mzuriCh ETH Library

Column Storage for FPGA-
accelerated Data Analytics

Master Thesis

Author(s):
Sidler, David

Publication date:
2013

Permanent link:
https://doi.org/10.3929/ethz-a-009767761

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-009767761
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Systems @ ETH ziricn

Master’s Thesis Nr. 74

Systems Group, Department of Computer Science, ETH Zurich

Column Storage for FPGA-accelerated Data Analytics

by
David Sidler

Supervised by
Louis Woods
Prof. Gustavo Alonso

October 2012—April 2013

Informatik
Computer Science

inf

Abstract

Data appliances became very popular in recent years. To decrease the net-

work traffic between processing nodes and the disk, some modern systems use
smart storage engines to off-load filtering query operators, such as selection or
projection. This reduces the amount of data that has to be transferred from the
storage engine to the processing nodes.
Ibex is an intelligent storage engine that is able to off-load query operators to a
FPGA. This work presents a column storage implementation on a FPGA which
replaces the existing row storage in Ibex. Memory on a FPGA is limited there-
fore it is only possible to load small data chunks from the disk (e.g. 4KB). Since
we are reading multiple columns which are stored at different locations on the
disk, we have to deal with random access. Using a SSD and native command
queuing (NCQ) it is possible to achieve high throughputs despite reading small
data blocks. NCQ returns the data out of order, therefore a complex buffer-
ing system was implemented to reorder the data on the FPGA. We present an
economical hardware design which is able to adapt to the number of columns
processed, thereby optimizing hardware utilization and improving performance.
Additionally we implemented two simple statistical operators which are applied
to column-shaped data passing the FPGA. Due to the parallelism in FPGAs no
additional latency is added to the data processing.

ii

Contents

11.3.1 Query Processing Techniques for Solid State Drives|. . . .
[1.3.2 Database Analytics Acceleration using FPGAs|
L4 Thesis OUBINE - -« « o v v vt e e e e e e

2.1.2 FPGA Programming|
2.2 Groundhog|

[3_Column Storage on the FPGA|

3.1 ata layout ondisk|] o0 oL
3.2 Implementation on the FPGA|.
3.2.1 Buffering System|o oo

8.6.1 Table Manager|

4 Data Analytics on the FPGA|
4.1 Implementation on the FPGA|.
4.1.1 Multiplication pipelining|.

.1 Experimental Setup| 00000

5.2 SSD performance]

B3 QUUe DODEH] - « « o v o e

[5.-4 Evaluation Column Storage] v v v v i i
b.4.1 Buffer size and Double buffering|

.44 Projection|. Lo

iii

5.5 _Evaluation Statistics modulel 35
5.5.1 Performancel 35

9.5.2 Resource consumption| 35
[6Conclusionl 37
[6. 1 Thesis contribution] oo 37
6.2 Futureworkl, 37
6.2.1 Scalability]. 0 oo 37

[6.2.2 Compression| 38

0.2.3 ata Analytics|o 38

39

iv

1 Introduction

Since the early 2000s Data warehouse appliance have become more and more
popular. IBM started this trend with the introduction of Netezza [2], other ven-
dors followed and nowadays multiple data appliance systems are on the market.
Because the complete system is built by the same vendor, the software is heav-
ily tailored to the hardware. This improves performance, scalability and allows
more effective tuning of the system to certain workloads. Data appliances be-
came popular thanks to their lower setup and maintenance costs, additionally
they simplified and speed up business analytics.

Usually the data appliance takes care of the data layout and creates indexes
and makes other optimizations when loading the data. On Netezza indexes or
any tuning is not even required, to accelerate query processing it makes use of
a hybrid system composed of multi-core CPUs and FPGAs.

The Systems Group at ETH Zurich is developing its own data appliance, called
Swissbox [4]. One component of Swissbox is Ibex [7] an FPGA-accelerated in-
telligent storage engine which is part of a hybrid FPGA/CPU database system.
In this work we implement a column storage that replaces the existing row stor-
age [8] in Ibex. Column storages are widely used for several advantages, such as
early projection, simpler compression, late materialization, block iteration. We
will mainly leverage the fact that by reading only the necessary columns, the
projection is pushed down to the data, thereby the effective transfer rate can
be higher than in a row storage which has to read all attributes.

A new trend for Data warehouse appliances are in-database analytics which al-
low to run analytics and data mining on the data without extracting it from the
system. Obviously reducing I/O by bringing the operation closer to the data
leads to a significant performance gain. In the second part of this work we take
a small step into this direction by implementing two simple statistical operators
on the FPGA. Thanks to the parallelism on the FPGA no additional latency is
added when analyzing the by-passing data.

1.1 Motivation

Like most common database systems the performance of Ibex is I/O bound.
One way to improve disk I/0O is the introduction of a column storage. In a col-
umn storage only the necessary columns are fetched from the disk in contrast to
the row storage where every time the complete row is read. Only fetching the
necessary columns means the projection is pushed down to the data. Therefore
less data is transferred to the FPGA and later to the host system, the effective
transfer rate is higher and the load on the FPGA and CPU is reduced.

Ibex is generally row based and can apply selection and group-by on material-
ized rows, we still want to make use of this existing functionality. So it is crucial
that we materialize the rows in the FPGA early on. On the other hand there
are operations like compression or statistical evaluation that are easier applied
to column-shaped data. Inserting such operators before the materialization is

possible. In fact the Statistics module is placed in way that it can operate on
the column-wise data stream.

Because the amount of memory on the FPGA is very limited we are not able
to read big chunks from each column and then materialize them into batch of
rows. Instead only small chunks (e.g. 4KB) can be loaded, stored and pro-
cessed. Loading small chunks from the disk reduces the throughput. To be
competitive versus the row storage which is able to read huge chunks of data
sequentially, we will make use of native command queuing (NCQ) combined
with a sophisticated buffering system on the FPGA. To illustrate the perfor-
mance challenge, sequential read with a block size of 4 MB is up to 270 MB/s,
random 4 KB reads achieves only about 35 MB/s when using NCQ it rises up
to 200 MB/s.

1.2 Problem Statement

This thesis has two main goals. First, the development of a prototype imple-
mentation of a FPGA-accelerated column storage which is part of Ibex, a hybrid
FPGA/CPU database system. Second, hardware-based evaluation of statistical
functions on the column-shaped data.

The main objective of the columns storage is to push the projection in Ibex
down to the data, thereby reducing the amount of data that is read from the
disk and has to be processed. The major challenge was to develop a complex
buffering system that hides the latency of the disk and allows retrieval of mul-
tiple columns simultaneously. When implementing such a complex system one
has to take the FPGA architecture into account otherwise the Design Tools will
not be able to map the implementation into hardware. Further, the buffering
system was made adaptable such that high throughput can be achieved indepen-
dent of the number of columns projected. A trade-off had to be found between
adaptability and complexity. For optimal integration with Ibex the columns
have to be materialized early into compact rows which are fed into other Ibex
modules.

The main goal for the hardware-based statistical operators is to add as lit-
tle overhead as possible to the existing data processing. This was a two step
process. Finding operators that can be implemented on a FPGA and fulfill
this property. And exploiting the parallelism of the FPGA when implementing
these operators such that no additional latency occurs when evaluating the data
passing through the FPGA.

1.3 Related Work
1.3.1 Query Processing Techniques for Solid State Drives

Tsirogiannis, Harizopoulos et al. [10] have examined how to optimize query
processing for SSDs. Generally database systems are heavily optimized for se-
quential access and can not benefit from the much faster random access in SSDs.
The database pages of their system use a PAX-layout. To reduce the amount

of data read to answer a query, they developed two operators which take ad-
vantage of the PAX-layout by reading only the minipages that are necessary.
Specifically they implemented FlashScan, a scan operator, and FlashJoin, a join
operator.

