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Abstract

In this thesis we explore the biological development of the neocortex as a model for self-

constructing systems. Development begins with a single cell, and expands that cell through

cell division and specialization to create a complex organism consisting of trillions (in humans)

of cells. We will consider the branch of this process that leads to the neocortex, beginning with

precursors in the ventricular zone, and the ganglionic eminences. In biology the instructions

for construction of a target organism are encoded in its DNA-code, and these instructions are

selectively decoded by a gene regulatory network according to prevailing intra-cellular and ex-

tracellular conditions. We approximate this elaborate process with a model that contains the

essential elements of biological self-construction, but is sufficiently tractable to be simulated.

Because our final goal is to exploit biological construction as a practical engineering technology,

we choose a style of simulation that emphasizes physical process in a 3D spatial environment.

And, because the compelling feature of biological development is that it is distributed and pro-

ceeds without a global controller, our model emphasizes self-construction as the result of locally

interacting distributed autonomous agents. The model is simulated using a specialized software

platform, Cx3Dp, that is able to simulate the physical development of millions of cells. The bio-

logical behavior of these cells is controlled by G-Code, a DNA-like specification language that is

able to model cellular behavior as observed in nature. The organization of the G-Code ‘genome’

that is inserted into the cortical precursor cells of the embryonic ventricular zone is obtained

by applying the methods of Pfister et al. [146], by which sparse experimental data are used to

estimate a model genome able to express a gene-regulatory network (GRN) that controls mouse

corticogenesis. The various cell types of the cortical lineage tree are expressions of the attractor

states of the GRN. The various states release G-Code encoded cellular functions that cause the

cells to divide, migrate, and differentiate. Using these concepts and methods we are able to

simulate the self-construction of a sheet of neocortex composed of two areas containing some

200,000 neurons. The simulation recapitulates the majority of experimentally observed features

of this process, including the detailed inter- and intra-laminar axonal connection patterns. The

simulation platform is parallelized, and its performance scales well with simulation size, so that
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the simulation of much larger volumes of cortex are possible. These explorations of cortical

development lead us to a new paradigm of engineered self-construction: the Developmental Pro-

gramming paradigm. At the center of this paradigm is the concept of exponential construction,

whereby a single precursor containing a single genome amplifies itself by successive replication

and specialization, and so is able construct a vastly more elaborate product than can be achieved

with conventional, more linear fabrication methods. There are three crucial components in the

construction process: firstly, the genome that encodes what functions are possible, and provides

rules for their expression; secondly the machine-like agents that are instantiations of the genomic

functions; and thirdly the container (e.g. cell membrane) that provides the spatial and temporal

scope of genome and agent activities. The contents of containers work independently of one

another, but can be coupled through local messages. This is a highly parallel and distributed

process, in which the computational power of the overall system increases with each container

replication. In this thesis we have considered this self-construction process as it is embodied

in cortical development. However, it is easy to see how these principles could be extended to

novel self-replicating technologies as diverse as genetically engineered cells, nano-robots, DNA-

computing systems, and self-configuring software for exascale computers.



Zusammenfassung

In dieser Doktorarbeit untersuchen wir die biologische Entwicklung des Neocortex als Modell für

selbstkonstruierende Systeme. Die Entwicklung beginnt mit einer einzigen Zelle, und erweitert

diese Zelle durch Zellteilung und Spezialisierung in einen komplexen Organismus, bestehend aus

Billionen von Zellen (beim Menschen). Wir betrachten den Teil dieses Prozesses welcher zum

Neocortex führt, beginnend mit Präkursor-Zellen in der ventrikulären Zone und den Ganglionic-

Eminences. In der Biologie sind die Befehle zum Aufbau eines Zielorganismus in seiner DNS

codiert. Diese Befehle werden selektiv durch ein Genregulationsnetzwerk decodiert, je nach

den Bedingungen die intrazellulär und extrazellulär vorherrschen. Wir approximieren diesen

aufwendigen Prozess mit einem Modell, welches die wesentlichen Elemente des biologischen

Selbstkonstruktion enthält, jedoch steuerbar genug ist um es zu simulieren. Da es unser Endziel

ist, die biologische Bauweise als praktische Ingenieurtechnik zu nutzen, wählen wir eine Art von

Simulation, die den physikalischen Prozess in einer 3 dimensionalen Umgebung betont. Und

da die faszinierendste Funktion der biologischen Entwicklung die verteilte Funktionsweise ist,

welche ohne globale Steuerung auskommt, betont unser Modell, dass die Selbst-Konstruktion das

Ergebnis von lokal interagierenden, verteilten und autonomen Agenten ist. Das Modell wird mit

Hilfe der speziellen Software-Plattform, Cx3Dp simuliert, welche in der Lage ist die physikalis-

che Entwicklung von Millionen von Zellen zu simulieren. Das biologische Verhalten dieser Zellen

wird durch G-Code gesteuert, eine DNS-ähnliche Beschreibungssprache, die in Lage ist zelluläres

Verhalten wie es in der Natur beobachtet wird zu modellieren. Die Organisation des G-Code

,,Genoms‘‘ wird durch die Anwendung der Methoden von Pfister et al. [146] erlangt und in die

kortikalen Präkursor-Zellen der embryonalen ventrikulären Zone eingefügt. Bei dieser Methode

wird mittels wenigen experimentellen Daten ein Modell Genom bestimmt, welches ein Genreg-

ulationsnetzwerk (GRN) ausdrückt, das die Kortikogenese der Maus steuert. Die verschiedenen

Zelltypen der kortikalen Entwicklungslinie sind der Ausdruck von den Attraktor Zuständen des

GRN. Die verschiedenen Zustände starten in G-Code kodierte zelluläre Funktionen, welche die

Zellen teilen, migrieren und differenzieren lassen. Unter Verwendung dieser Konzepte und Meth-

oden können wir die Selbst-Konstruktion einer neocortikalen Platte bestehend aus zwei Zonen
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mit ca. 200’000 Neuronen simulieren. Die Simulationsergebnisse rekapitulieren die Mehrheit der

experimentell beobachteten Merkmale dieses Prozesses, einschliesslich der detaillierten inter-

und intra- laminaren axonalen Verbindungsmuster. Die Simulationsplattform ist parallelisiert

und Ihre Leistungsfähigkeit skaliert gut mit der Simulationsgrösse, so dass gar Simulationen

von grösseren kortikalen Volumen möglich sind. Diese Erkundungen der kortikalen Entwicklung

führen uns zu einem neuen Paradigma der technischen Selbst-Konstruktion: Das Developmental-

Programming-Paradigma. Im Zentrum dieses Paradigmas ist das Konzept von exponentieller

Konstruktion, bei welchem ein einziger Präkursorbehälter mit einem einzigen Genom sich selbst

Amplifiziert durch Replikation und Spezialization, und fähig ist ein weitaus elaborierteres Pro-

dukt zu konstruieren als es mit konventionellen linearen Fabrikationsmethoden möglich ist. Hier

sind drei wichtige Komponenten im Konstruktionsprozess: Erstens, das Genom, welches die

möglichen Funktionen kodiert und Regeln für ihren Ausdruck enthält. Zweitens, die maschi-

nenähnlichen Agenten welche die Instanziierung der genomisch enkodierten Funktionen sind.

Und drittens, der Behälter (z.B. Zellmembrane) welche das örtlichen und zeitlichen Ausmass des

Genoms und der Agenten Aktivitäten bestimmt. Die Inhalte des Behälters arbeiten unabhängig

voneinander, können aber voneinander abhängig gemacht werden mittels Nachrichten. Dies ist

ein hoch parallelisierter und verteilter Prozess, welcher die Rechenleistung des Gesamtsystems

mit jeder Replikation eines Behälters erhöht. In dieser Doktorarbeit haben wir den Prozess der

Selbstkonstruktion, wie er in der kortikalen Entwicklung verkörpert ist, untersucht. Allerdings

ist es einfach zu sehen wie diese Prinzipien auf neue selbstreplizierende Technologien erweitert

werden könnten, Technologien wie artifizielle Zellen, Nanoroboter, DNS-Rechnersysteme und

selbstkonfigurierende Software für exascale Computer.
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Chapter 1

Introduction

1.1 The Importance of Self-Construction

In this thesis we want to investigate how from a single cell, the fertilized egg, a complete and

fully functional organism can be constructed. How can cells without a global controller, a central

construction unit, reliably create organisms that have similar shapes and that can survive? Cells

seem merrily to replicate but do not seem to know exactly what they have to do at each stage

of development. We want to investigate the principles that let a single cell develop into such

a huge diversity of cell types and assemble into a functional organism that consists of billions

of cells. It is not yet clear how this developmental process exactly works and it remains a

mystery on which we would like to shed light. This process of development is called more

abstractly self-construction. This concept extends beyond biology. If we want to learn about

self-construction we have to look at development, since biological development is currently the

only system that successfully implements this technique. Current engineering techniques usually

rely on a central global construction controller and are hardly parallel. Further, these techniques

mainly use big machines and construct much tinier objects. Even the most flexible construction

techniques such as 3D-Printing work this way and are globally controlled. In self-constructing

systems the process is not globally controlled but the control is distributed, highly parallel and

the constructing entities are part of the final object. This type of construction has certain

advantages over state of the art engineering techniques: self-construction leads to systems that

are inherently capable of self-repair. The construction process is distributed, it therefore does not

have a single point of failure. This means that even though many errors can occur in development

the whole system does not fail. Replication is a necessary property of a self-constructing system,

it renders the process very scalable, potentially enabling an exponential speed up of growth.

