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Abstract Soil contamination by heavy metals and organic pollutants around industrial
premises is a problem in many countries world wide. Delineating zones where pollutants exceed tolerable levels
is a necessity for successfully mitigating related health risks. Predictions of pollutants are usually required for
blocks because remediation or regulatory decisions are imposed for entire parcels. Parcel areas typically exceed
the observation support, but are smaller than the survey domain. Mapping soil pollution involves therefore a local
change of support. The goal of this work was to find a simple, robust and precise method for predicting block
means (linear predictions) and threshold exceedance by block means (nonlinear predictions) from data observed
at points that show a spatial trend. By simulations, we compared the performance of universal block kriging
(UK), Gaussian conditional simulations (CS), constrained (CK) and covariance-matching constrained kriging
(CMCK), for linear and nonlinear local change of support prediction problems. We considered Gaussian and
positively skewed spatial processes with a nonstationary mean function and various scenarios for the autocor-
related error. The linear predictions were assessed by bias and mean square prediction error and the nonlinear
predictions by bias and Peirce skill scores.
For Gaussian data and blocks with locally dense sampling all four methods performed well, both for linear
and nonlinear predictions. When sampling was sparse CK and CMCK gave less precise linear predictions, but
outperformed UK for nonlinear predictions, irrespective of the data distribution. CK and CMCK were only out-
performed by CS in the Gaussian case when threshold exceedance was predicted by the conditional quantiles.
However, CS was strongly biased for the skewed data whereas CK and CMCK still provided unbiased and quite
precise nonlinear predictions. CMCK did not show any advantages over CK. CK is as simple to compute as UK.
We recommend therefore this method to predict block means and nonlinear transforms thereof because it offers
a good compromise between robustness, simplicity and precision.

Keywords constrained kriging, covariance-matching constrained kriging, local change of support, nonlinear
predictions

1 Introduction

Heavy metal contamination of soils by emissions of metal processing industries is a problem in many countries
world-wide. Several such cases have been documented in recent years in the literature (Altfelder et al 2002;
Buxton et al 1997; Frangi and Richard 1997; McGrath et al 2004; van Meirvenne et al 1993; Papritz et al 2005;
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Rawlins et al 2006; Saito and Goovaerts 2001). The metals, emitted as dust or fumes, are dispersed in the atmo-
sphere and are brought back to the ground by dry and wet deposition. Hence, the metal content of the soil usually
decreases with increasing distance from the source. Regional topography and wind may further influence the con-
tamination pattern (Frangi and Richard 1997). With respect to emissions by stationary point sources, heavy metals
are not the only contaminants of concern: Emissions of persistent organic pollutants such as polycyclic aromatic
hydrocarbons (van Brummelen et al 1996), polychlorinated biphenyls (Xing et al 2005) or dioxins (Goovaerts
et al 2008) by chemical industries create similar contamination patterns.

The contamination of the soils near the industrial premises is sometimes so severe that the health of humans
and other organisms is at risk. To avert harm from the subjects of protection one must therefore delineate the zone
where the pollutants exceed tolerable levels. Many countries (e.g. Germany, the Netherlands, Switzerland, United
Kingdom) enacted soil protection laws to establish allowable maximum concentrations and defined regulations
how to proceed if they are exceeded.

In general, protective measures are imposed for entire parcels of land (Papritz et al 2005), and the mean
pollutant content of some soil layer (usually topsoil) on the parcel is decisive for the measures to be taken. To
adopt the usual geostatistical terminology, we use in the sequel block and block mean for the parcel and the mean
of the target variable on the parcel.

In regional surveys of soil contamination around a known source, soil is usually sampled at different distance
and orientation from the source (Starks et al 1987). Compared to the area of the blocks, the spatial support of the
samples, i.e. the area over which the material of a (bulked) soil sample is collected, is usually (much) smaller than
the blocks. At the same time, the blocks are several orders of magnitude smaller than the survey domain. Thus,
for planning protective measures, one faces a nonlinear local change of support problem (Chilès and Delfiner
1999, pp. 435-437, Gotway and Young 2002): Based on usually sparse quasi-point-support observations, one has
to predict for blocks—which are small compared to the area of the survey domain—whether their means exceed a
threshold. The popular approach to such nonlinear and nonstationary prediction problems is conditional Gaussian
simulation (CS) (Chilès and Delfiner 1999, pp. 449-592). However, Aldworth and Cressie (2003) rightly observe
that CS is highly parametric. CS predictions of nonlinear functionals of a spatial variable may be badly biased if
the probabilistic model is misspecified. Universal block kriging (UK) (Cressie 1993, p. 155) is less sensitive to
model misspecification. But UK predictions of nonlinear functionals of a spatial variable are often severely biased
because UK underestimates the variances of the target quantities (Aldworth and Cressie 2003). The constrained
kriging (CK) predictor, proposed by Cressie in 1993, is less biased than UK in this instance, and it is exactly
unbiased for nonlinear functionals of a Gaussian variable. Like UK, the CK predictor is linear in the data, but
it satisfies in addition to the unbiasedness constraint of UK a second constraint that matches the variances of
the predictions to the variances of the block means. Aldworth and Cressie (2003) extended CK to covariance-
matching constrained kriging (CMCK), which matches for a set of blocks both the variances and covariances
of predictions and block means. Like CK, CMCK is less biased than UK for nonlinear predictions and exactly
unbiased if the spatial variable is Gaussian.

Aldworth and Cressie (2003) compared the performance of CS, CK, CMCK and ordinary kriging (OK) by
simulation for various stationary random process models. Among other target quantities the following predictands
were considered: (i) the fraction of the simulation domain where the spatial variable was below a threshold and
(ii) its mean over the area where the threshold was exceeded. Although not best, CMCK and CK consistently
performed well in the simulations. The performance of CS and OK was more variable: For the Non-Gaussian
models, CS was best (with respect to the mean square error) for predictand (i) and, excepting the lognormal
process, worst for predictand (ii) and, rather surprisingly, OK showed the reverse performance.

