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Abstract 

Drawing on a wealth of knowledge about cortical movement processing, together 

with recent advances in signal processing and acquisition technology, the field of 

brain machine interfaces (BMIs) has the potential to become a viable assistive tool 

for patients with chronic spinal cord injury, stroke, and other motor debilitating 

diseases. Here, we present our efforts on development of a neural interface for 

decoding specific hand grasping postures in macaque monkeys.  In contrast to the 

vast body of the literature, where M1 is used as the major source of motor related 

neural activity, our approach aims at decoding the neural activity in the anterior 

intraparietal cortex (AIP) and ventral premotor cortex (F5). These are higher-order 

motor planning areas, which play a role in sensorimotor integration during 

movement planning and believed to be holding an abstract representation of hand 

grasping actions. In this work, we formulated 3 main research questions and treated 

them subsequently; 

First, as the major research question of this thesis, we investigated the feasibility 

of using multi-unit neural activity from AIP and F5 for decoding discrete hand 

postures in a real-time BMI setting with closed feedback. This approach builds upon 

the previous studies from our lab and targets conceptual proof of using neural signals 

from AIP and F5 in a real time setup with a clinical neuroprosthetic device ultimately 

in mind. Our initial analysis confirmed that real-time recorded signal characteristics 

have similar tuning properties to cells in previous single-unit recording studies. The 

maximum average decoding accuracy observed for two grasp types (power and 

precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of 

decoder performance showed that grip type decoding was highly accurate (90.6%), 

with most errors occurring during orientation classification. Furthermore, we 

observed significant differences in the contributions of F5 and AIP for grasp 

decoding, with F5 being better suited for classification of the grip type and AIP 
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contributing more toward decoding of object orientation. This work is published in 

Journal of Neuroscience in 2011 (Townsend et. al, 2011).  

Second, using the same signal sources and modalities, we targeted decoding the 

temporal component of grasping, which has a fundamental importance in a realistic 

fully autonomous neuroprosthetic application. Employing initially the same 

analytical procedures from previous chapter we showed that, signals emerging from 

AIP and F5 are indeed usable for movement time decoding as well. Moving further 

we have utilized more sophisticated Markovian models to better capture stochastic 

and temporal structure of the underlying task and presented improved decoding 

accuracy and robustness. As the last attempt to draw a conclusion about maximum 

possible decoding accuracy, we defined our task in a data-mining setup and 

compared our results for different machine learning algorithms. Results have been 

presented in Neuroscience 2008, in Washington (Subasi et al., 2008). 

Finally, similar to the last objective of temporal decoding, we took a data-mining 

approach for our initial task of decoding hand postures. Here, on our data set we 

systematically tested 24 different classification algorithms, which include standard 

machine learning algorithms and ensemble methods. Based on the observed results 

from different learner families, we have investigated the implementation of an 

improved learner for our problem. The proposed model showed better decoding 

accuracy and enhanced robustness on average compared to the learners utilized in the 

first part. However, at the end our benchmark learner, a Naïve Bayesian Classifier, 

was still showed to be one of the strongest learners for the task at hand. The outcome 

of this work was published and presented at an international IEEE conference 

(Subasi et al., 2010). 

In sum, this thesis brings new insights into quantitative differences in the 

functional representation of grasp movements in AIP and F5 and represents a first 

step toward using these signals for developing functional neural interfaces for hand 

grasping.  
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Zusammenfassung 

Das zunehmende Wissen über die Verarbeitung kortikaler Bewegungspläne und 

die neuesten Fortschritte in den Bereichen Signal- und Datenverarbeitung in Betracht 

ziehend, haben Gehirn-Maschine-Schnittstellen (engl. BMIs, “brain machine 

interfaces”) das Potential, eine zuverlässige Unterstützung für Schlaganfallpatienten, 

Patienten mit chronischen Rückenmarksverletzungen, und anderen degenerativen 

Krankheiten des motorischen Systems zu werden. In der vorliegenden Arbeit 

berichten wir von unseren Fortschritten bei der Entwicklung einer neuronalen 

Schnittstelle zur Dekodierung spezifischer Handgreifbewegungen bei Makaken. Im 

Gegensatz zum Grossteil der Veröffentlichungen in diesem Forschungsbereich, in 

denen M1 als Hauptquelle neuronaler Signale zur motorischen Kontrolle verwendet 

wird, zielt unsere Ansatz darauf ab, neuronale Aktivität in den Arealen AIP (dem 

anterioren intraparietalen Cortex) und F5 (dem ventralen prämotorischen Cortex) zu 

dekodieren. Es handelt sich dabei um übergeordnete motorische Areale, die im 

Rahmen der Bewegungsplanung eine Rolle bei der senso-motorischen Integration 

spielen und als Orte der abstrakten Repräsentation von Handgreifbewegungen gelten. 

In dieser Forschungsarbeit wurden drei zentrale Fragestellungen nacheinander 

untersucht.  

Erstens untersuchten wir, als wissenschaftliche Kernfrage dieser Doktorarbeit, 

wie realistisch die Nutzung von neuronaler “Multi-Unit”-Aktivität der Areale AIP 

und F5 ist, um unterschiedliche Handbewegungen  in einem Echtzeit-BMI-Setup mit 

geschlossener Rückkoppelungsschleife zu dekodieren. Dieser Ansatz baut auf 

vorhergehende Arbeiten unseres Labors auf und zielt darauf ab, einen 

konzeptionellen Beweis dafür zu liefern, dass neuronale Signale der Areale AIP und 

F5 in einem Echtzeit-Versuchsaufbau zur Bewegungs-Dekodierung benutzt warden 

koennen, nicht zuletzt hinsichtlich einer klinischen Umsetzung. Erste Analyse 

Ergebnisse  bestätigten, dass die in Echtzeit aufgenommenen Signale in ihren 

Kodierungs-Eigenschaften vergleichbar mit den aus vorhergehenden Studien mit 

Einzelzellableitungen gewonnenen Daten waren. Die maximale 6 
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Durchschnittsgenauigkeit für die Dekodierung zweier verschiedener 

Greifbewegungen (Kraft-  und Präzisions-Griff) in Kombination mit fünf 

unterschiedlichen Ausrichtungen des Handgelenks lag bei 63% (bei einer 

Zufallswahrscheinlichkeit von 10%). Die Analyse der Leistungsfähigkeit des 

Decoders ergab eine hohe Genauigkeit bei der Dekodierung des Griff-Typs (90.6%), 

wohingegen die meisten Fehler bei  der Unterscheidung der Orientierung des 

Handgelenks auftraten. Desweiteren beobachteten wir erhebliche 

Beitragsunterschiede von F5 und AIP zur Dekodierung der Greifbewegung, wobei 

die neuronale Aktivität in F5 besser für die Dekodierung des Griff-Typs geeignet 

war, jene in AIP dagegen mehr zur Dekodierung der Ausrichtung des zu greifenden 

Objekts beitrug. Diese Studie wurde 2011 im Journal of Neuroscience veröffentlicht 

(Townsend et al, 2011).  

Zweitens zielten wir, unter Nutzung derselben experimentellen Daten, auf die 

Dekodierung der zeitlichen Komponente von Greifbewegungen ab. Dieser kommt 

eine zentrale Bedeutung für die praktische Umsetzung einer autonom 

funktionierenden neuroprosthetischen Anwendung zu. Unter Verwendung derselben 

im Vorfeld gebrauchten  analytischen Methoden zeigten wir, dass die neuronalen 

Signale der Areale AIP und F5 tatsächlich für die Dekodierung von zeitlichen 

Komponenten verwendet werden können. Im weiteren Verlauf benutzten wir 

anspruchsvollere Markov-Modelle, um stochastische Prozesse und die zeitliche 

Struktur des Versuchs detaillierter erfassen zu können, was zu einer verbesserten 

Genauigkeit und Verlässlichkeit der Dekodierung führte. Um ein abschliessendes 

Fazit zur höchstmöglichen Genauigkeit der Dekodierung zu ziehen, verglichen wir 

die Ergebnisse bei Benutzung unterschiedlicher Lern-Algorithmen miteinander. Die 

Ergebnisse wurden im Jahr 2008 im Rahmen der “Neuroscience” in 

Washington(D.C.) präsentiert (Subasi et al., 2008).  

Schliesslich wählten wir, ähnlich der Analyse der zeitlichen Dekodierung, einen 

“Data-Mining”-Ansatz, um die ursprüngliche Frage nach der Dekodierung von 

Handgreifbewegungen zu beantworten. Hierbei untersuchten wir 24 unterschiedliche 

Klassifizierungs-Algorithmen, die standardisierte Lern-Algorithmen und “Ensemble 
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Methoden” beinhalteten. Basierend auf den beobachteten Ergebnissen bei Nutzung 

unterschiedlicher Familien von Lern-Algorithmen schlugen wir ein verbessertes 

Modell für unsere Fragestellung vor. Dieser Lern-Algorithmus zeigte im Schnitt eine 

verbesserte Dekodierungs-Genauigkeit und Zuverlässigkeit. Jedoch erwies sich am 

Schluss unser Referenz-Algorithmus, ein naiver Bayes-Klassifikator, als eines der 

besten Lern-Modelle für den gegebenen Task. Das Ergebnis dieser Arbeit wurde im  

Rahmen einer internationalen IEEE-Konferenz veröffentlicht und präsentiert (Subasi 

et al., 2010).   

Zusammengefasst gewährt die vorliegende Dissertation neue Einblicke zu  

quantitative Unterschieden der funktionellen Repräsentation von 

Handgreifbewegungen in AIP und F5 und zeigt erste Schritte auf, wie diese Signale  

zur Entwicklung neuronaler Schnittstellen für Handgreifbewegungen genutzt warden 

könnten.
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1 Introduction 

“Except our own thoughts, there is nothing absolutely in our power.” 

-René Descartes 

1.1 Overview 

The human brain is believed to be the most complex computing machine in existence. It 

essentially captures a variety of environmental signals and extracts information from these 

multivariate signal streams to create cognition, imagery and different forms of behavior. Its 

computational capabilities are arising arguably from its unique architecture. Around 100 billion 

neurons work in parallel, with a massively distributed memory system consisting of over 100 

trillion synapses. It manages to cope with virtually unlimited amount of complexity while 

being very robust to both external and internal noise and it operates even after some 

significant loss of its computation units. Numerous philosophers and scientists throughout the 

history attempted to explain the working mechanism and organizing principles of human 

brain, yet, without too much success. Under this lack of knowledge of governing principles, 

scientists and engineers have focused more on developing methods to directly interface with 

the brain in the last decades, mainly to help people with nervous system problems but also 

with a hope to gain a better understanding of the underlying principles of its operation. With 

advances in measurement and computing technologies, achieving those goals is becoming an 

increasingly realistic prospect nowadays. In this work, we document our efforts at the 

Institute of Neuroinformatics (University of Zurich and ETH Zurich) to contribute in the field 

via implementation of a model real-time Brain Machine Interface for hand grasping.  
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A brain-machine interface (BMI) is a communication system which collects some 

quantifiable form of neural signals, infers meaning (or decodes them in BMI terminology) 

and finally creates a mapping to a corresponding behavior or action. One of the primary 

motivations for developing BMIs has been to provide a means of communication for 

individuals with severe neurological problems, where the neural pathways for transmitting 

control signals to motor organs are damaged. In many of these patients, the cerebral activity 

creating these signals is still intact. Therefore, the decoding of this neural activity directly 

from the brain could be used to bypass their malfunctioning peripheral nervous system. It is 

possible to come across to BMI research in the literature with a variety of names; brain 

computer interfaces, direct neural interfaces, neurocortical interfaces, or neuroprosthetic 

devices are among the most common alternatives. They usually have some subtle differences 

and selection of a particular name is usually motivated by the specific application type. But 

the characteristics and working principles of all of these devices are the same; reading / 

understanding and bypassing natural nervous systems to create a direct communication 

pathway between brain and external world.  

BMIs can be classified in two families in broadest sense depending on the source and 

method the signals are collected: Invasive methods vs. non-invasive ones. Invasive systems 

utilize implanted single or multi electrodes directly into central nervous system. They are 

well suited for decoding activity in the cerebral cortex due to high signal-to-noise ratio 

(SNR). Although brain represents information in a distributed fashion in general, cortical 

areas still show significant specialization and it is possible to target these specialized areas 

with invasive methods. Noninvasive systems on the other hand, are better suited for situations 

in which a surgical implementation is not possible or may be avoided due to the obvious risk 

of a surgical procedure. Electroencephalography (EEG) is the most commonly used 

measurement modality for noninvasive recordings. The challenge with EEG and with non-

invasive methods in general, is typically a low SNR and low information throughput. The 

current state of art signal collection and decoding techniques of noninvasive methods are 

beyond the reach of the goal of decoding natural hand movements, thus we are concentrating 

only on invasive approaches throughout this work. 

One can track the research that makes the concept of BMIs possible to the early 1900s. 

By the beginning of previous century Fedor Krause, a German neuro-surgeon, was able to do 

a systematic electrical mapping of the human brain, using conscious patients undergoing 

brain surgery (Morgan, 1982). Later, Hans Berger (Berger, 1929) discovered the externally 
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measurable electrical activity of human brain, which is the ancestor of modern EEG devices. 

Later at 50’s, prominent Nobel laureates; Hodgkin, Huxley (Hodgkin et. al, 1952), enabled a 

breakthrough in membrane and intracellular electrophysiology, which is a key element of 

today’s invasive BMIs. The same decade Hubel and Wiesel (Hubel et. al., 1959), other Nobel 

laureates, made significant contribution to our understanding of information processing in the 

visual system. Later on, Eberhard E. Fetz’s famous publication (Fetz, 1969) on operant 

conditioning of cortical activity described the path for many modern BMI experiments. In the 

1980s, Georgopoulos (Georgopoulos et. al., 1982) recorded single-neuron firing rates as the 

monkey reached in different directions. In 90s we have witnessed minitiarisations, advances 

in signal processing, computation power, and new algorithms have led to modern BMIs. 

There is an exponential growth in the research field in the last 15 years and finally in late 90s 

and in 2000s, first successful human trials for cortical motor prostheses started and promising 

results were obtained (Hochberg et. al., 2006). Cortical motor prosthesis are still in early 

research and development phase, whereas other forms of BMIs like cochlear implants or 

deep-brain stimulation devices (for symptomatic treatment of Parkinson’s disease or chronic 

pain) already found their way in the daily lives of thousands of the patients in the last few 

decades (Loeb, 1990; Merzenich, 1983; Follett, 2000). 

In this thesis, we aim to present our research on developing a simple brain machine 

interface for hand grasping in macaques that can distinguish between various grip types and 

wrist orientations in real time. With this, we hope to contribute to ongoing research on neuro-

cortical prostheses which aims to make the lives of patients suffering from neuro-motor 

diseases easier. Using predominantly multi-unit activity recorded simultaneously from AIP 

and F5 (higher order grasping related cortical areas in non-human primates), we demonstrate 

that real time decoding of hand grasping is possible. This conceptual proof is first in the 

literature (Townsend et al., 2011) and is the main achievement in this work. Below we 

provide a description of the anatomical properties of the hand-grasping related cortical areas 

under interest first. In the parietal cortex this is the anterior intraparietal area (AIP) and in the 

frontal lobe the area F5. Then, a brief literature survey on hand-grasping neural prosthetic 

BMI research will follow. Finally we will finish this chapter with the descriptions of the main 

objectives of this work. 
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1.2 Higher order hand-grasping related cortical areas 

One of the defining characteristics of this study is the brain regions we have utilized to 

collect neural signals for the BMI implemented. Throughout this work we have collected and 

analyzed data from only two higher order cortical regions, namely AIP and F5. By the term 

“higher order” we want to emphasize the fact that the areas under interest don’t have direct 

motor output projections but relay predominantly to the primary motor cortex and 

furthermore are characterized by the presence of planning activity. Most of the relevant 

studies to date show that it is feasible to operate a hand/arm BMI via the signals collected 

from primary motor cortex (M1). By demonstrating the possibility of the utilization of the 

signals from these higher order / abstract grasping related regions, we aim to contribute to the 

literature. Below we provide a summary of the characteristics of these two cortical areas. 

 

1.2.1 AIP 

The anatomical connections locate AIP right at the interface between sensory, motor and 

cognitive areas related to hand movement control. It receives visual input via several higher 

order visual areas in the parietal cortex, in particular LIP, V6A and CIP (Nakamura et al., 

2001; Borra et al., 2008; Gamberini et al., 2009). It is also connected with ventral visual 

stream areas in the temporal cortex (areas TEO, TEa, TEp, Borra et al., 2008). These 

connections might inform AIP about parameters of familiar and identified objects. In the 

frontal lobe, AIP is strongly and reciprocally connected with area F5 (Luppino et al., 1999 

;Borra et al., 2008), an area which exhibits similar activity related to hand movements 

(Rizzolatti et al., 1988; Murata et al., 1997; Raos et al., 2006; Stark et al., 2007) and is 

considered to be part of the cortical output structures for controlling the hand due to its 

projections to primary motor cortex and the spinal cord (Rizzolatti et al., 1988; Luppino et 

al., 1999; Lemon, 2008). AIP is also directly connected with the prefrontal cortex (areas 12 

and 46, Borra et al., 2008), areas which are believed to be involved in higher order cognitive 

processing like working memory, rule learning or the representation of abstract concepts. 

Mountcastle and his colleagues (Mountcastle et al., 1975) were the first who described 

neurons in the inferior parietal lobe which were involved in goal directed, visually guided 

hand movements. Later, Taira and colleagues found neurons with similar characteristics in 

the rostral part of the lateral bank of the intra-parietal sulcus (Taira et al., 1990), which was 

named the anterior intraparietal area (AIP, Gallese et al., 1994). Most of the task related 
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neurons in this area were selectively active for the grasping of different objects used in the 

experiment. Most importantly, they found that these neurons were not influenced by the 

position of the object in space, indicating that their activity was specifically related to the 

hand, not the arm movement. In a later study, Sakata and colleagues classified these neurons 

further as object type vs. non-object type neurons (Sakata et al., 1995), according to their 

behavior during mere fixation of the graspable object (Figure 1.1). Object type cells were 

found to represent aspects of the 3D shape of the graspable objects and some were also 

selective for the size and/or the orientation (Murata et al., 2000). Many of these object type 

cells preferred the same object during object fixation and during grasp execution. Motor-

dominant or non-object type selective cells, on the other hand, were found to be more related 

to the shape of the hand during grasping. In another study, AIP neurons were found to show 

sustained activity in a delayed grasping task, suggesting that they play a role in the visual 

memory of 3-dimensional object features (Murata and Kitahara, 1996). Altogether, these 

electrophysiological findings suggest that AIP neurons play an important role in matching the 

pattern of the hand movement to visuo-spatial characteristics of the object to be grasped. The 

functional relevance of AIP during visually guided hand movements was also tested by 

inactivation studies in monkeys (Gallese et al., 1994) by utilization of microinjections of 

muscimol (a GABA agonist) which leads to localized and reversible inactivation of AIP. 

Finally, these properties were also confirmed by the previous single-electrode recording 

studies carried out in our lab (Baumann et al., 2009) which also demonstrated the context 

specific nature of the grasp planning signals in these areas. 
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Figure 1-1 : Classification of AIP cells according to Sakata 

Five types of hand manipulation related neurons under three task conditions. A. Example of 

object-type visual-motor neuron, B. nonobject-type visual-motor neuron, C. object-type 

visual dominant cell, D.  nonobject-type visual dominant cell, E. motor dominant cell. The 

lines below the histograms show the mean duration of the fixation period and the holding 

period. Modified from Murata et al., 2000. 
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1.2.2 Frontal area F5 

In macaques, the posterior bank of the arcuate sulcus with the adjacent cortex on the 

convexity is termed area F5. In their seminal paper, Rizzolatti and colleagues reported that 

neurons in F5 showed activity that was not specific to movements of individual joints of 

fingers like in the case with M1 neurons but to more abstract motor actions like grasping in 

different shapes or holding (Rizzolatti et al., 1988). Many of the neurons analyzed in this 

region were selectively tuned for a particular grip type, like precision grip, side grip or power 

grip. Also, many of these neurons could be activated by the visual presentation of the 

graspable objects. In later studies, F5 neurons were recorded while monkeys grasped 

repetitively one of six different objects either in the light or in the dark (Murata et al., 1997; 

Raos et al., 2006). The results showed that activity in F5 is very similar for objects with 

different geometric shapes when they are grasped with the same grip type, suggesting that the 

activity of F5 neurons is mainly determined by the type of grip that the animals use and not 

by the object shape itself. Moreover, some subset of neurons was activated also during mere 

object fixation in the absence of grasping. Fogassi and colleagues (Fogassi et al., 2001) tested 

the functional relevance of F5 for visuomotor transformation through an inactivation study. 

They showed that usual pre-shaping of the hand during the reaching was significantly 

impaired and kinematic differences compared to the normal case emerged. On the other hand, 

the general hand movements were still executable, especially after a series of corrections 

made with tactile feedback. Thus the authors concluded that F5 lesions affected specifically 

the visuomotor component of grasping movements. These symptoms after inactivation were 

quite similar to those after inactivation of AIP. This is consistent with the hypothesis that AIP 

and F5 together form a parieto-frontal circuit for sensorimotor transformations specific for 

hand grasping. 

Furthermore, in a recent study Umilta and colleagues, by simultaneously recording in F5 

and M1, showed that only F5 neurons were tuned for specific grasps before the movement 

start (Umilta et al., 2007). M1 neurons on the other hand lacked this early pre-movement 

specificity but where strongly involved during movement execution. This particular 

characteristic of F5 neurons makes them especially a good candidate for real-time BMIs, as it 

can serve as an additional signal source to more classical BMIs that utilize signals from M1.  
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1.3 Hand-grasping BMIs with neuro-prosthetic applications 

The development of neural prostheses to restore voluntary movements in paralyzed 

patients is enjoying an increasing pace in attention lately. Such devices harness neural signals 

from intact brain areas to manipulate artificial devices, and ultimately could control the 

patient’s own limbs (Hatsopoulos and Donoghue, 2009). Since our hands play a central role 

for interacting with the world (Lemon, 1993), improvement of hand function remains a high 

priority for patients with motor deficits, e.g., amputees, spinal cord injury patients, stroke 

victims, and others (Snoek et al., 2004; Anderson, 2009). Neural prostheses for grasping 

could greatly improve their quality of life. 

Recent years have seen a multitude of studies on BMIs for movement control (Schwartz 

et al., 2006; Scherberger, 2009; Hatsopoulos and Donoghue, 2009).  Besides EEG- and 

electrocorticographic-based systems in humans (Leuthardt et al., 2004; Wolpaw and 

McFarland, 2004; Bai et al., 2008), invasive BMIs in non-human primates have been 

developed using neural population activity in primary motor cortex (M1) to reconstruct 

continuous 2D and 3D arm and hand position (Wessberg et al., 2000; Serruya et al., 2002; 

Taylor et al., 2002; Carmena et al., 2003), and monkeys have learned to use these signals to 

control a gripper-equipped robotic arm to feed themselves (Velliste et al., 2008). This 

approach has generally not yet been extended to decode sophisticated grasping patterns, 

which is attributable to the complex nature of dexterous finger movements and the large 

number of degrees of freedom of the hand (Schieber and Santello, 2004), however see 

Vargas-Irwin et al. (2010) for a first example of such an approach. Furthermore, the exact 

mechanisms by which grasping movements are learned and retrieved are quite unclear, 

making effective decoding hard.  

Alternatively, cognitive control signals related to intended actions can be extracted by 

tapping into ”higher order” planning signals in premotor and parietal cortex (Musallam et al., 

2004; Santhanam et al., 2006; Mulliken et al., 2008; Andersen et al., 2010). Key areas for 

such high-level control of grasping are ventral premotor cortex (area F5) and anterior 

intraparietal cortex (AIP), which are strongly and reciprocally connected (Luppino et al., 

1999), establishing a fronto-parietal network dedicated to transforming visual signals into 

hand grasping instructions (Jeannerod et al., 1984; Kakei et al., 1999; Brochier and Umilta, 

2007). Unlike M1, these areas represent upcoming hand movements at a conceptual or 

categorical level well before their execution (Musallam et al., 2004; Baumann et al., 2009; 

Fluet et al., 2010). Targeting these areas could therefore considerably simplify the decoding 
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of complex movements. The proof of the concept of a successful real-time BMI using only 

these types of abstract signals was not available in the literature to our knowledge, in this 

work we aim to contribute to the field in this respect. 

1.4 Main objectives of the present thesis 

A 1995 study by U.S. Department of Health Human Services suggests that 1.7 million 

people, only in USA, are suffering from some form of paralysis. This number is a lot higher, 

over 5.5 million, according to a more recent study sponsored by the Christopher and Dana 

Reeve Foundation (Paddock, 2009). Paralysis can result from spinal cord lesions and other 

traumatic accidents, peripheral neuropathies, amyotrophic lateral sclerosis, multiple sclerosis 

and stroke (Andersen, 2009). Another 1.4 million patients have motor disabilities due to limb 

amputation according to the same U.S. Department of Health Human Services survey. Many 

of these patients still have sufficiently intact cortex activation to plan movements, but they 

are unable to communicate these signals to their limbs and execute them. If we add other 

patients from all around the world, where we lack reliable statistics, it becomes clear that any 

assisting technology for restoring some upper-limb functionality holds significant promise for 

direct improvement in quality of life for millions of people.  

In the last decade, we have witnessed considerable progress in this multidisciplinary 

research area, mainly due to availability of better recording technology and easier access to 

powerful computation. However, still considerable number of problems need to be tackled 

before fully functional neuroprosthetic brain-machine interfaces that can be utilized clinically 

in a broader sense. Among the existing major problems are; improving the quality of 

neuronal recordings, to achieve robust and long-term performance, extending the brain-

machine interface approach to sensory functions and arguably most importantly having a 

better understanding about the operations of underlying brain regions, so we can attack the 

diseases more effectively. In this work, we aim to contribute to the field mainly on the last 

point by showing the feasibility of utilization of two higher order motor-cortical areas for a 

neural-prosthetic application. We will also report our attempts to improve the utilization of 

the signals coming from these brain regions via different learning algorithms. 

To that extent, we will show the development of a simple decoder for hand grasping in 

macaques that can distinguish various grip types and wrist orientations in real time. Using 

predominantly multi-unit activity recorded simultaneously from AIP and F5, we will 

demonstrate real time decoding of grasp type by maximum likelihood estimation and off-line 
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decoding with various learning algorithms as well as decoding of grasp timing. Overall, these 

results represent a first step towards the development of a motor prosthesis for dexterous 

grasping movements in paralyzed patients utilizing data from AIP and F5. 

The main hypothesis and specific goals: 

The decoding analysis of neural signals typically involves two layers: the encoding and the 

decoding stages. In the encoding stage, neural signals are characterized as a function of the 

biological signal. In the decoding stage, the relation is inverted, and the signal is estimated 

from the spiking activity of the neurons. Our main hypothesis is built upon the assumption 

that abstract hand postures are held in two areas we are recording from, AIP and F5, and that 

this abstract information can be extracted using specialized machine learning and signal 

processing techniques, which was trained with the neural data captured by ~100 electrodes 

from these regions. During decoding, the system makes predictions based on the underlying 

probabilistic model and captured stochastic properties of the model during training. We have 

three specific goals which will guide us throughout the process and we will present those in 3 

separate chapters after the methods chapter following this one.   

i. Online decoding of power and precision grip : 

As the first goal of the project, in chapter 3, we will decode in real-time a few specific hand 

movements (power and precision grips in 5 different orientations) from the neural population 

activity in AIP and F5 in the delayed grasping task (details in methods). To do this, we will 

simply use the rate information from each firing neuron for 10 different task conditions and 

use likelihood methods. The decoded movement intention will be presented in a static-image 

form back to the animal and we will report a thorough investigation of the characteristics of 

this closed-loop feedback on-line decoding experiment where we will be able to study the 

effects of visual feedback during sensorimotor transformation for grasping. With this real-

time decoding based on multiunit signals, we will find the chance to validate some 

observations and conclusions drawn in previous single-unit recording studies from our lab 

(Baumann, 2009; Fluet, 2010). Furthermore, we will investigate the contribution of different 

regions to decoding performance for grip type and orientation. In a subsequent analysis, we 

will also study an optimized spike-sorting method. Overall, these results will highlight 

quantitative differences in the functional representation of grasp movements in AIP and F5 
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and represent a first step toward using these signals for developing functional neural 

interfaces for hand grasping and will be the main contribution of our work to the literature.  

 

ii. Decoding of movement start : 

For any practical usage of a brain-machine interface (BMI) for hand grasping, it is 

important to decode not only the intended movement accurately, but also the time when it 

should happen. Thus, in chapter 4, we will explore a time decoding task, as our second goal 

in this thesis. We will simply perform the grasp decoding task as in chapter 3. However, 

instead of using the Go command of the task control computer as the signals to move, we will 

decode the start of the movement from the neural activity in AIP and F5. For this, we will 

implement a decoding algorithm that will continuously interpret the spiking activity of a most 

recent fixed window of data and from that, we will estimate the behavioral state of the animal 

(baseline, planning, or movement execution). Based on previous research in our lab on the 

prediction of behavioral states from LFP activity, we know that there is informative data 

regarding brain states in AIP and F5 (Baumann, 2009). However, this work will utilize only 

spiking data to do such state decoding and not only improve our understanding about two 

brain regions but also provide a proxy about the feasibility of the usage of AIP and F5 for a 

realistic neural-prosthetic device. Overall, the online decoding of different neuronal states 

will be an important milestone, which will enable future BMIs, to differentiate between 

action planning and execution directly from the neural activity. 