FlashScan reduces the amount of data to read by using two methods. First
it only reads the minipages of the attributes that are projected or have to be
evaluated. Second it first reads the selection attributes and evaluates them
proactively, only if the predicate is fulfilled the other attributes and their cor-
responding minipages are read as well. This technique increases performance
especially for low projectivity or selectivity.

FlashJoin executes the join in two passes. In the first pass it only reads the
join attributes and creates a temporary join-index. Other projected attributes
are fetched in another pass as late as possible. With this technique I/0 and
memory usage can be decreased.

Using random access is only beneficial when it is possible to reduce the amount
of data that is read, such that it compensates for the lower speed.

1.3.2 Database Analytics Acceleration using FPGAs

Sukhwani et al. [9] also implemented an FPGA-accelerated database system.
The main difference to Ibex is that the FPGA acts like a real co-processor and
is connected ove PCle to the host. It reads and writes the data from/to the
main memory of the host system. While Ibex is placed in the data path and is
used whenever possible, this system has to decide depending on the query size
or complexity if it is worth to off-load query processing.

Additionally to predicate evaluation their system is also able to decompress
data. This is very beneficial for two reasons. First it increases the effective
transfer rate from the host to the FPGA and second the decompression does
not compete with the query processing on the CPU.

1.4 Thesis outline

The thesis is structured in the following way:

1. Section [2] introduces some fundamental components which built the basis
for our work.

2. Section 3| explains extensively the implementation of the column storage
on the FPGA and in software.

3. Section [introduces statistical operators that are suitable for FPGAs and
shows how two of them are implemented on actual hardware.

4. Section [f] evalutes the performance and resource consumption of the Col-
umn storage module and the Statistics module. The column storage per-
formance is evaluated against the row storage and the performance impact
of the Statistics module is determined.

5. Section [] concludes our work and highlights our contributions. It also
discusses possible future works on the topic.

2 Fundamentals

In this section we are introducing some fundamental parts which built the basis
for this work.

2.1 FPGA

[Field-programmable gate array (FPGA)|is an integrated circuit that can be
reprogrammed by the costumer. Originally FPGAs were used as glue logic be-
tween off-the-shelf integrated circuits. Over time their speed and capabilities
increased and more and more functionality was implemented using FPGAs.
Nowadays they are complete [System on a Chip (SoC)| and are used in many
different applications. FPGAs are usually clocked much lower than CPUs (e.g.
100-500 Mhz) which makes them very energy efficient.

2.1.1 FPGA Internals

SRAM
SRAM cell
cell

ing —| out
ing —
ino Multiplexer
ing ——

4-LUT

Flip Flop
clock

Figure 1: Elementary logic unit

Logic A FPGA mainly consists of an array of [Configurable Logic Blocks|
a grid of routing channels and some I/O blocks along the boundary
of the chip. In contrast to specialized hardware where actual hardware gates
(e.g. AND, OR, XOR) are wired together, on a FPGA these gates have to be
simulated by programmable CLBs. A CLB contains multiple elementary logic
units, one such unit can be seen in Figure It consists of a 4-input LUT, a
D-type flip-flop and a multiplexer. A single elementary logic unit is essentially
a 4-input/l-output function that is reprogrammable via the SRAM cell of the
LUT. When the FPGA is programmed a truth table is stored into the SRAM

cell. During runtime the 4 binary input values define the look up value in the
truth table which equals to the output of the function. The flip-flop stores the
output value of the function and a multiplexer which is also programmed via a
SRAM cell connects the flip-flop value with the output value. To support more
complex functions multiple elementary units can be chained together.

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Figure 2: Routing on the FPGA

Routing Chaining neighboring logic units together to build a more complex
circuit is done over some direct wires. But to build complete systems on a
FPGA, it must be possible to connect components that are distributed over the
whole chip area. Therefore FPGAs have a more flexible communication mech-
anism which allows to connect CLBs. To simplify routing, CLBs are arranged
in a two-dimensional array. As can be seen in Figure [2] a grid of bundled wires
is located in-between the CLBs, these wires are called Interconnect. The inter-
section points of the Interconnects can be regprogrammed, such that two CLBs
can be connected over a few intersection hops.

Clock signals and other special signals (e.g. reset) are routed over a dedicated
routing network covering the complete CLB array.

Additional components Vendors fit their FPGAs with dedicated compo-
nents to increase the functionality. Most FPGAs are equipped with [block RAM]
The BRAMs are placed in-between CLBs and allow to store a few
kilobytes of data which would be very resource-intensive when done with LUTs.
The Virtex 5 model, used in this work, has 148 BRAMs and each one can hold

36 KB of data.

To compute complex mathematical operations faster, dedicated
[processing (DSP)|slices are available. In our work DSP slices are used to mul-
tiply integer values.

2.1.2 FPGA Programming

FPGAs are usually programmed in a hardware description language, like Verilog
or VHDL. FPGA Design Tools first synthesize the code into hardware compo-
nents, then these components are placed and routed according to the targeted
FPGA. At the end a bitstream file is generated which can be loaded into the
FPGA to program it.

FPGASs can be used for Reconfigurable computing. The idea is that during run-
time the FPGA is reprogrammed and thereby can adapt to different workloads.
To make reprogramming reasonably fast the different bitstream files have to be
generated before hand and are just loaded into the FPGA during runtime.
FPGA development consumes much more time than software development which
is probably the biggest drawback.

2.2 Groundhog

Groundhog [11] is an open-source SATA host bus adapter (HBA) for FPGAs. It
allows direct disk access from the FPGA over SATA-I or SATA-II. Additionally
to the basic read and write commands it also supports the use of
[mand queuing (NCQ)| which is explained in Section

2.3 SIRC

The [simple interface for reconfigurable computing (SIRC)| [6] is used to commu-
nicate over Ethernet between the FPGA and the host PC. [SIRC]is open source
and provides a communication and synchronization API. The communication is
based on a master/slave model, where the PC acts as the master and the FPGA
as the slave. This means the FPGA is in an idle state until it gets a signal from
the PC to start execution. The FPGA executes while the PC is waiting for the
execution to end. When the execution on the FPGA is done, it sends a signal
to the PC and goes back into the idle state. The PC is now again in control.
The [SIRC]is based on four main components, the control unit, just explained,
parameter registers, an input and output buffer, as illustrated in Figure [3| As
the name implies execution parameters are sent over the parameter registers
while data is sent and received over the two buffers. Unfortunately the mas-
ter /slave design means that only one of the parties is in execution mode at any
time and is able to access these buffers. Without concurrent access from the
CPU and the FPGA to the two data buffers the data to transfer has either to be
limited to the buffer size or must be transferred over multiple control switches

Input
buffer

Software Output Hardware
API buffer API

Parameter
register

)

Control
Logic

-

Figure 3: Layout of the SIRC module

between the two parties. This limits the practicability of our implementation
considerably, future version of should be able to stream the data back to
the CPU and overcome this limitation.

On the software side the SIRC interface is written in C/C++.

2.4 Ibex

Ibex [7] is an intelligent FPGA-accelerated storage engine. It is developed as a
pluggable storage engine for MySQL |1]. In contrast to other hybrid systems the
FPGA is not just a co-processor on the side, but is actually inserted into the data
path between the disk and the CPU, as illustrated in Figure[d] The goal is do to
as many SQL operations on the FPGA as possible and thereby decreasing the
data that has to be transferred from the FPGA to the host and also reducing the
load on the host CPU. Currently Ibex can push selection, aggregation, projection
and group-by down to the FPGA. More complex operations are still executed
on the host.