Clearly, the predictands considered by Aldworth and Cressie were nonlinear functionals of the variable of
interest, but they were global quantities (Chilès and Delfiner 1999, pp. 430-434), because they depended on the
spatial distribution of the target variable in the whole domain of interest. In soil pollution surveying, as set out
before, one is mostly interested in predicting local nonlinear functionals (Chilès and Delfiner 1999, pp. 435-437)
of a spatial variable. Aldworth’s and Cressie’s study is inconclusive in this respect. Moreover, the authors did not
investigate the performance of the methods for models with nonstationary means. These two issues are neither
addressed by the other studies (Cressie and Johannesson 2001, Cressie et al 2006, and Tercan 2004) published to
date on CK and CMCK. Thus, we lack experience about their performance in local change of support problems.
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The goal of this work is therefore to explore their merits and disadvantages in comparison to CS and UK for
predicting both linear (block means) and nonlinear functionals (threshold exceedance by block means) of a spatial
variable. To this end, we used simulations, and we studied Gaussian and positively skewed random processes with
a common nonstationary mean function and various scenarios for the autocorrelated component of the models.

The remainder of the article is organised as follows: Section 2 reviews spatial interpolation methods for (non-
linear) block predictions. The section contains a summary of CK and CMCK. Section 3 describes the simulation
experiment (models, target quantities, validation criteria). Section 4 presents the results of the simulations and,
by discussing the performance of CK relative to UK, sheds some further light on the properties of this method.
Finally section 5 concludes with some advice on the choice of methods in nonlinear predictions problems with
local change of support.

2 Review of spatial interpolation methods for block prediction

In this work we consider a spatial random process {Z(s): s ∈ D} in a survey domain D⊂ R2 around a stationary
point source, where s = (x,y)′ indicates a location in D ( ′ denotes transpose). Let Z = (Z(s1),Z(s2), . . . ,Z(sn))

′

denote the vector of random variables that model the observations z(si), i = 1,2, . . . ,n. For Z(s) we assume the
model:

Z(s) = Y (s)+ ε(s) = µ(s)+δ (s)+ ε(s), (1)

where Y (s) = µ(s) + δ (s) is the variable of interest or signal, whose expectation E[Y (s)] = µ(s) = x(s)′β is
modelled by a linear regression with x(s) denoting the vector with the p covariates for location s and β the
vector with the p regression coefficients; δ (s) is a zero mean weakly stationary variable with isotropic covariance
function Cov[δ (s),δ (s+h)] =Cov[Y (s),Y (s+h)] =C(h), h= ||h||; and ε(s) is a zero mean white noise variable
with variance σ2

ε .
Let

Y (Bi) =
1
|Bi|

∫
Bi

Y (s)ds

denote the mean of the signal over some block Bi of land with area |Bi|=
∫

Bi
ds�|D|. We consider m such blocks

and denote the vector of mean values by Y = (Y (B1),Y (B2), . . . ,
Y (Bm))

′
.

Suppose we wish to predict g(Y) where g(·) is a (possibly nonlinear) scalar function of Y. We consider
predictors of the form g(Ŷ), where Ŷ = Λ

′Z is a linear predictor of Y, and Λ = (λ 1, . . . ,λ m) is a n×m matrix
of weights. Note, that we confine ourselves to compute point predictions of g(Y) and its variance rather than
estimating the conditional distribution of g(Y) given the data.

For squared error loss, known C(h) and σ2
ε , and linear g(·), the universal kriging predictor (UK), g(ŶUK), is

best (Harville 1977, p. 322), where ŶUK is of course given by

ŶUK = Λ
′
UKZ = Xmβ̂ GLS +C′Σ−1(Z−Xβ̂ GLS), (2)

and Λ UK = Σ
−1{(I−X(X′Σ−1X)−1X′Σ−1)C+X(X′Σ−1X)−1X′m} is the n×m matrix of the UK weights; Xm =

(x(B1), . . . ,x(Bm))
′ and X=(x(s1), . . . ,x(sn))

′ are the m× p and n× p design matrices of the target blocks and the
data, respectively; β̂ GLS =
(X′Σ−1X)−1X′Σ−1Z is the p vector with the generalised least square estimate of β ; C=(c(s1...n,B1), . . . ,c(s1...n,Bm))
is a n × m matrix where c(s1...n,Bi) = (C(s1,Bi), . . . ,
C(sn,Bi))

′ are the n covariances between Z and Y (Bi); Σ = Cov[Z,Z′] is the n×n covariance matrix of the data
and I is the n×n identity matrix. ŶUK typically underestimates the true variation of Y. Consequently g(ŶUK ) is
a biased predictor of g(Y) for nonlinear g(·) (Appendix A).

For nonlinear g(·), UK is usually given up in favour of Gaussian conditional simulations (CS). Conditional
realisations of Y given Z, say Yω |Z, can be efficiently simulated by (Chilès and Delfiner 1999, pp. 465-472)

Yω |Z = ŶUK +(Yω −C′Σ−1Zω) (3)
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where (Y′ω ,Z′ω) is a m+n vector with an unconditionally simulated realisation of (Y′,Z′) (ω denotes a realisa-
tion).

The marginal distributions of Yω |Z and Y are the same as long as the latter is also Gaussian (Chilès and
Delfiner 1999, p. 466). Hence, any realisation of g(Yω |Z) is an unbiased predictor of g(Y) for nonlinear g(·). Of
course, a single g(Yω |Z) is highly variable, and one uses in practice the mean 1

N ∑
N
ω=1 g(Yω |Z) of N realisations

as an approximation of E[g(Y)|Z].

Aldworth and Cressie (2003) pursued another approach and proposed to predict g(Y) by g(ŶCMCK ), where
ŶCMCK = A′Z is the covariance matching constrained kriging (CMCK) predictor and A = (a1, . . . ,am) is a n×m
matrix of the weights that satisfy in addition to the usual unbiasedness constraints

E[A′Z] = E[Y], (4)

of UK the “covariance constraints”
Cov[A′Z,(A′Z)′] = Cov[Y,Y′]. (5)

Consequently, g(ŶCMCK ) is approximately unbiased for any smooth, nonlinear g(·) and exactly unbiased if Y is
Gaussian (Appendix A).

