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Abstract

In recent years there is more and more evidence for a significant increase
of work-related stress burden and disease in the Western civilization. If
high level of work demands cumulate and recovery fails, serious men-
tal health problems such as chronic stress or depression can occur.
Monitoring of cognitive load would allow supporting the prevention of
mental disorders and maintaining mental health. The first part of this
thesis is directed towards paving the way for a continuous monitoring
of cognitive load in daily life scenarios.

Cognitive tests allow measuring the cognitive performance of a per-
son. Basic performance measures are capacity of remembering, reaction
time and attention. Conducting cognitive assessment tests through-
out daily life offers opportunities to early detect changes in cognitive
performance. In most studies, cognitive performance is measured with
computerized tests which are not well suited to measure cognitive per-
formance in daily life. In the second part of this thesis, a wearable
reaction time test is developed in order to allow obtaining continuous
measurements of cognitive performance in daily life.

This thesis comprises six scientific publications that address five
aims: (1) to investigate the applicability of heart rate variability (HRV)
features to discriminate different levels of mental workload in a mobile
setting, (2) to target individual differences in HRV responses by in-
corporating individual calibration measures, (3) to develop a wearable
reaction time (RT) test which can be operated throughout everyday
life in order to obtain a continuous measurement of speed of processing
by means of RT, (4) to evaluate the feasibility of the wearable RT de-
vice with empirical studies, (5) to examine how common daily activities
affect the reaction times of young and elderly subjects.

In the first part of this thesis, the applicability of HRV features was
investigated in a controlled experiment designed to induce three levels
of mental load. According to the subjective ratings of the participants,
it was shown that all participants perceived the induced load levels as
intended from the experiment design. The investigated HRV features
obtained from a mobile ECG logger showed significant differences be-
tween the three load levels.

The knowledge gained from the controlled laboratory experiment
was then transferred to an office-work setting. Since each individual’s
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physiological response to high mental load can vary depending on cer-
tain factors, a calibration procedure was introduced. It was examined
whether the data collected in the calibration session were appropriate
to discriminate low, medium and high mental load levels occurred dur-
ing a daily life office-work scenario. The overall results showed that in
6 out of 7 participants the self-reported load levels perceived during
office tasks could be modeled by incorporating individual calibration
measures.

In the second part of this thesis, a wearable RT test was designed
and implemented in order to allow a continuous operation throughout
everyday life. The watch-like RT device combines the generation of a
haptic stimulus and the recognition of subject’s hand movement as re-
sponse gesture. The feasibility of the wearable RT test was evaluated
with two empirical studies. The first study showed that the wearable
RT tests are suitable to measure factors that influence length and vari-
ability of reaction times. In the second study, a long-term monitoring
in an unrestricted real working environment of a graphic designer was
conducted. Reaction time data under different workload factors such as
stress, sleep deprivation, night shift and moderate alcohol were contin-
uously collected throughout 15 working days. The results showed that
the wearable watch-like RT test can be operated without interrupting
the working routine of a graphic designer. The investigated RT features
showed significant correlations with the workload factors and with the
self-reported ratings on mood and perceived workload.

Finally, the thesis investigated how common daily activities affect
the reaction times of 14 young subjects (mean age 26 years) and 12
elderly subjects (mean age 70 years). The results showed that RT and
RT variability were significantly affected by the type of activity. The
increase in mean RT and RT variability from idle to cognitive load con-
dition was significantly higher for the older participants compared to
the younger ones. A context-aware wearable reaction time test which
considers the type of activity achieved an accuracy of 87.5% when dis-
criminating between idle and load conditions. It was concluded that
a wearable RT test combined with an activity recognition system is
feasible to detect changes in RT performance and variability during
common daily life activities.



Zusammenfassung

In den letzten Jahren konnte in vielen Studien gezeigt werden, dass
arbeitsbedingte Stressbelastungen und Erkrankungen in der westlichen
Welt signifikant zunehmen. Wenn bei sehr hohen Arbeitsbelastungen
keine Erholung mehr möglich ist, können ernste mentale Gesund-
heitsprobleme wie chronischer Stress oder Depression entstehen. Die
Beobachtung von kognitiver Belastung würde die Prävention von men-
talen Erkrankungen unterstützen und die mentale Gesundheit erhalten
helfen. Der erste Teil dieser Arbeit befasst sich mit der kontinuierlichen
Überwachung von kognitiver Belastung im täglichen Arbeitsleben.

Kognitive Tests erlauben die Messung der kognitiven Leistung einer
Person. Wichtige Leistungsmasse sind Erinnerungsvermögen, Reak-
tionszeit und Aufmerksamkeit. Die Durchführung kognitiver Tests im
täglichen Leben eröffnet Möglichkeiten, um frühzeitig Veränderungen in
der kognitiven Leistung zu erkennen. In den meisten bisherigen Studien
wurde die kognitive Leistung mit computerbasierten Tests gemessen.
Solche Tests erlauben in der Regel keine Messung in der natürlichen
Umgebung der Menschen. Der zweite Teil dieser Arbeit befasst sich
mit der Entwicklung eines tragbaren Reaktionszeit-Tests, der eine kon-
tinuierliche Messung der kognitiven Leistung im täglichen Leben er-
lauben soll.

Diese Arbeit beinhaltet sechs wissenschaftliche Veröffentlichungen,
die insgesamt fünf Ziele anstreben: (1) Unterscheidung von verschieden-
en mentalen Belastungsstufen mittels Herzraten-Variabilitäts-Analyse
in einem mobilen Szenario, (2) Einbeziehung individueller Kalibra-
tionsmasse, um individuelle Unterschiede in der Herzraten-Variabilität
zu kompensieren, (3) Entwicklung eines tragbaren Reaktionszeit-Test,
der eine kontinuierliche Messung im täglichen Leben erlaubt, (4)
Evaluierung des tragbaren Reaktionszeit-Tests mit empirischen Stu-
dien, (5) Untersuchung, wie tägliche Aktivitäten die Reaktionszeiten
von jungen und älteren Probanden beeinflussen.

Im ersten Teil dieser Arbeit wurden zunächst Charakteristiken
der Herzraten-Variabilität bei drei mentalen Belastungsstufen in
einem kontrollierten Experiment untersucht. Gemäss der subjektiven
Beurteilung der Probanden konnte gezeigt werden, dass alle Proban-
den die induzierten mentalen Belastungsstufen wie vom Experiment
beabsichtigt empfunden haben. Es konnte gezeigt werden, dass sich
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die von einem mobilen EKG-Rekorder aufgezeichneten Charakteris-
tiken der Herzraten-Variabilität signifikant zwischen den drei Belas-
tungsstufen unterscheiden.

Die aus dem kontrollierten Experiment gewonnenen Erkenntnisse
wurden anschliessend auf Büroarbeit übertragen. Da bekannt ist, dass
individuelle Unterschiede die physiologische Reaktion auf kognitive Be-
lastung beeinflussen, wurde eine Kalibrations-Prozedur entwickelt. Es
wurde untersucht, inwieweit die erhobenen Kalibrationsdaten geeignet
sind, um zwischen geringer, mittlerer und hoher kognitiver Belas-
tung während der Büroarbeit zu diskriminieren. Die Ergebnisse haben
gezeigt, dass bei 6 von 7 Probanden die Selbsteinschätzung hinsichtlich
kognitiver Belastung während der Büroarbeit durch Einbeziehung der
individuellen Kalibrationsdaten modelliert werden konnte.

Im zweiten Teil dieser Arbeit wurde ein tragbares Reaktionszeit-
Testgerät entwickelt, um eine kontinuierliche Datenaufnahme im
täglichen Leben zu ermöglichen. Das Reaktionszeit-Testgerät kann wie
einer Uhr getragen werden. Es werden haptische Stimuli erzeugt und
eine Handbewegung wird als Reaktion auf den Stimulus erkannt. Die
Eignung des tragbaren Reaktionszeit-Testgeräts wurde in zwei em-
pirischen Studien evaluiert. In der ersten Studie wurde gezeigt, dass
das tragbare Reaktionszeit-Testgerät geeignet ist, um Veränderungen
in der Dauer und Variabilität von Reaktionszeiten zu messen. In
der zweiten Studie wurde eine Langzeitmessung in der Arbeitsumge-
bung einer Grafik-Designerin durchgeführt. Innerhalb von 15 Tagen
wurden kontinuierlich Reaktionszeiten bei verschiedenen Arbeitsbelas-
tungen wie Stress, Schlafentzug, Schichtarbeit und moderatem Alkohol-
einfluss gemessen. Die Ergebnisse haben gezeigt, dass das tragbare
Reaktionszeit-Testgerät verwendet werden kann, ohne das die Arbeits-
routine unterbrochen werden muss. Die Analyse der Reaktionszeitdaten
zeigte signifikante Korrelationen zwischen den untersuchten Arbeits-
belastungen und den subjektiven Einschätzungen zu Gemütslage und
Arbeitsbelastung.

Im letzten Teil dieser Arbeit wurde untersucht, wie tägliche Ak-
tivitäten die Reaktionszeit von 14 jungen Probanden (mittleres Al-
ter 26 Jahre) und 12 älteren Probanden (mittleres Alter 70 Jahre)
beeinflussen. Die Ergebnisse haben gezeigt, dass Reaktionszeit und
Reaktionszeit-Variabilität signifikant von der Art der Aktivität beein-
flusst wurden. Der Anstieg der Reaktionszeit und der Reaktionszeit-
Variabilität zwischen normaler und kognitiver Belastung war bei den
älteren Probanden signifikant stärker. Unter Berücksichtigung der Ak-
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tivität konnte eine Genauigkeit von 87.5% bei der Diskriminierung zwi-
schen normaler und kognitiver Belastung erreicht werden. Schlussfol-
gernd wurde aufgezeigt, dass ein tragbares Reaktionszeit-Testgerät die
Aktivitäten einer Person berücksichtigten sollte, um Veränderungen in
der Reaktionszeit und der Reaktionszeit-Variabilität hinsichtlich kog-
nitiver Belastung messbar zu machen.
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Introduction



2 Chapter 1: Introduction

1.1. Motivation

The European Foundation for the Improvement of Living and Working
Conditions has been calling attention on work-related stress as a work-
place health issue since 1993 [14]. According to the Fourth European
Working Conditions Survey in 2005, stress is one of the most com-
mon work-related health problems affecting 22% of European workers.
Work-related stress is the response people may have when presented
with work demands and pressures that are not matched to their knowl-
edge and abilities and which challenge their ability to cope [54]. The
changing nature of work due to globalization has made increased cogni-
tive demands on workers resulted in high workload and time pressure.
If high level of mental workload cumulates and recovery fails, health
problems such as chronic stress, depression, or burnout can occur.

Continuous monitoring of mental workload offers new opportuni-
ties to support preventing mental disorders and maintaining mental
health. Monitoring of mental workload in everyday life is still in an ex-
ploratory stage. Most scientific knowledge about the effects of mental
load is based on laboratory research or inferred from retrospective re-
ports, although monitoring of mental load in everyday life is clearly the
principal aim. It is known that the subject’s response to real-life mental
load can be different from the ones observed in the laboratory. Even the
most sophisticated experimental design and measurement may not ac-
curately reflect subject’s response to mental load. The main limitations
of laboratory research are the time scales able to capture and the inad-
equate mapping of different workload characteristics found in real life.
These considerations make it apparent that without monitoring mental
load in real life scenarios, one simply cannot be sure of the relevance of
laboratory assessment.

Cognitive tests allow to measure the cognitive performance of a per-
son. Basic performance measures are capacity of remembering, reaction
time and attention. In most studies, cognitive performance is measured
with computerized tests which require the full attention of the test per-
son for several minutes. This restriction prohibits the measurement of
cognitive performance during daily routine tasks. In addition, such ded-
icated tests are not well suited to measure the cognitive performance
in daily life since most people are not willing to interrupt their primary
task for several minutes. There exists only few approaches to measure
the cognitive performance continuously in normal daily routine. Assess-
ing the cognitive capabilities of individuals continuously throughout ev-
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eryday life activities provides several opportunities: (1) early detection
of cognitive decline such as dementia or Alzheimer’s disease in elderly,
(2) identifying decrease in cognitive performance in order to determine
the ability to conduct mental demanding tasks such as driving, piloting
or search and rescue, (3) management of mental illness (e.g. whether a
patient is responding to a medication), (4) identifying of children with
intellectual disabilities such as Attention Deficit Hyperactive Disorder
(ADHD).

In this thesis new opportunities of mobile and wearable computing
are investigated aiming at identifying changes in cognitive load and
cognitive performance in daily life scenarios.

1.2. Assessment of Cognitive Load

In the literature, there are several studies about the measurement of
cognitive load, mental load, mental workload or mental effort. Often,
the different terms are used as aliases. Psychologists provided theoretic
constructs on how the different terms can be conceptualized. For in-
stance, Paas et al. [34, 35] defines cognitive load as a multidimensional
construct that represents the load that a particular task imposes on
the individual. In other words, it represents the interaction between
task demands and subject’s capabilities. Theoretically, cognitive load
can be conceptualized in the dimensions of mental load, mental effort,
and performance and can be measured by assessing these factors. There
are four promising approaches in the literature to estimate individual’s
cognitive load: methods that use subjective ratings, task performance-
based indices, behavioral and physiological measures. In the following
these four approaches are introduced.

1.2.1. Subjective Assessment

In subjective rating techniques the subject is directly asked to assess
his experienced mental effort. Depending on the application scenario,
there exist various rating scales for assessing the subjective load. For
example, the Cooper-Harper Scale [10] was mainly designed to assess
pilot’s cognitive ability to steer an aircraft. In this rating scale, the pi-
lots have to assess their experienced demands when performing certain
flight tasks. The Subjective Workload Assessment Technique (SWAT)
[39] uses the three dimensions of time load, mental effort load, and
psychological stress load to assess workload. Compared to SWAT, the
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NASA Task Load Index (TLX) [17] uses the six dimensions of mental
demand, physical demand, temporal demand, own performance, effort
and frustration. The total workload is computed as a weighted average
of all scales. In the literature, NASA-TLX has been used in a large
variety of contexts. An evaluation of different subjective workload as-
sessment techniques can be found in [43].

A main drawback of subjective assessment methods is the difficulty
to perform questionnaire surveys in real life scenarios. For practical
reasons, often the subjects are asked to rate their experienced level of
cognitive load in a retrospective way. This can lead to the problem of
forgetting important aspects concerning the experience depending on
the time between the self-report and the cognitive load itself. Besides,
the most recent events at the time of the recall can affect the overall
rating at the time the questionnaire is asked [60].

1.2.2. Performance Based Assessment

The second approach to assess cognitive load is the measurement of
task performance. Thereby, two performance measures are considered:
primary task performance as a measure of the actual task performance
and secondary task performance for assessing the performance of a
task that is operated simultaneously to the primary task [35]. In this
context, the performance of the secondary task is influenced by the cog-
nitive load caused by the primary task. The primary task performance
can be measured directly while performing a continuous performance
task that measures certain aspects such as attention, vigilance, speed or
working memory. On the other hand, secondary task performance can
be used to evaluate the cognitive load in more real life scenarios such
as driving or flying. As a secondary task, usually subjects are asked to
recognize and respond to a visual or auditory stimulus while perform-
ing the primary task. The performance variables such as the number of
errors, accuracy or reaction time obtained from the secondary task is
then used as the level of cognitive load experienced by the subject. For
instance, Patten et al. [38] used visual stimulus as a secondary task to
estimate the levels of cognitive workload of experienced and inexperi-
enced drivers. The visual stimulus was integrated into the peripheral
area of the driver’s line of sight and the reaction times were recorded
as performance variable. Thereby, the impact of cell-phones on driving
performance was investigated in a driving simulator by measuring sev-
eral categories including response time to a pop-up stop sign [6]. Riener
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et al. [41] compared the driving performance in terms of cognitive load
between real driving and simulated driving. Reaction time to visual,
auditory and vibro-tactile stimuli was used as performance measure.
Visual notifications were placed on the dashboard, auditory informa-
tion was provided via headphones and vibro-tactile stimulus was given
through the driver’s seat.

Most of these studies have in common that the secondary task is in-
tegrated into the surrounding area of a well-defined and restricted task
such as driving. The same tools cannot be used to assess the cognitive
load of the subject during other daily life activities which are generally
performed in different settings. These examples illustrate that there is
a need for cognitive load estimation independent of the current task
and surrounding.

1.2.3. Behavioral Measurements

The third approach aims for detecting variations in behavior as a crite-
rion of high workload. Compared to task performance approaches which
mostly use a secondary task to assess the performance, in this approach
it is investigated how the primary task itself is accomplished by the
subject. Similar to task-performance approaches, this method has been
studied mostly in the domain of driving. Thereby, certain aspects of the
driving behavior such as lane keeping, lane changing, or driver steer-
ing performance were measured and evaluated [6, 44–46, 62]. In these
studies, mostly the effects of distraction such as using cell-phones dur-
ing driving were examined. The driving performance was measured by
monitoring the steering and speed control during navigating a roadway
in a driving simulator. It was found out that there were high correla-
tions between distracting activities such as using a cell-phone and the
deviations in speed control or lateral vehicle control. As a consequence,
nowadays several car companies are currently involved in research on
driver behavior monitoring systems. For instance, recently Mercedes
Benz introduced the so-called “Attention Assist” [1, 2] to detect de-
viations in driving behavior which can be the result of drowsiness or
fatigue. The system employs several sensors to record the driver be-
havior in terms of steering movements, steering speed or pedal use.
Based on the recording, the system creates an individual driver profile
and in case that a deviation is detected, the system warns the user. A
review about similar systems can be found in [12]. Similar to perfor-
mance based assessments, this type of measurement is specific for the
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task being studied, e.g. the monitoring of driving behavior was rendered
possible by using particular driving simulators during the studies.

1.2.4. Physiological Measures

There exists numerous studies which investigate physiological measures
as markers of cognitive load. For instance the effect of varying task dif-
ficulties on pupillary responses, eye movements or blink intervals have
been studied in various scenarios. For example, Klingner et al. [25] in-
vestigated remote video eye trackers for measurements of task-evoked
pupillary responses. Subtle changes in pupil size were observed while
subjects performing different mental tasks. In addition, effects of cog-
nitive demand on eye movements were systematically investigated in
driving scenarios. Victor et al. [57] collected eye movement measures
while subjects were performing different in-vehicle tasks with incremen-
tal levels of difficulty. Tests were conducted both in a driver simulator
and in field trials using an instrumented vehicle which contained a cam-
era based eye tracking system. The results showed that increases in task
difficulty produced both a gaze concentration to the road center area
and an increase in display viewing time. Similar results were achieved
by Engström et al. [13] who showed that the cognitive load resulted
in increased gaze concentration towards the road center. Palinko et
al. [36] presented a study in which subjects were involved in spoken
dialogues while driving a simulated vehicle. The cognitive load of the
driver was estimated by measuring the pupil size from a remote eye
tracker mounted on the dashboard in front of the driver. In a simu-
lated flight study, Papadelis et al. [37] reported a decrease in eye blink
duration during the time of increased mental effort.

The relevance of galvanic skin response (GSR) as an indicator of
user’s cognitive load was investigated in a traffic control scenario where
the investigated tasks had different levels of difficulty [49]. Results
showed that mean GSR across users increased as cognitive load in-
creased. The application of GSR in combination with other sensor
modalities was mostly used to detect emotions and stress [7, 18, 48, 58].

Measures of surface electromyography (EMG) and electroencephalo-
gram (EEG) were employed to investigate correlations with task dif-
ficulty and performance metrics. For example, in a flight simulation
study of Papadelis et al. [37] the muscular activity of the subjects
were recorded in addition to other physiological parameters. The re-
sults showed that there was a significant correlation of EMG measures
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with the difficulty levels of the task. Berka et al. [8] recorded partici-
pants’ EEG while they were performing different cognitive tests. The
results indicated that EEG measures correlated with both subjective
and objective performance metrics.

Heart rate variability (HRV) is one of the most common studied
physiological measures for the assessment of mental load. There exists
numerous studies which investigated HRV responses induced by mental
workload tasks [3, 27, 33, 53, 61]. HRV is a measure of the variability in
heart rate, i.e., variations of time intervals between consecutive heart
beats [31]. HRV is known to provide information about the activity of
the autonomic nervous system (ANS). The ANS is divided into two
branches: sympathetic and parasympathetic. The sympathetic nervous
system mediates activities associated with stressful situations. As a
result, physiological changes such as increased heart rate and blood
pressure or increased respiration rate occur. On the other hand, the
parasympathetic system counterbalances the sympathetic nervous sys-
tem by returning the body in a calming state. The analysis of HRV al-
lows to assess sympathetic and parasympathetic activities of the ANS.

HRV measures can be obtained by extracting features in time and
frequency domain. Time domain measures are mostly preferred due to
simplicity of calculation. Commonly used time domain features include
mean value of the RR intervals, standard deviation of the the RR in-
tervals, or the number of interval differences of successive RR intervals
greater than a threshold. The extraction of HRV features in the fre-
quency domain provides information on the power distribution as a
function of frequency. Power spectral density (PSD) analysis is applied
on RR data in order to calculate three main spectral components: very
low frequency (VLF), low frequency (LF), and high frequency (HF)
components. The LF/HF ratio is known to be an indicator for sympa-
thovagal balance. High values indicate the dominance of sympathetic
activity, whereas low values indicate a switch toward a dominance of
parasympathetic activity. More detailed explanations for the calcula-
tion of the parameters both in time and frequency domain can be found
in [31].

Most of the recent studies on HRV try to discriminate a state of
mental load from a resting condition in a laboratory setting. In [50] a
mental arithmetic task was used to induce mental workload and the
recovery patterns of physiological responses as indicators of stress were
investigated. Kim et al. [23, 24] studied HRV features of subjects un-
der chronic stress. Subjects were divided into a high-stress group and
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a low-stress group based on their self-reporting stress scores. Subjects
in the high stress group showed a decreased HRV compared to subjects
in the low stress group. Henelius et al. [19] investigated the ability of
short-term HRV metrics to discriminate between low and high level of
mental workload. Field studies were conducted especially in the driv-
ing application domain. For example, Riener at al. [42] employed HRV
metrics for assessing the driver’s affective state. The subjects were mon-
itored while driving between home and work place during a period of
two weeks. Higher arousal levels were observed at roads of higher traf-
fic volume. Reimer et al. [40] monitored heart rate together with skin
conductance during real highway driving. A secondary cognitive mem-
ory task was presented to the user simultaneously to generate different
levels of cognitive load. The results indicated that increased cognitive
demand was highly associated with the pattern of change in heart rate.
The level of mental stress during a simulated office work was inves-
tigated in [52]. Subjects performed different levels of mental tasks in
which they had to indicate the correct answers to mental arithmetic
operations. It was shown that heart rate features allow to differentiate
between active and rest condition.

Continuous monitoring of work-related stress or mental workload
in daily life is still in an exploratory stage. One example is the am-
bitious research project “Mobile Heart Health”, which aims to detect
early signs of stress by identifying physiological and contextual changes
[32]. The authors investigated HRV as a stress indicator. Since HRV
responses vary between individuals, the authors highlighted the impor-
tance of an individually calibrated and adaptive system. It was pro-
posed that each subject’s baseline and stress threshold should be es-
tablished in a laboratory setting using a protocol to alternately evoke
stress responses which can then be used to discriminate between stress
and non-stress in everyday life. However, an experimental evaluation
about the feasibility of discriminating mental workload levels in every-
day life scenarios by incorporating individual calibration measures is
missing.

1.3. Cognitive Assessment with Reaction Time Tests

A reaction time (RT) test measures how rapidly a person can initiate
a response to a triggering signal [30]. In other words, RT is the elapsed
time between a designated stimulus and the individual’s reaction to
it, usually measured in milliseconds [22]. The subject being tested is
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instructed to react to a stimulus (e.g. light turns on). Depending on
the experimental setting, the response to a stimulus is defined as a
certain action which has to be performed by the subject, e.g. pressing
or releasing a button [22]. In addition, the subject has been made aware
that the reaction speed is the major focus of the experiment and thus
the response to a stimulus should be performed as fast as possible. In
contrast, response time test refer to testing conditions in which timing
and speed are not explicitly mentioned in experimenter’s instructions
to the subject [22, 30]. Nevertheless, in the literature the two terms
response time and reaction time are often used with the same meaning.

The first experimental investigation of reaction times aiming at un-
derstanding the structure of mental activity was presented in the paper
“On the Speed of Mental Processes” by F.C. Donders (1868) (trans-
lated in English first in [11]) [4, 22, 51]. In his experiment, he recorded
RT data from the same subject during two different tasks. The second
task was identical to the first one with the exception that an additional
mental operation had to be solved. Donders subtracted the reaction
times recorded during the simple task from those collected during the
more complex one in order to measure the time needed for the addi-
tional mental operation. Following Donders, RT has been extensively
investigated by experimental psychologists since the middle of the 19th
century.

1.3.1. Computerized Reaction Time Tests

There exist mainly three kinds of RT tests: simple, recognition and
choice RT tests [5, 26]. Simple RT tests consist of a single stimulus and
a single intentional response. For instance, the subject has to press or
release a key as fast as possible whenever a particular light or symbol
appears on the screen. Differently, in recognition RT tests, there are
multiple non-target stimuli but only one dedicated target stimulus. This
task is commonly called “go/no-go” reaction time task. In computer-
based go/no-go tests the target stimulus and the non-target stimuli are
temporary shown in a random sequence on the screen. Lastly, choice RT
tests include multiple stimuli and multiple responses. The subject has to
respond to each stimulus with a corresponding response, e.g. by pressing
a certain key whenever a corresponding letter appears on the screen.
A detailed series of recommendations on how to conduct laboratory
experiments using RT tests and how to analyze the collected data can
be found in [5, 22, 30, 59].
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1.3.2. Factors Influencing Reaction Times

Since RT has been extensively investigated for many years, there ex-
ists a broad variety of clinical studies where researchers have identified
different factors that influence RT. A literature review on factors that
affect reaction times can be found in [22, 26]. For example Jensen [22]
reports that RT to a visual stimulus is longer than to an auditory
stimulus and RT to a haptic stimulus lies in between. Intensity of the
stimulus has also a considerable effect on RT. In general, lower stimulus
intensities causes longer reaction times. However, as the stimulus inten-
sity becomes very large, the RT approaches asymptotic values, i.e. does
not change any more [22, 30].

One of the most important factors that influence length and variabil-
ity of reaction times are increasing age and age-related diseases like cog-
nitive impairment. It has been known that with increasing age, reaction
times become more variable and longer. Hultsch et al. [20] examined age
differences in RT variability with four different RT tests. RT variability
was increased in older participants in comparison to younger adults.
Similarly, Gorus et al. [16] explored RT performance and variability
across different complexity levels in young and elderly groups. Older
participants showed a general slowing in the overall RT while reaction
time variability increased with age and task complexity. In another
study of Gorus et al. [15] the authors investigated the reaction times
and performance variability as potential markers for the early detection
of Alzheimer’s disease (AD). The RT data from cognitively healthy el-
derly, patients diagnosed with mild cognitive impairment (MCI) and
patients with Alzheimer’s disease were analyzed. Subjects with cogni-
tive impairment demonstrated more intra-individual performance vari-
ability and slower reaction times than cognitively healthy elderly. In a
similar direction, Braverman et al. [9] showed that the test of variables
of attention (TOVA) is an accurate predictor of early attention com-
plaints and memory impairments in a clinical setting. The standard
measures of attention disorders and memory function showed high cor-
relations with a decreased TOVA performance.

Another application area of RT tests is the diagnosis of Attention
Deficit Hyperactive Disorder (ADHD). Patients diagnosed with ADHD
have in general difficulties in focusing on specific tasks. In a study of
Vaurio et al. [56] children with and without ADHD were investigated
using go/no-go tasks with differing levels of cognitive demand. The
findings showed that one of the most consistent findings to characterize
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the children with ADHD was increased variability in RT.
The effect of psychosocial stress on RT was investigated in a con-

trolled experimental setting by Scholz et al. [47]. Subjects were ran-
domly assigned to the Trier Social Stress Test (TSST) versus a rest
condition. After the stress test, each subject performed a go/no-go
task. Subjects in the stress condition revealed slower reaction times
compared to subjects in the rest condition.

Van den Berg examined the effect of a night’s sleep loss on RT
performance [55]. Subjects missed significantly more stimulus signals
and had slower reaction times when sleep deprived compared to well
rested subjects. The effects of mental fatigue on RT performance caused
by prolonged time on monotonous simple RT task was investigated in
[28]. Significant slowing of mean RT over time was observed.

Other factors which are known to influence reaction times are beside
others gender, arousal level, personality type or intelligence level [22,
26].