 

iii. Improved decoding : 

Finally, in chapter 5, we will report our findings on the off-line analysis of decoding the 

grasp type and orientation once again, but this time we will utilize a data-mining approach 

and search for an improved learner for decoding the spatial components of our task. Using the 

decoder from chapter 3 as our benchmark, we will compare 24 learners, which include many 

standard machine learning algorithms and ensemble methods, to investigate the effectiveness 

of the state of art learners and to find a more comprehensive representation of the underlying 

signals. Finally, we will propose a learning model for obtaining more robust and accurate 

decoding for the data recorded. These experiments, all together, should bring necessary and 

critical further steps toward future prosthetic BMIs that can employ signals from higher order 

cortical areas for hand grasping neural-prosthetic devices. 
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2 General Methods 

2.1 Basic Procedures 

Hand grasping movements were decoded in real time using neural activity 

recorded simultaneously from area F5 and area AIP in two female rhesus macaque 

monkeys (animals Z and S, weights 6.5kg and 8.0kg respectively). All procedures 

and animal care were in accordance with guidelines set by the Veterinary Office of 

the Canton of Zurich and the Guidelines for the care and use of mammals in 

neuroscience and behavioral research (National Research Council, 2003).  

The experimental paradigm we have used in this work is named “delayed 

grasping task”. This behavioral task has been developed and employed previously in 

earlier studies in our lab (Bauman 2009, Fluet 2010). For this work we have 

extended the original task where necessary. In this task, the animals were seated in a 

primate chair and trained to grasp a handle with their right hand (Fig. 2.1). This 

handle was placed in front of the monkey at chest level, at a distance of 

approximately 30cm, and could be grasped either with a power grip (opposition of 

fingers and palm)(Fig 2.2B) or precision grip (opposition of index finger and thumb) 

(Fig 2.2C). Two clearly visible recessions on either side of the handle contained 

touch sensors which were used to detect contact of thumb and forefinger during  
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Figure 2-1: Grasping Box 

The handle which can be oriented in 5 different angles, contained touch sensors 

which were used to detect contact of thumb and forefinger during precision grips, 

while power grips were detected using an infrared light barrier inside the handle 

aperture. Two capacitive touch sensors were functioned as hand-rest buttons.  

 

 

Figure 2-2: Hand-rest position and two grasping types animals are habituated to 

execute during the experiment 

Animals were trained to sit still in setup in hand-rest position and to perform two 

grasping types when signaled. A. Hand-rest position. B. Animal performing power 

grip.  C. Animal performing precision grip. 

 

precision grips, while power grips were detected using an infrared light barrier inside 

the handle aperture. The monkey was instructed which grip type to make by means 

of two colored LED-like patterns projected from a LCD screen onto the centre of the 

handle via a half-mirror positioned between the  animal’s eyes and the target. While 

previous studies from the same laboratory used standard LED components, the 

current study required positioning of a digital display to present visual feedback 

during real time decoding, making LED placement impractical. Instead, cues were 
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presented to the animal by means of small colored dots shown on the screen. 

Hereafter these will be referred to as “light dots”.  The handle could be rotated into 

one of 5 discrete orientations (upright, 25° and 50° to the left and right), and was 

illuminated by two spotlights placed on either side. Apart from these light sources, 

the experimental room was completely dark.  In addition, two capacitive touch 

sensors (Model EC3016NPAPL, Carlo Gavazzi, Italy) were placed at the level of the 

animals’ waist, and functioned as hand-rest buttons (Fig. 2.2A). The behavioral task 

was controlled by means of custom-written software implemented in LabView 

Realtime (National Instruments, Austin, TX, USA). Also, an infrared camera was 

used to monitor the monkeys’ behavior continuously throughout the entire 

experiment.  

The analog neural signals extracted from two cortical regions are first 

amplified (for signal preservation) in the proximity of the animal and then sent via 

UDP protocol to a signal processor for further distribution to recording and decoding 

PCs.  

 

Figure 2-3: Recording setup network diagram 

Neural signals from floating micro-electrode arrays are sampled using Cyberkinetics 

Neural Signal Processor and streamed to recording and decoding PCs. Animal 

interface PC is controlled via LabView software and decoding PC. 
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2.2 Behavioral Paradigms 

In the delayed grasping task, the monkey was required to grasp the handle in one 

of 5 orientations with either a power grip or a precision grip. This gave a total of 10 

different grasp conditions that were presented on a trial-by-trial basis in pseudo-

random order. The animal began a trial by placing each hand on a hand-rest button 

while sitting in darkness. In the baseline period, a red dot was illuminated and the 

handle positioned in one of the five orientations. From this point on the animal had to 

keep both hands at rest for a variable period of time (700-1100 ms, mean: 900 ms). 

In the following cue period (duration: 600ms), the object was illuminated to reveal 

its orientation and an additional dot was presented adjacent to the red dot, 

 
Figure 2-4: Task paradigm 

Animals were trained to perform two tasks. A. Delayed grasping task, consisting of 

four epochs: baseline, cue, planning, and movement. The task was performed in the 

dark, except for the cue period when the handle was visible together with an 

instruction dot for grasp type.  B. Brain control task. This task proceeded as in A, 

except at the end of the planning epoch, where the planned grasp was decoded and 

visually fed back to the monkey (picture of grasp) without requiring the animal to 

actually execute the movement.  
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Figure 2-5: FMA implantation details 

A. Placement of FMAs in animal S. Two arrays were placed in F5 on the lateral bank 

of the arcuate sulcus (AS). Two further arrays were placed in AIP towards the lateral 

end of the intraparietal sulcus (IPS). CS, central sulcus. Cross: medial, lateral, 

anterior, and posterior direction.  B. Schematic of FMA placement in animal S 

including FMA numbering. Dark edge on each FMA indicates row of electrodes with 

the greatest lengths. Annotations the same as in A. C. Schematic of FMA placement 

in animal Z. 

 

which instructed the type of grip to be performed: for power grip the dot was green 

while for precision grip it was white. Then, the spotlights and the cue dot were 

extinguished while the red dot remained illuminated for a variable time period (700-

1100 ms, mean 900 ms) during which the monkey was required to remember the 

grasping instructions (planning period). The red dot was then switched off, 

instructing the animal to reach and grasp the handle in the dark (movement period). 

Upon activation of the handle sensors, the handle was then illuminated again to allow 

visual feedback of the executed grasping movement. If the animal performed the 

correct grasp, this feedback was given together with a fixed amount of fluid (water or 

juice) as a reward, and the animal could initiate another trial by placing both hands at 

the hand rest buttons. Execution of the wrong grasp resulted in handle illumination 

together with presentation of the red dot, but in this case no reward was given. 

Failure to activate the handle sensors (e.g., when no movement was initiated) led to 
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trial abortion without visual feedback. Animals were considered fully trained once 

task performance exceeded 80%. 

For real-time decoding, each session began by sampling spike data from F5 and 

AIP during the planning phase in the standard delayed grasping task. These first 100-

150 trials were used to train the classifier (see below) by calculating the average 

firing rates during the planning epoch separately for each of the 10 grasp conditions 

and each unit.  

Once this process was completed, the brain control task was started (Fig. 2.4B). 

In this real time decoding task, baseline and cue epochs were identical to the delayed 

grasping task. However, during the planning epoch, spiking activity was sampled and 

used to make a prediction at the end of this period, about which grasp condition (grip 

type and object orientation) the monkey was intending to execute. If the instructed 

and decoded conditions matched, the monkey was rewarded without being required 

to execute the movement. Instead, a static picture of the animal’s hand executing the 

decoded grasp was presented on the LCD screen from a perspective of the animal, 

i.e. as if the animal was actually performing the grasp movement.  

Alternatively, if the decoded condition failed to match the instructed condition, the 

trial was either aborted or the red dot was extinguished, as in the delayed grasping 

task, which instructed the animal to grasp the target with its own hand. The latter was 

intended to maintain interest and motivation in the task, in particular when the 

overall decoding performance was low (e.g., animal Z, see: Chapter 3). 

2.3 Surgical procedures and imaging 

Upon completion of behavioral training, each animal received an MRI scan to 

locate anatomical landmarks, for subsequent chronic implantation of microelectrode 

arrays. The monkey was sedated (ketamine 10mg/kg i.m. and xylazine 0.5mg/kg 

i.m.), and placed in the scanner (GE Healthcare 1.5T) in a prone position. During the 

scan the animal was supplemented with O2 (1 l/min), and its heart rate, O2-

saturation, and end-tidal CO2-level was continuously monitored. T1-weighted 

volumetric images of the brain and skull were obtained as described previously 
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(Baumann et al., 2009). We measured the stereotaxic location of the arcuate and 

intraparietal sulci to guide placement of the electrode arrays. 

2.4 Chronic electrode implantation 

An initial surgery was performed to implant a head post (titanium cylinder, 

diameter 18mm). After recovery from this procedure, and subsequent training of the 

task in the head-fixed condition, each animal was implanted with floating 

microelectrode arrays (FMAs, Microprobe Inc, Gaithersburg, MD, USA) in a 

separate procedure. We used different types and numbers of arrays in each animal. 

Animal S was implanted with 32 electrode FMAs and received 2 arrays in each area 

(Fig 2.5A, B). Animal Z was implanted with 5 electrode arrays, each with 16 

electrodes. Three such arrays were implanted in area F5, and two in area AIP (Fig 

2.5C). Both types of FMA consisted of non-moveable monopolar platinum-iridium 

electrodes with initial impedances ranging between 300 kΩ to 600 kΩ at 1 kHz 

measured before implantation. Lengths of electrodes in the 16-electrode FMA were 

between 1.0 mm to 4.5 mm, and between 1.5 mm to 7.1 mm in the 32-electrode 

arrays. Finally, for one of the 32-electrode FMAs implanted in F5 of animal S, 16 of 

the electrodes were carbon nanotube coated (Plexon Inc., Dallas, TX, USA), which 

resulted in substantially lowered pre-implantation impedances (~5-10 kΩ). The 

influence of this coating on the long-term recording capabilities will be reported 

elsewhere. 

 All surgical procedures were performed under sterile conditions and general 

anesthesia (induction with ketamine 10 mg/kg, i.m., atropine 0.05 mg/kg, s.c., 

followed by intubation, isofluorane 1–2%, and analgesia with 0.01 mg/kg 

buprenorphene, s.c.). Heart and respiration rate, electrocardiogram, oxygen 

saturation, and body temperature were continuously monitored and systemic 

antibiotics and analgesics were administered for several days after each surgery. To 

prevent brain swelling while the dura was open, the animal was mildly 

hyperventilated (endtidal CO2: ~30 mmHg) and mannitol kept at hand. Animals were 
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allowed to recover for at least two weeks before behavioral training or recording 

experiments recommenced. 

2.5 Neural recordings 

From permanently implanted FMAs, we recorded spiking activity from multiple 

neurons simultaneously in area F5 and area AIP while the monkey performed the 

delayed grasping task. Neural signals were amplified (x300) and digitized with 16 bit 

resolution (0.25 µV/bit) at 30 kS/s using a Cerebus Neural Signal processor 

(Blackrock, Salt Lake City, UT, USA) and stored to disc together with the behavioral 

data. At the same time, we streamed spike and task data via a gigabit Ethernet 

connection to a separate decoding computer for the real time decoding described 

below (Fig. 2.3). Spike sorting was conducted online by manually setting time-

amplitude discrimination windows for Animal-Z, and using the proprietary 

automated spike sorting feature of the Cerebus system for Animal-S. 

2.6 Real time decoding algorithm 

Since our goal with decoding is to predict the most likely hand posture out of 10 

possible configurations (2 hand shapes x 5 hand orientations) given the neural 

ensemble signal, we formalized our objective as a classification problem. We chose 

spike rate (action potentials firing rate during planning period) as our input signal, 

following the most widely used approach in current neural-prosthetics literature 

(Taylor et al., 2002; Brown et al., 2004; Musallam et al., 2004; Hochberg et al., 

2006; Achtman et al., 2007; Velliste et al., 2008).  Since real time spike sorting 

algorithms are prone to error, it is very likely that some of the inputs to our classifier 

will be pure artifacts of the spike sorting instead of being actual single unit spikes. 

Therefore, we have used a simple feature selection layer first and only those units 

which were significantly tuned to the parameters of the task (1-way ANOVA with 

factor grasp condition 1-10, p<0.05) in the training data, were further fed to the 

decoder.  
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For classification, we utilized a parametric supervised learning scheme, the Naïve 

Bayesian (NB) classifier. It is an easy to implement, very robust learner, fast on 

training and classification (such that computation times will be not a problem for 

real-time setting), and in addition it also performs well in many complex real-world 

problems. In fact, in a comparison to many stronger learning algorithms in our setup, 

NB classifiers have shown to be one of the best performers (see Chapter 4, Subasi et. 

al., 2010).   

Besides pragmatic reasons stated above, one can also conclude using Naïve 

Bayesian classifiers is close to optimal from an encoding perspective as follows.  

2.6.1    Motivation for using Naïve Bayes classifiers:  

   A bottom/up view 

One main difficulty in understanding population coding arises from the fact that 

neurons are noisy in nature, thus encoding should be necessarily stochastic. Thus, we 

must compute some estimate of the stimulus or a probability distribution over 

stimuli, using a set of responses. Using an elementary probability equation, which is 

also known as Bayes’ formula, one can combine the information from the ensemble 

of cells, giving rise to a posterior distribution over stimuli, P(s|r ), as in Eq. 1. 

       
          

    
 

 

(1) 

Here s represents hand posture we are trying to decode (stimulus for the animal) and 

r the vector of neural firing rates. For the classification purposes we can iterate over 

all the postures and simply select the one with the highest probability density, which 

maximizes P(s|r). This estimate is also known as the maximum a posteriori (MAP) 

estimate. Furthermore, since P(s) is homogenously distributed in our experiment, ie. 

the probability of each posture to be signaled to the animal is equal, and the P(r) is 

not dependent on the stimulus s, maximizing P(s|r) will be equal to maximizing the 

likelihood function P(r|s). Thus the MAP estimate for s will be equal to Maximum 
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Likelihood (ML) Estimation (Eq. 2) of it, which is one of the most widely employed 

methods for estimation problems in classical statistics.   

           
   

             (2) 

ML estimator is not only an asymptotically unbiased estimator (consistent), it 

also has the minimum mean squared error among all unbiased estimators (efficient). 

In other words, given enough data, ML estimator is guaranteed to converge to the 

real probability value while having the minimum variance (Cramér–Rao lower 

bound) compared to all the other unbiased estimators. It is after these desirable 

mathematical properties, that ML estimator is also very popular by the practitioners 

of neural-signal decoding community and used in many setups yielding to state of art 

results (Brown et. al., 2004; Achtman et. al., 2007; Ma et. al., 2006). 

It is also worth to note that, unlike in many real-life ML estimation problems 

where finding the global maximum of a high-dimension, continuous likelihood 

function is challenging, it is trivial in our setup since we are working on a finite and 

discrete stimulus space. Thus, utilizing ML estimate was very straight forward; 

simply iterating over likelihood values of 10 different conditions and picking the one 

with maximum value.  

One final challenge left for the classification task arises from the fact that the 

proper estimation of the conditional joint probability P(r1, ..., rn |s) may require some 

significant amount of data. The data need scales exponentially with the number of 

neurons and since we have in the order of hundred neurons, the curse of 

dimensionality -as often called in the literature- will soon render the problem 

intractable for this animal experiment.  

Here comes the naïve assumption from NB classifier into play, such that we 

assume that each neuron fires conditionally independently of one another. After this 

assumption the estimation problem will require manageable amounts of data and we 

can factorize the previous conditional joint probability function as in Eq. 3;  

                       

 

   

 (3) 
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Now we only need to choose a distribution family for the independent probability 

distribution, P(ri|s). The neuronal firing variance in primate motor cortex is known to 

be in the same order with the average firing rate (Shadlen et. al., 1998; Garstein et. 

al., 1964; Ma et. al., 2006). A natural candidate is therefore Poisson distribution.  

                 
  

      

   
 (4) 

In Eq. 4, ri is the number of spikes observed from neuron-i in a particular trial and λs 

is the expected firing rate for the same neuron for the condition s. Thus, for making 

classifications in real-time we need to first estimate the parameters λss for each 

neuron. Using ML estimation one can show that the parameter, expected firing rate 

for a stimulus s, is nothing but the arithmetic average of firing rates. And for a proper 

estimation of λs, our experiments showed that only around 10 samples per condition 

is enough. Each real-time decoding session began with sampling of spike data from 

F5 and AIP during the planning phase while the animal performed the standard 

delayed grasping task. These first 100-150 trials are used to train the classifier where 

we calculated average firing rates during the planning period, for each of the 10 

grasp conditions for each neuron. This is indeed the only training a NB classifier 

needs; therefore we can conclude training was efficient and fast.  

2.6.2 Real time decoding trials 

Once the training process was complete, the monkey began real time decoding 

trials (Fig. 2.1B). Between 80-200 trials per session were used to test the decoder as 

follows. Fixation and cue phases were presented as for normal movement trials. 

Then, during the planning phase, spike data were sampled and used to make a 

prediction (at the end of this period) about which grasp condition was intended by 

the monkey, by choosing the condition which maximizes log-likelihood function, as 

in Eq 5.  

           
   

             

 

   

 (5) 
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The actual form of the likelihood requires multiplication of many very small 

numbers, which is not a desirable operation using double precision arithmetic in 

modern CPUs. By introducing a monotone transformation like log, we deal with 

these numerical instabilities while not altering the maxima location. 

If the decoded and instructed conditions matched, the monkey then received a 

small juice reward, while being presented simultaneously with a static image of its 

own hand executing the corresponding grasp condition. This was presented by means 

of the LCD screen and half-mirror, with the display controlled via a separate visual 

feedback computer. Each image was presented such that it overlapped closely with 

the corresponding image the monkey would have seen if it had actually performed 

the instructed grasp with its own hand.  

Alternatively, if the decoded condition failed to match the instructed condition, 

the trial was either aborted, or the fixation LED was extinguished as during the 

delayed grasping task, instructing the animal to make a reach and grasp the target 

with its own hand. The latter was intended to maintain the animal’s interest and 

motivation in the task during real time decoding, by enabling the animal to 

periodically execute grasps in return for reward when real time decoding trials could 

not be completed owing to potential inaccuracy in the decoder’s output. Such a step 

was considered necessary since somewhat low decoding performance, especially in 

animal Z (See Chapter 3), could otherwise have led to the inability of the monkey to 

complete successive real time decoding trials despite it having planned the correct 

grasp.  

Decoder performance in each session was evaluated via the total percentage of 

correctly decoded trials achieved by the end of the session. In addition, we tested 

changes in decoder accuracy within each session using a sliding window analysis 

that monitored the performance of the last ten trials. 

2.7 Offline data analysis 

All data recorded during real time decoding sessions were also stored to disk for 

offline analysis. 
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2.7.1 Spike sorting 

Raw signals were band-pass filtered (pass band: 300-3000 Hz), and single and 

multi-units were isolated using superparamagnetic clustering techniques (Waveclus 

software running in MATLAB) (Quiroga et al., 2004).  The quality of single unit 

isolation was evaluated using three criteria:  first, the absence of short (1-2ms) 

intervals in the interspike interval histogram; second, the degree of homogeneity of 

the detected spike waveforms, and third, the separation of waveform clusters in the 

projection of the first 10 wavelet coefficients with largest deviation from normality 

(Quiroga et al., 2004). In the majority of cases it was not possible to isolate single 

units due to indistinguishable shapes of waveforms, especially with low amplitude. 

Waveforms were thus pooled into a larger “multi-unit” which comprised recordings 

from several individual neurons simultaneously. However, care should be taken to 

distinguish this point-process signal from continuous “multi-unit activity” (MUA) 

data generated from envelope functions applied to the low-pass filtered voltage trace 

(Super and Roelfsema, 2005; Stark and Abeles, 2007; Choi et al., 2010). Finally, the 

predominance of multi-unit recordings in our data set was in part due to the fixed 

(non-movable) nature of the electrodes, which did not allow optimization of unit 

isolation during recordings. 

2.7.2 Visualization 

To visualize neural activity during the task, peri-stimulus time histograms 

(PSTHs) were generated by replacing each spike time ts with a kernel function and 

averaging all such functions across all spikes and trials (Kass et al., 2003). We used a 

gamma distribution function as a kernel:  
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The shape (α = 1.5) and rate parameter (β = 30) were chosen to achieve a small 

amount of delay (kernel peak at 1.6 ms) and a standard deviation of approximately 

40 ms. This procedure ensured that the resulting PSTH curve was smooth, 

continuous, and causal, i.e. the value at any time point was only influenced by spikes 
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that had occurred prior to that moment in time, but not afterward (Baumann et al., 

2009). However, note that all quantitative analysis and statistical tests were based on 

the exact spike times without any smoothing. 

2.7.3 Tuning 

We also quantitatively analyzed the underlying tuning properties of each unit by 

examining spiking activity during the planning period in the delayed grasping task. 

Firstly, we parameterized each cell’s tuning to the task parameters in terms of its 

preferred and non-preferred grip type and orientation. These were determined for 

each cell from the mean firing rate during the planning period, which was averaged 

across all trials of the same grip type or orientation. The preferred grip type was 

determined as the grip with the highest mean firing rate, leaving the other grip as the 

non-preferred type. The preferred orientation was defined as the orientation with the 

highest mean firing rate, while the non-preferred orientation was given by the 

orientation located at 75° angular distance from the preferred one. This definition 

was chosen so that the non-preferred orientation was not taken exclusively from the 

extreme orientations (±50°). If the preferred condition was 0°, we then randomly 

selected either -50° or +50° as the non-preferred condition (Baumann et al 2009). 

Next, we tested the statistical significance of each cell’s tuning by means of a two 

way analysis of variance (ANOVA) with factors grip type and orientation and 

significance p<0.01, with the additional requirement that the cell fired at least 5 

spikes/s in the preferred condition. 

As a further measure of the tuning strength, we performed a receiver-operating 

characteristic (ROC) analysis (Dayan and Abbott, 2001).  This tested how well one 

can discriminate, based on the spiking activity of a given cell, between trials with the 

preferred grip type (or orientation) and trials with the non-preferred grip type (or 

orientation).  We used the area under the curve (ROC score) as a measure of 

discriminatory power ranging from 0.5 (for chance performance) to 1 (for perfect 

discrimination). For grip type tuning, we computed the ROC score separately for 

each orientation and then averaged across all orientations for each grip type. For 
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hand orientation, we averaged the ROC score across all trials for the preferred and 

non-preferred orientation irrespective of grip type. To assess the significance of ROC 

scores, we used a Monte Carlo procedure, in which 1000 repetitions of the same 

ROC analysis were performed with random shuffling of the labels ‘preferred grip 

type’ and ‘non-preferred grip type’ (or preferred/non-preferred orientation), in order 

to determine the null distribution of our hypothesis. 

2.7.4 Offline decoding simulation 

In order to test the performance of the NB classifier under optimal conditions 

(optimized spike sorting) and as a comparison to the real time decoding results, we 

decoded the grasp condition also offline and using the offline spike-sorted data. A 

naive Bayesian classifier was implemented in Matlab, and trained and tested on the 

same data used to train and test the original classifier. However, instead of using 

spike data streamed from the Cerebus NSP, this offline classifier could also operate 

on spike data extracted from the offline spike sorter Waveclus. In addition, simulated 

decoding was done on restricted data sets, such as AIP or F5 data only. When a one-

way ANOVA was carried out to compare decoding performance using each area 

independently versus both areas combined, additional post-hoc testing was done to 

locate significant differences via multiple comparisons at the p<0.05 level (Tukey-

Kramer correction). 

 

2.8 Software implementation for online decoding 

Important design constraints  

One of the most critical points in the initial design stage for the software 

development in this project was to guarantee that everything is indeed working when 

data collection started with the animal. And this was important due to multiple 

reasons. First, the signal quality from chronically implanted cortical electrodes is 

known to deteriorate over time. The underlying mechanisms of this are not fully 
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understood and can show great variability from case to case. However, it is almost 

certain that it will happen in time with currently available electrode arrays. The only 

question is when? In extreme cases the signal quality was reported to be unusable 

after only a few months. In contrast, training of animals and performing all surgical 

operations is very time-consuming and demanding in multiple resources. Therefore, 

once the animal is ready to perform, we simply cannot risk losing these efforts due to 

malfunctioning software. Especially, we cannot risk losing valuable experiment time 

right after electrode implantation when we know that signal quality is high. Another 

reason why having a working system right at the beginning of the experiments arises 

from the fact that the animals can get frustrated easily if the system is not behaving 

consistently. So, if the system has a lot of initial bugs, the animal could loose its 

motivation to work, and it will take precious time to win it back. A final point is the 

fact that the number of recording trials per day was modestly limited. We could 

expect that the animal will work for about 400 trials per day on average, so we had to 

be very economical with the recordings, and simply speaking, needed a system that 

worked right from the beginning. On top of that, we needed a system which utilized 

system resources efficiently; listening with 100Hz events flooding through hundreds 

of channels in parallel, keeping the order and timings right, making statistical 

estimations and predictions on the fly, and visualizing the whole process was 

obviously open to multiple error sources. 

Utilizing unit-tests for the critical calculations in the decoder was an 

important approach we followed. However, in order to go through a real stress-test 

the decoder needed to be tested with data flooding the system in real-time. To this 

extent, we came up with the idea of an additional software component, a neural 

signal simulator, which will push artificially generated or previously recorded data to 

the input stream of the neural decoder (Fig 2.6). By targeting the same network ports 

of the actual signal processor, the system replicates the effect of having an actual 

animal connected to the setup and it is virtually impossible for the decoder to 

distinguish between the signal sources. This approach has proven to be very useful 

and we were able to start data collection and real-time decoding of the data on the 

very first day the animal was in the experiment. 
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Figure 2-6: The generic system design for simulation environment. 

Simulator software is seamlessly integrated to the system network architecture. This 

helped us to test the system thoroughly before the animal is ready to perform the 

experiments. 

 

Implementation details 

Neural signals from floating micro-electrode arrays are sampled using Cyberkinetics 

Neural Signal Processor and streamed to recording and decoding PCs. Animal 

interface PC is controlled via LabView software and decoding PC. 

We have used LabView for controlling the experimental setup and used Matlab, 

C++, Python, Scala and Java for various parts of the off-line data analysis. For real-

time decoding and animal interface systems, we have used our in-house developed 

software suit. On top of that, due to various benefits for testing and debugging the 

real-time decoding software we have also developed a spike simulator tool capable 

of creating artificial Poisson-distributed spike trains as well as loading and replaying 

previous neuronal recordings. This simulator software is used for benchmarking 
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decoder performance offline before commencing BMI experiments with the animal. 

All these 3 components were implemented in C++, heavily utilizing Trolltech’s 

(accuired by Nokia lately) Qt Framework (http://qt.nokia.com/). The choice of Qt 

framework was for its desirable features of providing a coherent framework with 

components for graphical user interface, networking and commonly used data 

structure implementations.  Besides we have also utilized Neuroshare library for 

reading Cerebus record files, the Cerebus UDP Network Protocol and a scientific 

library, GSL (GNU Scientific Library - http://www.gnu.org/software/gsl).  

2.8.1 Experiment Data Simulator Software 

Compared to off-line decoding, the realization of real-time decoding systems 

is challenging, in part because the number of available neuronal units is limited and 

the time window in which the data needs to be analyzed is relatively short (<100ms). 

If one adds these to the complications of working with an animal where only a 

limited amount of work-time per day is available and the fact that a buggy system 

will negatively affect the animal’s motivation to collaborate, it is clear that it is 

crucial to validate decoding algorithms for their online suitability and to fine-tune 

their performance before being used in neuro-physiological experiments. Also one 

should note that real data is often not optimal for benchmarking purposes due to its 

inherent noise and stochasticity.  

Therefore, we have developed a spike simulator for evaluating our online decoding 

software. This software creates and streams data in the exact format as 

Cyberkinetics’ neural signal processor, thus for the decoder software it is 

indistinguishable from which source (either real or simulation data) the data is 

coming. The simulator comprises three main features:  

1) It can create artificial data with regularly spaced or Poisson distributed spike 

trains. This mode helps validate the decoder’s data capturing limits and its principle 

performance.  
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2) The simulator can load and replay previous neuronal recordings. This is useful for 

benchmarking and cross-validation of different decoding algorithms and to compare 

the performance of online and offline decoding methods.  

3) The tool can also load multiple previous recordings and combine them as if they 

were recorded simultaneously in real time. This capability is useful to test decoding 

algorithms with an in principle unlimited number of neurons of natural response 

characteristics, which, e.g., have been recorded sequentially with movable electrodes. 

It is also useful for obtaining statistical robustness about our decoder’s performance 

by the mixture of existing data in a similar fashion to bootstrapping methods. 

We have used the simulator software during the development of the decoder 

extensively and confirmed the suitability of it for the development of any on-line 

decoding software in a similar fashion. In its latest version the simulator software’s 

source code is around 26000 lines (including the graphical user interface 

components, excluding comments and empty lines). Not necessarily the best statistic 

capturing the quality of software development effort we still wanted to provide this 

LOC figure in order to provide some measure of complexity and size of the software. 

A generic diagram of the Simulator software is provided below in Figure 2.7. For a 

more detailed class diagram (including class attributes and method names) see 

Appendix-B. There are three main clusters of classes for the simulator: application 

logic, visualization, and data representation and wrapping. All of these components 

are decoupled seamlessly and multiple threads are employed for different 

components providing a robust and reliable system. A schematic representation of 

the main building blocks of the simulator software is presented in Figure 2.7. The 

following Figures 2.8 –2.14 then show screenshots from the different operation 

modes.  
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Figure 2-7: Generic diagram of the Simulator Software design. 