The CMCK predictor of Y is given by (Aldworth and Cressie 2003):

ŶCMCK = A′Z = Xmβ̂ GLS +K′C′Σ−1(Z−Xβ̂ GLS), (6)

where A = Σ
−1{(I−X(X′Σ−1X)−1X′Σ−1)CK+X(X′Σ−1X)−1X′m} is the n×m matrix of the CMCK weights,

K = Q−1
1 P1 is a m×m matrix and Q1 and P1 are defined by:

Q1Q1 = Q = Cov[ŶUK, Ŷ′UK]−Cov[Xmβ̂ GLS,(Xmβ̂ GLS)
′], (7)

P1P1 = P = Cov[Y,Y′]−Cov[Xmβ̂ GLS,(Xmβ̂ GLS)
′]. (8)

The symmetric m×m matrices Q1 and P1 exist and are positive definite if Q and P are themselves positive
definite, and they can be (uniquely) determined by the square root decomposition described by Harville (1997,
pp. 543-545). In practice, the CMCK predictor thus exists if Q and P are positive definite (Aldworth and Cressie
2003, p. 14). Unlike Q, which is always non-negative definite (Aldworth and Cressie 2003, p. 15), the matrix P
may become negative definite, and the CMCK predictor no longer exists. This is likely to happen if m is large, if
the areas of the blocks are large compared to the support of the samples and if one extrapolates the trend, i.e., if
the x(Bi) are “far” from the covariates at the sample locations.

For m = 1, Y, ŶUK, P and Q reduce to the scalars Y (B1), ŶUK (B1), P and Q, respectively, K is thus also a
scalar

K =

(
P
Q

) 1
2
=

(
Var[Y (B1)]−Var[x(B1)

′β̂ GLS]

Var[ŶUK (B1)]−Var[x(B1)′β̂ GLS]

) 1
2

, (9)

and the CMCK predictor simplifies to the constrained kriging (CK) predictor:

ŶCK (B1) = x(B1)
′
β̂ GLS +Kc(s1...n,B1)

′
Σ
−1(Z−Xβ̂ GLS). (10)

K exists if the numerator and denominator of (9) are positive.

Of course, Q ≥ 0 (this follows from the fact that Q is non-negative definite) but P may become negative if
|B1| is large (Var[Y (B1)] small) and/or if the trend is extrapolated (Var[x(B1)

′β̂ GLS] large).

There is a price to pay for the covariance constraint (5): The CMCK and the CK predictors have larger mean
square prediction errors (MSPE) than the UK predictor. It is not difficult to show that

MSPE[ŶCMCK ] = MSPE[ŶUK ]+ (P1−Q1)(P1−Q1), (11)
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where

MSPE[ŶUK ] = Cov[ŶUK −Y,(ŶUK −Y)′]

= Cov[Y,Y′]−C′Σ−1C+ (12)

(X′m−X′Σ−1C)′(X′Σ−1X)−1(X′m−X′Σ−1C)

is the covariance matrix of the UK predictions errors. The second term of the right hand side of Equation (11) is a
positive definite matrix and therefore, any linear combination, say ν ′ŶCMCK , has a larger mean square prediction
error than ν ′ŶUK .

For m = 1 Equation (11) simplifies to

MSPE[ŶCK (B1)] = MSPE[ŶUK (B1)]+(
√

P−
√

Q)2

= MSPE[ŶUK (B1)]+Q(K−1)2. (13)

The CMCK predictor has a larger MSPE than the CK predictor. From (11) and the fact that P1 and Q1 are
symmetric immediately follows

MSPE[ŶCMCK (Bk)] = MSPE[ŶUK (Bk)]+
m

∑
i=1

([P1]ik− [Q1]ik)
2

= MSPE[ŶUK (Bk)]+([P1]kk− [Q1]kk)
2

+
m

∑
i=1,i6=k

([P1]ik− [Q1]ik)
2

= MSPE[ŶCK (Bk)]+
m

∑
i=1,i6=k

([P1]ik− [Q1]ik)
2

︸ ︷︷ ︸
≥0

,

where [A]ik is the element in the ith row and kth column of A.

3 Simulation experiment

We compared the performance of CS, UK, CK and CMCK by simulations. We were guided by the example of the
metal smelter in Dornach, NW Switzerland, (Papritz et al 2005), when we designed the simulation experiment.

3.1 Simulation domain

We used a two-dimensional domain D, discretised by a square grid with 305× 305 nodes, for the simulation
experiments (Fig. 1A). The assumed source of the pollutants (symbol � in Fig. 1A) was located outside of D at
sPS = (x = 153,y = 306)′. We had four target blocks, B1, . . . ,B4, all with hexagonal shape and area |Bi| = 800.
Compared to real soil pollution cases, the blocks were quite large relative to the area of the simulation domain, but
we made this choice on purpose because we wanted to see if the CK and CMCK predictors were likely to fail to
exist. For covariance matching constrained kriging, each target block had three neighbours (hexagons with solid
lines in Fig. 1A), each sharing an edge with the target block. B1 and B2 as well as B3 and B4 were neighbours.

We chose 146 sample points (marked by crosses in Fig. 1A) where the values of the simulated fields were
assumed to be “observed”. We selected more sample points close to the source than at farther distance from it. To
this aim, we divided D into three zones by two concentric circles (dashed circles in Fig. 1A) with radii 141 and
223 centred on sPS. Then we selected randomly 88, 32 and 26 grid nodes within the three zones. The support of
the measurements was equal to one grid cell, i.e. |si|= 1, i = 1, . . . ,146.



6

3.2 Spatial models

We used two variants of Equation (1) as spatial models for the simulations. Both models shared the same trend,
µ(s), but they differed in the way they modelled the stochastic model component δ (s).

3.2.1 Modelling the trend

The trend function µ(s) mimicked the topsoil heavy metal contamination around the Dornach metal smelter. We
modelled a piecewise linear, isotropic decrease of µ(s) with increasing distance d(s) = |s− sPS| from the source.
In Dornach, we had observed that the metal concentrations were larger in the soils of forests compared to open
land. We therefore assumed that the pollution was more severe in three distinct zones of D (groups of hatched
polygons in Fig. 1A). In the remainder we denote these zones by “forests”. Note, that the target blocks B1 and B3
belonged to the forests.