Self-constructing systems can also potentially evolve as we see in biology. If we were to

1



2 CHAPTER 1. INTRODUCTION

understand and recreate a system that is self-constructing, it would revolutionise our process of

construction. Not only is it currently not possible to build systems that truly mimic the biologi-

cal process of construction, but it is also not understood how to usefully instruct self-organizing

systems. With this thesis a step is taken in this direction and we investigate biological princi-

ples and abstract from them useful concepts for engineering self-construction. By abstracting

and learning from biological systems we also automatically gain insight into how nature has

tackled these problems. We begin to better understand how the interaction between nature’s

programming languages, genome and development, works.

It is obvious if we want to investigate self-construction that we should focus on the only

process that we know already implements self-construction, i.e. biology, and more precisely the

development of biological organisms. We need an example of a system that is well studied

and sufficiently complex in order to be interesting to investigate. An obvious choice is the

development of the cerebral cortex, since the cerebral cortex is a brain region that has been

intensely studied for decades and in which many biological processes have been observed and

documented. Specifically the study of mouse cortical structure has been the subject of a great

deal of literature. The mouse is an obvious choice since it is one of, or even the best studied

organism in biology and it is reasonably close in evolution to humans to possess a similar brain

structure. Studying the cortex as a brain structure is especially interesting as it is thought be

the seat of intelligence in humans. Most genetic tools for mammals such as the gene-knockout

techniques are mostly developed for mice, and they are one of the most economic and least

controversial animal models.

The cortex is a structure that is in itself very interesting for its computational properties,

since it is at the core of human intelligence. It is the only system that evolution has come up

with that implements intelligence. The cortex and its development, even without considering

the aspect of self-construction, is a fascinating subject to study. In fact it is one of the most

studied brain structures and has been intensely investigated to decipher its properties. It is

highly regular in structure despite some interareal and interspecies differences. Its pattern of

connectivity is reasonably well understood also thanks to collaborators such as Kevan Martin

and Henry Kennedy who are at the core of the investigation of the development of the adult

mouse and monkey cortices.

We aim at understanding the structure and the computational properties of the cortex by

constructing it as it is naturally constructed via the simulation of its development from the

genome inserted in the first cell to a complete organism. For example the human genome itself

is only on the order of thirty thousand genes [44]; on the order of gigabytes [40] of information.

This amount of information is enough to construct a human brain (not considering the human

body) that consists of billions of cells. According to the complexity theory of Kolmogorov [105],



1.2. THE GOALS OF THE THESIS 3

all the information in the initial code, the environment and the physical rules must be sufficient

to generate the final structure since no other information sources are present. According to

Kolmogorov, computation cannot create complexity since complexity is defined by the shortest

program necessary to describe an output and therefore a structure. This means that if we could

decipher the genome and the principles of how it unfolds into structure we would understand the

functional principles by which the brain sets itself up into its mode of operation. This implies we

could obtain an understanding of the workings of the brain. This approach contrasts strongly

with the current mainstream in neuroscience that reconstructs large parts of brains in huge

detail, in exabytes of data. These exabytes of data should then be fed into huge simulations

with the hope that an intelligent system will emerge, without an exact understanding of the

rules that are behind it.

1.2 The Goals of the Thesis

Having explained the importance of self-construction and that we want to investigate this type

of construction in the biological framework of cortical development we now specify more clearly

what the goals of this thesis are. We want to understand the principles of self-construction based

on the example of a developing cortex. We therefore model the development or construction

process of the mouse cortical structure in accordance with the literature. For this investigation

we have to create new tools that are important for the analysis and a central piece of work for

future investigations of development. Even though the latter is not central to the thesis it is

still a very important piece of work. Accordingly, the goals of this thesis are as follows:

1. Simulation of Mouse Cortex Areas 3 and 6: With Cx3Dp we will simulate the growth

of a cortical structure, beginning with simple progenitor cells in the ganglionic eminence,

neural epithelium and thalamus. The simulation shall include models of cellular behavior

that have been observed in biology such as radial migration of pyramidal cells, tangential

migration of smooth cells, in-growth of thalamic afferents in to the cortex, creation of

cortical lamination in an inside out manner and differences in thicknesses of the modeled

areas 3 and 6. All of these modeled processes shall be related in their relative timing as

observed in biology. All of the processes used in this simulation must be encoded in a

single genome. The genome will be coded in an improved version of the G-Code language

of Zubler et al. [213] which ensures that executed behaviors are only based on biologically

plausible processes. All the simulated cells must find their location or fate in the final global

structure only based on their local environment, and the genome and physical rules given

by Cx3Dp. There must not be any active global controlling instance in the system. The
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simulation shall begin with a few thousand cells and end up with a completely laminated

cortex with hundreds of thousands of cells.

2. Extraction of Self-Construction Principles into an Engineering Technique: Having created

the simulation, beginning only with a few progenitor cells and a genome and ending up with

a complicated cortical-like structure with hundreds of thousands of cells, will have led to a

lot of insights of how biology executes this construction. These insights shall be abstracted

and transferred from biological systems to engineering techniques that can be used to build

programs for systems that allow self-construction. This new paradigm (Developmental

Programming), describing how self-construction systems can be programmed, shall be

analyzed for its computational power and potential complexity to determine what types

of structures (constructs) can be programmed with such a system, where constructs are

defined as globally assembled structures built out of single-cellular entities with no global

control over the whole construct. The focus where the paradigm lies and how it compares to

other programming paradigms shall be specified. An example of a language implementing

the developmental programing paradigm shall be given and explained. How systems have

to be designed to allow them to be programmable in a self-organizing self-constructing

way shall be analyzed. The idea directly follows the work of Roth [159] and Zubler [213]

refining the ideas of a self-construction language.

3. Parallelization of Cx3D: Cx3D was written by Zubler et al. [211] as a single-threaded

program that is capable of simulating a few thousand cells. In this thesis we aim for to

parallelize the single-threaded software to make it capable of exploiting a multi-core and

multi-computer environment. For the parallelization the code will undergo a complete

revision and will have to be drastically changed. This system (Cx3Dp) should be capable

of performing simulations that use more than a million cellular objects. It shall be in-

tended for local area network heterogenous computer environments and not be specifically

designed for a specific cluster computer.

In achieving these goals we will have gone from creating a parallel simulation program to a

plausible biological simulation to a theory of the developmental process. The theory of biological

self-construction serves as a basis for a programming paradigm that can be used by engineers

to program systems that are potentially self-constructing.

The understanding of this self-constructing process could lead to a new area of how one

constructs and thinks about the process of construction.
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1.3 Scientific Context of the Thesis

This thesis is designed to be at the boundary between biology and computer science. We aim at

investigating the behavior of cells in a biological system at a more abstract level than the bio-

chemical level. This means that we will neither consider specific genes nor specific biochemical

pathways. We model the quorum effect of these proteins contributing to the cellular behavior,

by describing the biological behavior of the cells deeply enough that all of the processes we

describe with our models are observed and biologically justifiable. Our models might use a

different implementation than the real biology does but it is qualitatively achieving the same

behavior as is observed. We want to learn about the behavior of the cells and how to use the

principles found in biology to then apply this knowledge in a computer science context. We do

not conduct biological experiments, and are therefore not reporting on biological findings that

have been made by us, but we are interested in the biology and what it can teach us about

how development and therefore self-construction works, which is on a more abstract theoreti-

cal level then usual biological doctoral theses. All our experiments are done purely in simulation.

It needs to be clarified that when we talk about genetic mechanisms, we abstract the genome

with our language G-Code, but we do not use genetic algorithms. Genetic algorithms are for au-

tomatically evolving code and/or behavior of software according to a fitness function [63] [200].

Evolving a code according to a fitness function is not our goal, our goal is to explicitly write the

genome, since we want to find out about how to engineer code and not how to automatically

find solutions to a problem describable by a fitness function. Genetic algorithms often find so-

lutions that work well for the given fitness function but that are not humanly comprehensible

in their meaning [84]. Our goal is to understand the relations between genome, cells, the cells’

environment and final global structure.

Another common misconception regarding this line of work is that the self-constructing

process is an “intelligent” process; concepts such as “swarm intelligence” [22] are not comparable

to human intelligence. Even though self-constructing systems and hence development can react

directly to the environment this process is nothing more then a feedback loop for very specific,

predefined, and usually expected events. Since we use cortical growth as an example of self-

construction for a system that is in biology at least partially responsible for the “intelligence” of

the organism, the construction of it is not intelligent but follows pre-specified rules. That means

that no cell exhibits attributes that should be seen as intelligent behavior. In our simulation we

strictly separate this “intelligent”/learning behavior from the construction process and do not

even allow for any kind of synaptic or machine “learning” during the simulation. However it can
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be argued (with good reason) that classical synapse driven learning is happening in the biological

cortex [165] [65]. We are using the development of cortex only as a well studied example of a

developmental process.