Schematic representation of simulator software environment is shown. A C++ 

wrapper converts the standard file format “Neuroshare” recordings from other 

software vendors to the internal data format. It is coupled to a database server used 

for the deployment and management of previous recordings. Signal queries from this 

database are used to create artificial multi-unit signals. The GUI provides means to 

control the data flow and to display both actual and simulated recordings in a 

convenient way. For pushing the data to the network in the same format as the actual 

Neural Signal Processor, the simulator software makes the necessary transformations 

and then streams the output to the network via UDP protocol. GUI components also 

run in a separate thread to guarantee the flawless operation of the mission critical 

components.  
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Figure 2-8: An example view of simulator software 

Simulator software’s main view consists of the dockable widgets shown above. The 

central “event viewer” widget is showing each units individual neuronal firings as 

well as experiment timings. On right hand side three buttons switch to necessary 

views regarding the three operating modes of the software: File View, Database 

View, and Simulator View. File view essentially lets the user load a previous 

recording and replay it. Database view visualizes and lets the user interact with the 

database holding single-electrode recordings from previous studies in our lab. This 

database is used to simulate multi-electore recordings that are used for testing and 

development before actual multi-electrode recordings were available. Finally, 

simulator view creates artificial data for benchmarking purposes. Other display and 

control information is also visible on the right and bottom of the central Even Viewer 

widget. The GUI is composed of independent widgets that control different software 

components and share information via common data structures. All these modules 

can be rearranged visually and activated-deactivated according to user needs. At the 

bottom of the GUI canvas, the stream control toolbox mimics a video player’s 

controls. For example, pressing the green play button will push neural data to the 

network (either loaded or artificially created). Similarly, the other buttons will 

“pause” and “stop” the neural data streaming. 
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Figure 2-9: Artificial data dialog window for simulator software 

After selection of artificial data creation mode the above shown dialog window pops 

up to collect user inputs on number of units, trials, firing rate statistics and 

experiment state lengths. 

 

Figure 2-10: Artificial data created with given parameters in Fig. 2.9 

50 trials with desired output characteristics are ready to stream to network with 

pressing the play button. Each green column represents a single successful trial. 
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Figure 2-11: Zoom-out view of an actual 3 unit record in event viewer widget 

The vertical blue line shows the last point streamed similar to a video player. By 

clicking to time-line in the bottom pane it is possible to jump to a different time in 

simulation. During playing it slides in real-time. The ability to zoom in and out using 

the mouse wheel in this widget lets the user visually analyze the broader 

characteristics of firing rate statistics in a form similar to a peri-stimulus time 

histogram with color codes. Red shows highest firing rate regions, whereas blue 

lowest. 

 

 

Figure 2-12: Zoom-in view the same data on a single trial 

Zoom-in let the user observe individual spike timings in a single experiment trial. 
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Figure 2-13: Trial information available interactively 

By moving the mouse cursor to an unoccupied region in a trial one can see the digital 

channel information encoded as a string. 

 

 

Figure 2-14: Experiment events timing are observable through a digital channel 

It is also possible to analyze which digital channel spike is corresponding to which 

information by simply moving the cursor over it. The actual timing of movement 

start signal in trial is shown in the figure. 
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2.8.2 Decoder Software 

One of the most critical parts of the software development efforts during this project 

was the realization of an efficient and robust implementation of the decoder. That 

software needs to reliably collect information coming from network; from digital 

channel (meta-info on experiment) and from about 200 neurons firing with maximal 

1 kHz events each. It needs to identify different units and calculate their statistical 

properties during the training phase and then later during the decoding phase make 

predictions about the intended hand movement given the data using the Naïve 

Bayesian learner implemented internally. Furthermore, it communicates its output to 

the recording system on a different machine for logging purposes and to the behavior 

control system. Finally, it visualizes the data collected in different forms and displays 

the calculated statistics on decoding performance numerically and graphically. 

During the course of the project some other features, like decoding of experimental 

states, calculation and visualization of power spectrum were also added. The source 

code length for this software is around 12000 lines. We provide a schematic 

representation of the software design and structure in Figure 2.15. Additionally, a 

detailed class-diagramm can be found in Appendix-B. 

One of the critical design decisions was to use a modular architecture for this 

software. The main software essentially provides a canvas for different widgets to be 

plugged-in where they can be visualized and exchange data seamlessly. Utilizing 

Qt’s widgets as our base classes, we developed an event driven architecture that 

launches new threads when necessary. And this design provided a reactive user 

interface while collecting the data robustly. Separating the threads for data collection 

and user interface was critical. Due to heavy real-time visualizations, the 

computational need of the user interface components was not negligible and a 

possible bottleneck arising from these components could have easily affected the 

more mission-critical parts of the software, namely data collection and decoding 

analysis.  
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Figure 2-15: Schematic representation of the Decoder Software components. 

The decoder software is fully developed in C++ by heavily employing the QT 

Framework. The streaming data from the network is captured by continuous listening 

to specific ports and transformed into internal data structures for further analysis by 

other software modules. GUI employs some major control elements for starting data 

collection and decoding phases. Its modular widget based design provides the user 

with rich personalization capabilities. A user can switch on and off different widgets 

and keep her settings for the next run conveniently. In initial data-collection phase 

the user is informed about the progress via both a mean firing rates matrix visual and 

different data fields. Once the user selects to switch to decoding phase the decoder 

first calculates some statistics about the collected data, creates tuning curve graphs 

and train its internal learners (Naïve Bayesian decoders). It also provides some 

statistics about in-sample decoding results to the user. Then it automatically switches 

to decoding mode and all the new data flowing through network interface is used for 

making predictions. Decoder software listen not only neural signals but also 

experiment state signals provided in the network stream and conditioned on that data 

it decides when to make its predictions. After each succesfull experiment trial the 

GUI is updated correspondingly via confusion matrix visuals and some statistics 

provided in text form. It is also responsible from sending the decoding outputs to 

animal front-end control software and LabView control box. Similar to simulator 

software, decoder software also employs separate threads for GUI and mission 

critical components.  
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Using the decoder software in conjunction with the simulator turned out to be 

beneficial to test against such cases. Simulator’s controlled outputs has proven to be 

very useful and crucial for benchmarking purposes. We could demonstrate that the 

decoder software is able to collect and analyze data reliably simulataneously from 

around 200 – 300 units even under non-biological high firing levels (>500 Hz). The 

decoder has essentially 2 modes of operation; training and decoding modes. At first, 

when software started the decoder opens up in training mode and upon pressing to 

“start training” button, it actively starts to listen network ports provided in its 

configuration files. The decoder can also load previous training sessions and start 

decoding with that initial setup if desired. On the normal real-time operation 

however, whenever data in the pre-configured format starts to streaming, it starts to 

collect multi-unit firing rate information for different neurons, experiment states and 

trials to build an internal database for those. Meta-information regarding the 

experiment states are generated in Lab-View and interpreted by our decoder in real-

time. Once the experimenter decides enough data is collected for reliable estimation 

of firing rates per hand posture per neuron, he presses “stop training” button, to 

initiate calculation of the various statistics for collected data and training of Naïve 

Bayesian learners. An initial estimate of decoding confusion matrix on training data 

and neural tuning curve visualizations are provided after successful completion of 

this analysis and after switching automatically to a new display setup. We have 

implemented different template based visual arrangements of our widgets in this 

software, which allows an advanced calibration of different visual scenarios. In other 

words, one can arrange visually the widgets available in a view and then record this 

arrangement and recall this after any time he needs it. At this point, initial data 

collection and the training of our learners are successfully finished, thus the 

researcher press “start decoding” button and the learners start making their 

classification at the end planning period and feed their predictions through network 

to Lab-View, Logger and animal interface software. The animal interface software’s 

event capturing mechanism wakes up upon successful arrival of a signal and shows 

the decoded hand posture in a static image form to the animal. This operation of the 

decoder continues until either the researcher decides that enough data is collected, or 
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more typically, the animal loses its motivation to work. During the course of 

decoding, the confusion matrices for decoding are calculated and displayed for 

assessing the performance of the decoder in real-time.  

 

 

 

 
Figure 2-16: A sample view from decoder software during training period 

Once the user presses the “Start Training” button in the bottom toolbox, the decoder 

software starts listening to the relevant ports and captures and processes the 

incoming data. The screenshot shows data collection of 15 artificially created 

neurons. One can track the average firing rate estimations via the visualization 

widget on the left bottom corner. In this matrix, each box is colored according to the 

estimated mean firing rate for a specific neuron and experiment condition (high 

firing rates are visualized in dark blue). Here, neurons 5,6,7,13 and 15 show higher 

activity and also employ a better neural signal tuning for the experiment task in hand. 

(no data present for experimental conditions 3 and 8: corresponding rows are white). 

Such a visualization during data collection greatly facilitaes the user to spot possible 

problems in real time and to have a broad feeling about the neural tuning. Early 

detection of data recording problems minimizes costly loss of experimental time and 

data.  
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Figure 2-17: Firing rate statistics are calculated after training is finished. 

Once the user decides that enough data is collected for training of the internal Naïve 

Bayes learners he/she presses stop training and the decoder software automatically 

starts training the learners and calculating other statistics. It also selects significantly 

tuned neurons (according to an ANOVA criterion; p<0.01) and the graph on the left 

upper corner shows a polynomial fit of the average firing rate per condition. Other 

statistical details are shown in the top middle console window. After training, the 

decoder automatically runs the learners on the training data to provide a first 

feedback about the in-sample performance of the decoding model and then simply 

waits until the user presses “Start decoding” button.  
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Figure 2-18: Decoding view right after training 

Once the user presses the “Start decoding” button, new widgets appear in the GUI to 

inform the user about the real-time decoding statistics. Average firing rates are still 

visualized on the left bottom corner, but they should be stable (otherwise data 

collected for training was not sufficient). Two new visualizations panels show 

confusion matrices at the center and right bottom position. They provide an intuitive 

visualization about the decoding performance ,one by a model that continuously 

updates its average firing rate estimates and the other one with a constant training set 

as determined by the end of the training period. This allows tracking of the difference 

between these two different approaches. On the left hand side of the central row, 

statistics on data collection and decoding performance are provided in text form. The 

right hand side widget of the same row shows the predicted experiment-state 

(temporal decoding of the experiment state) and also visualizes the performance of 

this state-space decoding via a separate confusion matrix. The top row contains two 

additional widgets for visualizing the likelihoods of each condition at the end of each 

trial and for providing information of the LFP power spectrum of the raw signal (not 

used here but implemented for future application). 
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Figure 2-19: Decoding view during online brain control trials 

This figure shows a random moment during the decoding experiment. Decoding 

performance is visualized in confusion matrices and in the (central) trial info widget. 

Likelihood bars (top left) provide some intuition on the decoding of each trial. The 

decoder sends the information about the decoded condition immediately (i.e., in less 

than 100 ms) to the animal-intercace software (LabView control box), which 

essentially closes the information control loop. Real-time visualization of the 

decoding performance allows a user to spot possible errors (e.g., recording problems) 

quickly and to understand how the recorded neurons are encoding the information. 

The decoding mode essentially collects data, makes predictions, and updates its 

statistics until the user stops the task.  
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Figure 2-20: A view from decoder towards the end of experiment 

Confusion matrices and trial info widget inform on final performance of the session. 
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3 Real-Time decoding of hand 

grasping signals 

3.1 Introduction 

This chapter presents major findings on the main objective of this thesis work; 

namely, assessing and analyzing the implementation of a real-time hand-grasping 

brain machine interface and inspecting the characteristics of the signals emerging 

from the areas under interest. The content of this chapter is published in the Journal 

of Neuroscience with a title “Grasp movement decoding from premotor and parietal 

cortex”. The data presented here is based on a total of 26 real-time decoding sessions 

conducted in two animals (monkey S, 12 sessions; monkey Z, 14 sessions) that were 

chronically implanted in AIP and F5 with floating microelectrode arrays (FMAs; 

monkey S, 128 channels; monkey Z, 80 channels).  Across these sessions, we 

recorded in monkey S 827 units in F5 and 899 units in AIP; in monkey Z, we 

recorded a total of 491 units in F5 and 133 units in AIP. Of these, the vast majority 

was classified as multi-units (80-85%).  Previous studies have already examined in 

detail the tuning properties of single units in both AIP (Sakata et al., 1995; Murata et 

al., 2000; Baumann et al., 2009) and F5 (Rizzolatti et al., 1988; Fluet et al., 2010). 

Therefore the current analyses will focus on the large population of multi unit data 

that we sampled with chronically implanted FMAs, with a view to comparing and 

contrasting these results with respect to single unit data recorded previously, and to 

utilize these signals to maximize the amount of information available for real time 

decoding. 
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3.2 Results 

3.2.1 Distribution of tuned activity 

The distribution of yielded multi-units varied in both monkeys and areas was as 

follows.  

In monkey S, the implanted FMAs yielded an average of 57 (standard deviation 

7) and 64 (SD 7) multi-units recorded per session from area F5 and AIP, 

respectively. These were located on 45 (SD 4) and 46 (SD 3) electrodes in F5 and 

AIP, respectively, out of a total of 64 implanted in each area.  In both areas, 

approximately 20% of these multi-units showed significant modulation of their firing 

rate to the factors grip type or orientation during the planning period (two way 

ANOVA, p<0.01).  

In monkey Z, we found in F5 on average 29 (SD 8) single- or multi-unit signals 

per session located on 27 (SD 8) out of 48 implanted electrodes. Of these multi-units, 

26% were significantly tuned. In area AIP, fewer implanted electrodes were able to 

sample neural signals (8 out of 32 electrodes, SD 4; 25%) resulting in a low number 

of multi-units per session (8, SD 4). Despite the relatively small sample size, the 

proportion of significantly tuned multi-units was similar to F5 (29%).  Overall, the 

chronically implanted electrodes in both monkeys were able to record samples of 

tuned multi-units in both areas, indicating that information about grip type and 

orientation was present in the neural data, which we then used for the real-time 

decoding experiment. 

Figure 3.1 summarizes the spatial distribution of tuned multi unit activity across 

FMAs, and within each array. For each electrode, we measured the mean number of 

tuned multi-units per session, and averaged that yield across all sessions. For both 

monkeys, we found that some implanted arrays sampled more tuned activity than 

others. For example, in monkey S, FMAs 1 and 4 yielded the most tuned activity on 

average (yield of 0.29 and 0.37 tuned units per electrode and session) compared to 
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FMAs 2 and 3 (yield of 0.07 and 0.11, respectively) (Fig. 3.1A).  

 

Figure 3-1: FMA electrode layout, dimensions and distribution of tuned multi 

units across and within FMAs 

Hexagonal arrangement of electrodes within each array corresponds to manufacturer 

specifications. View is “top down” showing approximate locations of electrodes 

when looking down onto the cortical surface. Electrodes within each row of the array 

had a variety of different lengths, with the mean length of each row displayed as a 

bar chart to the left. Electrode color in each plot represents the mean number multi 

units tuned to either to grip type or orientation (ANOVA, p<0.01) obtained across all 

recording sessions analysed. Crossed-out electrodes were reference or ground with 

no recording capability. Dashed line represents approximate location of sulcus 

(arcuate for F5, intraparietal for AIP) relative to FMA. A, tuning yield for animal S. 

B, tuning yield for animal Z.  

 

Similarly in monkey Z, the average yield of tuned units was 0.32 and 0.18 in 

arrays 1 and 3 in F5, respectively, whereas it was only 0.05 in array 2 (Fig 3.1B). 

Furthermore, FMAs 4 and 5, implanted in area AIP of this monkey, had a relatively 

low yield of tuned units (average of 0.09 and 0.05, respectively). These results may 

suggest that we did not achieve optimum placement of all implanted FMAs; rather a 

subset of the arrays recorded tuned activity regularly from session to session, while 

others yielded relatively low numbers of tuned units. 

Within the arrays that sampled more tuned units, we found that sampling of tuned 

activity was concentrated on certain individual electrodes or groups of electrodes. 

For example, in FMA 1 in monkey S, most tuned activity was picked up by two 

groups of electrodes located at the medial and lateral sides of the array, and relatively 
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little tuned data was recorded by the electrodes in the middle (Fig. 3.1A). In FMA 4 

of the same animal, a “hot spot” for tuned activity was located in the mid-to-lateral 

section of the array. Thus, there was no consistent spatial pattern in the distribution 

of high-yield electrodes within each FMA, instead we found a rather heterogeneous 

distribution of tuned activity across the arrays. This makes sense given their fixed 

and permanent implantation. 

3.2.2 Grasp properties of multi-unit activity 

3.2.2.1 Example Units 

Figure 3.2 illustrates two example multi-units from F5 and AIP that were modulated 

by grip type and orientation. Both units were sampled during the standard delayed 

grasping task as well as during real time decoding. The F5 unit showed a transient 

increase in firing rate during the planning period relative to baseline activity that was 

much stronger for power grips than for precision grips (Fig. 3.2 A). This unit was 

therefore strongly tuned for grip type during the planning period. Consistent with this 

tuning, the unit also showed a clear burst of firing around the time of grasping for 

power grip trials. However, modulation by orientation was absent.  The observed 

strong modulation by grip type has been well characterized in previous single-unit 

studies of F5 (Murata et al., 1997; Raos et al., 2006; Umilta et al., 2007; Fluet et al., 

2010).  

The example unit from AIP (Fig. 3.2 B, D) had a different activity profile 

compared to the F5 unit, with a much stronger modulation by handle orientation. It 

showed an increase of its firing rate immediately after presentation of the instructed 

grasp (cue period), with increased firing for right-ward handle positions ( 50  and 

  5 ). This tuning for orientation was sustained throughout much of the planning 

period, and was somewhat clearer for precision grip trials than power grip trials.  
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Figure 3-2: Firing rate histograms and raster plots of an example multi unit 

from F5 and AIP, during the delayed grasping task and during the brain 

control task 

Firing rate histograms and raster plots of two example multi-units from F5 and AIP, 

during the delayed grasping task and the brain control task. Each panel A-D shows 

precision grip trials (left) and power grip trials (right) separately. Each color 

represents a particular handle orientation in the spike rasters (on top) and for the 

averaged firing rates (at bottom). Dashed line within movement epoch represents 

mean time of hand rest release, solid red line indicates mean time of handle contact. 

All trials are doubly aligned to the end of the cue epoch (at 0 s) and the start of 

movement (at 0.9 s), gaps in the curves and rasters (at ~0.4 s) indicate realignment. 

A. Multi-unit recorded in F5 in the delayed grasping task showing tuning for grip 

type during the planning period, with greater firing rates for power grip trials than 

precision grips. B. Multi-unit recorded in AIP in the delayed grasping task showing 

orientation tuning during cue, planning and movement. C. Activity of the same F5 

unit as in A, but during brain control trials. Note the similar activity modulation for 

grip type during the planning phase, but a lack of movement-related activity. D. 

Activity of the same AIP unit as in B during brain control trials. Note the separation 

of average firing rate profiles according to handle orientation during the cue and 

planning epoch and the absence of movement-related activity. 
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Finally, the unit showed a burst of activity around the time of movement 

execution with a similar modulation by object orientation and grip type. This rather 

complex firing pattern, i.e., simultaneous modulation by orientation and grip type, is 

consistent with previous observations in AIP (Baumann et al., 2009). 

Figures 3C and 3D show the activity of the same F5 and AIP multi-units during 

real time decoding trials. For the F5 unit, we observed the same grip type modulation 

during the planning period. Note however, the absence of an activity “peak” during 

movement execution, since no grasp was actually performed.  The AIP multi-unit 

also showed broadly similar activity during decoding trials, maintaining its 

preference for right-ward handle positions especially during precision grips. As in 

F5, movement-related activity was clearly absent. Overall, these data demonstrate 

that information about grip type and orientation were present at the multi-unit level 

in F5 and AIP during the planning period, including during decoding trials, when no 

movement was made. 

 

3.2.2.2 Population Activity 

Similar findings were observed at the population level. Figure 3.3 shows the 

population firing rates across all 244 tuned multi units from area F5 and 210 multi 

units from AIP of both monkeys, separately for each unit’s preferred and non-

preferred grip type and orientation. In both areas, the mean firing rate of the 

population was modulated by both grip type and orientation, starting shortly after the 

beginning of cue presentation and lasting until the end of movement execution. As 

was observed for individual units, important differences could be seen between the 

two areas.  In F5, cue-related activity was relatively small, while there was a large 

peak of activity during movement execution. Furthermore, the key parameter that 

modulated the firing rate curves during the planning period was the preferred grip 

type; note that in particular the mean firing rate for preferred grip type. Note that in 

particular the mean firing rate for preferred type / non-preferred orientation condition 

(blue curve) was higher than for the non-preferred grip type and preferred orientation 

(green curve). This effect became even more pronounced during movement 
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execution, where the four curves clearly separated into a preferred grip type (blue 

and red) and a non-preferred grip type group (green and black).  

In the population of 210 multi units from AIP, cue-related activity in AIP was 

more pronounced, while movement-related firing (although still present) was weaker 

(Fig. 3.3 B). In contrast to F5, both the preferred orientation and the preferred grip 

type modulated the mean activity in AIP. This separation of the curves began early in 

the cue period, and persisted throughout the planning phase and movement 

execution.  

In summary, F5 showed moderate tuning to orientation early in the task and 

strong grip type tuning with a peak during movement execution, while AIP showed a 

clear tuning for grip-type and orientation throughout the task. These data indicate 

that distinct representations of both task parameters exist in the multi-unit activity of 

both areas during movement planning, which we used for real time decoding. 

Figure 3.3 C-D shows the population firing rate of the same multi units during 

real time decoding. As for individual multi units (Fig. 3.2), the population activity 

showed similar tuning to grip type and orientation in both areas during the cue and 

planning epochs in both tasks, even though the monkey did not actually perform a 

grip (note the clear absence of movement-related activity). This clear modulation of 

firing rate by the task in the absence of movement execution provided the means by 

which we were able to decode grasp in real time using only activity from the 

planning epoch.  
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Figure 3-3: Population firing rate activity 

Average activity of multi-units from F5 (left column, n=244) and AIP (right column, 

n=210) in the delayed grasping task (top row) and the brain control task (bottom 

row) is presented for each combination of the unit’s preferred and non-preferred grip 

type and handle orientation.   Epoch definitions as in Fig. 3.2. Dashed line within 

movement epoch represents mean time of hand rest release. 

3.2.2.3 Multi-unit coding properties 

To further investigate the tuning properties of F5 and AIP multi-units, we 

examined the distribution of preferred grip types and orientations across all recorded 

multi units during the planning period (Fig. 3.4).  
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Figure 3-4: Distribution of preferred grip type and orientation during the 

planning epoch for F5 and AIP multi units 
A, ratio of F5 multi units preferring precision grip (white) vs power grip (black). A 

large majority of cells preferred precision grip in comparison to power grip. B, ratio 

of AIP multi units preferring precision vs power grip; here the proportions of units 

preferring each grip type were more equal. C, distribution of F5 multi units 

preferring each of the five orientations. D, distribution of AIP multi units preferring 

each orientation. In comparison to F5, AIP units showed a preference for the extreme 

handle orientations (±50
ο
). 

 

In area F5 the majority of cells (67%) had a preference for precision grip (Fig 3.4 

A), which is consistent with the finding that more complex grip types tend to be 

over-represented in motor areas (Muir and Lemon 1983, Umilta et al 2007).  

However, in contrast to our previous single-unit work in F5 (Fluet et al 2010), we 

did not observe a clear preference for extreme handle orientations in our data during 

the planning epoch. Instead, the distribution of preferred orientations across the 

population was relatively uniform (Fig. 3.4 C). This difference could be due to the 

averaged nature of multi-unit data in the present study. 
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Figure 3-5: Consistency of tuning preferences during the planning epoch across 

the delayed grasping and brain control tasks 

A, Consistency of grip type tuning in F5. Histogram indicates the proportion of multi 

units that maintained the same preference for grip type during brain control that they 

displayed during delayed grasping, versus those that changed preference to the 

opposite grip type. B, consistency of grip type tuning in AIP. In both areas, the vast 

majority of units did not change their preferred grip. C, change of orientation tuning 

in F5 between delayed grasping and brain control. Histogram shows the proportion 

of units for which the preferred orientations in the two tasks were the same (0
ο
 shift), 

were highly similar (25
ο
 shift) or were further apart (50-100

ο
 shift). C, change of 

orientation tuning in AIP.  Shifts of preferred orientation >25 in either area were less 

frequent. Overall, planning epoch tuning properties of F5 and AIP multi units were 

similar in the two tasks. 

 

In AIP the distributions of preferred grips and orientations were somewhat 

different to those in F5. Firstly, there was no clear preference for either grip type in 

the population during the planning period (Fig. 3.4 B). Secondly, the majority of AIP 

multi units (60%) coded predominantly for the extreme handle orientations during 

planning (Fig. 3.4 D), which was in strong contrast to the F5 data. Together, these 
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population data confirm that both grip type and orientation were well represented in 

the multi unit activity during the planning period of the delayed grasping task. 

This tuning pattern during movement planning remained essentially constant 

while the monkey performed the real time decoding task (Fig. 3.5). For all tuned 

units of the delayed grasping task, the preferred grip type and the preferred 

orientation were also measured from the mean firing rate during movement planning 

in the real time decoding task. In both areas F5 and AIP, only a small minority of 

multi units showed a change in preferred grip type (8% of cells) (Fig. 3.5 A,B), and 

the preferred orientation stayed either the same or shifted by a single position at 

most; few cells showed larger shifts in their preferred handle position (Fig. 3.5 C,D). 

Thus the patterns of spiking activity across the population of cells in the two areas 

remained similar during real grasping and grasp decoding, and could be reliably 

accessed for decoding in real time. 
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3.2.3 Online grasp decoding 

Representative performances during a single real-time decoding session are 

shown in Figure 3.6 for monkeys S and Z, respectively.  

 

Figure 3-6: Example real time decoding performance measured during a single 

session 

Data are shown separately for animal S (A-B) and animal Z (C-D). A, decoding 

predictability of grip type (precision vs. power) and handle orientations (here labeled 

1-5), i.e. 10 grasp conditions in total. Color code of confusion matrix indicates 

percentage of occurrences during which a given condition was classified as one of 

the 10 grasp conditions by the Bayesian decoder. Correct classifications therefore 

line up along the diagonal. Note that classification errors were mainly made between 

neighboring orientations but rarely between grip types. B, trial-wise classification 

performance for the same session analyzed in A. Classification accuracy was 

measured using a sliding window which averaged the performance of the previous 

ten trials. Post-hoc, performance was measured separately for all ten conditions 

(thick black line), grip type only (thin black line) and orientation only (dash-dot line). 

Note however that the monkey always performed the full 10 condition decoding task. 

Dashed line represents chance level for 10 condition decoding. Temporary 

performance decreases were mainly due to errors in orientation classification rather 

than grip type. C,D: same analysis for a single session recorded in animal Z. 
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The output of the decoder is compared to the instructed condition for all trials 

during this session using a confusion matrix (Fig 3.6 A, C; see Methods for details). 

Correctly classified trials appear along the diagonal of this matrix. Using multi-unit 

spiking activity from F5 and AIP during the planning period, grip type and 

orientation were decoded with an overall mean accuracy of 62.0% in monkey S and 

with an accuracy of 30.8% in monkey Z. For the latter animal, it can be seen from 

the confusion matrix that the main type of error responsible for this somewhat low 

performance was confusion of neighboring orientations, while grip type was rarely 

misclassified. Figure 3.6B shows the trial-by-trial success rate of the decoder during 

the same session, measured with a sliding window (see: Methods).  Although there 

was some variability in performance, trials were generally decoded above chance 

level (10%). Decoder performance was significantly better in monkey S; again, there 

was almost no confusion about the grip type, but in contrast to monkey Z, a much 

better classification of orientation was observed (Fig. 3.6C). The trial-wise 

performance of the decoder was also more stable in comparison to the previous 

animal, and remained well above chance throughout the session (Fig. 3.6D). 

Figure 3.7 summarizes the real-time decoding performance of both animals 

across all sessions. Average confusion matrices for monkey Z and S are shown in 

Fig. 3.7A-B. The same qualitative features of decoding performance exhibited within 

the example sessions were also observed in the average across all recordings: 

classification of grip type was highly accurate in both monkeys, while decoding of 

orientation was less so, and was particularly poor in monkey Z.  Decoding accuracy 

across sessions is given in Fig. 3.7C for each animal. It remained consistently above 

chance level for both animals with a mean performance of 50.4% (±7.6%) in monkey 

S and of 33.5% (± 5.9%) in monkey Z. This difference was significant ( p<10
-5

, 2-

tailed t-test).  
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Figure 3-7: Real time decoding performance for each animal, population results 

A. average decoding predictability across 12 sessions for animal S, computed by 

averaging individual confusion matrices across sessions. Conventions same as in fig 

3.6A. B. average decoding predictability across 14 sessions in animal Z. Note that in 

comparison to animal S, decoding in this animal showed low predictability of the 5 

handle orientations, but high predictability of grip type. C. session-wise classification 

performance for animal S across 12 sessions, computed by averaging across the 

diagonal of each session’s confusion matrix. Each point represents the mean 

percentage of correctly classified trials. As in figure 7, classification performance 

was measured separately post-hoc, for all ten conditions, for grip type decoding only, 

and for orientation decoding only. As evident in the confusion matrix, decoding 

performance was limited by errors in orientation decoding, while grip type 

classification was highly accurate. D. similar analysis for 14 sessions recorded in 

animal Z. Horizontal dashed line in C and D represents chance level for 10 condition 

decoding (10%). 

 

To gain more detailed information about decoder performance, we quantified the 

decoding accuracy separately for grip type and orientation classification (Fig. 3.7C, 
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D, solid black and dotted curves). As expected, classification of the grip type was 

always highly accurate in both monkeys (monkey S mean: 85.5%, monkey Z mean: 

90.6%). Accuracy was in fact slightly, yet significantly higher for monkey Z than for 

monkey S (two-tailed t-test, p<0.01). In contrast, decoding of orientation was 

performed with less accuracy in both animals, which is not surprising, given that 

there were more orientation (5) than grip type conditions (2) to classify. However, 

there was a considerable performance difference between the two animals; while 

orientation could be classified with an accuracy of 56% in monkey S; it was only 

35.5% in monkey Z, very similar to the overall observed performance of 33.5%. This 

suggests that in monkey S, information about both grip type and orientation was 

available to the decoder, while the decoding of orientation information was rather 

poor in monkey Z.  

3.2.4 Offline decoding 

To investigate how these differences in classification of grasp parameters were 

related to the information available within each cortical area, we evaluated the 

decoding performance in an offline analysis separately for AIP and F5 and in 

combination with improved (offline) spike sorting.  