In more detail, we modelled the trend by a segmented or broken stick regression (Faraway 2004, pp. 121-122)
with 3 “knot distances”, ci, and combined this with an indicator term for ”forests”

µ(s) = β0 +
i−1

∑
j=1

β j(c j− c j−1)+βi(d(s)− ci−1)+β5I(s ∈ forest), (14)

where i = 1 if c0 < d(s)≤ c1, i = 2 if c1 < d(s)≤ c2, i = 3 if c2 < d(s)≤ c3, i = 4 if d(s)> c3 and

I(x) =

{
1, if x is true
0, otherwise.

(15)

In the simulation we set β = (104,−1.4,−0.2,−0.05,0,15)′. The knots for the distances were equal to c0 =
0,c1 = 40,c2 = 75,c3 = 200 and c4 = ∞. Figure 1B illustrates this trend function.

3.2.2 Modelling the stochastic component

As mentioned above, we considered two different models for the signal process: a Gaussian, {δG(s)}, and a
positively skewed spatial process, {δS(s)}.

To simulate {δG(s)}, we chose an isotropic exponential covariance function

CG(h) = σ
2
G,0I(h = 0)+σ

2
G,1exp(−h/α), (16)

with nugget σ2
G,0 = 7, partial sill σ2

G,1 = 63 and range parameter α = 25. At the sample points, we added in-
dependent, identically (iid) normally distributed zero mean measurements errors, ε(si), Var[ε(si)] = 3.5, to the
signal.

As we aimed for a positively skewed process with an additive white noise component, we simulated {δS(s)}
by adding two standardised, lognormal spatial random fields, of which one, {exp(δG,0(s))}, was lognormal white
noise and the other, {exp(δG,1(s))}, spatially autocorrelated. Thus, {δS(s)} was simulated from

δS(s) =
1

∑
i=0

δS,i(s) =
1

∑
i=0

σS,i
exp(δG,i(s))−E[exp(δG,i(s))]√

Var[exp(δG,i(s))]
(17)

where

E[exp(δG,i(s))] = exp

(
E[δG,i(s)]+

σ2
G,i

2

)
and

Var[exp(δG,i(s))] = E[exp(δG,i(s))]2(exp(σ2
G,i)−1).
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The covariance function of {δS(s)} is then equal to (Diggle and Ribeiro 2007, p. 61)

CS(h) = σ
2
S,0 +σ

2
S,1

exp(σ2
G,1exp(−h/α))−1

exp(σ2
G,1)−1

(18)

The parameters σS,0, σS,1, α and the means and variances of the Gaussian process required for the simulation of
{δS(s)} are listed in Table 1. The parameters were selected such that δG(s) and δS(s) had the same correlation
length (Chilès and Delfiner 1999, p. 74) and that their nugget-to-total-sill ratios matched. Normal iid zero mean
measurement errors were again added to the signal, but this time we chose Var[ε(s)] = 40. In addition to these
models, we also considered Gaussian and positively skewed processes with larger nugget-to-sill ratios includ-
ing models with larger measurement error variances. However, since the results did not differ much we do not
describe the models here and we do not report the results.

3.3 Target quantities

For each Bi, we studied the prediction of two quantities:

1. the block mean, Y (Bi), which is a linear functional of {Y (s)};
2. the binary indicator, I(Y (Bi) > T ), that indicates if the block mean exceeds a given threshold T . Clearly,

I(Y (Bi)> T ) depends nonlinearly on {Y (s)}.

3.4 Implementation of the simulations

We used the programming environment R (R Development Core Team 2009) for all the computations. For both
signal processes, we simulated 2000 realisations on the grid with 305×305 nodes and added µ to obtain the real-
isations of {Y (s)}. Realisations of the various {δG,i(s)} were simulated by the circulant embedding algorithm of
Chan and Wood (1997), implemented in the R package RandomFields (Schlather 2001). Realisations of the block
means were computed by arithmetically averaging the values simulated at the grid nodes within the respective
blocks. To obtain a realisation of the observations Z, we added simulated measurement errors to the Y (si) at the
sample points.

We compared the kriging methods UK, CMCK, CK and conditional simulations. In addition, we computed
the GLS trend surface predictions, x(Bi)

′β̂ GLS, of the block means. In CS, we simulated 500 conditional reali-
sations, say Yω(Bi)|Z, of the block means for each of the 2000 realisations by the kriging method (Eq. (3)). The
block means were then predicted by the estimated conditional means,

ŶCS(Bi) = 1/500
500

∑
ω=1

Yω(Bi)|Z,

and the exceedance of the thresholds by their medians. The latter choice should minimise the total number of
misclassifications, provided the model is not misspecified. Note that up to some numerical inaccuracies, ŶCS(Bi)
and ŶUK(Bi) were the same (Eq. (3)).

The conditional simulations and the kriging predictions were computed with the true covariances parameters
(and not with estimates inferred from the simulated values at the sample points). The (co-)variances of the block
means, required for UK and (CM)CK predictions, were computed by the R package spatialCovariance (Clifford
2009). Finally, to compute the predictions, we did not use local search windows but used all the 146 observations.
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3.5 Validation

3.5.1 Block means

We assessed the quality of the predictions of the block means by calculating the empirical bias (eBIAS) and the
empirical mean square prediction error (eMSPE)

eBIAS[Ŷk(Bi)] =
1

2000

2000

∑
ω=1

(Ŷωk(Bi)−Yω(Bi)), (19)

eMSPE[Ŷk(Bi)] =
1

2000

2000

∑
ω=1

(Ŷωk(Bi)−Yω(Bi))
2, (20)

where Ŷωk(Bi) denotes the prediction of the ωth realisation, Yω(Bi), of the block mean by method k.