1.3.3. Wearable Reaction Time Tests

Empirical studies which aim to explain the relationships between RT
and independent variables have been mostly conducted in carefully con-
trolled laboratory settings. Most of the studies have in common that
the employed RT tests are operated with a traditional desktop-based
test, which requires the full attention of the subject for several min-
utes. Since the user has to interrupt his daily activities to perform the
computerized tests, most of these techniques are not feasible to be used
during everyday life activities. There exist only a few applications which
investigate the feasibility of measuring reaction times continuously dur-
ing everyday activities. Lieberman et al. developed a wrist-worn watch
like device which assess reaction time, vigilance and memory. The de-
vice consists of visual stimuli (3 LEDs), auditory stimuli (a miniature
speaker) and two push buttons [29]. The reaction time is assessed by
presenting a series of auditory stimuli at random times and measuring
the response time until a button is pressed. In the second generation of
the device the authors integrated an additional vibratory stimuli which
can be used in noisy environments where auditory stimulus might be
masked. Ivorra et al. [21] implemented a haptic stimulus into a watch-
like device in order to interrogate the subject. Subject’s response was
detected by means of recognizing a subtle hand movements using an
accelerometer. The authors conducted a feasibility study with ten sub-
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jects. The subjects used the device on their normal activities. The total
number of RT interrogations for a 8 h period was 33. During the study
the subjects were asked to fill out a questionnaire about the usability of
the device. However, the obtained reaction times were not further an-
alyzed and relationships between reaction time and influencing factors
such as age, gender, cognitive demanding tasks or performed activities
were not conducted.

1.4. Aims of the work

The aim of this thesis is to investigate mobile and wearable technologies
for continuous monitoring of cognitive load and cognitive performance
in daily life scenarios. In the first part of the thesis, physiological sensing
is investigated to assess different levels of mental load occurring in
everyday life scenarios. In the second part, a wearable reaction time test
device is presented which enables the measurement of reaction times
during daily life activities. The thesis then investigates the feasibility
of the device for detecting variations in reaction times occurred due
to influencing factors such as cognitive load, age and daily activities.
Specifically, the thesis addresses the following topics:

1.4.1. Monitoring of mental load levels using HRV features

Today’s mobile healthcare applications offer a variety of opportunities
to capture physiological signals, process the data in real-time and pro-
vide just-in-time feedback. To achieve a day-by-day quantification of
mental load for a long-term health monitoring, first different load lev-
els which occur during everyday have to be discriminated. This thesis
investigates the applicability of HRV features obtained from a mobile
ECG system. In contrast to state of the art which generally discrim-
inate between baseline (rest) and high cognitive load, the aim of this
thesis is to show that HRV features obtained from a mobile ECG logger
allows to discriminate different levels of mental workload induced by a
continuous performance task.

1.4.2. Assessment of mental load levels in everyday life using
individual calibration measures

Existing studies on mental workload mostly focus on laboratory set-
tings where the sympathetic and parasympathetic responses to stress
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or high cognitive load are collected from several subjects within a stan-
dardized, controlled experiment. The collected data are then used to
build generalized models to predict stress or mental workload scores.
However, such models are usually not feasible in real life settings since
controlled experiments often do not reflect the real life setting. Addi-
tionally, high variations in HRV responses may exist between subjects
because of factors such as age, health status or physical activity level.
As a consequence, two open questions are: (1) How to approach differ-
ent levels of mental load occurring during real life settings? (2) How to
incorporate individual differences when building models for cognitive
load estimation? In order to target individual differences, this thesis
considers a calibration procedure where each subject’s individual HRV
responses to different levels of mental workload are measured in a labo-
ratory setting. This thesis then investigates whether the data obtained
in the calibration session are appropriate to discriminate low, medium
and high mental workload levels occurred during a daily life office-work
scenario.

1.4.3. Development of a wearable user interface for measuring
reaction time

Conducting cognitive assessment tests throughout normal daily life of-
fers new opportunities to early detect changes in cognitive efficiency.
Such tests would allow identification of early symptoms of cognitive
impairment, monitor the progress of disease processes related to cog-
nitive efficiency and reduce the risk of cognitive overload. The goal of
this thesis is to transfer a well-defined cognitive test into daily life in
order to obtain a continuous measurement of cognitive performance.
For the cognitive test, RT tests are considered in this thesis, since RT
tests offer high sensitivity for detecting variation in cognitive function-
ing and they can be repeated virtually an unlimited amount of times. A
shortcoming of traditional computerized RT tests is that they require
the full attention of a test person, which prohibits the measurement
of cognitive efficiency during daily routine tasks. In order to overcome
this limitation, this thesis aims to design a wearable reaction time test
which can be operated throughout everyday life. The following require-
ments associated with the design of the wearable device are addressed:
(1) wearability of the device (2) choosing a stimulus type that is con-
venient for daily life (3) choosing a predefined response gesture (4)
ensuring a continuous operation for long-term recordings.
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1.4.4. Feasibility evaluation of the wearable reaction time test

This thesis aims to evaluate the feasibility of the wearable RT device
with two empirical studies. The first study investigates to what ex-
tent changes in duration and variability of user’s reaction time can be
measured with the wearable RT interface in comparison to traditional
desktop-based reaction time tests. The aim of this study is to determine
whether the wearable RT test is sensitive to measure changes in reac-
tion times occurred due to altered cognition. The second experiment
aims to conduct a long-term case study in a real working environment.
The case study targets the following goals: (1) to continuously collect
reaction times in a real-world working setting without interrupting the
daily routine of the subject (2) to investigate the observed variations in
length and variability of reaction times regarding typical work-related
workload factors (3) to investigate the correlations between RT features
and subjective ratings on mood and perceived workload.

1.4.5. Effect of daily activities on reaction times

Most studies which employ RT tests are examined in carefully con-
trolled laboratories. During these studies the independent variable is
changed while other factors are kept constant. However, in daily life
the activities performed by the subjects can also affect the reaction
times. This thesis investigates how common daily activities affect the
reaction times of young and elderly subjects. The main research aims
of the thesis are: (1) to examine the effect of everyday life activities on
reaction times, (2) to determine if it is feasible to measure variations in
reaction times occurred due to high cognitive load while the subjects
are engaged in common daily life tasks, (3) to investigate the differences
between young and elderly age group regarding their reaction times.

1.5. Thesis outline

This thesis includes six scientific publications (Chapter 3 to 8) address-
ing the aims summarized in the previous section. Figure 1.1 depicts
the thesis’s aims and the corresponding chapters addressing them. The
arrows in the figure show the relationship between the chapters. Table
1.1 shows the assignment of each publication to its respective chapter.

Chapter 2 presents the summary of contributions while providing
an insight into the relevant outcomes. The limitations and new re-
search directions for future work are highlighted. Chapter 3 presents a
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laboratory study which investigates the use of heart rate variability to
discriminate three levels of mental load. Chapter 4 extends the previous
study by incorporating individual calibration measures. Each subject’s
heart rate response obtained during the laboratory experiment is used
as calibration measure. This information is then used to differentiate
different mental load levels occurring in an office work scenario. Chap-
ter 5 presents a new sensing modality, the so-called wearable reaction
time test which allows monitoring one’s cognitive efficiency during daily
activities. Furthermore, the first results are presented in which the re-
action times obtained by the wearable system are compared to those
collected with a well accepted desktop-based tests. Chapter 6 extends
the previous work and reports results of a detailed statistical analy-
sis. In addition to the comparison between desktop-based and wearable
reaction time tests, this chapter presents a comparison between two
implementations of the wearable reaction time test. Chapter 7 presents
a case study conducted in a real working environment and investigates
the link between different workload factors and reaction times. Finally,
combining the findings achieved in Chapter 6 and 7, Chapter 8 presents
detailed results from a study on examining the effects of daily activi-
ties on reaction times. Besides, this chapter highlights the differences
between young and elderly age groups by comparing how their reac-
tion times change when they are subjected to high cognitive load while
performing different daily life activities.
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Figure 1.1. Visualization of the thesis outline showing each chapter accord-

ing to the aims presented in Section 1.4.
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Table 1.1. Publications and corresponding chapters included in this thesis.

Chapter Publication
3 Monitoring of Mental Workload Levels

Burcu Cinaz, Roberto La Marca, Bert Arnrich and Gerhard Tröster

Proceedings of IADIS eHealth Conference, 189-193, July 2010.

4 Monitoring of Mental Workload Levels during an Everyday
Life Office-Work Scenario
Burcu Cinaz, Bert Arnrich, Roberto La Marca and Gerhard Tröster

Personal and Ubiquitous Computing, 17(2), pp 229-239, Springer,

February 2013.

5 A Wearable User Interface for Measuring Reaction Time
Burcu Cinaz, Christian Vogt, Bert Arnrich and Gerhard Tröster

International Joint Conference on Ambient Intelligence, pp 41-50,

Springer, 2011.

6 Implementation and Evaluation of Wearable Reaction Time
Tests
Burcu Cinaz, Christian Vogt, Bert Arnrich and Gerhard Tröster

Pervasive and Mobile Computing, 8(6), pp 813 - 821, Elsevier, De-

cember 2012.

7 A Case Study on Monitoring Reaction Times with a Wear-
able User Interface during Daily Life
Burcu Cinaz, Bert Arnrich, Roberto La Marca, Gerhard Tröster

International Journal of Computers in Healthcare, Inderscience, 1(4),

pp 283-303, 2012.

8 Effects of Daily Activities on Reaction Times: Comparison
between Young and Elderly Subjects
Burcu Cinaz, Bert Arnrich, Nathan Theill, Vera Schumacher, Mike

Martin and Gerhard Tröster

Pervasive and Mobile Computing, 2013 (submitted)
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1.6. Additional publications

The following publications have been written in addition to those pre-
sented in this thesis:

• Burcu Cinaz, Roberto La Marca, Bert Arnrich, Gerhard Tröster,
“Towards continuous monitoring of mental workload”, 5th Inter-
national Workshop on Ubiquitous Health and Wellness. 2010.

• Burcu Cinaz, Bert Arnrich, Gerhard Tröster, “Monitoring of Cog-
nitive Functioning by Measuring Reaction Times with Wearable
Devices”, 5th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), Workshop on Per-
vasive Care for People with Dementia and their Carers, 2011.

• Mirco Rossi, Burcu Cinaz and Gerhard Tröster, “Ready-To-Live:
Wearable Computing Meets Fashion”, Adjunct Proceedings of the
13th International Conference on Ubiquitous Computing (Ubi-
comp 2011), 2011.
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2.1. Summary of Contributions

The key research contributions of this thesis which advance the state-
of-the-art in monitoring cognitive load and cognitive performance are
presented below. The summary is structured according to the thesis
aims introduced in Section 1.4 and depicted in Figure 1.1. Detailed
descriptions on methods and results can be found in the corresponding
publication chapters referenced in this summary chapter (see Table
1.1).

2.1.1. Monitoring of mental load levels using HRV features

This work investigated how heart rate variability features originated
from a mobile ECG system could be used to discriminate three levels
of mental load. In order to investigate this relationship, first an exper-
iment was designed to induce three levels of mental load on subjects.
Afterwards, the changes in heart rate variability for each load level were
analyzed. Regarding the first objective (see Section 1.4.1, page 12) the
following contributions were achieved.

Experiment design

In order to simulate different mental load levels, an experiment in a lab-
oratory setting was designed. Seven healthy male subjects (age between
25 and 34 years) were involved in the experiment. Three sessions with
low, medium and high workload were defined. Each of the mental load
sessions had the same structure composed of a baseline (10 min), work-
load (20 min) and recovery (15 min) period. Subjects performed each
session on separate days. In order to counterbalance learning effects,
each workload session was randomly assigned to the subjects. Three
difficulty levels of a continuous performance task, the so-called Dual N-
Back task [1, 7] (see Section 3.2.1, page 62), were employed to induce
low, medium and high workload. During all three sessions, the baseline
and the recovery periods were the same: the subjects watched a relaxing
documentary film in order to calm down. The workload phases differed
in the amount of mental workload induced by the N-Back task. Directly
after the workload period, the subject was asked to assess his perceived
workload by filling out the the NASA-TLX [5]. The recording of the
ECG data was accomplished with a Zephyr BioHarness chest belt (see
Figure 4.1, page 73). In addition to the ECG data, the chest belt pro-
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Table 2.1. Comparison of HRV Features during low, medium and high

workload periods. F and p values from ANOVA test are given (from Section

3.3, page 65).

HRV Features Low Medium High F ; p

Workload Workload Workload

Mean RR (ms) 875.3 ± 32.2 803.2 ± 36.5 769.1 ± 43.0 2.09; 0.15

SDNN (ms) 72.2 ± 8.4 58.7 ± 7.8 51.5 ± 6.4 1.89; 0.18

RMSSD (ms)* 51.6 ± 5.2 38.7 ± 4.4 31.2 ± 4.6 4.65; 0.02

pNN50 (%)* 30.7 ± 4.8 19.3 ± 3.6 12.4 ± 3.2 5.48; 0.01

HRV Index 19.5 ± 2.4 14.9 ± 1.8 13.0 ± 1.5 2.86; 0.08

TINN (ms) 462.8 ± 45.7 385.7 ± 53.1 385.1 ± 53.7 0.77; 0.48

LF/HF* 1.9 ± 0.2 2.5 ± 0.3 4.6 ± 1.0 4.59; 0.02

Mean ± standard error

∗p < 0.05

vided RR intervals by measuring the duration between two consecutive
R waves of the ECG.

HRV analysis

The following HRV features (see Section 3.2.2, page 63) in the time
domain were investigated: mean value of the RR intervals (Mean RR),
standard deviation of the RR intervals (SDNN), root mean square of
successive difference of the RR intervals (RMSSD), the percentage of
the number of successive RR intervals varying more than 50 ms from the
previous interval (pNN50), the total number of RR intervals divided by
the height of the histogram of all RR intervals measured on a scale with
bins of 1/128 s (HRV triangular index), and triangular interpolation of
RR interval histogram (TINN).

The analysis of HRV in the frequency domain investigated two fre-
quency bands: low frequency (LF: 0.04-0.15 Hz) and high frequency
(HF: 0.15-0.4 Hz). Next, the ratio of LF/HF was calculated by using
the normalized values of LF and HF.

All features were calculated on the overall workload periods (20
min) for each session. The features obtained for the three workload
periods were then analyzed by using the ANOVA test.
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Results

• The analysis of the perceived workload scores obtained from the
NASA-TLX showed that each subject perceived the induced load
levels as intended from the experiment design (p < 0.01)(see Sec-
tion 3.3, Figure 3.1, page 64).

• The investigated HRV features could be classified into two dis-
tinct groups with respect to their response: with increasing work-
load, the features RMSSD, pNN50 and HF showed a statistically
significant decrease while LF and LF/HF ratio showed a statisti-
cally significant increase with increased workload (p < 0.05) (see
Table 2.1). The remaining features showed a consistent but non-
significant increase or decrease, what might be explained by the
limited number of subjects.

• These findings provide evidence that an increase in workload is as-
sociated with a decrease in parasympathetic nervous activity and
with a concomitant increase in sympathetic activity. The results
are in line with other studies which showed that in comparison
to a resting state, high workload or stress is associated with a de-
crease in parasympathetic nervous activity and with an increase
in sympathetic activity [9–11, 15, 18].

2.1.2. Assessment of mental load levels in everyday life using
individual calibration measures

Each individual’s physiological response to high mental load can be
different depending on several factors such as health status, activity
level, age or medications. This work addresses the challenge of individ-
ual differences by incorporating individual calibration measures. The
main research question of this work is how different mental load levels
occurring during a daily life scenario can be discriminated by incorpo-
rating individual calibration measures. Regarding the second objective
(see Section 1.4.2, page 12) the following contributions were done.

Calibration sessions

The data collected in the laboratory experiment described in the previ-
ous section (see Section 2.1.1, page 28) were used as individual calibra-
tion measurements. Seven healthy male participants (age between 25
and 34 years) participated in the overall experiment. Each individual’s
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Figure 2.1. Experiment procedure for calibration and office-work sessions.

A total of three calibration sessions were conducted which differed in the

level of induced workload: low, medium, and high. The office-work condition

consisted of 1 h of normal office working activities. The subjective rating of

perceived workload was assessed with the NASA-TLX, whereas an objective

measurement was assessed by collecting salivary cortisol at particular points

in time (from Section 4.2.2, page 74).

HRV responses to three different levels of mental load were measured in
a controlled laboratory setting. The first three sessions were designed
to induce low, medium and high levels of mental workload in order to
establish an individual calibration. This was enabled by applying three
variants of Dual N-Back task (see Section 4.2.2, page 75).

Daily life office-work session

The laboratory experiment was extended with a real life working sce-
nario. After obtaining each subject’s baseline and workload heart rate
features in the calibration sessions, an additional session was conducted
in which the same seven subjects were monitored during one hour of
normal office-work (see Section 4.2.2, page 76). The daily office tasks
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were freely chosen by the subjects and contained working activities such
as programming, reading or writing research papers. Both calibration
and office-work session included baseline and recovery stages (see Fig-
ure 2.1 for the experimental procedure). In addition to the heart rate
data, subjective ratings of the perceived workload was collected with
the NASA-TLX [5].

Data analysis

First, time and frequency features from the RR interval data were ex-
tracted (see Section 4.3.1, page 77). The following eight commonly used
time domain features were calculated: mean value of the heart rate
(Mean HR), standard deviation of the heart rate (STD HR), mean
value of the RR intervals (Mean RR), standard deviation of the RR
intervals (SDNN), root mean square of successive difference of the RR
intervals (RMSSD), the percentage of the number of successive RR in-
tervals varying more than 50 ms from the previous interval (pNN50),
the total number of RR intervals divided by the height of the histogram
of all RR intervals measured on a scale with bins of 1/128 s (HRV tri-
angular index), and triangular interpolation of RR interval histogram
(TINN).

As the frequency domain feature, the normalized value of the
LF/HF ratio was calculated. For each subject, so called “relative fea-
tures” were computed by dividing the HRV features obtained during
the workload stages by the corresponding mean value of the baseline
feature.

Calibration procedure

The goal of incorporating the individual calibration measures was to
investigate whether the data collected during the calibration sessions
were appropriate to discriminate low, medium and high mental load
levels experienced during one hour of office-work. First, in order to
assign the subjective workload score of the office-work into one of three
classes (low, medium, and high), individual boundaries according to the
subjective workload scores collected during the calibration conditions
were defined (see Section 4.4.1, page 80 and Figure 4.7, page 82).

Afterwards, two approaches were developed that use the individual
calibration data. For a given 2-min RR segment the objectives were
(1) to predict the corresponding subjective workload score by using
relevant HRV features and, (2) to identify the mental workload class
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Figure 2.2. Predicted workload scores of the office-work session based on

a linear regression model. The regression problem was transformed into a

classification problem using the majority rule, i.e. the predicted class was

computed as the class to which the majority of predicted values falls into

(from Section 4.4.6, page 86).

(low, medium, or high) to which a new observation belongs. For the
first objective, a multiple regression analysis was employed to model the
relationship between HRV features and the subjective ratings of NASA-
TLX. For each subject, the HRV features were used as the predictor
variables while the NASA-TLX scores served as response variables. The
NASA-TLX scores of the office-work session were then predicted based
on this model (see Section 4.4.6, page 85 and Figure 2.2). For the second
objective, the linear discriminant analysis (LDA), k-nearest neighbor
algorithm (k-NN), and support vector machine (SVM) were used as
classification methods.

For the multiple regression and all three classification methods, the
entire calibration data were used as training set and the office-work
data were used as test set.

Results

• According to the subjective NASA-TLX ratings collected in the
calibration sessions, it was shown that all participants perceived
the induced load levels as intended from the experiment design.
As expected, the N-Back performance of the subjects collected
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Table 2.2. Multiple linear regression office-work session: actual workload

class obtained from NASA-TLX rating vs. estimated class. Note that the

regression problem was transformed into a classification problem using the

majority rule: the predicted class was computed as the class to which the

majority of predicted values falls into (from Section 4.4.6, page 88).

Subjects Actual class Predicted class

1 Medium Medium

2 Medium Medium

3 Low Medium

4 High High

5 Medium Medium

6 Medium Medium

7 Medium Medium

False identified classes are indicated in bold.

Table 2.3. Classification results for each subject (from Section 4.4.7, page

89).

Subjects True Class Predicted Class

LDA k-NN SVM

1 M M M M

2 M M M L

3 L M M L

4 H H L M

5 M M M M

6 M M M M

7 M M M M

False identified classes are indicated in bold.

L (low), M (medium), H (high)
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in the calibration sessions decreased with increasing workload
(see Section 4.4.3, page 83). Compared to the calibration con-
ditions, subjective NASA-TLX ratings of the office-work session
were ranked either between low and medium or between medium
and high (see Section 4.4.1, page 80 and see Figure 4.5, page 80).

• The resulting predictions of the workload class (low, medium,
high) were correct for six out of the seven subjects when apply-
ing multiple linear regression (see Section 4.4.6, page 85 and see
Table 2.2). In only one subject (subject 3), there was a confusion
between low and medium workload.

• The comparison of the three classification models showed that
the best results were obtained with linear discriminant analysis
(LDA) which resulted in a correct classification for six out of
the seven subjects. The only confusion between low and medium
workload occurred for the same subject as in multiple regression
analysis. The k-nearest neighbor algorithm (k-NN) and the sup-
port vector machine (SVM) resulted in a correct classification of
the mental workload level during office-work for five out of the
seven subjects (see Section 4.4.7, page 86 and see Table 2.3).

• The overall results showed that the perceived mental workload
level of an individual occurred during an office-work scenario
could be discriminated by modeling the relationship between in-
dividual HRV features and the subjective ratings gathered in a
calibration session. This provides evidence that incorporating cal-
ibration measures for everyday life scenarios as proposed by Mor-
ris et al. [13] is feasible.

2.1.3. Development of a wearable user interface for measuring
reaction time

Reaction time is one of the most sensitive parameters for detecting
variation in cognitive functional ability. There are several desktop-based
reaction time tests in which users have to respond to visual stimuli by
using keyboard, mouse or special buttons. The main shortcoming of
existing computerized RT tests is that they require the full attention of
the subject, i.e. the subject has to interrupt his daily routine for several
minutes in order to perform the task on the computer. This restriction
prohibits the measurement of reaction times during daily activities.
This work investigated the design of a wearable reaction time test which
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Figure 2.3. The left picture shows the wearable implementation of a simple

reaction time test. The haptic stimuli are generated as vibrations on the

lower side of the wrist. The IMU is placed on the opposite side to recognize

the user’s hand gesture responses. The right picture depicts a bracelet-like

housing of the stimuli module. For the setups of the wearable reaction time

test, see Section 5.3.1, page 100 and Section 6.3.1, page 119 and Section 7.3.1,

page 143.

can be operated continuously throughout everyday life. Regarding the
third objective (see Section 1.4.3, page 13) the following contributions
were done.

System Design

The following requirements were considered for the design of a wearable
reaction time test; (1) delivering stimulus during everyday life tasks,
(2) choosing a predefined response gesture, (3) ensuring a continuous
operation for long-term monitoring.

Since visual and auditory channel is usually occupied during daily
life activities, the traditional visual stimulus used in desktop-based tests
was replaced with haptic stimulus. The keyboard response was replaced
with a forearm rotation allowing the user to perform the test in a nat-
ural way without pressing any extra push button. The haptic stimulus
was applied on the wrist since it is known that the perception is in-
creased particularly in the near of anatomical anchor points such as the
wrist.

The final design of the wearable RT test (see Section 5.3.1, page 99
and Section 6.3.1, page 118) consisted of two main modules: the stimuli
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Figure 2.4. Illustration of the three-dimensional gyroscope axes of the

IMU module and the gesture response defined as an outward rotation of the

forearm along the x-axis of the gyroscope (from Section 6.3, page 121).

module to generate haptic stimuli and the inertial measurement unit
(IMU) module for detecting forearm rotations (see Figure 2.3). In or-
der to generate vibro-tactile stimuli, a coreless mini DC vibration motor
with a diameter of 6 mm and a resonant frequency of 200 Hz was used.
The motor was placed in a separate plastic enclosure with dimensions
of 90 x 55 x 30 mm to maximize the sense of the vibration (see Fig-
ure 2.3). The stimuli module had its own battery supply to ensure a
continuous operation during at least one day. The IMU module con-
sisted of the so-called ETH Orientation Sensor (ETHOS) [4], in which
a three-axis accelerometer and a three-axis gyroscope are integrated.
The IMU module was used to recognize the subject’s gesture response.
The response gesture was defined as an outward rotation of the forearm
(see Figure 2.4). The accelerometer and gyroscope were sampled with a
frequency of 128 Hz. The firmware version of the ETHOS was modified
to control the vibro-tactile component.

Validation of the device

Before applying the device in real experiments, a preliminary study (see
Section 5.3.1, page 99 and Section 6.3.1, page 118) was conducted to
investigate whether the predefined response was detectable at different
arm positions. Three subjects performed a simple reaction time test
during three different conditions. In the first condition, the subject was
sitting on a chair while the arms were heading towards the floor. In
the second condition, the arms were placed on the table. In the third
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condition, the subject was walking with a moderate speed (4 km/h) on
a treadmill. In each condition, the haptic stimuli were generated ran-
domly. As soon as the subject perceived the target vibration stimulus
he had to rotate his forearm outwards. Based on a visual inspection of
the recorded data, it was clearly visible that the wrist-turn axis of the
gyroscope (x-axis) was the most sensitive axis for detecting the rotation
of the forearm (see Figure 2.4). The reaction time was defined as the
time difference between the haptic stimulus and the occurrence of the
forearm rotation.

2.1.4. Feasibility evaluation of the wearable reaction time test

This work investigated the feasibility of the wearable reaction time
test with two empirical studies. The first study investigated to what
extent the changes in the duration and variability of user’s reaction
time could be measured with the wearable device in comparison to
traditional desktop-based reaction time tests. In the second study a
long-term monitoring in a real working environment was conducted.
Regarding the fourth objective (see Section 1.4.4, page 14) the following
contributions were done.

Evaluation in laboratory - Study Design

The main goal was to evaluate the wearable user interface by com-
paring the reaction times obtained by the wearable reaction time tests
with those collected by a desktop-based reaction time test. In order to
compare changes in the duration and variability of reaction times be-
tween the two measurement techniques, additional cognitive load was
applied to the subjects in both setups. The observed changes in reaction
times occurred due to the cognitive load were then compared between
desktop-based and wearable reaction time tests.

As the desktop-based reaction time test, a free version of the go/no-
go TOVA test was used (see Section 6.3.3, page 121). Traditional TOVA
test consists of one target and one non-target stimuli type. The partic-
ipant must respond only when the target stimulus appears and must
not respond if the non-target stimulus appears (see Figure 2.5).

In this experiment, two different wearable implementations were
evaluated. In the first design, the target haptic stimulus was placed
on the lower side of the dominant wrist whereas the non-target haptic
stimulus was placed on the upper side (one-handed design). In the
second two-handed design, target and non-target modules were placed
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Figure 2.5. The above picture shows the target and non-target stimulus

types of the TOVA test (from Section 6.3.3, page 122). In the picture below,

two implementations of the wearable TOVA reaction time test are depicted.

In the first one-handed design, target and non-target stimulus modules are

both placed on the same wrist. In the second two-handed design, the target

and non-target stimulus modules are placed on separate wrists (from Section

6.3.1, page 121).

separately on both wrists, i.e. the target stimulus module was placed on
the lower side of the dominant wrist while the non-target stimulus was
placed on the lower side of the non-dominant wrist (see Figure 2.5).

Twenty subjects (12 male, 8 female, average age 24.3 years) were re-
cruited for the experiment. Each session lasted approximately 70 min.
Participants were randomly assigned to one of the two experimental
groups, which differs in sensor placement, i.e. 10 subjects used the one-
handed design and the remaining 10 subjects used the two-handed de-
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Figure 2.6. Experimental procedure: subjects were randomly assigned in

one of the two experimental groups i.e. one-handed vs. two-handed groups.

Each subject performed idle and load conditions for desktop-based and wear-

able reaction time test separately (from Section 6.3.4, page 123).

sign. In the first part of the experiment, participants performed the
desktop-based TOVA test both in idle and cognitive load conditions.
During the idle condition, the subjects had to respond to each visual
target stimulus by using the keyboard. In the cognitive load condition,
the subjects had to solve two tasks simultaneously: in addition to the
TOVA test, the so-called Audio 2-Back task, a variant of the N-Back
task [1, 7] was presented to the subject (Section 6.3.4, page 122). In the
Audio 2-Back task every 3 sec a letter was pronounced to the subject
via an audio message. The subject had to respond by saying “match”
if the currently pronounced letter was the same as the one that was
pronounced two positions back. In the second part of the experiment,
subjects performed the same idle and cognitive load conditions with
the wearable RT test. In the idle condition, the subjects had to per-
form only the wearable RT test. In the cognitive load condition, the
wearable RT test and the Audio 2-Back task were performed simul-
taneously. Each condition lasted about 10 min and and a total of 640
reaction times were collected from each subject during the whole exper-
iment (see Section 6.3.4, page 122 and for the experimental procedure
see Figure 2.6).
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Evaluation in laboratory - Data analysis

The hand response of the subject to a stimulus was detected by a
threshold approach (see Section 6.3.1, Figure 6.2, page 120). The reac-
tion time was then computed as the time difference between the onset
of the haptic stimulus and the onset of the forearm rotation.