Since MySQL is row based and fetches the tuple from the storage engines with

data

D data
FPGA — CPU

Figure 4: FPGA in data path

volcano-style function calls, ibex is also row based and stores the data row-wise.
Ibex uses Groundhog to connected to the SATA disk and SIRC to communicate

to the host.

2.5 SSD

SSDs have diminished the gap between random and sequential (disk) access.
Due to increased capacity and decreasing costs over recent years they became
an alternative to HDDs. Because their disk latency is by a magnitude lower
compared to HDDs, their usage is especially interesting for database systems
which are generally limited by 1/0.

Unfortunately manufacturers release only little information about the internal

Ram
buffer Flash Flash Flash
pkg 1 pkg 2 pkg 3
Host
interface T T T
SSD 7 1 1
controller Flash Flash Flash
pkg 3 pkg 4 pkg 5

Figure 5: Internal architecture of an SSD

architecture of their SSDs. For that reason they are to some degree like a black
box that provides its services through the standardized SATA interface. Feng
et al. [5] have undiscovered some general properties of the internal SSD archi-
tecture. Figure [b|shows roughly the internal architecture of an SSD. It contains
a host controller to communicate over a bus interface. An SSD controller that
manages the NAND chips, multiple flash packages and some models contain
a RAM buffer to cache data. The flash packages are connected over multiple
(2-10) shared channels to the SSD controller.

It is observable that the architecture of SSDs is highly parallel, this is a neces-
sity to achieve high throughputs, since a single flash package has a much smaller
speed than the complete SSD. In our implementation we take advantage of the
internal parallelism by using to read the data.

In SSDs parallelism arises on different levels:

e All channels connecting the SSD controller to the flash packages can be
operated simultaneously and independently of each other.

e Because channels are shared and connected to multiple flash packages,
bus utilization can be increased by interleaving data from different flash
packages.

e Parallelism can also occur inside a flash package. A flash package usually
contains multiple flash dies. These dies can execute commands indepen-
dently of each other.

When dealing with LBAs the SSD acts again like a black box. In contrast
to HDDs where LBAs map directly to the cylinder-head-sector scheme which
guarantees that neighboring LBAs are also physically close, on SSDs LBAs
are dynamically distributed and the physical location may change over time.
Through the LBA the true physical location of the data is hidden, the mapping
from the LBA to the pysical location is done by the SSD controller. Therefore
it is not safe to make any assumptions about the physical layout of the data
depending on the LBA. Most common SSDs use one of two main techniques
to map an LBA to a physical location. For a given value D the LBA-based
mapping writes the data to the flash domain (LBA mod D), in Write-order-
based mapping the i, write is assigned to the domain (i mod D). Both mapping
policies make sure that data which is written at the same time or sequentially,
is distributed over multiple flash packages. When the data is read in the same
way as it was written, the SSD can read from multiple flash packages in parallel
and achieve a high throughput.

2.5.1 NCQ

was introduced with SATA-IT [3]. It allows to send up to 32 commands
to the SATA device. Every command is identified by a 5 bit tag. The controller
on the SATA device can execute the commands in parallel and also optimzie
the execution order. The data might return out of order but will be identified
by the tag. By using in our implementation, we take advantage of the
internal parallelism of the SSD and can achieve a massive performance gain over
standard commands.

In general a higher usage of the SSD leads to a higher overall throughput,
however Feng et al. [5] showed that especially interleaving writes and reads can
have a negative effect on performance. In Data Warehouse workloads with batch
writes and read-only queries in-between, this should not be a serious concern.

10

3 Column Storage on the FPGA

This section discusses how our column storage is implemented on the hardware
and in software.

3.1 Data layout on disk

Since most SSDs use 4 KB pages internally, we also use 4 KB pages as the
smallest granularity on the FPGA and the software side.

mO0 | ml|m2| m3 LBA | padding
m4 | mb| f0 | fl
0
data
3
5] 2 [r]a]b]20
| 4 [ofo]f] 2

Figure 6: Left: An example meta data page. Right: The first page of a data
block.

In a column storage it is necessary to keep track of every single column,
this meta data is stored in the first page on the disk, all raw data is then stored
sequentially starting from LBA 1. The meta data for all tables using this storage
engine and their mapping to the columns is stored on the first page as well.
To simplify the management of the meta data, the table manager|3.6.1] was
implemented as part of the MySQL storage engine. The table manager is also
responsible for allocating new data blocks on the disk. One data block consists
of multiple 4 KB pages and one column is stored across multiple data blocks.

Meta data The meta data contains all information about the tables and their
columns, it is stored in the first page on the disk at LBA 0. The table manager
manages the meta data of the Ibex storage engine. Because MySQL internally
identifies tables by their database name and table name, we adopted the same
concept. In the last 32 bit of the first page is the number stored which states how
many tables are managed by this engine. From there the table names are stored
in backwards order. Every table name is followed by 16 bit for the number of
columns and 32 bit for the number of rows that are stored in this table. Figure[f]
shows a meta data page which contains the information of two tables called foo
and bar.

Additionally, we have to store three 64 bit values for each column: the LBA
where the column begins, the LBA of the current page where new data can

11

be inserted and the byte-offset on this page to get the actual byte position for
the insert. This data is stored in sequential order from the top of the page at
LBA 0. Since we only use a few tables which have at maximum 8 columns,
we can safely assume that for our experimental setup the two meta data parts
will never grow so big that they might overlap somewhere in the middle of the
4 KB page. To support an arbitrary number of tables and columns it has to be
detected when the meta data page becomes full and then the meta data needs
to be distributed over multiple pages.

To reuse the disk blocks when a table is deleted the LBAs of freed data blocks
are stored after the column meta data at the top of the page. The table manager
will reuse these LBAs when a new block on the disk is requested. After the freed
LBAs a zero value is stored to indicate the end of the meta data.

To guarantee persistence of the meta data, the storage engine can trigger a flush
to the disk, this happens every time data is inserted or deleted. On startup the
system reads the meta data and can restore the properties of all the tables.
Figure[6]shows an example meta data page, containing two tables named foo and
bar, the former has four columns and 20 rows, the later two columns 35 rows.
The meta data of these six columns is stored at the top of the page indicated
by m0...mb. After the column meta data, the LBAs of two freed data blocks
are stored. The end of the meta data is indicated by a 64 bit zero value.

Data The columns are stored across data blocks consisting of multiple pages.
With increasing data block size the amount of disk space that is allocated but
unused increases, actually the last data block is on average half empty. Using
smaller data blocks would decrease the amount of unused storage but leads to
more jumps between data blocks which might have an influence on the perfor-
mance. In the evaluation, Section [5.4] we will see that there is no measurable
impact on the performance when varying the data block size.

The first 48 bit of each data block are used for the LBA of the next data block,
in case there is no next block, the LBA equals the LBA of the current block.
After these 48 bit for the LBA another 16 bit padding is inserted to optimize the
alignment of the data which simplifies reading it out on the FPGA. The exact
number of 4 KB pages that are part of a block is fixed a priori in the software
and on the FPGA. An example of the first data page in a data block is shown
in Figure [6]

3.2 Implementation on the FPGA

The hardware implementation builds the main part of our work and is exten-
sively explained in this section.