3.5.2 Threshold exceedance

We validated predictions of threshold exceedance for multiple thresholds. In fact, for a given block Bi, we used the
ordered simulated block means Yω(Bi), denoted as T[l], as thresholds. Table 2 shows the 2×2 contingency table
used for validating the predictions of threshold exceedance. The quantities TNkl(Bi), . . . ,TPkl(Bi) are counts,
estimated from the simulation results by

TNkl(Bi) =
2000

∑
ω=1

I(Ŷωk(Bi)≤ T[l]) · I(Yω(Bi)≤ T[l]),

FNkl(Bi) =
2000

∑
ω=1

I(Ŷωk(Bi)≤ T[l]) · I(Yω(Bi)> T[l]),

FPkl(Bi) =
2000

∑
ω=1

I(Ŷωk(Bi)> T[l]) · I(Yω(Bi)≤ T[l]),

TPkl(Bi) =
2000

∑
ω=1

I(Ŷωk(Bi)> T[l]) · I(Yω(Bi)> T[l]).

Various accuracy and goodness of prediction measures can be calculated from such contingency tables (Wilks
2006, pp. 255-335). We used the bias score

BSkl(Bi) =
FPkl(Bi)+TPkl(Bi)

FNkl(Bi)+TPkl(Bi)
(21)

to see whether the kth method systematically over- or underestimated the exceedance frequency (the nominator
[denominator] of Equation (21) is the total number of predictions [simulated block means] exceeding the thresh-
old). Thus, BSkl(Bi) = 1 indicates that method k predicts the correct number of threshold exceedances for block
Bi, whereas BSkl(Bi)> 1 (BSkl(Bi)< 1) signals systematic overestimation (underestimation) of exceedance.

The bias score does not characterise the conditional bias of the predictions (BS≈ 1 as long as FP≈ FN). We
computed therefore the Peirce skill score, PSSkl(Bi), which characterises conditional bias. PSSkl(Bi) was first
proposed by Peirce (1884) and is also known as the true skill statistic or Hanssen-Kuipers discriminant (Wilks
2006, p. 266). It is defined by

PSSkl(Bi) =
TNkl(Bi) ·TPkl(Bi)−FNkl(Bi) ·FPkl(Bi)

(FNkl(Bi)+TPkl(Bi)) · (TNkl(Bi)+FPkl(Bi)) .
(22)
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PSS equals the difference between the hit and the false alarm rate

PSSkl(Bi) = Hkl(Bi)−Fkl(Bi).

where the hit rate,

Hkl(Bi) =
TPkl(Bi)

FNkl(Bi)+TPkl(Bi)
, (23)

is the conditional probability that exceedance is correctly predicted given that the block mean indeed exceeds the
threshold, and the false alarm rate,

Fkl(Bi) =
FPkl(Bi)

TNkl(Bi)+FPkl(Bi)
, (24)

is the conditional probability of wrongly predicting exceedance when there is none.
PSSkl(Bi) varies between −1 (”perfect” misclassification: TNkl(Bi) = TPkl(Bi) = 0) and 1 (perfect classi-

fication: FNkl(Bi) = FPkl(Bi) = 0). Random predictions by the marginal row and column probabilities of the
contingency table result in PSSkl(Bi) = 0 (Wilks 2006, p. 266). Equation (22) shows that the Peirce skill scores
for exceedance and non-exceedance are the same because PSS is invariant to swapping positives and negatives.

We computed the bias and Peirce skill scores for the ordered thresholds, T[l], l = 1,2, . . . ,
2000 and plotted them against the relative ranks l̃ = l

2000 of the thresholds.

4 Results and Discussion

In the sequel, we first compare how precisely the methods predicted the block means, and we discuss what
factors influenced the precision of CK and CMCK and, by that, further explore their nature. Then we explore
how successfully the methods predicted threshold exceedance. The results for the Gaussian and skewed signal
processes with larger nugget-to-sill ratios are not presented because they were very similar to the ones shown
below.

4.1 Block means

As one expects from theory, the predictions of the block means were unbiased, no matter what block was pre-
dicted, what method was used, and regardless which signal process was considered (Table 3). The contribution
of eBIAS2 to the empirical mean square prediction errors (Figs 2 and 3) was at most 2.6 ·10−3, which confirms
that the considered methods were unbiased for all practical purposes.

The empirical mean square prediction errors differed more strongly than the biases between the blocks and
methods. Figure 2 shows the eMSPE for the Gaussian signal process. The predictions were most precise for
block B2, followed by B1, B3 and B4. CS and UK were always best, and their eMSPEs were, up to numerical
inaccuracies, the same. CK and CMCK had larger eMSPE than UK or CS, with CK being consistently more
precise than CMCK. This findings agree with theory (Eqs (11), (13)) but are in contrast with the simulation
results of Aldworth and Cressie (2003). In their study CK showed for linear and nonlinear predictions almost
always a higher eMSPE than CMCK, which is not consistent with theory.

For B1 to B3 there were only small differences between CS/UK, CK and CMCK. Furthermore, CMCK was
not much worse than CK. For these blocks, kriging and CS resulted in noticeable gains in precision compared to
trend surface prediction by GLS regression. By contrast, GLS regression outperformed CK and CMCK for block
B4, and it was not much worse than CS/UK for this block.

For the positively skewed signal, the empirical mean square errors showed largely the same patterns (Fig. 3).
The only remarkable difference was the larger, absolute magnitude of the eMSPEs.

No matter what model was used for the signal process, all the methods performed best for block B2 followed
(in order of increasing eMSPE) by B1, B3 and B4. The precision of the fitted trend surface and the local density of
the support points controlled how much larger were the mean square errors of CMCK and CK compared to UK
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(Eqs (11), (13)). For convenience, we discuss in the sequel only CK point predictions, but similar findings also
hold for CMCK and for block predictions.

Figures 4A and B show the spatial distributions of
√

P and
√

Q for the Gaussian signal.
√

P, being the square
root of the difference between the signal variance and the variance of the fitted trend, depends on the prediction
location by the Mahalanobis distance (x(s0)− x̃)′V−1(x(s0)− x̃) where x(s0) is defined by x(s0)

′ = (1,x(s0)
′),

x̃ is the centroid of the “orthogonalized” covariates at the sample locations and V is the cross-product matrix of
the centred, ”orthogonalized” covariates (Appendix B).