1.4 Readers Guide to the Thesis

The results chapters are self contained with short transitions between them that explain the

need for the following chapter. Each part has an introduction, and a conclusion at the end

of the chapter. Having explained the biological and theoretical background of this thesis, four

results chapters follow: the modelling of the brain areas of the mouse (chapter 3), an analysis of

the biological self-construction process (chapter 4), the Developmental Programming paradigm,

(chapter 5) that is based on the biological analysis, and finally a chapter about the Cx3Dp

software (chapter 6) that was used for the simulations. At the end there is a general discussion

and outlook.



Chapter 2

Background

Before the simulation and theory of self-construction is explained, a certain amount of back-

ground is needed to follow the text. We first explain the current knowledge in the field of

cortical development in mouse areas 3 and 6. This explanation serves later as the basis for

the model in the simulation. Second, we explain how cells are able to generate different cell

types over the course of development in the simulation this will also serve as a background for

the theory of biological self-construction. Third and last, a short overview is given about the

language that can be used in Cx3Dp for programming the artificial genome.

2.1 Biological Background: The Story of the Mouse Lamination

2.1.1 Level of Abstraction

In this chapter we assume a fairly abstract view of the developmental process and explain

events on a systemic level rather than on a gene expression guided level. We are interested

in the behavior of the cells and how they interact with each other but not at the molecular

level, but rather why and when they need to interact in order to construct the cortex. We are

interested in the orchestration of the cells — how do they manage to construct such a system

in an autonomous, distributed and therefore self-constructing fashion? Whenever we arrive at

a point where information exchange is necessary we acknowledge that there must be a signal

but do not specify or predict what the signal is, just define the nature of this signal. Each part

of our model could be taken and refined in an iterative fashion down to the molecular level.

This refinement would in each case certainly take years of work. But the epiphenomena of cell

behavior we describe here must at least be achieved by molecular processes such that the system

works as observed.

Cells constructing the cortex only have a limited amount of patterning of space at their

7
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disposal that is present at the beginning of the process. The developmental process must create

its own environment during the course of the development. Each cell is an autonomous entity

that has to find its position in the construction of the developing cortex. Somehow each cell must

gather the information of where its type is needed during the construction process. It is even the

case that some developmental stages are only scaffolds for the later and final construction and

will be destroyed after having served as an information source for orientation for the construction

process. That might even include cells that will undergo apoptosis when they have served their

purpose or are positioned at the wrong place in the finishing structure. But each cell has to

decide autonomously what it has to do next in the construction process. To do so the cell

can only rely on the external information of its local environment, its internal state (expression

levels) and the genome. It will integrate this information and define the appropriate action to

perform. The cell never has the ability to view the whole cortex at a global level in order to

decide which actions to take. The currently active cells have to shape the environment in such

a way that throughout the stages of cortical construction, the information is at hand where it

is needed by the cells that play a role in the next step of the development. Through time, the

construction morphs the organism through different stages of (sometimes) transient scaffolds

that are all necessary to end up with the final functional cortex and/or body. We can already

see that timing plays a crucial role in the development: if information that a certain cell needs

is not on hand at the right time, the construction will not work (e.g. in the reeler mouse [2] [29]

[130]).

This chapter provides a fairly abstract view of the development process and covers a lot of

literature. We therefore often refer to summarizing reviews rather then the original articles to

make our point.

2.1.2 Overview of the Mouse Cortical Construction

We first give the reader a crude overview of the developmental process of cortical development

in the mouse which is a field with a huge literature. We will discuss only the parts on which we

focus.

Just above the lateral ventricles in the dorsal telencephalon, a layer of neuroepithelial cells is

located called the ventricular zone. These cells proliferate and build the preplate. The preplate

is then split into marginal zone and subplate by the first developing neurons that are produced

in the ventricular zone. [131] [142] [153] [2] The cortical plate consists of the cortical layers 6,

5, 4 and 2/3. These layers will settle below the marginal zone: layer 2/3 topmost and 4 the

lowest. [152] Layers 6 and 5 are produced by the ventricular zone that will also produce the

subventricular zone that rests above the ventricular zone. [59] [131] Subventricular zone cells

will then produce layers 4 and 2/3. Neurons produced in the ventricular and subventricular
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zone migrate radially from the ventricular site to their specific location. All of these neurons

are excitatory cells and are of pyramidal shape. The cells medially begin to grow axons and

dendrites to create specific connections between the layers. [148] [23]

A second population of cells (interneurons) are produced in the marginal zone located in the

ventral telencephalon. These interneurons migrate in the direction of the cortex, tangentially

invading the cortex, and settle in the cortical layers. Interneurons are inhibitory neurons. [18]

[118] [129] Their location in the different layers is birth-time dependent and they are produced in

the same order as the pyramidal cells of the corresponding layer, layer 6 first and layer 2/3 last.

[18] The production of these neurons is believed to be guided by cell internal states represented

by a system called a gene regulatory network. This regulation of cell numbers is influenced by

internal signals as well as external signals defining the fate and the order in which the cells are

born.

The cortical plate is divided into areas with different functions. This division is also reflected

in their anatomy, in that different areas have different thicknesses of layers and have different

connection targets for cortical-cortical, cortical-thalamic projection and other cortico-fugal pro-

jections. [51] They are also subject to different invading projections from other cortical areas,

thalamic areas and other brain structures. In order to generate different thicknesses, the gene

regulatory network has to behave differently in different cortical areas in the corresponding cells

of the proliferative layers. [147]

The cortex connects to the thalamus by sending axons in its direction [130]. The thalamic

outgrowth already begins at early stages of development when only the subplate is established

[130] [127] [153]. The subplate cells send axons in the direction of the thalamus and the thalamus

sends axons in the direction of the cortex. They meet in the internal capsule and match up.

They are then both believed to guide each other to their corresponding origins, establishing a

connection between cortex and thalamus. [130] Later in development, layers 6 and 5 also send

axonal fibers in the direction of the thalamus. [127] [112] The thalamic fibers will connect to

layers 6 and 5.
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2.1.3 Inconsistencies in the Literature

The broad spectrum of the literature gives many theories for how the orchestration of particular

processes works. We inform the reader of these at the points at which we arrive at them and

show the range of ideas that have emerged in the literature concerning this process.

One of the main issues is relative timing of events happening in the self-construction process.

The relative timing of these events is of utmost importance. The behavior of cells at a certain

point in time can only be explained by information cues that have been distributed intracellularly

through lineage and/or state information or extracellularly through markers in space. But in

both cases the events that bring the information to the cells must have happened before the cell

has to make a decision for the future construction. To give just one example, the thalamic fibers

cannot influence the development of the cortex if they have not yet reached the cortex. [51] Being

aware of the timing issues and knowing that we have to integrate information from literature that

is so far-reaching, this can pose quite a challenge. In the literature, embryonic days Ei start to

be counted at different time points (there is approximately half a day uncertainty). Additionally

even the starting label varies, beginning at either E0 or E1 leading to quite a spread of the use

of these time markers in the literature. The development of the mouse is quite fast, on the

order of days rather than weeks, so a shift of one day might make the difference as to whether

an event in the development of one part of the cortical assembly can have an influence on the

other part. The differences in start dates can be seen again in the interplay between the birth

of layer 4 cells and the arrival of the thalamocortical projections in the cortex. [147] [13] That

plays directly into the discussion of whether there is a waiting time or whether the layer 4 cells

have an influence on the turning of the thalamic axons in the direction of the cortical plate or

not. We tried to disentangle the timing issues as far as possible but might still sometimes be off,

and it is important that the reader is aware of this fact, also when reading the other literature

referred to in this chapter.

Since in different parts of different literature different names have been used that actually

describe the same cells or phenomena the reader might find it difficult to find the right key

words to search for the phenomena described. Therefore we try to give all the synonyms that

we found each time we encounter a new expression.

2.1.4 Inter-Species Differences, the Importance of Timing

Even though the construction process of many parts of the cortex are quite similar in terms of

timing and the final appearance of the cortex, there are many subtle differences in the timing,

the number of cells and the cell types found in different animals with a cortex or cortical-like

structure. Even slight differences can make a tremendous difference in the final shape of the
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animal’s cortex. For example thalamic ingrowth, which seems to play a crucial role for the

development of the healthy cortex in primates but not in mouse [99]. Even among rodents there

are differences that have a huge effect on the development. If we look at the development of the

thalamic fibers there are differences in when which parts of the cortex connect to which parts of

the thalamus and vice versa; for example between hamster and mouse development [127] [13].

The differences become even larger going from rodents to carnivores such as cat [2] and ferret

[42] or to primates [99]. These differences might also be attributed to the timing incongruences

in the literature or different methods of fiber tracking, but still there seems to be a difference.