3.2.1 Buffering System

As explained in Section [1.1] we want to hide the access latency of the SSD by
using NCQ. The disadvantage of using NCQ is that the data might be returned

12

out of order, to bring it back into order a buffering system on the FPGA is
necessary. Since we do not want to reprogram the FPGA between queries or
different workloads, we had to fix the number of buffers we want to use before
hand. As a consequence the implementation is not able to process more columns
simultaneously than specified. We opted for a trade-off between performance
and design complexity which has a direct impact on hardware resource consump-
tion. For that reason we implemented a design that supports up to 8 columns
simultaneously. Although we strived to make the source code as generic and
scalable as possible, we introduced two restrictions to simplify the code base
and the hardware design.

e The number of buffers and NCQ-tags needs to be a power of two. This
restrictions extremely simplifies the scalability of our design. To double
the capacity of the design, in most cases the register can just be extended
by a single bit. Supporting other numbers would require much more checks
and complexer generics to scale properly.

e During a query every column is assigned to the same number of buffers.
Although with this restriction some buffers might be unused, it simpli-
fies the hardware part that has to assign NCQ-tags to columns because
the amount of possible assignment configurations is heavily reduced and
contains no complex special cases.

Double buffering is used to buffer the data fetched from the disk. With double
buffering it is possible to hide the disk latency, because it is possible to fetch
the next chunk of data while the current one is still processed. Our default
implementation uses 2x4 KB double buffers matching the 4 KB page size on the
SSD. Eight double buffers are required to process up to eight columns.
Our initial approach did bind every column to one of the eight double buffers.
While this is the simplest approach, it bears one main disadvantage, it would
only use as many buffers simultaneously as columns are processed. If the query
only contains a single column seven buffers would stay unused. With this ap-
proach neither the sparse hardware resources are used in an efficient way nor
are we achieve acceptable performance.
So instead of binding a column to a specific buffer, we are binding a NCQ-tag to
a specific buffer. This means that we will only use 8 out of 32 possible NCQ-tags,
but experiments from Feng et al. [5] and our own evaluation in Section [5.4] have
shown that already 8 NCQ-tags lead to a significant performance boost. This
approach makes it possible to assign a column at runtime to one or multiple
NCQ-tags. If there is more than one NCQ-tag assigned to a column, the data
read from the disk is distributed in round robin among the associated buffers,
this is necessary to restore the original order later on.

Table |1f shows how the NCQ-tags are assigned to a specific column depending
on the number of columns that are processed simultaneously.

An example of how the data chunks are distributed to the buffers can be seen
in Figure[7] In this example a query with three columns is executed, this means
every column is assigned to two buffers. In the figure Column0 uses Buffer 0

13

columns processed

NCQ-tags

column 1 2 3 4 5 6
0 0-7 0,2,4,6 0,4 0,4 0 O

- 1,3,5,7 1,5 1,5 1 1

- - 2,6 2,6 2 2

- - - 3,7 3 3

4 4

5

S UL W N~ O

N O U R W N =
1
N O O W N = O

Table 1: NCQ-tag assignment depending on number of columns processed.

and Buffer 4, Column 1 Buffer 1 and Buffer 5 and Column 2 Buffer 2 and Buffer 6.
Buffer 3 and Buffer 7 are unused. As can be seen the first 4 KB chunk goes to
the first buffer and the second chunk to the second buffer. In round robin the
third chunk goes again to the first buffer and the forth chunk to the second
buffer.

In our implementation at least % + 1 buffers are used. To put it differently in
the worst case % — 1 buffers are unused. For the example table with 8 columns
the worst case, as shown in Table [1} is the utilization of only 5 buffers which

fulfills exactly our formula.

3.3 Architecture Overview

The hardware module for the column storage was integrated into the existing
Ibex design and uses the [Host bus adapter (HBA)| module to connect to the
SSD and the module to communicate to the CPU over Ethernet. In this
section we will examine the Column Storage module which replaces the existing
row storage. The Column Storage module itself consists of multiple modules.
Figure [§| shows the modules, which are part of the Column Storage module and
also shows the data flow through the module. We briefly describe the meaning of
every module and will examine in detail the Loader module and the Reordering
structure due to their importance and complexity.

Since data is read in 16 bits per cycle from the SATA port and delivered with
that throughput by the [HBA] the Column Storage module also processes 16 bits
per cycle until it materializes the columns into actual rows.

HBA As stated in Section the [HBA] is provided by Groundhog. The
Column Storage module only uses it to read data with [NCQ] [Direct memory]

laccess (DMA)| reading and writing to the disk is already provided by the Ibex

module.

14

Column0 Columnl Column2

0.1 1.1 2.1
02 1.2 25
s 0.3 -1 13 oo 23
I
| | 1
\ 0.4 ! 1.4 | 2.4
| |
| T ! T : T
| T ! | | I
I el ni 4 | I
! ‘ —! I I
I st N [| 0
I
S Bt
! I | [! I
! | J" | ! |
NS ~ N

Buffer 0 Buffer 1 Buffer 2 Buffer 3 Buffer 4 Buffer 5 Buffer 6 Buffer 7

Figure 7: The solid line shows the chunk first going to the assigned buffer and
the dashed line the next chunk going into that buffer

Column Storage module The Column Storage module is the module that
contains all logic to read the data stored as columns on the disk, materialize it
into compact rows and then forward these rows to the next operator in Ibex. As
input it takes the LBAs of the requested columns and also a value that encodes
the data-type of each column. In the current version the data-type information
is not used since all experiments are done with unsigned 32 bit integers. When
using multiple data-types, this information would be necessary to materialize
the rows correctly.

Loader The Loader module is initialized with the start LBA of each column.
The Loader iterates through the 8 NCQ-tags and checks if the corresponding
double buffer is half empty which implies it has enough space for another chunk
of data. If this is the case the Loader sends an new NCQ request to the HBA
module.

To receive data the Loader also has to check at every clock cycle if for any of
the pending requests new data is available from the HBA. Together with the
data the HBA also sends the NCQ-tag, so that it is possible to identify the
command that requested this chunk of data. The Loader forwards the arriving
data and the corresponding NCQ-tag to the buffer-pipeline. At every buffer in
the pipeline it is checked if the NCQ-tag matches the tag of the buffer if this
is the case the data is loaded into the buffer otherwise it is forwarded in the

15

Column Storage module

da;ca[O..lS] Buffer pipeline

,,,

IR S S S, S, g g g 8

haIfEmpty[O&*

Buffer 0 H Buffer 1 — Buffer 2 — Buffer 3 (4 Buffer 4 — Buffer 5 — Buffer 6 — Buffer 7

Reordering ./Q/. ® ® ®

structure

valid[0..7]

Row Synchronizer

Figure 8: Design overview and data flow through the Column Storage module

pipeline. The Loader is explained in more detail in section

Buffers The buffers are double buffers consisting of two single 4 KB FIFO-
buffers, double buffering is used to hide the high latency of the disk. When
the first buffer is empty the halfEmpty signal is set to TRUE. The Loader is
observing this signal and reacts by requesting a new chunk of data for the
corresponding buffer. Since data is always loaded in 4 KB blocks no further
checks on the state of the buffer are necessary and the data can directly be
pushed into the buffer when it becomes available.

Reordering structure The Reordering structure is the fan out that combines
the output of all buffers and brings the data chunks back into order. It actually
consists of multiple modules: Merger, Intersection and Delayer. To minimize
the wiring and still being able to combine the data from all buffers into a single
stream a tree like design is used. At each level two data paths are interconnected,
there are four interconnections in the top level and only one in the bottom level.
The ordered data is then feed into the Row Synchronizer. The Reordering
structure is explained in more detail in section [3.5

16

Row Synchronizer The Row Synchronizer combines the data streams of all
columns and produces a compact row. As an input it receives a validity signal
with a bit for each column which indicates if the corresponding column is part of
the current query. For every valid column the Row Synchronizer sends a request
and waits for the data. If it receives the requested data, it holds a compact row
on its data inputs and can then forward all attributes at once. The following
modules have the guarantee that the data on all parallel data paths belong to
the same row. If an attribute of a row is longer than the 16 bit-width of the
data path, the row is span over multiple clock cycles. The Row Synchronizer is
the last part in our data flow and because it requests the data indirectly from
the buffers, it also is the driving part for the dequeuing.