√
P was largest for locations for which x(s0) was close

to the centroid. For the broken-stick regression, this resulted in two concentric rings (Fig. 4A).√
Q, on the other hand, depends on s0 only through the covariance c(s1...n,s0) (Appendix C). If the distance

between s0 and the nearest sample point increases then the universal kriging predictions converges to the fitted
trend and therefore

√
Q→ 0. If s0 approaches a sample point, then

√
Q grows, and, depending on the magnitude

of the noise variance, σ2
ε , converges to a value ≤

√
P (equality is reached for σ2

ε = 0). This behaviour explains
the spatial distribution of

√
Q shown in Figure 4B.

Compared to UK, CK lost precision where the difference
√

P−
√

Q was large. As
√

P varied little, this
happened in zones where

√
Q was small, i. e. where sampling was sparse. Of course, also K (Fig. 4C) was related

to the difference between the mean square errors of CK and UK (Eq. (13)): large values of K coincided with
zones where CK lost precision. As long as K was close to one, CK performed nearly equally well as UK.

Table 4 shows that the above relations also hold if we predict block means. The sample points were densest
around B1 and B2 and sparsest in the neighbourhood of B4. Consequently, unlike for B1 and B2,

√
Q was small

for B4 and the difference in the precision of CK and UK was largest for this block as the smoothing effect of UK
increases in sparsely sampled areas (Goovaerts 1997, p. 370).

We can thus conclude that the use of CK (and CMCK) does not result in a substantial loss of precision as long
as the sampling is not “too sparse”. Densely sampled data convey enough information to “tie” the UK predictions
locally to the data. The UK predictions differ then quite strongly from the fitted trend, and their variance is not
much smaller than the variance of the target data. In such circumstances, CK (CMCK) need not “amplify” the
GLS residuals strongly to match the (co-)variances of the data, therefore K ≈ 1 (K ≈ I), and, consequently, the
mean square errors of CK (CMCK) and universal kriging do not differ much.

4.2 Threshold exceedance

4.2.1 Marginal bias

The bias score (BS) of UK reflected the well-known smoothing bias of that method for nonlinear predictions.
No matter what block was considered and irrespective of the signal, we found BS > 1 if l̃ < c and BS < 1 if
l̃ > c with c ≈ 0.5 for {δG(s)} (Figs 5A–C) and c ≈ 0.65–0.8 for {δS(s)} (Figs 5D–F). Exceedance of small
(large) thresholds was thus overestimated (underestimated) by UK. Much the same results were obtained from
the conditional simulations, when threshold exceedance was predicted by their conditional medians. The CS
results are therefore not shown in Figure 5.

The magnitude of the bias of UK differed between the blocks and the signal processes. For {δG(s)} the bias
was generally smaller and for block B1 the predictor I(ŶUK(B1) > T[l]) was nearly unbiased for l̃ < 0.9 because
Var[ŶUK(B1)] ≈ Var[Y (B1)] (Fig. 6A). However, for block B4, the bias of UK was substantial, in particular for
{δS(s)}, because Var[ŶUK(B4)] was distinctly smaller than Var[Y (B4)] (Fig. 6C,F), and this resulted in strongly
biased predictions for the small and large thresholds.

Unlike UK, the bias scores of CMCK and CK were close to one for {δG(s)} as long as l̃ < 0.9 (Figs 5A–C).
There were some deviations beyond that point, but one must bear in mind that BS becomes unstable for l̃ → 1
as the counts in the numerator and denominator of Equation (21) decrease. For the positively skewed signal, also
CMCK and CK exhibited some bias (Figs 5D–F): BS was negative for the small (l̃ < 0.3–0.4) and large thresholds
(l̃ > 0.9) and positive in between. This pattern resulted from matching the means and the (co-)variances of the
predictions and the block means. As the distributions of the latter were skewed for {δS(s)}, CMCK and CK
overestimated the extent of the lower tails in these instances (Figs 6D–F). UK modelled the lower tails more
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accurately, but it strongly underestimated the extent of the upper tails of the distributions of the block means, in
particular for block B4. On the whole, CMCK and CK reproduced the skewed distributions of the block means
more successfully than UK, and this is the main reason for their lesser bias. There were no distinct differences
between CK and CMCK. Based on the BS criterion neither method can be preferred.

4.2.2 Conditional bias

The BS criterion signals if a method systematically over- or underpredicts threshold exceedances, but it does
not provide information on how well a method detects (non-)excee-dance of a threshold given that there is one
(none). Only conditional statistics such as the hit (H) and false alarm rate (F) or their difference, the PSS criterion,
convey this information.

Figure 7 shows the hit and false alarm rates of UK, CK and CMCK for block B4 and {δG(s)}, and Figure 8
displays PSS of these methods for blocks B1, B2 and B4 (both signal processes). Predicting threshold exceedance
by the conditional medians of CS gave again very similar results to UK, and they are therefore not shown in
Figures 7 and 8. Although UK had a larger hit rate than CMCK and CK for the small thresholds (Fig. 7A),
it did not outperform these methods with respect to PSS (Fig. 8C) because the advantage in H was more than
compensated by a poor F (Fig. 7B). For large thresholds, the advantage in F was similarly overcompensated by a
bad hit rate so that CMCK and CK again outperformed UK with respect to PSS. UK matched the performance of
CMCK and CK only for the intermediate thresholds (l̃ ≈ 0.4–0.6, Fig. 8C), below and above this range, the PSS
of UK deteriorated. In contrast, the PSS of CMCK and CK were approximately constant for l̃ ranging from 0.2
to 0.9.

The advantage of CMCK and CK over UK and CS was observed for all the blocks and both signal processes,
but it was small for B1 and moderate for B2 and B3 (not shown). For {δS(s)}, PSS of UK was no longer sym-
metrical to l̃ = 0.5. The advantage of CMCK/CK over UK/CS was more pronounced for the small than the large
thresholds. Finally, excepting block B2 and {δG(s)} (Fig. 8B), PSS showed a slight but consistent advantage of
CK over CMCK.