As a first step, we investigated by how much the decoding performance improved 

if we replaced the real-time spike sorting procedure (NEV) with an offline, optimized 

spike sorting method (super-parametric clustering, SPC, see Methods). SPC can 

provide high-quality spike sorting but is currently not implemented to run fast 

enough and unsupervised in real-time mode. Figure 3.8 directly compares the 

decoding performance based on online (NEV) and offline (SPC) spike sorting.  
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Figure 3-8: Scatter plot comparing mean simulated Naïve Bayesian decoding 

performance achieved using spike data sorted online, versus performance 

attained offline with spike data sorted offline in Waveclus using 

superparamagnetic clustering (SPC) 

Data from both animals is shown together. Diagonal line indicates unity. Most points 

fall above this line, but close to it, indicating that decoding performance was 

marginally improved by performing spike sorting offline. Mean increase = 6.25%. 

 

In both animals, decoding performance for SPC vs. real-time sorting increased in 

24 out of 26 decoding sessions with a mean increase of 6.2 % (monkey Z) and 6.3 % 

(monkey S). Although these were modest performance gains, the difference was 

significant (two-tailed matched-samples t-test, p<1x10
-4

). 

Secondly, we decoded grip type, orientation, or all 10 grasp conditions separately 

from either area or from both areas combined using the Matlab implementation of the 

same Naïve Bayesian classifier that we have used online. Figure 3.9 summarizes the 

results of this analysis and compares them to the performance of the real time 

experiments. Certain key differences between F5 and AIP became readily apparent. 

For the decoding of grip-type alone, performance was better when using only spiking 

data from F5 than from AIP only (Fig. 3.9A-B); in monkey Z, grip type classification 
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was 90.9% accurate (±6.1%) for NEV data, compared to 63.6% (SD 8.2%) accuracy 

in AIP. In monkey S, AIP performed slightly better with 74.7% (SD 4.4%) but was 

still worse than F5 with 87.9% (SD 3.6%). We observed that performance was 

significantly higher using F5 alone compared to AIP alone, and when using both 

areas combined versus AIP alone. The same effect was observed using data sorted in 

Waveclus (‘SPC’, white bars, p<0.01). Furthermore, decoding with information from 

both areas together did not lead to significantly better performance than using F5 

alone, neither for NEV nor SPC data. Finally, we did not see a significant 

performance increase when using SPC data, with the exception of area AIP in 

monkey S (Fig. 3.9B); here, grip type decoding accuracy increased significantly to 

81.9% (SD 6.5%) for SPC data (paired t-test, 2 tailed, p<0.01), corrected for multiple 

comparisons. To summarize, these results suggest that maximum classification of 

grip type could be achieved using data from F5 alone, and it was not possible to 

extract further information via offline spike-sorting routines or by the inclusion of 

AIP activity. 

In contrast to grip-type decoding, results obtained during orientation-only 

decoding were more accurate when using data from AIP than F5 (Fig. 3.9C-D). This 

effect was strongest in monkey S, with decoding performance averaging 53.9% (SD 

7.7%) using AIP NEV data, as compared to only 42.7% (SD 8.0%) using F5 NEV 

data. Here, combining signals from both areas gave the most accurate orientation 

classification (57.9%, SD 7.7%), although this difference was not significant 

compared to performance with AIP alone (2-tailed t-test, p>0.05). The same effect of 

area was observed using SPC data. In addition, there was a marked increase in 

decoding accuracy using the offline-spike-sorted data in monkey S, compared to 

online-spike-sorted data (NEV). This was true for both AIP, and for AIP and F5 

combined; using SPC data increased decoding performance by 8.6% (AIP) and 8.7% 

(AIP+F5) from what was observed using NEV data. (For AIP+F5 a similar increase 

was seen in comparison to real-time decoding performance). In contrast, there was 

no performance increase for F5 (Fig. 3.9D). 
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Figure 3-9: Summary of decoding performance results 

Each bar chart shows the mean simulated classification accuracy across all sessions, 

analysed separately for different spike sorting methods (online vs SPC), decoding 

types (grip type vs orientation), and cortical areas (AIP vs F5). Actual observed real 

time decoding results are included for comparison (gray bars). Respective chance 

levels are indicated with dashed lines. Error bars represent standard error. A, grip 

type decoding performance in animal S. Classification of grip type was performed at 

high accuracy, particularly when using data from F5. Offline spike sorting failed to 

significantly increase decoding performance. C, orientation decoding performance in 

animal S. AIP performed significantly better than F5. E, decoding performance for 

all 10 grasp conditions. In both C and E, performance was greater using data from 

both AIP and F5 than using either area alone. In addition, application of SPC spike 

sorting resulted in clearer performance gains. B,D, F, same analysis for monkey Z. 

 

In monkey Z, accuracy of orientation decoding from AIP alone was somewhat 

lower (30.3%±6.8%), but remained greater than from F5 (27.5% ±5.2%). No 

significant difference was found between accuracies for the different areas, or for 

both areas combined. Finally, in contrast to monkey S, little improvement was 

observed for decoding using SPC data (Fig. 3.9C). 
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Simulated decoding of the full 10 conditions produced similar effects to the 

orientation-only decoding, with the addition of an overall reduction in accuracy due 

to the more complex nature of the classification required. In monkey S, mean 

simulated performance using F5 alone was relatively poor (39.5%, SD 9%), which 

could be increased slightly to 42.1% using SPC data (Fig. 3.9F). AIP accuracy using 

NEV data alone was greater than F5 (42.4%, SD 7.2%). However, incorporating 

offline spike sorting in this area resulted in a much larger performance increase of 

8.5% (to 51.0%, SD 8.4%). For monkey Z, the reverse was true: the decoder 

performed better using data from F5 alone in comparison to AIP (25.9%, SD 5.9% 

versus 21.0%, SD6.9% respectively). Performance levels using either area alone 

were low, and only minimal improvements were observed using offline spike sorting.  

In both animals, we found the best decoding performance, whether real-time or 

offline, by combining data from both areas. In monkey S, the mean real-time 

decoding performance measured across sessions (in which we used data from both 

areas by experimental design) was 50.4% with SD 7.6%. Offline performance using 

NEV data was slightly higher (54.8%, SD 7.4%), and the best observed performance 

was for SPC data (61.1%, SD 6.2%). Unlike the previous simulated decodes, where 

performance using the combined information from AIP and F5 was always 

statistically indistinguishable from the performance achieved with the best area alone 

(F5 for grip type, AIP for orientation), we found that performance with AIP and F5 

combined was significantly better than performances achieved with either area alone. 

This was true for both NEV data and SPC data (1-way ANOVA, p<0.001).  

A similar trend was observed in monkey Z, albeit with lower overall performance 

levels. Mean real time decoding accuracy in this animal was 33.7% (SD 5.9%). 

Simulated decoding performance using combined data and online spike sorting 

(NEV) was slightly lower than the real time results with 30.7% (SD 7.0%). Overall 

best performance was again achieved using combined F5+AIP data that was spike 

sorted offline (36.9%, SD 7.6%); as in monkey S this was significantly higher than 

performance using data from either area, although only for offline spike sorting.   

Taken together, these results indicate that F5 tended to perform better than AIP at 

grip type-only decoding, and AIP consistently outperformed F5 during orientation-
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only decoding. However, utilization of data from both areas was necessary for 

optimal decoding accuracy of grip type and orientation in the 10-condition task. 

3.2.5 ROC analysis 

As mentioned above, clear differences in the decoding accuracy of grip type and 

orientation were observed between AIP and F5 at the population level. To quantify 

the extent to which these differences could be observed in the activity of individual 

units, we carried out an ROC analysis to quantify the classification accuracy of each 

multi unit for grip type and object orientation (Fig. 3.10). Only multi units which 

were significantly tuned to either parameter in the 2-way ANOVA were included in 

this analysis (since non-tuned cells would tend to perform at chance levels). Results 

were comparable for the two animals and are therefore combined here. Each 

histogram shows the area under the curve (AUC) values across the population (F5: 

244 units, AIP: 210 units) separately for significant and non-significant AUC values 

(Monte Carlo analysis, see: Methods). For grip type, the majority of cells from F5 

and AIP were able to significantly distinguish between power and precision grip 

based on their spiking activity during the planning period (95 % of F5 units and 83 % 

of AIP units respectively) (Fig. 3.10A-B). Note however that in F5, a significant 

portion of the AUC distribution was skewed towards larger AUC values, indicating 

that F5 units perform the classification with higher accuracy than AIP units. This 

difference in mean AUC value between F5 and AIP for the significant units was 

highly significant for grip type classification (2-tailed t-test, p<1x10
-6

).  
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Figure 3-10: ROC analysis of classification accuracy for F5 and AIP multi units 

The ability of each significantly tuned multi unit to correctly classify grip type 

(precision vs. power) and handle orientation (preferred vs non-preferred) was 

measured as a function of the area under the curve (AUC) value in the ROC analysis. 

Each histogram shows the distribution of AUC values across the population; 

significant and non-significant AUC values (Monte Carlo analysis) are represented 

by white and black bars respectively. A, grip type classification in F5. 95% of tuned 

F5 multi units could classify grip type with significant accuracy. B, grip type 

classification in AIP. AUC distribution was less skewed towards higher AUC values, 

indicating lower accuracy of grip type classification in AIP compared to F5. C, 

orientation classification in F5. In contrast to grip type, F5 multi units performed 

relatively poorly at orientation classification; the majority of AUC values in the 

distribution were non significant. D, orientation classification in AIP. Unlike F5, the 

majority of AIP AUC values were significant and skewed towards the right, 

indicating high classification accuracy for orientation. Note that in both AIP and F5, 

AUC distributions for orientation were bimodal. 
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In contrast, we observed a bimodal distribution of AUC values for orientation 

classification. On the basis of AUC values, each population of multi units could be 

divided into significant and non-significantly tuned cells (Fig. 3.10C-D). This 

separation was much more obvious in F5, where the largest peak comprised non-

significant cells; only a minority of cells (34 %) classified object orientation reliably. 

In AIP, the reverse was true: a clear majority of cells (63%) had ROC values 

significantly larger than 0.5, and the mean AUC values of significantly tuned cell 

was significantly larger in AIP (0.83, SD 0.08) as compared to F5 (0.79, SD 0.06; 2-

tailed t-test, p<0.01). 

These findings complement our real-time decoding results and demonstrate that 

the observed differences between F5 and AIP units for the real-time decoding of grip 

type and orientation are reflected in the coding properties of individual units and do 

not originate from a skewed representation of AIP and F5 units in our sampled 

population. 

 

3.3 Discussion 

In this chapter we have demonstrated the real time decoding of grip type and 

orientation in macaque monkeys using neural activity recorded from F5 and AIP, two 

“higher order” areas involved in the planning of grasping movements. Previous 

studies from our laboratory have already investigated the encoding of these 

parameters by populations of neurons in AIP and F5 during a standard delayed 

grasping task (Baumann et al 2009; Fluet et al 2010). This study demonstrates the 

logical converse of these findings: sufficient information about these variables is 

available during the planning of grasping movements to enable them to be 

interpreted in real time and fed back to the monkey, circumventing the execution of 

the actual grasp. The fixed nature of the chronically implanted FMAs precluded 

optimized isolation of single units during recording, resulting in the main bulk of the 

sampled activity being multi-unit in nature (Fig. 3.1). However, although decoder 

performance could be further improved using optimized spike sorting, this effect was 
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small (Fig. 3.9, 3.10). The multi unit activity that was recorded showed broad 

similarities in tuning properties to findings from previous work. Both F5 and AIP 

contained distinct representations of grip type and object orientation during the 

planning period of the standard delayed grasping task (Fig. 3.2-3.4). However, 

important differences existed in these representations between the two areas. At the 

population level, precision grip was over-represented in F5, but not in AIP (Fig. 3.5). 

On the other hand, AIP cells tended to prefer more extreme orientations whereas F5 

showed a more uniform distribution of preferred orientations. These tuning 

preferences were maintained by the cells during real time decoding, when no 

movement was executed (Fig. 3.6). A post-hoc analysis of decoder performance 

found that grip type was consistently decoded with a high level of accuracy (>90%), 

while performance in orientation was somewhat reduced (figure 3.8). Offline 

simulations demonstrated an effect of cortical area on decoder performance. On 

average, signals from F5 resulted in the highest accuracy for grip type decoding, and 

concomitantly the lowest accuracy for orientation decoding. In contrast, activity 

recorded from AIP yielded better decoding of orientation together with highly 

accurate grip type decoding (Fig. 3.9). In line with this, an ROC analysis of tuning 

sensitivity of F5 and AIP multi units found that the strength of tuning within F5 

neurons for grip type was significantly greater than for orientation, while the 

opposite was true for AIP (Fig. 3.11). Overall, these results demonstrate the real time 

decoding of intended grasping goals using multi-unit signals from higher-order 

motor areas obtained during planning of these movements, and underscore the 

importance of utilizing signals from multiple cortical areas for control of BMIs to 

restore movement function. 

 

Comparison to previous work 

Research in the field of BMIs for motor control has seen rapid expansion in 

recent years (Scherberger 2009). A key approach has been the closed-loop decoding 

of 2D and 3D arm and hand trajectories, derived mainly from M1 (Serruya et al 

2002; Taylor and Schwartz 2002; Hochberg et al 2006; Wolpaw and McFarland 

2004), to control robotic arms for grasping objects (Taylor et al 2003; Carmena et al 
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2003; Velliste et al 2008), or to decode individual finger movements (Aggarwal et al 

2009). A key difference in the present study was our decision to target parietal and 

frontal areas which are thought to play a role in sensorimotor integration during 

movement planning (Andersen et al 2002,2004,2010; Scherberger et al 2005; 

Pesaran et al 2006; Cisek and Kalaska 2005). This was motivated by two factors. 

Firstly, the use of these cortical structures as a signal source for BMI applications has 

already proven to be a viable tactic for decoding hand and arm reaching movements, 

using parietal reach region (PRR) and dorsal premotor cortex (PMd) (Andersen et al 

2004; Shenoy et al 2003; Musallam et al 2004; Scherberger et al 2005; Santhanam et 

al 2006; Mulliken et al 2008). Secondly, these areas contain more abstract 

representations of intended movement goals that can be extracted directly, 

circumventing the need to decipher low-level M1 movement control signals (Shenoy 

et al 2003; Andersen et al 2004, 2010). Our work therefore extends this avenue of 

research by including real time decoding of hand grasping movements via the 

selection of the equivalent parieto-frontal circuits for grasping (AIP and area F5). 

There is substantial evidence that movement representations in AIP and F5 are 

also abstract (Scherberger 2009). Neurons in AIP represent grasping movements in 

terms of the visual properties of target objects (Taira et al 1990; Sakata et al 1995; 

Raos et al 2006; Baumann et al 2009), and like other parietal areas, also contain 

context-related information for the appropriate selection of actions (Baumann et al 

2009; Gail and Andersen 2006; Scherberger and Andersen 2007). Similarly, area F5 

contains neurons which respond to the visual properties of objects to be grasped well 

in advance of movement execution (Murata et al 1997, Raos et al 2006, Umilta et al 

2007, Fluet et al 2010), such that the representation is based more in an extrinsic 

coordinate frame compared to a more intrinsic (or muscle-like) representation in M1 

(Kakei et al 1999, 2003; Morrow et al 2007). 

In line with these findings, we observed a clear tuning of neural activity in AIP 

and F5 to grip type and object orientation, which lasted throughout the planning 

period of standard delayed grasping trials (Fig. 3.3, 3.5) and was further confirmed 

by a post-hoc ROC analysis of tuning sensitivity (Fig. 3.11). We trained a simple 

Bayesian classifier using this planning activity, which was able to reliably predict the 
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upcoming grasp movement and orientation on a single trial, before the actual 

grasping movement was executed (Fig. 3.7, 3.8). Thus, our study extends the 

substantial body of work on decoding of movement intentions to incorporate real 

time control of hand grasping. 

 

Nature of the decoded information 

Decoding was always carried out using spiking activity collected exclusively 

during the planning period, while the monkey’s hands were still positioned at rest; 

initiation of reach to grasp before decoding was completed automatically resulted in 

termination of the trial. We frequently observed the monkey perform successive 

trials using brain control, without initiating reach-to-grasp (data not shown).  We 

therefore suggest that the decoded information explicitly represented the planned or 

intended grasping movement, rather than a motor output signal (Scherberger and 

Andersen 2007). Two lines of reasoning support this conclusion.   

Firstly, our instructed delay task is a variant of a widely used standard paradigm 

for investigating planning and working memory, in premotor cortex (Cisek and 

Kalaska 2004; Messier and Kalaska 2000; Fluet et al 2010) and posterior parietal 

areas (Snyder et al 1997; Gail and Andersen 2006; Baumann et al 2009). Secondly, 

the sustained instructed delay period activity elicited by this kind of task has been 

well studied, and is thought to be related to the preparation or planning of intended 

movements (Alexander and Crutcher 1990; Riehle and Requin 1993; Snyder et al 

1997; Padua-Schuoppa et al 2002; Churchland et al 2006a,b). In particular, 

preparatory activity in F5 and AIP has been shown to represent intended grasping 

movements (Raos et al 2006; Umilta et al 2007; Baumann et al 2009; Fluet et al 

2010). Our observation of significant tuning for grip type and orientation in AIP and 

F5 during the delay is fully compatible with these results. The present work extends 

these findings by demonstrating that this grasp planning activity does not require an 

actual grasping movement to be executed (Fig. 3.4), in accordance with earlier work 

on eye and reaching movements in PPC (Snyder et al 1997). It is precisely these 

characteristics of premotor and parietal cortical areas that make them useful sources 

of control signals for neural prosthetics (Shenoy et al 2003).  
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Nonetheless, it is possible that this activity may have reflected the sensory 

properties of the cue, such as the color of the LED instructing grasp type. Arguing 

against this interpretation, however, is the fact that spiking within AIP and F5 

showed sustained modulation for several hundred milliseconds after the end of the 

cue period (Fig. 3.3, 3.4). This is well outside the range over which one would be 

expected to see transient neural activity triggered by visual stimuli (Schmolesky et al 

1998; Thorpe et al 1996). We further controlled for this possibility by testing decoder 

performance offline, while excluding planning period activity from within the first 

100-150 ms post-cue; results stayed essentially the same (data not shown). That is, 

classification of the intended grasp was not affected by excluding potential long-

latency, sustained visual activity. 

Alternatively, delay period activity might have been more simply associated with 

anticipatory activity in proximal, and/or intrinsic hand muscles. Despite the fact that 

sampling of neural activity for decoding was stopped approximately 200 ms before 

initiation of reach to grasp, it is still possible that the monkey could have activated 

hand and arm muscles in anticipation of the forthcoming movement, while keeping 

its hand positioned on the hand rest. The decoded information might then have 

reflected an efferent command signal and/or afferent feedback. However, even 

though we did not directly monitor EMGs during decoding, previous work on 

patterns of EMG activity during reach-to-grasp demonstrated that the majority of 

hand and arm muscles required for grasping show selectivity for different patterns of 

grasp at the earliest during reaching-preshaping (Brochier et al 2004). While a 

minority of muscles do show early activation before initiation of the reaching 

movement (such as EDC or AD), this activity does not vary systematically as a 

function of grasp type (Brochier et al 2004) but is instead related to simple extension 

of the fingers at the moment of hand-rest release.  In direct contrast to this, F5 

neurons show clear tuning to grasp type well in advance of either M1 activity or 

EMG activation (Umilta et al 2007). Thus, preparatory activity in AIP and F5 which 

is tuned to grasp movement parameters cannot simply be explained by anticipatory 

muscle activation. Rather, it is consistent with the hypothesis that AIP and F5 are 

responsible for the sensorimotor transformation of visual information about object 
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properties into hand grasping instructions (Taira et al., 1990; Sakata et al., 1995, 

1997; Murata et al., 2000, Raos et al 2006, Umilta et al 2007; Baumann et al 2009; 

Fluet et al 2010). 

 

Discrete decoding 

Another important feature of our study was the use of ensemble activity in F5 

and AIP to decode grip type in a discrete as opposed to continuous sense. This 

approach is in the same vein as previous work which used neural ensembles to 

decode reach movement goals and/or saccade targets (Shenoy et al 2003; Santhanam 

et al 2006; Musallam et al 2004; Scherberger et al 2005). Discrete decoding is 

especially suited to applications where a neural prosthetics user selects quickly from 

multiple individual targets, e.g. during typing (Santhanam et al 2006). However, it is 

clear that full dexterous grasping behavior is a continuous process, and so an obvious 

structure to find the relevant control signals is M1 (Velliste et al 2008; Aggarwal et 

al 2009). Yet progress in this area has so far been limited, presumably because it is 

still unclear which M1 movement representation is optimal for effective hand/finger 

movement decoding (Paninski et al 2004; Townsend et al 2006; Morrow et al 2003; 

Moran and Schwartz 1999; Scott 2000) or how M1 activity is then translated into 

patterns of activation of relevant muscles (Lemon 2008; Yanai et al 2007; Asher et al 

2008). A sensible alternative approach might therefore be to decode the discrete 

intended grasp posture, which could then be translated into the relevant continuous 

control signals for a robotic grasping prosthesis via an external control system. In 

this light, our study represents an important first step for the future development of 

more advanced grasping prostheses. This needs to be extended to include more grasp 

shapes and orientations (Scherberger 2009). Ultimately, to enable control of the 

patient’s own hand, functional electrical stimulation based on neural activity will be 

necessary (Pohlmeyer et al 2009). 

 

Comparison between AIP and F5 

A number of invasive BMI studies in non-human primates have targeted multiple 

cortical areas using chronically implanted electrodes (Wessberg et al 2000; Carmena 



Chapter 3: Real-Time Decoding of Hand Grasping Signals 

92 

et al 2003; Santhanam et al 2006; Doherty et al 2009). Multiple-area BMIs may 

allow implementation of different control strategies (Hatsopoulos et al 2004), 

improve decoder accuracy by stimulating somatosensory areas (Doherty et al 2009), 

or provide measurements of inter-area communication (Pesaran et al 2008; Andersen 

et al 2010). Our decision to implant both F5 and AIP was motivated by similar 

considerations.  While both areas are related to hand grasping, important differences 

exist between AIP and F5 in terms of their anatomical and functional connectivity, 

and their representations of underlying grasp movement parameters. We found that 

these observed differences in grasp movement encoding manifest themselves during 

real time grasp decoding. 

 AIP receives input from parietal visual areas (in particular LIP, CIP, and V6a) 

and from the inferior temporal cortex (TEa, TEm) (Nakamura et al., 2001; Borra et 

al., 2008). These areas represent spatial and object orientation information of visible 

objects (Sakata et al., 1997; Tsutsui et al., 2001, 2002; Galletti et al., 2003). 

Consistent with this, AIP neurons strongly encoded orientation in the delayed 

grasping task, in terms of overall numbers of tuned cells and strength of tuning 

sensitivity (Fig. 3.11). This explains why decoding of orientation was significantly 

more accurate using AIP ensembles than F5 (figure 3.9 D,F). Our results are 

therefore compatible with AIP’s representation of the grasp target in visual terms 

(Baumann et al 2009). 

In contrast, F5 is strongly anatomically connected with M1, exerting a powerful 

influence over M1 corticospinal output (Shimazu et al 2004; Cerri et al) as well as 

containing its own projections to the spinal cord (Maier et al; for review see Lemon 

2008). Concordant with these properties, F5 contained a strong representation of the 

grip type, especially precision grip (Fig. 3.5), F5 neurons were better at 

discriminating grip type than AIP (Fig. 3.11), and grip type decoding using F5 

ensembles gave the highest accuracy (Fig 3.9 A,B). These results are consistent with 

the more direct role F5 plays in the generation of hand movement instructions 

(Brochier and Umilta 2007). 

Although each area was specialized for one of the two task parameters, we found 

that the strong representation of grip type in F5 was counteracted by a particularly 
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weak representation of orientation in line with previous results (Fluet et al 2010), 

while in AIP the distribution of tuning properties was more balanced (Fig 3.9, 

B,D,F). Using F5 alone might therefore be a poor choice for a grasping prosthesis, as 

indicated by the observation that under-sampling of AIP activity in monkey Z led to 

extremely poor orientation decoding performance. However, using signals from AIP 

alone also consistently resulted in lower decoding performance than that obtained 

with both areas simultaneously (Fig. 3.9), suggesting that useful additional 

information about grip type was available to the decoder from F5. Taken together, 

these findings suggest that in terms of BMI control, neural activity from F5 

complements and adds to AIP grasping related information, and an ideal grasping 

prosthesis would therefore utilize signals from both areas. This approach is 

consistent with the above observations on the respective roles of AIP and F5 within 

the parieto-frontal grasping network.  

 

Multi unit signals and decoding 

A key characteristic of our study was the predominance of multi unit neuronal 

signals recorded through the implanted FMAs. On average, around 85% of units 

recorded were subsequently identified as “multi-units” upon close inspection of spike 

sorting output. This was chiefly due to an inability of the sorting procedure to 

separate multiple spike waveforms and classify them reliably as belonging to 

individual neurons, especially when such waveforms have low signal/noise ratios 

(SNRs). Fixed FMA electrodes are particularly affected by this problem since they 

cannot be repositioned in order to improved isolation of single neurons.  Multiunit 

activity from a given channel therefore comprised an aggregate spike train, pooled 

from a minimum of two or more neurons recorded through a single electrode (Super 

and Roelfsema 2006; Ventura 2008; Nikolic et al 2010). Care should be taken to 

distinguish this point-process signal from continuous “multiunit activity” (MUA) 

data generated from envelope functions applied to the low-pass filtered voltage trace 

(Super and Roelfsema 2006; Stark et al 2007; Choi et al 2010); although in any case, 

both sources reflect information that has been sampled from multiple instead of 

single neurons.  
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Of relevance here are results from several studies showing that the tuning 

properties of multiunit data are largely the same as those observed for single units 

(Desimone and Gross 1979; Zeitler and Fries 2006; Super and Roelfsema 2006, 

Super et al 2001; Hatsopoulos et al 1998; Maynard et al 1999; Stark et al 2007). Our 

data agree with this view. Grasp related activity exhibited by AIP and F5 multi-units, 

observed through PSTH firing rate curves (Fig. 3.3), analysis of tuning to grip type 

and orientation (Fig. 3.5) and measures of tuning sensitivity (Fig 3.11), were broadly 

similar to the equivalent analyses performed using single units (Baumann et al 2009, 

Fluet et al 2010). Furthermore, ensembles F5 and AIP data can be used to decode 

movement intentions in real time, when these signals are largely multiunit in nature, 

as previously predicted by offline simulations using only sequentially recorded, 

isolated single units (Pesaran et al 2002; Shenoy et al 2003; Scherberger et al 2005). 

Our study therefore confirms previous experimental and theoretical work 

demonstrating the use of multiunit activity as a viable source of information for 

decoding applications (Stark et al 2007; Ventura 2008; Fraser et al 2009). 

A notable feature of our multiunit recordings was the relatively uniform 

distribution of preferred orientations amongst F5 multi-units during the planning 

period (with the exception of the -25deg handle position), which contrasted with the 

overall tendency for F5 single units to prefer extreme orientations (Fluet et al 2010). 

One possibility could be that we recorded mainly from cells belonging to the class of 

“sensory” F5 neurons described by Fluet et al, which when analyzed separately, 

showed an orientation distribution that is highly similar to ours (see Fluet et al 2010, 

their figure 3.8A). Arguing against this hypothesis however is the fact that these 

same multi-units showed a clear overrepresentation of precision grip, and were tuned 

throughout the planning period; this would then place them in the previous author’s 

“motor cells” category (Fluet et al 2010).  

A more plausible explanation therefore is that features of the orientation 

representation we measured in F5 were influenced in part by the nature of the 

recording process. It is known that although well-isolated cells may show clear 

tuning functions, during their implicit pooling into “multi-units” these may sum in 

such a way that the resulting net “electrode tuning function” fails to reach 
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significance (Ventura 2008; Fraser et al 2009). Thus one should expect a 

concomitantly weaker degree of orientation tuning for multiunit data in comparison 

to single unit results. Indeed this seemed to be the case for our F5 dataset: for 

example in monkey S, out of a total of 689 multi-units recorded, only 5% were 

significantly tuned to orientation. The end result was that we may have effectively 

underestimated orientation information in F5 due to averaging effect of MUA. This 

effect would be compounded by the immoveable nature of the FMA electrodes, 

which prevented precise targeting of dorsal and ventral F5; these are location where 

one would expect to find more orientation tuned cells (Fluet et al 2010). Our 

observation that task-modulated cells were distributed heterogeneously both within, 

and between F5 arrays (Fig. 3.1) adds weight to this hypothesis.  

Given these considerations, it is therefore possible that the observed distribution 

of preferred orientations for F5 multi units was an outcome of the particular 

combination of cells that were pooled together in our multiunit recordings, i.e. 

sampling error.  This could have more of an effect on F5 data, where the 

representation of orientation information is already weak in comparison to AIP, as 

quantified by the ROC analysis of significantly orientation-tuned cells (Fig. 3.11) 

and observed in previous studies (Baumann et al 2009; Fluet et al 2010). Under-

sampling of F5 orientation encoding information would explain the particularly low 

performance of F5 ensembles during orientation decoding (Fig. 3.8, 3.9). However, 

despite these shortcomings, we maintain that our multiunit data demonstrates many 

fundamental similarities to the grasp-related properties of well isolated AIP and F5 

neurons. 

The use of multiunit data can be seen as a trade-off between ease of signal 

acquisition on the one hand, and loss of tuning fidelity on the other. Application of 

more advanced decoding paradigms and statistical encoding models may help to 

resolve the latter issue (Fraser et al 2009; Ventura 2008). With this in mind, multiunit 

data may prove to be a favorable source of control signals for neuroprosthetics 

applications. Extraction of single unit activity requires the use of computationally 

intensive spike sorting routines (Santhanam et al 2006; Quian-Quiroga et al 2004). 