3.3.1 Challenges on the Hardware

The first design approach did not use a pipeline from the Loader to the buffers
instead the data was distributed through a fan-out to all buffers which con-
nected the Loader directly to every single buffer. With increasing number of
buffers, this design did not scale since the distance between the buffers and the
Loader got so long that the timing constraints on the FPGA were no longer met.
To avoid the timing issues the current buffer pipeline was introduced, it only
connects the first buffer directly to the Loader, all other buffers are connected
indirectly. This chain of buffers simplifies the placing on the chip and eliminates
the previous timing issues.

Similar issues arose with the modules that dequeue the data from the buffers.
At first there were multiple consumer modules which were directly connect to
multiple buffers. Again with increasing number of buffers the distance between
the consumer modules and the buffers became to long and proper placement
was no longer possible. The Reordering structure avoids these timing issues by
delaying the data over several registers and thereby elongating the data path
and enabling a longer distance between the buffers. This design eliminated the
timing issues.

Further timing issues occurred inside the Loader module. The module contains
a lot of logic and also needs to store a lot of data in registers. Most of the space
is required to store the LBAs with a size of 48 bit each. Because we need to
store the LBA of the current page and also the one for the next data block, we
actually have to store two LBAs for every buffer. With increasing number of
buffers it became impossible for the hardware synthesizer to place the required
registers close enough to each other. Therefore the registers that held the LBAs
had to be replaced by two BRAMSs one for the current LBAs and one for the
LBAs of the next blocks.

Despite these timing optimizations the current implementation does not syn-
thesize with 16 double buffers. Either the synthesizer is not able to connect
the massive amount of wires and registers or there are not enough hardware
resources available. Even for smaller buffers number routing is an issue when
deploying the design and takes a lot of time (approx. 10-15min.).

17

3.4 Loader module

nextValidTag
Next Tag Data Loader

A

read completed
CURR-ADDR Address Inc. NEXT-ADDR Word Counter

Figure 9: Submodules of the Loader module

The Loader is the most complex component and as can be seen in Figure[d] it
actually consists of multiple subcomponents. The software provides the Loader
at initialization always with 8 addresses, one for each buffer. If there are mul-
tiple buffers for a single column then the corresponding addresses are offset by
8 sectors each. For example with two columns and 8 available buffers, the first
column is assigned to buffers 0,2,4,6 and the data loader sends simultaneously a
NCQ request for all four buffers. The LBAs of these four requests differ exactly
by the value of 8 sectors which means they are offset by 4 KB.

The Word Counter is necessary to determine when a data block starts or
ends. When a new data block starts the first 48 bit, containing the next block
LBA, have to be read out and are stored to the NEXT-ADDR BRAM. The col-
umn number is used as the memory address to access the LBAs in the BRAMs.
The Addr Inc. module observes which LBAs were successfully requested from
the HBA and increments them in the CURR-ADDR BRAM. If the current data
block is completely read from the disk, Addr Inc. loads the address of the next
data block from the NEXT-ADDR BRAM into the CURR-ADDR BRAM, in-
stead of incrementing the current LBA further.

One output of the CURR-ADDR BRAM is directly connected to the HBA mod-
ule and holds the LBA for the next read command. The address corresponding
to this output is set by the data loader.

In order that the data loader knows which NCQ-tags can be reused, the Next
Tag module checks all 8 tags for validity and reports the next valid tag to the
data loader.

3.5 Reordering structure

To dequeue the data from all these buffers and bring them back into order
the data paths were arranged into an upside down tree, see Figure At
each level two not yet connected data paths have an interconnection. This
structure minimizes the amount of interconnections and also decentralizes the
reordering logic which is mainly inside the Mergers. These two conditions make

18

Buffer 0| |Buffer 1| | Buffer 2| | Buffer 3| | Buffer 4 | | Buffer 5| |Buffer 6| | Buffer 7
Intersec. | | Intersec.| |Intersec.| |Intersec.
1.4 1.5 1.6 1.7
Level 1 /???/
Merger Merger Merger Merger
1.0 1.1 1.2 13
Intersec. | |Intersec.| | Delayer | | Delayer | | Delayer | | Delayer
2.2 2.3 2.4 2.5 2.6 2.7
Level 2 / /
Merger Merger
2.0 2.0
Intersec. | | Delayer | | Delayer | | Delayer | | Delayer | | Delayer | | Delayer
31 3.2 33 3.4 35 3.6 3.7
Level 3
Merger
3.0

Figure 10: Design of the Reordering structure

sure that the synthesizer can successfully place and map the implementation to

the hardware.

The structure brings the data back into order when multiple buffers are used for
a single column. In the base case of 5-8 columns where one buffer per column is
used, none of these crossing data paths are used and the data flows straight from
the buffer through the three levels to the Row Synchronizer. For 3-4 columns
the crossing paths on the first level are used, for 2 columns the ones on the first
and second level and for a single column all crossing paths are used and all the

data will eventually end up in the first data path.

When the data has passed trough all three levels it arrives fully ordered at the

Row Synchronizer.

19

Merger The Merger is the essential node in this hierarchy which makes sure
that the data comes back into order. Depending on the query that is processed
the Merger knows if it has to read data from both of its sources or only from
its primary source. In case it needs to read the data from both sources it will
read 4 KB of the first source and then switches to the second source where it
also reads 4 KB and then it switches back to the primary source and continues
in round robin.

Thanks to the way the data was distributed and loaded into the buffers, it is
possible to enable merging on certain levels depending on the amount of columns
processed and the data will be brought back into order.

Delayer The Delayer has no actual functional logic, it just stores the data for
one clock cycle, thereby the data path to the BRAMs is prolonged. The longer
these data paths are the more apart the BRAMs can be placed, this allows the
synthesizer to find a mapping on the FPGA despite requiring so many BRAMs
at once.

Intersection The Intersection requests the data from its single source and
forwards it to the next level. It does not know to which of the two successor
modules the data is transferred. Apart from having two successors the Intersec-
tion module is equal to the Delayer module.

3.6 Software

The Ibex MySQL storage engine was adapted so that it pushes the SQL projec-
tion down on to the FPGA where the compact rows are materialized as early
as possible. The software writes the LBAs of all projected columns in the in-
put buffer of the FPGA other necessary parameters are written into the shared
32 bit parameter registers. The Column Storage module then executes the pro-
jection. Because the SIRC interface only supports data communication over
the input and output buffer which are limited to a size of 16 KB, only a part
of the result is in fact transmitted back to the software. If the SIRC interface
would support data streaming from the FPGA to the CPU, the complete result
could be transfered back to the software. It is possible that in this case the data
transfer over Ethernet might become the bottleneck instead of the disk I/O.
Since MySQL is row based and expects rows which contain all fields, the missing
fields are inserted and padded with NULL values before the full-length row is
returned to MySQL.

3.6.1 Table Manager

The table manager stores the LBA of the first page of each column, the current
page LBA and the byte position in the current page where new entries can be
appended. When a new block of data is requested the table manager returns
the next free LBA. Data blocks are of a predefined size. The table manager also
handles drops of tables and stores the data block LBAs that are now freed in a

20

free list. As explained before all this meta information is stored at LBA 0 on
the disk and is read on startup.

The data block size has a lower limit, because we need to be able to distribute a
single block among 8 buffers, therefore the block size has to be at least 8 times
the buffer size which is 4 KB. In practice there might occur some race conditions
between the buffers, to avoid them the block size needs to be 16 times the buffer
size. This means the lower bound on the data block size is 64 KB.

21

22

4 Data Analytics on the FPGA

Based on the column storage introduced in Section[3] we want to make use of the
column-wise data streams and compute statistics on the data passing through
the FPGA. If this is done before the columns are materialized into compact
rows the parsing of the data is reduced to parsing of the data-type.