In view of the advantage of CMCK and CK over UK and, seemingly, also CS, one might rightly object that
one could compute more informed predictions of threshold exceedance with the CS results. Instead of using the
conditional medians, one could predict exceedance by the conditional quantiles, thereby controlling specifically
the rate of false negatives. The other methods do not offer this possibility as they provide only the predictions
and estimates of the MSPEs. It is therefore of interest to compare CMCK/CK and CS, taking the full information
provided by CS into account.

Mason (1979) showed that, given a probabilistic forecast of a binary event with outcomes yes and no, PSS is
maximised by issuing a yes forecast if the modelled probability of the yes event exceeds the marginal probability
of the yes events in the population. PSS of CS should therefore be maximised if instead of the conditional
medians, the conditional l̃-quantiles were used to predict exceedance of threshold T[l].

For the Gaussian signal process this was indeed the case for all the blocks: predicting exceedance by the
conditional quantiles clearly outperformed CK for l̃ < 0.3 and l̃ > 0.7 and was as good in between for B4 (Fig. 9A)
. The hit and the false alarm rates were now approximately constant for the intermediate thresholds and increased
(H) or decreased (F) for l̃→ 0 and l̃→ 1 respectively.

However, for {δS(s)}, the tuned version of CS was not equally successful for block B4: it was better than
CK only for the largest thresholds, and for l̃ ∈ (0.5–0.7) it was even worse than UK (Fig. 9D). Compared with
{δG(s)}, H and F showed now a completely different pattern which indicates that CS largely failed to model
the conditional distributions of the block means for {δS(s)}. This was confirmed by the coverage of one-sided
prediction intervals computed from the conditional simulations for block B4. The observed coverage differed
considerably from the expected coverage of the intervals (Fig. 9E). For the Gaussian signal, this was not the
case (Fig. 9B). CK outperformed the tuned version of CS also when predicting threshold exceedance for B3 (not
shown), albeit the differences between the methods were less pronounced. For blocks B1 and B2 the tuned version
of CS showed a lesser conditional bias than CK for large l̃ , but the bias score signalled substantial marginal bias
(not shown). Irrespective of the signal process and for all the blocks, predicting threshold exceedance by upper
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tail conditional quantiles resulted in many false positives (Figs 9C, F for B4). Thus, the price for lesser conditional
bias was a very substantial increase in the marginal bias.

To summarise we can state that UK failed to predict threshold exceedance, except in the case where local
information was so dense that the smoothing bias of the method did not matter. CK consistently outperformed UK
(clearly) and CMCK (slightly). CK was outdone only by CS for the Gaussian signal when threshold exceedance
was predicted by the conditional quantiles. CS performed well in this instance because it captured prediction
uncertainty successfully. However, CS failed in this respect for the positively skewed data and this impaired the
predictions. CK (and CMCK) were quite resistant to distributional deviations and captured the upper tails of the
skewed marginal distributions of the block means remarkably well.

5 Summary and conclusions

Motivated by the task to survey soil contamination in the vicinity of stationary emitters of pollutants, our goal
in this study was to find a simple, robust and precise method for predicting linear and nonlinear functionals of
the block means from data observed at points and that show a spatial trend. So far, CS was the preferred tool for
such prediction problems with local change of support. However, CS is highly parametric, is susceptible to model
misspecification and therefore lacks the attractive, nonparametric flavour and the robustness of UK.

Our simulations showed that CK offers a good compromise between robustness, acceptable precision for
predicting the block means and small bias when predicting threshold exceedance. Theoretically, the CK predictor
might not exists, but we think that this is unlikely to happen in practice. In our simulations experiments, the
CK predictor failed to exist only if the nugget-to-total-sill ratios were very large (e. g. > 0.9 for block B1) or
if the blocks were far outside of the sampled domain and the spatial trend had to be extrapolated. Compared
to UK, CK lost precision in predicting the block means only if the sampling was locally sparse. The variances
of the UK predictions were then distinctly smaller than the variances of the block means. This discrepancy in
the variances was the main cause for the bias of UK when predicting threshold exceedance. CK avoided this
bias by “inflating” the variation of the GLS residuals, but this leads to a loss in precision when predicting the
block means. By amplifying the moduli of the kriging weights, negative predictions are more likely to occur
in CK. If this is a problem, CK predictions can be forced to non-negative values by the method of Barnes and
You (1992). For dense sampling, CK was hardly less precise than UK because no “amplification” of the GLS
residuals was required as the variance of the UK predictions nearly matched the variances of the block means.
Thus, irrespective of the sampling density and unlike UK, CK predicted threshold exceedance always well. CK
was outperformed consistently in the Gaussian case when threshold exceedance was predicted by the conditional
quantiles of CS. However, when sampling was sparse, CS was badly conditionally biased for the skewed data,
and this demonstrates the vulnerability of the method to misspecification of the model. Furthermore, unlike CK,
CS always showed for a large marginal bias for large l̃, irrespective of the data distribution. CMCK did not show
any advantage over CK in the simulations, neither for predicting linear nor nonlinear functionals of the block
means. This contrasts Aldworth’s and Cressie’s findings and suggests that data with an apparent trend and/or
local change of support prediction problems ask for a different optimal method.

In addition to the favourable statistical properties, CK is also simple to implement and does not requires more
computing resources than UK. This contrasts with CS, which is still demanding with respect to computing time
and storage capacity for medium to big real world problems. Based on these considerations, we recommend CK
for spatial prediction of nonlinear quantities of block means from data observed at points.

Acknowledgements A part of this research was funded by a grant of the Swiss Federal Office for the Environment (FOEN). We
gratefully acknowledge the support.