However, this presents a significant challenge for the development of small, 
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implantable invasive BMIs using single unit activity, which would need to perform 

such routines online without access to additional computing resources (Ventura 

2008).  Furthermore, changes in signal quality due to tissue reactions (Poliakov et al 

2005) and additional (as yet unknown) processes tend to severely single unit 

recording capabilities over long time periods of implantation (Schwartz et al 2006; 

Hatsopoulos and Donoghue 2009; Scherberger 2009). Multiunit data may also 

contain additional information which is not present in single unit activity (Zeitler and 

Fries, 2006; Stark et al, 2007). In light of this, recent research has focused on 

development of decoding approaches that utilize multiunit activity as recorded, with 

little or no prior sorting (Stark et al 2007; Fraser et al 2009; Borghi et al 2007; 

Ventura 2008). Our finding that decoding performance was only modestly improved 

by additional offline sorting (figure 3.10) is largely consistent with this approach. 

Overall, the present study demonstrates that multiunit F5 and AIP signals can be 

readily applied to decode grasp movement parameters in real time. Future work will 

be needed to extend this approach to include more varied and continuous dexterous 

grasping movements, executed without enforced delay periods (Scherberger 2009).
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4  Temporal Decoding of Grasp 

Execution 

 

In the previous chapter, the fundamental research question for this thesis is 

answered, namely the feasibility and analysis of implementation of a conceptual real-

time grasping Brain-Machine-Interface via use of signals from AIP and F5. In this 

chapter new questions will be posed for possible extensions on the existing system.  

In this chapter, mainly the findings on investigation of grasp time decoding 

will be presented. Via use of the same experimental setup and data collection 

methods we will investigate a different objective, namely to make classifications on 

“experiment-state” instead of behavioral output.  In other words; decoding when to 

grasp instead of how to grasp is the fundamental question of this chapter. 

 

4.1 Introduction 

The vast body of literature about real-time prosthetic BMIs has concentrated 

on decoding spatial task components, i.e. reach type/direction/orientation, as we also 

did in the previous chapter. However, for a prosthetic device / a practical BMI it 

would be equally important to successfully decode temporal components, i.e. 

movement execution timing. It should be clear that in a real-life scenario a 

neuroprosthetic device, however strong in its spatial predictions, would be pretty 
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useless without also having a reliable temporal inference component. One should 

also remember that in the previous chapter we assumed that we have full knowledge 

of the experimental states. Providing such an external input regarding the experiment 

states is a standard treatment for many of the brain machine interfaces currently in 

development. In a controlled lab environment this is not a problem, but for a 

practical fully-autonomous prosthetic device estimating these epochs is also very 

crucial in order to control the timing of movement execution.  

As we showed in the previous chapter we know that cortical neurons in AIP 

and F5 show strong modulations right before and during the execution of goal 

directed reaching movements. Therefore, we will make the simplifying assumption 

that there are 3 distinct behavioral states for hand grasping in our data; a baseline, a 

planning period and a movement period. We will try to decode these 3 states from 

the simultaneously recorded neuronal activity. It is outside the scope of this work to 

answer how many temporally differentiable states actually exists for grasping in the 

cortical regions of interest and to investigate the interaction and actual mechanisms 

among them. In this chapter, we mostly approach the problem from an engineering 

perspective, considering the practical implications of our findings on neural-

prosthetic devices.  

In the last decade, there were a few attempts to address the problem, decoding 

behavioral brain states for neural-prostheses. The pioneering work from Shenoy et. 

al. (2003) showed that utilizing a maximum likelihood estimator on spiking activity 

from parietal reach region (PRR) of the posterior parietal cortex for epoch 

classification is possible. Later work of Achtman et. al. (2007), proved the same 

concept in a more realistic application with a combination of reach decoding from 

spiking data from PRR & MIP. Their results were promising since they managed to 

show that a fully autonomous neural-prosthetic device for arm-reaching is working 

almost as well as a neural decoder with the perfect state timing information.  

Furthermore, in an attempt to capture the full probabilistic nature of the internal state 

transitions first Hudson and Burdick (2007) and then later Kemere et. al. (2008) 

employed hidden Markov models with unsupervised and supervised learning 
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schemes, respectively. The work of Kemere et al. is the latest publication to date on 

the subject to our knowledge. 

Here, we will build our study starting from a common concept in these 

studies; using a sliding window to make continuous estimates about the underlying 

brain state. We will first start using the same decoder we have used in the previous 

chapter, simple maximum likelihood estimation as our principal classifier. Then we 

will gradually improve the robustness of our predictions by utilizing Markov models; 

a finite state machine (FSM) and a hidden Markov model (HMM). Finally, we will 

redefine the problem as a dichotomy where the experiment state should be classified 

either as Movement or Non-Movement type. This approach can be particularly useful 

for showing it is indeed possible to signal the movement start, which has an obvious 

application for real-life prosthetic devices. To achieve this we will follow a data-

mining approach and present the results from different learning algorithms to 

investigate best performing classifier in such a scenario. 

4.2 Methods 

As in Chapter 3, neural data was collected via chronically implanted 

electrodes in the anterior intraparietal cortex (AIP) and ventral premotor cortex (F5) 

of macaque monkeys performing  in the same experimental setup (delayed grasping 

task).  As stated in Chapter 2, in delayed grasping task trials were divided into four 

epochs: fixation, cue, planning and movement. Monkeys initiated trials by placing 

both hands on rest sensors and fixating a red LED in the dark. After a variable delay 

(fixation, 700-1100 ms), the handle was illuminated for 600 ms (cue), revealing its 

orientation. At the same time, a second colored LED (‘context cue’) was illuminated, 

which instructed the animal about the required grip type (power or precision). After a 

variable delay (planning, 700-1100 ms), the dimming of the fixation light served as 

the go signal to initiate movement execution. It was therefore straight-forward to 

train our decoder in a supervised learning scheme with well-defined and separate 

epochs. For this study we concatenate Cue and Planning periods together and treat it 

as if this is a single state in an attempt to simplify the state structure. We believe that 
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such a 3-state approach is sufficient to capture a generic scenario for grasp related 

time course of internal states. We utilize the spiking activity in these epochs and 

assign them with behavioral states.  

 

 

Figure 4-1: Experimental states of original ‘delayed grasping task’ 

In this chapter for state decoding, we make the simplifying assumption that there are 

only 3 behavioural states exist; Baseline, planning and movement. The transition 

state “Cue” will be treated as a part of baseline while the signal change in this epoch 

will help our decoder to predict the next state.  

 

The work from Shenoy et. al. (2003) showed that minimum window size for 

epoch estimations is between 150-300 ms. Later, Achtman et al. showed that a 200 

ms window that started 150 ms after the target presentation was the shortest window 

that resulted in near asymptotic accuracy (Achtman et al., 2007). We have confirmed 

these finding with our experiments and here show only results where spike data 

sampled with a 250 ms moving window and the states were estimated every 50 ms. 

These values are chosen to wait enough for significant change in firing rate statistics 

to emerge while state switches still occur fast enough for practical constraints of a 

usable prosthetic device.  
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Figure 4-2: Illustration of sliding window data collection 

A moving window with the width of 250 ms is updated at 20 Hz. The supervised 

learner is trained with epoch labelled data based on the actual experiment state. 

 

For every moving 250ms time window a state label (based on the most 

observed state in this period) is created offline. A naïve Bayesian decoder is then first 

trained with some initial part of these data, and then used to make predictions on the 

second part of the data. As in Chapter 3, we make a Poisson assumption for firing 

rate distributions. 

Furthermore, we have also built a state decoder widget into our real-time 

decoding software, Cerebus Decoder. Below in Fig. 4.4 one can see the graphical 

interface that implemented. This widget, implemented in C++ for Naïve Bayes 

decoders, FSMs and HMMs, conveniently decodes and visualizes the predicted state 

in real-time and can be used in combination with spatial decoding easily for fully 

autonomous hand grasping decoding. 
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Figure 4-3: State Decoder widget of the real-time decoding software 

The Naive Bayesian decoder implemented in our decoding software showed 

predicted states in real-time to the user via led-like visual elements. It also keeps 

track of session-wide-decoding-success for state prediction and provides the results 

both in numeric and confusion matrix forms. 

 

4.3 Results 

The data presented here is based on a total of 22 real-time decoding sessions 

conducted in two animals (monkey S, 11 sessions; monkey Z, 11 sessions) that were 

chronically implanted in AIP and F5 with floating microelectrode arrays (FMAs; 

monkey S, 128 channels; monkey Z, 80 channels).  Across these sessions, we 

observed about 65 multi-units in average (SD 14) for animal Z and 105 units for 

animal S (SD 15). The mean real-time decoding performance with a maximum 

likelihood estimator was around 65% (SD 15%) for Animal Z and 82% (SD 16%) for 

Animal S.  
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4.3.1 Markovian State Machines 

While this initial MLE performance is promising, the intrinsic nature of the temporal 

state estimation problem makes it a good candidate for combining it with finite state 

decoding techniques of Markovian characteristics. Toward this end, we have 

implemented a finite state machine of a particular Markovian order. After some 

initial analysis we decided to stick to an order of 5, i.e. system has a memory of 5 

time bins of 250 ms, i.e. a total of 1250ms. The state machine simply assigns 

transition probabilities for each epoch for observed state histories combined with the 

MLE predictions of these time bins and then selects the most likely state as its 

prediction. The system essentially calculates a state transitions probabilities matrix at 

the end of the training period. Based on the observed historical order of states and 

MLE predictions, it calculates the most likely next state during testing. Our 

implementation may be classified as a more stochastic implementation of a constant 

consecutive observation of a decoding constraint as in Achtman (2007). The 

Markovian state machine should intrinsically capture such constraints, given that it is 

observed in training data. Implementation is done in C++ and runs directly inside our 

decoder either in real-time or in offline mode. Using the same dataset with MLE 

case, we achieved a state decoding performance of 69% (SD 15%) for animal Z and 

88% (SD %15) for animal S. 

4.3.2 Hidden Markov Models 

As the next step, we introduced a Hidden Markov Model (HMM) decoder to utilize 

some unobservable states expecting to provide a better handle on the underlying 

stochastic processes, where the observations to HMM were again fed by the MLE.  

HMMs are an extension to finite state machine models. The difference lies in the fact 

that states are not directly observable anymore but we can only observe a 

probabilistic function of them. They provide a probabilistic framework for modeling 

a time series of multivariate observations and were first described in a series of 

statistics papers by Leonard E. Baum and others in the second half of the 1960s. 

Starting in the mid-1970s they gained wide acceptance in speech recognition 
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community and they are still one of the most widely employed techniques in that 

domain. More recently, researchers used HMMs also in DNA sequence analysis, 

handwritten character recognition, natural language domains and many others. 

HMMs are powerful learners which can deal with non-stationary signals robustly. 

Desirable characteristics of a HMM which makes it a good candidate also for our 

task are: strong statistical foundation, the ability to handle new data robustly, and 

computational efficiency (due to the existence of established training algorithms).  

Rabiner (1989) explains the basics of HMM and how it can be used for signal 

prediction. There are in general 3 basics problems to which HMMs are applied to; 

- Given an observation sequence and model, efficiently compute the likelihood. 

This mode of operation might be useful for comparing different models. 

- Given an observation sequence and model, find the optimal state sequence. 

This mode can be seen as a method to explain the data. 

- Given observation sequence, estimate the model parameters that maximize 

likelihood of data. Once the parameters are estimated then we can use this 

model to make prediction on the unobserved data.  

We followed the most standard form of HMMs in our implementations. We utilized 

the Baum-Welch algorithm to estimate our model parameters and used the Viterbi 

algorithm to make predictions. Interested reader may refer to Rabiner (1989) for 

further details on these methods. Implementation was done in C++ and again fully 

embedded in our decoder. We defined our model as having 3 observable states (our 

experiment states) and 3 hidden states and created a random initial state transition 

matrix. With this simple implementation we managed to get decoding success rates 

of %61 (SD %9) for Animal Z and %85 (SD %10) for Animal S. An important point 

to note that is, even though the overall average decoding rate was lower compared to 

State Machines, the robustness both in terms of classifier variance and the in-

experiment-switching of states was better with HMMs. Especially the latter is quite 

an important contribution for real-life prosthetic devices. We want to point out also 

that the design of HMMs were really simple (3 serially connected states) and we 

have only used the MLE predictions as the inputs of our HMM. However, one can 

speculate that with a more carefully designed architecture where also the spiking 



Chapter 4: Temporal Decoding and Optimal Decoding Algorithms 

105 

statistics of individual neurons are directly utilized in the HMM, one can achieve 

better performance. Since showing the robustness contribution was enough at this 

level we left the implementation of the above scenario for later research at the 

moment. 

4.3.3 Data mining for binary decoding of movement time 

Attacking to state decoding problem from a different angle, we wanted to quantify 

our pure movement period classification performance and investigate if we can find a 

better performing algorithm than Naïve Bayesian Learner for this period. This is the 

most interesting period since if we can estimate this period reliably, we can just use 

the data immediately before that period (from a buffer) to calculate spatial decoding 

and directly control an end-effector, in a prosthetic scenario. In order to find a 

decoder which provides highest-decoding performance we chose to follow a data-

mining path and simply tested our dataset with many different learners. Since we 

needed efficient and correct implementations of all the algorithms we decided to 

utilize an existing library for this task. To this extent we utilized a Python 

(http://www.python.org) package called PyMVPA (Hanke et al. 2009). PyMVPA 

stands for MultiVariate Pattern Analysis in Python and offers an extensible 

framework with a high-level interface to a broad range of algorithms for 

classification, regression, feature selection, data import, and export. In Fig. 4.4 and in 

Table 4.1 the movement period decoding results with different model parameters and 

initial feature selection methods are provided for 4 different learners: Bayesian 

Logistic Regression, Naïve Bayes, k-Nearest Neighbor and Support Vector Machine. 

Fig. 4.4 shows two graphs for each learner; the top one shows a blue dot for every 50 

ms window classified as movement epoch for all the 65 sessions decoded. All of 

these different sessions are aligned for the movement start time and the bottom graph 

shows the average movement prediction ratio for every window. This graph does not 

have direct physical implication but was generated to make an assessment on how 

fast and robustly a particular learner can capture the state changes. For feature 

selection, which is done on an independent training dataset, we followed simple best 
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first approaches in this section; we either selected the top 5% or top 50 neurons 

ranked on either 1-way ANOVA statistic or Linear-SVM weights (hyperplane 

coefficients). We have deliberately skipped a more complicated feature selection 

mechanism, like recursive feature elimination with more sophisticated learners, since 

our main objective was testing learners. The green dashed line in Fig. 4.4 is provided 

for a visual assessment of average goodness of fit of movement period prediction 

across trials. A brief inspection of this figure shows that all the learners are capable 

of predicting movement period successfully. Even the worst performing learner 

(Bayesian Logistic Regression classifier w/o feature selection) has an average 

success rate around 85% for this binary classification task, and the same value is 

close to 97% for the best learner (SVM with a linear kernel which uses again SVMs 

as initial feature selection). Our benchmark learner, Naïve Bayesian classifier, for 

this task performs well with an average 93.9% prediction accuracy. k-Nearest 

Neighbor classifiers improve this value slightly while providing a smaller false hit 

ratio. By comparing the blue and yellow dashed lines in bottom graphs we can see 

that they also introduce an increased lag to switch to movement classification. 

Finally, SVMs performed best among all combinations provided here. It is worth 

noting that we have not done an extensive optimization for parameter values of 

SVMs. In general, SVMs not only provided the best average accuracy but also 

showed the fastest response to the onset of the movement start. Final point to note 

that is the training and execution times of these learners. This is important for real-

time neural-prosthetic applications since only after making this epoch classification 

we will be able to make a spatial decoding and execute it in the correct time. Linear-

SVMs showed here again promising results being one of the fastest in testing time. 

Compared to Naïve Bayes classifiers we obtain a classification speed-up of around 

50 times with the fastest SVM implementation (also the best performing learner). 
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Figure 4-4: Movement Period classification with different learners from a 

sample experiment 

 

Four different learners and 2 family of feature selection algorithms are combined 

with different parameter values selected into 12 example model shown above. For all 

the models 2 charts are provided, top chart shows the predicted movement times for 

all of the trials in the experiment (movement start times are aligned). The bottom 

chart shows an average of the top plot against a dotted optimal average decoding. 
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Table 4.1: Classification results for movement state decoding 

Average cross-validated performance results and training and testing times for 

selected models on Animal-S data. Two different feature selection methods with 

different thresholds are tested; ANOVA and Support Vector Machines. As classifiers 

we have tested Bayesian Logistic Regression, Naive Bayes, k Nearest Neighbour and 

Support Vector Machine with a linear-kernel. For SVMs we have tried different 

implementations from different libraries and a couple of different parameters for C-

value. 

Classifier % Perf. Training 

Time 

Testing 

Time 

Total 

Time 

          

Bayesian Logistic Regression        84.50% 34.73s 0.50s 72.29s 

Naive Bayesian on 5%(ANOVA)    93.90% 1.49s 32.00s 68.44s 

sg.LinSVM(C=1)/libsvm          94.30% 74.08s 12.91s 175.48s 

k Nearest NeighbourN(k=5) 94.50% 0.00s 202.29s 406.19s 

kNN on 50(ANOVA)               95.50% 1.29s 12.93s 29.94s 

kNN on 5%(ANOVA)               95.70% 1.42s 23.62s 51.60s 

LinSVM on 50(ANOVA)            95.90% 2.82s 0.81s 8.84s 

LinSVM on 5%(ANOVA)            96.10% 2.97s 0.97s 9.35s 

sg.LinSVM(C=def)/libsvm        96.60% 23.67s 17.20s 83.23s 

LinSVM on 50(SVM)              96.60% 26.11s 0.69s 55.07s 

sg.LinSVM(C=10*def)/libsvm     96.80% 31.63s 13.17s 91.08s 

LinSVM on 5%(SVM)              96.90% 26.44s 0.86s 56.09s 

 

 

 

4.4 Discussion for Temporal Decoding 

Brain machine interfaces with prosthetic applications hold considerable 

promise to contribute to the quality of life of severely disabled patients. Recent 

developments on neuroscience and prosthetics engineering already proved the 

possibility of real-life usage scenarios of such approaches for humans (Hochberg et 

al., 2006). However, critical clinical constraints still need to be addressed. One of the 
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components for a practical fully-autonomous neuro-prosthetic device is the ability to 

differentiate among different cognitive states and act upon them accordingly. In this 

section, we have demonstrated our results with such an application in mind. Previous 

studies (Shenoy et al. 2003, Achtman et al. 2007, Kemere et al. 2008) have already 

showed that it is possible to decode those different states with significant success. 

However, they utilized different brain regions as their signal source; PRR/MIP, 

PMd/M1. In this work, we have showed that it is also possible to decode brain states 

for grasping from cortical areas AIP and F5. To do so, we have re-formulated our 

objective as decoding the experimental states and defined our framework as making 

predictions on a sliding window of neural spike rate data. The pure signal coming 

from DSP to our decoding machine was the same online-sorted spiking activity as in 

Chapter 3. We neglected the analog component of the brain signal as in the previous 

chapter and completely focused our analysis on the spike data with the assumption 

that it captures enough characteristics regarding the behavioral state. In an attempt to 

keep computation requirements manageable while still being reactive enough, we 

predicted the experiment state at 20 Hz while using the most recent 250ms.  

We first used the Naïve Bayesian decoder, the classifier we have applied in 

the previous chapter for making spatial decoding, and managed to get promising 

decoding accuracies; 65% (SD 15%) for Animal Z and 82% (SD 16%) for Animal S. 

In order to utilize the cascaded structure of states, we introduced a Finite State 

Machine of a fixed Markovian order and achieved a decoding performance of 69% 

(SD 15%) for animal Z and 88% (SD %15) for animal S, with also improved 

robustness. Finally, in an attempt to capture the temporal stochastic properties of 

underlying states more efficiently we utilized a simple HMM decoder to obtain 

decoding accuracies of 61% (SD 9%) for Animal Z and 85% (SD 10%) for Animal 

S. The main contribution of HMM was increased robustness which can be enough 

for the trade-off of a slightly decreased state decoding accuracy in an actual 

implementation. Our reported average decoding accuracies were slightly less than the 

results in Achtman (2007), where they obtained decoding accuracies in the range 

80%-90% for different methods they applied. Recording from a different brain 

region may be one reason for this but we believe that the main difference arises from 
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the finer modeling implemented in Achtman et al. (2007). They created different 

models for each reach direction in their approach which is a plausible extension. 

However, this was not feasible for us due to data limitations. Their experimental 

paradigm allowed them to record more trials per session and they have around 400 

trials for training which was enough to estimate parameters for a finer model. Since 

our experimental setup allowed us to use only around 100 trials for training, we 

averaged the models for different spatial targets into a single model. And even after 

these averaging down the data resolution, we believe that the models’ prediction 

accuracies are satisfying enough for most of the real-life scenario. Thus, we can 

conclude it is indeed possible to use data from AIP and F5 for cognitive state 

decoding purposes. 

In the second part of this chapter we have questioned the optimality of our 

base decoder, Naïve Bayes, for the task. To do so, we redefined the problem as a 

dichotomy and tried to estimate the movement period vs. all others. We used 

different machine learning algorithms and showed that some significant increase in 

decoding accuracy and robustness is possible with stronger learners and feature 

selection mechanisms. The best results here were obtained with Support Vector 

Machines with linear kernels. The faster classification of SVMs also holds promise 

for real-time implications. However, one should note that computational power 

requirements and training times with SVMs may be not desirable in comparison to a 

Naïve Bayesian approach. Also, in an online adaptive learning setup Naïve Bayesian 

classifiers have advantages against classical SVMs.  Finally, one should note that the 

data from the movement period that we have decoded in this part is coming from a 

normally behaving animal. The neuronal activity of a tetraplegic patient, on the other 

hand, may be substantially altered. Thus, we want to emphasize that the results of the 

last part of this section are obtained mainly for benchmark purposes.  

 

Possible extensions 

Results we have presented here and comparison to other works (Achtman et 

al. 2007) suggest that with finer modeling of different spatial cues one can observe 

better decoding accuracies for states. Due to data limitations we averaged the neural 
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responses across targets into a single model per state. However, for example, with 

enough stationarity in firing statistics among successive days one can try to follow a 

richer modeling approach. Or a better designed HMM with access to individual firing 

statistics of neurons may perform better while taking into account correlations and 

dynamics to exploit underlying temporal coding strategies used possibly by the brain.  

 One other point we have neglected was the fact that the actual context change 

signals arriving and being processed in the brain also require some time. The 

approximate time necessary for visual information to be transduced at the retina, 

processed by several subcortical regions, and finally reach cortical areas we record 

from is believed to be in the order of 50 ms (Santhanam et al 2006). Thus, it is not 

realistic to expect our decoder to switch immediately in the first decoding window to 

the new state; most likely even the brain is not fully aware of that signal at that 

moment. This is creating a small negative bias in the performance of our decoders.  

 Another approach to increase the stability and the performance of our decoder 

may be to introduce different signal modalities. One very good candidate is local 

field potentials (LFP). While capturing the lower frequency components of the neural 

signals, LFP power is higher during the planning period (Shenoy et al. 2003, 

Scherberger et al. 2005), which might be very useful for our purposes.  

In this section, we showed that using Naïve Bayesian decoders, it is possible 

to reliably predict the current cognitive state. Using Markovian state machines and 

HMMs and also some other learning algorithms, we have demonstrated possible 

improvement in prediction accuracies and robustness of state switching. The latency 

of our algorithm (~300 ms) is in the same order with the actual reaction times of 

primates (200 – 400 ms), thus we can conclude that this implementation can be 

realistically useful in a fully-automated hand grasping BMI. We are not claiming 

optimality for our decoder or for the parameter sets selected. Furthermore, for a 

clinical implementation one should take into account on the above stated possible 

extensions to the system. 
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5 In Search of a More Robust 

Decoding Algorithm for Hand 

Grasping 

In this chapter we are returning back to our original objective of decoding the 

spatial component of the task, i.e. predicting the hand grasping posture of the animal 

given the neural data in the planning period. But this time, similar to what we have 

done in chapter 4, we are following a data mining perspective to find a better 

performing decoder. To achieve this we will compare different standard machine 

learning approaches on the same data set in an offline setting. Similar to the previous 

chapter, we used here only spike rates that were computed from online-sorted spike 

counts. The contents of this chapter is published as a peer reviewed conference paper 

at proceedings of the 32nd Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society -EMBC'10 (Subasi et al. 2010). 

 

5.1 Introduction 

 

If we want to decode neural information optimally, a good point to start with 

is to ask: “How does the brain actually decode this information?” Population coding 

is one theory which captures the stochastic and distributed characteristics of neurons 
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well and explains some of the intrinsic properties of motor cortical areas. Population 

coding has some built-in noise compensation characteristics and is robust. It also 

gives rise to short-term memory in the system and can instantiate complex and non-

linear functions (Pouget et. al., 2000). An early-developed population coding 

mechanism is “population vector analysis” which is essentially a cosine function fit 

to the observed activity direction (Georgopoulos et. al., 1989). The population vector 

algorithm enjoyed substantial success until maximum likelihood estimation (MLE) 

approaches showed to be superior in capturing the underlying probability 

distributions (Oram et al. 1998). Being a parametric method, MLE usually assumes 

Poisson statistics for motor neuron firing rates and for the parameter estimation to be 

tractable, we made the strong assumption that the individual neurons are firing 

independently. So, we reach Naïve Bayesian Classifiers, which are widely used in 

BMI community for discrete goal directed predictions. This was also the main 

method we followed in chapter 3 for online decoding. 

Naïve Bayesian Classifiers can be trained efficiently in a supervised setting and 

despite their non-realistic independence assumptions they perform very well in 

cortical signal decoding and are treated to date as state of the art in many settings. 

But frequently, analysis of multiple simultaneously recorded spike trains with these 

naive assumptions will raise the legitimate question whether the data is treated 

adequately. The absence of well-developed statistical methods for analyzing multiple 

point processes is the main concern for practitioners with classical statistics 

background (Brown et. al., 2004). Here we address this issue from a data driven 

perspective, where we define the decoding goal as having the best prediction 

accuracy, without spending much effort on optimal modeling of the data generating 

process.  

We can define two broad categories of approaches towards generating 

predictions in general (Breiman, 2001). The first, “Data modeling approach” utilizes 

an underlying model that is constructed a-priori to generate data. This approach relies 

heavily on parameter estimation techniques and model validation that is achieved 

usually by goodness-of-fit tests. However, one should be careful in the choice of 

estimators while keeping in mind that even significant results may be misleading if 
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the assumptions regarding the initial model are not appropriate. The family of 

learners in this category commonly referred as likelihood-based classifiers in the 

machine learning community. 

In contrast, the “Algorithmic modeling approach” requires no a-priori model 

for the underlying data generation. Instead, black-box learners work on all available 

data and validation is checked by predictive accuracy. One should be particularly 

careful about over-fitting when working with this set of algorithms. Being strong 

learners, this family usually provides better prediction performance as compared to 

model-based procedures, but they suffer from lack of explanatory power. The 

classifiers in this category are commonly referred as discriminant-based learners. 

The main motivation of this section was to bring some of the well known 

methods from data modeling and algorithmic modeling together, first for the 

purposes of comparison with our implemented setup and to convince ourselves that 

we are getting most out of our data. Second, to investigate a possible combined 

approach which may introduce better performance in the setup and ultimately may 

shed light on the underlying characteristics of the selected cortical regions. 

5.2 Methods 

To compare different algorithms on our data set, we created a testing-platform, 

using the open source, JAVA based software RapidMiner (Mierswa et. al. 2006). 

This program provides efficient and thoroughly tested implementation of many 

standard machine learning algorithms in a standard framework and makes the 

experiment design and the task of comparing learners more robust and easy. We have 

mostly utilized the algorithms and standard machine learning procedures out of the 

box coming with the software. Whereas we have extended it in a few occasions 

(Poisson Naïve Bayes and Anova feature selections to name two examples) where 

desired algorithms were missing or implemented in a different way compared to how 

we wanted to test them. The benefits of using open-source software were strongly 

evident in such occasions. In the end, the ability to design and compare learning 

experiments either through graphical user interface or XML description or directly 
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using in JAVA environment through RapidMiner has proven to be a significant time 

saver in our research. In Figure 5.1, one can see the typical design flow of an 

experiment in RapidMiner in a tree structure. Also in Appendix A, a sample xml 

description of one study used in this work is included. This open and clean 

architecture of RapidMiner made our objective of searching for an improved decoder 

for our data-set easier. 

Trying to find “the” optimal learner is not an easy task (if possible at all), first 

due to our lack of knowledge and a formal grasp of the underlying data generating 

process (i.e. primate premotor and parietal cortex) and second, due to learning in 

general being an ill posed problem. It is possible and very likely that with new 

evidence (new recordings in our case or recordings from different animals or slightly 

different regions of the brain) we will realize that our current “optimal” decoder is 

actually sub-optimal. Thus, we want to make clear that if we use the word optimal in 

this section we are not claiming a universal optimality and mainly referring “the 

optimal” among the learners that we have tested for our data set. We can say in 

general that (Dietterich, 2003), in all learning algorithms that are trained from 

example data there is a trade-off between 3 factors:  

- The complexity of the learner, or the capacity of the hypothesis class. 

- The amount of training data. 

- The generalization error on new examples. 