For the statistical analysis, mean reaction time and reaction time
variability measured as the coefficient of variation (CV) (standard de-
viation divided by the mean reaction time) were used as evaluation
metrics. Both within subjects and between subjects comparisons were
done using ANOVA test (see Section 6.3.6, page 124). Within subject
analyses addressed the questions (1) whether the reaction time per-
formance and variability differ between desktop and wearable settings,
and (2) whether the induced cognitive load differs from the idle state
by means of reaction time performance and variability. Between subject
comparison examined whether wearable reaction times differ between
different sensor placements (one-handed vs. two-handed).

Evaluation in laboratory - Results

• The results (see Section 6.4, page 125) showed that during load
condition, mean reaction time and variability were significantly
increased (p < 0.001) for both settings (desktop vs. wearable) and
both groups (one-handed vs. two-handed) (see Table 6.1, page
128). These first results provided evidence that the wearable re-
action time test was suitable to measure changes in reaction times
occurred due to the cognitive load. A similar cognitive load effect
has also been demonstrated in a study of Brunken et al. [2]. The
authors showed that the reaction times were significantly faster
in a single-task condition (a visual reaction time test alone) when
compared to a cognitive demanding dual-task condition (multi-
media learning task in addition to the reaction time test).

• Compared to desktop test, the subjects demonstrated significant
faster reaction times for both one-handed (p < 0.05) and two-
handed (p < 0.01) wearable settings under the idle condition (see
Table 6.1, page 128). This might be explained by the fact that the
transduction of a visual stimulus takes generally longer than the
perception of a haptic stimulus as known from literature [8]. How-
ever, in case of cognitive load, this effect tended to diminish and
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a significant difference between both settings was not observed
(see Section 6.4, see Figure 6.6, page 126).

• The comparison between one-handed and two-handed wearable
designs showed that the only difference between both groups was
a significant faster mean reaction time for the two-handed de-
sign under idle condition (p < 0.05) (see Table 6.2, page 129). A
reasonable explanation is that differentiating between target and
non-target on the same hand is more difficult than differentiating
of target and non-target on two hands.

• In conclusion, the results showed that both implementations of
the wearable reaction time tests are suitable to measure factors
that influence length and variability of reaction times.

Feasibility study in daily life - Study Design

This case study extended the monitoring of reaction times from a con-
trolled laboratory setting to an unrestricted work environment (see
Section 7.4, page 145). During the study, reaction time data and sub-
jective ratings on mood were collected throughout 15 working days of
a graphic designer. The first three working days were characterized by
normal job demands as baseline measurement. During the remaining
12 days, the designer was confronted with four workload factors: stress,
sleep deprivation, night shift, and moderate alcohol consumption (see
Figure 2.7). Each factor was studied on three consecutive days (for a
detailed description of each factor see Section 7.4.1, page 147).

Four aims were specified for this case study: (1) to continuously col-
lect reaction times in a real-world working setting without interrupting
the daily routine of a graphic designer, (2) to investigate the observed
variations in length and variability of reaction times regarding the four
workload factors, (3) to correlate the observed reaction time features
with perceived workload ratings, and (4) to investigate the correlations
between reaction time features and subjective ratings on mood.

Feasibility study in daily life - Data collection

The reaction time module was placed on the dominant wrist of the
subject. A simple reaction time test was implemented which generated
haptic stimuli at random intervals varying between 60 sec and 90 sec.
Within 30 min periods a total of 20 reaction time measurements were
collected.
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Figure 2.7. Case study with a graphic designer throughout 15 working

days. The first three working days were characterized by normal job demands

as baseline measurement. During the remaining 12 days, the designer was

confronted with four workload factors: stress, sleep deprivation, night shift,

and moderate alcohol consumption (from Section 7.4, page 146).

In order to examine the relationship between reaction time data
and self-reported ratings on mood and workload, an experience sam-
pling method (ESM) (see Section 7.4.7, page 149) was used. The subject
was randomly probed eight times per day to complete a set of question-
naires. The minimum and maximum time interval between successive
questionnaires was set to 30 and 120 min, respectively. The subject was
notified to fill out the questionnaires by a particular haptic stimuli pat-
tern, i.e. 10 sequential haptic stimuli were generated at 1 sec intervals
(see Figure 7.4, page 149).

In addition, the subject was asked to assess her perceived workload
regarding the last working activities using the NASA-TLX rating [5].
To recognize subject’s hand response to a stimulus, the maximum peak
occurring within a window of 2 sec after the stimulus was detected
(see Figure 2.8). The relation between reaction times and self-rated
mood and workload items was examined by creating data segments
around each experience sampling events (see Section 7.5.1, page 151 and
see Figure 7.6, page 152). The reaction time features were calculated
for each segment and then correlated with the mood and perceived
workload ratings.
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Figure 2.8. After each stimulus event the maximum peak within a fixed

time window is detected. Reaction time is calculated as the time difference

between the haptic stimulus and the occurrence of the peak response (from

Section 7.5, page 151).

Feasibility study in daily life - Results

• The results (see Section 7.6, page 152) showed that the subject
showed a significant increased variability in reaction times during
the stress condition compared to the baseline (p < 0.05). Sleep
deprivation did not show a significant difference to baseline. Com-
pared to baseline condition, a significant increased variability of
reaction times (p < 0.05) and a significant higher number of omis-
sion errors (p < 0.05) were observed for the night shift and alcohol
consumption conditions (see Section 7.6.1, Figure 7.7, page 154
and Figure 7.8, page 156).

• The correlation analysis of reaction time measures with perceived
workload (see Section 7.6.2, page 157) showed that mean reaction
time was significantly positive correlated with mental and tem-
poral demand (p < 0.01). Total workload showed a significant
positive correlation with reaction time variability (p < 0.01) and
number of omission errors (p < 0.05).

• The correlation analysis of reaction time measures with subjective
ratings on mood (see Section 7.6.3, page 159) showed that mean
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reaction time was significantly positive correlated with the high
arousal items concentrated (p < 0.01), alert (p < 0.01), active
(p < 0.01) and stressed (p < 0.01). The reaction time variability
was significantly positive correlated with alert (p < 0.05), active
(p < 0.05), stressed (p < 0.01) and negative correlated with the
low arousal mood items bored (p < 0.01) and tired (p < 0.01). In
the valence-arousal plane (see Figure 7.10, page 159), it could be
observed that a high level of arousal yielded to increased reaction
times and higher variability whereas a low arousal yielded to lower
variability of reaction times.

• In conclusion, this case study showed that a wearable watch-like
reaction time test tool could be operated in a long-term measure-
ment and enabled the interpretation of reaction times during work
life activities. The results revealed that there was a correlation be-
tween workload factors and reaction time features. Besides, the
ratings of the subject about her mood while performing working
activities showed a correlation with the reaction time measures.

2.1.5. Effect of daily activities on reaction times

This work investigated how common daily activities affect the reac-
tion times of young and elderly subjects. By knowing the effect of a
particular daily activity on the reaction times, the variation in reaction
times occurred due to the other factors can be extracted in a reasonable
way. This can also enable a context-aware interpretation of the reaction
times, i.e. the variations in reaction times can be analyzed within each
activity class. Regarding the fifth objective (see Section 1.4.5, page 14)
the following contributions were done.

Study design

The aim of the experiment was to investigate the effect of everyday ac-
tivities on reaction times of young and elderly subjects. The experiment
involved four common daily life activities: sitting, walking, reading and
writing. In order to measure changes in reaction times as a result of an
alteration in cognitive functionality, an additional cognitive load fac-
tor was added to each activity. Therefore, each activity was performed
once under an “idle” condition in which subjects just performed the
activity, and once under “load” condition in which subjects were con-
fronted with additional cognitive load while performing the activity.
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Figure 2.9. Experiment design: the four common daily life activities sitting,

walking, reading and writing were investigated in both age groups. Each

activity was performed once under an idle condition and once under a load

condition. Each subject started with the sitting activity while the remaining

daily activities were randomly assigned (from Section 8.3.4, page 175).

Having idle and load conditions enabled to compare the changes in re-
action times between both young and elderly age groups. Additionally,
it was investigated how accurate the idle and load conditions could be
discriminated from each other (see Section 8.3.1, page 173).

The experiment addressed the following questions; (1) Do daily life
activities affect the reaction time measures? (2) Do reaction times differ
between young and elderly subjects for the chosen activities? (3) Do
reaction times differ between idle and cognitive load conditions whilst
performing daily life activities? (4) How accurate can idle and load
conditions be discriminated from each other?

The data from 12 healthy elderly subjects with an average age of
70.17 years and 14 healthy young subjects with an average age of 25.79
were investigated. During the cognitive load condition, the subjects had
to solve the Audio-2 Back task [1, 7] in addition to the main activity.
The Audio 2-Back task was configured in a way that every 5 sec a
letter was presented to the subject via an audio message. The subject
was asked to respond only if the currently pronounced letter was the
same as the one that was pronounced two positions back. The subject
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responded by saying “match” whenever a sound match was detected by
the subject. Each subject started with the baseline activity which was
defined as sitting on a chair at rest and just performing the wearable
reaction time test. The remaining daily activities (walking, reading and
writing) were randomly assigned to each subject. Each activity started
with the idle condition and was followed by the cognitive load condition
(see Section 8.3.4, page 175 and for the experimental procedure see
Figure 2.9).

Data collection and analysis

The wearable reaction time module was placed on the non-dominant
wrist of the subject. Simple reaction time test was implemented which
generated haptic stimuli at random intervals varying between 5 sec and
25 sec. The subject was asked to respond as fast as possible to each
haptic stimulus by performing the dedicated hand gesture, i.e. rotating
his forearm outwards (see Section 8.3.2, Figure 8.1, page 173). Within
each 10 min block an average of 40 reaction time measurements were
collected. Directly after each block, each subject completed the NASA-
TLX questionnaire [5] to indicate his perceived workload.

For the statistical analysis, mean reaction time and reaction time
variability measured as the coefficient of variation (CV) (standard de-
viation divided by the mean reaction time) were used as evaluation
metrics. In order to analyze the activity and cognitive load effects for
both young and elderly subjects, a mixed 2x2x4 ANOVA was performed
(see Section 8.3.7, page 178).

In order to investigate the discriminative power when distinguishing
between idle and cognitive load conditions, logistic regression analysis
was performed (see Section 8.3.8, page 178).

Results

• Mean reaction time and reaction time variability were signifi-
cantly increased during cognitive load condition for both young
and elderly subjects (p < 0.001) (see Section 8.4.1, page 179 and
see Section 8.4.2, page 181). This confirmed that the cognitive
load could be assessed during the daily activities under investi-
gation.

• Mean reaction time and reaction time variability were signifi-
cantly affected by the type of the performed activity (p < 0.001).
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Figure 2.10. Mean reaction times of young and elderly subjects across four

activities (from Section 8.4.1, page 179).

Figure 2.11. Reaction time variability of young and elderly subjects across

four activities (from Section 8.4.2, page 181).

For both age groups, the highest mean reaction time and vari-
ability were observed for the writing activity (see Figure 2.10 and
Figure 2.11).

• The test of between-subjects effect showed a significant main ef-
fect of age (p < 0.01) for the reaction time variability, reflecting
that elderly subjects showed an overall higher reaction time vari-
ability compared to the younger participants (see Section 8.4.2,
page 181). This result is consistent with other studies which have
shown increasing variability with increasing age [3, 6].

• There was not a significant difference between young and elderly
regarding to overall mean reaction times (see Section 8.4.1, page
179) although other studies showed that older adults were slower
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than younger ones [3]. On the contrary, older participants showed
a slightly faster mean reaction time during the idle condition (see
Figure 2.10). One possible explanation could be the underlying
motivational processes, e.g. it was observed that the elderly sub-
jects were more motivated then the younger subjects during the
whole experiment. Elderly perceived the accomplishment of the
experiment as a sense of achievement whereas the main motiva-
tion for the younger subjects was the compensation money. The
positive affective state of the elderly might have induced an in-
creased arousal level which is a known factor that enhances the
reaction time performance [8, 17]. However, the underlying moti-
vational processes need to be investigated further.

• The main difference between young and elderly was observed in
the interaction effect between condition and age group for mean
reaction time (p < 0.05) and variability (p < 0.01). The increase
in mean reaction time and reaction time variability from idle to
cognitive load condition was higher for the older participants com-
pared to the younger ones. In other words, although older partic-
ipants showed slightly faster reaction times during idle condition,
when they were confronted with high cognitive load their reaction
time performance and variability were deteriorated to a larger ex-
tent compared to younger subjects.

• The classification of idle and load conditions confirmed the ef-
fect of activity on reaction times (see Section 8.4.3, page 183).
In a leave-one-subject-out cross validation, the classification ac-
curacy increased from 75% to 80.77% after adding activity class
features to the classification model as predictors (see Figure 8.6,
page 182). When considering a context-aware wearable reaction
time test which is able to detect when the hand is active or not,
a classification accuracy of 87.5% was achieved (see Section 8.4.3,
page 183).

• The perceived workload scores obtained from the NASA-TLX
questionnaire (see Section 8.4.4, page 184) showed that the el-
derly subjects reported in average lower perceived workload than
younger subjects. This might be explained by the fact that elderly
often tend to be reluctant to admit their cognitive difficulties be-
cause of a fear of losing their independence [14].
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Figure 2.12. Usability questionnaire filled by the elderly subjects.

• The relationship between NASA-TLX workload scores and reac-
tion time measures was modeled by applying a multiple linear
regression analysis. Mean reaction time and reaction time vari-
ability served as predictors whereas the perceived workload score
was used as the dependent variable. The results showed that the
mean reaction time (β = 0.085, p < 0.001) and reaction time
variability(β = 0.72, p < 0.05) were significant predictors. The
overall model fit was R2 = 0.282 (see Section 8.4.4).

• Finally, the link between N-Back scores obtained from the Audio
2-Back task and reaction times was analyzed. Elderly subjects
showed significantly lower performance than younger subjects in
overall scores (p < 0.01). The lowest N-Back scores were observed
during reading and writing activities since these activities were
cognitively more demanding than sitting and walking activities.

• One of the main findings was that the increase in the length and
variability of reaction times occurred due to the high cognitive
load was higher for the elderly subjects compared to the younger
age group. Besides, the type of daily activity affected the reac-
tion times significantly. It was also shown how a simple activity
recognition system integrated into the wearable reaction time test
device would improve the detection of changes in reaction time
performance and variability during common daily life activities.
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• It should be noted that the elderly participants in this experiment
were recruited from a dedicated university for elderly people. Cog-
nitive activities such as education or similar intellectual engage-
ment in older ages may postpone average age-related changes in
cognition [16]. Therefore investigating elderly group with cogni-
tive impairments could yield more deterioration in reaction times.

• Lastly, the usability questionnaire filled by elderly showed that
operating the wearable reaction time test was not disturbing. Be-
sides, most of the elderly subjects would accept using a wearable
reaction time test in daily life when the device looks very simi-
lar to a watch (see Figure 2.12). Therefore, minimizing the size
of the wearable reaction time module would meet the comfort
requirements.
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2.2. Conclusion

This thesis has investigated wearable sensing techniques towards as-
sessing cognitive load and cognitive performance in daily life scenarios.
In the first part of the thesis, cognitive load was assessed by means of
HRV features obtained from a mobile ECG logger. In the second part
of the thesis, a wearable watch-like reaction time test was introduced
which enables a continuous monitoring of cognitive performance during
daily life. As summarized in Section 2.1, the following conclusions can
be drawn from the achieved contributions:

• Variants of a continuous performance task (Dual N-Back task)
which differ in their degree of difficulty allow inducing different
levels of mental workload. Data from a mobile ECG logger allow
discriminating different levels of mental workload induced by N-
Back tasks. The investigated HRV features can be classified into
two distinct groups with respect to their response: with increasing
workload the features RMSSD, pNN50 and HF showed a decrease
in their values while LF and LF/HF ratio showed an increase with
increased workload.

• Mental workload levels in an everyday life office-work scenario can
be discriminated with data from a mobile ECG logger by incorpo-
rating individual calibration measures. Employing a calibration
procedure allows modeling the relationship between relevant HRV
features and the subjective ratings of perceived mental workload
during an office-work scenario. The best results were obtained
with LDA followed by k-NN and SVM.

• A wearable watch-like reaction time test was designed and im-
plemented in a way that enables a continuous operation during
daily life. In comparison to state-of-the-art reaction time tests,
the visual stimulus was replaced by a haptic stimulus and instead
of a keyboard response the detection of a forearm rotation was
implemented.

• The wearable reaction time test was evaluated within two empir-
ical studies. The first experiment was conducted to investigate to
what extent the changes in length and variability of user’s reac-
tion time could be measured with the wearable interface in com-
parison to a well-accepted, traditional desktop-based test. The
results showed that the variations in reaction times occurred due
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to an additional cognitive task were similar for both desktop and
wearable settings which provides evidence that wearable reaction
time tests are suitable to measure factors that influence length
and variability of reaction times.

The second study investigated the feasibility of employing the
wearable reaction time test in an unrestricted work environment.
In a case study, reaction times of a graphic designer were collected
continuously throughout 15 working days. The graphic designer
was confronted with four workload factors that are common when
a designer has to deliver creative outcomes: stress, sleep depriva-
tion, night shift and moderate alcohol consumption. During each
working day, an experience sampling method was employed to
gather subjective data on mood and perceived workload. High
level of arousal resulted in slowing of reaction times and higher
variability whereas low arousal resulted in lower variability of
reaction times. The results provide evidence that the wearable
reaction time test is suited to perform long-term recordings and
interpretations of reaction times during everyday work life.

• The effect of common daily activities on reaction times were inves-
tigated and compared between young and elderly subjects. The
results showed that mean reaction times and reaction time vari-
ability were significantly affected by the type of activity. When
comparing young and elderly subjects, it could be shown that the
effect of activity on mean reaction times was significantly different
between the young and elderly group. When elderly subjects were
confronted with additional cognitive load, they showed slower re-
action times and higher variability in comparison to younger sub-
jects. The results of logistic regression analysis used for discrimi-
nating between idle and cognitive load conditions, confirmed the
effect of activity on reaction times. A context-aware wearable re-
action time test achieved the highest discrimination accuracy of
87.5%.



54 Chapter 2: Thesis Summary

2.3. Limitations and Relevance

This work has investigated mobile and wearable techniques towards as-
sessing cognitive load and cognitive performance in daily life. Cognitive
load was assessed by means of HRV features obtained from a mobile
ECG logger and by employing a wearable reaction time test. In the
conducted laboratory experiments, variants of the Dual N-Back task
were successfully employed to induce different levels of cognitive load
in young and elderly test subjects.

It could be shown that HRV features obtained from a mobile ECG
logger allows discriminating different levels of mental workload induced
by the N-Back tasks in healthy subjects. The investigated HRV features
showed a consistent response to increased workload. In an office-work
scenario, it could be shown that the relationship between relevant HRV
features and the subjective ratings of perceived mental workload could
be modeled by employing a calibration procedure. Since the subjects
under investigation were healthy and of young age, it remains open
whether the results can be generalized to a broader population, e.g. re-
garding subject’s age. The investigated office work scenario was re-
stricted to working in front of a computer. Thus, it remains an open
issue to what extent the proposed calibration and modeling approach
has to be adapted to other scenarios such as surgeons and nurses in
health care working environments [11, 12].

A wearable watch-like reaction time test was designed and imple-
mented in a way that enables a continuous operation during daily life.
In a laboratory evaluation, it could be shown that both variants of the
wearable reaction time tests are suitable to measure factors that influ-
ence length and variability of reaction times. In a case study it could
be shown that a long-term measurement and interpretation of reac-
tion times during normal work life is feasible. In particular, it could be
shown that subjective assessment of work demand and arousal level is
significantly correlated with the obtained reaction times measures. It
remains an open question whether the observed correlations are valid
for other persons and different working environments.

In an experimental setting it could be shown how four common daily
activities affect reaction time measures in young and elderly subjects.
Incorporating the activity information into a context-aware wearable
reaction time test resulted in an accuracy of 87.5% when discriminat-
ing between idle and cognitive load. It was concluded that a wearable
reaction time test combined with a simple hand activity recognition
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system is feasible to detect changes in reaction time performance and
variability during the investigated common daily life activities. Since in
daily life many other activities occur, it remains an open issue whether
the simple hand activity recognition is sufficient to achieve high accu-
racy when detecting cognitive load.

In the presented work, healthy subjects were investigated and the
induced variations in cognitive functioning were induced by applying
additional cognitive load. It remains an open issue to what extent the
wearable reaction time test is suited for detecting variations in cognitive
functioning in patients with cognitive impairments or other disabilities
such as stroke.
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2.4. Outlook

In this thesis mobile and wearable approaches were investigated in order
to enable cognitive load and cognitive performance monitoring in daily
life. Further research should address the following challenges:

• Generalisability of the calibration procedure: The relation-
ship between relevant HRV features and the subjective ratings of
perceived mental workload could be modeled by employing a cal-
ibration procedure. Future work should extend the investigated
office-work scenario with a broader range of working activities.
This will lead to new insights into the generalisability of the pro-
posed calibration and modeling approach in other working sce-
narios.

• Compatibility with daily life: It was shown that the developed
wearable reaction time test can be operated during common daily
working activities. In order to meet comfort and user acceptance
issues, both modules of the wearable reaction time test should be
integrated into a normal watch. Depending on user’s preferences,
alternative response gestures may facilitate daily life employment.

• Context-aware wearable reaction time test: It was shown
that a wearable reaction time test combined with a simple hand
activity recognition system allows detecting cognitive load during
four common daily activities. In future work the context recogni-
tion should be an integral part of the wearable RT test in order to
generate stimuli events only in cases when the hand is not active
for a certain amount of time. More advanced, the wearable RT
test could be combined with additional sensor networks in order
to control the generation of stimuli events depending on the ac-
tual context of the user. Such an advanced context-aware reaction
time test would facilitate long-term assessments in daily life.
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Abstract

Mobile healthcare applications offer new opportunities to
prevent long-term health damage due to increased mental
workload by continuously monitoring physiological signs re-
lated to prolonged high workload and providing just-in-time
feedback. In order to achieve a day-by-day quantification
of mental load, first different load levels which occur dur-
ing a workday have to be discriminated. This work goes
one step towards this goal: we present our experiment de-
sign and preliminary results in discriminating different lev-
els of mental workload based on heart rate features obtained
from a mobile ECG system. Based on the subjective rat-
ings of the participants under study, we show that all par-
ticipants perceived the induced load levels as intended from
the experiment design. The heart rate variability (HRV) fea-
tures under investigation could be classified into two distinct
groups. Features in the first group, representing markers as-
sociated with parasympathetic nervous activity, show a de-
crease in their values with increased workload. Features in
the second group, representing markers associated with sym-
pathetic nervous activity, show an increase of their values
with increased workload. These results provide evidence that
a mobile ECG system is suited to discriminate different lev-
els of mental workload. This would enable the development
of mobile applications to monitor mental workload levels
and to prevent long-term damage by giving early warning
signs in case of prolonged high workload.

3.1. Introduction

Recently, the European Foundation for the Improvement of Living and
Working Conditions called the attention on the increasing level of men-
tal disorders due to work-related stress. The workplace has changed
due to globalization, use of new information and communication tech-
nology, resulting in an increased mental workload. Work-related stress
was found to be the second most common work-related health prob-
lem across the EU15 [4]. Work-related stress occurs when there is a
mismatch between job load and the capabilities, resources or needs of
the worker. If the worker is not able to recover, long-term damage may
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result in the development of mental disorders [14]. Mobile healthcare
offers new opportunities to prevent long-term damage by continuously
monitoring mental workload and providing just-in-time feedback in-
creasing workers awareness for improving self-management of mental
workload.

Mobile monitoring of work-related stress or mental workload is still
in an exploratory stage. One example is the exploratory research project
“Mobile Heart Health”, which aims to detect early signs of stress trig-
gered by physiological or contextual changes and provide just-in-time
mobile coaching [11]. Most of the existing studies often try to discrim-
inate a state of mental load from a resting condition. In [2, 10, 12] two
stress factors relevant at the workplace were under investigation: high
cognitive load under time pressure and social-evaluative threat. In all
three studies mild cognitive load was discriminated from a constant
high stress level but different stress intensities were not investigated.
[13] used a mental arithmetic task to induce mental workload and in-
vestigated the recovery patterns of physiological responses as indicators
of stress. [8] studied heart rate variability (HRV) features of subjects
under chronic stress. Subjects were divided into a high and a low stress
group based on their self-reporting stress scores. [6] investigated the
ability of short-term HRV metrics to discriminate between low and
high level of mental workload.

In an office workplace scenario however, a worker is confronted with
different levels of mental load during an office day. In order to achieve
a day-by-day quantification of the mental load, first the different load
levels have to be discriminated, and in a second step, the overall load
can be estimated by accumulating these levels accordingly. This work
goes one step towards this goal: we present our experimental results
in discriminating different levels of mental workload. For an “everyday
life application”, a minimal sensor setup is desired for comfort reasons.
This work therefore focuses on a single sensor modality: a mobile ECG
system to measure heart rate (HR). The analysis of the HRV was cho-
sen, because it represents a sensitive stress and mental load measure.
Increased stress leads to an activation of the sympathetic nervous sys-
tem and withdrawal of the parasympathetic nervous system [15]. In
this work, we investigate HRV features in the time as well as in the
frequency domain.
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3.2. Methods

3.2.1. Experiments

Seven healthy subjects participated in this study (age between 25 and
34 years). Due to the effects of oral contraceptives and menstrual cycle
phase on HRV, we decided to restrict the sample to male subjects. The
experiment was designed to investigate different levels of mental work-
load. Three sessions with low, medium and high workload were chosen.
Each session consisted of a baseline (10 minutes), workload (20 minutes)
and recovery (15 minutes) period. Subjects performed each session on
separate days in the afternoon, while the different sessions were ran-
domly assigned for each subject in order to avoid sequence effects and,
therefore, to counterbalance learning effects. To induce different levels
of mental workload, we used the N-Back Test [7]. Three variants of this
task were used to induce low, medium and high workload which are
likely to be present during an office work day:

1. Position 1 Back (Low Workload; very easy task with vi-
sual stimuli): A square appears every 4.5 seconds in one of eight
different positions on a regular grid on the screen. The subject
has to respond by using the keyboard if the position of the cur-
rently shown square is the same as the one that was presented
just before. This kind of workload is comparable to monotonous
monitoring tasks where the subject has to sustain his attention
at the same level.

2. Arithmetic 1 Back (Medium workload; easy task with
combined visual and auditory stimuli): An integer number
between 0 and 9 appears every 4.5 seconds on the screen. For
each number a math operator (add, subtract, multiply or divide)
is presented via an audio message. The subject has to apply the
math operation on the currently shown number and the one that
was presented just before. The result of the calculation has then to
be entered on the keyboard. This task reflects medium cognitive
load since the subject has to memorize one number and to perform
a math task in the given time.

3. Dual Arithmetic 2 Back (High Workload; demanding
task with combined visual and auditory stimuli): In this
mode, the two former position and arithmetic tasks are combined.
An integer number between 0 and 9 appears every 4.5 seconds in
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one of eight different positions on a regular grid. For each number
a math operator (add, subtract, multiply or divide) is presented
via an audio message. The subject has to respond if the position
of the currently shown number is the same as the one that was
presented 2 positions back. In addition, the subject has to apply
the math operation on the currently shown number and the one
that appeared 2 positions back. The result of the calculation has
then to be entered on the keyboard. This task represents a high
cognitive load since the subject has to memorize the position and
the value of two numbers and has to perform a math task in the
given time.

Directly after the workload period, the subject was asked to as-
sess his perceived workload. For this subjective rating we employed
the NASA Task Load Index (TLX) [5]. First, the subject has to rate
6 items on a scale from 1 to 20 that best indicate his experience in
the task. The rating consists of the following items: mental demand,
physical demand, temporal demand, own performance, effort and frus-
tration. Next the subject is systematically asked which of the items
represents the more important contributor to the workload. Based on
these comparisons, the total workload is computed as a weighted av-
erage of the ratings. In addition, the individual performance for each
workload task is recorded. The physiological responses were measured
with the Zephyr BioHarness chest belt [1]. The monitoring belt consists
of three smart fabric sensors to acquire cardiac activity, breathing rate
and skin temperature. The ECG data was sampled with 250Hz. In this
work, we focus on the analysis of heart rate variability features in the
time and frequency domain.

3.2.2. Data analysis

We investigated the subjective ratings of the total workload obtained
with the NASA Task Load Index by comparing the individual ratings
for each workload period. Based on this data we performed an ANOVA
test to investigate whether the perceived ratings differed significantly
between the workload periods.