Appendix A Taylor series approximation of a nonlinear predictor

Suppose g(·) is a smooth nonlinear scalar function of Y for which the first and second derivative exist and are continuous. Aldworth
and Cressie (2003, p.12) showed that g(Y) can be approximated by a second-order Taylor series using the δ -method (Schott 1997,
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pp. 323-332) at µ = E[Y]:

g(Y)≈ g(µ)+(g′(µ))′(Y−µ)+
1
2
(Y−µ)′g′′(µ)(Y−µ), (25)

where g′(µ) = ∂g(µ)
∂ µ

is the m× 1 vector with the first-order partial derivatives of g(µ); g′′(µ) = ∂ 2g(µ)
∂ µ∂ µ ′ is the m×m Hessian matrix

with the second-order partial derivatives of g(µ). Consequently,

E[g(Y)]≈ g(µ)+
1
2

tr(g′′(µ)Cov[Y,Y′]) (26)

and similarly

E[g(Ŷ)]≈ g(E[Ŷ])+
1
2

tr(g′′(E[Ŷ])Cov[Ŷ, Ŷ′]), (27)

where tr(·) denotes the trace. The bias, E[g(Ŷ)− g(Y)], of g(Ŷ) vanishes approximately if the first and the second moments of Ŷ
and Y match. If in addition Y is Gaussian, then E[g(Ŷ)−g(Y)] = 0. Hence, unlike g(ŶCMCK ), g(ŶUK ) is a biased predictor of g(Y)

because Cov
[
ŶUK , Ŷ′UK

]
6= Cov[Y,Y′]).

Appendix B Expressing the variance of fitted trend as a Mahalanobis distance

We assume that the trend model includes an intercept. Hence, we can write x(s)′ = (1,x(s)′) and X = (1,X). Next, we compute
the Cholesky decomposition of the covariance matrix of the data Σ = LL′ and “orthogonalize” the design matrix X̃ = L−1X and its
components 1̃ = L−11, X̃ = L−1X.

The covariance matrix of β̂ GLS can now be expressed by

Var[β̂ GLS, β̂
′
GLS] = (X′Σ−1X)−1 =

(
1′Σ−11 1′Σ−1X
X′Σ−11 X′Σ−1X

)−1

= (X̃′X̃)−1 =

(
1̃′1̃ 1̃′X̃
X̃
′
1̃ X̃

′
X̃

)−1

Standard results from regression analysis provides

Var[β̂ GLS, β̂
′
GLS] =

(
1/ñ+ x̃

′
V−1x̃ −x̃

′
V−1

−V−1x̃ V−1

)
,

where
x̃ =

1
ñ

X̃
′
1̃ =

1
(1′Σ−11)

X′Σ−11

is the mean vector (centroid) of the columns of X̃ and

V = (X̃− 1̃ x̃
′
)′(X̃− 1̃ x̃

′
)

is the cross-product matrix of the centred, orthogonalized design matrix component X.

The variance of the fitted trend at location s can now be expressed

Var[x(s)′β̂ GLS] =
(
1,x(s)′]

)
Var[β̂ GLS, β̂

′
GLS]

(
1

x(s)

)

=
(

1, x̃
′
+[x(s)′− x̃

′
]
)

Var[β̂ GLS, β̂
′
GLS]

(
1

x̃+[x(s)− x̃]

)
= 1/ñ+(x(s)− x̃)′V−1(x(s)− x̃), (28)

where again 1/ñ = (1′Σ−11)−1.
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Appendix C An alternate expression for Q

The variance of the universal kriging predictor for location s0 can be expressed by (Roth 1998, p. 1001)

Var[ŶUK (s0)] = Var[ŶSK(s0)]+Var[x(s0)
′
β̂ GLS]

−c(s1...n,s0)
′
Σ
−1Var[Xβ̂ GLS]Σ

−1c(s1...n,s0),

where ŶSK(s0) is the simple kriging predictor of Y (s0). Q(s0) is therefore equal to

Q(s0) = c(s1...n,s0)
′
Σ
−1c(s1...n,s0)

−c(s1...n,s0)
′
Σ
−1X(X′Σ−1X)−1X′Σ−1c(s1...n,s0)

and depends on s0 only by c(s1...n,s0) but not by x(s0).
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Fig. 1 (A) Simulation domain D. The crosses denote the 146 sample points, the hexagons B1–B4 are the target blocks. (B) Pseudo-
three-dimensional display of the trend function, µ(s), used in the simulations. See text for details.
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Fig. 2 Empirical mean square prediction errors for predicting the block means Y (Bi) for the Gaussian signal process {δG(s)}. B1–B4
are the four target blocks.
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Fig. 9 Peirce skill score (PSS,A,D), coverage of one sided prediction intervals (B,E) and bias score (BS,C,F) for predicting threshold
exceedance vs. the relative ranks l̃ of the thresholds (block B4; A-C: {δG(s)}; D-F: {δG(s)}).
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Table 1 Parameter values used to simulate the positively skewed spatial process {δS(s)}.

i E[δG,i(s)] σ2
G,i σ2

S,i α

0 3.359 0.085 80 0
1 3.107 0.588 720 25

Table 2 Contingency table for validating whether the prediction, Ŷk(Bi), of the block mean, Y (Bi), by method k exceeds the threshold
T[l]. See text for details.

Y (Bi)≤ T[l] Y (Bi)> T[l]
Ŷk(Bi)≤ T[l] TNkl(Bi) (true negative) FNkl(Bi) (false negative)
Ŷk(Bi)> T[l] FPkl(Bi) (false positive) TPkl(Bi) (true positive)

Table 3 Empirical bias (eBIAS) for predicting the block means Y (Bi) for the Gaussian, {δG(s)} and the positively skewed signal
process, {δS(s)}.

δG(s) δS(s)
B1 B2 B3 B4 B1 B2 B3 B4

CS −0.038 0.002 0.153 0.148 −0.038 0.028 −0.471 0.060
UK −0.007 0.031 0.149 0.142 −0.339 0.050 −0.472 0.104
CK −0.017 −0.003 0.102 0.073 −0.305 0.181 −0.454 0.106
CMCK 0.008 0.000 0.067 0.137 −0.226 0.065 −0.517 0.012
GLS 0.094 0.206 0.293 0.188 −0.575 −0.466 −0.517 0.103

Table 4 Relevant terms for computing the CK predictions of the block means for the Gaussian signal process {δG(s)}. The spatial
point distributions of those terms within the simulation domain D are shown in Figure 4.

B1 B2 B3 B4√
P 4.444 4.846 4.732 5.094
√

Q 4.302 4.341 3.868 2.207
K 1.033 1.116 1.223 2.308

MSPE[ŶCK ]-MSPE[ŶUK ] 0.0202 0.255 0.745 8.336