As the amount of training data increases, the generalization error decreases. As the 

complexity of the learner increases, the generalization error first decreases but start 

to increase after a critical point. A common approach to measure the generalization 

ability of a hypothesis (a learner) is to use data outside of the training set. We can 

simulate this by dividing training data to two disjunct parts. We use one part for 

training and the remaining part is used to test for the generalization ability 

(validation). Then, assuming large enough training and validation sets we can select 

the most accurate learner on the validation set. This process is commonly referred as 

cross-validation and used as the main model comparison tool also in the previous 

chapters.  
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One other common theme in machine learning is the bias/variance dilemma 

(Geman et al. 1992). This can be very briefly summarized as the opposite behavior of 

bias and variance characteristics of a learner in general. For a model, with increasing 

complexity small changes in the dataset cause greater changes in the outcome, but a 

complex model on average allows a better fit of the underlying function; thus bias 

decreases. To decrease bias, the model should be flexible, at the risk of increasing 

variance. If the variance is too high, the performance on previously unobserved data 

may suffer significantly. The optimal model should find the best trade-off in 

between. In this work, we tried deliberately not to over optimize the learners (it is 

still possible to over-fit to data by trying too many learners even in a cross-validation 

setup) by extensively searching the parameter spaces. As a rule of thumb, we always 

tried to stay in a reasonable parameter space and run very simple optimization 

routines if necessary. Another important point to note that is the initial feature 

selection mechanism utilized for the learners. Since we were mainly interested in 

comparing different learners, we did not spend too much time on feature selection (or 

on extraction) algorithms and utilized the same method (one way ANOVA with a 

fixed confidence threshold) from Chapter 3 for all the learners here. We have run 

some simple analysis on the effect of different feature selection methods (not shown 

here) and have not found any significant results. However, a more detailed analysis 

may prove otherwise. 
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Figure 5-1: A graphical description of experiment design in RapidMiner 

The steps of a learning experiment are provided in tree-like structure. This structure 

is reflected in a DOM tree via XML in RapidMiner and is therefore easy to edit and 

share experiments outside of the GUI environment. The execution flow of the 

experiment logic can be read from up to down where sub-trees have higher priority. 

Above example shows the flow of a cross-validation experiment with ANOVA 

feature selection for Naive Bayes learners. The details the implementation of the 

cross validation is hidden from user in this view but still accessible through JAVA 

source code when necessary. 
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The reason why we still wanted to use a simple feature selection layer is the 

fact that there is a trade-off between feature selection/extraction and decision 

making. If the feature extractor is good, the task of the learner may become trivial. 

On the other hand, if the learner is good enough then there should be no need for 

feature extraction, it should combine and select useful features internally. Some of 

the learners we have tried do this in fact. Thus, if we had provided data without prior 

feature selection, these classifiers would have an unfair advantage against others. By 

providing the equal input set, after a simple feature selection layer, to all classifiers, 

we wanted to bring them into a comparable common ground.  

In particular, we tested: Naïve Bayes classifiers with Poisson and Gaussian data 

assumptions, Perceptrons, Decision Trees, Logistic Regression Classifiers, k-Nearest 

Neighbor classifiers, Naïve Bayes trees, Multi Layer Perceptrons (classic back-

propagation neural networks), and Support Vector Machines (SVM) with Linear and 

Radial Basis Function (Rbf) kernels. We also tested some widely used ensemble 

method approaches; Bagging, Adaboost, MultiBoosting, Bayesian Boosting and 

Stacking. Referring to our discussion on two cultures for statistical modeling we can 

say that the algorithms we have tried (besides Naïve Bayesian classifiers) were closer 

to the algorithmic modeling family. Naturally, we have selected Naïve Bayesian 

classifier with a Poisson distribution assumption as our benchmark, not only because 

of its frequent use in the literature but also because it served as our principle learner 

in the previous chapter. 

In the following, we provide a brief description of the characteristics of the 

learners we found particularly interesting for this work.  

5.3 Description of Selected Learning Methods 

Since our main objective here is not to provide a didactic text on machine 

learning algorithms, we will concentrate our attention on the methods we have found 

interesting results with. Naïve Bayesian classifiers, Decision Trees and Support 

Vector Machines are the main learners we found particularly interesting, due to 

reasons which will be clear in the Results section. We will also provide some 
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information about ensemble methods given the significant attention they have drawn 

in the last decades and possible implications in our research. Since we have already 

provided a formal discussion of Naïve Bayes classifiers in chapter 2 we skip them 

here. The interested reader in a more detailed treatment of the algorithms provided 

should refer to classical text books. Some particularly good examples are; The 

Nature of Statistical Learning Theory (Vapnik, 1995), The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction (Hastie et al. 2009), and 

Introduction to Machine Learning (Alpaydin, 2010). 

5.3.1 Decision Trees: 

A decision tree is a nonparametric, supervised learner which is composed of a 

hierarchical decision node structure. Each of these nodes evaluates a function against 

a threshold to create its branches. This process starts at the root node and is repeated 

recursively until a terminal leaf node is hit. At leaf nodes, the value written 

constitutes the output. No assumption is made a priori regarding the class probability 

distributions and the tree structure. Therefore, during learning the tree grows and 

branches depending on the complexity of the problem inherent in the data. Each node 

defines a discriminant in the input space dividing it into smaller regions that are 

further subdivided as a path from the root down taken. This way, a complex function 

is broken down into a series of simple decisions. Each leaf node defines a localized 

region in the input space where instances falling in this region have the same labels 

in classification. (Alpaydin, 2010)  

The two main advantages of a decision tree are; i) the fast localization of the 

region covering an input due to hierarchical placement of decisions and ii) it’s 

straightforward interpretability by humans. Because of these desirable properties 

decision trees are sometimes preferred over more accurate but less interpretable 

methods. Its intrinsic feature selection mechanism is also a desirable property for 

many tasks.  

In the case of a decision tree for classification, the goodness of every split is 

quantified by an impurity measure. Common methods to do this quantification are 



Chapter 5: In Search of a More Robust Decoding Algorithm for Hand Grasping 

120 

using entropy from information theory, the gini index (Breiman et. al. 1984), or error 

rates. So, for all attributes the impurity is calculated and the one that has the 

minimum entropy (or other measure) is chosen. Tree construction continues from 

that point recursively for all the branches that are not pure. CART (Breiman et. al. 

1984), ID3 (Quinlan 1986) and C4.5 (Quinlan 1993) are the most popular 

implementations of this procedure. A common final step used in decision trees is 

called pruning. This is simply a way of controlling the variance of the learner in 

order to achieve higher generalization ability with either pre- or post-processing. We 

have utilized C4.5 learners with a pre-pruning setup in this work. Decision trees by 

themselves did not produce superior results compared to other classifiers, however in 

an ensemble setting in combination with our classifiers we have observed desirable 

outcomes (see Results). 

5.3.2 Support Vector Machines (SVM) 

SVM is a very successful discriminant-based method and arises from 

Vapnik’s principle to never solve a more complex problem as a first step before the 

actual problem (Vapnik 1995). i.e., if we want to simply learn discrimination among 

given classes, it is not necessary to estimate the class densities         or the exact 

posterior probability values        ; we only need to estimate where the class 

boundaries lie, that is, x where                 .  

For a two class problem with labels −1/   1. For the sample           where 

      if        and       if       we would like to find   and    s.t., 

                    

And we want to maximize margin for better generalization. The task can therefore be 

defined (see Cortes and Vapnik 1995; Vapnik 1995) as to 

   
 

 
                                   

If we re-formulize the above equation as an unconstrained problem with Lagrange 

multipliers    as; 
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This should be minimized with respect to  ,    and maximized with respect 

to     . The saddle point gives the solution. This is a convex quadratic 

optimization problem because the main term is convex and the linear constraints are 

also convex. Once we solve for   , we see that there are N of them, most vanish with 

      and only a small percentage have     . The set of    whose       are 

the support vectors. The instances that are not support vectors carry no information; 

even if any subset is removed, we would still get the same solution. However, if the 

data is not linearly separable, the algorithm above will not work. Thus Soft Margin 

Hyperplane concept is introduced, which essentially introduces some slack variables 

to the optimization problem and a modifying penalty term as a regularization scheme 

to limit complexity. After this modification, SVMs can work on arbitrary data, 

however it is sometimes not the best approach to attack non- linearly separable data 

this way. Therefore another transformation, commonly referred as Kernel trick, is 

introduced which maps the input data to another (most of the time higher order) 

space where it is linearly separable. A nice thing about Kernel trick is due to the way 

we define our optimization problem, we don’t need to explicitly map all the input 

data set on the new space, instead just calculate a dot product in this space, which 

makes the computation significantly easier. Or in other words, the use of kernel 

functions implies a different data representation; we no longer define an instance 

(object/event) as a vector of attributes by itself, but in terms of how it is similar to 

other instances.  

After this treatment SVMs become a really powerful learner which can deal 

with non-linear, high-dimensioned data. Among the most popular Kernels are linear, 

polynomial and radial basis function kernels. These are also the ones we have used in 

our analysis.  The novelty of support vector machines lies in integration of the 

mapping data to a new space through nonlinear basis functions into a learning 

scheme whose parameters are defined in terms of a subset of data instances (dual 

representation). This way, without a need to explicitly evaluate the basis functions 

one can limit complexity by the size of the training set. Because there is a unique 
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solution to the optimization problem, we do not need any iterative optimization 

procedure as we do in neural networks. Support vector machines are currently 

considered to be one of the best off-the-shelf learners and are widely used in many 

different domains, especially bioinformatics (Schölkopf, Tsuda, and Vert 2004) and 

natural language processing applications (Joachims 2002). Also in our setup SVMs 

turned out to be one of most effective learners (see Results).   

5.3.3 Ensemble Methods 

Over the last decade, ensemble based systems have enjoyed a growing 

attention and popularity due to their many desired properties, and the broad spectrum 

of applications that can benefit from them. The “No Free Lunch” theorem states that 

there is no single learning algorithm that always induces the most accurate learner in 

every domain. The typical approach is to train many learners and then choose the one 

with the best validation set performance. Each learning method contains some 

intrinsic set of assumptions and this bias leads to error if the assumptions do not hold 

for the data. Learning is an ill-posed problem in general and with finite amount of 

data, each algorithm fails under different circumstances. To aim at the highest 

possible accuracy, the performance of a learner may be fine-tuned on a validation set 

but still there is no guarantee that we will reach the desired accuracy. The 

fundamental idea in ensemble learning is there may be another learner that is 

accurate on the cases where our learner at hand fails. By combining multiple learners 

in a smart way we can achieve better performance. Recently with computation and 

memory getting cheaper, such systems composed of multiple learners have become 

very popular (Kuncheva 2004). 

There are two fundamental questions we need to answer in order to work with 

ensemble systems: 

1. How do we generate base-learners that complement each other? 

2. How do we combine the output of base-learners for maximum accuracy? 

We will give a brief look to possible approaches to attack those problems below.  
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Finding Complementary Learners: One of the most common approaches for 

generating complementary base learners is to feed them with different training sets. 

This can be done randomly by drawing random training sets from the given sample; 

this is called bagging. Bagging, short for bootstrap aggregating, uses bootstrap to 

generate L training sets, trains L base-learners using an unstable learning procedure, 

and then, during testing, takes an average (Breiman 1996). In bagging, generating 

complementary base-learners is left to chance and to the instability of the learning 

method. Another common approach to train complementary learners is based on 

serially training so that instances on which the preceding base-learners are not 

accurate are given more emphasis in training later base-learners. Boosting and 

cascading are the most well known approaches in this family. In boosting, we 

actively try to generate complementary base-learners by training the next learner on 

the mistakes of the previous learners. Schapire (1990) has shown that this overall 

system has reduced error rate, and the error rate can be reduced arbitrarily by using 

such systems recursively. Though quite successful, the disadvantage of the original 

boosting method is that it requires a very large training sample. Freund and Schapire 

(1996) proposed a variant, named AdaBoost, short for adaptive boosting, that uses 

the same training set over and over and thus need not be large, but the classifiers 

should be simple so that they do not overfit. Once training is done, boosting takes the 

weighted vote where weights are proportional to the base-learners’ accuracies. In this 

seminal work, Freund und and Schapire (1996) showed improved accuracy in 

twenty-two benchmark problems, equal accuracy in one problem, and worse 

accuracy in four problems. Schapire et al. (1998) explain that the success of 

AdaBoost is due to its property of increasing the margin. This suggests AdaBoost 

and SVM have similar approaches for the discrimination problem.  

Combining Predictions from many Learners: The earliest and most intuitive 

approach for multi-learner output combination is voting, which is nothing but simple 

old democracy for base classifiers. In other words, every classifier has one vote and 

majority decides in the end. In recent decades, more complicated algorithms than 
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simple voting are suggested and below we provide some of the most popular 

approaches: Stacked generalization, Bayesian boosting and Multi-boosting.  

Stacked generalization: (Wolpert 1992) In Stacking, base-learners are simply 

combined through another learner, which is again trained with the sample training 

data set. This is similar in concept to cross-validation, but instead of using a winner 

take all like solution as in classical cross-validation, stacking blends the results. The 

combiner learns what the correct output is when the base-learners give a certain 

output combination. Stacking is a means of estimating and correcting for the biases 

of the base-learners. In stacked generalization, the base-learners preferred to be as 

different as possible so that they will complement each other, and selection of 

different learning algorithms as base learners is therefore suggested. Stacking usually 

delivers superior results compared to its base classifiers.  It is also worth noting that 

it was extensively used by the two top performers in one of the most challenging and 

popular machine learning competition of the last years (Netflix competition, Sill et 

al. 2009).  Also in our research, we found a promising implementation of stacking, 

which delivered superior results compared to the individual learners.  

Bayesian boosting: (Scholz et. al., 2005) At each iteration, base models are induced 

and reweighted continuously, considering the latest batch of examples, only. Unlike 

other ensemble methods, the proposed strategy adapts very quickly to different kinds 

of concept drifts. The algorithm has low computational costs. It has empirically been 

shown to be competitive to, and often to even outperform more sophisticated 

adaptive window and batch selection strategies. This approach might be especially 

interesting for non-stationary time series learning.  

Multi boosting: (Webb, 2000) MultiBoosting is an extension to the highly successful 

AdaBoost technique where it is combined with wagging. Wagging (Bauer & Kohavi, 

1999) is a variant of bagging, which requires a base learning algorithm that can 

utilize training cases with differing weights. Rather than using random bootstrap 

samples to form the successive training sets, wagging assigns random weights to the 

cases in each training set. It is able to harness both AdaBoost's high bias and variance 

reduction with wagging's superior variance reduction. Using C4.5 as the base 

learning algorithm, Multi-boosting has demonstrated to produce decision committees 
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with lower error than either AdaBoost or wagging on a large representative cross-

section of UCI data sets (Frank 2010 - http://archive.ics.uci.edu/ml). It offers the 

further advantage over AdaBoost of suiting parallel execution. 

 Combining multiple learners has been a popular topic in machine learning 

since the early 1990s, and research has been going with an increasing pace since 

then. The “no-free-lunch” theorem states that there is in fact no best classifier for all 

classification problems and that the best algorithm depends on the structure of the 

available data and context. Still, many studies have compared various ensemble 

generation and combination rules under various scenarios. A non-exhaustive list 

includes; Dietterich (2003), Breiman (2001), Bauer et al. (1999) and Quinlan (1996). 

The typical consensus is that boosting usually achieves better generalization 

performances, but it is also more sensitive to noise and outliers (Polikar, 2006). In 

this line, AdaBoosted decision trees are considered to be one of the best out-of-the-

shelf machine learning algorithms. However, with additional work for a carefully 

designed setup, one can achieve superior results with methods like stacking. 

In the following section, we will present our results with all of these different 

approaches and finally suggest an ensemble well suited for the problem at hand.  

5.4 Results 

 

We present decoding results with 24 different learning methods from 8 

recording sessions from each animal (Table 4.1, Table 4.2). There is a first set of 11 

algorithms, which is selected from a wide variety of widely used machine learning 

methods; Naïve Bayes with Poisson (benchmark) and Gaussian distributions,  

Bayesian Logistic Regression, Bayesian Network, k-NN, Decision Tree, Naïve 

Bayes Tree, Simple Perceptron, Multi-Layer Perceptron, and finally Support Vector 

Machines (SVM) with linear and Rbf kernels. Another set of 11 algorithms are then 

constructed using ensemble methods which utilize some learners from the previous 

set as their base learners. Finally, after obtaining results with all of the above 

mentioned methods, we designed two new ensemble systems which are essentially 
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stacking systems. Based on the results from initial run, we decided to provide 2 

Naïve Bayes classifiers (with Poisson and Gaussian distributions) and an SVM-Rbf 

as our base learners to it and used either a decision-tree or a neural network on the 

top-layer as the final decision maker. This way we wanted to bring the best of both 

worlds from model- and discriminant-based approaches together. 

Looking at the average decoding accuracies (last columns of Table 5.1 and 

Table 5.2), the first thing to notice is that there is a substantial difference for both 

animals (~0.60 vs. ~0.33 for best performing classifiers). This is not surprising after 

we observed similar results also in Chapter 3. In Fig.5.2 we provide the number of 

tuned units for both animals in each experiment and one can see that Animal S has 

significantly more neurons which show task-specifity.  

Among single learners, Naïve Bayes (NB) and SVM-Rbf showed best average 

decoding accuracy (~58%) for both Animal-S and Animal-Z (~32%). On individual 

recordings of Animal-S, NB-Poisson classifiers ranked 5 times in top 3 classifiers 

among all the classifiers for that particular recording; the same value was 4 for NB-

Gaussian and 3 for SVM-Rbf. Also SVM-Linear and Multilayer perceptrons were 

ranked among top-3, 2 times each. None of the other single classifiers ranked in top-

3 for any of these 8 recordings. The results for Animal-Z was somehow similar, 

again NB and SVM performing best among single classifiers. But this time SVMs 

manage to be ranked in top-3 5 times, whereas it was 2 and 3 for NB-Poisson and 

NB-Gaussian classifiers. Single and Multi-layer perceptrons are ranked in top-3 1 

and 3 times, respectively. 

Among boosting based ensemble methods, BayesianBoosting with NB-Poisson 

base learners had the best average accuracy and this learner ranked 4 times in top-3, 

for Animal-S. Adaboost with NB-Poisson and NB-Gaussian base learners showed 

second best results both in terms of average performance and top-ranking counts. For 

Animal-Z, MultiBoosting and Adaboost showed best results with both NB-Poisson 

base learners. Also the performance of MultiBoosted Decision Trees was close to 

them. That was the only case in which decision trees as base learners were close to 

NB classifiers. In general, boosting based ensemble methods improved accuracy in  
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Figure 5-2: Number of significantly tuned units in 8 sessions for each animal 

Recordings from Animal-S show clearly more tuned units for every experiment. 

With better signal quality we are obtaining also better decoding performance for this 

animal. (Table 4.1-4.2) 

 

 

some cases for Animal-S, but were beaten in average performance in the end. For 

Animal-Z, on the other hand, we observed a better performance with a 

MultiBoosting ensemble compared to single learners’ winner SVM-Rbf.  Here we 

can see that, whenever the signal-to-noise ratio is high and the model assumptions 

are violated heavily, ensemble approaches may outperform state of art single 

learners.  

Finally, once we include our stacked generalization based learners into 

comparison, we see that they are indeed providing the best average accuracy for both 

animals (~60% for Animal S, ~33% for Animal Z) and also the best top-3 ranking 

counts. For Animal-S our proposed method ranked in top-3 in 7 out of the 8 

recordings. It was a bit more modest (4 out of 8) for Animal-Z but still best 

compared to all other single and ensemble learners. Furthermore, it also had the 

minimum decoding success variance across daily sessions among the best 

performing approaches, i.e. it is a more robust learner (Table 5.3). We tried using 

either a decision tree or a multi-layer perceptron neural-network as the top-level 

learner for this stacking approach. In the end, the decision tree version showed 

slightly better performance and due to other advantages of decision trees against 
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neural nets, like easier training and human-interpretability of analysis, we pick the 

stacking of NB-Poisson, NB-Gaussian, SVM-Rbf with a top level Decision-Tree 

learner as the best classifier in this setup. The observation yielding to this learner was 

the different performance characteristics of model-based vs. discriminant-based 

learners on different days. We hypothesize that, due to increased model-assumption, 

and model-assumption-breaking characteristics of the collected signal at some days 

(increased correlation for example) a discriminant-based learner like SVM may 

outperform NB occasionally. Therefore, a top level learner that can track the 

different signal characteristics and chose the learner which will provide the best 

results accordingly will yield a better performance.  

Our analysis provided in (Tables 5.1, 5.2, 5.3) confirmed this intuition.
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Table 5.1: Decoding performance for Animal S  
The best performing 3 learners’ results are colored (darkest for the best one) for every experiment. 

 
 

Record IDs :  A0515 A0519 A0520 A0525 A0526 A0527 A0528 A0508 
 

AVERAGE 

Generic Algorithms                     

NaiveBayes-Poisson 0.391 0.581 0.514 0.500 0.654 0.582 0.758 0.632 

 
0.577 

NaiveBayes-Gaussian 0.449 0.602 0.543 0.500 0.605 0.532 0.697 0.658 

 
0.573 

BayesianLogisticRegression 0.406 0.581 0.476 0.386 0.444 0.468 0.689 0.526 
 

0.497 

BayesNet-K2 0.449 0.398 0.390 0.341 0.370 0.481 0.409 0.500 

 
0.417 

DecisionTree 0.304 0.366 0.343 0.295 0.259 0.354 0.220 0.303 

 
0.306 

NaiveBayesTree 0.246 0.269 0.286 0.386 0.185 0.278 0.303 0.303 
 

0.282 

kNN 0.435 0.462 0.457 0.386 0.420 0.481 0.538 0.539 
 

0.465 

Perceptron 0.464 0.548 0.410 0.318 0.346 0.494 0.636 0.368 

 
0.448 

MultiLayerPerceptron 0.507 0.484 0.524 0.364 0.580 0.443 0.720 0.658 

 
0.535 

LinearSVM 0.464 0.548 0.667 0.341 0.630 0.506 0.705 0.632 

 
0.562 

RbfSVM 0.536 0.570 0.648 0.432 0.617 0.468 0.697 0.645 
 

0.577 

Ensemble Methods                     

Adaboost-NaiveBayesPoisson 0.362 0.538 0.543 0.500 0.667 0.544 0.720 0.563 

 
0.555 

Adaboost-NaiveBayesGaussian 0.406 0.602 0.552 0.500 0.617 0.544 0.697 0.589 
 

0.563 

Adaboost-DecisionTree 0.304 0.344 0.343 0.273 0.235 0.367 0.205 0.321 
 

0.299 

Adaboost-kNN 0.391 0.462 0.390 0.318 0.395 0.380 0.530 0.457 

 
0.416 

Adaboost-Perceptron 0.333 0.505 0.333 0.318 0.370 0.380 0.606 0.458 

 
0.413 

Adaboost-LinearSVM 0.478 0.581 0.476 0.341 0.519 0.392 0.682 0.502 

 
0.496 

BayesianBoosting-NaiveBayesPoisson 0.391 0.581 0.514 0.500 0.654 0.582 0.750 0.602 
 

0.572 

BayesianBoosting-DecisionTree 0.449 0.409 0.362 0.295 0.284 0.342 0.402 0.398 

 
0.368 

BayesianBoosting-LinearSVM 0.478 0.581 0.476 0.341 0.519 0.392 0.682 0.533 

 
0.500 

MultiBoosting-NaiveBayeGaussian 0.493 0.602 0.543 0.455 0.580 0.532 0.697 0.578 
 

0.560 

MultiBoosting-DecisionTree 0.319 0.516 0.486 0.432 0.457 0.405 0.477 0.404 
 

0.437 

Proposed Methods                     

DecisionTree - NB & SVM 0.507 0.634 0.623 0.477 0.605 0.582 0.742 0.645 

 
0.602 

Neural Network - NB & SVM 0.522 0.624 0.592 0.477 0.593 0.544 0.758 0.645 

 

0.594 
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Table 5.2: Decoding performance for Animal Z 

The best performing 3 learners’ results are colored (darkest for the best one) for every experiment. 

 

Record IDs :  B0206 B0208 B0214 B0523 B0626 B0729 B0731 B0828 
 

AVERAGE 

Generic Algorithms                     

NaiveBayes-Poisson 0.317 0.336 0.360 0.244 0.298 0.331 0.261 0.335 
 

0.310 

NaiveBayes-Gaussian 0.331 0.353 0.377 0.225 0.316 0.344 0.261 0.341 

 

0.318 

BayesianLogisticRegression 0.245 0.387 0.333 0.206 0.237 0.318 0.228 0.293 
 

0.281 

BayesNet-K2 0.266 0.395 0.360 0.169 0.202 0.248 0.152 0.263 

 

0.257 

DecisionTree 0.129 0.387 0.228 0.225 0.246 0.248 0.272 0.281 
 

0.252 

NaiveBayesTree 0.216 0.193 0.158 0.163 0.167 0.242 0.250 0.192 

 

0.197 

kNN 0.317 0.294 0.289 0.225 0.228 0.293 0.272 0.311 
 

0.279 

Perceptron 0.295 0.429 0.289 0.200 0.289 0.261 0.207 0.269 

 

0.280 

MultiLayerPerceptron 0.338 0.328 0.368 0.256 0.246 0.338 0.304 0.317 
 

0.312 

LinearSVM 0.302 0.294 0.325 0.250 0.237 0.306 0.272 0.269 

 

0.282 

RbfSVM 0.345 0.353 0.368 0.269 0.246 0.331 0.283 0.359 
 

0.319 

Ensemble Methods                     

Adaboost-NaiveBayesPoisson 0.295 0.420 0.325 0.244 0.298 0.293 0.293 0.335 
 

0.313 

Adaboost-NaiveBayesGaussian 0.259 0.403 0.298 0.225 0.316 0.293 0.250 0.341 

 

0.298 

Adaboost-DecisionTree 0.151 0.345 0.237 0.213 0.263 0.261 0.272 0.263 
 

0.251 

Adaboost-kNN 0.245 0.092 0.281 0.094 0.096 0.248 0.174 0.281 

 

0.189 

Adaboost-Perceptron 0.216 0.387 0.289 0.225 0.254 0.287 0.098 0.240 
 

0.249 

Adaboost-LinearSVM 0.252 0.403 0.289 0.244 0.263 0.287 0.293 0.311 

 

0.293 

BayesianBoosting-NaiveBayesPoisson 0.288 0.353 0.307 0.256 0.316 0.331 0.261 0.257 
 

0.296 

BayesianBoosting-DecisionTree 0.288 0.328 0.377 0.238 0.254 0.306 0.261 0.317 

 

0.296 

BayesianBoosting-LinearSVM 0.252 0.403 0.289 0.225 0.254 0.287 0.293 0.305 
 

0.289 

MultiBoosting-NaiveBayeGaussian 0.353 0.370 0.368 0.250 0.281 0.331 0.293 0.323 

 

0.321 

MultiBoosting-DecisionTree 0.259 0.387 0.333 0.294 0.316 0.306 0.304 0.287 
 

0.311 

Proposed Methods                     

DecisionTree - NB & SVM 0.317 0.378 0.351 0.263 0.325 0.338 0.272 0.377 
 

0.327 
Neural Network - NB & SVM 0.295 0.328 0.368 0.238 0.289 0.350 0.283 0.353 

 

0.313 
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Table 5.3: Variance of selected decoders among recording days 

The Ensemble approach has lower variance compared to its base learners. 

 Animal Z Animal S 

NaiveBayes-Poisson 0.00160 0.01232 

Rbf-SVM 0.00218 0.00861 

DecisionTree - NB & SVM 0.00152 0.00685 

 

 

5.5 Discussion 

In Chapter 3 and in Chapter 4, we have shown that intended discrete goals and 

state timings can be successfully decoded from prefrontal and parietal regions with 

different classifiers. Speed and the ability to plan ahead are the main advantages of 

goal directed decoding over more conventional trajectory decoding approaches. Such 

goal decoding can be ideal for various applications such as typing, selecting among 

different user interface components or even controlling a robotic hand. In this 

section, we have compared different learning algorithms (Naïve Bayes with Poisson 

and Gaussian distributions,  Bayesian Logistic Regression, Bayesian Network, k-NN, 

Decision Tree, Naïve Bayes Tree, Simple Perceptron, Multi-Layer Perceptron, and 

Support Vector Machines with linear and Rbf kernels) on the same data set for our 

main task, i.e. decoding among 10 hand postures given the neural data from AIP and 

F5. This comparison analysis was carried out in an offline setting while searching for 

an improved decoder for the grasping prosthetic device in mind. We have presented 

the decoding results with 24 different learning methods from 8 recording sessions 

from each animal in total (Table 5.1, Table 5.2).  

Strictly speaking, a general claim of optimality cannot be set for any of our 

decoding algorithms used on this problem. However, for any given set of decoders, 

we can investigate which ones perform particularly well and robustly. While this is 

not satisfactory from a theoretical point, it is still important and useful for practical 

reasons, especially for data sets that originate from primate brains, where we lack a 
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priori information about the underlying data generating process (cortical structure) 

and only a limited amount of data is available. As we have stated in the previous 

section, the “no free lunch” theorem suggests that there is no single learning 

algorithm that in any domain always induces the most accurate learner. Intrinsic set 

of assumptions in every learner introduces a bias and this leads to error if the 

assumptions do not hold for the data. In system neuroscience, up to date we still lack 

a general theory that captures all elements of how the cortical computations arise and 

decisions are taken robustly based on noisy data. Therefore instead of proposing 

models which can capture the underlying computation, we utilized here a fully data 

driven approach to aim at the highest decoding accuracy for our particular problem 

and data set. To do so, the performance of different learners is quantified by cross 

validations. We want to emphasize the fact that we don’t claim optimality in a strict 

and universal sense for neural decoding here. Our aim is to point towards a direction 

of more effective employment of the brain signals for discrete spatial decoding for 

hand grasping with signals from AIP and F5. 

Different decoding algorithms have been applied in brain machine interface 

experiments till to date. For trajectory decoding, population vector analysis, 

generalized linear models, Kalman filters or particle filtering are among the common 

approaches. For discrete decoding, the algorithms that have similarities with working 

principles of the brain proved to be most successful (Andersen et al. 2010). Naïve 

Bayesian decoder which calculate maximum likelihood of an intended discrete 

movement (Gao et al. 2002, Shenoy et al. 2003, Scherberger et al. 2005) is the most 

commonly used algorithm in this class. Bayesian analysis decodes neural population 

signals better than, or as well as, all alternative methods (Zhang et al. 1998, Salinas 

et al. 1994, Sanger et al. 1996). Indeed, Bayesian analysis can produce accuracy that 

is within a factor of two of the theoretical lower limit of the error given by the 

Cramer-Rao bound (Oram et al., 1998). Besides the practical success of Bayes 

classifiers observed in the literature, recent modeling studies have suggested that 

cortical areas represent probability distributions and may use Bayesian inference for 

decision making (Beck et al. 2008). One might wonder how such complex 

computations could be carried out in the cortex. In the last decade, it has been also 
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shown how optimal ML estimation can be done with a biologically plausible neural 

network (Deneve et al., 1999) and how recurrent networks of units with bell shaped 

tuning curves can be wired to implement a close approximation of ML estimators 

(Pouget et al., 2000).  