This uncertainty leads us to the problem that not everything is known and not all experiments

have been done in the mouse. Therefore we will if necessary make assumptions based on other

animals. However, if not otherwise indicated, the results are believed to be true for the mouse.

2.1.5 Germinal Zones

The cell generating zones in cortex are called the germinal zones. There are three zones in the

mouse that are part of the germinal zones: the ventricular zone (VZ), the subventricular zone

(SVZ) and the intermediate zone (IZ). The IZ is not discussed in this thesis.

The ventricular zone primary source of cortical generation is already established at the very

early stages, even before the preplate is created (at Embryonic day E10 to E11 in the mouse). Its

pluripotent cells are called the neuroepithelial cells at that time. It will initiate the corticogenesis

(figure 2.1 process 3a). Later, the cells of the ventricular zone will be called radial glial cells

(RGCs) (figure 2.1 process 3b). These are believed to build the starting pool of the progenitor

cells in the mouse cortex [131] [142] [153]. There are also other progenitor cells than the radial

glial cells in the ventricular zone, but the radial glial cells are the majority of the cells in that

zone. Through symmetrical division, these cells carefully control the pool of progenitor cells in

the early stages of the cortical plate development [152].

Before the onset of neurogenesis, neuroepithelial cells self-renew by symmetric divisions. As

neurogenesis progresses, neuroepithelial cells differentiate into radial glial cells [77, 128, 140,

141, 7]. Radial glial cells divide at the apical surface of the ventricular zone and undergo

stereotypical patterns of cell divisions: symmetric divisions amplify the pool of precursor cells

[149], whereas asymmetric divisions (which become predominant) give rise directly and indirectly

to the majority of cortical neurons [81, 114, 7]. These cells are the starting point for all of the

production of the pyramidal cells of layer 6 to layer 2/3, though the production of the different

cell types greatly overlaps. The timings are mostly deduced from Polleux et al. [147] unless

otherwise indicated. The reader must keep in mind that timings given here are only approximate

and they may vary depending on the cortical area.

The progenitor cells then begin to perform asymmetric division and generate layer 6 cells
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that will migrate up radially into the middle of the preplate to split it into two: the marginal

zone and the subplate [2] beginning at E11.5 and ending production at E16 (figure 2.1 process

4a). The progenitor cells in the VZ therefore divide mostly asymmetrically into one neuron and

one progenitor. Following layer 6, layer 5 neurons are the next to be generated by the ventricular

zone beginning at E12 and ending at E17.5 (figure 2.1 process 4b). (Layers 5 and 6 are called

the infragranular layers.)

Slightly later, beginning at E13, a new zone just above the ventricular zone forms called the

subventricular zone [59] [131] (figure 2.1 process 3c). This zone is responsible for generating

layer 4 first, starting at E14 and ending at E17.5 (figure 2.1 process 4c). After the generation of

layer 4 the subventricular zone generates the layer 2/3 neurons, starting at E15 to E19 (figure

2.1 process 4d). These layers are also called the supragranular layers.

There is evidence that the radial glial cells of the ventricular zone later generate astrocytes

[152]. Radial glial cells are present until late neurogenesis before birth, when they differentiate

further into glial-restricted precursors and produce, by rapid symmetrical divisions, a cohort

of glial cells invading the laminated cortex [45]. Most of the subventricular zone and the ven-

tricular zone is exhausted during the corticogenesis. However a small subpopulation of RGCs

retain apical contact and continues to generate neurons and oligodendrocytes in the neonate,

or converts into adult SVZ astrocytes, which differentiate into adult neural stem cells in the

adult (reviewed in [106]). The differences in cortical layer thickness are attributed to different

schemes of proliferation [147]. In this thesis we neglect the role of the intermediate zone.

2.1.6 The Preplate

The preplate (PP) builds the structure that develops prior to the construction of the cortical

layers.

In the early stage of mouse development, just above the lateral ventricles in the location where

the cortex will be built, a thin sheet of neuroepithelial cells is situated. These neuroepithelial

cells are a proliferating pool of cells. This zone in the literature of cortical development is

known as the ventricular zone (VZ). Above the ventricular zone is the pia. The neuroepithelial

cells will begin to proliferate and build a scaffold, the preplate, for the later construction of

the cortex. The preplate cells rest between the pia and the ventricular zone. This development

happens at embryonic day E10 to E11 in the mouse (figure 2.1 process 2a) [2] [171] [51] [124].

The neuroepithelial cells are already beginning to build processes and will later be known as the

radial glial cells.

Many of the ventricular zone cells (radial glial cells) have apical end feet that form a fiber

mesh at the ventricle and a basal process that reaches to the top of the marginal zone and

forms a fiber mesh there. These fibers extend constantly during growth and play a crucial role
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in the radial migration of the pyramidal neurons (glutamatergic neurons / exitatory neurons /

projection neurons). NB: Basal and apical orientation in radial glial cells is different to that

of the neurons of the cortex. In radial glial cells the apical direction is in the direction of the

ventricle, whereas in cortical neurons, apical describes processes going toward the pia.

After the ventricular zone has produced the cells of the preplate, it begins to create the

cortical plate. The generated cortical neurons start to migrate from the ventricular zone in the

direction of the pia, away from the ventricle. At E11 the preplate is split into two by the first

cortical neurons to settle (forming the cortical plate). These cortical neurons will later form

layer 6 (also known as layer 6a). The two new zones that are created from the preplate are

then called the marginal zone (MZ) (the later layer 1) and the subplate (SP) also called the

intermediate zone or layer 6b which later has fibers in the white matter.

Marginal Zone

The marginal zone lies over the cortical plate and later becomes layer 1. The marginal zone

provides a stop signal during development for the radially migrating cells (cortical plate neurons).

The signal is known to be reelin. The reelin positive cells are called the Cajal-Retzius cells and

build a large group of cells in the marginal zone. These cells must obviously already be there

before the subplate is split in order to give the signal to the cortical plate cells to stop migrating

and create the splitting. The reelin secreted by the Cajal-Retzius cells also seems to provide

a directional cue to the radially migrating cells. If these cells are defective we see the reeler

mutation [2] [29] [130].

The marginal zone acts also as a migrational zone for tangentially migrating cells (interneu-

rons / gabaergic neurons / inhibitory neurons) that are coming from deeper cortical structures

such as the ganglionic eminence. The origin of these cells is debated in the literature. It is

claimed that a close relation between the Cajal-Retzius and the other preplate cells / cortical

cells exists [171], but there is also the finding of Mayer et al. [124] that these cells originate from

the cortical hem and migrate tangentially in to the cortex.

Subplate

The subplate, or later layer 6b, is a structure that lies just below the cortical plate and above the

germinal zone (the proliferating zones ventricular zone, intermediate zone (IZ) and subventricular

zone (SVZ)). Pyramidal neurons created in the germinal zone will have to cross the germinal

zone radially in order to come to rest in the cortex. The roll of the subplate cells is still heavily

debated and not extremely well known. They are neurons, seem to be electrically active during

the construction process, and seem to be important for the development of the correct working
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regime of cortical neurons. [96] And the subplate cells are suspected to play a role in the setup

of the connection between thalamus and layer 4.

The subplate cells are the first cells sending out axons (part of the corticofugal / corticothala-

mic connection) in the direction of the thalamus. And they are the ones doing the “handshake”

in the internal capsule (IC) with the thalamic axons (thalamocortical connection / thalamic

fibers / thalamic afferents) [130] [118]. The name Handshake Hypothesis describes the process

whereby the two fiber tracks, corticothalamic and thalamocortical fibers, meet and seem to fas-

ciculate to each other and lead or guide one another to the reciprocal target. Therefore, they

seem to play a role in the topography mapping and the setup for the connection from thalamus

to cortex. This zone is an area through which many neurons migrate. Interneurons migrate

through tangentially; pyramidal neurons migrate through radially [134] [18] [182]. Furthermore

it is an in- and out-growth zone for thalamic fibers, corticothalamic fibers [127] [150] and other

fibers we do not describe, which together slowly build the white matter.

The final fate of the subplate cells is debated. One theory is that during development these

cells undergo apoptosis [2]. Another is that they persist in the white matter [189]. Some of

them though seem to build layer 6b [13]. It seems to be clear that the layer that is defined as

the subplate is less populated in the adult than in the embryo.

2.1.7 Cortical Plate

The cortex is classically divided vertically into six Layers. During development layer 1 is still

called the marginal zone and is not counted as part of the cortical plate [118]. Layers 2 and 3

are usually counted together as one and called layer 2/3. The astonishing thing about cortical

development is that it is an inside out development. The order of the layers in the cortical plate

is reversed, producing first the lowest layer, layer 6, then 5, 4 and lastly the highest layer, layer

2/3, where all the cells of the upper layers have to migrate trough the lower ones in order to

establish the correct cortical lamination [2] [131] [153] [147].