For the analysis of the heart rate data, we first removed RR intervals
which differ more than 20% from their predecessors in order to remove
artifacts. Next, we calculated a set of time and frequency HRV features
following the guidelines of the European Task Force [9]: mean heartbeat
intervals (Mean RR), standard deviation of RR intervals (SDNN), root
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Figure 3.1. Perceived workload obtained from the NASA task load index

and performance scores for each task.

mean square of successive differences (RMSSD), and the percentage of
intervals that vary more than 50ms from the previous interval (pNN50).
In addition, the HRV index (bin width 1/128 sec.), and the triangular
interpolation of the R peak interval histogram (TINN) were extracted
as geometric parameters. All features were calculated on the overall
workload periods (20min) for each session. The analysis of HRV fea-
tures in the frequency domain was done using the Lomb periodogram
since it does not require resampling of unevenly sampled signals such
as RR data [3]. We used two frequency bands defined as follows: low
frequency (LF):0.04-0.15 Hz and high frequency (HF): 0.15-0.4 Hz [9].
Next we calculated the normalized values of LF, HF and LF/HF which
represents the relative value of each power component in proportion to
the total power minus the very low frequency component. We obtained
all HRV features for each phase of the experiment (baseline, workload
and recovery). We compared these features obtained for the three work-
load periods by using the ANOVA test. As significance level, p < 0.05
was considered.

3.3. Results

As shown in Figure 3.1 (left), all subjects perceived the induced load
levels by the three variants of the N-Back as intended from the experi-
ment design (ANOVA, p < 0.01). In Figure 3.1 (right) it is shown that
also the individual performance reflects the three different workload
levels. The mean values including standard errors of all HRV features
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Table 3.1. Comparison of Mean HRV Features ± standard error during

low, medium and high workload periods.

HRV Features Low Medium High F; p

Workload Workload Workload

Mean RR [ms] 875.3 ± 32.2 803.2 ± 36.5 769.1 ± 43.0 2.09; 0.15

SDNN [ms] 72.2 ± 8.4 58.7 ± 7.8 51.5 ± 6.4 1.89; 0.18

RMSSD [ms]* 51.6 ± 5.2 38.7 ± 4.4 31.2 ± 4.6 4.65; 0.02

pNN50 [%]* 30.7 ± 4.8 19.3 ± 3.6 12.4 ± 3.2 5.48; 0.01

HRV Index 19.5 ± 2.4 14.9 ± 1.8 13.0 ± 1.5 2.86; 0.08

TINN [ms] 462.8 ± 45.7 385.7 ± 53.1 385.1 ± 53.7 0.77; 0.48

LF [n.u.]* 64.3 ± 2.9 70.1 ± 2.7 77.8 ± 4.6 3.66; 0.04

HF [n.u.]* 35.6 ± 2.9 29.8 ± 2.7 22.2 ± 4.6 3.66; 0.04

LF/HF* 1.9 ± 0.2 2.5 ± 0.3 4.6 ± 1.0 4.59; 0.02

Mean ± standard error

∗p < 0.05

are listed in Table 3.1. It can be observed that the HRV features can
be classified into two distinct groups. Features in the first group show
consistently a decrease in their values with increased workload. A sta-
tistically significant decrease can be observed for the features RMSSD,
pNN50 and HF (p < 0.05) while Mean RR, SDNN, HRV Index and
TINN show a consistent but non-significant decrease. In contrast, fea-
tures in the second group show an increase of their values with increased
workload. A statistically significant increase can be observed for the
features LF and LF/HF ratio (p < 0.05).

3.4. Conclusion

We have presented an experiment design to induce three different lev-
els of mental workload and to discriminate the workload levels based
on heart rate features obtained from a mobile ECG system. According
to the subjective ratings and the performance of the participants, we
could show that all participants perceived the induced load levels as in-
tended from the experiment design. In accordance, the performance de-
creased with increasing workload. The investigated HRV features could
be classified into two distinct groups with respect to their response:
with increasing workload, features in the first group showed a decrease
in their values, while features in the second group showed an increase
of their values. The features RMSSD, pNN50 and HF showed a sta-
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tistically significant decrease while LF and LF/HF ratio showed a sta-
tistically significant increase with increased workload. The remaining
features showed a consistent but non-significant increase or decrease,
what might be explained by the limited number of subjects. There-
fore, an increase in workload seems to be associated with a decrease in
parasympathetic nervous activity and probably a concomitant increase
in sympathetic activity. In conclusion, our experimental results show
that a mobile heart rate sensor is suited to discriminate different levels
of mental workload induced by cognitive tasks. In future work we are
going to employ the mobile heart rate sensor in monitoring mental load
during real office tasks.
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Abstract

Personal and ubiquitous healthcare applications offer new
opportunities to prevent long-term health damage due to in-
creased mental workload by continuously monitoring phys-
iological signs related to prolonged high workload and pro-
viding just-in-time feedback. In order to achieve a quantifi-
cation of mental load, different load levels that occur dur-
ing a workday have to be discriminated. In this work, we
present how mental workload levels in everyday life sce-
narios can be discriminated with data from a mobile ECG
logger by incorporating individual calibration measures. We
present an experiment design to induce three different levels
of mental workload in calibration sessions and to monitor
mental workload levels in everyday life scenarios of seven
healthy male subjects. Besides the recording of ECG data,
we collect subjective ratings of the perceived workload with
the NASA Task Load Index (TLX), whereas objective mea-
sures are assessed by collecting salivary cortisol. According
to the subjective ratings, we show that all participants per-
ceived the induced load levels as intended from the experi-
ment design. The heart rate variability (HRV) features un-
der investigation can be classified into two distinct groups.
Features in the first group, representing markers associated
with parasympathetic nervous system activity, show a de-
crease in their values with increased workload. Features in
the second group, representing markers associated with sym-
pathetic nervous system activity or predominance, show an
increase in their values with increased workload. We em-
ploy multiple regression analysis to model the relationship
between relevant HRV features and the subjective ratings of
NASA-TLX in order to predict the mental workload levels
during office-work. The resulting predictions were correct
for six out of the seven subjects. In addition, we compare
the performance of three classification methods to identify
the mental workload level during office-work. The best re-
sults were obtained with linear discriminant analysis (LDA)
that yielded a correct classification for six out of the seven
subjects. The k-nearest neighbor algorithm (k-NN) and the
support vector machine (SVM) resulted in a correct classi-
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fication of the mental workload level during office-work for
five out of the seven subjects.

4.1. Introduction and motivation

Recently, the European Foundation for the Improvement of Living and
Working Conditions called the attention on work-related stress that was
associated with an increasing number of mental disorders [9]. Work-
related stress occurs when there is a mismatch between job load and
the capabilities of the worker [24]. Since in the developed countries, the
workplace has changed due to globalization, use of new information, and
communication technology, mental workload is the dominant element
in most jobs. If high level of mental workload cumulates and recovery
fails, health problems such as chronic stress, depression, or burnout can
occur.

Continuous monitoring of mental workload offers new opportunities
to support preventing mental disorders and maintaining mental health.
Most of the existing studies try to discriminate a state of mental load
from a resting condition in a laboratory setting. In [3] and [22], two
stress factors were investigated under laboratory conditions: high cog-
nitive load under time pressure and social-evaluative threat. In both
studies, mild cognitive load was discriminated from a constant high-
stress level. In [23] a mental arithmetic task was used to induce mental
workload and the recovery patterns of physiological responses as in-
dicators of stress were investigated. Kim et al. [13, 14] studied heart
rate variability (HRV) features of subjects under chronic stress. Sub-
jects were divided into a high-stress group and a low-stress group based
on their self-reporting stress scores. Henelius et al. [11] investigated the
ability of short-term HRV metrics to discriminate between low and high
level of mental workload.

In our previous work [5], we already presented our first steps toward
monitoring of mental workload in daily life. In this work, we present
how mental workload levels in everyday life scenarios can be discrim-
inated by incorporating individual calibration measures. Since for an
“everyday life application” a minimal sensor setup is desired for comfort
reasons, we employ a single sensor modality: a mobile system to mea-
sure heart rate (HR). The analysis of the heart rate variability (HRV)
was chosen, because it represents a sensitive stress and mental load mea-
sure by providing information about the activity of the sympathetic and
parasympathetic nervous system. In addition to the above-mentioned
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works, numerous studies reported the reliability of psychophysiologi-
cal responses induced by mental workload tasks [16, 20, 25, 26]. In
this work, we investigate HRV features in the time as well as in the
frequency domain.

4.1.1. Research contribution

The present study enhances the state of the art in two ways. First,
compared to other studies that mostly tried to discriminate mental
stress from a baseline condition, we are investigating different levels
of mental workload occurring in everyday life. Second, we target the
variation of individual’s response to stress by calibration measures. The
reason behind is that recently the need to address individual differences
was highlighted. Morris et al. [19] proposed to establish each subject’s
baseline and stress threshold in a laboratory setting by evoking sympa-
thetic and parasympathetic responses. In the presented study we have
actually implemented this proposal by designing and performing a cali-
bration procedure to measure each subject’s sympathetic and parasym-
pathetic responses during three different levels of mental workload (low,
medium, and high) in a laboratory experiment. By doing so, each sub-
ject’s baseline and workload heart rate features were established in a
controlled laboratory setting. Afterward, we have investigated whether
the data collected in our calibration session were appropriate to dis-
criminate the low, medium and high mental workload levels occurred
during a daily life scenario, i.e. office-work. For this, we used the indi-
vidual HRV responses of each workload level to train our models and
test the trained models on the data collected while the subjects per-
formed normal office-work.

In the following we first give an overview about the measurement
system. Then we describe our experiment design to induce three dif-
ferent levels of mental workload in calibration sessions and to monitor
mental workload levels in everyday life scenarios. Afterward we intro-
duce the data processing methods and finally we present and discuss
our results.

4.2. Data collection

4.2.1. Mobile ECG measurement

The physiological responses were measured with the Zephyr BioHarness
chest belt as depicted in Fig. 4.1. The monitoring belt consists of three
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Figure 4.1. Zephyr BioHarness monitoring system.

smart fabric sensors to acquire cardiac activity, breathing rate and skin
temperature [1]. The ECG data was sampled with 250 Hz. In addition
to ECG data, the chest belt provides RR intervals by measuring the
duration between two consecutive R waves of the ECG.

4.2.2. Experiment

Seven healthy subjects participated in this study (age between 25 and
34 years). Due to the effects of oral contraceptives and menstrual cycle
phase on HRV, we decided to restrict the sample to male subjects as
it is common practice in many biomedical studies related to stress or
cognitive load [15, 21].

In a first step, a calibration setting was designed to measure indi-
vidual responses when confronted with three levels of mental workload
in a laboratory setting. In a second step, mental workload levels in
an everyday life scenario were investigated. The purpose of the overall
experiment was to estimate each subject’s perceived mental workload
level occurred during a daily office-work by employing the data obtained
in the laboratory calibration setting. Therefore, the overall experiment
consisted of four sessions: the first three sessions were designed to in-
duce three levels of mental workload in order to conduct an individual
calibration (the calibration conditions); in the fourth session, subjects
were monitored during 1 h of normal office-work (the office-work con-
dition) that contained working activities such as programming, and
reading or writing research papers. Subjects performed each session in
different days. The whole experiment ends up with 4.5 h of data for
each and 31.5 h of data for all subjects (calibration condition lasts 1
h, and the office-work session takes one and half hour including ques-
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Figure 4.2. Experiment procedure for calibration and office-work sessions.

A total of three calibration sessions were conducted which differed in the

level of induced workload: low, medium, and high. The office-work condition

consisted of 1 h of normal office working activities. The subjective rating of

perceived workload was assessed with the NASA-TLX, whereas an objective

measurement was assessed by collecting salivary cortisol at particular points

in time.

tionnaires and cortisol collection). The experimental procedure can be
seen in Fig. 4.2.

Directly after each workload period in the calibration and the office-
work conditions, each subject was asked to indicate his perceived work-
load by completing the NASA Task Load Index (TLX) [10]. First, the
subject had to rate each workload phase with 6 items on a scale from
1 to 20 that best indicate his experience in the task. The rating con-
sists of the following items: mental demand, physical demand, temporal
demand, own performance, effort, and frustration. Next, the subject
was asked to indicate which of the items represents the most important
contributor to the workload. Based on these ratings, the total workload
was computed as a weighted average. In addition to subjective work-
load, saliva samples were repeatedly collected with salivettes (Sarstedt,
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Sevelen, Switzerland), in order to measure cortisol, an important stress
hormone indicating the activity of the hypothalamus-pituitary-adrenal
(HPA) axis [18]. Subjects had to chew the salivettes for 1 min, immedi-
ately before and after each workload period, during the office-work, and
15 min after the completion of each condition (Fig. 4.2). Saliva samples
were stored at −20 ◦C, before biochemical analysis was conducted (Bio-
chemical Laboratory, Dept. of Clinical Psychology and Psychotherapy,
University of Zurich, Zurich, Switzerland). Saliva samples were cen-
trifuged for 5 min at 3000 rpm and analyzed using an immuno-assay
with time-resolved fluorescence detection [8].

Calibration conditions: investigation of mental workload levels

Since individual’s response to stress can vary to a huge extend, Mor-
ris et al. [19] proposed to establish each subject’s baseline and stress
threshold in a controlled laboratory setting. In this section, we present
our implementation of such a controlled calibration procedure. We have
induced three levels of mental workload and measured the individual
responses with a mobile ECG system, NASA-TLX, and saliva samples.
Three sessions with low, medium, and high workload were defined, while
each session consisted of a “baseline”, “workload”, and “recovery” pe-
riod. Subjects performed each session on separate days in the afternoon,
in order to control for circadian rhythms, while the different sessions
were randomly assigned for each subject, in order to avoid sequence
effects and, therefore, to counterbalance learning effects. Additionally,
we recorded the individual performance during each task. The baseline
and recovery periods were the same for the three sessions: the sub-
jects watched a relaxing documentary film in order to calm down. The
workload phases differed in the amount of induced mental workload.
We used three variants of the Dual N-Back Task [2, 12] to induce low,
medium, and high mental workload as outlined in the following:

1. Position 1 Back (Low workload; very easy task with vi-
sual stimuli): A square appears every 4.5 s in one of eight dif-
ferent positions on a regular grid on the screen. By using the
keyboard, the subject has to indicate, if the position of the cur-
rently shown square is the same as the one that was presented
just before (1-back task). This kind of workload is comparable to
monotonous monitoring tasks, where the subject has to sustain
his attention at the same level.
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2. Arithmetic 1 Back (Medium workload; easy task with
combined visual and auditory stimuli): An integer number
between 0 and 9 appears every 4.5 s on the screen. For each
number, a math operator (add, subtract, multiply, or divide) is
presented via an audio message. The subject has to apply the
math operation on the currently shown number and the one that
was presented before (1-back task). The result of the calculation
has then to be entered on the keyboard. This task reflects medium
cognitive load, since the subject has to memorize one number and
to perform a math task in the given time.

3. Dual Arithmetic 2 Back (High workload; demanding task
with combined visual and auditory stimuli): In this mode,
the two former position and arithmetic tasks are combined. An
integer number between 0 and 9 appears every 4.5 s in one of eight
different positions on a regular grid. For each number, a math
operator (add, subtract, multiply, or divide) is presented via an
audio message. The subject has to respond if the position of the
currently shown number is the same as the one that was presented
two positions back (2-back task). In addition, the subject has to
apply the math operation on the currently shown number and the
one that appeared 2 positions back. The result of the calculation
has then to be entered on the keyboard. An example of this task
is shown in Fig. 4.3. This task represents a high cognitive load,
since the subject has to memorize the position of a prior value,
compare it with a current value, and has to perform a math task
under time pressure.

Office-work condition: monitoring of mental workload during
office-work

During the office-work condition, the subjects performed their daily
office tasks for 1 h. In the baseline and recovery periods, the subjects
watched a relaxing documentary film in order to calm down. After 20
min of workload and directly after the completing the workload period,
subjects were asked to indicate their perceived workload by completing
the NASA Task Load Index.



4.3 Data analysis 77

Figure 4.3. Dual Arithmetic 2 Back Task was used to induce high mental

workload on subjects. An integer number between 0 and 9 appears every

4.5 s in one of eight different positions on a regular grid. In each step, a

math operator (add, subtract, multiply, or divide) is presented via an audio

message. The subject has to respond if the position of the currently shown

number is the same as the one that was presented two positions back. In

addition, the subject has to apply the math operation on the currently shown

number and the one that appeared 2 positions back.

4.3. Data analysis

This section describes the employed data analysis methods. In a first
step, we preprocessed the ECG data and extracted relevant time and
frequency features from the RR interval data. Afterward, we evaluated
subjective and objective measurements of mental workload and applied
statistical methods on the extracted features. Figure 4.4 illustrates the
complete data processing chain comprising the steps of preprocessing,
feature extraction, and application of methods.

4.3.1. Preprocessing and feature extraction

For the analysis of the cardiac data, we first removed RR intervals that
differed more than 20% from their predecessors in order to remove ar-
tifacts. Due to the high data quality, for each subject less than 1% of
the RR intervals were removed. In the next step, we extracted time and
frequency domain features that were recommended by the Task Force
of the European Society of Cardiology and North American Society
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Figure 4.4. Block diagram showing the preprocessing, feature extraction,

subjective and objective measurements, and mental workload evaluation

steps.

of Pacing and Electrophysiology [17]. In the present work, we calcu-
lated the following time and frequency domain features following the
guidelines of the European Task Force:

Time Domain Features: The following eight commonly used time
domain features were calculated: mean value of the heart rate (Mean
HR), standard deviation of the heart rate (STD HR), mean value of
the RR intervals (Mean RR), standard deviation of the RR intervals
(SDNN), root mean square of successive difference of the RR intervals
(RMSSD), the percentage of the number of successive RR intervals
varying more than 50 ms from the previous interval (pNN50), the total
number of RR intervals divided by the height of the histogram of all
RR intervals measured on a scale with bins of 1/128 s (HRV triangular
index), and triangular interpolation of RR interval histogram (TINN).

Frequency Domain Features: The extraction of HRV features
in the frequency domain was done using the Lomb periodogram since
it does not require resampling of unevenly sampled signals such as RR
data [6]. We used two frequency bands defined as follows: low frequency
(LF): 0.04-0.15 Hz and high frequency (HF): 0.15-0.4 Hz. Next, we cal-
culated the normalized values of LF, HF, and LF/HF, which represents
the relative value of each power component in proportion to the total
power minus the very low frequency (VLF) component. In this work,
we used the ratio of LF and HF (LF/HF) as the frequency domain
feature of the HRV signal. The LF/HF ratio is known to be an indi-
cator for sympathovagal balance. High values indicate the dominance
of sympathetic activity, whereas low values indicate a switch toward a
dominance of parasympathetic activity.
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4.3.2. Methods

In a first step, we investigated the subjective ratings of the total work-
load obtained with the NASA Task Load Index (subjective measure).
We compared the individual ratings of each calibration period to see,
if the participants perceived the induced workload levels as intended
from the experiment design. Next, we examined the relation between
each calibration period and the salivary cortisol measures (objective
measure). In addition, we analyzed the individual task performance.

After evaluating the subjective and objective measures, we divided
the recordings of each subject and each experiment condition (cali-
bration and office-work) into the experiment phases “baseline”, “work-
load”, and “recovery”. Next, we calculated all HRV features for each
phase of the experiment. In order to test whether different workload
conditions (i.e. low, medium, and high) had any effects on the out-
come of HRV parameters, we compared extracted features by using the
analysis of variance (ANOVA) test. As significance level, p < 0.05 was
considered.

After statistical analysis, we created data segments each contain-
ing 2 min of data with 50% overlapping for “baseline” and “workload”
phases. In all segments, the above-mentioned HRV features were com-
puted. Since each subject performed each experiment condition on four
different days (i.e. 3 days for low-, medium-, and high- workload cal-
ibration, and 1 day for office-work), we divided the features obtained
during the workload periods by the corresponding mean value of the
baseline feature in order to control for daily variations. In the following,
we denote these features as “relative features”.

Our next goal was to develop a model based on the calibration data
that for a given 2-min RR signal (a) predicts the corresponding subjec-
tive workload score by using relevant HRV features and (b) identifies
the mental workload class (low, medium, or high) to which the new ob-
servation belongs. For the first problem, we employed multiple regres-
sion analysis to model the relationship between HRV features and the
subjective ratings of NASA-TLX. In this work, the predictor variables
are non-correlated HRV features and the response variable is NASA-
TLX score. For the second problem, we employed and compared the
performance of three classification methods: linear discriminant analy-
sis (LDA), k-nearest neighbor algorithm (k-NN), and SVM (with linear
kernel). LDA and k-NN algorithms were applied using MATLAB. The
classification results of the support vector machines (SVM) were ob-



80 Chapter 4: Individual Calibrations for Daily Life Monitoring

Figure 4.5. Subjective workload scores obtained from the NASA Task Load

Index for each session and each subject (left). Comparison of the workload

sessions for all subjects using box plots (right)

tained using MATLAB Arsenal toolbox [27] that encapsulates various
classification algorithms and machine learning packages such as WEKA
or libSVM [4]. For the SVM classification, we used the libSVM imple-
mentation of the MATLAB Arsenal package with a linear kernel and
the default cost factor 1. For the multiple regression and all three clas-
sification models, we used the entire “calibration” data as training set
and “office-work” data as test set. This means, the model parameters
were estimated using the “calibration” data as observed data, and the
predictions of the “office-work” session has been done using these model
parameters for each subject.

4.4. Results

In the following, we first present the results of subjective and objec-
tive measurement of mental workload. Then, we present the achieved
results of analysis of variance, multiple linear regression, and classifica-
tion methods.

4.4.1. Subjective measurement of mental workload

Figure 4.5 shows subjective workload scores for each subject. It can be
seen that all subjects perceived the induced load levels by the three vari-
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Figure 4.6. Comparison of the NASA results from two particular points in

time (after 20 min and at the end of the working session)

ants of the N-Back as intended from the experiment design (ANOVA,
p < 0.001). Compared to the calibration sessions, subjective workload
scores of the office-work session were ranked either between low and
medium (subjects 1, 3, 5, and 6) or between medium and high (sub-
jects 2, 4, and 7). A multiple comparison test between each group of
workload sessions revealed that subjective workload of the office-work
session differ significantly from low and high workload (p < 0.001) but
not from the medium workload session (p = 0.88). The visualization of
differences between each group can be seen in Fig. 4.5 (right).

In order to see the variation of the perceived subjective workload
over time, we actually have asked the subjects to fill out the self-
assessment NASA questionnaire twice (after 20 min and at the end)
during one-hour office-work. However, we applied the methods de-
scribed in the previous section using the NASA results obtained at
the end of the working session since the subjective assessments after
20 min were nearly the same like the ones obtained at the end of the
working session. This can be seen in Fig. 4.6.

Afterward, in order to assign the workload score of the office-work
into one of three classes (low, medium, and high), we first defined in-
dividual boundaries for low-, medium-, and high-workload levels ac-
cording to the subjective workload scores collected during the N-Back
calibration sessions. The workload score of the office-work session for
each subject was assigned according to the following equations,
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Figure 4.7. Individual boundaries for low-, medium-, and high-workload

classes and subjective rating for the office-work session

low < (lowc +mediumc)/2

(lowc +mediumc)/2 ≤ medium ≤ (mediumc + highc)/2

high > (mediumc + highc)/2

where lowc,mediumc, highc represent the subjective scores of low-,
medium-, and high-workload periods of the calibration session for a
particular subject. Individual boundaries for low-, medium-, and high-
workload classes and the subjective rating for the office-work session
are depicted in Fig. 4.7.

4.4.2. Objective measurement of mental workload

For the analysis of salivary cortisol measurement, we normalized the
workload cortisol levels by dividing the last measured cortisol value
obtained directly after the recovery phase with the cortisol value ob-
tained after the baseline phase. This enabled us to compare cortisol
measurements taken at different days, since we considered baseline dif-
ferences. Figure 4.8 shows the normalized salivary cortisol levels of each
subject for the different workload periods. It can be seen that with in-
creasing workload levels, four subjects (2, 4, 5, and 7) show increasing



4.4. Results 83

Figure 4.8. Normalized salivary cortisol levels of each subject for different

workload periods (left). Comparison of the workload sessions for all subjects

using boxplots (right)

levels of cortisol, while two subjects (1 and 6) show decreasing levels of
cortisol. In contrast, subject 3 shows the highest cortisol value for the
office-work session. ANOVA revealed that no groups have means sig-
nificantly differ from each other (p = 0.47). Varying effects of cortisol
responses might be explained by the findings that both uncontrollable
and social-evaluative stressors are associated with the largest cortisol
changes [7]. In our case, the stressor was a continuous performance task
that was controlled and not characterized by social-evaluative threat.
By adding socialevaluative threat such as judging the subject about
his performance by others during the experiment might increase corti-
sol levels.

4.4.3. Performance results

In each calibration session, the individual task performance was
recorded. In Fig. 4.9, it is shown that the individual performance re-
flects the three different workload levels. As can be seen from the figure,
there is a significant difference between workload sessions (ANOVA,
p < 0.001).
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Figure 4.9. Performance scores of each subject for each N-Back session

(left). Comparison of the workload sessions of the calibration condition for

all subjects using boxplots (right)

4.4.4. Analysis of variance

We compared the HRV features obtained from the three workload pe-
riods in the calibration condition by applying ANOVA tests. The mean
values including standard errors of all HRV features extracted for the
workload phases are listed in Table 4.1. It can be observed that the
HRV features can be classified into two distinct groups. Features in the
first group show consistently a decrease in their values with increased
workload. A statistically significant decrease can be observed for the
features RMSSD and pNN50 (p < 0.05), while STD HR, Mean RR,
SDNN, HRV Index, and TINN show a consistent but non-significant
decrease. In contrast, features in the second group show an increase in
their values with increased workload. A statistically significant increase
can be observed for the LF/HF ratio (p < 0.05).

4.4.5. Correlation-based feature selection

Before applying regression and classification, we employed a feature se-
lection using a filter approach: since some of the features are expected
to be correlated, we investigated the correlation coefficients of the rela-
tive HRV features in the 2-min segments of all workload phases. Mean
HR, STD HR, and TINN were excluded from the analysis, because of
the high correlations between Mean HR with Mean RR, STD HR with
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Table 4.1. Comparison of mean HRV features ± standard error during low,

medium, and high workload in the calibration condition

HRV Features Low Medium High F ; p

Workload Workload Workload

Mean HR (1/min) 69.6 ± 2.5 76.1 ± 3.9 80.2 ± 5.5 1.62; 0.22

STD HR (1/min) 5.8 ± 0.7 5.4 ± 0.5 5.2 ± 0.4 0.29; 0.75

Mean RR (ms) 875.3 ± 32.2 803.2 ± 36.5 769.1 ± 43.0 2.09; 0.15

SDNN (ms) 72.2 ± 8.4 58.7 ± 7.8 51.5 ± 6.4 1.89; 0.18

RMSSD (ms)* 51.6 ± 5.2 38.7 ± 4.4 31.2 ± 4.6 4.65; 0.02

pNN50 (%)* 30.7 ± 4.8 19.3 ± 3.6 12.4 ± 3.2 5.48; 0.01

HRV Index 19.5 ± 2.4 14.9 ± 1.8 13.0 ± 1.5 2.86; 0.08

TINN (ms) 462.8 ± 45.7 385.7 ± 53.1 385.1 ± 53.7 0.77; 0.48

LF/HF* 1.9 ± 0.2 2.5 ± 0.3 4.6 ± 1.0 4.59; 0.02

Mean ± standard error

∗p < 0.05

SDNN, and TINN with SDNN (r > 0.9).

4.4.6. Multiple linear regression

We examined the relationship between subjective workload scores and
HRV features. Multiple linear regression analysis was performed with
NASA-TLX as the response variable. For each subject, the multiple
linear regression coefficients are shown in Table 4.2. Please note that
the regression coefficients in the table were computed by fitting the
linear regression using the calibration data. The NASA-TLX scores of
the office-work session were then predicted based on this model. Figure
4.10 shows the predicted workload scores of the individual office-work
sessions.

In order to evaluate the regression results, we considered the follow-
ing evaluation metrics:

(a) Predicted class: The class to which the majority of predicted
values falls into.

(b) Accuracy: The percentage of predicted values that falls into the
correct class.

By using these metrics, we can transform the regression problem
into a classification problem using the majority rule.
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Figure 4.10. Predicted workload scores of the office-work session based on

linear regression model

Table 4.3 shows the actual workload scores of the office-work session,
their actual class, and the results of the proposed metric. As seen in
the table, the assigned class of the office-work session was correct for
all but the third subject.

4.4.7. Classification

Table 4.4 shows the classification results for each subject. As in multiple
linear regression, the class to which the majority of predicted values
fall into is considered as classification result. It can be observed that
the maximum accuracy is achieved by LDA (correct classification for 6
subjects), whereas k-NN and SVM worked successfully for 5 subjects.

