more detailed description
of the ambiguity represented by a class of probability distributions, we proposed
three generic metrics applicable to any set specification. These metrics measure
the relative, to a predefined credible level, ambiguity of specific characteristics of a
probability distribution such as the width, the shape and the position of the mode.

We successfully applied – to parameters containing di↵erent degrees of uncer-
tainty and ambiguity – (a) the elicitation technique presented in Rinderknecht et al.
(2011, 2.3) and (b) the proposed metrics presented in Rinderknecht et al. (2012,
3.3). We hereby point to three exemplary cases originating from a wide range of
application areas that are presented in Rinderknecht et al. (2012, 3.5.1, 3.5.2, 3.5.3).

Concerning the treatment of imprecise prior knowledge in the form of Density
Ratio Classes with regard to its e↵ects on parameter estimates and model pre-
dictions we successfully applied – without a substantial increase in computational
burden compared to conventional methods – our proposed methods presented in
Rinderknecht et al. (2011, 4) to a simple deterministic periphyton model that has
an additive stochastic error. For complex models with a large number of parameters
formulating ambiguity in all parameters can lead to a very high ambiguity in the
predictions as we have shown, i.e., in the third example of our periphyton model in
Rinderknecht et al. (2011, 4.4.3). Hence, when independent parameter distributions
are merged to a joint distribution, we recommend to carefully select the parameters
that need an ambiguous formulation by a Density Ratio Class. If this is the case
for a large number of parameters, we have to accept that only highly ambiguous
predictions can be made.
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Finally, we developed a generically extendable R software package fitDRC.R,
freely available on http://cran.r-project.org/ subject to the terms of agreement. The
package (I) allows its users to construct ready-to-use one-dimensional smallest Den-
sity Ratio Classes for elicited probability-quantile points (or intervals) given a lower
and upper (possibly transformed) distributional shape as presented in Rinderknecht
et al. (2011, 2.3) and (II) it makes it possible to calculate the metrics as proposed
in Rinderknecht et al. (2012, 3.3) for non transformed distributions. The most fre-
quently used distributions (Normal, Student, Weibull, Log-Normal, Beta, Gamma,
F, Uniform, Logistic) and transformations (Arctan, Tan, Log, Exponential, Dila-
tion) are already implemented. If the desired distribution or transformation should
not yet be implemented the generically extendable fitDRC.R package is easily cus-
tomizable by simply modifying the standard templates from the example section.

5.2 Further Research Needs

Despite having made a step towards simplifying the use of Density Ratio Classes in
modeling and decision support, there remain many important research questions to
be addressed in future work. Some of these needs are listed below.

1. Elicitation of Dependent Parameters

In the description of our proposed elicitation method, we focussed on one-
dimensional parameters, but the Density Ratio Class can be readily defined
for the multivariate case as well. It is well known that the construction of elic-
itation techniques that appropriately capture covariance in an expert’s knowl-
edge about multiple uncertain quantities is challenging. Examples of relevant
research questions are:

(a) How could knowledge on dependent multivariate parameters best be
elicited in general?

(b) How could covariances of multivariate parameters in the form of Density
Ratio Classes best be elicited in particular?

2. Application of Imprecise Probabilities in Decision Analysis and For-
mulation of Imprecise Utilities

When classes of probability distributions are used, then expected utilities re-
sult in intervals. These utility intervals may overlap or not. In the case of
non-overlapping utility intervals, a unique ranking of decision alternatives is

http://cran.r-project.org/
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still possible and the selection of the most appropriate one is guaranteed.
But in the case of overlapping utility intervals, there is, to our knowledge,
no established decision rule for the selection of the most appropriate decision
alternative. In addition, if ambiguity in probabilities is considered, it seems
reasonable to consider ambiguity in preference quantification also. This would
lead to imprecise utilities. This leads to the following relevant research ques-
tions:

(a) How can decisions best be supported if the expected utility intervals
overlap?

(b) How can the theory of rational decision making best be extended to
consider imprecise utilities?

3. Treatment of Ambiguity

We have found that the introduction of ambiguity in the description of knowl-
edge about model parameters may cause a severe increase of ambiguity in
model predictions which then has substantial consequences on model-based
decision support. Relevant research questions in this field are:

(a) Is the combination of ambiguity by joining independent Density Ratio
Classes too conservative and could a methodology be developed that
would lead to a smaller increase in ambiguity?

(b) Could other concepts be combined with imprecise probabilities to reduce
the increase in ambiguity?

4. Marginalizing Classes of Combined Distributions

For two univariate Density Ratio Classes with bounds l

1

, u

1

and l

2

, u

2

, it makes
sense to consider the smallest class which contains all product densities of
members of the two classes. It is not di�cult to see that this is the Density
Ratio Class with bounds l

1

l

2

, u

1

u

2

(take l

1

and l

2

normalized and consider
densities f

i

which are equal to l

i

except on a small interval where f

i

= u

i

).
Marginalizing this class produces new classes which are larger than the ones
we started with.

(a) What are the theoretical and practical consequences of the fact described
above?

(b) Is there a concept that eliminates the mentioned problem?
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5. Software Development

There may be various reasons why the use of classes of probability distributions
did not become widespread in decision support. However, it is a fact that
software tools that consider imprecise probabilities are scarce. One reason
may be that the additional numerical burden was expected to be considerable.
We demonstrated that the implementation of imprecise probabilities for the
quantification of ambiguity does not lead to an overwhelming complexity or
computational burden. This leads to questions regarding the optimal support
of the application of imprecise probabilities by software tools:

(a) Which software tools (with an appropriate interface) would be needed to
further accommodate and facilitate the use of imprecise probabilities for
predictions and decision analysis?

(b) Are there existing software tools that could be extended for this purpose
and how could such a software tool best be implemented?
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