Corticogenesis takes place over several days during the mouse embriogenesis, depending on

the source, from the onset of E11–11.5 to end of E17.5–E19 [131] [147]. There are areal differences

in the development [147]. The estimation of these dates also depends on whether one takes into

account just the date of birth of the cells or also their migration time. If one counts the settling

time of the tangentially inwards migrating interneurons, corticogenesis takes even longer, up to

P7 [129]. Indeed cortical development is special; there are no cells born in the cortical plate.

Cortical cells migrate along different routes into the cortical plate and settle in the appropriate

place.

There are two main different types of migration; the radial migration of the excitatory pyra-

midal neurons and the tangential migration of the inhibitory interneurons. These different types
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of neurons are born, in the case of pyramidal cells, below the cortex in the germinal zone [147]

[152] [153] [153], and in the case of the interneurons in the ganglionic eminence [129]. The

tangential migration process has to be timed to match the right kind of interneurons with the

right kind of pyramidal cells to arrive at the right cortical configuration. Since the birth places

of these two neuron types are rather far away (at least in the mouse) the mystery of the timing

between the birth of the inhibitory and the excitatory populations is still unsolved. Somehow

they have to be matched up but the locality of information principle we are using tells us that

they somehow must have a way to achieve this careful orchestration through communication,

since cells born below the cortex can not communicate directly with the cells born in the gan-

glionic eminence — they are too far apart. The lack of proximity means that there must be

another way for communication to take place between these cells. This cellular synchronization

could be achieved by: signaling through diffusion or another messenger type, such as process

ingrowth; timing through gene regulation; or even exchange of information via a messenger in

the cerebral spinal fluid in the ventricle. Control of early proliferative events in the ventricular

zone is provided by patterning of signaling molecules such as FGF8, SHH, WNTs and BMPs

[178, 154]; intrinsic regulation is achieved by the expression of transcription factors such as PAX6

and TBR2 [59], TLX [161], OTX1 [66], FEZ1 [37], CUX1 and CUX2 [207, 138, 48], SATB2 [30],

NEX [204], NGN1 and NGN2 [166, 121] as well as non-coding RNA Svet1 [183]; or external

regulation through diffusible messengers such as retinoic acid [173] or signals provided by axons

descending to the germinal zones.

2.1.8 Migrational Processes

Radial Migration

The progenitor cells of the radial glial cells have fibers that anchor them at the apical end at the

ventricular surface and at the basal end at the pia [152]. These radial glial fibers continue to

grow over the course of the development, making space or probably rather forced to make space

for the inward migrating cortical neurons. The radial glial cells produce neurons one layer after

another in the inside out fashion described. These newly born pyramidal neurons then undergo

radial migration.

The radial migration is executed in four basic steps. First the neuron finds a radial glial

fiber. Secondly the neuron adheres to it. Thirdly, it migrates up in the direction of the pia,

through the germinal zone, the subplate, and the already established parts of the cortical plate.

Fourthly, it receives a stop signal and releases from the fiber. The signal is supposed to be given

by the marginal zone [118] [134] [152]. If the migration process is disturbed and the release

signal or guidance signal never arrives at the pyramidal neurons, the reeler phenotype is the



2.1. THE STORY OF THE MOUSE LAMINATION 17

consequence. The neurons seem not to migrate actively up the fiber and seem not to release

from the fiber, blocking the way for later born neurons, only being pushed up passively. No

migration through to the marginal zone is possible and therefore the cortex is inverted. The

signal is generally known to be the reelin produced by the Cajal-Retzius cells of the marginal

zone, though other disturbances of the radial migration process by other participating proteins

have been reported [134]. Multiple neurons can use the same fiber at the same time (behind one

another) building the cortex inside out. During the migration, the cells morph into a bipolar

form extending apical and basal processes that later on become the axon (basal process) and

the apical dendrite (apical process). Right after migration, when the pyramidal neurons have

settled into the cortical plate, the outgrowth of the neurities begins. Axons and dendrites are

formed [148].

This type of migration hints at the fact that the cells produced from one progenitor cell will

also stay close together at their final position, giving rise to Rakic’s radial unit hypothesis [153].

This hypothesis says that the cells born from the same progenitor will stay in the same cortical

column, horizontally staying in the same location but vertically being part of different layers.

Tangential Migration

The cortical plate consists not only of excitatory neurons but also of inhibitory neurons that are

thought to tune the neural network into a working regime.

In the mouse it is generally accepted that these interneurons are mostly born in the ganglionic

eminence [18] [118] [129]. The ganglionic eminence interneurons are some of the best studied.

There are other birth places of interneurons that will migrate into the cortex, but we do not

consider them here. The ganglionic eminence is ventral to the developing cortical plate. It

is sometimes subdivided into the Lateral Ganglionic Eminence (LGE), the Medial Ganglionic

Eminence (MGE), and the Caudal Ganglionic Eminence (CGE) The timing of the birth of the

interneurons in the ganglionic eminence is such that they start to be born at approximately E9

and finish at E15.5, having an onset just slightly earlier than the pyramidal neurons [18] (figure

2.1 process 1a). These times are again dependent on who did the experiment and how they

counted the embryonic days.

Interneurons are born far away from the cortical plate and need to migrate into the cortical

plate tangentially. Since they are born so far away they need somehow to settle in the cortex.

But how do they find their radial and tangential position in the cortical plate? The radial

positioning in the cortex seems to follow the following scheme: the radial target in the cortex for

these neurons is birth time dependent much like that of the pyramidal neurons in the ventricular

zone. Even more intriguing is that they share the same inside out positioning system as the

pyramidal neurons born in the germinal zone. This means that neurons that are born early
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will end up in layer 6 and neurons that are born late will end up in layer 2/3 [18] However, it

is still uncertain how many of the interneurons follow this regime of layer matching. But it is

acknowledged that it exists [129].

How these neurons find their target tangentially in the cortex though has not been described.

What is known on the other hand is that these neurons use two different migrational routes.

They start at the ganglionic eminence. They avoid going through the striatum, but split up into

two streams: a more medial and a more ventral lateral stream. They enter the developing cortex

either through the intermediate zone or the marginal zone, i.e. above and below the cortical plate

where they take up their tangential position [118] [134] [182] [168]. The interneurons arrive at

their tangential position during the time the cortical layers are formed up to P1, i.e. just after

birth, but before eye opening (figure 2.1 process 1b). This migration seems not to be guided by

fibers the way the radial migration is. Having found their tangential position, the interneurons

turn towards the cortical plate and migrate in radially either diving into the cortex from above

or from below depending on the stream they have chosen. Even this radially oriented movement

is not guided by any fibers. The radial positioning can take place up to postnatal day P7, that in

the mouse [129] coincides approximately with the earliest eye opening date. It has been shown

that the radial positions of the interneurons do not coincide with the zone they migrate through

tangentially. One would have thought that the early born neurons take the medial route through

the intermediate zone and the later born ones the route through the marginal zone, since the

early ones target layer 6 and the later ones rather layer 2/3, however this is not the case [182].

The selection of the migratory route is unclear. They settle into the cortex and begin to form

networks with the pyramidal neurons, inhibiting their excitation. [18]

The apparent interplay between the birth times of pyramidal neurons and their corresponding

interneurons is very interesting. This interplay is happening at two locations which are very

distant from one another. It is a mystery how the ganglionic eminence and the germinal zone

know when the other is producing what. This matching of birth dates seems too well orchestrated

for there to be no communication involved; somehow this must be timed. Is it timed through

chemical means releasing a diffusible substance to inform the other component of the production

change? Or could it be that the timing is accomplished through the developmental process

by gene regulatory networks where each cell contains some sort of timing function? It has

been shown by Sessa [168] that there are fewer interneurons in the cortex if the tbr2 cells in

the subventricular zone are disturbed, because the chemoattractant source for the tangential

migration is no longer present. This however only relates to the guidance to the cortex. It

does not tell us how the proportions of interneurons and pyramidal neurons come to be what

they are. How is the regulatory network of the ganglionic eminence and (sub)ventricular zone
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synchronized such that they produce the right proportions of neurons? Is this controlled by the

germinal zones of the developing cortex? But then again the interneurons of the different layers

tend to be born earlier then their counterpart pyramidal neurons in the cortex. The influence

of the germinal zones on the ganglionic eminence in terms of cell production could maybe be

tested in an experiment that would remove the cortical influence through some means and see

whether the ganglionic eminence still behaves the same.

Another possibility would be that the communication takes place through the cerebral spinal

fluid, since both progenitor pools are located at the ventricle allowing the release of morphogens

through the fluid to communicate with the other. Thinking of evolution, somehow these areas

must have evolved together to create functional circuits. If the cortical plate increases in size,

the interneurons produced must also increase in number. This is harder to achieve if their

gene regulatory networks have to be synchronized only through evolution and not through

environmental communication signals.

Furthermore, are these gene regulatory networks somehow evolutionarily related? If so, the

cells from the progenitors from the ganglionic eminence must share a common ancestry with the

cortical progenitors from the germinal zone.