4.5. Conclusion and future work

In this work, we have presented how mental workload levels in every-
day life scenarios can be discriminated with data from a mobile ECG
logger by incorporating individual calibration measures. We have pre-
sented an experiment design to induce three different levels of mental
workload in a calibration session and to monitor mental workload lev-
els in everyday life scenarios. Seven healthy male subjects participated
in this study. Besides the recording of ECG data, subjective rating of
the perceived workload was collected with the NASA Task Load Index,
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Table 4.3. Workload score, actual workload class, and estimated class with

corresponding accuracy.

Subjects NASA-office (%) Actual class Predicted class Accuracy (%)

1 50.33 Medium Medium 69.8

2 45 Medium Medium 59.4

3 45.33 Low Medium 34.9

4 52.66 High High 38.1

5 69.33 Medium Medium 51.5

6 46.33 Medium Medium 66.7

7 70.66 Medium Medium 61.3

False identified classes are indicated in bold.

whereas an objective measurement was assessed by collecting salivary
cortisol. According to the subjective ratings and the performance of
the participants in the calibration conditions, we could show that all
participants perceived the induced load levels as intended from the
experiment design. In accordance, the performance decreased with in-
creasing workload. Compared to the calibration conditions, subjective
workload scores of the office-work session were ranked either between
low and medium or between medium and high. In order to assign the
workload score of the office-work into one of three classes (low, medium,
and high), individual boundaries according to the subjective workload
scores collected during the calibration conditions were defined. By ap-
plying ANOVA tests, the HRV features from the calibration conditions
could be classified into two distinct groups with respect to their re-
sponse: with increasing workload, features in the first group showed a
decrease in their values, while features in the second group showed an
increase in their values. The features RMSSD and pNN50 showed a
statistically significant decrease while LF/HF ratio showed a statisti-
cally significant increase with increased workload. The remaining fea-
tures showed a consistent but non-significant increase or decrease, what
might be explained by the limited number of subjects. We employed
multiple regression analysis to model the relationship between relevant
HRV features and the subjective ratings of NASA-TLX. Thereby the
model parameters were estimated using the calibration data in order
to predict the mental workload levels during office-work. The resulting
predictions were correct for six out of the seven subjects. In only one
subject, there was a confusion between low and medium workload. In
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addition, we employed and compared the performance of three classi-
fication methods to identify the mental workload class (low, medium,
or high) to which a new observation belongs. As in multiple regression
analysis, the classification models were trained using the calibration
data in order to predict the mental workload levels during office-work.
The best results were obtained with linear discriminant analysis (LDA)
that yielded a correct classification for six out of the seven subjects.
The only confusion between low and medium workload occurred for the
same subject as in multiple regression analysis. The k-nearest neighbor
algorithm and the support vector machine (SVM) resulted in a cor-
rect classification of the mental workload level during office-work for
five out of the seven subjects. In conclusion, we were able to discrimi-
nate the perceived mental workload level during an office-work scenario
by modeling the relationship between relevant HRV features and the
subjective ratings in calibration settings.

In future work, we are going to extend the amount of monitoring
periods in daily life to several days or weeks. In addition, we have to
increase the number of subjects to obtain a more balanced collective,
e.g. regarding subject’s age. In order to minimize the disturbance of the
participants, we will restrict ourselves to mobile ECG logging and 3-5
questionnaires for self-assessment per day. Such a data basis would al-
low investigating daily variations of perceived and objectively measured
mental workload. In addition, we are going to target a broader variety
of everyday life scenarios. Up to now, we have investigated office-work
in front of a computer. In future work, we will target other activities
like giving lectures. In particular, we will investigate whether the pre-
sented calibrations method (3 levels of N-Back tasks) is appropriate or
which modifications are necessary to model different kinds of real world
workload.
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Abstract

Reaction time (RT) tests are known as simple and sensitive
tests for detecting variation in cognitive efficiency. RT tests
measure the elapsed time between a stimulus and the indi-
vidual’s response to it. A drawback of existing RT tests is
that they require the full attention of a test person which pro-
hibits the measurement of cognitive efficiency during daily
routine tasks. In this contribution we present the design and
the evaluation of a wearable RT test user interface which can
be operated throughout everyday life. We designed a wear-
able watch-like device which combines the generation of a
haptic stimulus and the recognition of subject’s hand move-
ment response. In order to show to what extent the wear-
able RT test is convenient to measure reaction times, we
designed an experiment in which we measured the reaction
times of ten subjects from two different setups. In the first
half of the experiment, the participants performed a desktop-
based RT test whereas in the second half of the experiment
they performed the wearable RT test. In order to measure
changes in the duration and variability of reaction times we
induced additional cognitive load in both setups. We show
that individual changes of reaction times occurred due to
the cognitive load manipulation are similar for both desktop-
based and wearable RT test. Additionally we investigate the
subjective ratings of perceived workload. We conclude that
the presented wearable RT test allows to measure changes in
reaction times occurred due to additional cognitive load and
hence would allow the assessment of changes in cognitive
efficiency throughout everyday life.

5.1. Introduction and motivation

Reaction time (RT) tests measure how rapidly information can be pro-
cessed and a response to it can be activated [14]. In other words, RT
tests measure the elapsed time between a stimulus and the individ-
ual’s response to it. According to Jensen [10], RT tests are well suited
for cognitive assessment tests since in comparison to conventional psy-
chometric techniques, RT tests offer a high sensitivity for detecting
variation in cognitive efficiency and they can be virtually unlimited re-
peated. Several desktop-based RT tests have been developed in which
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users have to respond to visual stimuli by using keyboard, mouse or
special buttons. An extensive review about computer-based cognitive
tests can be found in [20]. There are several examples on applying RT
tests to assess cognitive functioning: early detection of cognitive de-
cline such as dementia or Alzheimer’s disease in elderly; determining
the ability to manage complex activities such as driving, piloting or
search and rescue; identifying of children with intellectual disabilities
such as Attention Deficit Hyperactive Disorder (ADHD).

The main drawback of existing desktop-based RT tests is the re-
quirement of the full attention of the subject, i.e. the subject has to
interrupt his daily routine for several minutes in order to perform the
task on the computer. This restriction prohibits the measurement of
cognitive efficiency during daily routine tasks, e.g. to determine the
ability to manage complex activities such as piloting. Our goal is to de-
velop reaction time tests which can be operated throughout everyday
life by means of wearable devices. An important step in the development
is to ensure that wearable reaction time tests are suitable to measure
changes in reaction times similar to desktop-based approaches.

In this paper, we present the design and the evaluation of a wear-
able RT test user interface. We designed a wearable watch-like device
which combines the generation of haptic stimuli and the recognition of
subject’s responses. Haptic stimulus is generated by a vibration motor.
The subject’s responses to a stimulus are performed by a hand move-
ment which is recognized with an inertial measurement unit (IMU). For
the evaluation of the wearable interface, we conducted an experiment
to investigate to what extent we can measure the user’s reaction time
with our interface compared to desktop-based tests.

5.2. Related work

Three kinds of RT tests are commonly employed in literature [11]: sim-
ple, recognition and choice RT tests. Simple RT tests consist of one
stimulus and one response. For instance the subject has to press a but-
ton as soon as the letter “X” appears at a predefined position or as
soon as a light or sound appears. In recognition RT tests, the subject
has to respond to a stimulus (target) and ignore other stimuli (non-
target). This is sometimes called as “go/no-go” RT task. Recognition
of a particular sound or symbol belongs to this category. Lastly, choice
RT tests include multiple stimuli and multiple responses. The subject
has to respond to each stimulus with a corresponding response, e.g. by
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pressing a certain key whenever a corresponding letter appears on the
screen. A detailed series of recommendations on how to conduct exper-
iments using reaction times and how to analyze the collected data can
be found in [10, 14, 19].

Increasing age and age-related diseases like cognitive impairment
are important factors which influence length and variability of reaction
times [11]. It has been known that with increasing age, reaction times
become more variable and longer. Gorus et al. showed that persons
with cognitive deterioration demonstrated more intra-individual per-
formance variability and more slowing in their reaction times than cog-
nitively healthy elderly [5]. Braverman et al. showed in a clinical setting
that the test of variables of attention (TOVA) is an accurate predictor
of early attention complaints and memory impairments [2]. The effect
of stress was investigated in an experiment which examines the cog-
nitive performance under psychosocial stress [17]. The results showed
that participants under stress were slower in their reaction times. An-
other application area of RT tests is the Attention Deficit Hyperactive
Disorder (ADHD) patients. Children with ADHD have often difficulties
in focusing on tasks and one of the most consistent findings is increased
moment-to-moment variability in reaction time [18].

Most of the studies have in common that RT tests are operated
with a computerized test which requires the full attention of the sub-
ject. Since the user has to interrupt his current activity to perform the
test, most of these techniques are not feasible to be used during normal
life activities. There exist only a few studies which measure one’s cogni-
tive performance continuously during everyday activities. Lieberman et
al. implemented visual stimuli (3 LEDs), auditory stimuli (a miniature
speaker) and two push buttons on a wrist-worn device to assess vigi-
lance [13]. Ivorra et al. implemented a haptic stimulus to interrogate
the central nervous system in a minimally obtrusive way [8]. As the
response, the detection of a wrist movement is defined. By doing so,
they showed that a simple RT test can be continuously administered
throughout the course of normal life activities. However, a comparison
of the wearable implementation with desktop-based RT tests is missing.



5.3 Materials and methods 99

5.3. Materials and methods

5.3.1. Design of the wearable reaction time test

The wearable user interface to measure reaction times consists of two
main modules: the stimuli module to generate haptic stimuli and the in-
ertial measurement unit (IMU) module for detecting wrist movements.
According to the literature, the wrist is a recommended stimulus site for
wearable tactile displays [3, 12, 15, 16]. Therefore we designed a wrist-
mounted tactile display in order to deliver the stimulus information to
the user. For generating vibro-tactile stimuli, we used a coreless mini
DC vibration motor with a diameter of 6mm and a resonant frequency
around 200 Hz (manufactured by Precision Microdrivers Ltd.). In or-
der to maximize the vibration amplitude and to ensure a proper sense
of the vibration, we placed the motor in a separate plastic enclosure
resulted in WxLxH dimensions of 90x55x30 mm which can be attached
to the wrist of the user by using a strap. The stimuli module has its
own battery supply. The vibration motor needs a continuous current
of 83 mA and a start current of 150 mA. In a conservative calculation
(continuous current of 150 mA, single stimulus duration 500 ms, 160
stimuli in 12 minutes), a total of 400 mAh would be required to perform
a continuous reaction time test over 24 hours. In order to guarantee a
continuous operation during at least one day, we have selected a lithium
ion battery with 650 mAh. In addition, we have integrated an audio
driver (MAX4410 by Maxim Inc.) in order to allow the generation of
auditory stimuli through headphones. The IMU module consists of the
ETH Orientation Sensor (ETHOS) which was developed in our labora-
tory [6]. The ETHOS includes a 3D accelerometer and gyroscope which
allows to recognize the subject’s gesture response.

The accelerometer and gyroscope were sampled with a frequency of
128 Hz. The detailed description of the ETHOS hardware platform can
be found in [6]. We modified the firmware version of the ETHOS to
control the vibro-tactile component. An implementation of a go/no-go
task which is comprised of two wearable user interfaces to induce target
and non-target stimuli can be seen in Fig. 5.1.

In order to automatically recognize a predefined hand gesture re-
sponse to the haptic stimulus, we performed a preliminary experiment.
Similar to the wearable RT test presented in [8], we have defined the re-
sponse gesture as a fast rotation of the wrist. Three subjects performed
a RT test on the wearable device during three different conditions. In
the first condition, the subject was sitting on a chair while the arms
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Figure 5.1. Wearable implementation of a go/no-go RT test. The left mod-

ule generates the target stimuli as vibrations on the lower side of the wrist,

whereas the right module generates non-target stimuli on the upper side of

the wrist. For both modules, the IMU is placed on the opposite side of the

vibration motor to recognize the user’s hand gesture response.

were heading towards the floor. In the second condition, the arms were
placed on the table. In the third condition, the subject was walking
with a moderate speed (4km/h) on a treadmill. In each condition we
recorded 3D acceleration and gyroscope data. Based on a visual inspec-
tion of the recorded data, we manually labeled each wrist response. For
all conditions, it was clearly visible that the wrist-turn axis of the gyro-
scope (x-axis) was the most sensitive axis for detecting the fast rotation
of the hand. In order to define a threshold for automatically detecting
this hand gesture, we computed the correctly identified responses for
different thresholds. With a threshold of 0.5 rad/sec, we could correctly
detect the occurrence of this hand gesture response in all conditions.
The raw gyroscope data and the occurrence of haptic stimuli are ex-
emplary shown in Fig. 5.2. According to the simple threshold approach
mentioned above, we compute the time point when the user was as-
sumed to have reacted.
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Figure 5.2. X-component (wrist-turn axis) of the gyroscope data while re-

acting to four stimuli with a fast rotation of the hand. Based on the threshold

approach the time point when a subject has reacted was computed.

5.3.2. Experiment: Comparison of Wearable and Desktop RT
Tests

Ten healthy subjects (6 male, 4 female, average age 26.15 years) par-
ticipated in our experiment. All participants were paid 30 Swiss Francs
for participating in one session of approximately 70 minutes. The goal
of this experiment was to evaluate our wearable user interface by com-
paring the reaction times obtained by the wearable reaction time test
with a desktop-based approach.

Experimental setup

For the desktop-based reaction time test we used a free version of
the TOVA test which is implemented with the psychology experiment
building language (PEBL) [1]. The implementation of the test is based
on the description in [4]. A white square appears briefly on the screen,
with a black square within it. Participant must respond only to tar-
gets (the black square on top) and ignore the non-targets (the black
square on the bottom). Each stimulus is presented for 100 ms at 2000
ms intervals. For the wearable RT test, we placed two RT modules on
the dominant wrist of the user as shown in Fig. 5.1. The left module
generates the haptic target stimuli on the lower side of the wrist (volar
side), whereas the right module generates haptic non-target stimuli on
the upper side of the wrist (dorsal side). Similar to the desktop-based
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Figure 5.3. Experimental procedure including two conditions (baseline as

TOVA single task and cognitive load as TOVA + 2Back dual-task) for each

setup (desktop based RT and wearable RT).

RT test, each stimulus is generated for 100 ms at 2000 ms intervals.
For recognizing the user’s wrist turn response, we only use the data
collected with the IMU placed opposite to the left module.

Experimental procedure

Each setup (wearable and desktop-based) consists of two experimental
conditions: (i) single-task in which the subject has to respond to the
target stimulus, and (ii) dual-task in which the subject has to solve
a cognitive task in parallel to the single-task. Each condition lasts 10
minutes and contains 320 stimuli (160 targets and 160 non-targets).
This leads to a total of 640 reaction times for each subject (160 targets
x 2 setup x 2 conditions). As cognitive task we employed a variant of
the N-Back test, the so-called “Audio 2-Back” [9] as explained in the
following. The four phases used for each subject are:

• Desktop-based RT (single-task): The subject has to respond to
each target stimulus by pressing the space bar on the keyboard
and ignore non-target stimuli types. This is the typical variant of
the test of variables of attention (TOVA).

• Desktop-based RT with N-Back (dual-task): In this condition a
second task is added to the traditional desktop-based TOVA test.
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The subject has to solve an Audio 2-Back task which is presented
to the user simultaneously with the TOVA test. Thereby a letter
is presented to the subject via an audio message and the subject
has to respond if the currently pronounced letter is the same as
the one that was pronounced 2 positions back. The response to
the Audio 2-Back was done by saying “match” whenever a sound
match occurs. The investigator controls if the subject answers
correctly and gives feedback continuously to the user about cor-
rect and false answers to keep him concentrated on both of the
tasks.

• Wearable RT (single-task): The subject has to respond to each
target stimulus generated on the wrist by performing a wrist
movement and ignore the non-target stimuli types.

• Wearable RT with N-Back (dual-task): The subject has to respond
to target stimuli with hand movements, and solve Audio 2-Back
task simultaneously.

In the following, we denote the single task of each setup as “base-
line” and dual task as “cognitive load” condition. Directly after each
condition for both settings, each subject was asked to indicate his per-
ceived workload by completing the multidimensional assessment tool
NASA Task Load Index (TLX) [7]. The rating consists of the follow-
ing six scales: mental demand, physical demand, temporal demand,
own performance, effort and frustration. Based on the ratings, the to-
tal workload was computed as a weighted average. The experimental
procedure can be seen in Fig. 5.3.

5.4. Results

5.4.1. Reaction times

For the analysis, the mean reaction time and the standard deviation
are considered as evaluation metrics. In Table 5.1 and Fig. 5.4 the
means and standard deviations of the reaction times for all subjects in
each condition are presented. First, it can be observed that for both
desktop and wearable RT test, the mean reaction time is always in-
creased during the cognitive load condition compared to the baseline
condition. Mean reaction times of the desktop-based RT test are sig-
nificantly correlated with the wearable RT test for the baseline condi-
tion (r = 0.8336, p < 0.01) as well as for the cognitive load condition
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Table 5.1. Comparison of mean reaction times including standard deviation

for the four experimental conditions.

Subjects
Desktop-based reaction times (ms) Wearable reaction times (ms)

Baseline Cognitive load Baseline Cognitive load

1 455 (102) 560 (217) 408 (103) 574 (208)

2 375 (93) 400 (173) 351 (89) 423 (173)

3 339 (68) 455 (208) 314 (80) 429 (134)

4 317 (62) 475 (192) 257 (44) 429 (182)

5 336 (94) 401 (123) 263 (83) 333 (115)

6 398 (70) 439 (135) 348 (57) 424 (133)

7 350 (59) 513 (229) 347 (142) 498 (187)

8 338 (91) 417 (132) 303 (111) 373 (185)

9 311 (42) 367 (129) 321 (49) 471 (170)

10 334 (59) 432 (181) 302 (70) 418 (147)

mean (standard deviation)

(r = 0.7070, p < 0.05). Second, it can be observed that the increase in
mean reaction times from baseline to cognitive load conditions is similar
within subjects for both desktop and wearable setting. The relative dif-
ference (mean RT during cognitive load minus mean RT during baseline
condition) between desktop and wearable setting are significantly cor-
related (r = 0.7095, p < 0.05). Consistently, the variability of reaction
times was always higher in the cognitive load condition compared to the
baseline condition for both desktop and wearable setting. No significant
correlations were observed for the standard deviation of reaction times.
Besides, it can be observed that for most subjects the mean reaction
time in the wearable setting is lower compared to the desktop-based
approach during baseline (exception is subject 9). In the cognitive load
condition the mean wearable reaction times are again lower for most
subjects (exceptions are subjects 1, 2 and 9). This might be explained
by the fact that the transduction of a visual stimulus takes generally
longer than the perception of a haptic stimulus as known from literature
[10].
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Figure 5.4. Mean reaction times for each subject collected from two con-

ditions in each setting. Error bars indicate standard deviation.

5.4.2. Subjective ratings

Fig. 5.5 shows the subjective NASA task load index for each subject.
As intended from the experiment design, it can be observed that for
both desktop and wearable RT test, the subjective ratings of the cog-
nitive load condition are higher than the respective baseline condition.
A comparison between both tests shows that 50% of the subjects per-
ceived higher total workload during baseline condition when using the
wearable device. This is due to the fact that 90% of all subjects rated
the “physical demand” item of NASA-TLX with higher values for the
wearable setting since additional physical demand was required for re-
sponding with the wrist movement. However, the comparison between
both cognitive load conditions shows that 70% of the subjects per-
ceived lower workload when using the wearable device. These results
indicate that operating the wearable device results in lower perceived
mental load when the user is engaged in a primary task which requires
a certain amount of information processing.

5.5. Conclusion and outlook

In this paper, we presented our experimental design and initial results
in measuring reaction times of a person using a wearable RT test. In
order to show to what extent a wearable interface is convenient to mea-
sure reaction times, we designed an experiment in which we measured
response times of ten subjects from two different setups. In the first half
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Figure 5.5. Subjective workload scores of each subject obtained from the

NASA task load index for each condition.

of the experiment, the participants performed a desktop-based RT test
whereas in the second half of the experiment they performed the wear-
able RT test. In order to measure changes in the duration and variability
of reaction times we induced additional cognitive load in both setups.
Besides the recording of reaction time data, subjective ratings of per-
ceived workload were collected with the NASA-TLX. In a comparison
of the obtained wearable reaction times with desktop-based reaction
times, we showed that individual changes of reaction times due to the
cognitive load are similar for both desktop-based and wearable RT test.
According to the subjective ratings of the participants, we could show
that all participants perceived the induced cognitive load as intended
from the experiment design. Furthermore, subjective ratings showed
that operating the wearable RT test interface under cognitive load re-
sults in lower perceived mental load compared to desktop-based reac-
tion time test. These results suggest that the wearable RT test is more
appropriate when the user is engaged in a second task which requires
a certain amount of information processing. Based on the achieved re-
sults, we conclude that wrist-mounted reaction time tests seem feasible
to measure factors which influence length and variability of reaction
times and would allow the measurement of variation in cognitive effi-
ciency throughout everyday life where the individuals are engaged in
multiple tasks.

In our future work, we will perform statistical comparisons of differ-
ent wearable RT setups, e.g. generation of the target/non-target stim-
ulus on the dominant/non-dominant hand. In addition we are going
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to conduct long-term measurements of reaction times throughout daily
life as cognitive performance indicator. We are planning to measure
reaction times in real time from employers which have to perform com-
plex intellectual tasks like flight operators. The obtained reaction times
would allow us to identify loss of cognitive efficiency and to reduce the
risk of cognitive overload.

Acknowledgments: This research has been partly funded by the Eu-
ropean FP7 project ProFiTex, grant agreement number CT-TP 228855-
2.
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Abstract

Conducting cognitive assessment tests throughout normal
daily life offers new opportunities to early detect changes
in cognitive efficiency. Such tests would allow identifica-
tion of early symptoms of cognitive impairment, monitor the
progress of disease processes related to cognitive efficiency
and reduce the risk of cognitive overload. Reaction time tests
are known as simple and sensitive tests for detecting varia-
tion in cognitive efficiency. A drawback of existing reaction
time tests is that they require the full attention of a test per-
son, which prohibits the measurement of cognitive efficiency
during daily routine tasks. In this contribution we present
the design, implementation and empirical evaluation of two
wearable reaction time tests that can be operated through-
out everyday life. We designed and implemented wearable
watch-like devices, which combine the generation of haptic
stimuli and the recognition of hand gestures as the subject’s
response. For the evaluation of the wearable interface, we
conducted a user study with 20 subjects to investigate to
what extent we can measure changes in length and variabil-
ity of user’s reaction time with the wearable interfaces in
comparison to well accepted, traditional desktop-based tests.
Based on the achieved statistical results, we conclude that
the presented wearable reaction time tests are suitable to
measure factors that influence length and variability of re-
action times.

6.1. Introduction

Conducting cognitive assessment tests throughout normal daily life of-
fers new opportunities to early detect changes in cognitive efficiency.
On the one hand, such tests would allow identification of early symp-
toms of cognitive impairment in risk-groups like the elderly or to mon-
itor the progress of disease processes related to cognitive efficiency like
Alzheimer’s disease. On the other hand, a continuous assessment of
cognitive efficiency would allow reducing the risk of cognitive overload
for employers who have to perform complex intellectual tasks like flight
assistants. At present, cognitive assessment is usually done in hospital
environments by clinical assessments such as Mental State Examina-
tion (MSE), neuropsychological tests or mental state questionnaires
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[3, 7, 20, 23]. Promising alternatives are computerized assessments of
cognitive functioning. In comparison to traditional neuropsychological
assessment methods, computerized tests offer benefits such as cost re-
duction and time savings. An extensive review about computer-based
cognitive tests for detecting cognitive decline can be found in [26].

A simple and sensitive computerized cognitive assessment test is the
reaction time (RT) test, which is defined as a measure of how rapidly
information can be processed and a response to it can be activated
[18]. In other words, it is the elapsed time between a stimulus and
the individual’s response to it. According to Jensen [13], RT tests are
well suited for cognitive assessment since they offer a high sensitiv-
ity for detecting variation in cognitive efficiency and in comparison to
conventional psychometric tests they can be repeated virtually an un-
limited amount of times. In recent years several desktop-based RT tests
have been developed. Commonly, visual stimuli are generated at ran-
dom time points and the subject has to respond by using a keyboard,
mouse or special buttons. There are several examples of applying RT
tests to assess cognitive functioning: early detection of cognitive decline
such as mild cognitive impairment or Alzheimer’s disease; determining
the ability to manage complex activities such as driving or piloting,
and identifying children with intellectual disabilities such as Attention
Deficit Hyperactive Disorder (ADHD).

The main drawback of existing desktop-based RT tests is their in-
compatibility with daily life since the subject has to interrupt his daily
routine for several minutes in order to perform the RT test. As a con-
sequence the measurement of cognitive efficiency during daily routine
tasks is not feasible so far. In order to overcome this limitation our goal
is to develop wearable reaction time tests that can be operated through-
out everyday life. An important step in the development is to validate
whether wearable reaction time tests measure changes in reaction times
similar to desktop-based approaches.

In this contribution we present the design, implementation and em-
pirical evaluation of two wearable reaction time test variants. We have
designed and implemented wearable watch-like devices, which gener-
ates haptic stimuli and recognizes the user’s hand gesture as a response.
Haptic stimuli are generated from time to time by a vibration motor.
The subject has to respond to a stimulus by performing a forearm rota-
tion, which is recognized with an inertial measurement unit (IMU). For
the evaluation of the wearable reaction time interfaces, we conducted
an experimental comparison with traditional desktop-based tests. We
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have compared duration and variation of reaction times between the
wearable interfaces and desktop-based RT tests.

In the following we first provide an overview about related work.
Next, we describe the implementation of wearable reaction time tests
and the experimental evaluation procedure. In the result section we
present the outcomes of the performed evaluation. Finally, we conclude
our work, discuss the results and provide an outlook on future work.

6.2. Related work

There exist mainly three kinds of reaction time tests [15]: simple, recog-
nition and choice reaction. In simple reaction time tests the subject
has to respond to one stimulus with a dedicated response. For instance
the subject has to press a certain button as soon as a particular sym-
bol appears at the screen. In recognition reaction time tests, which
are sometimes called “go/no-go” tasks, the subject has to respond to
target stimuli and ignore non-target stimulus types. Lastly, in choice
reaction time tests the subject has to respond to multiple stimuli with
a corresponding response e.g. pressing a dedicated key whenever a cor-
responding letter appears on the screen. A detailed series of recommen-
dations on how to conduct experiments using reaction times and how
to analyze the obtained data can be found in [13, 18, 25].

Increasing age and age-related diseases like cognitive impairment
are known to influence length and variability of reaction times [15].
For instance, Gorus et al. showed that reaction times and performance
variability are potential markers for the early detection of Alzheimer’s
disease. Persons with cognitive deterioration demonstrated more intra-
individual performance variability and more slowing in their reaction
times than cognitively healthy elderly. Thus, the authors suggest that
intra-individual performance variability and RT are predictors for mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) [9]. Braver-
man et al. showed that the test of variables of attention (TOVA) is
an accurate predictor of early attention complaints and memory im-
pairments in a clinical setting [3]. The effect of stress had been studied
by investigating the cognitive performance under psychosocial stress
[22]. Subjects were randomly assigned to the Trier Social Stress Test
(TSST) versus a rest condition. After the stress test, a go/no-go task
was performed by each participant. Participants in the stress condition
were slower in their reaction time than in the rest condition. Another
application area of reaction time tests is the investigation of Attention
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Deficit Hyperactive Disorder (ADHD) patients. Children with ADHD
have in general difficulty in focusing on tasks. In [24] the authors per-
formed a study to examine the RT variability in ADHD using go/no-go
tasks with differing levels of cognitive demand. A total of 140 children
(57 with ADHD) completed both a simple go/no-go task and a more
complex go/no-go task with increased working memory load. The re-
sulting findings showed increased variability in both tasks for ADHD
children.