The objective is to compute statistical values at the line rate. Therefore we
have to use the internal BRAMs to store the data, accessing the DRAM is not
an option since it would add too much latency. Assuming large data sets, we
focus on statistical values which require not much memory and can be easily
computed on a data stream.

For this reason we decided to start with some straightforward computable sta-
tistical values, namely the mean, variance, skewness and kurtosis. These four
values are mathematically related and it is possible to compute all of them from
a few summations over the data. The general formula computes the mean value
in a first pass and then passes again through the data to compute the final
value which leads to two passes through the whole data set. By rearranging the
formula as in Section [4.2] it is possible to compute the necessary summations
in one pass over the data set.

After all the data has passed, the computed summations are sent to the CPU
where a few additional multiplications and divisions are executed to compute
the final values. Depending on the data set size one has to make sure that the
summation registers on the FPGA will not overflow.

The goal of our implementation is to compute these statistical values with min-
imal overhead during each query. Since the whole data is streamed through
the FPGA anyway, there should be no additional processing time or latency
to compute all the necessary summations (aggregations). A slight overhead
will occur due to transmitting the values to the CPU and computing the final
multiplications and divisions in software.

4.1 Implementation on the FPGA

We successfully simulated the computation of all the four statistical values, for
our implementation on the hardware we decided to only implement the mean
and the variance. Two main obstacles occurred when moving the code from
the simulation to the hardware. Timing issues because of bad placement and
integer multiplication which requires the use of dedicated [DSP] slices.

Initially the idea was to place the Statistics module directly into the data path
right before the materialization in the Row Synchronizer occurs. But this led to
timing issues, caused by the very large registers used for the summation and the
distance to the two[DSP]slices. To solve the timing issues the Statistics module
was placed outside of the data flow path and the data signal is branched of
and delayed over some registers to increase the data path between the Statis-
tics module and the other modules. Figure [11|shows the final placement of the
Statistics module, it is also connected to two [DSP|slices to compute the multi-
plication. The data path between the Statistics module and the [DSP]slices is

23

also pipelined over a few registers to avoid any timing issues.

DSP

Statistics
module

DSP

Row
Synchronizer

Figure 11: Placement of the Statistics module

A single DSP slice can only multiply at most a 25bit and a 18 bit number.
To multiply two 32 bit unsigned integers, we have to pipeline the multiplication
over two DSP slices.

The Statistics module has no influence on the data flow and just observes the

A[31:0] = Ag[15:0] & A[15:0]
B[31:0] = B[15:0] & BL[15:0]
AxB=Arx B + Agx By, + Arx By + Agx By

E ALX: Be [31:0]
: \ 16 bits .
| AH>I(Bz (31:0] (—):
| AuX Br [31:0] :
32 bits :

Anx B [31:0] :

64 bits :

Figure 12: Pipelined 32x32 multiplication using 16x16-DSP slices.

bypassing data, therefore it does not add an additional delay to the current
column processing on the FPGA. The data flow is still controlled by the Row

24

Synchronizer and limited by disk I/O.

4.1.1 Multiplication pipelining

As shown in Figure a 32bit x 32bit multiplication can be separated into
four 16 bit x 16 bit multiplications. Two 32 bit numbers A and B are split into
their upper and lower 16 bit parts and then the four multiplications Apx By,
AgxBr, Apx By and Agx By are computed. Since we compute the square
of a number, A and B are equal and therefore Ay x By, is equal to Apx By.
The partial results have to be shifted accordingly and summed up into a 64 bit
register. The module receives only 16 bit of data per clock cycle and stores the
first 16 bit of the integer value until the second part arrives.

For the summation two different registers are used. The value of Ay x By, is
added to first register in one clock cycle and the value of Agx By is added to
the same register in the other clock cycle. The value of Ay x By value is added
to the second register when both 16 bit parts are available. This means the
32x32 multiplication is pipelined over two clock cycles. The two summations
registers are aggregated before they are sent to the CPU.

4.1.2 Software

On the FPGA we can use registers of an arbitrary size, due to the high values
that are possible we used up to 80 bits for the aggregated sum. On the software
side we only have support for up to 64 bit unsigned integers. Therefore it was
necessary to implement our own division for larger integer values.

The final mean and variance values are not feed into MySQL, instead they are
printed out to the console. A future version might tap into MySQL’s own AVG()
and VARIANCE() functions, such that theses values can be retrieved over the
MySQL interface.

4.2 Formulas
We list the formulas and their rearrangement which are used to compute the

four statistical values in one data pass.

Mean The mean is very simple to compute, two summations are required
one of the values and one for the amount of rows. Since the number of rows is
already stored in the storage engine and the division will be executed in software
as well, it is not necessary to compute this value on the FPGA.

b3

25

Variance The variance is usually computed in two passes, one pass for the
mean value and a second pass for the final value. We rearranged the formula
such that we get two summations which can be computed simultaneously.

= o St = 2 ()’

%

Skewness To compute the skewness usually multiple passes through the data
set are necessary. Rearrangement of the formula lead to a few summations
which can be computed in one pass.

N i@ — m?

(N—1)(N —2) o3

SRS SR SERETD S

% i

where

Kurtosis The method applied to the skewness is also valid for the kurtosis.

VO (St Y
(N —1D)(N —2)(N —3) ot (N —2)(N —3)

where

Do(wi—p)t =l Yy jal 46y a4y i+ u'N
i i i i

%

26

5 Evaluation

In this section we evaluate the Column storage module and the Statistics mod-
ule. As a reference point the raw performance of the SSDs is measured as well.

5.1 Experimental Setup

All experiments are done on the same desktop PC running an Intel Core i5-750
with 4 cores clocked at 2.67 Ghz and 8 MB of L3 cache. The machine is equipped
with 8 GB of main memory. We use MySQL 5.25 running on Windows 7 (64bit).
The FPGA (Virtex5, XC5VLX110T) is directly connected over SATA-II to the
SSD. Two SSDs manufactured by OCZ are used.
An OCZ Vertex2(OCZSSD2-2VTXE60G) which has a capacity of 60GB and
an OCZ Vertex4(VTX4-255AT3-256G) with a capacity of, additional specifica-
tions can be seen in Table I The FPGA was connected to the host PC over
gigabit Ethernet. The Ibex and HBA module are running at 150 Mhz matching
the frequency of the SATA-controller chip. This leads to the maximum SATA-
throughput of 300 MB/s.

If not stated otherwise the data read in the experiments has the size of 1 GB

‘ Vertex 2 Vertex 4
Capacity 60 GB 256 GB
Flash Memory MLC MLC
Controller SandForce 1222 Indilinx Everest 2

Table 2: Manufacturer specifications of the two SSDs

and only contained unsigned 32 bit integer fields. The tables were written in
one batch.
The query was always a simple projection of the form:

SELECT FIELD_1,... ,FIELD.N
FROM TEST.TABLE

Because the current version of SIRC does allow to stream the data over Ethernet,
the data is not transmitted back to the CPU instead it is dropped after the
compressed row is generated on the FPGA.

In the plots the different SSDs are annotated with the abbreviations V2 for the
Vertex 2 and V4 for the Vertex4.

5.2 SSD performance

To get an idea of the raw performance of the SSDs used for the experiments,
sequential and random performance is evaluated.

Figure shows the sequential read performance depending on the read
block size. For comparison the random access performance using with a

27

300 ; : : .
Read Seq DMA, V2 ———
Read Seq DMA, V4 -~

250 | 4

Rnd NCQ 4KB, V4 , o
200 — 1

150 {-Rnd NCQ 4KB, V2

Throughput [MB/s]

100

50

0 1 1 1 1 1 1 1 1 1 1 1 1
4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
Block Size [KB]

Figure 13: Performance of SSDs

constant block size of 4 KB and a queue depth of 32 is also plotted.