2.1.9 Thalamocortical and Corticothalamic Ingrowth

During the development of the cortex it is connected to a variety of areas in the brain. The

thalamus as a source of sensory input is one of the most studied inputs. The development of

this connection is very different in different animals [2] [69] [130] [42] [150] [127]. Even among

rodents there are differences. We are trying to reconstruct the story of the thalamocortical

connections in the mouse. In general the thalamocortical connection is established between E13

and E18 [112] (figure 2.1 processes 5, 6 & 7). There are three different layers involved in the

corticothalamic connection. The subplate or layer 6b, layer 6a, and layer 5. The timing of which

arrives where when is debated. We are going to rely mostly on the work of the lab of Molnar.

Again this thesis is very much restricted to the area of the cortex we are discussing.

Thalamus’ Projection to Cortex

The thalamus sends its axons in the reciprocal direction to those from the subplate. There are

many nuclei in the thalamus that project to the cortex. Especially the LGN is often studied.

At E13 the thalamic projections have reached the Internal Capsule (IC). (figure 2.1 process 5a).

(How they are guided to the internal capsule is not discussed here.) There they meet up with

the subplate axons [13] and establish the “handshake” of the handshake hypothesis [130] (figure

2.1 process 5b). There, the fibres fasciculate and they guide each other reciprocally to each
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others points of origin. Whether fasciculation actually takes place is debated. In opposition to

the fasciculation theory there are reports of close but completely separated paths of growth of

the corticothalamic and the thalamocortical fiber tracks [127].

By E15 they cross the pallial-subpallial boundary into the cortex and invade the subplate.

By E18 they have reached the subplate (figure 2.1 process 5c). Different arrival times have been

reported down to E14 [13]. At this point in the developmental story we arrive at the question of

whether in mouse a “waiting period” of the thalamic axons exists. In primate and carnivores,

a clear waiting period can be seen when the arriving thalamic axons gather in the subplate and

only start to grow up into the cortical plate later [130] [127] [153]. In the subplate, these axons

are supposed to influence the progenitor cells in the germinal zone to alter the production of

neurons [51] and begin to invade the the cortex later when the layer 4 cells are starting to being

born, where the migrating layer 4 cells might act as a signal to start growing into the cortex

[127]. In mouse there might be a waiting period, but it might not be clearly visible due to the

fast development in mouse compared to other animals [130]. It seems that the timing of cortical

plate development and thalamic axon innervation of the cortical plate are highly dependent. In

the mouse, the thalamic axons innervate the cortical plate right away and follow up the still

developing cortical plate. By P2 they have reached layer 4 (figure 2.1 process 5d) and by P8

they have created larger arborizations in their target layers (figure 2.1 process 5e) [150].

The thalamic axons create arborizations in layer 6 and layer 4, though layer 4 is more heavily

innervated [150] [127]. There are also other layers affected and connected to, but with fewer

arbors [127] [13]. The arbors of the thalamus in the cortical plate are subject to heavy pruning

and reorganization (which we will not go into in detail here) in the days before and after eye

opening.

Subplate Projections to Thalamus

At E13, the subplate cells begin to grow out axons that follow the ventricular border parallel to

the direction of the thalamus (figure 2.1 process 6a), and reach the pallial-subpallial boundary

(PSBS) at E13.5 where they wait (E14) for the thalamic axons to arrive (figure 2.1 process

6b). At E18 we see the subplate axons reach the thalamus (figure 2.1 process 6c) [112]. Other

sources report the arrival of the subplate projections (subplate axons / corticofugal projections)

at the internal capsule at E14 and the establishment of a connection to the thalamus by E14.5–

E15 [13]. This discrepancy in the literature might be because the layer 5 cells are also sending

out corticofugal projections that are supposed to begin later in development but overtake the

subplate projections and are supposed to arrive earlier at the thalamus. This overtaking of

number of projecting fibers from layer 5 versus the subplate was reported in the hamster but is

thought to hold true also in the mouse [127].
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Layer 6a

Layer 6a or layer 6 afferents follow the thalamic afferents down to thalamus to the same nuclei

that innervated their cortical region [112]. The layer 6 growth is thought to be guided by the

thalamic afferents. Whether this guidance is due to fasciculation is debated [127]. The growth

of layer 6 afferents to the thalamus happens after the outgrowth of subplate cells up to P8.

They begin with the outgrowth directly after having settled in the cortical plate around E13.5–

E14 (figure 2.1 process 7a) [51] [148], but might grow at different speeds or with pauses during

the development [127]. At P0 the first axons of layer 6a and subplate arrive at the thalamus

(figure 2.1 process 7b). At P3 though, the innervation of layer 5 becomes stronger in terms of

numbers of connections than of layer 6a. And at P7, layer 6 overtakes layer 5 again in numbers

of connections [127].

Layer 5

Besides layers 6 and subplate, layer 5 also projects to the thalamus, but in a slightly different

regime. Layer 5 is probably not guided by the thalamocortical projections but rather by other

cues. That means that layer 5 axons seem not to fasciculate to thalamic afferents [112] [127].

This non fasciculation of layer 5 makes sense, since layer 5 neurons do not target exactly the

reciprocal nuclei that the thalamus is projecting to them from [127] [42] [112]. Layer 5 axons also

project to the spinal cord, collateral hemisphere or the brain stem [42]. Layer 5 projections seem

to obey very different rules than layer 6 projections. And the layer has a completely different

type of corticofugal projection. The layer 5 neuronal fibers will exceed the number of layer 6

fibers to the thalamus at about P3 and become the most numerous of of the corticothalamic

projections, though around P7 subplate and layer 6 will gain in numbers of connections again

and overtake layer 5 once more [127].

2.1.10 Arealization

The cortex, even though similarly constructed over the whole plate, serves many functional

purposes. These different functions are thought to be processed in different areas of the cortex.

These areas reflect that they serve different purposes in their anatomy. Layer thicknesses are

significantly different at different locations. And projections to other brain areas also vary by

area. In the fully developed cortex explicit areas can be identified. These areas must develop

somehow. There used to be the idea that all of cortex is pluripotent. The areas would only arise

because of the input that was provided by projections from other brain areas such as thalamus,

each part of cortex being able to create any cortical area. This was known as the protocortex

theory [152].
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Nowadays the protocortex theory has been disproven by transplantation experiments and

the protomap theory has emerged. The protomap theory hypothesizes that the cortical plate

is split into areas before the cortex emerges and before projections of axons are formed. These

protomap areas are built by gradients that are developing during the development [152] [51].

The number and diversity of neurons in each layer or area is directly correlated with changes

in the rate of neuron production, that is the control over neural birth time [52] [113]. Two

cell-cycle parameters are especially important for determining the number of neurons produced:

the rate of cell-cycle progression and cell-cycle exit, which are determined by the control over

cell cycle machinery and differential expression of transcription factors in daughter cells. Or

that different parts of the gene regulatory network are active at different regions in the cortex.

But the individual areas are still proven to be subject to the influence of the ingrowing axons

from other areas [103]. The thalamic influence on the areas of cortex has been impressively shown

by removing the thalamic ingrowth to the cortical areas 17 and 18 in primate [99] [98]. One

might imagine that the fibers exercise influence through signals to the proliferative cells that

would then adapt their gene regulatory network adjusting the developmental program slightly

and spawning different numbers of cells in different areas [147]. In the case of the formation of

areas, again the timing of certain events is crucial to the normal development of the cortex. The

borders between these areas are reported to be very sharp [99] [147].

2.2 From Genes to Cellular Behavior

2.2.1 Gene Translation and Transcription

Proteins are constructed according to the DNA information through a decoding process com-

prising two stages: transcription and translation. Transcription is the process that transcribes

information contained in the DNA into a single strand of messenger RNA (mRNA) and trans-

lation describes the process of converting information in the mRNA into a protein. The entire

process consist of a sequence of processes:

• The transcription complex binds to core promoter regions, just upstream of the coding

sequence of a gene.

• If unhindered, the transcription complex scans the DNA and produces mRNA.

• The transcription complex is released from the DNA strand at the stop coding sequence

and is ready to begin transcription again.

• The mRNA is used as a template by ribosomes to build proteins.
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The transcription of every gene can be selectively regulated by transcription factors. Tran-

scription factors bind to regulatory regions upstream of the core promoter sequence. Multiple

transcription factors can bind to the regulatory region and modulate the activity of the transcrip-

tion complex by either enhancing or repressing the transcription rate. Every protein embodies

both a function (influencing the behavior of other components) and a signal (information that

can be read by other proteins). In the case of transcription factors we are interested in the signal

property because it can be read by the transcription complex, telling the complex how much to

express its target protein. If the transcription factor also has an active part that influences the

behavior of the cell, we look at it as a separate entity taking part in a gene-translation machin-

ery. There are proteins where we are not interested in their information content, but only in

their active component. But these nevertheless provide at least the one bit of information as to

whether they are present or not.
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Regulatory Core
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Transcription
 factors

Transcription
complex mRNA Protein

Figure 2.2. The transcription of a gene. Transcription factors connect to the DNA at the
promoter region of the gene and bind to a transcription complex that then produces mRNA
from the gene coding sequence. This mRNA will then be translated into a protein.
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In our abstraction the DNA follows this dual view. The pure information in the codons

of the DNA can be seen as a passive signal to be read. On the other hand the DNA has a

vey definite physical structure. This structure is active, proteins can bind to the structure and

operate with it. DNA alone can not perform any transcription, it needs the whole machinery of

the transcription factors and transcription complex in order to translate a gene sequence into

a specific protein. The combination of transcription factors and transcription complex form

a specific production complex for every gene. This combination is only able to work on very

specific genes.