Most of the studies have in common that the employed RT tests are
operated with a computerized test, which requires the full attention of
the subject for several minutes. Hence, most of these techniques are not
feasible to be used without interrupting normal life activities. There ex-
ist only a few studies which investigate the feasibility of measuring reac-
tion times continuously during everyday activities. Lieberman et al. im-
plemented a wrist-worn device to assess vigilance. The device consists
of visual stimuli (3 LEDs), auditory stimuli (a miniature speaker) and
two push buttons [17]. Ivorra et al. [11] implemented a haptic stimulus
to interrogate the central nervous system in a minimally obtrusive way.
As the response the detection of a wrist movement is defined. In a first
feasibility study they showed that a simple RT test can be continuously
administered throughout the course of normal life activities. However,
an evaluation of the wearable implementation in comparison with state
of the art desktop-based RT tests is missing and the obtained reaction
times were not further analyzed. In our recent work [6], we followed the
approach of Ivorra et al. and designed a wearable reaction time device
which combines the generation of haptic stimuli and the recognition of
forearm rotation as subject’s response. In our preliminary results we
presented the mean and standard deviation of reaction times obtained
from ten subjects. In this contribution we present a user study with 20
subjects in order to evaluate two wearable reaction time tests. In par-
ticular, we investigate to what extent we can measure changes in length
and variability of user’s reaction time in comparison to well accepted,
traditional desktop-based tests. We analyze within subjects as well as
between subjects effects.
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6.3. Materials and methods

6.3.1. Design of the wearable reaction time test

As outlined in the related work section above, most of the desktop-based
reaction time tests consist of visual stimuli and keyboard responses. In
order to design a wearable reaction time test, we follow the approach of
Ivorra et al. [11]: we replaced the visual stimulus by a haptic stimulus
and instead of a keyboard response we employ a forearm rotation. Hap-
tic stimulus was chosen since the visual and auditory channel is often
already occupied for everyday life tasks. We apply the haptic stimuli
on the wrist since from the literature it is known that the performance
of perceiving vibro-tactile stimulus is considerable enhanced when the
stimulation fall near natural anatomical anchor points such as wrist and
elbow [5]. In addition, the placement on the wrist was recommended
by several studies about wearable tactile displays [4, 16, 19, 21]. The
forearm rotation as response to the haptic stimulus was selected to al-
low performing the test in a natural way without the need of pressing
any extra button.

The wearable user interface consists of two main modules: the stim-
uli module to generate haptic stimuli and the inertial measurement unit
(IMU) module for detecting forearm rotations. For generating haptic
stimuli, we used a coreless mini DC vibration motor with a diameter
of 6 mm and a resonant frequency around 200 Hz (manufactured by
Precision Microdrivers Ltd.). In order to maximize the vibration ampli-
tude and to ensure a proper sense of the vibration, we placed the motor
in a separate enclosure with a dimension of 90x55x30 mm. The module
is attached to the wrist of the user by using a strap. The complete
housing was constructed using the 3D CAD software Autodesk Inven-
tor and fabricated with the rapid prototyping equipment available at
the department of mechanical and process engineering at ETH Zurich.
The stimuli module has its own battery supply in order to guarantee a
continuous operation during at least one day. In a conservative calcu-
lation (current of 150 mA, single stimulus duration 500 ms, 160 stimuli
in 12 min), a total of 400 mA h would be required to perform a con-
tinuous reaction time test over 24 h. Hence, we have selected a lithium
ion battery with 650 mA h. In a feasibility study we have investigated
the turn-on-delay of 10 Vibration motors. Each of the motors showed a
turn-on time derivation of at most ±5 ms for repeatedly applied stim-
uli. All tested motors were within 20 ms uncertainty with respect to
their turn-on delay.
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Figure 6.1. Wearable implementation of a go/no-go RT test. The left mod-

ule generates the haptic target stimuli as a vibration on the lower side of the

wrist, whereas the right module generates non-target haptic stimuli on the

upper side of the wrist. For both modules, the IMU is placed on the opposite

side of the vibration motor to control the generation of haptic stimuli and to

recognize the user’s gesture responses.

The IMU module consists of the so-called ETH Orientation Sensor
(ETHOS), which was developed in our laboratory [10]. The ETHOS
includes a three-axis accelerometer and a gyroscope, which is used to
recognize the subject’s gesture response. The accelerometer and gyro-
scope were sampled with a frequency of 128 Hz. The detailed description
of the ETHOS hardware platform can be found in [10]. We modified the
firmware version of the ETHOS to control the vibro-tactile component.
An implementation of a wearable go/no-go task can be seen in Fig. 6.1.

In order to develop a procedure for automatically recognizing a
predefined hand gesture response, we performed a preliminary exper-
iment. As a response gesture we have defined an outward rotation of
the forearm (see right side of Fig. 6.3) similar to the wearable RT test
presented in [11]. Three subjects performed a simple RT test during
three different conditions. In the first condition, the subject was sit-
ting on a chair while the arms were heading towards the floor. In the
second condition, the arms were placed on the table. In the third con-
dition, the subject was walking with a moderate speed (4 km/h) on
a treadmill. In each condition we randomly applied haptic stimuli. As
soon as the subject perceived the target vibration stimulus he had to
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Figure 6.2. X-component (wrist-turn axis) of the gyroscope data while re-

acting to four stimuli with a fast rotation of the hand. Based on the threshold

approach the time point when a subject has reacted was computed.

rotate his forearm outwards. 3D acceleration and gyroscope data were
sampled with a frequency of 128 Hz. Based on a visual inspection of
the recorded data, it was clearly visible that the wrist-turn axis of the
gyroscope (x-axis) was the most sensitive axis for detecting the rota-
tion of the forearm. Each of the axes of the IMU module and the hand
gesture are illustrated in Fig. 6.3. In order to define a threshold for au-
tomatically detecting the forearm rotation, we computed the correctly
identified responses for different thresholds. With a threshold of 0.5
rad/s, we could correctly detect the onset of the forearm rotation in all
conditions for all subjects. The raw gyroscope data and the time points
when haptic stimuli were applied are exemplary shown in Fig. 6.2. The
reaction time is defined as the time difference between the onset of the
haptic stimulus and the onset of the forearm rotation.

We have implemented the wearable go/no-go task in two variants.
In the first design, we placed the target stimulus on the lower side and
the non-target stimulus on the upper side of the dominant wrist. In the
second two-handed design, the target stimulus module is placed on the
lower side of the dominant wrist while the non-target stimulus is placed
on the lower side of the non-dominant wrist. The two sensor placements
are depicted in Fig. 6.3. In the following, we denote the first setup as
“one-handed” and the second setup as “two-handed”.
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Figure 6.3. (Left) Two implementations of wearable go/no-go reaction time

tests. In the first one-handed design, target and non-target stimulus modules

are both placed on the dominant wrist. In the second two-handed design,

the target stimulus module is placed on the dominant wrist while the non-

target stimulus is placed on the non-dominant wrist. (Right) Illustration of

the outward rotation of the forearm including x-axis of the gyroscope.

6.3.2. Participants

Twenty subjects (12 male, 8 female, average age 24.3 years) were re-
cruited for the experiment. All participants were compensated with
30 Swiss Francs for participating in one session of approximately 70
min. Before starting the experiment, participants were briefly informed
about the experimental procedure and they were offered a detailed
report of their reaction time results after completing the analysis of
their reaction times. Participants were randomly assigned to one of the
two experimental groups, which differ in sensor placement (one-handed
vs. two-handed). Each group consists of 4 female and 6 male partici-
pants.

6.3.3. Experimental overview

This experiment addresses two main goals: (i) to evaluate our wear-
able user interface by comparing the reaction times obtained by the
wearable reaction time tests with those collected by a desktop-based
reaction time test and (ii) to compare reaction times collected by the
one-handed with those collected by two-handed wearable setup. As a
desktop-based reaction time test we used a free version of the go/no-go
TOVA test [2]. The test procedure follows the description provided in
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Figure 6.4. Target and non-target stimulus types of the TOVA test.

[8]. A white box appears for 100 ms on the screen. In the white box,
a black square is shown on the top or on the bottom. The participant
must respond only when the black square appears on the top (target
stimulus) and must not respond if the black square appears on the
bottom (non-target stimulus). Fig. 6.4 depicts the two target and non-
target stimuli types of the TOVA test. Each stimulus is presented at
2000 ms intervals. Similar to the desktop-based RT test, in the wear-
able variant each haptic stimulus is generated for 100 ms at 2000 ms
intervals. The IMU, used for recognizing the user’s forearm rotation, is
placed on the opposite to the stimuli module.

6.3.4. Experimental procedure

For both desktop-based and wearable setting two experimental condi-
tions are investigated: (i) idle condition in which the subject is only
performing the reaction time test, and (ii) cognitive load condition in
which the subject is performing a continuous performance task in par-
allel to the reaction time test. Each condition lasts about 10 min and
contains 320 stimuli (160 targets and 160 non-targets). In total 640
reaction times (160 targets x 2 setups x 2 conditions) were collected
from each subject. For inducing cognitive load we have employed the
so-called “Audio 2-Back” test, which is a variant of N-Back tests [1, 12].
In the following the two setups and the two conditions are described in
more detail.

1. Desktop-based RT (idle): The subject has to respond as fast as
possible to each visual target stimulus by pressing the space bar
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Figure 6.5. Experimental procedure: Subjects are randomly assigned in

one of the two experimental groups i.e. one-handed and two-handed. Each

subject performed idle and load conditions for desktop-based and wearable

reaction time test separately.

on the keyboard and ignore non-target stimuli. This is the typical
variant of the test of variables of attention (TOVA).

2. Desktop-based RT with N-Back (cognitive load): In this condition
a second task is added to the traditional desktop-based TOVA
test. The subject has to solve an Audio 2-Back task, which is
presented to the user in addition to the TOVA test. In the Audio
2-Back task every 3 s a letter is presented to the subject via
an audio message. The subject must only respond if the currently
pronounced letter is the same as the one that was pronounced two
positions back. Since the subject has to memorize the two prior
letters and has to perform a comparison with the current letter
in time, this task induces additional cognitive load. In order to
respond the subject has to say “match” whenever a sound match
occurs. In order to keep the subject engaged in the second task,
the experiment leader continuously controls the performance of
the subject and provides direct feedback to the user about correct
and false answers.

3. Wearable RT (idle): The subject has to respond as fast as possible
to each haptic target stimulus by performing a forearm rotation
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and ignore the non-target stimuli.

4. Wearable RT with N-Back (cognitive load): Like in (3) the subject
has to respond as fast as possible to each haptic target stimulus
by performing a forearm rotation. Like in (2) the subject has to
solve the Audio 2-Back task simultaneously.

The experimental procedure can be seen in Fig. 6.5. Each experi-
mental group performed the same procedure. The only difference was
the sensor placement during the wearable reaction time tests.

6.3.5. Measures

For the analysis, mean reaction time, intra-individual variability mea-
sured as the coefficient of variation (CV) [14, 24] and accuracy (number
of commission errors defined as the number of responses to non-targets)
are used as evaluation metrics. For each individual, the coefficient of
variation is computed as the standard deviation divided by the mean
reaction time.

6.3.6. Statistical analysis

We performed separate statistical analyses to analyze within subjects
and between subjects effects. For within subjects comparison, we per-
formed two-way repeated measures ANOVA for each experimental
group (one-handed vs. two-handed) using the three measures as depen-
dent variables, while setting (desktop vs. wearable) and condition (idle
vs. load) serve as independent variables. Data were tested for normal
distribution using Kolmogorov-Smirnov test. Within subject compar-
isons address the following research questions: Do the mean reaction
time, variability and accuracy differ between desktop and wearable set-
tings? Do mean reaction time, variability and accuracy differ between
idle and load conditions?

In order to analyze the effects in detail, we performed a pairwise
comparison (with Bonferroni correction) using repeated measures one-
way ANOVA. In this manner, we compared pairs of independent vari-
ables with each other. In order to analyze the setting effect, we did a
pairwise comparison of desktop-idle vs. wearable-idle and desktop-load
vs. wearable-load. In order to analyze the condition effect, we did a
pairwise comparison of desktop-idle vs. desktop-load and wearable-idle
vs. wearable load. For one-way repeated measures ANOVA, data were
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tested for homogeneity of variance using Mauchly’s sphericity test and
if necessary Greenhouse-Geisser correction was performed.

In order to compare different sensor placements for the wearable
setting, we performed between subjects comparison. For each measure,
we performed a mixed 2x2 ANOVA with group (one-handed vs. two-
handed) as between-subject variable and condition (idle vs. load) as
within-subject variable. Between subjects comparison addresses the
following question: Do wearable reaction times differ between dif-
ferent sensor placements (one-handed vs. two-handed)? Data were
tested for normal distribution and homogeneity of variance using the
Kolmogorov-Smirnov and Levene’s test. In order to investigate the dif-
ferences between each condition of each group we performed an inde-
pendent samples t-test. Greenhouse-Geisser correction was performed
if necessary in the repeated measures data.

6.4. Results

We first present the boxplots of mean reaction time, coefficient of varia-
tion, and commission error for both groups and both settings in Fig. 6.6.
First, it can be observed that in each group the mean reaction time of
the subjects is always increased during the load condition compared to
the idle condition. Second, it is visible that the mean reaction times of
the wearable setting are faster than those of the desktop-based setting
during the idle condition. Third, we can observe that the variability is
increased during the load condition for both settings and groups. The
number of commission errors does not show a clear visible difference
between settings and groups. In the following we provide detailed sta-
tistical analysis for within subjects comparison and for between subject
comparison.

6.4.1. Within subjects comparison

Mean reaction times

Two-way repeated measures ANOVA of mean reaction time showed
a significant main effect for condition for one-handed as well as two-
handed group (p < 0.001). Subjects were thus always slower during
the cognitive load condition compared to the idle condition. There was
not a significant main effect of the setting for the one-handed group.
Mean reaction times of the subjects were not significantly affected by
whether subjects performed desktop or wearable reaction time tests.
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Figure 6.6. Boxplots of mean reaction time (above), coefficient of variation

(middle), and commission error (below) for both groups and both settings.

(DI = desktop-idle, WI = wearable-idle, DL = desktop-load, WL = wearable-

load)
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On the contrary, the setting showed a significant main effect for the
two-handed group (p < 0.01).

As shown in Table 6.1, pairwise comparison revealed that mean re-
action times of the desktop-based reaction time test were significantly
slower than the wearable reaction time test during the idle condition
(desktop-idle vs. wearable-idle) for both one-handed (p < 0.05) and
two-handed group (p < 0.01). However for both of the groups a signifi-
cant difference between both settings was not observed during the load
condition (desktop-load vs. wearable-load).

Variability

Two-way repeated measures ANOVA of CV indicated a significant main
effect for condition (idle vs. load) for both of groups showing that sub-
jects demonstrated higher variability under load condition compared to
idle condition (p < 0.001). There was not a significant main effect for
setting for both groups.

As shown in Table 6.1, pairwise comparison confirms the significant
increase of variability under cognitive load for both groups and settings.

Accuracy

Two-way repeated measures ANOVA of commission errors showed
a significant main effect for condition only for two-handed group
(p < 0.01). However, pairwise comparison between idle and load condi-
tions for each setting (desktop-idle vs. desktop-load and wearable-idle
vs. wearable-load) revealed that there was not a significant increase in
commission errors during load condition compared to idle condition.

6.4.2. Between subjects comparison

Mean reaction times

Mixed 2x2 ANOVA showed a significant condition (p < 0.001) and
group effect (p < 0.05) on mean reaction times. As shown in Table
6.2, post-hoc group by group comparison revealed that during the idle
condition subjects in the two-handed group were significantly faster
than the subjects in the one-handed group (p < 0.05).
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Variability

Mixed 2x2 ANOVA indicated a significant effect for condition (p <
0.001) but not a significant effect for group on variability. Subjects
overall demonstrated higher CV during load condition compared to the
idle condition. There was not a significant difference between groups.

Accuracy

Mixed 2x2 ANOVA showed a significant effect for condition on com-
mission error (p < 0.05). Subjects overall showed more errors under
load condition compared to idle condition. There was not a significant
main effect for group.

6.5. Conclusion and discussion

In this contribution we have presented the implementation and empir-
ical evaluation of two wearable reaction time test designs. We have im-
plemented wearable watch-like devices, which combine the generation
of haptic stimuli with the recognition of hand gestures as subject’s re-
sponse. For the evaluation of the wearable interfaces, we have conducted
an experiment to investigate to what extent we can measure changes
in length and variability of user’s reaction time with the wearable in-
terfaces in comparison to a well accepted, traditional desktop-based
test.

In total we have investigated three research questions. First, we have
analyzed whether mean reaction times, variability and accuracy differ
between the induced idle and load conditions. Since we were interested
in whether our wearable user interface is sensitive to measure changes
in reaction times occurred due to altered cognition, we induced cogni-
tive load on subjects to alter their cognitive state. The cognitive load is
one of the factors that influences the duration and variability of reac-
tion times. As mentioned in related work, altered cognition could also
be mild cognitive impairment, dementia or Alzheimer’s disease. Since
in our experiment healthy subjects participated, an additional cogni-
tive task was used to simulate an alteration in subject’s cognitive effi-
ciency. The results show that during load condition mean reaction time
and variability are significantly increased for both settings (desktop
vs. wearable) and both groups (one-handed vs. two-handed). This first
result shows us that our wearable user interface is suitable to measure
changes in reaction times occurred due to one of the factors affecting
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human reaction time. Second, we have investigated whether there are
differences between desktop and wearable setting. We observed signifi-
cant faster reaction times for both wearable settings under the idle con-
dition. A possible explanation is the faster perception of haptic stimuli
in comparison to visual stimuli. Third, we have investigated differences
between the two wearable reaction time variants. The only difference
between both experimental groups was a significant faster mean reac-
tion time for the two-handed design under idle condition. A possible
explanation is that differentiating between target and non-target on the
same hand is more difficult than differentiation of target and non-target
on two hands. This result shows us that both variants were appropriate
to measure changes in reaction times but the one-handed variant was
more complex. Thus, depending on the experiment design, one could
use the one-handed design to perform more complex reaction time test
such as go/no-go task, which needs more concentration to differenti-
ate between two similar stimuli. Two-handed design is less complex
because the discrimination of the two stimuli is easier. Based on the
achieved results, we finally conclude that both presented implementa-
tions of wearable reaction time tests are suitable to measure factors
that influence length and variability of reaction times.

6.6. Future work

In our future work, we will investigate long-term measurements of re-
action times throughout daily life as cognitive performance indicators.
We will collect reaction time data from several subjects during daily
life activities. Since an interrogation every two seconds would not be
acceptable during normal life activities, the time interval between two
stimuli has to be increased. Up to now we collected reaction times from
one subject during 8 h with random intervals varying between 60 and
90 s which results in 384 reaction times. Based on the collected re-
action times the minimum number of reaction times will be defined
by analyzing the correlations between reaction times and self-reported
items.

Since different activities can also affect the reaction times, we will
investigate the variations in reaction times occurred due to differ-
ent daily life activities. In addition to reaction times, we will collect
self-assessments such as concentration level, alertness, tiredness, etc.
throughout the day and we will investigate the relation between reac-
tion times and self-reported items on cognitive efficiency.
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In a second study, we want to employ our wearable reaction time
test on the elderly with cognitive impairment. The main goal is to
use the reaction time test continuously as a secondary task while per-
forming activities of daily living. Cognitive impairment or attentional
deficit is reflected in the performance of daily activities among elderly
people. A decrement on reaction time performance could provide us
a measure of attentional resources needed to perform that particular
daily activity. Another possible employment could be for patients after
a stroke. Reaction times can be collected while the patients perform
different motor skills during a rehabilitation program. An increase in
reaction time performance (more attentional resources are allocated for
the cognitive performance task) could indicate that the patient needs
to allocate fewer attentional resources to maintain the motor skills and
that the rehabilitation has made progress.

In addition, we are planning to extend the implementation of wear-
able reaction times by adding context-awareness in order to provide a
context-aware generation of stimuli events.
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Abstract

Reaction time tests are known as sensitive tests for mea-
suring cognitive efficiency, cognitive decline, early attention
complaints, and memory impairments. A main drawback
of existing computer-based reaction time tests is their in-
compatibility with daily life. As a consequence, it is not
feasible so far to assess variations in cognitive efficiency
which are caused by influencing factors occurring in daily
life. In order to overcome this limitation, in recent work, we
have designed and implemented a wearable watch-like reac-
tion time test tool. In this contribution, we present a case
study when employing the wearable reaction time test in the
work environment of a graphic designer. We show that our
tool allows to continuously collect reaction times throughout
15 working days. Besides collecting reaction times, we em-
ployed an experience sampling method to gather subjective
data on mood and perceived workload. The correlation anal-
ysis showed that mean reaction time is significantly positive
correlated with mental and temporal demand. High level of
arousal results in slowing of reaction times and higher vari-
ability whereas a low arousal results in lower variability of
reaction times.

7.1. Introduction

Reaction time tests measure how rapidly stimuli information can be
processed and a response to it can be activated [18]. In other words, re-
action time tests measure the elapsed time between the occurrence of a
stimulus and the individual’s response to it. Since the middle of the 19th
century, reaction time has been extensively investigated by experimen-
tal psychologists. In the last decades, several computer-based reaction
time tests have been developed in which a subject has to respond to
visual stimuli by using keyboard, mouse or special buttons. According
to Jensen [13], reaction time tests are well suited for cognitive assess-
ment tests since reaction time tests offer a high sensitivity for detecting
variation in cognitive efficiency and they can be repeated virtually an
unlimited amount of times. An extensive review about computer-based
cognitive tests can be found in Wild et al. [27]. There are several ex-
amples on how reaction time tests are applied to assess variations in
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cognitive functioning, such as detection of cognitive decline or determi-
nation of the ability to manage complex activities like driving, piloting,
search and rescue. For example, Kosinski [14] reported that cognitive
impairment influences length and variability of reaction times. In Gorus
et al. [8], it was shown that persons with cognitive deterioration demon-
strated more intra-individual performance variability and more slowing
in their reaction time than cognitively healthy elderly. Further, Braver-
man et al. [3] showed that a reaction time test is an accurate predictor
of early attention complaints and memory impairments.

The main drawback of existing computer-based reaction time tests
is their incompatibility with daily life since subjects have to interrupt
their daily routine for several minutes and provide their full attention
in order to perform the reaction time test. This restriction prohibits
the measurement of cognitive efficiency during daily routine tasks. As
a consequence, it is not feasible so far to assess variations in cognitive
efficiency which are caused by influencing factors occurring in daily
life like variations in cognitive load during work or activities of daily
life. In order to overcome this limitation, in previous work, we have
designed and implemented a wearable watch-like reaction time test tool
which allows to collect reaction times throughout daily life. Instead
of a visual stimulus a haptic stimulus is employed from time to time
and instead of a keyboard response the user is able to react with a
simple hand movement. Haptic stimulus was chosen since the visual
and auditory channel is often already occupied for everyday life tasks.
User’s hand movement response is automatically recognized with an
integrated inertial measurement unit (IMU) and thus the reaction time
to the haptic stimulus can be measured.

In order to show to what extent the wearable reaction time test is
an accurate new tool to measure reaction times, in recent work we have
conducted an experiment in which we analyzed the reaction times of
20 subjects in an idle condition and under cognitive load [6]. During
the idle condition, subjects had to perform the wearable reaction time
test followed by operating a state of the art desktop-based reaction
time test. In order to influence length and variability of reaction times,
we applied cognitive load to all subjects in a separate load condition.
Here, the subjects had to solve mental tasks in addition to performing
the reaction time test. Like in the first idle condition, subjects had to
perform the wearable reaction time test followed by operating a state of
the art desktop-based reaction time test. The results showed that the
mean reaction times of the subjects were always increased during the
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load condition compared to the idle condition in wearable and desktop
settings. Second, it could be observed that the variability of reaction
times was increased during the load condition in both wearable and
desktop settings. Based on the achieved results, we could show that the
wearable reaction time test is an accurate tool to measure variations in
length and variability of reaction times.

In this contribution, we extend our work by transferring our ap-
proach from controlled laboratory settings to an unrestricted daily life
environment. In a case study, we present our methods and findings
when employing the wearable reaction time test tool in the daily work
life of a graphic designer. We continuously collected reaction time data
and self-experience ratings on mood and workload throughout 15 work-
ing days. The first three working days were characterized by normal
job demands, which we denote as “baseline” measurement. During the
remaining 12 days, the designer was confronted with four workload fac-
tors that are common when a designer has to deliver a creative outcome
in a limited time: stress, sleep deprivation, night shift, and moderate
alcohol consumption.

In this case study, we target four main topics:

1. continuously monitoring of reaction times in a real world work-
ing setting without interrupting the daily routine of a graphic
designer

2. investigating the observed variations in length and variability of
reaction times regarding the four workload factors

3. investigating the correlations between reaction time features and
perceived workload

4. investigating the correlations between reaction time features and
subjective ratings on mood.

In the following, we first present related work. Next, we describe
our wearable reaction time test implementation. Afterwards, we explain
the real life employment followed by data analysis methods. Finally, we
present and discuss the achieved results and provide a conclusion and
an outlook.

7.2. Related work

There exist mainly three kinds of reaction time tests: simple, recog-
nition and choice reaction time tests [14]. Simple reaction time tests
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consist of one stimulus and one response. In desktop-based simple re-
action time tests, a dedicated stimulus is temporary shown at random
time intervals on the screen. The subject has to concentrate on the
appearance of the stimulus and every time the subject recognizes the
stimulus he has to press a dedicated key as fast as possible. Differ-
ently, in recognition reaction time tests, the subject has to differentiate
between a dedicated stimulus (target) and other stimuli (non-target).
This is sometimes called “go/no-go” reaction time task. In desktop-
based go/no-go tests the target stimulus and the non-target stimuli are
temporary shown in a random sequence on the screen. The subject has
to be attentive to the appearance of the target stimulus and ignore the
non-target stimuli. As soon as the subject recognizes the target, he has
to respond as fast as possible by pressing a dedicated key. Lastly, choice
reaction time tests include multiple stimuli and multiple responses. The
subject has to respond to each stimulus with a corresponding response,
e.g. by pressing a certain key whenever a corresponding letter appears
on the screen. A detailed series of recommendations on how to conduct
laboratory experiments using reaction time tests and how to analyze
the collected data can be found in [13, 18, 26].

Since reaction time has been extensively investigated for many
years, there exists a broad variety of clinical studies which have been
summarized in a literature review by Kosinski [14]. For example, it
is known that age-related diseases like cognitive impairment are im-
portant factors which influence length and variability of reaction time.
Gorus et al. [8] showed that persons with cognitive deterioration demon-
strated more intra-individual performance variability and more slowing
in their reaction time than cognitively healthy elderly. Braverman et
al. [3] showed in a clinical setting that a go/no-go reaction time test
is an accurate predictor of early attention complaints and memory im-
pairments. In [24], it was shown that children diagnosed with attention
deficit hyperactive disorder (ADHD) are characterized by an increased
variability in reaction time. In [22], the effect of psychosocial stress
on reaction time was investigated in a controlled experimental setting.
The authors were able to show that participants under stress revealed
slower reaction time.

Most of the studies have in common that desktop-based reaction
time tests were employed in laboratory settings which require the full
attention of the subject for several minutes. Hence, it is not feasible
so far to measure reaction times during everyday-life in order to assess
variations in cognitive efficiency which are caused by influencing fac-
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tors occurring in daily life like variations in cognitive load during work
or activities of daily life. Only a few studies exist which investigated
the feasibility of measuring reaction times during everyday activities.
Lieberman et al. [17] implemented a wrist-worn reaction time device to
assess vigilance. Visual and auditory stimuli were generated with three
LEDs and a miniature speaker. The user had to react by pressing one
of the two push buttons on the device. Ivorra et al. [11] implemented
a haptic stimulus to interrogate the central nervous system in a mini-
mally obtrusive way. As the response the detection of a wrist movement
is defined. In a first feasibility study, they showed that a simple reac-
tion time test can be continuously administered throughout the course
of normal life activities. However, an evaluation of the wearable imple-
mentation in comparison with state of the art desktop-based reaction
time tests is missing and the obtained reaction times were not further
analyzed. In our recent work [5], we followed the approach of Ivorra et
al. [11] and designed a wearable reaction time device which combines
the generation of haptic stimuli and the recognition of forearm rotation
as subject’s response.

7.3. Wearable reaction time test

7.3.1. System design

In our previous work, we have designed and implemented a watch-like
wearable user interface to measure reaction time [5]. The main design
goal was to enable a mobile measurement of reaction time throughout
daily life. In order to achieve this goal, we replaced the state of the
art visual stimuli by haptic stimuli which can be recognized without
paying continuous attention to it. Second, we replaced the state of the
art push buttons by detecting a dedicated rotation of the forearm as
response to the stimuli. As a result the wearable reaction time test con-
sists of two main modules: a stimulus module generating haptic stimuli
and an IMU module detecting forearm rotations. We applied the haptic
stimuli on the wrist since according to the literature the wrist is a rec-
ommended stimulus site for wearable tactile displays [4, 16, 19, 20]. For
generating vibro-tactile stimuli, we used a coreless mini DC vibration
motor. In order to maximize the vibration amplitude and to ensure a
proper sense of the vibration, we placed the motor in a separate plastic
enclosure. In order to guarantee a continuous operation during at least
one day, the stimuli module has its own battery supply. In addition, we
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Figure 7.1. Wearable implementation of a simple reaction time test. The

haptic stimuli are generated as vibrations on the lower side of the wrist.

The IMU is placed on the opposite side to recognize the user’s hand gesture

responses.

integrated an audio driver in order to allow the generation of auditory
stimuli through headphones. The IMU module consists of the so-called
ETHOS which includes a three-axis accelerometer and gyroscope to
recognize the subject’s gesture response [9]. The accelerometer and gy-
roscope is sampled with a frequency of 128 Hz. An implementation of
a wearable simple reaction time test can be seen in Figure 7.1. The
detailed description of the hardware platform can be found in Cinaz et
al. [5] and Harms et al. [9].