The performance of both SSDs does not increase steadily with increasing block
size. The graph shows that in general very small read blocks have a negative
effect on read performance while after some threshold, around 64 KB, the per-
formance gain by increasing the block size starts to stagnate. Using NCQ it
is possible to achieve high throughputs with random access and small block
sizes. The base case for our experiments is the row storage engine in Ibex. It
reads the data sequentially in 4 MB blocks, therefore it should be able to achieve
throughputs up to 200 MB/s or 270 MB/s. The column storage implemented
in this work reads randomly 4 KB data blocks which equals to the page size
of most current SSDs. Therefore the random access NCQ performance with
4 KB blocks is the maximum performance our implementation can theoretically
achieve.

5.3 Queue Depth

The impact of the queue depth on the performance is evaluated by performing
random 4 KB reads. The results are shown in Figure On the older Vertex 2
the performance increases linearly to around a queue depth of 8 and then reaches
the maximal throughput of 140 MB/s. Whereas the newer Vertex4 shows a
linear throughput increase up to a queue depth of 32. The scale up in this
experiment mainly depends on how the flash packages in the SSD are connected.

28

As explained in Section different models have a different amount of actual
hardware channels. Interpreting the graph it appears that the newer model
must have more hardware channels, so that it can indeed scale to the maximal
queue depth and reach a higher maximal throughput. Since the Vertex 2 already
hits its peak performance with 8 NCQ-tags, there is no gain in using more than
8 NCQ-tags. The main reason to only use 8 NCQ-tags in our implementation
was to keep the complexity of our design within bound and thereby limiting the
occupied hardware resources to a reasonable amount. We also assumed that the
performance gain would decrease after some threshold as it is the case for the
Vertex 2, but naturally newer SSDs are performing better and this assumption
does not hold.

There is a trade-off between performance and hardware consumption but if the
hardware resources are available it should be possible to scale our design up to
16 or even 32 buffers and take advantage of the higher throughput.

Vertex2 ———
Vertex 4
200 + B
150 B
- - -]
o _—
= _—
5 ///
_g- ///
2 100 — E
8 7
=
= /
50 | e i
0 1 1 1 1
1 2 4 8 16 32

Queue Depth

Figure 14: Random access performance depending on queue depth

29

5.4 Evaluation Column Storage
5.4.1 Buffer size and Double buffering

In this section we want to determine the influence of double buffering and the
buffer size. The experiment is only run with the Vertex2. Two different tables
are used, one with a single column and another with 8 columns.

Figure [15| shows the difference between double and single buffers while varying

T T
SB, col=1 —+— %
160 DB, col=1 T B
SB, col=8 ------ e
DB, col=8 &

140 |
120 |

100 |

Throughput[MB/s]

60 | .
40 .

20 | .

0 1 1 1
2 4 8

Buffer Size [KB]

Figure 15: Performance depending on buffer size

the buffer size. Both queries make use of all 8 buffers.

When executing the query with 8 columns the data from all 8 buffers have to be
synchronized in the Row Synchronizer before they columns can be materialized
into a row. This synchronization blocks the data flow until the corresponding
data is available on all 8 data inputs of the Row Synchronizer. With single
buffering this synchronization has a negative impact on the performance, since
all buffers have to be filled with data before any of them is dequeued. For single
buffering the performance increases linearly until the maximal SSD throughput
of 140 MB/s is reached. Double buffering can hide the blocking which occurs in
the Row Synchronizer and increases performance to 140 MB/s for 4 KB blocks.
When running the single column query no synchronization among columns is
necessary in the Row Synchronizer, this means the data which already arrives
in order at the Row Synchronizer can immediately be forwarded. Therefore
the single column query does not experience a negative performance effect with
single buffering. For that reason the single column query is a special case in

30

this experiment.

The experiment shows that with double buffering we are able to hide the data
flow blocking in the Row Synchronizer, the throughput of about 140 MB/s
matches the maximal random NCQ read performance of the SSD.

It is also visible that doubling the buffer size from 4 to 8 KB is not worth the
hardware consumption since the performance increases only slightly.

5.4.2 Buffer number

We have seen that double buffering is able to hide the blocking that is necessary
to synchronize the columns. The next experiment evaluates how the number of
used buffers affects the performance. A full table scan on a single column table
is executed while the number of available buffers is varied. The experiment is
run in our default configuration with 4 KB double buffers and on the Vertex 2.

The outcome of the experiment is shown in Figure The throughput almost

160 | _
140 F : / _
120 F - _

100 | y

Throughput[MB/s]

60 |- -

40 | 4

20 -

0 L L L L
1 2 4 8

Double buffers [2x4KB]

Figure 16: Performance depending on buffer number

scales linearly until it reaches the maximal throughput of 140 MB/s.

The graph also indicates that without the ability to adapt and use all 8 buffers
for a single column, the throughput would only be around 50 MB/s. Thanks to
our flexible design we can use all 8 buffers and almost triple the throughput.

31

5.4.3 Full Table Scan

This experiment runs full table scans on tables with a different number of total
columns, varying from 1-8. It shows us how tables with a suboptimal number
of columns (e.g. not a power of two) affect the throughput.

Figure shows the result for the Vertex2 and Vertex4. The result for the

200

bolumn store;ge, V2 . ' ' ' ' '

Column storage, V4

150 > \ -~ \ L |
o

Q)
o
=3
2 100 b .
=
(=2}
=}
o
£
=
50 | E
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
columns

Figure 17: Full table scan, varying number of columns

Vertex 2 fits the properties of our implementation very well. It can be seen that
for a single and two columns the performance is almost equal. It decreases for
three columns because in this case only 6 out of the 8 buffers are actually used.
When querying 4 columns all 8 buffers are used and the throughput is back up
on the initial level. The throughput also drops in the case of five, six and seven
columns where also not all 8 buffers are in use but it steadily increases from 5
to 8 columns as the number of buffers in use increases as well.

The Vertex 4 shows a similar pattern although the performance penalty when
using less than 8 buffers is slightly higher. Oddly the Vertex4 performs not
well when the table only contains a single column despite the fact that all 8
buffers are in use. Furthermore the data lies sequentially on the disk and was
also written in that way, this actually should benefit the performance since the
data is probably distributed over multiple flash packages.

This experiment demonstrates that our implementation performs quite well and
thanks to the adaptability we can retain the performance for varying number
of columns. In fact the throughput of around 145 MB/s matches the random

32

access speed for 4 KB blocks which we measured in Section [5.2)

5.4.4 Projection

8000 T T T T T T T T
Column storage, V2 —+—
Column storage, V4
Row storage, V2 ------
7000 Row storage, V4 o E
6000 g

'g 5000 F xo Kommmmmannans [SECEEREEREERE Heemmemn ot A [REEREEEREREEES EGRRREERREEEES ECRREEE R *

‘o

£

iy
4000 | 4

5 o g g

5

O

(5} -

& 3000 | - -
2000 -
1000 -

O 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8
projected columns

Figure 18: Execution time for Column and Row storage, varying the number of
projected columns

In this section we want to compare the performance of our column storage
to the existing row storage, the base case for our experiments. Particularly we
want to find out how the column storage can benefit from pushing the projection
down. We run the projection on a table with 8 columns and vary the number
of projected columns. The complete table holds 1 GB of data or 128 MB per
column. Instead of the throughput we plotted the execution time as can be seen
in FigurdI8]

Because the row storage can not push the projection down, it has to read the
whole table in all cases which leads to a constant execution time. The column
storage on the other hand only reads the projected columns and therefore its
execution time depends linearly on the number of projected columns. Both
storage types have a constant throughput from the disk to the FPGA, the
row storage around 207 MB/s for the Vertex2 and 270 MB/s for Vertex 4, the
column storage, as shown in the previous experiment, around 140 MB/s for both
SSDs. If more than 4 or 5 columns are projected the row storage with its higher
throughput is clearly faster than the column storage. But when less than 4
columns are projected, the column storage has to read less than half of the data

33

which means it is able to execute the query faster than the row storage.
This experiment shows that if the row storage has to drop more than half of the
fields, it is outperformed by the column storage.