We call this gene specific complex the production machinery. The production machinery can

only form on the DNA and is not separable from the gene’s specific position on the DNA. Once

formed, the production-machinery will produce the protein encoded by the gene. We neglect

here the detailed transcription, splicing and translation processes and just name this process

production. This machinery bound at this very specific point on the DNA is the only way to

access the information of this particular gene. Whenever the corresponding protein is needed

this machinery has to be activated in order to produce it. Therefore the gene-specific sequence

can be associated with this production machinery as we see in figure 4.1

The different transcription factors can only bind in a very specific way to each other ex-

pressing a quasi-logical mathematical function AND, OR and NOT functions. This defines how

much of the protein can be produced by the transcription complex. The concentration of a

transcription factor defines the probability of binding. The higher the concentration the more

the transcription factor will bind and the more it can influence the production of the protein.

2.2.2 Gene Regulatory Network

During cortical development dividing cells undergo progressive fate restriction, that is a restric-

tion in the types of differentiated cells that a progenitor can produce [86]. This information is

represented in the form of cell lineage trees, which describe the developmental trajectory in the

form of a binary tree: the root is the initial precursor cell; the terminal nodes are cells that

have reached a terminal phenotype; and the tree topology represents the relationship between

all cells that exist at given time point during development. Formally the lineage description

defines the reachable states (cell types) in which a cell can be found in, and the possibility of

transition between those states.

How the ordered sequence of cell divisions through the cell lineage leads to terminal cell fates

is dictated by the transcriptional network, which is in turn regulated by levels of transcription

factor expression, epigenetic mechanisms and cell-cell signaling. Genetic regulation consists of

networks of genes and their protein products, or transcription factors (TFs), which can influ-
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ence each other’s expression over time by binding onto specific gene regulatory regions [110].

Stable profiles of gene expression represent defined attractors and can be interpreted as distinct

cell fates [97] [87]. During mitosis the genetic information is replicated with high fidelity and

equally distributed to the two daughter cells, though the cells are not necessarily identical. The

content of the mother can be distributed asymmetrically or the local environment may be dif-

ferent, causing a difference in morphology or behavior. As a result different pattern of division

are observed: symmetric proliferative (daughter cells are identical and continue proliferation),

symmetric differentiative (daughter cells are identical and both differentiate), asymmetric pro-

liferative (daughter cells are not identical in their fate but will both continue to proliferate),

and asymmetric differentiative (daughter cells are different, and either one is or both are post-

mitotic).

2.2.3 An Abstraction of the Gene Regulatory Network

The generation of different cell subpopulations during cortical development is the result of con-

curring complex processes, which involves a variety of different possible cell states and transitions

between those states. A representation of the sequence of cell divisions and differentiations is

provided by the genealogical history of every precursor cell, the cell lineage tree. From exper-

iments in which the progeny of single progenitors was tracked using radioactive tracers [147],

we can extrapolate the sequences of cell division and differentiation that lead to particular

distributions of neurons in different area of the murine cortex.

Cell decisions regarding acquisition of an appropriate cell fate relay the ability to commit

to different stable states. These decisions are controlled by transcriptional networks. Gene reg-

ulatory networks consists of networks of genes, which can either code for transcription factors

(which we represent as passive substances) or G-Machines (functional proteins that will trigger

complex enzymatic functions). Transcription factors influence each other’s expression by bind-

ing onto specific gene regulatory regions: many genes are controlled by a number of different

transcription factors and different arrangements of binding sites can compute logic operations

on multiple inputs.

We choose to express the dynamics of transcription factor binding with a multilinear polyno-

mial function. The function describes the binding of different transcription factors to a promoter

region and their interactions and can be seen as a tree of continuous Boolean logic gates that take

as input the transcription factor concentrations. We represent the DNA information of the gene

regulatory network with a high level G-Machine, which has a list of all genes and all regulatory

sequences. Each gene is characterized by a core promoter region responsible for the transcription

of the gene coding sequence, and a regulatory sequence composed of a combination of binding

sites. Every gene actively computes its transcriptional activity depending on the concentrations
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of binding transcription factors and their interactions, and actively produces either a transcrip-

tion factor or a functional protein (figure 2.3). Additionally, the genetic network G-Machine

contains an abstract representation of the cell cycle molecular machinery, which controls the

progression through the cell cycle in the form of a timer. Cell fate decisions are taken at the

moment after cell division, when cells compute their current state based on the concentrations

of transcription factors they inherited from the mother cell.

A B

Figure 2.3. Transcriptional network. (A) A typical eukaryotic gene consists of a coding
region (Gene), a core promoter region (P), which is the minimal sequence of bases required to
properly initiate transcription, and a cis-regulatory sequence (E), a proximal sequence
upstream of the gene that contains primary regulatory elements. Cis-regulatory modules
receive and process informational inputs in form of transcription factors. Function Z describes
the binding probability of transcription factor T or any other transcription factors to the E
sequence. Function F computes the protein T synthesis rate given a combination of enhancing
or repressing transcription factors bound to E, whereas G describes the dynamic of regulated
degradation. (B) Example of a small regulatory network of genes with interactions between
gene regulatory regions and transcription factors.

The simplest system that can control state transitions is a bistable switch [139] [88], in which

two transcription factors X1 and X2 negatively regulate the expression of the other and generate

two stable states, given a constant input. In the first state, the gene for one repressor is turned

on while the synthesis of the second repressor is turned off. The reverse is true for the second

state. A third meta-stable state forms at the border between the two attractor basins. In our

simulation a set of interacting bistable switches builds the gene regulatory network.

The translation of state lineage graphs into a gene regulatory network follows some simple

rules. Every cell division is controlled by a bistable switch, which depending on some parameters

will determine how the daughter cells will divide. At mitosis cells can either divide symmetrically

and stay in the same position in the expression space or the concentrations can jump depending

on the values of the asymmetry constants. The effect on the cell division outcome is described by
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the parameter ω, which describes the angle of the division in respect to some arbitrary reference.

The values taken by ω completely describe symmetric and asymmetric cell divisions, since cells

will fall into different attractors. This description is completely deterministic and will always

generate instances of the lineage tree that are all identical with each other. A more interesting

case is when the state diagram does not represent exact transitions but is instead probabilistic.

In the genetic network, probabilistic transitions are implemented by making asymmetric cell

divisions stochastic, that is ω represents the probability of division with a given angle.

In our simulation the value assumed by ω is constant. This is very simplistic, since a relax-

ation of this assumption creates many interesting effects. Firstly changing asymmetry constants

means that although the sequence of states is determined genetically by the interaction links in

the regulatory network, the total number of different cell types produced can be modulated by

external factors for example during cell-cell interactions. Furthermore the asymmetry constant

could also be a function of the state generation or the cell age, which would further constrain the

evolution of the tree and avoid the disadvantages of Markov Models, namely the high variability

in the output if the state transition probabilities are very low.

In the simulation an initial precursor pool of symmetrically dividing neuroepithelial cells,

which display radial glial fibers, divides into two radial glial cells, one of which will be maintained

till the end of corticogenesis. We are not currently simulating the gliogenesis from radial glial

cells, given that this was not measured by Pollaux [147] and we thus don’t have quantitative

data on the process. We are therefore employing a simplification in which we use a fixed

population of glial cells that form the initial scaffold for migration within the cortical plate and

are kept until the end of neurogenesis. The second radial glial cell daughter will either divide

symmetrically or asymmetrically producing intermediate precursors or terminally differentiated

neurons. The expression of transcription factors related to the intermediate precursor fate

triggers the activation of machines responsible for the migration in the subventricular zone just

above the ventricular zone (figure 3.10), whereas expression of transcription factors specific to

different types of neurons will trigger the exit from the cell cycle and the expression of the radial

migration G-Machine. There is a trade-off between the accuracy of the distribution of neurons

generated and the number of genes that constitutes the gene regulatory network. For illustrative

purposes, we use here a relatively small network that has the property of coarsely following the

cell distributions while being still visually understandable.