Also, in our study Naïve Bayes classifiers turned out to be among the best 

performers (Table 5.1, Table 5.2). In contrast to chapter 3, here we have also utilized 

NB classifiers with Gaussian firing rate assumption in addition to our usual Poisson 

assumption. We wanted to simply investigate implications of relaxing the constraint 

on variance being equal to the mean as in Poisson and observed improved results in 

some cases. Among other classes of learners, we have obtained improved decoding 

accuracy in some cases with Support Vector Machines and with some ensemble 

methods.  

SVMs are a family of supervised learning methods which find the optimal 

hyperplane to maximize the margin between class members. By solving a quadratic 

optimization problem, they find the global minima and guarantee an upper bound on 

the generalization error (Burges 1998, Shawe-Taylor et al. 2004). They usually 

utilize a kernel function to non-linearly map feature vectors to a high-dimension 

space to achieve linear seperability. After proper treatment they are one of the best 

out off the shelf learners currently. Being very strong learners, SVMs are also proven 

to be effective learners in our research. 

Among boosting based ensemble methods, Bayesian Boosting algorithm 

provided the best average accuracy. The idea in ensemble methods is to divide a 

complex task into simpler tasks that are handled by separately trained base-learners. 

Each base-learner has its own task. Different algorithms make different assumptions 

about the data and lead to different classifiers. Boosting based methods utilize 

different input data to generate complementing learners. Another approach in 

ensemble learning is to combine different classes of learners, (one base-learner may 

be parametric and another may be nonparametric) and let a top-level learner make 

the final decision. When we compare a trained combiner as we have in stacking, with 

a fixed rule such as in voting, we see that both have their advantages: a trained rule is 

more flexible and may have less bias, but adds extra parameters, risks introducing 
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variance, and needs extra time and data for training. Note also that there is no need to 

normalize classifier outputs before stacking. We have proposed a stacked 

generalization implementation in this work and obtained best results actually with 

this learner. 

An important point to note is that we have observed that some stronger 

classifiers did not perform as well as Naïve Bayes classifiers. Especially the inferior 

results of ensemble methods that utilize Naïve Bayes classifiers as base learners 

compared to a single Naïve Bayes classifier, brings us to the conclusion that the 

Poisson firing rate model assumption is indeed close to reality and naïve 

independence firing rates assumption is not significantly off, at least for the sampled 

neuron populations. Thus, Naïve Bayesian classifiers are already doing well in 

capturing population coding characteristics of motor cortical areas. One important 

observation is that SVMs perform identical to Naïve Bayes in terms of average 

performance while they both show different characteristics in different recordings. 

Thus, one can speculate that once population correlations increase or the firing 

characteristics of individual neurons deviate from Poisson, a strong data driven 

method like SVM might outperform Naïve Bayes classifiers. This was the main 

motivation for the proposed stacking ensemble method. In the base level both SVMs 

and Naïve Bayes classifiers learn the data independently. At the top level, there is a 

final decision maker that has access to the outputs of both classifiers. We have tried 

to use decision trees and back-propagation neural networks for this top-level learner 

and decided to stick to decision trees based on the results and implementation 

constraints. Decision trees were made popular in statistics in Breiman et al. 1984 and 

in machine learning in Quinlan 1986 and Quinlan 1993. They learn and respond 

quickly, and are accurate in many domains (Murthy 1998). Interpretability of its 

outcomes is another desirable property.  

This approach indeed turned out to be the best performing classifier in our 

analysis. Furthermore, it also had minimum variance among the best performing 

approaches (across daily sessions), i.e. it is a more robust learner compared to other 

learners with good prediction accuracies (Table 5.3). Some researchers (Guo et al. 

1992), proposed to combine the simplicity of trees with the accuracy of multilayer 
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perceptrons. Many studies, however, have concluded that the univariate trees are 

quite accurate and interpretable, and the additional complexity brought by linear (or 

non- linear) multivariate nodes is hardly justified. A recent survey is given by 

Rokach and Maimon (2005). It is not hard to reach a similar conclusion also in our 

work; whether the performance increase by utilization of such a complex approach is 

significant enough is open to debate. However, increased robustness (having less 

variance in decoding performance) among different classification sessions is a very 

important outcome for practical applications. Thus, we believe that by providing an 

average higher performance more robustly, such an ensemble of classifiers may have 

important implications for future clinical applications. 

 

 

 

Further points to consider for an improved decoding: 

 

Cortical plasticity: Several studies have recently documented the occurrence of 

cortical plasticity as animals learn to operate a BMI (Carmena 2003, Taylor et al. 

2002, Lebedev et al. 2005). This phenomenon is characterized by changes in the 

tuning properties of individual neurons and physiological adaptations at the level of 

neural ensembles, which include changes in firing covariance and spike timing 

(Nicolelis et al., 2009). This learning can be observed in various different time 

resolutions; over a few minutes to hours of training (Fetz 1969, Jarosiewicz et al. 

2008, Moritz et al. 2008), over a period of days (Mulliken et al. 2008), or even over  

a period of weeks (Varmena et al. 2003, Musallam et al. 2004, Taylor et al. 2002). 

The brain is arguably the most adaptive learning machine in known existence which 

can handle virtually unlimited complexity robustly. Thus, once it realizes feedback 

coming from the decoding system, the neurons that provide input to the BMI can 

adapt their tuning curves towards a more desirable direction. Please note that, this 

may actually yield problems for adaptive learning algorithms via feed-forward loops. 

If the learner is fixed it is easier for brain to capture its characteristics and adapt itself 

accordingly. On the other hand, a continuously updated algorithm is a moving target 

for the brain which facilitates further change in the brain; this again can create a 
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forward feedback for algorithm to adapt to. Our initial experimentation with an 

adaptive Naïve Bayes implementation in real-time confirmed this (data not shown), 

i.e. the adaptive version usually provided worse decoding accuracy than the static 

version.  

 

Correlation structures: We believe that tracking the covariance structure of data can 

be beneficial for decoding purposes. The recent availability of multiple electrode 

recordings provides the opportunity to measure covariances among recorded neurons 

directly and makes tracking them in real-time feasible. Modeling multi-dimensional 

probability distributions can be extended to include temporal aspects of the neural 

code this way systematically. Changes in the pattern of correlations between cells 

may occur in addition to changes in signal with a changing stimulus set, attention 

state or behavioral task. (Andersen et al. 2010). This could have significant effects on 

the relevant information content of neural populations and the brain may actually be 

using such information internally. Thus, analysis methods incorporating such 

measures can provide superior decoding. In recent literature, we can find evidence 

suggesting that decoding can be improved by taking into account correlations 

between spike trains (Abbott et al. 2009, Averbeck et al. 2004, Brown et al. 2004, 

Nirenberg et al. 2003) and the temporal regularities in responses (Musallam et al. 

2004). A similar challenge may be posed while decoding from multiple cortical 

areas, which allows measures of LFP-LFP and spike-LFP coherences (Parseran et al. 

2008). These measures, particularly spike-LFP measures, may indicate changes in 

the communication between areas and may provide additional insights into cognitive 

functions and refinement of cognitive decoding algorithms (Andersen et al. 2010). 

Furthermore, one can also utilize information theoretic approaches if capturing 

second moments of joint distributions is not believed to be enough. One can 

speculate that some of the extra performance we have observed with stronger 

learners in some days may be arising from capturing intrinsic correlations in the data 

better and with a more structured approach to benefiting from these correlations. 

Therefore, it may be possible to improve the decoding performance of brain machine 

interfaces by taking correlation structures into account. 
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Information theory based approaches for an objective measurement of information 

content of neuronal population data: 

 Developed in the 1940’s in Bell Laboratories by one of the most influential 

scientists of the last century, Claude E. Shannon, information theory is a complete 

mathematical framework for quantifying information transfer on noisy 

communication channels (Shannon, 1948). It has been applied very successfully not 

only to many engineering problems related to communication systems and data 

compression but also yielded to new research on diverse topics; like statistical 

inference, evolutionary biology, quantum computing and also on system 

neuroscience.  

 Information theory can be used to quantify the stimulus–response functions in 

neural coding and to measure the coding efficiency of developed models. It has 

complementary characteristics to decoding techniques in general by providing a 

mathematically rigorous way to quantify how much of the information provided by 

neuronal populations concerns the prediction of the stimulus, versus how much of 

this information is about specific aspects of the uncertainty of these predictions. A 

combination of decoding and information theoretic approaches therefore is being an 

active research area in systems neuroscience lately, with the hope to provide precise 

quantitative answers about how the brain deals with intrinsically noisy signals 

(Quiroga et al. 2009).  Below we will first describe a generic approach on utilizing 

information theory for neural coding problem and after we will speculate on the 

possible usage scenarios in our research.  

 If a stimulus s belonging to a set S is presented with a probability P(s), a 

cornerstone concept in information theory, entropy - H(S), can be defined as: 

                    

 

 

This is essentially the quantification of uncertainty about which stimulus is presented 

and usually measured in bits, as the base 2 is used for the logarithm. A strictly non-

negative measure, it reaches a maximum value of       for S consisting of N 
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elements, when each N stimuli have equal probability of presentation as in our 

experiment. If the neuronal population response r contains information about the 

stimulus, then its observation should reduce the stimulus uncertainty. From there we 

can calculate similarly the entropy of the posterior distribution P(s|r): 

                              

   

 

This entropy remaining in the stimulus after observing the neuronal response is 

called equivocation. And mutual information is defined as the reduction of 

uncertainty about the stimulus obtained by knowing the neuronal response. It is given 

by the difference between the stimulus entropy H(S) and the equivocation H(S|R): 

                     

   

    

      

    
 

          

   

    

      

         
 

 In other words, mutual information can quantify the information on the 

stimulus we obtained from neural code. If it is possible to reach to a perfect stimulus 

reconstruction given the neural code, one expects the mutual information of being 

equal to the entropy of stimulus, H(S). Therefore it also defines an upper-limit for the 

decoding approaches and clearly relevant to what we were trying to achieve in this 

chapter. However, there are some practical difficulties of proper application of this 

approach.  

 P(s,r) denote the joint probabilities of observing the response r with the 

stimulus s. These are clearly not known in advance and need to be properly estimated 

from data in a scenario where we don’t know much about the data generating 

processes. The major difficulty is the fact that estimation of P(s,r) becomes 

intractable for an animal experiment whenever r contains information from more 

than a few neurons. The cardinality of the set of all possible responses R increases 

exponentially with the number of neurons and becomes even larger if we also 

consider temporal firing patterns. Despite growing interest in more efficient 

estimation techniques and bias correction methods in the last years, the minimum 
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number of trials per stimulus that is needed to obtain an unbiased information 

calculation for neural populations is still approximately in the order of the cardinality 

of the response set R (Panzeri, 2007). The “curse of dimensionality” prevents the 

application of information theory to large populations. For illustration purposes; if 

we assume that we have 100 neurons and we have discretized their firing response 

space pretty coarsely only by 10 bins, we still need         samples. It will take a 

while for the animal to execute that many trials (simple algebra suggests that this will 

indeed last very much longer than the age of known universe)!  

 Actually, here we are facing a similar problem about the estimation of joint 

probability distribution as in our Bayesian decoder. There we have tackled it by 

making the naïve assumption that neurons are firing independently and represented 

the joint probability as a multiplication of individual factors (neuron firing 

probabilities given the stimulus) each with Poisson characteristics. Clearly we can 

make the very same assumptions here and try to calculate the amount of information 

obtained via the neural code afterwards but the value we have calculated that way 

will have the same intrinsic weaknesses of the Naïve Bayesian decoder and won’t tell 

us about the real optimal limit of information that can be captured from the neuronal 

data.  

 In other words, the real probabilities are about non-stationary point processes, 

however due to practical reasons virtually for all the real-life scenarios need to 

employ some modeling assumptions and data transformations. Examples are: naïve 

independence firing assumption, binning the spikes into fixed time windows or rate 

coding assumption. According to “data-processing inequality” every additional 

transformation can only decrease the Shannon information that was accessible from 

the original responses. Therefore unless we are given the real probability 

distributions by a “heavenly creature” the calculation of real limit values of an 

optimal learner will only be theoretically possible. 

 However, this does not mean that information theory cannot provide additional 

information on top of decoding approaches. As an example, we can see the 

difference between a Bayesian decoder giving the most likely stimulus as the output 

(arg max P(s|r)), versus information theory providing a smooth integration of 
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information over the whole posterior probability P(s|r). Therefore we can claim that 

information theory in general provides a more comprehensive treatment of 

information contents of the data. That means we can formalize decoding as a second 

level of transformation since neurons can convey information by means other than 

that can be captured by a decoder (in the form of most likely stimulus). Information 

theory is the analytical tool that is utilized in the literature to capture this additional 

information. Indeed, in one study (Robertson et. al., 1999) it has been shown that, a 

Bayesian decoding algorithm captures ~95% of the total information available from 

the neuronal responses (calculated after some approximation) that is represented by 

the population activity of head-direction cells in primate. 

 One way to link information theory and decoding is to compute the mutual 

information between the actual and the predicted stimuli from the decoding 

outcomes, I(S;Spredicted). It is pretty straightforward to calculate the decoders’ mutual 

information once we have the confusion matrix. And from there on, either we get the 

real probability distributions from our “heavenly observer” to calculate the total 

information encoded by neural code I(S;R) or more likely make some assumptions 

and estimate an approximate of that value, I(S;R). The difference between the real 

I(S;R) and I(S;Spredicted) is the measure of distance of our decoder from the optimal 

utilization of neural information but again this value cannot be really calculated. 

However, calculation of I(S;R) - I(S;Spredicted) is plausible and it essentially gives the 

amount of information available in the neuronal responses that could be gained by 

means other than decoding the most likely stimulus and this information can be 

useful in some applications.  

 As demonstration purposes we have calculated the average mutual information 

values for the decoders employed in Chapter 3 for two animals. By utilizing the 

average confusion matrices in Fig3.7A and Fig3.7B, we have obtained values of 1.15 

bits and 0.84 bits of mutual information for the decoders for Animal-S and Animal-

Z, respectively. Every bit of information provided by the decoders reduces the 

overall uncertainty about the stimulus by a factor of two. Therefore, it is not 

surprising to see a value above 1 for Animal-S’s decoder where we have an average 

decoding accuracy above 50% and vice-versa for Animal-Z. Also note that 
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maximum information that a perfect decoder can give in this particular setup is 

        3.32 bits. By the observation of positive values for decoder mutual 

information we can conclude that the decoders are indeed converting neural signals 

to stimulus response information successfully (this is similar to saying that average 

decoding accuracies are significantly above the chance level), however it is also clear 

that they are far away from employing a perfect transformation, while missing some 

~2 bits compared to perfect decoding. Similarly, we could have employed this 

calculation to all the confusion matrices of different learners employed in this 

chapter and could come up with another metric for comparing these learners. 

 By utilizing different classes of learning algorithms in this chapter, we have 

tried to empirically show that it is possible to extract some extra accuracy compared 

to a standard Naïve Bayesian classifier. However, our results suggested that this 

possible accuracy gain after trying many learners is not very big and therefore we 

have the tendency to speculate that the neural population we are utilizing lacks 

enough information to achieve a perfect decoding. Mutual information calculations 

can be useful for putting a number on that missing information amount. 

 Besides the application we have provided above, information theoretic 

approaches can be effectively utilized in other cases. Some possible usages are; 

estimations of neural code’s efficiency by comparing H(R) to H(R|S), tests on 

temporal precision of neural code (by utilizing concepts from Nyquist limit), 

characterization of  information for continuously time-varying stimuli, feature 

selection for model building, capturing high order correlation structures and merging 

information from different neuronal signals. In some of these possible application 

fields the curse of dimensionality limits the practical outcomes currently, however 

with the advances in data collection technology, available computational power and 

new statistical methods this rigorous mathematical framework will definitely 

contribute to our understanding of brain mechanisms and neural coding in the near 

future.  

 

Other signal modalities (LFP): The local field potential (LFP) is an aggregate signal 

that represents the net excitatory and inhibitory synaptic and dendritic potential 



Chapter 5: In Search of a More Robust Decoding Algorithm for Hand Grasping 

142 

around the tip of the recording electrode (Mitzdorf 1987, Buzsaki 2006). LFP is easy 

to record and more stable over long time periods than the spiking activity of single 

units. Therefore, the LFP has been suggested as an input signal in future brain-

machine interface applications (Andersen et al., 2004). Scherberger et al. (2005) 

analyzed and compared both, spiking activity and LFPs taken from PRR of a monkey 

performing a delayed reaching/ saccade task. Baumann et al. (2009) compared the 

coding properties of the LFP with the one of multi unit spiking in AIP. Spikes and 

LFPs reflect to certain degree different sources, with spikes more indicative of 

cortical outputs and LFPs indicative of inputs and intracortical processing. A better 

understanding of the relationship between the LFP and local spiking and proper 

combination of these signals might therefore give new tools to better study the local 

processing and contribute to an improved decoding algorithm for brain machine 

interfaces. 

 

Last but not least, motivation and reward expectation can typically be decoded from 

parietal cortex in similar setups that we have utilized in this work. Such signals may 

be useful for brain machine interfaces by registering the preferences and mood of 

subjects and patients. And combining this information with more conventional 

signals may prove to be useful. The research on different decoding methods for brain 

machine interfaces has taken off only in the last decade with increasing data 

availability and computational power. We believe that the efforts in this line of 

research will significantly contribute to improved quality of life for patients in the 

future.  
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6  

Conclusion 

In this final chapter, we want to highlight the major findings of this thesis for 

easy reference and drawing a final conclusion. Please note that, these are mostly 

simplified repetitions of what we have discussed in detail at the end of each relevant 

chapter from chapters 3 to 5.  

6.1 Major findings of present thesis 

6.1.1 Real time decoding of hand grasping signals: 

In Chapter 3, we aimed to answer the main research question of this work; namely, in 

detail feasibility analysis of a real time neuroprosthetic grasping with signals coming 

from higher order cortical areas, AIP and F5. We have indeed found promising 

results which supported our initial hypothesis that grasp decoding may be possible 

from abstract plan signals. The outcome of this work is published in Journal of 

Neuroscience in 2011 (Townsend, 2011). Below are some important points regarding 

these findings; 
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- We managed to collect samples of tuned multi-units in both areas from both 

monkeys via chronically implanted floating micro-electrode arrays (FMA) 

and confirmed that information about grip type and orientation was present in 

the neural data. 

- The total numbers of average significantly tuned units for two animals were 

significantly different (around 121 for Animal S and 56 for Animal Z, in 

average). And this is also reflected in decoding performances. 

- We have observed rather heterogeneous distributions of significantly tuned 

units across FMAs and found that sampling of tuned activity was 

concentrated on certain individual electrodes or groups of electrodes. This 

may motivate interesting questions on electrode array design for future 

studies. 

- Both single neuron recordings and population level analysis of the spiking 

characteristics of two brain regions confirmed previous single-electrode study 

findings for the same regions (Murata et al., 1997; Raos et al., 2006; Umilta 

et al., 2007; Baumann et al., 2009; Fluet et al., 2010). In summary, F5 

showed moderate tuning to orientation early in the task and strong grip type 

tuning, whereas AIP showed a clear tuning for grip type and orientation 

starting from Cue period throughout the task. These findings indicate that 

distinct representations of both task parameters exist in the multiunit activity 

of both areas during movement planning, which can be exploited by the BMI 

paradigm.  

- We have observed a higher preference for precision grip (Fig 3.4 A), and a 

uniform distribution of preferred orientations (Fig. 3.4 C) in F5. On the other 

hand, the majority of AIP multi units coded predominantly for the extreme 

handle orientations during planning (Fig. 3.4 D), whereas they did not show a 

significant preference for grip type (Fig. 3.4 B). 

- One important finding was to show that the tuning pattern characteristics of 

units from both areas during movement planning remained essentially 

constant while the monkey performed the real time decoding task (Fig. 3.5). 
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This was an important finding in terms of claiming feasibility for a realistic 

neural-prosthesis. 

- After showing the favorable characteristics of tuning for both areas for 

decoding, we moved to real-time decoding experiment, which is one of the 

most important outcomes of this work. There we showed that for both 

animals decoding is plausible in real-time. The average decoding accuracies 

remained consistently above chance level for both animals with a mean 

performance of 50.4% (±7.6%) in monkey S and of 33.5% (± 5.9%) in 

monkey Z.  

- Further analysis on separate decoding accuracies of grasp type and 

orientation showed that the classification of the grip type was always highly 

accurate in both monkeys (monkey S mean: 85.5%, monkey Z mean: 90.6%). 

Decoding of orientation was performed with less accuracy in both animals 

(56% in monkey S; and 35.5% in monkey Z). This was expected to some 

extent, given that there was more orientation (5) than grip type conditions (2) 

to classify. However, the orientation accuracy in monkey Z was rather poor, 

most likely due to low number of tuned units from AIP.  

- In order to test the effect of on-line spike sorting algorithm, we have re-run 

the same decoding analysis in an off-line setting while using a more 

sophisticated spike-sorting algorithm. In both animals, decoding performance 

increased in 24 out of 26 decoding sessions with a mean increase of 6.2 % 

(monkey Z) and 6.3 % (monkey S). 

- All together, we showed that F5 tended to perform better than AIP at grip 

type-only decoding, and AIP consistently outperformed F5 during 

orientation-only decoding. However, utilization of data from both areas was 

necessary for optimal decoding accuracy of grip type and orientation in the 

10-condition task. Further ROC analysis of individual neurons confirmed 

these findings.  

- Overall, these results demonstrate the real time decoding of intended grasping 

goals using multi-unit signals from higher-order motor areas obtained during 

planning of these movements, and underscore the importance of utilizing 
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signals from multiple cortical areas for control of BMIs to restore movement 

function. Research in the field of BMIs for motor control has seen rapid 

expansion in recent years (Scherberger 2009). And a key approach in the 

literature has been the closed-loop decoding of 2D and 3D arm and hand 

trajectories, derived mainly from M1, to control robotic arms for grasping 

objects or to decode individual finger movements. A key difference in the 

present study was our decision to target discrete decoding and using signals 

from parietal and frontal areas which are thought to play a role in 

sensorimotor integration during movement planning. In chapter 3 we 

managed to show this to be a feasible approach for neuroprosthetic devices. 

 

6.1.2 Temporal Decoding of Grasp Execution: 

In chapter 4, we claimed that a fully-autonomous neuroprosthetic device 

should be able to differentiate among different cognitive states and act upon them 

accordingly. In other words, in this chapter we aimed to decode the temporal 

component of the behavioral signal and infer when to grasp instead of how/what to 

grasp. To do that we followed the steps from successful studies from literature in 

terms of decoding paradigm to be utilized (Shenoy et al. 2003, Achtman et al. 2007, 

Kemere et al. 2008). These studies have already shown that it is possible to decode 

different behavioral states with significant success using major motor cortical areas, 

mainly PRR/MIP, PMd/M1. However, we showed that it is also possible to decode 

brain states for grasping from cortical areas AIP and F5. To do so, we have re-

formulated our objective as decoding the experimental states and defined our 

framework as making predictions on a sliding window of length 250 ms of neural 

spike rate data. The outcome of this research was presented in an international 

conference, in Neuroscience 2008 Washington (Subasi et al., 2008). 

 

- We first used a Naïve Bayesian decoder and managed to get promising 

decoding accuracies; 65% (SD 15%) for Animal Z and 82% (SD 16%) for 

Animal S.  
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- Later, in order to utilize the temporal structure of states, we introduced a 

Finite State Machine of a fixed Markovian order and achieved a decoding 

performance of 69% (SD 15%) for animal Z and 88% (SD %15) for animal S, 

with also improved robustness.  

- Finally, in an attempt to capture the temporal stochastic properties of 

underlying states more effectively we utilized a simple hidden markov model 

to obtain decoding accuracies of 61% (SD 9%) for Animal Z and 85% (SD 

10%) for Animal S. The main contribution of HMM was increased 

robustness.  

- Furthermore, in the second part of this chapter, with an attempt to improve 

our base decoder, we redefined the problem as a dichotomy and tried to 

classify the movement period vs. non-movement periods among the 

behavioral states. We used different machine learning algorithms (Bayesian 

Logistic Regression, Naive Bayes, k-Nearest Neighbour and Support Vector 

Machine) and showed that some significant increase in decoding accuracy 

and robustness is possible with stronger learners (Table 4.1). The best results 

here were obtained with Support Vector Machines with linear kernels both in 

terms of prediction accuracy and robustness. SVM’s also showed a desirable 

characteristic for a real time setup of faster classification once the training is 

done. 

6.1.3 In Search of a More Robust Decoding Algorithm: 

In the 5
th

 chapter, we put our efforts to search for an better decoding algorithm 

for the data set at hand. In system neuroscience, up to date we still lack a general 

theory that captures all elements of how the cortical computations arise and decisions 

are taken robustly based on noisy data. Therefore instead of proposing models which 

can capture the underlying computation, we utilized here a fully data driven approach 

to aim at the highest decoding accuracy for our particular problem and data set. To 

do so, the performance of different learners is quantified by cross validations. In 

other words, we have followed a data mining approach to find an optimal decoder for 

our data set while being careful against over-fitting. We have used the multi-unit 
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neural spike data with similar characteristics presented in the 3
rd

 Chapter; but via use 

of a family of standard learning algorithms and their combinations we have 

investigated if it is possible to find better performing decoding algorithms for our 

existing brain machine interface implementation. In total, we have presented the 

decoding results with 24 different learning methods from 8 recording sessions from 

each animal (Table 5.1, Table 5.2). The outcome of this work was published and 

presented in a peer reviewed IEEE conference in 2010 in Buenos Aires (Subasi, 

2010). 

 

- We have formulated our decoding task as a classification problem and first 

applied 11 different learning algorithms (Naïve Bayes with Poisson and 

Gaussian distributions, Bayesian Logistic Regression, Bayesian Network, k-

NN, Decision Tree, Naïve Bayes Tree, Simple Perceptron, Multi-Layer 

Perceptron, and Support Vector Machines with linear and Rbf kernels) to our 

data set.  

- Among single learners, Naïve Bayes (NB) and SVM-Rbf showed best 

average decoding accuracy (~58%) for both Animal-S and Animal-Z (~32%).  

- Furthermore, another set of 11 algorithms were constructed using boosting 

based ensemble methods (Adaboost, Multiboosting, Bayesian Boosting) 

which utilize some learners from the previous set as their base learners.  

- Among these ensemble methods, BayesianBoosting with NB-Poisson base 

learners had the best average accuracy for Animal-S. For Animal-Z, 

MultiBoosting and Adaboost showed best results with both NB-Poisson base 

learners. 

- In general, boosting based ensemble methods improved accuracy in some 

cases for Animal-S, but were beaten in average performance in the end. For 

Animal-Z, on the other hand, we observed a better performance with a 

MultiBoosting ensemble compared to single learners’ winner SVM-Rbf.  

Therefore one can speculate that whenever the signal-to-noise ratio is high 

and the model assumptions are violated heavily, ensemble approaches may 

outperform state of art single learners.  
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- Finally, after collecting results with all of the above mentioned methods, we 

designed two new ensemble stacking models. Here we wanted to combine 

different characteristics of model-based and discriminant-based learners in an 

optimal setup. As the root learner we selected a decision tree finally, and as 

base learners we utilized NB-Poisson, NB-Gaussian and Rbf-SVM.   

- We observed that, this approach not only provided the best average accuracy 

for both animals (~60% for Animal S, ~33% for Animal Z) but also gave 

most robust decoding (minimum variance among different days’ data – Table 

5.3). 

- All in all, the more sophisticated treatment of the data showed that it is indeed 

possible to get some improvements in terms of both decoding accuracy and 

robustness. However, similar to our findings in chapter 3, we have observed a 

significant difference for decoding accuracies of both animals’ data, which 

tells us the main limiting factor is data quality not the analytical methods to 

analyze it. Also, Naïve Bayes classifiers, in general, ranked always close to 

the top decoders, therefore it is not straight forward to argue in favor of more 

complex learners all the time.  

- To sum up, we argue that claiming universal decoding-optimality using such 

data mining approaches is not possible mainly due to lack of understanding of 

the underlying cortical principals and that learning in general is an ill-posed 

problem. However, we still believe that results presented here will point 

towards the right direction for an improved discrete spatial decoding with 

higher order cortical signals, and, by providing such a formal comparison of 

different analytical approaches in a systematic fashion, we hope to contribute 

to future research in this fascinating field. 

 

 



Chapter 6: Conclusion 

 

150 

6.2 Final Words 

“There are good reasons to believe that we are at a turning point, and that it will be 

possible in the next two decades to formulate a meaningful understanding of brain 

function” 

Lloyd Watts, 2003. (Fogel et al., 2003) 

The prominent inventor and neuroscientist Dr. Watts had an optimistic view about 

the imminent future of our understanding of brain function, as seen in 2003 

published book “Computational Intelligence: Experts Speak”.  He argued that; 

“Scientific advances are enabled by a technology advance that allows us to see what 

we have not been able to see before. At about the turn of the twenty-first century, we 

passed a detectable turning point in both neuroscience knowledge and computing 

power. For the first time in history, we (collectively) know enough about our own 

brains, and have developed such advanced computing technology, that we can now 

seriously undertake the construction of a verifiable, real-time, high-resolution model 

of significant parts of our own intelligence.” He further reasoned “Revolutions in 

scientific research for specific areas directly correlated to breakthroughs in 

instrumentation. Our society witnessed this in physics, astronomy and biology in the 

past centuries many times. One can argue that a similar course is happening in 

neuroscience today.” 