We modified the firmware version of the ETHOS to control the
haptic stimuli module. Similar to the wearable reaction time test pre-
sented in Ivorra et al. [11], we have defined the response gesture as a
fast rotation of the forearm.

In our recent work, we have implemented a wearable go/no-go task
[6]. In order to evaluate the wearable interface, we have conducted an
experiment to compare the reaction times obtained by the wearable
interface with those collected by a desktop-based reaction time test.
For the desktop-based reaction time test, we used a free version of the
go/no-go TOVA test [2, 7]. As exemplary shown in Figure 7.2, a white
square appears for 100 ms on the screen, with a black square within
it. Participant must respond only to targets (the black square on top)
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Figure 7.2. (a) Target and non-target stimulus types of the TOVA test (b)

implementation of a wearable TOVA test

and ignore the non-targets (the black square on the bottom). Each
stimulus is presented at 2000 ms intervals. A wearable implementation
of the TOVA test is shown in the lower part of Figure 7.2. Participant
must respond only if they perceive a haptic stimulus on the lower side
of the forearm (target) and ignore the haptic stimulus on the upper
side of the forearm (non-target). Similar to the desktop-based reaction
time test, each haptic stimulus of the wearable device is generated for
100 ms at 2000 ms intervals.

Each setting (desktop-based vs. wearable) consisted of two experi-
mental conditions:

1. idle condition in which the subject is just performing the reaction
time test

2. cognitive load condition in which the subject is performing a cog-
nitive performance task in parallel to the reaction time test.
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As cognitive task, we employed a variant of the N-Back test, the
so-called “Audio 2-Back” [1, 12]. In the Audio 2-Back task, a letter is
presented to the subject via an audio message in regular time intervals.
The subject must only respond if the currently pronounced letter is
the same as the one that was pronounced two positions back. Since
the subject has to memorize the two prior letters and has to perform a
comparison with the current letter in time, this task induces additional
cognitive load. Whenever a sound match occurs, the subject has to
say “match”. In order to keep the subject engaged in the second task,
the experiment leader continuously controls the answer of the subject
and provides direct feedback to the subject about correct and false
answers. A total of 20 subjects participated in our experiment. Each
subject performed four different reaction time tests in the following
order:

1. desktop-based in idle condition

2. desktop-based under cognitive load

3. wearable in idle condition

4. wearable under cognitive load.

Each condition lasts 10 minutes and contains 320 stimuli (160 tar-
gets and 160 non-targets).

The results showed that subjects were always significantly slower
during the cognitive load condition compared to the idle condition for
both desktop and wearable settings (p < 0.001). Second, we could ob-
serve that the variability is increased during the load condition for both
settings. Subjects demonstrated higher variability under load condition
compared to idle condition (p < 0.001). Based on the achieved results,
we concluded that our wearable reaction time test is suitable to measure
factors which influence length and variability of reaction times.

7.4. Case study

In this case study, we employed the wearable reaction time test tool in
the daily work life of a graphic designer. Since this case study was the
first attempt to collect reaction times in real life, we opted for collect-
ing reaction times with a moderate high sampling rate. We decided to
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Figure 7.3. (a) Subject in her workplace, the reaction time module is

placed on her dominant wrist (b) experiment procedure and screenshots taken

during different factors

collect at least 20 reaction time measurements within a 30 minutes pe-
riod. As a consequence, we generated haptic stimuli at random intervals
varying between 60 sec and 90 sec.

Our test subject was a 25-year-old female master student of graphic
design. We conducted the case study while our subject was working on
her master thesis. The topic of her master thesis was to investigate the
influence of typical work-related stress factors on the design process.
In total, we monitored our subject throughout 15 working days. The
first three working days were characterized by normal job demands,
which we denote as “baseline” measurement. During the remaining 12
days, the designer was confronted with four workload factors that are
common when a designer has to deliver a creative outcome in a lim-
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ited time: stress, sleep deprivation, night shift, and moderate alcohol
consumption. The case study pursues four main aims:

1. to continuously collect reaction times in a real-world working set-
ting without interrupting the daily routine of a graphic designer

2. to investigate the observed variations in length and variability of
reaction times regarding the four workload factors

3. to correlate the observed reaction time features with perceived
workload ratings

4. to investigate the correlations between reaction time features and
subjective ratings on mood.

In the following, we first explain the induced workload factors
in more detail. Next, we describe the employed experience sampling
method to collect subjective ratings on perceived workload and mood.

7.4.1. Workload factors

The subject was monitored over 15 working days during 6 weeks result-
ing in 120 hours of data (8 h x 15 days). The first three working days
consisted of normal job demands, which we denote as “baseline” mea-
surement. During the remaining 12 days, the designer was confronted
with four workload factors that are common when a designer has to
deliver a creative outcome in a limited time: stress, sleep deprivation,
night shift, and moderate alcohol consumption. Each factor was stud-
ied on three consecutive days. The experimental procedure can be seen
in Figure 7.3.

7.4.2. Baseline

The first three days were carried out as a baseline session with a typical
job assignment. At the beginning of the first working day, the subject
was instructed from a client to design a logo for the new established
Pirate Party within three days. According to the subject’s working
experience, such an assignment represents a common job demand which
can be easily solved within three working days. The subject was allowed
to work only during the monitoring period. At the end of the third
working day, she had to provide the resulting logo to her client.
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7.4.3. Stress

After a break of two days, the next three working day session was car-
ried out. At the beginning of the first working day, the subject received
from the public relation manager of the Department of Information
Technology and Electrical Engineering at ETH Zurich the instruction
to design a new marketing booklet to attract new students. The subject
was allowed to work on this task for three days. Every evening she had
to provide a draft design for revision. The subject was not aware that
the public relation manager was instructed by psychologists on how to
create high working pressure and stress within the three days. In par-
ticular, the public relation manager was instructed to induce stress as
follows:

• Negative feedback: The feedback on every draft design should il-
lustrate that the client was not satisfied and that there were many
open issues to be solved in the remaining time.

• Information hiding: Important background information like de-
sign guidelines were not given at the beginning but at the second
day.

• Work overload: The concrete task description was slightly modi-
fied every day, e.g. the subject was told that she should especially
focus on female students. In addition, the subject was asked to
prepare additional material like a presentation in parallel to the
normal work.

• Social-evaluative pressure: The subject was told that all profes-
sors of the department will evaluate her design.

• Ego-involvement: The subject was told that if her suggested de-
sign was satisfying to the professors, it would be selected as the
new official marketing booklet of the department.

7.4.4. Partial sleep deprivation

After a break of one week, the subject was monitored during partial
sleep deprivation. On the first day, the subject started to work after a
night of seven hour normal sleep duration. The subject was instructed
from a client to design T-shirt for the internet portal “evernote”. In the
remaining two nights, the sleep duration was reduced to four hours.
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Figure 7.4. We programmed an experience sampling event in the reaction

time module to signal the subject when to complete the questionnaire. Ev-

ery time ten consecutive haptic stimuli (at 1 second intervals) occurred, the

subject had to fill out the questionnaire items.

7.4.5. Night shift

After a break of three days, the night shift session was carried out.
The subject worked between midnight and 8 AM and was sleeping
during daytime. At the beginning of the first working day, the subject
was instructed from a client to design a new concept for the German
internet blog “Sichtweise Fotografie”.

7.4.6. Alcohol

After a break of two weeks, the next three working day session was
carried out. During this condition, the subject worked between normal
office hours (∼ 10 AM to ∼ 6 PM). In the afternoon she drank 2-3
glass of wine. At the beginning of the first working day, the subject
was instructed from a client to design a new logo for the Institute
Human Computer Interaction of Konstanz University.

7.4.7. Experience sampling

In order to examine the relationship between reaction time data and
self-reported ratings on mood and workload, we used an experience
sampling methodology (ESM) known from [15, 23]. The subject was
randomly probed eight times per day to complete a set of question-
naires. The minimum and maximum time interval between successive



150 Chapter 7: Collecting Reaction Times in Daily Life

questionnaires was set to 30 and 120 minutes, respectively. The subject
was prompted to fill out the questionnaires by applying ten consecutive
haptic stimuli at 1 second intervals. It took approximately 2-3 minutes
to complete all questionnaire items. The experience sampling approach
is depicted in Figure 7.4. At each probe, we assessed subject’s cur-
rent mood with the presentation of 15 adjectives on a visual analogue
scale (from 0 = not at all to 10 = a great deal) using a short version
of the positive and negative affect schedule [25]. The 15 items con-
sisted of seven negative (“bored”, “tired”, “stressed”, “anxious”, “an-
gry”, “depressed”, and “nervous”), seven positive (“relaxed”, “happy”,
“concentrated”, “alert”, “interested”, “active”, and “excited“) and one
sleepiness item (“sleepy”).

In addition, the subject was asked to assess her perceived work-
load regarding the last working activities. For this subjective rating,
we employed the NASA task load index (TLX) from [10]. First, the
subject has to rate 6 items on a scale from 1 to 20 that best indicate
her experience in the task. The rating consists of the following items:
mental demand, physical demand, temporal demand, own performance,
effort and frustration. Next, the subject is systematically asked which
of the items represents the more important contributor to the work-
load. Based on these comparisons, the total workload is computed as a
weighted average of the ratings.

All questionnaire items were completed on the subject’s computer.
Beside the randomly generated probes, the subject filled the question-
naire also at the beginning of each day before starting to work.

7.5. Data analysis

In the following, we first provide a description of our methods to au-
tomatically detect user’s hand movement as response to the applied
haptic stimuli. Next, we describe how the reaction time measures were
computed. Finally, we explain how we correlated the reaction time fea-
tures with the self-experience data on mood ratings and NASA work-
load items.

In order to detect subject’s hand response to a stimulus, we analyzed
the gyroscope data obtained by the IMU module. First, the gyroscope
data is normalized to values between -1 and 1. Second, the raw gyro-
scope data is smoothed using a simple moving average filtering. Then,
a window of 2 seconds length is aligned on each stimulus event and the
local maximum point is located within this window. If the maximum
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Figure 7.5. X-component (wrist-turn axis) of the normalized gyroscope

data while responding to a haptic stimulus with a fast rotation of the hand.

After each stimulus event the maximum peak within a fixed time window

is searched. Reaction time is calculated as the time difference between the

haptic stimulus and the occurrence of the peak response.

peak is larger than a decision threshold, it is classified as a correct
reaction gesture; otherwise it is classified as a non-reaction, i.e. it is
assumed that the user has not responded to the stimulus. The normal-
ized gyroscope data while responding to a haptic stimulus is exemplary
shown in Figure 7.5.

The decision threshold was estimated by applying a Naive Bayes
classifier. In a first step, we selected a total of 120 responses and 120
non-responses by a visual inspection of the gyroscope data. This data
was then used to define a decision threshold using the Naive Bayes clas-
sifier. After applying Naive Bayes, a visual inspection of 2304 reaction
hand gestures revealed an accuracy of 99%.

7.5.1. Windowing for experience sampling

In order to investigate the relation between reaction times and self-
rated mood and workload items, we used data segments with varying
window sizes. The window size is calculated by taking the midpoint of
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Figure 7.6. Data segments used for the correlation analysis. The reaction

time features are calculated for each segment around the experience sampling

events (blue segments). The calculated features are then correlated with the

corresponding self-report of this segment. The red segments are ignored be-

cause of insufficient number of reaction times.

the time between the last and the preceding questionnaire. Figure 7.6
exemplary depicts the segments used for the correlation analysis. The
reaction time features are calculated for each segment around the ex-
perience sampling events (blue segments in Figure 7.6). The calculated
features are then correlated with the mood and perceived workload rat-
ings of this segment. The first and the last segment of every four hour
session (red segments in Figure 7.6) are not used in the correlation
analysis since the amount of data here is only half as much as in the
other segments. For each segment, the following features are calculated:
mean reaction time, standard deviation of reaction time and number
of omission errors defined as the number of missing responses to the
stimuli.

7.6. Results and discussion

Our first goal was to show that a continuous collection of reaction
times in a real-world working setting is feasible without interrupting
the daily routine. In the presented case study, we were able to show
that even when employing a moderate high sampling frequency (60-
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90 s stimuli interval) our wearable reaction time test tool allows to
continuously collect reaction times throughout 15 working days of a
graphic designer. Our test subject was able to successfully complete all
job demands over the complete monitoring period while performing the
wearable reaction time test in parallel without interrupting her daily
working routine. Hence, we were able to present a successful example
showing that our wearable reaction time test tool is appropriate to
continuously collect reaction times in real world working settings.

In the following, we present the results of our remaining three goals:
variations in length and variability of reaction times regarding the four
workload factors, correlations of reaction time features with perceived
workload ratings, and correlations between reaction time features and
subjective ratings on mood.

7.6.1. Reaction time measures under workload

Figure 7.7 shows mean, standard deviations and omission errors of the
reaction times for all five working conditions under investigation. The
measures were computed in time windows around the questionnaire
probe as described in Section 7.5.1. In Figure 7.7, it can be observed
that the variability of reaction times tends to be higher in the “stress”
condition compared to the “baseline” condition. During the “baseline”
condition mean reaction times on the first two days do not vary to a
great extent. In the third day, mean reaction times are higher in the
afternoon. A sudden increase of mean reaction times in the afternoon
can be observed for the first two days of the “stress” condition. This
might be explained by the fact that our subject received the negative
feedback and additional tasks from the client at the end of the morning
session. In the last day of the “stress” condition, the mean reaction
times and the variability are decreased during the course of the day. A
possible explanation is the fact that our subject was quite confident on
the 3rd day to deliver all requested designs to the client. The number of
omission errors during the “stress” condition is almost 3 times higher
than during “baseline” (Nbaseline = 35, Nstress = 113 where N indi-
cates the total number of omission errors). The trend of mean reaction
times during “sleep deprivation” is similar to “baseline”. A possible
explanation is the fact that our subject was used to work with reduced
amount of sleep during her study time. The mean reaction times dur-
ing “night shift” and “alcohol” are also comparable to the one obtained
during “baseline”. However, the standard deviation of reaction times
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Figure 7.7. Mean, standard deviations and omission errors (missing re-

sponses) of reaction times over 15 working days

for all three conditions is always increased in comparison to “baseline”.
Especially during “night shift” we can observe a steady increase on
both mean reaction times and variability during the course of three
days. The highest omission errors can be observed for the “night shift”
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and “alcohol” conditions (Nnightshift = 156, Nalcohol = 146).
These highest omission errors during night shift are caused by falling

asleep from time to time. This was visible in the continuous video
recording obtained from our subject’s working place. In general, an
increase in the errors can be observed especially during the second half
of each working day which is in line with a reduction of the concentra-
tion level and with an increase of sleepiness.

Figure 7.8 shows the boxplots of mean, standard deviation and omis-
sion errors of reaction times for each workload factor. ANOVA with
pairwise comparison revealed that mean reaction times of the “stress”
condition were significantly higher than those collected during “sleep
deprivation” and “alcohol” conditions (p < 0.05). Besides, “sleep depri-
vation” condition showed a significant lower mean reaction time com-
pared to “night shift” (p < 0.05). The mean reaction times of the
“baseline” condition did not show a significant difference from other
conditions. There were significant group differences in variability of re-
action times for each of the conditions. Pairwise comparison showed
a significant increase in variability during “stress”, “night shift” and
“alcohol” compared to “baseline” (p < 0.05). A significant difference
between “baseline” and “sleep deprivation” as well as between “stress”,
“night shift” and “alcohol” was not observed. According to the pair-
wise comparison of omission errors, the subject showed significantly
higher number of omission errors during “night shift” and “alcohol”
conditions compared to “baseline” condition (p < 0.05). However, a
significant difference was not observed for the “stress” and “sleep de-
privation” conditions.

In summary, we can conclude that our test subject showed a signifi-
cant increased variability of reaction times during stress in comparison
to baseline. Sleep deprivation did not show a significant difference to
baseline. This might originate from the fact that our subject was used
to work under reduced amount of sleep during her study time. Hence,
we could not observe significant differences of any reaction time mea-
sure for the “sleep deprivation” condition in comparison to the baseline
session. Compared to “baseline” condition, our subject showed a signif-
icant increased variability of reaction times and a significantly higher
number of omission errors during “night shift”. The high number of
omission errors during night shift are caused by falling asleep from
time to time as evident from the video recording obtained from our
subject’s working place. Similar to “night shift”, our subject showed
under moderate alcohol consumption a significant increased variability
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Figure 7.8. Boxplots of mean, STD reaction times and omission errors for

each workload factor.

of reaction times and a significantly higher number of omission errors
in comparison to “baseline”.
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Figure 7.9. Boxplot of total subjective workload score for each workload

factor

7.6.2. Correlation of reaction time measures with perceived
workload

In order to perform the correlation analysis, for each day we analyzed
the data from six questionnaire probes (except three days where only
five questionnaires were available) as described in Section 7.5.1. With a
total amount of 87 observations, the correlation for each questionnaire
item was computed.

Figure 7.9 shows the box plot of perceived total workload scores for
each working factor. The lowest total workload was perceived during the
“baseline” condition as intended from the experiment design. ANOVA
with pairwise comparison revealed that the mean total workload score
of “stress”, “sleep deprivation”, “night shift” and “alcohol” conditions
were significantly higher than those perceived during “baseline” (p <
0.05). However, there is not a significant difference between “stress”,
“sleep deprivation”, “night shift” and “alcohol” conditions.

Table 7.1 shows the significant correlations between reaction time
features and NASA workload items. Mean reaction time is significantly
positive correlated with mental and temporal demand. Total workload
showed a significant positive correlation with reaction time variability
and number of omission errors. This finding is in line with the previous
conducted laboratory evaluation: high cognitive load, i.e. mental de-
mand and time pressure, resulted in slower reaction times and higher
variability.
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Table 7.1. The correlation between reaction time features and NASA work-

load items

NASA Items Mean RT STD RT Omissions

Mental demand 0.313** −0.044 −0.156

Temporal demand 0.414** 0.139 −0.087

Total workload 0.098 0.359** 0.235*

Correlation coefficient ∗ ∗ p < 0.01, ∗p < 0.05

Table 7.2. The correlation between reaction time features and self-reported

mood items

Mood items Mean RT STD RT Omissions

High arousal

Concentrated 0.317** 0.140 −0.098

Alert 0.413** 0.237* −0.016

Active 0.343** 0.231* 0.001

Stressed 0.418** 0.323** 0.114

Low arousal

Bored −0.047 -0.373** -0.274*

Tired −0.197 -0.289** −0.157

Correlation coefficient ∗ ∗ p < 0.01, ∗p < 0.05
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Figure 7.10. We placed the mood items which are significantly correlated

with reaction time features on the valence-arousal plane. It can be observed

that the most significant correlations can be found in the high-arousal plane.

7.6.3. Correlation of reaction time measures with subjective
ratings on mood

Table 7.2 shows the correlation coefficients of mean reaction time, stan-
dard deviation and the number of omission error with questionnaire
items on mood. As shown in Table 7.2, mean reaction time is signif-
icantly positive correlated with the high arousal items concentrated,
alert, active and stressed. The reaction time variability is significantly
positive correlated with alert, active, stressed and negative correlated
with the low arousal mood items bored and tired. Number of omission
errors show significant correlation only with the item bored. Figure
7.10 shows the significant correlated mood items on the well-known
valence-arousal plane (see for example, [21]). It can be observed that a
high level of arousal results in increasing of reaction times and higher
variability whereas a low arousal results in lower variability of reaction
times. The reason behind might be that during stress or high mental
demand one is highly concentrated/alert/active on the primary task
and less concentrated on the secondary task (in this case, the wearable
reaction time test). Thus, it takes longer to perceive the stimulus and
to react to it.
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7.7. Conclusion and outlook

In this contribution, we have presented for the first time a long-term
measurement and interpretation of reaction times during normal work
life. We have employed a new wearable watch-like reaction time test
tool which generates haptic stimuli and recognizes user’s hand move-
ments as response. In our recent work, we could show that our wearable
reaction time test is suitable to measure factors which influence length
and variability of reaction times in controlled laboratory settings. In
this contribution, we have extended our work by transferring our ap-
proach from controlled laboratory settings to an unrestricted work en-
vironment of a graphic designer. We continuously collected reaction
time data and subjective ratings on mood and workload throughout 15
working days. The first three working days consisted of normal job de-
mands, which we denote as “baseline” measurement. In the remaining
12 days, the designer was confronted with four workload factors that
are common when a designer has to deliver a creative outcome in a
limited time: stress, sleep deprivation, night shift, and moderate alco-
hol consumption. In order to examine the relationship between reaction
time data and self-reported ratings on mood and workload, we used an
ESM where the subject was randomly probed eight times per day to
complete a set of questionnaires. We have presented our methods to
automatically detect user’s hand movement as response to the applied
haptic stimuli. First, a Naive Bayes classifier was used to accurately de-
tect the response gesture from the smoothed gyroscope data obtained
by the IMU module. Next, the elapsed time between a haptic stimulus
and the individual’s response was computed as reaction time. In or-
der to investigate the relation between reaction times and self-reported
mood items, we used data segments with varying window sizes. From
the reaction time features calculated for each segment around the ex-
perience sampling events, we have computed the correlations with the
corresponding self-report items.

We could observe that our test subject showed a significant in-
creased variability of reaction times during stress in comparison to
baseline. Sleep deprivation did not show a significant difference to base-
line since our subject was used to work under reduced amount of sleep.
Compared to baseline condition, our subject showed a significant in-
creased variability of reaction times and a significant higher number
of omission errors during night shift. The high number of omission er-
rors during night shift were caused by the fact that our subject felled
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asleep from time to time. Similar to night shift, our subject showed
under moderate alcohol consumption a significant increased variability
of reaction times and a significant higher number of omission errors in
comparison to baseline.

The correlation analysis of reaction time measures with perceived
workload showed that mean reaction time is significantly positive corre-
lated with mental and temporal demand. Total workload showed a sig-
nificant positive correlation with reaction time variability and number
of omission errors. This finding is in line with the previous conducted
laboratory evaluation: high cognitive load, i.e. mental demand and time
pressure, resulted in slower reaction times and higher variability.

The correlation analysis of reaction time measures with subjective
ratings on mood showed that mean reaction time is significantly posi-
tive correlated with the high arousal items concentrated, alert, active
and stressed while reaction time variability is significantly positive cor-
related with alert, active, stressed and negative correlated with the low
arousal mood items bored and tired. The number of omission errors
is significant negative correlated with the item bored. In the valence-
arousal plane, it is obvious that a high level of arousal results in increas-
ing reaction times and higher variability whereas a low arousal results
in lower variability of reaction times.

Finally, we conclude that the presented case study shows for the
first time that a wearable watch-like reaction time test tool enables
a long-term measurement and interpretation of reaction times during
normal work life activities. Thus, it becomes feasible to measure reac-
tion times during everyday-life in order to assess variations in cognitive
efficiency which are caused by influencing factors occurring in daily life
like variations in cognitive load during work or activities of daily life.

In future work, we will investigate elderly people. We already started
with monitoring reaction times of healthy elderly during daily life ac-
tivities like reading, writing and walking. Next, in cooperation with
psychologists we are planning to monitor reaction times of elderly with
mild cognitive impairment during daily life activities. We will compare
the achieved results with the ones obtained from healthy elderly in or-
der enable a detection of mild cognitive impairment during daily life
monitoring.
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Abstract

In order to enable a continuous monitoring of variations in
cognitive functioning we aim for transferring reaction time
(RT) tests from clinical settings into daily life. In previous
work we have designed and implemented a watch-like wear-
able RT test which can be operated by a simple hand gesture.
The aim of this work was to measure the impact of com-
mon daily activities on reaction times of younger and older
adults. We have conducted an experiment in which subjects
had to perform daily activities once under an idle condition
and once under additional cognitive load. During perform-
ing the activities we have measured reaction times at ran-
dom intervals. As evaluation metrics we considered mean
RT and RT variability. We addressed the research questions
how daily life activities affect the reaction time measures,
whether reaction time measures differ between young and
elderly subjects and whether reaction time measures differ
between idle and cognitive load conditions. We could show
that mean RT and RT variability were significantly affected
by the type of activity for both age-groups. The increase
in mean RT and RT variability from idle to cognitive load
condition was significantly higher for the elderly. We per-
formed logistic regression to investigate the discriminative
power when distinguishing between idle and cognitive load
conditions. The classification results confirmed the effect of
activity on reaction times. In a leave-one-person-out cross
validation the discrimination accuracy increased from 75%
to 80.77% after adding activity class features to the clas-
sification model. When applying a context-aware RT test
we achieved a discrimination accuracy of 87.5%. We con-
clude that a wearable RT test combined with a simple ac-
tivity recognition system is feasible to detect changes in RT
performance and variability during common daily life activ-
ities.

8.1. Introduction

Different studies could demonstrate that speed of information pro-
cessing, measured by reaction time, is related to cognition in younger
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and older adults. Especially slowing in reaction time is often attended
by cognitive disorders or deficits. While children and younger adults
mainly suffer from cognitive disorders such as Attention Deficit Hyper-
activity Disorder (ADHD) older adults tend to have cognitive deficits
because of neurological diseases such as brain injury, dementia, stroke
or cerebral tumor. Assessing cognitive functioning is commonly used for
screening of cognitive impairment, distinguishing causes of impairment,
rating of disease severity or monitoring disease progression.

Most commonly used methods for the diagnosis of cognitive deficits
are neuropsychological screening tests. One simple and often used test is
the Mini Mental State Examination which include questions to evaluate
memory, attention, language or orientation skills [8, 31]. In general, neu-
ropsychological screening tests are administered usually in later stages
when observable changes in patient’s cognitive state arise [24]. Other
methods used for cognitive assessment are neuroimaging techniques or
laboratory testings which measures specific hormones or proteins [2].
In recent years computerized assessments of cognitive functioning were
developed which usually provide more sensitive information compared
to paper-based screening alternatives. In the literature there exists sev-
eral computer-based cognitive tests for detecting cognitive decline [30].
In [24] several shortcomings of the established clinical assessment tools
were identified. In particular, it was highlighted that these tests are
time consuming, expensive and are performed only infrequently since a
trained psychologist needs to administer these tests. In order to over-
come these limitations it was suggested to develop unobtrusive mea-
surement techniques which have the potential to continuously assess
cognitive functioning in daily life. One approach to obtain a continuous
assessment of cognitive functioning is to use wireless sensor networks
in home environment. This enables the observation of the individuals
during their activities of daily living (ADL) such as physical activities,
sleep quality, gait velocity, location changes or interaction with objects
in the house [7, 13, 23, 25, 28]. Usually ambient sensors such as motion
detectors or RFID tags are integrated into the living environment of the
individual or body-worn accelerometers are used to monitor the daily
activities. The main goal of these applications is to detect deviations
from normal patterns i.e. to detect abnormal changes in behavioral
patterns. These markers are then correlated with the cognitive perfor-
mance of the subjects. However, while these approaches enable a full
unobtrusive monitoring, they do not provide a direct measurement of
cognitive functioning as the well-defined screening methods do.
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In our approach we aimed for transferring a well-defined cognitive
test into daily life in order to obtain a continuous measurement of cog-
nitive performance. We decided to transfer a reaction time (RT) test
into daily life since it is well known that RT tests offer a high sensitivity
for detecting variation in cognitive functioning [17, 18]. Furthermore,
they can be repeated virtually an unlimited amount of times [18]. In
general, a reaction time test measures how rapidly a person can initiate
a response to a designated stimulus which is also a measure of speed
of information processing [18, 22]. Reaction time tests have been ex-
tensively investigated by experimental psychologists since the middle
of the 19th century. Commonly, visual stimuli are generated at random
time points and the subject has to respond by using a keyboard, mouse
or special buttons. There are several examples of applying RT tests to
assess cognitive functioning: characterization of age-associated changes
in reaction times; early detection of cognitive decline such as mild cog-
nitive impairment or Alzheimer’s disease; determining the ability to
manage complex activities such as piloting, or identifying children with
intellectual disabilities such as Attention Deficit Hyperactive Disorder
(ADHD). However, most of these tests are administered in a laboratory
environment by a clinician. More importantly, RT tests are incompat-
ible with daily life since the subject has to interrupt his daily routine
for several minutes in order to perform the RT test. In order to over-
come this limitation, in former work we have designed, implemented
and evaluated a wearable watch-like reaction time test that can be op-
erated throughout everyday life [6]. The wearable RT test generates
haptic stimuli and recognizes the user’s hand gesture as a response (see
Figure 8.1). Haptic stimuli are generated from time to time by a vibra-
tion motor. The subject has to respond to a stimulus by performing a
slight forearm rotation, which is recognized with an inertial measure-
ment unit (IMU).