5.4.5 Resource consumption

Table |3 shows the resources required by the Column Storage module. When
doubling the number of buffers the amount of required resources is less than
double, this shows that our design scales well. It is also visible that this module
consumes 10-15% of the available resources which is a big expense in comparison
to the row storage. On our dated FPGA model a lot of BRAMs are occupied,
but current models are easily equipped with over thousands of BRAMs such
that the consumption of our module would be minor.

‘ #buffers Slices LUTs BRAMs
available - 17,280 100% 69,120 100% 148 100%
8 2,803 16% 5,914 9% 23 16%
occupied 4 1,551 9% 3,178 5% 16 11%
2 1,002 6% 1,893 3% 12 8%

Table 3: Resource consumption of the Column Storage module depending on
the number of buffers

34

5.5 Evaluation Statistics module
5.5.1 Performance

To find out if the Statistics module has a negative impact on performance we
run full table scans on our column storage. Once without the Statistics module
in place and once with the module in place. The experiment was only run with
the Vertex 2.

The measurements are shown in Figure[I9] As expected the statistical operators
add no or an insignificant overhead and have no measurable impact on the
throughput. Thanks to the parallelism of the FPGA the statistical values can
be computed for ”free”. The only expense are the required hardware resources.

200 T —T T T T T T T
w/o satistics, V2 —+—
statistics, V2
150 T T N A
TR \\\\ o
N
v
o
=3
3 100 E
<
[=2}
3
o
1S
=
50 B
0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
#columns

Figure 19: Performance of the Statistical module

5.5.2 Resource consumption

The resource consumption of the Statistics module is listed in Table[d Although
it is a much smaller and less complex module than the column storage it also
consumes around 10% of Slices and LUTs. Responsible for the high hardware
consumption are the large registers which are necessary to store the summation
values. Additionally this module requires two DSP slices per column which are
required to compute the multiplication of two 32 bit integers.

35

‘ #columns Slices LUTs DSP48

available _ 17280 100% 69.120 100% 64 100%
occupied 8 2,262 13% 5,784 8% 16 25%
P 1 982 16% 724 1% 2 3%

Table 4: Resource consumption of the Statistics module

36

6 Conclusion

6.1 Thesis contribution

In this thesis we have shown how a column storage can be implemented on a
FPGA. Evaluation of the performance has shown that the column storage is a
viable option to the row storage. Its key feature is its ability to push down the
projection to the data which reduces the amount of data that it has to read
from the disk. When less than half of the complete row is projected, the column
storage can compensate its lower random performance and becomes faster than
the row storage. Due to its adaptable design it can achieve a high and steady
throughput independent of the number of projected columns.

The column storage presented is integrated into Ibex which is now able to push
the projection down to the data. By reading less data from the disk the load
on the FPGA and the host are reduced.

We expect that further advancements in SSDs will favor our approach even
more, especially if our design is scaled up to support 16 or 32 NCQ-tags.

The second part of our work considered simple statistical operators on the
FPGA. We have shown that thanks to the parallelism on FPGAs, it is possible
to compute statistical data on the passing data stream without additional la-
tency. In practice the computational complexity is limited by the FPGA, For
example multiplication can be done with some additional effort while division
on the FPGA is not possible. Nevertheless it should be possible to implement
most statistical operators which use a limited amount of memory and can be
applied to a data stream.

6.2 Future work
6.2.1 Scalability

Theoretically it should be possible to scale our design up to 16 or 32 double
buffers and therefore taking advantage of the full NCQ queue depth. On our
FPGA model this is a huge expense in terms of hardware resources but modern
FPGAs have much more resources available and such that the hardware con-
sumption becomes irrelevant.

Another way to scale the design and decrease the I/O bottleneck would be the
use of a second or multiple disks. Theoretically it would be possible to achieve
a 16 bit throughput per device and therefore scale linearly with the number of
connected SATA-devices. An implementation that is able to handle multiple
disks will increase the complexity of the design significantly. Since the FPGA
can clearly process more data than 16 bit per clock cycle, this would be an in-
teresting approach.

37

6.2.2 Compression

Compression is a common technique which is heavily used in column stores to
reduce the I/O bottleneck even further. There is a trade-off between CPU time
used for compression/decompression and query processing. To benefit from
compression while keeping the necessary computation to a minimum, most sys-
tems use lightweight compression.

Since Ibex is a hybrid FPGA/CPU system, the compression would be executed
on the FPGA and will not affect query processing on the CPU in any way.
Therefore even heavy compression schemes might be an option. Due to the
parallelism on the FPGA it should be possible to hide the additional latency
and to decompress the data at line rate. Others |9] have shown how FPGAs
can be used for compression.

6.2.3 Data Analytics

We only have shown the implementation of two simple statistical operators.
The next step would be to explore more complex operators and how they can
be implemented in a way that they can process the data at line rate. Especially
data stream operators with a low memory usage are a good fit for FPGAs.
In-database analytics is a trend that recently emerged and because there is a
huge potential benefit when these operators can be placed closer to the data.
We certainly can expect more research in this area.

38

Acronyms

BRAM block RAM. [Al
CLB Configurable Logic Block.

DMA Direct memory access.
DSP Digital signal processing. [7]

FPGA Field-programmable gate array.
HBA Host bus adapter.
NCQ Native command queuing. [7} 0] 27]

SIRC simple interface for reconfigurable computing. [7} [8] [14]
SoC System on a Chip. [f]

39

40

References

[1]
2]
3]
[4]

[11]

Mysql. http://wuw.mysql.com.
Netezza. http://www.netezza.com.
Serial ATA revision 2.6. http://www.sata-io.org, 2004. [Online].

Gustavo Alonso, Donald Kossmann, and Timothy Roscoe. Swissbox:
An architecture for data processing appliances. In CIDR, pages 32-37.
www.cidrdb.org, 2011.

Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of exploiting
internal parallelism of flash memory based solid state drives in high-speed
data processing. In High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on, pages 266—277, 2011.

Ken Eguro. Sirc: An extensible reconfigurable computing communication
api. In Proceedings of the 2010 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, FCCM ’10, pages
135-138, Washington, DC, USA, 2010. IEEE Computer Society.

Woods Louis. Ibex - an intelligent storage engine to improve the energy
efficiency and performance of databases. 2013.

Chongling Nie. An FPGA-based Smart Database Storage Engine. Master’s
thesis, ETH Zurich, 2012.

Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Bal-
akrishna Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad.
Database analytics acceleration using fpgas. In Proceedings of the 21st in-

ternational conference on Parallel architectures and compilation techniques,
PACT ’12, pages 411-420, New York, NY, USA, 2012. ACM.

Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L.
Wiener, and Goetz Graefe. Query processing techniques for solid state
drives. In Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of data, SIGMOD ’09, pages 59-72, New York, NY,
USA, 2009. ACM.

Louis Woods and Ken Eguro. Groundhog - a serial ata host bus adapter
(hba) for fpgas. In Proceedings of the 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines, FCCM ’12,
pages 220-223, Washington, DC, USA, 2012. IEEE Computer Society.

41

http://www.mysql.com
http://www.netezza.com
http://www.sata-io.org