Here, if we focus our attention to neural interface technologies we can provide some 

already successful brain machine interface applications like, cochlear implants and 

deep-brain stimulation devices (for Parkinson’s disease) as evidences of this 

breakthrough, and we can mention the possible usage of upper-limb prosthetic BMIs 

for spinal cord injuries/amputees as the next logical step. Furthermore, we also 

believe that BMIs will play a very important role in society in the future, not only in 

clinical applications but also in learning about the operation and the mechanism of 

the brain which will ultimately have huge impact in completely different domains 

(e.g. computation). 

 On the other hand, Dr. Carver Mead, one of the living legends of computing 

in academia and industry, a pioneer not only in solid-state electronics and VLSI 
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circuits but also in neuromorphic systems design (actually he also happened to be the 

doctorate supervisor of Dr. Lloyd Watts), does not sound necessarily as optimistic as 

Dr. Watts, in an interview given to American Spectator Magazine 

(September/October 2001, Vol. 34 Issue 7). He says that;  

“Biological solutions are many orders of magnitude more effective than those we’ve 

been able to implement using digital methods.”  He gives fruit flies as an example 

and continues; “The fly has an autonomous system that avoids being swatted. It has 

the ability to see and navigate and make decisions on millisecond time scales. We’ve 

never been able to make artificial vision systems that come within orders of 

magnitude of that, with all the computation we can throw at them.”  

His answer to journalist’s “Why not?” question is interesting;  

“That’s what I was trying to find out. It makes us look so stupid. And you don’t get 

popular by saying that. But it’s true. And the more we try, the more we realize it’s a 

much harder problem than we thought. What is it about the way that the fly, or the 

cat, or the fish process their information that makes it so much more effective at 

computing these things? They use what seems like really slow, slimy computational 

material, and yet they perform miracles with tiny amounts of power, tiny amounts of 

space and in real time and very fast.”  Finally, he concludes on the source of the 

problem as follows; 

“We don’t know how even to formulate that problem and we’ve been working on it 

since the dawn of computing. Every time we get another order of magnitude in 

computing capability, somebody says, “Now we’ve got enough!” But we haven’t 

begun to get it.” 

 

Now, after almost a decade later from Dr. Mead’s and Dr. Watts’ assertations, we 

still cannot know who will be proven to be right in two decades time. In the last 

decade, we have witnessed some promising developments both in system 

neuroscience and instrumentation. BMI research accelerated significantly; number of 

publications and researchers in the field is increasing drastically in the last years, we 

have already seen upper-limb prosthetic devices applied successfully to humans 

(Hochberg et al., 2006), stimulation technology maturing and some successful visual 
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prostheses implanted to first patients. In parallel, neuromorphic-engineering is 

developing with an increasing pace and it is almost certain that we will be exposed to 

this technology more and more in our daily lifes in the future.  

However, we still think that it is very early to declare victory in our 

understanding of cortical computation. We believe that BMI applications ultimately 

will hold very important implications in this line of research as well. Such a 

development eventually may lead even to a paradigm shift in our understanding of 

computation in general.  

But before this happen, we will first witness BMIs contributing to the well-being 

of patients of various neurological and motor disorders. In this thesis, we have put 

our efforts in contributing to the field by improving the available knowledge on grasp 

related neuro-prosthetic interfaces by analyzing novel brain regions in such a 

context. Future research will show if our approach will advance the field of neural 

prosthetics and will bring us several steps closer to restoring limb control in patients 

or even ultimately contribute to our understanding of brain function.
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Appendix 

A.  A sample Rapidminer study description in xml format 

The following xml code is a Rapidminer file which describes a cross validation setup 

by utilizing SVMs and Naive Bayesian decoders. It is provided for illustrative 

purposes on how the analysis is carried out in Chapter 5.  

 

<?xml version="1.0" encoding="windows-1252"?> 
<process version="4.4"> 
 
  <operator name="Root" class="Process" expanded="yes"> 
      <parameter key="logverbosity" value="init"/> 
      <parameter key="random_seed" value="2001"/> 
      <parameter key="encoding" value="SYSTEM"/> 
      <operator name="FileIterator" class="FileIterator" expanded="yes"> 
          <parameter key="directory" value="/Users/erk/work/INI/DATA/analysis/union/all"/> 
          <parameter key="filter" value=".*aml"/> 
          <parameter key="file_name_macro" value="file_name"/> 
          <parameter key="file_path_macro" value="file_path"/> 
          <parameter key="parent_path_macro" value="parent_path"/> 
          <parameter key="recursive" value="false"/> 
          <parameter key="iterate_over_files" value="true"/> 
          <parameter key="iterate_over_subdirs" value="false"/> 
          <operator name="ExampleSource" class="ExampleSource"> 
              <parameter key="attributes" value="%{file_path}"/> 
              <parameter key="sample_ratio" value="1.0"/> 
              <parameter key="sample_size" value="-1"/> 
              <parameter key="permutate" value="false"/> 
              <parameter key="decimal_point_character" value="."/> 
              <parameter key="column_separators" value=",\s*|;\s*|\s+"/> 
              <parameter key="use_comment_characters" value="true"/> 
              <parameter key="comment_chars" value="#"/> 
              <parameter key="use_quotes" value="true"/> 
              <parameter key="quote_character" value="&quot;"/> 
              <parameter key="quoting_escape_character" value="\"/> 
              <parameter key="trim_lines" value="false"/> 
              <parameter key="datamanagement" value="double_array"/> 
              <parameter key="local_random_seed" value="-1"/> 
          </operator> 
          <operator name="IOStorer" class="IOStorer" breakpoints="after"> 
              <parameter key="name" value="exm"/> 
              <parameter key="io_object" value="ExampleSet"/> 
              <parameter key="store_which" value="1"/> 
              <parameter key="remove_from_process" value="true"/> 
          </operator> 
          <operator name="ParameterIteration" class="ParameterIteration" expanded="yes"> 
              <list key="parameters"> 
                <parameter key="OperatorSelector.select_which" value="12"/> 
              </list> 
              <parameter key="synchronize" value="false"/> 
              <parameter key="keep_output" value="false"/> 
              <operator name="OperatorSelector" class="OperatorSelector" expanded="yes"> 
                  <parameter key="select_which" value="13"/> 
                  <operator name="NaiveBayes_Poisson" class="OperatorChain" activated="no" expanded="no"> 
                      <operator name="IORetriever" class="IORetriever"> 
                          <parameter key="name" value="exm"/> 
                          <parameter key="io_object" value="ExampleSet"/> 
                          <parameter key="remove_from_store" value="false"/> 
                      </operator> 
                      <operator name="SimpleValidation" class="SimpleValidation" expanded="no"> 
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                          <parameter key="keep_example_set" value="false"/> 
                          <parameter key="create_complete_model" value="false"/> 
                          <parameter key="split_ratio" value="0.5"/> 
                          <parameter key="sampling_type"value="linear sampling"/> 
                          <parameter key="local_random_seed" value="-1"/> 
                          <operator name="FS-Learner" class="OperatorChain" expanded="no"> 
                              <operator name="AnovaMatrixWeighting" class="AnovaMatrixWeighting"> 
                                  <parameter key="normalize_weights" value="true"/> 
                                  <parameter key="significance_level" value="0.05"/> 
                              </operator> 
                              <operator name="AttributeWeightSelection" class="AttributeWeightSelection"> 
                                  <parameter key="keep_attribute_weights" value="false"/> 
                                  <parameter key="weight" value="1.0"/> 
                                  <parameter key="weight_relation" value="greater equals"/> 
                                  <parameter key="k" value="10"/> 
                                  <parameter key="p" value="0.5"/> 
                                  <parameter key="deselect_unknown" value="true"/> 
                                  <parameter key="use_absolute_weights" value="true"/> 
                              </operator> 
                              <operator name="NaiveBayes" class="NaiveBayes"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="laplace_correction" value="true"/> 
                                  <parameter key="poisson_distribution" value="true"/> 
                                  <parameter key="homogeneous_priors" value="true"/> 
                                  <parameter key="log_likelihoods" value="true"/> 
                              </operator> 
                          </operator> 
                          <operator name="PerformanceEvaluation" class="OperatorChain" expanded="no"> 
                              <operator name="ModelApplier" class="ModelApplier"> 
                                  <parameter key="keep_model" value="false"/> 
                                  <list key="application_parameters"> 
                                  </list> 
                                  <parameter key="create_view" value="false"/> 
                              </operator> 
                              <operator name="Performance" class="Performance"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="use_example_weights" value="true"/> 
                              </operator> 
                          </operator> 
                      </operator> 
                      <operator name="_01-NaiveBayes-Poisson" class="PerformanceWriter"> 
                          <parameter key="performance_file" value="%{parent_path}/results/%{file_name}%{n}.res"/> 
                      </operator> 
                      <operator name="Cleaning" class="OperatorChain" expanded="no"> 
                          <operator name="IOConsumer" class="IOConsumer"> 
                              <parameter key="io_object" value="PerformanceVector"/> 
                              <parameter key="deletion_type" value="delete_all"/> 
                              <parameter key="delete_which" value="1"/> 
                              <parameter key="except" value="1"/> 
                          </operator> 
                          <operator name="MemoryCleanUp" class="MemoryCleanUp"> 
                          </operator> 
                      </operator> 
                  </operator> 
                  <operator name="NaiveBayes_WekaMultiNomial" class="OperatorChain" expanded="no"> 
                      <operator name="IORetriever (2)" class="IORetriever"> 
                          <parameter key="name" value="exm"/> 
                          <parameter key="io_object" value="ExampleSet"/> 
                          <parameter key="remove_from_store" value="false"/> 
                      </operator> 
                      <operator name="SimpleValidation (10)" class="SimpleValidation" expanded="yes"> 
                          <parameter key="keep_example_set" value="false"/> 
                          <parameter key="create_complete_model" value="false"/> 
                          <parameter key="split_ratio" value="0.5"/> 
                          <parameter key="sampling_type"value="linear sampling"/> 
                          <parameter key="local_random_seed" value="-1"/> 
                          <operator name="FS-Learner (10)" class="OperatorChain" expanded="yes"> 
                              <operator name="AnovaMatrixWeighting (10)" class="AnovaMatrixWeighting"> 
                                  <parameter key="normalize_weights" value="true"/> 
                                  <parameter key="significance_level" value="0.05"/> 
                              </operator> 
                              <operator name="AttributeWeightSelection (10)" class="AttributeWeightSelection"> 
                                  <parameter key="keep_attribute_weights" value="false"/> 
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                                  <parameter key="weight" value="1.0"/> 
                                  <parameter key="weight_relation" value="greater equals"/> 
                                  <parameter key="k" value="10"/> 
                                  <parameter key="p" value="0.5"/> 
                                  <parameter key="deselect_unknown" value="true"/> 
                                  <parameter key="use_absolute_weights" value="true"/> 
                              </operator> 
                              <operator name="W-NaiveBayesMultinomial" class="W-NaiveBayesMultinomial"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="D" value="false"/> 
                              </operator> 
                          </operator> 
                          <operator name="PerformanceEvaluation (10)" class="OperatorChain" expanded="yes"> 
                              <operator name="ModelApplier (10)" class="ModelApplier"> 
                                  <parameter key="keep_model" value="false"/> 
                                  <list key="application_parameters"> 
                                  </list> 
                                  <parameter key="create_view" value="false"/> 
                              </operator> 
                              <operator name="Performance (10)" class="Performance"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="use_example_weights" value="true"/> 
                              </operator> 
                          </operator> 
                      </operator> 
                      <operator name="_02-NaiveBayes-WekaMultiNomial" class="PerformanceWriter"> 
                          <parameter key="performance_file" value="%{parent_path}/results/%{file_name}%{n}.res"/> 
                      </operator> 
                      <operator name="Cleaning (2)" class="OperatorChain" expanded="yes"> 
                          <operator name="IOConsumer (2)" class="IOConsumer"> 
                              <parameter key="io_object" value="PerformanceVector"/> 
                              <parameter key="deletion_type" value="delete_all"/> 
                              <parameter key="delete_which" value="1"/> 
                              <parameter key="except" value="1"/> 
                          </operator> 
                          <operator name="MemoryCleanUp (2)" class="MemoryCleanUp"> 
                          </operator> 
                      </operator> 
                  </operator> 
                  <operator name="RbfSVM" class="OperatorChain" activated="no" expanded="no"> 
                      <operator name="IORetriever (7)" class="IORetriever"> 
                          <parameter key="name" value="exm"/> 
                          <parameter key="io_object" value="ExampleSet"/> 
                          <parameter key="remove_from_store" value="false"/> 
                      </operator> 
                      <operator name="Normalization (2)" class="Normalization"> 
                          <parameter key="return_preprocessing_model" value="false"/> 
                          <parameter key="create_view" value="false"/> 
                          <parameter key="method" value="Z-Transformation"/> 
                          <parameter key="min" value="0.0"/> 
                          <parameter key="max" value="1.0"/> 
                      </operator> 
                      <operator name="SimpleValidation (9)" class="SimpleValidation" expanded="yes"> 
                          <parameter key="keep_example_set" value="false"/> 
                          <parameter key="create_complete_model" value="false"/> 
                          <parameter key="split_ratio" value="0.5"/> 
                          <parameter key="sampling_type"value="linear sampling"/> 
                          <parameter key="local_random_seed" value="-1"/> 
                          <operator name="FS-Learner (9)" class="OperatorChain" expanded="yes"> 
                              <operator name="AnovaMatrixWeighting (9)" class="AnovaMatrixWeighting"> 
                                  <parameter key="normalize_weights" value="true"/> 
                                  <parameter key="significance_level" value="0.05"/> 
                              </operator> 
                              <operator name="AttributeWeightSelection (9)" class="AttributeWeightSelection"> 
                                  <parameter key="keep_attribute_weights" value="false"/> 
                                  <parameter key="weight" value="1.0"/> 
                                  <parameter key="weight_relation" value="greater equals"/> 
                                  <parameter key="k" value="10"/> 
                                  <parameter key="p" value="0.5"/> 
                                  <parameter key="deselect_unknown" value="true"/> 
                                  <parameter key="use_absolute_weights" value="true"/> 
                              </operator> 
                              <operator name="ParameterOptimization" class="OperatorChain" expanded="no"> 



 

165 

                                  <operator name="IOMultiplier" class="IOMultiplier"> 
                                      <parameter key="number_of_copies" value="1"/> 
                                      <parameter key="io_object" value="ExampleSet"/> 
                                      <parameter key="multiply_type" value="multiply_one"/> 
                                      <parameter key="multiply_which" value="1"/> 
                                  </operator> 
                                  <operator name="GridParameterOptimization" class="GridParameterOptimization" expanded="yes"> 
                                      <list key="parameters"> 
                                        <parameter key="RbfSVM_Evl.C" value="0.01,0.1,10,100,1000,10000,0"/> 
                                        <parameter key="RbfSVM_Evl.gamma" value="0.0001,0.001,0.01,0.1,1,10,100,1000,0"/> 
                                      </list> 
                                      <operator name="XValidation" class="XValidation" expanded="no"> 
                                          <parameter key="keep_example_set" value="false"/> 
                                          <parameter key="create_complete_model" value="false"/> 
                                          <parameter key="average_performances_only" value="true"/> 
                                          <parameter key="leave_one_out" value="false"/> 
                                          <parameter key="number_of_validations" value="5"/> 
                                          <parameter key="sampling_type" value="stratified sampling"/> 
                                          <parameter key="local_random_seed" value="-1"/> 
                                          <operator name="RbfSVM_Evl" class="LibSVMLearner"> 
                                              <parameter key="keep_example_set" value="true"/> 
                                              <parameter key="svm_type" value="C-SVC"/> 
                                              <parameter key="kernel_type" value="rbf"/> 
                                              <parameter key="degree" value="3"/> 
                                              <parameter key="gamma" value="0"/> 
                                              <parameter key="coef0" value="0.0"/> 
                                              <parameter key="C" value="0"/> 
                                              <parameter key="nu" value="0.5"/> 
                                              <parameter key="cache_size" value="80"/> 
                                              <parameter key="epsilon" value="0.0010"/> 
                                              <parameter key="p" value="0.1"/> 
                                              <list key="class_weights"> 
                                              </list> 
                                              <parameter key="shrinking" value="true"/> 
                                              <parameter key="calculate_confidences" value="false"/> 
                                              <parameter key="confidence_for_multiclass" value="true"/> 
                                          </operator> 
                                          <operator name="OperatorChain" class="OperatorChain" expanded="no"> 
                                              <operator name="ModelApplier (13)" class="ModelApplier"> 
                                                  <parameter key="keep_model" value="false"/> 
                                                  <list key="application_parameters"> 
                                                  </list> 
                                                  <parameter key="create_view" value="false"/> 
                                              </operator> 
                                              <operator name="Performance (13)" class="Performance"> 
                                                  <parameter key="keep_example_set" value="false"/> 
                                                  <parameter key="use_example_weights" value="true"/> 
                                              </operator> 
                                          </operator> 
                                      </operator> 
                                  </operator> 
                                  <operator name="ParameterSetWriter" class="ParameterSetWriter" breakpoints="after" activated="no"> 
                                      <parameter key="parameter_file" value="%{parent_path}/results/%{file_name}%{n}.par"/> 
                                  </operator> 
                                  <operator name="ParameterSetter" class="ParameterSetter"> 
                                      <list key="name_map"> 
                                        <parameter key="RbfSVM_Evl" value="RbfSVM_Opt"/> 
                                      </list> 
                                  </operator> 
                              </operator> 
                              <operator name="RbfSVM_Opt" class="LibSVMLearner"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="svm_type" value="C-SVC"/> 
                                  <parameter key="kernel_type" value="rbf"/> 
                                  <parameter key="degree" value="3"/> 
                                  <parameter key="gamma" value="0.001"/> 
                                  <parameter key="coef0" value="0.0"/> 
                                  <parameter key="C" value="100"/> 
                                  <parameter key="nu" value="0.5"/> 
                                  <parameter key="cache_size" value="80"/> 
                                  <parameter key="epsilon" value="0.0010"/> 
                                  <parameter key="p" value="0.1"/> 
                                  <list key="class_weights"> 
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                                  </list> 
                                  <parameter key="shrinking" value="true"/> 
                                  <parameter key="calculate_confidences" value="false"/> 
                                  <parameter key="confidence_for_multiclass" value="true"/> 
                              </operator> 
                          </operator> 
                          <operator name="PerformanceEvaluation (9)" class="OperatorChain" expanded="no"> 
                              <operator name="ModelWriter" class="ModelWriter" breakpoints="after" activated="no"> 
                                  <parameter key="model_file" value="%{parent_path}/results/%{file_name}_rbfmodel.mod"/> 
                                  <parameter key="overwrite_existing_file" value="true"/> 
                                  <parameter key="output_type" value="XML Zipped"/> 
                              </operator> 
                              <operator name="ModelApplier (9)" class="ModelApplier"> 
                                  <parameter key="keep_model" value="false"/> 
                                  <list key="application_parameters"> 
                                  </list> 
                                  <parameter key="create_view" value="false"/> 
                              </operator> 
                              <operator name="Performance (9)" class="Performance"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="use_example_weights" value="true"/> 
                              </operator> 
                          </operator> 
                      </operator> 
                      <operator name="_11-RbfSVM" class="PerformanceWriter"> 
                          <parameter key="performance_file" value="%{parent_path}/results/%{file_name}%{n}.res"/> 
                      </operator> 
                      <operator name="Cleaning (7)" class="OperatorChain" expanded="no"> 
                          <operator name="IOConsumer (7)" class="IOConsumer"> 
                              <parameter key="io_object" value="PerformanceVector"/> 
                              <parameter key="deletion_type" value="delete_all"/> 
                              <parameter key="delete_which" value="1"/> 
                              <parameter key="except" value="1"/> 
                          </operator> 
                          <operator name="MemoryCleanUp (7)" class="MemoryCleanUp"> 
                          </operator> 
                      </operator> 
                  </operator> 
                  <operator name="ClassifiersVoting_DecisionTree" class="OperatorChain" activated="no" expanded="no"> 
                      <operator name="IORetriever (11)" class="IORetriever"> 
                          <parameter key="name" value="exm"/> 
                          <parameter key="io_object" value="ExampleSet"/> 
                          <parameter key="remove_from_store" value="false"/> 
                      </operator> 
                      <operator name="SimpleValidation (12)" class="SimpleValidation" expanded="no"> 
                          <parameter key="keep_example_set" value="false"/> 
                          <parameter key="create_complete_model" value="false"/> 
                          <parameter key="split_ratio" value="0.5"/> 
                          <parameter key="sampling_type"value="linear sampling"/> 
                          <parameter key="local_random_seed" value="-1"/> 
                          <operator name="FS-Learner (12)" class="OperatorChain" expanded="yes"> 
                              <operator name="AnovaMatrixWeighting (12)" class="AnovaMatrixWeighting"> 
                                  <parameter key="normalize_weights" value="true"/> 
                                  <parameter key="significance_level" value="0.05"/> 
                              </operator> 
                              <operator name="AttributeWeightSelection (12)" class="AttributeWeightSelection"> 
                                  <parameter key="keep_attribute_weights" value="false"/> 
                                  <parameter key="weight" value="1.0"/> 
                                  <parameter key="weight_relation" value="greater equals"/> 
                                  <parameter key="k" value="10"/> 
                                  <parameter key="p" value="0.5"/> 
                                  <parameter key="deselect_unknown" value="true"/> 
                                  <parameter key="use_absolute_weights" value="true"/> 
                              </operator> 
                              <operator name="Vote" class="Vote" expanded="no"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <operator name="ID3Numerical" class="ID3Numerical"> 
                                      <parameter key="keep_example_set" value="false"/> 
                                      <parameter key="criterion" value="information_gain"/> 
                                      <parameter key="minimal_size_for_split" value="4"/> 
                                      <parameter key="minimal_leaf_size" value="2"/> 
                                      <parameter key="minimal_gain" value="0.1"/> 
                                  </operator> 



 

167 

                                  <operator name="NaiveBayes (3)" class="NaiveBayes"> 
                                      <parameter key="keep_example_set" value="false"/> 
                                      <parameter key="laplace_correction" value="true"/> 
                                      <parameter key="poisson_distribution" value="true"/> 
                                      <parameter key="homogeneous_priors" value="true"/> 
                                      <parameter key="log_likelihoods" value="true"/> 
                                  </operator> 
                                  <operator name="W-NaiveBayesMultinomial (2)" class="W-NaiveBayesMultinomial"> 
                                      <parameter key="keep_example_set" value="false"/> 
                                      <parameter key="D" value="false"/> 
                                  </operator> 
                                  <operator name="RbfSVM (2)" class="OperatorChain" expanded="yes"> 
                                      <operator name="OptimizedRbfSVM" class="OperatorChain" breakpoints="after" activated="no" expanded="yes"> 
                                          <operator name="IOMultiplier (3)" class="IOMultiplier"> 
                                              <parameter key="number_of_copies" value="1"/> 
                                              <parameter key="io_object" value="ExampleSet"/> 
                                              <parameter key="multiply_type" value="multiply_one"/> 
                                              <parameter key="multiply_which" value="1"/> 
                                          </operator> 
                                          <operator name="GridParameterOptimization (3)" class="GridParameterOptimization" expanded="yes"> 
                                              <list key="parameters"> 
                                                <parameter key="RbfSVM_Evl.C" value="0.01,0.1,10,100,1000,10000,0"/> 
                                                <parameter key="RbfSVM_Evl.gamma" value="0.0001,0.001,0.01,0.1,1,10,100,1000,0"/> 
                                              </list> 
                                              <operator name="XValidation (3)" class="XValidation" expanded="yes"> 
                                                  <parameter key="keep_example_set" value="false"/> 
                                                  <parameter key="create_complete_model" value="false"/> 
                                                  <parameter key="average_performances_only" value="true"/> 
                                                  <parameter key="leave_one_out" value="false"/> 
                                                  <parameter key="number_of_validations" value="5"/> 
                                                  <parameter key="sampling_type" value="stratified sampling"/> 
                                                  <parameter key="local_random_seed" value="-1"/> 
                                                  <operator name="RbfSVM_Evl (2)" class="LibSVMLearner"> 
                                                      <parameter key="keep_example_set" value="true"/> 
                                                      <parameter key="svm_type" value="C-SVC"/> 
                                                      <parameter key="kernel_type" value="rbf"/> 
                                                      <parameter key="degree" value="3"/> 
                                                      <parameter key="gamma" value="0"/> 
                                                      <parameter key="coef0" value="0.0"/> 
                                                      <parameter key="C" value="0"/> 
                                                      <parameter key="nu" value="0.5"/> 
                                                      <parameter key="cache_size" value="80"/> 
                                                      <parameter key="epsilon" value="0.0010"/> 
                                                      <parameter key="p" value="0.1"/> 
                                                      <list key="class_weights"> 
                                                      </list> 
                                                      <parameter key="shrinking" value="true"/> 
                                                      <parameter key="calculate_confidences" value="false"/> 
                                                      <parameter key="confidence_for_multiclass" value="true"/> 
                                                  </operator> 
                                                  <operator name="OperatorChain (3)" class="OperatorChain" expanded="no"> 
                                                      <operator name="ModelApplier (15)" class="ModelApplier"> 
                                                          <parameter key="keep_model" value="false"/> 
                                                          <list key="application_parameters"> 
                                                          </list> 
                                                          <parameter key="create_view" value="false"/> 
                                                      </operator> 
                                                      <operator name="Performance (15)" class="Performance"> 
                                                          <parameter key="keep_example_set" value="false"/> 
                                                          <parameter key="use_example_weights" value="true"/> 
                                                      </operator> 
                                                  </operator> 
                                              </operator> 
                                          </operator> 
                                          <operator name="ParameterSetWriter (3)" class="ParameterSetWriter" breakpoints="after" activated="no"> 
                                              <parameter key="parameter_file" value="%{parent_path}/results/%{file_name}%{n}.par"/> 
                                          </operator> 
                                          <operator name="ParameterSetter (3)" class="ParameterSetter"> 
                                              <list key="name_map"> 
                                                <parameter key="RbfSVM_Evl" value="RbfSVM_Opt"/> 
                                              </list> 
                                          </operator> 
                                          <operator name="RbfSVM_Opt (2)" class="LibSVMLearner"> 
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                                              <parameter key="keep_example_set" value="false"/> 
                                              <parameter key="svm_type" value="C-SVC"/> 
                                              <parameter key="kernel_type" value="rbf"/> 
                                              <parameter key="degree" value="3"/> 
                                              <parameter key="gamma" value="0.1"/> 
                                              <parameter key="coef0" value="0.0"/> 
                                              <parameter key="C" value="0"/> 
                                              <parameter key="nu" value="0.5"/> 
                                              <parameter key="cache_size" value="80"/> 
                                              <parameter key="epsilon" value="0.0010"/> 
                                              <parameter key="p" value="0.1"/> 
                                              <list key="class_weights"> 
                                              </list> 
                                              <parameter key="shrinking" value="true"/> 
                                              <parameter key="calculate_confidences" value="false"/> 
                                              <parameter key="confidence_for_multiclass" value="true"/> 
                                          </operator> 
                                      </operator> 
                                      <operator name="ModelLoader" class="ModelLoader"> 
                                          <parameter key="model_file" value="%{parent_path}/results/models/%{file_name}_rbfmodel.mod"/> 
                                      </operator> 
                                  </operator> 
                              </operator> 
                          </operator> 
                          <operator name="PerformanceEvaluation (12)" class="OperatorChain" expanded="no"> 
                              <operator name="ModelApplier (12)" class="ModelApplier"> 
                                  <parameter key="keep_model" value="false"/> 
                                  <list key="application_parameters"> 
                                  </list> 
                                  <parameter key="create_view" value="false"/> 
                              </operator> 
                              <operator name="Performance (12)" class="Performance"> 
                                  <parameter key="keep_example_set" value="false"/> 
                                  <parameter key="use_example_weights" value="true"/> 
                              </operator> 
                          </operator> 
                      </operator> 
                      <operator name="_12-Stacking-Classifiers-DecisionTree" class="PerformanceWriter"> 
                          <parameter key="performance_file" value="%{parent_path}/results/%{file_name}%{n}.res"/> 
                      </operator> 
                      <operator name="Cleaning (11)" class="OperatorChain" expanded="no"> 
                          <operator name="IOConsumer (11)" class="IOConsumer"> 
                              <parameter key="io_object" value="PerformanceVector"/> 
                              <parameter key="deletion_type" value="delete_all"/> 
                              <parameter key="delete_which" value="1"/> 
                              <parameter key="except" value="1"/> 
                          </operator> 
                          <operator name="MemoryCleanUp (11)" class="MemoryCleanUp"> 
                          </operator> 
                      </operator> 
                  </operator> 
              </operator> 
          </operator> 
      </operator> 
      <operator name="CommandLineOperator" class="CommandLineOperator" activated="no"> 
          <parameter key="command" value="/Users/erk/Documents/RapidMiner/IniAnalysisParser.py 
/Users/erk/work/INI/DATA/analysis/union/all/results"/> 
          <parameter key="log_stdout" value="true"/> 
          <parameter key="log_stderr" value="true"/> 
      </operator> 
  </operator> 
 
</process> 
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B. Class diagramms for Decoder and Simulator software 

 

 

Figure Appendix-B.1: Expanded class diagram for Simulator Software, part 1. 
The attribute and method names for major classes and data structures of Simulator 

software. 
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Figure Appendix-B.2: Expanded class diagram for Simulator Software, part 2. 

The attribute and method names for user interface classes of Simulator software. 
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Figure Appendix-B.3: Expanded class diagram for Simulator Software, part 3. 

The attribute and method names for Neuroshare API (the native api we used for 

parsing the industry standard streaming file format for neural recordings) wrapper 

classes of Simulator software. 
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Figure Appendix-B.4: Expanded class diagram for Decoder Software, part 1. 

The attribute and method names for user interface and some utility classes and data 

structures of Decoder software. 
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Figure Appendix-B.5: Expanded class diagram for Decoder Software, part 2. 

The attribute and method names for major control classes. 
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Figure Appendix-B.6: Expanded class diagram for Decoder Software, part 3 

The remaining user interface and control classes and data structures for Decoder. 
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