For the evaluation of the wearable reaction time interfaces, we
conducted an experimental comparison with traditional desktop-based
tests in a laboratory setting. The results showed that individual changes
of reaction times occurred due to additional cognitive load were similar
for both desktop-based and wearable RT test. In a case study, we mon-
itored reaction times continuously in a real-world working setting to
investigate the effects of different workload factors such as stress, sleep
deprivation, night shift and alcohol on reaction times [4]. According to
the results, the mean reaction time and variability were increased dur-
ing high arousal conditions such as stressed, concentrated or alerted.



8.2 Related Work 171

However, so far it remains unclear to what extent a working activity
itself such as writing or reading affects the reaction times independent
of arousal or cognitive load conditions.

In this contribution, we investigate how certain daily activities affect
the reaction times. In order to examine both the effects of activity and
cognitive condition on reaction times, each daily activity is investigated
once under a control condition in which subjects just performed the
activity and once under an experimental condition in which subjects
were confronted with additional cognitive load while performing the
activity. Since one of the potential application fields is to enable an
early detection of age-related cognitive impairments in daily life, in this
work we investigate an elderly collective in addition to young subjects.
In addition we investigate to what extent it is possible to discriminate
the cognitive load condition from the control condition when employing
reaction time features as predictors.

In the following we first provide an overview about related work
on reaction times. Next, we describe our methods on the experimen-
tal procedure and data analysis. In the results section we present the
outcomes of the experiment. Finally we conclude our work, discuss the
results and provide an outlook on future work.

8.2. Related Work

There exist mainly three kinds of reaction time tests [20]: simple, recog-
nition and choice reaction. In simple reaction time tests the subject
has to respond to one stimulus with a dedicated response. For instance
the subject has to press a certain button as soon as a particular sym-
bol appears at the screen. In recognition reaction time tests, which
are sometimes called ”go/no-go” tasks, the subject has to respond to
target stimuli and ignore non-target stimulus types. Lastly, in choice
reaction time tests the subject has to respond to multiple stimuli with
a corresponding response e.g. pressing a dedicated key whenever a cor-
responding letter appears on the screen. A detailed series of recommen-
dations on how to conduct experiments using reaction times and how
to analyze the obtained data can be found in [18, 22, 29].

Reaction time tests have been extensively investigated for many
years. There exist several studies where psychologists have identified
different factors that influence reaction time. Increasing age and age-
related diseases like cognitive impairment are known to influence length
and variability of reaction times significantly [20]. For instance, Gorus
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et al. showed that reaction times and performance variability are po-
tential markers for the early detection of Alzheimer’s disease [9]. Per-
sons with cognitive deterioration demonstrated more intra-individual
performance variability and more slowing in their reaction times than
cognitively healthy elderly. Braverman et al. showed that a particular
recognition reaction time tests, i.e. the test of variables of attention
(TOVA), is an accurate predictor of early attention complaints and
memory impairments [3]. Another application area of reaction time
tests is the investigation of Attention Deficit Hyperactive Disorder
(ADHD) patients. In [27] the authors performed a study to examine
the RT variability in ADHD using go/no-go tasks with differing levels
of cognitive demand. The resulting findings showed that children di-
agnosed with ADHD exhibited an increased variability in both simple
and more complex go/no-go task in comparison to healthy children.

Most of the studies have in common that the employed RT tests are
operated with a computerized test, which requires the full attention of
the subject for several minutes. Hence, most of these techniques are not
feasible to be used without interrupting normal life activities. There
exist only a few studies, which investigate the feasibility of measuring
reaction times continuously during everyday activities. Lieberman et
al. implemented a wrist-worn device to assess vigilance. The device con-
sists of visual stimuli (3 LEDs), auditory stimuli (a miniature speaker)
and two push buttons [21]. Ivorra et al. implemented a haptic stimulus
to interrogate the central nervous system in a minimally obtrusive way
[15]. As the response the detection of a wrist movement is defined. In
our recent work [5, 6], we followed the approach of Ivorra et al. and de-
signed a wearable reaction time device which combines the generation
of haptic stimuli and the recognition of forearm rotation as subject’s
response. We could show that the wearable reaction time test is suited
to measure changes in reaction times caused by cognitive load. In this
contribution, we present an empirical study with 26 subjects in order
to analyze the effects of different daily activities on reaction times. In
particular, we compare the changes in reaction times between young
and elderly subjects.
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Figure 8.1. Implementation of a wearable simple reaction time test con-

sisting of a haptic stimuli module and an inertial measurement unit (IMU)

to detect subject’s forearm rotation to a stimulus.

8.3. Methods

8.3.1. Objectives

The experimental procedure was designed to investigate the effect of ev-
eryday activities on reaction times of young and elderly subjects. Four
common daily life activities were chosen: sitting, walking, reading and
writing. As a second factor the influence of cognitive load on reaction
times was investigated in a way that each activity was performed once
under a control condition in which subjects just performed the activity
(idle condition) and once under an experimental condition in which sub-
jects were confronted with additional cognitive load while performing
the activity (load condition). Having idle and cognitive load conditions
during daily life activities allowed us to compare the changes in re-
action times between idle and load condition in both age groups. In
addition we investigated to what extent we can discriminate between
idle and cognitive load when employing reaction time features as pre-
dictors. Consequently the experiment addresses the following research
questions: (1) Do daily life activities affect the reaction time measures?
(2) Do reaction times differ between young and elderly subjects for cho-
sen activities? (3) Do reaction times differ between idle and cognitive
load conditions whilst performing daily life activities? (4) How accurate
can we discriminate between idle and cognitive load conditions during
daily life activities?
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8.3.2. Wearable reaction time test

In our previous work we have designed and implemented a watch-like
wearable user interface to measure reaction time throughout daily life
[5, 6]. In comparison to state of the art desktop-based reaction time
tests, we replaced the visual stimuli by a haptic stimuli which can be
recognized without paying continuous attention to it. In addition, we
replaced the response button by detecting a dedicated rotation of the
forearm as response to the stimuli. Thus, the wearable reaction time
test consists of two main modules: a stimulus module generating haptic
stimuli and an inertial measurement unit (IMU) module for detecting
forearm rotations. For generating vibro-tactile stimuli, we used a core-
less mini DC vibration motor with a resonant frequency of around 200
Hz and a vibration amplitude of 3.2 g. The IMU module consists of
the so-called ETHOS which includes a three-axis accelerometer and
three-axis gyroscope to recognize the subject’s gesture response [11].
The accelerometer and gyroscope is sampled with a frequency of 128
Hz. An implementation of a wearable simple reaction time test can be
seen in Figure 8.1. In order to react to a haptic stimulus the subject
has to rotate his forearm along the x-axis. The detailed description of
the hardware platform can be found in [5].

8.3.3. Participants

Overall, 16 elderly and 15 young subjects participated in our study. The
young subjects were recruited through public advertising at the univer-
sity. The elderly participants were recruited from a dedicated university
course which offers university-level education for elderly people. One
young and two elderly subjects had to be excluded from the analyses
due to their insufficient number of reaction times, i.e. they omitted at
least 30 of 40 stimuli during one of the four activities. In addition, the
data from two other elderly subjects had to be excluded since their data
violated the normality assumption required by the statistical analysis.
As a result, in our data analyses we used the data from 12 elderly sub-
jects (7 female, 5 male) with an average age of 70.17 years (±5.52) and
the data from 14 young subjects (6 female and 8 male) with an average
age of 25.79 years (±5.31).
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Figure 8.2. Experiment design: the four common daily life activities sitting,

walking, reading and writing were investigated in both age groups. Each

activity was performed once under an idle condition and once under a load

condition. Each subject started with the sitting activity while the remaining

activities were randomly assigned.

8.3.4. Experimental design

All participants were briefly informed about the experimental proce-
dure and a written informed consent was signed by each subject. All
elderly participants were screened for dementia using the Mini Mental
State Examination (MMSE) [8]. No participant was at risk for dementia
since all elderly had a score higher than or equal to 28. The experiment
was designed in a way that each activity was performed under idle and
cognitive load conditions. During all activities and both conditions (idle
vs. load) the subject had to perform the wearable reaction time test,
i.e. the subject was asked to respond as fast as possible to each haptic
stimulus by performing a dedicated hand gesture. During the cognitive
load condition, in addition to the main activity, the subject was asked
to solve an Audio 2-Back task which is a variant of the N-Back test
[1, 16]. In the Audio 2-Back task every 5 seconds a letter was presented
to the subject via an audio message. The subject was asked to respond
only if the currently pronounced letter was the same as the one that
was pronounced two positions back. The subject responded by saying
“match” whenever a sound match was detected by the subject.
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In advance of the experiment, a training stage was provided to the
participants that enabled them to become familiar with the wearable
reaction time test and the Audio 2-Back task. Afterwards, each sub-
ject started with the baseline activity which was defined as sitting on
a chair at rest and just performing the wearable reaction time test.
The remaining activities walking, reading and writing were randomly
assigned to each subject. Each activity started with the idle condition
and was followed by the cognitive load condition. During walking activ-
ity the subject walked on a treadmill with a comfortable speed chosen
by the subject himself. To obtain the right speed, each subject had a
practice session to try different speeds before starting the walking ses-
sion. Reading activity consists of reading a text on the table. In order
to keep the subjects concentrated on the reading task, we told them
that they have to answer a few questions about the text at the end
of the experiment. During writing activity the subjects were asked to
transcribe as much words as possible from a given text on a paper into
a word document on the computer.

During all activities participants were requested to feel free in their
mobility. The reaction time test device was mounted on the non-
dominant wrist of the subjects. Each condition (idle vs. load) of each
activity lasted about 10 minutes and we decided to collect overall 40
reaction time measurements within each condition of each activity. As
a consequence, we generated haptic stimuli at random intervals vary-
ing between 5 sec and 25 sec. After each 10 minutes block, a pause was
offered, if requested. Directly after each block, the subject was asked to
indicate his perceived workload by completing the multidimensional as-
sessment tool NASA Task Load Index (TLX) [12]. The rating consists
of the following six scales: mental demand, physical demand, temporal
demand, own performance, effort and frustration. Based on the ratings,
the total workload was computed as a weighted average. The overall
experiment lasted between 90 and 120 minutes. The experimental pro-
cedure can be seen in Figure 8.2.

8.3.5. Preprocessing and reaction time calculation

In order to calculate reaction time by means of subject’s hand response
to a stimulus, we analysed the gyroscope data obtained by the IMU
module. We used the same method described in our previous work [4].
First, we normalized the gyroscope data to values between -1 and 1.
Second, the raw gyroscope data was smoothed using a simple moving
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Figure 8.3. Normalized gyroscope data while responding to a haptic stim-

ulus.

average filtering. Then, we aligned a window of 2 seconds length on
each stimulus event and we located the local maximum point within
this window. If the maximum peak was larger than a decision threshold,
it was classified as a correct reaction gesture; otherwise it was classified
as a non-reaction, i.e. it was assumed that the user did not responded
to the stimulus. The normalized gyroscope data while responding to a
haptic stimulus is exemplary shown in Figure 8.3.

The decision threshold was estimated by applying a Naive Bayes
classifier. In our previous work [4] we selected a total of 120 responses
and 120 non-responses by a visual inspection of the gyroscope data
from one subject which performed daily life activities. This data was
then used to define a decision threshold using the Naive Bayes classifier.
After applying Naive Bayes on our data collected from 14 young and
12 elderly subjects, a visual inspection of altogether 8295 reaction hand
gestures revealed an accuracy of 98%.

8.3.6. Measures

For the statistical analysis, mean reaction time and intra-individual
variability measured as the coefficient of variation (CV) [19, 27] are used
as evaluation metrics. For each individual, the coefficient of variation
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is computed as the standard deviation divided by the mean reaction
time.

8.3.7. Statistical analysis

In order to analyze the effect of daily activity and cognitive load condi-
tion on reaction times for young and elderly participants, we performed
a mixed 2x2x4 ANOVA. We utilized age group (young vs. elderly) as
between-subjects variable while cognitive load condition (idle vs. load)
and activity (sitting, walking, reading, writing) served as within-group
factors. Mean reaction time and coefficient of variation were used as
the dependent measures. Greenhouse-Geisser correction was performed
if sphericity was violated in the repeated measures data. Benferroni
corrected post-hoc group analysis was conducted to compare age group
effects within each activity performed during idle and load condition.
Data were tested for normal distribution and homogeneity of variance
using the Shapiro-Wilk and Levene’s test.

8.3.8. Classification

In order to analyze how accurate we can discriminate between idle and
load condition, we performed logistic regression analysis. In all regres-
sion models under investigation, the dependent variable consisted of
the cognitive load condition (1 for cognitive load, 0 for idle). In the
set of independent variables the two features mean reaction time and
reaction time variability were always present. The regression models
under investigation differed in the amount of additional independent
variables and the amount of data used for building the models. All
models were built and evaluated in a leave-one-subject-out cross val-
idation scheme, i.e. data from all subjects except one were used for
building the model while the data from the omitted subject were used
to compare the model prediction with the ground truth. This process
was repeated until all subjects served once as test case.

In the first model, only mean reaction time and reaction time vari-
ability were used as independent variables. In the second model we con-
sidered a context aware reaction time test i.e. we assumed that we have
an activity recognition system which is able to discriminate between
sitting, walking, reading and writing. Therefore, we used additional ac-
tivity class information as predictors together with mean reaction time
and variability in the regression model.
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Figure 8.4. Mean reaction times of young and elderly subjects across four

activities.

Afterwards, we considered a more simplified activity recognition
system which could be easily implemented in the wearable reaction
time test device worn on the wrist. We assumed that by using the
continuous stream of IMU data collected with the wearable device,
we can easily discriminate between activity classes “hand active” and
“hand inactive”. Therefore we built two separate models once for the
activities where hand was active (walking and writing) and once for the
activities where hand was inactive (sitting and reading). Consequently
the reaction time features computed for all subjects during walking
and writing were used for the third model and those computed during
sitting and reading were used for the last regression model. The number
of the observations used in the model was 208 for the first two models
and 104 for the last two models.

8.4. Results

8.4.1. Reaction time performance

The mean reaction times of the young and elderly subjects collected
during four different activities are shown in Figure 8.4. First, we can
observe that for both young and elderly participants, the mean reaction
time is increased during cognitive load condition compared to idle con-
dition. Second, it can be observed that mean reaction time is highest
in both age groups during writing activity. When performing the writ-
ing activity the elderly subjects showed the slowest reaction times both
during idle and load conditions. However, during the idle condition of
sitting, walking and reading activities the elderly showed slightly faster
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reaction times than young subjects. On the other hand, when elderly
subjects experienced cognitive load, they were slower than the younger
subjects during sitting, walking and writing activities. Thus, the drop
in reaction time performance from idle to load condition was higher for
the elderly compared to the young age group. In general, we can observe
that reaction time performance varies with the type of the activity and
the presence of cognitive load condition for both age groups. In the
following we provide the results of the detailed statistical analysis in
order to show the effect of activity and condition in more detail.

ANOVA results revealed a significant main effect of condition
(F (1, 24) = 120.03, p < 0.001) showing that the subjects were on aver-
age slower during the cognitive load condition compared to the idle con-
dition. There was a significant main effect of activity (F (2.22, 53.34) =
37.97, p < 0.001) indicating that mean reaction times of the subjects
were significantly affected by the type of the performed activity. The
interaction effect between activity and age-group (F (2.22, 53.34) =
5.18, p < 0.01) was significant i.e. the effect of the activity on mean
reaction times was different for the young and elderly group. There
was also a significant interaction effect between condition and age-
group (F (1, 24) = 7.46, p < 0.05) revealing that the increase in mean
reaction times from idle to cognitive load condition was higher for
the older participants compared to the younger ones. Besides, there
was a significant interaction effect between activity and condition
(F (2.12, 50.97) = 5.18, p < 0.01), i.e. the difference on mean reaction
times between idle and cognitive load condition varied depending on the
type of the activity. The test of between-subjects effects did not show a
significant main effect for age-group, reflecting the fact that there was
not a significant difference between young and elderly participants in
terms of the overall mean reaction time across the four activities and
two levels of conditions.

In order to explore the effects further, we performed post-hoc group
by group comparisons for each activity. There was a main effect of con-
dition for all activities (p < 0.001) indicating that for each activity the
mean reaction times were generally larger in the load condition inde-
pendent of age group. There was a significant interaction effect between
condition and age group for sitting (p < 0.05) and reading (p < 0.05)
activities indicating that the increase in mean reaction time from idle
to load condition was significantly higher for the elderly participants
during sitting and reading activities. There was not a significant in-
teraction effect between condition and group for walking (p = 0.248)
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Figure 8.5. Reaction time variability of young and elderly subjects across

four activities.

and writing (p = 0.067) activities. The test of between-subjects ef-
fects showed a significant difference of the overall mean reaction time
between the young and elderly groups only for the writing activity
(F (1, 24) = 4.91, p < 0.05).

8.4.2. Reaction time variability

Figure 8.5 depicts the reaction time variability of young and elderly
subjects computed across the four activities. As observed in the mean
reaction time analysis above, the group mean variability was increased
during load condition compared to idle condition for both young and
elderly subjects. Second, compared to the younger age group the el-
derly group showed higher variability under load condition during all
activities. Besides, for both age groups the highest variability was ob-
served during the writing activity. We can also observe that the amount
of change in variability from idle to load condition was higher for the
elderly group compared to young subjects. In order to investigate the
effect of activity and condition in more detail, in the following we pro-
vide the results of the detailed statistical analysis.

The ANOVA test of within subjects effects showed that there was a
significant main effect of condition (F (1, 24) = 110.06, p < 0.001) and
activity (F (3, 72) = 8.88, p < 0.001) reflecting that group mean vari-
ability under load condition was higher compared to idle condition and
the type of the activity significantly influenced the reaction time vari-
ability. There was not a significant interaction effect between activity
and age-group indicating that the effect of the activity on the reaction
time variability did not differ between young and elderly age group.
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Figure 8.6. Scatter plots showing all 208 observations from all 4 activities

during idle and load condition. Misclassified observations from a leave-one-

subject-out cross validation are marked with crosses. Left: Logistic regression

model which contains only mean reaction time and reaction time variability

as predictors. Accuracy 75%. Right: Logistic regression model with additional

activity class features as predictors. Accuracy 80.77%.

On the other hand, there was a significant interaction effect between
condition and age-group (F (1, 24) = 9.72, p < 0.01) showing that the
increase in reaction time variability from idle to cognitive load condi-
tion was higher for the older participants compared to the younger ones.
This effect can also be seen in Figure 8.5. The interaction effect between
activity and condition was also significant(F (3, 72) = 3.24, p < 0.05),
showing that the increase of reaction time variability from idle to cog-
nitive load condition was depended on the type of the activity. The
test of between-subjects effects showed a significant main effect of the
age-group (F (1, 24) = 8.97, p < 0.01), reflecting the fact that elderly
participants showed an overall higher reaction time variability across
the four activities and two levels of conditions compared to the young
age-group.

Post-hoc comparisons showed a significant main effect of condition
for all activities (p < 0.001) indicating that for each activity the re-
action time variability was generally larger in the load condition inde-
pendent of the age group. Significant interaction effects between con-
dition and group were found for the sitting (p < 0.05) and reading
(p < 0.05) activities indicating that older subjects showed higher in-
crease in their reaction time variability from idle to load condition
compared to younger subjects. There was not a significant interaction
effect between condition and group for walking (p = 0.596) and writing
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Figure 8.7. Scatter plots showing 104 observations from 2 sets of activi-

ties respectively. Misclassified observations from a leave-one-subject-out cross

validation are marked with crosses. Left: Logistic regression model obtained

from data when subject’s hands are active, i.e. writing and walking. Accuracy

68.27%. Right: Logistic regression model obtained from data when subject’s

hands are not active, i.e. sitting and reading. Accuracy 87.5%.

(p = 0.054) activities. The test of between-subjects effects showed a
significant group difference in the overall reaction time variability only
for the reading activity (F (1, 24) = 10.51, p < 0.01).

8.4.3. Classification: Idle vs. Load Condition

Figure 8.6 shows the scatter plots and the misclassified observations
from the first two logistic regression models. In the leave-one-subject-
out cross validation scheme the accuracy of the first model which con-
tained only mean reaction time and reaction time variability as predic-
tors was 75% (Figure 8.6 left). Adding the activity class features to the
set of independent variables yielded an increase of the discrimination
accuracy from 75% to 80.77% (Figure 8.6 right). Figure 8.7 depicts the
scatter plot and the missclassifications when considering the availabil-
ity of a simplified context-aware wearable reaction time test. The left
figure shows the scatter plot for the regression model obtained from
the data when subject’s hands are active, i.e. data from the activities
writing and walking. In this case, the lowest classification accuracy of
68.27% was achieved. In contrast, the right figure shows the scatter plot
for the regression model obtained from the data when subject’s hands
are not active, i.e. data from the activities sitting and reading. In this
case, the highest classification accuracy of 87.5% was achieved.
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Figure 8.8. Perceived workload scores of the young and elderly subjects.

8.4.4. Subjective workload scores

Figure 8.8 shows the perceived NASA-TLX workload scores of the
young and elderly subjects. First of all, as intended from the exper-
iment design, it can be observed that for both young and elderly, the
subjective workload ratings of the cognitive load condition were higher
than the respective idle condition for each activity. The elderly subjects
showed in average lower perceived workload than younger subjects dur-
ing idle condition of all activities and during the load conditions of sit-
ting and writing activities. On the other hand, the increase in perceived
workload from idle to load condition was higher during sitting, walk-
ing, and reading activities for the elderly which confirms the similar
trend in mean reaction time and variability outlined above. In order
to model the relationship between NASA workload scores and reac-
tion time measures we performed a multiple linear regression analysis
combining all the data from young and elderly subjects. Mean reac-
tion time and reaction time variability served as predictors whereas
the perceived workload score was used as the dependent variable. We
found that mean reaction time (β = 0.085, p < 0.001) and reaction time
variability(β = 0.72, p < 0.05) were significant predictors. The overall
model fit was R2 = 0.282.

8.4.5. N-Back scores

The N-Back scores from the Audio 2-Back task of the young and elderly
subjects collected during the cognitive load conditions of all activities
are shown in Figure 8.9. As seen in the figure, young subjects provided
better performance in N-Back tasks than elderly subjects during all the
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Figure 8.9. NBack scores of the young and elderly subjects collected during

the cognitive load conditions.

activities. Compared to sitting and walking activities, the performance
in N-Back was decreased during reading and writing activities to a
great extent for both age groups. Young and elderly subjects showed
the lowest performance during the writing activity which confirms the
reaction time measures, i.e. the lowest reaction time performance and
the highest reaction time variability was observed during the writing
activity.

We performed a 2x4 ANOVA test where activity served as within-
group factor while age-group was used as between-subjects variable.
The results revealed a significant main effect of activity (F (3, 72) =
26.86, p < 0.001) on the N-Back score. There was no significant in-
teraction between activity and age-group indicating that the effect of
the activity on the N-Back score were similar for young and elderly.
The test of between-subjects effects showed a significant main effect for
age-group, showing that elderly participants showed an overall lower
N-Back performance than younger subjects(F (1, 24) = 9.08, p < 0.01).
The post-hoc group by group comparison for each activity revealed that
there was a significant difference between young and elderly for sitting
(p < 0.05), walking (p < 0.01) and writing (p < 0.01) activities.
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8.5. Conclusion and discussion

In this contribution, we have investigated how the four common daily
activities sitting, walking, reading and writing affect the reaction times
of young and elderly subjects. When investigating the differences be-
tween idle and cognitive load conditions we could show that mean RT
and RT variability were significantly increased during load as intended
from the experiment design. This confirms that cognitive load could be
assessed in all daily activities under investigation.

We could show that mean reaction times and reaction time vari-
ability were significantly affected by the type of activity. For both age-
groups, the highest mean reaction time and variability were observed
for the writing activity. On the one side, this might be explained by
the fact that typing on the keyboard is a motor-driven activity which
may also cause additional delay on response times because of hand
movements. On the other side, a possible explanation might be that
the writing activity was a highly demanding task since it requires read-
ing, memorizing and typing. As a consequence this finding provides
evidence that a wearable RT test would allow to assess whether a cer-
tain task requires more or less cognitive capacity than another one.
This would be especially important for the elderly since they may have
less cognitive resources and a deviation in reaction times could indi-
cate that a particular task is highly cognitive demanding for them. We
performed logistic regression analysis in order to investigate the dis-
criminative power when distinguishing between idle and cognitive load
conditions. The classification results confirmed the effect of activity on
reaction times. In a leave-one-person-out cross validation the discrim-
ination accuracy increased from 75% to 80.77% after adding activity
class features to the classification model. When considering a simple
context-aware wearable reaction time test which is able to detect when
the hand is not active, we achieved a discrimination accuracy of 87.5%.

When comparing young and elderly subjects, the elderly showed an
overall higher RT variability across all activities. This result is consis-
tent with other studies which have shown an increasing RT variability
in the elderly [10, 14]. The increase in mean RT and RT variability from
idle to cognitive load condition was higher for the elderly participants
compared to the younger ones. There was not a significant difference
between young and elderly regarding to overall mean reaction times al-
though other studies showed that older adults were slower than younger
ones [10]. On the contrary, older participants showed a slightly faster
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mean RT during the idle condition. One possible explanation could be
the underlying motivational processes, e.g. it was observed that the el-
derly subjects were more motivated then the younger subjects during
the whole experiment. Elderly perceived the accomplishment of the ex-
periment as a sense of achievement whereas the main motivation for the
younger subjects was the compensation money. The positive affective
state of the elderly might have induced an increased arousal level which
is a known factor that enhances the reaction time performance [18, 26].
However, the underlying motivational processes need to be investigated
further.

We performed logistic regression analysis in order to investigate the
discriminative power when distinguishing between idle and cognitive
load conditions. The classification results confirmed the effect of ac-
tivity on reaction times. In a leave-one-person-out cross validation the
discrimination accuracy increased from 75% to 80.77% after adding
activity class features to the classification model. When considering a
context-aware wearable reaction time test which is able to detect when
the hand is not active, we achieved a discrimination accuracy of 87.5%.
As a consequence, this finding provides evidence that RT tests in daily
life need to consider activity classes.

Furthermore, we investigated the perceived subjective workload of
young and elderly subjects. Interestingly, the older participants re-
ported in average a lower perceived workload than younger subjects. A
possible explanation might be that the elderly often tend to be reluc-
tant to admit cognitive problem because of a fear of losing their inde-
pendence [24]. Finally, we analyzed the N-Back scores of the subjects.
Elderly subjects showed significantly lower performance than younger
subjects. In both age groups, the performance during reading and writ-
ing was lower compared to sitting and walking. This might be the result
of the fact that reading and writing were cognitively more demanding.

Based on the achieved results, we finally conclude that a wearable
reaction time test combined with an activity recognition system is fea-
sible to detect changes in reaction time performance and variability
during common daily life activities.

8.6. Limitations and Future work

In this contribution we have shown that a simple context-aware RT test
would increase the classification accuracy when discriminating between
cognitive load and idle states. In future work the context recognition
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should be an integral part of the wearable RT test. Thus, it would
be possible to generate stimuli events only in cases when the hand is
not active for a certain amount of time. More advanced, the wearable
RT test could be combined with ambient sensor networks. This would
allow involving more powerful context recognition systems in order to
overcome the limitations of the single IMU approach we have considered
so far. Thus, it would be possible to control the generation of stimuli
events in a more advanced way. For example, it would be possible to
activate the wearable RT test only in cases when the user is at home.
Regarding design and implementation of the wearable RT test, in future
work the device itself could be actually integrated into a normal watch.
In addition, the device should be able to provide a feedback on the
measurement results to the user. In this way, a user could be warned
about an increased cognitive load.

So far, we have investigated healthy subjects and we have induced
variations in cognitive functioning by applying cognitive load. In fu-
ture work, wearable RT tests should be investigated for screening of
cognitive impairment, rating of disease severity or monitoring of dis-
ease progression.
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Glossary

Notation Description
AD Alzheimer’s Disease
ADHD Attention Deficit Hyperactive Disorder
ADL Activities of Daily Living
ANOVA Analysis of Variance
ANS Autonomic Nervous System

CV Coefficient of Variation

DC Direct Current

ECG Electrocardiography
EEG Electroencephalogram
EMG Electromyography
ESM Experience Sampling Method
ETHOS ETH Orientation Sensor

GSR Galvanic Skin Response

HF High Frequency
HPA Hypothalamus-Pituitary-Adrenal
HR Heart Rate
HRV Heart Rate Variability

IMU Inertial Measurement Unit

k-NN k-Nearest Neighbor Algorithm

LDA Linear Discriminant Analysis
LED Light Emitting Diode
LF Low Frequency

MCI Mild Cognitive Impairment
MMSE Mini Mental State Examination
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Notation Description
NASA-TLX NASA Task Load Index

PEBL Psychology Experiment Building Language
PSD Power Spectral Density

RFID Radio-Frequency Identification
RT Reaction Time

STD Standard Deviation
SVM Support Vector Machine
SWAT Subjective Workload Assessment Technique

TOVA Test of Variables of Attention
TSST Trier Social Stress Test

VLF Very Low Frequency
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