Conference Paper

Model based calculation of the tool-path smoothing tolerances

Author(s):
Sellmann, Florian; Weikert, S.; Wegener, Konrad

Publication Date:
2012

Permanent Link:
https://doi.org/10.3929/ethz-a-007580070

Rights / License:
In Copyright - Non-Commercial Use Permitted
INTRODUCTION
Smoothing the tool path and the tool orientation within a certain tolerance is a common approach for reducing the mechanical excitation of a machine tool [1]. This is normally done by insertion of Cₙ-continuous polynomial-functions like NURBS or B-Splines assuming a constant value for the smoothing tolerance along the whole tool path. This value has to be smaller than the final tolerance value which is obtained for the finished part because of additional machining errors during the manufacturing process. These errors consist of geometric, dynamic and thermal errors as the effect of follow-up errors of the axis drives [2]. Non-regarding these errors causes a very small and constant value for the smoothing tolerance. This leads to higher curvatures of the tool path and finally to a higher mechanical excitation of the machine tool for a given path velocity. Figure 1 illustrates the effect of different path tolerances on the resulting curvature for corners having an angular range between 0 (straight) and 120 degrees.

GEOMETRICAL UNCERTAINTIES OF A 3-AXIS MACHINE TOOL
In this section the calculation and merging of geometric uncertainties is shown for the example of a movement of 3 cartesian axes. As defined in ISO 230-1 [4] there are 6 element deviations defined for each linear axis listed for the example of a linear X-axis:

- EXX: positional deviation
- EYX: linear deviation
- EZX: linear deviation
- EAX: roll deviation
- EBX: pitch deviation
- ECX: yaw deviation

The resulting 18 element errors for 3 linear axes and the 3 squareness errors

- C0Y: out of squareness between X and Y
- B0Z: out of squareness between X and Z
- A0Z: out of squareness between Y and Z

yield to 21 geometric errors for a 3 axis machine. All these error contributors are merged to the axis-wise geometric standard uncertainties Uₓ, Uᵧ and Uz, so by knowing the geometric errors, the tool path and the part dimensions for every position of the trajectory the geometric uncertainties can be calculated. Depending on
the regarded machining process there exists a relevant direction for the uncertainty. For the example of 2D laser cutting Figure 2 shows the effective uncertainty in lateral direction for a 2D work piece. In this case, for a quite small work piece and when only two axes are involved in the movement, the resulting uncertainties only slightly differ along the path.

FIGURE 2. Effective uncertainty in lateral direction for a 2D laser cutting work piece

GEOMETRICAL UNCERTAINTIES OF A 5-AXIS MACHINE TOOL

Regarding a rotational axis there are 6 element deviations defined, listed for the example of a rotational C-axis:

- EXC: radial error motion
- EYC: radial error motion
- EZC: axial error motion
- EAC: tilt error motion
- EBC: tilt error motion
- ECC: positional deviation

Together with the geometric errors of the 3 linear axes, the component errors for 2 rotational axes and the additional location errors lead to the geometric errors for a 5 axis machine tool movement. The resulting combined uncertainties are calculated as follows: The geometry of the tool consisting of translatorial and rotatoric set-point trajectories also including the orientation of the tool is defined at the TCP. After transforming the TCP into the Machine-Coordinate-System (MCS) the movements of the machine tool axes are known. After identifying the geometric errors for each axis [5] the geometric uncertainties can be calculated and merged as combined standard deviations for the TCP movement for each cartesian direction at the TCP.

For the example of laser cutting Figure 3 shows a typical 3D-movement including changes of the orientation of the tool along the TCP-path. This leads to large compensating movements of the linear axes which is shown in Figure 2.

FIGURE 3. 5-Axis movement shown for 5-axis laser-cutting.

Due to the increased number of axes, but also caused by the large compensating movements the uncertainties strongly increase. The deviations in x and y -direction which finally lead to the effective uncertainty in lateral direction are shown in Figure 4-5. The deviation in z-direction has no influence on the effective uncertainty in lateral direction and is not regarded in this example. EXCTCP, EYCTCP, EX0XY and EY0XY in Figure 4-5 are contributors caused by element and out of squareness errors of the involved rotational axes. Because of the large distance between the TCP and the rotation-center of these axes the resulting TCP uncertainties of these contributors are dominant.

FIGURE 4. TCP-deviations in x-direction along the TCP-path
FIGURE 5. TCP-deviations in y-direction along the TCP-path

The resulting effective uncertainty of the TCP in lateral direction is shown in Figure 6.

FIGURE 6. Effective TCP-uncertainties for a 5-Axis movement shown for 5-axis laser-cutting.

CALCULATION OF THE AVAILABLE SMOOTHING TOLERANCE

The following 3 steps finally lead to the available smoothing tolerance:

1. Calculation of the so-called NC-tolerance based on the technical drawing and the tolerance value which is obtained for the finished part assuming an ideal machine tool with no deviations.

2. Calculation of the effective uncertainties based on component and location errors as illustrated before.

3. Reduction of the NC-tolerance calculated in step 1 by
 - constant values for
 - thermal deviation
 - dynamic deviation
 - process deviation
 - position dependent values for the geometric uncertainties

CONCLUSION

A procedure for the elaboration of the available smoothing tolerances based on the geometric errors of a machine-tool has been shown for the two and five axis case. Depending on part geometry and the allowable range for application of path smoothing can be determined.

REFERENCES