In the simulation we activate two different gene regulatory networks based on patterning of

the initial neural plate by two morphogens. The two gene regulatory networks are almost identi-

cal in topology (elements and links), but display different parameters, which reflect differences in

the cell cycle parameters for the production of areas 3 and 6 in the mouse. The gene regulatory

network was further manually modified to enhance the visual difference between areas 3 and 6.
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2.2.4 G-Code: An Instruction Language for Cells

Cells have a range of different behaviors. Their behaviors are consequences of proteins interacting

with each other. Proteins that are active, in the sense that they take part in the metabolism, give

rise to the behavior we observe in biology. Observable behavior is not exclusively a consequence

of a single expressed protein but of a network of proteins interacting with each other. These

behaviors can be abstracted into behavior modules. Modules are responsible for functions that

an observer would consider to be one functional entity. In G-Code [210] we capture the idea of

these behavioral modules in an abstraction called a G-Machine. G-Machines are composed of

primitives that can be linked together. In figure 2.4 the primitives are given in a list along with

their meanings. All of these primitives in G-Code are biologically plausible in the sense that

there are mechanisms described that allow for these primitives. Primitives therefore express a

subset of the behavior that the G-Machine is expressing, and are therefore also associated with

proteins, abeit qualitatively rather than directly.
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move  replicate

detect die

secrete synapse

morph

fork instantiate

attach kill

transport

Figure 2.4. These are the potential primitives that can be interlinked in a G-Machine: move
for the translocation of a soma/neurite; detect for the detection of environmental /intracellular
chemicals; secrete for the production of intra/extra cellular chemicals; morph for changing
morphological properties of the soma/neurite; attach for establishing physical bonds to other
objects in the vicinity; replicate for cellular proliferation; die for apoptosis; synapse for
establishing a synaptic connection to another cell; instantiate for invoking the translation of
another G-Machine; kill for stopping a G-Machine; transport for transporting a G-Machine
between different cellular compartments.
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The G-Code framework is written explicitly for the simulation environment Cx3D that tries

to give a biophysical environment for tissue growth. A G-Machine is running either in a soma

of a simulated neuron or in one of the neurities or its sub-branches. Once defined, G-Machines

can be reused. A program written in G-Code is the equivalent to a DNA strand in a real cell. A

G-Code program is a sequence of descriptions of G-Machines in their textual inactive form and

does not influence the cells in this form. Each simulated cell in Cx3D has access to the G-Code

program and can if the necessary conditions arise express G-Machines from the G-Code. This

allows, as in biology, that all cells have the same “genetic” code available but only express the

necessary parts of it for the current task at hand. The G-Machines are explicitly written by

an engineer to define what the cells have to do in what situation. And therefore to define the

developmental program the simulated organism undergoes during its course of execution. In

figure 2.5 we give an example of a G-Machine that is translated into action.

Figure 2.5. An example of a G-Machine that is inserted into the growth cone of a neurite.
The G-Machine detects a gradient and makes the neurite grow towards its max value with two
primitives that are linked through a signal processing filter. Detect and move are these two
primitives. Left: the assembled machine as a cartoon. Right: the executed behavior.
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With this system we are in the position to describe a developmental process in Cx3D that

begins from one cell and ends in a whole organism, respecting the biological limitations while

using its possibilities.
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Chapter 3

Modelling of Cortical Development

of Mouse Area 3 and 6

This chapter describes the model that has been used in order to simulate the cortical growth

of the mouse cortex. Each of the G-Machines are explained. To make this chapter comparable

to the underlying biological findings, it follows the same structure as the biological background

chapter 2.

3.1 Simulation and Modeling

We will use ‘simulation’ to denote the process whereby a general purpose computer (GPC)

reads an encoded model and its data; executes the model using the data provided; and produces

the model’s output. In this view the simulation is a non-specific methodology, and bears no

scientific relationship to the content of the model being simulated. Thus a simulation cannot

independently evaluate the correctness of the model that it is executing: the GPC will simulate

correct models as well as incorrect ones. By contrast, we use ‘model’ to refer to the scientific

process being explored. The model specifies the organization and dynamics of the system under

investigation. Usually the model can be seen as a Kolmogorov-like compression of experimental

data into a more compact form consisting of an algorithm plus its input data, which on execution

is able to regenerate the uncompressed experimental data.

In order to simulate a model, the model must be encoded in form which the simulator can

consume, and the resulting output of the simulator must be decoded into the model domain.

This output of the simulated model is expected to agree, within some tolerance, with the experi-

mentally observed target process. This agreement is taken to provide support for the explanatory

model tested. However, the explanatory strengths of such models vary widely. For example, a

33
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model that trivially returns as output the same series of observations that it read as input is

formally correct in its simulation of the data, but this model has no explanatory power because

it provides no compression of the data and does not generalize beyond them. Similarly, but

less trivially, models of development that assume pre-labeling of physical and functional space

and then use forward models to essentially draw neuronal morphologies in that space, may yield

satisfying shapes, but such models do not get to the heart of the distributed autonomous nature

of biological self-construction.

Models of neural development have focused directly on subcellular processes such as gene

expression and protein networks, rather than the relationship between the subcellular processes

and the emergent cellular and organismal behavior that they generate. We have explored this

important relationship in the context of neocortical development, using a simulation framework

in which cellular mechanisms act in a physically realistic three-dimensional environment and

so express the overall self-construction of the cortex. This process is steered by genome-like

instructions inserted into cortical progenitor cells. This code controls the mitosis, migration and

differentiation of individual cells, and thereby gives rise to the collective process of development

in a biologically plausible manner.

3.2 Simulation Results: In Silico Simulation of Mouse Cortico-

genesis

3.2.1 Cx3Dp

Cx3Dp (see chapter 6) is a software platform that provides for the simulation of models of neural

development and growth in a physical 3D environment. CX3Dp respects biological processes

such as cell division, cell-cell interactions, movement, and the secretion and detection of mem-

brane attached or diffusible signal molecules. For reasons of computational discretization, cells

are abstracted as spheres; and neurons are discretized as spheres (somata) that give rise to trees

of connected compartments (dendrites and axons). These spheres and compartments behave as

physical objects in 3D space. Forces ensure that objects do not overlap in space; compartments

are able to grow, and extend or contract; and chemicals secreted by cells are able to diffuse

through extracellular and intracellular space. Cells are able to move by traction against the in-

tracellular matrix; they can anchor themselves to the matrix; and also form physical connections

such as bonds or synapses with one another.

Each cell is an autonomous agent exerting only local actions, and using only locally available

information. The behaviors of the simulated cells are determined by intracellular molecular-gene-

like codes that are expressed according to intracellular or extracellular conditions. For specifying
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this ‘genome’ we introduced G-code [213], a formal language based on a set of primitive neural

actions. The G-code of a cell is an inert informational structure that specifies networks of these

primitive instructions, and so provides potentially complex functions to cells. Under appropriate

physical conditions, various coherent regions of this G-code will be instantiated (expressed). The

expression products of G-code are intracellular, spatially distributed G-machines composed of

the primitives as specified by the relevant region of G-code. The overall behavior of the cell at

any time is the collective result of its currently instantiated G-machines.

Cx3Dp is abstracted into three conceptual layers: a spatial layer that maintains the spatial

location of objects and their neighbors; a physical layer, that expresses the physical interactions

between the objects; and a biological layer that expresses biological function and can be mod-

ified depending on the model that is run in Cx3Dp. Cx3Dp is optimized to create models for

biological processes that respect the locality of these processes. Each compartment in a model

only has access to the neighboring compartments and never to the global structure of the whole

simulation, so constraining the model to remain as biologically plausible as possible.

Space is simplified to be a 3D extracellular matrix. The extracellular matrix allows for growth

and migration of any cell in any direction. However, because a modeler may wish to simulate

the behavior of a subpopulation of cells that is embedded within a larger population, or abuts

other cell populations, Cx3D allows for the specification of a bounding box that constrains cells

to a volume of space, and can be used to provide suitable boundary conditions for the simulated

cells.

All actions possible for a cell arise out of mechanisms that must be explicitly declared by

the modeler. For example, cellular processes such as mitosis have impact on the cell shape:

the two daughter cells have smaller volumes (roughly half) than their mother. Consequently, if

the daughters should each regain the volume of their mother, then the modeler must explicitly

specify a cellular mechanism that causes the cell to grow towards a steady state (if required).

In the absence of such a growth mechanism, repeated divisions would lead to ever smaller cells

and the entire population would have a volume nearly equivalent to the initial progenitor cell.

3.2.2 A Simulation of Murine Cortical Development

A video overview over the entire simulation can be seen at http://youtu.be/pBqZ8SouWdQ

‘Development and 3D rotation of selected neurons’. The video is composed of successive images

of simulation data. The images are chosen to illustrate various aspects of the simulation, and

do not show complete data. For example, for clarity some cell types may be suppressed during

image rendering. In general, there is very much more data in the simulation than the selected

video images depict. Similarly, the figures in the description below are snapshots taken during

the same simulation used for the video, and the particular snapshot rendering is chosen to
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illustrate a specific aspect of the developmental data.

Initial Arrangement of Progenitor Cells

For practical and computational resource reasons, we do not model the transformation of the

entire neural tube to a complete brain. Instead, we choose as our starting point a small region of

neuroepitheium located in the telencephalic pallium [131] [142] [153]. These neuroepithelial cells

are the progenitors of the cells that will form the fundamental laminated neocortex of areas A3

and A6 [147]. In the mouse these pallial neuroepithelial cells give rise to the excitatory, pyramidal

type neurons of cortex, as well as neuroglial cells. By contrast, the inhibitory neurons are derived

from precursors in the ganglionic lateral and caudal eminences of the basal telecephalon[129].

These precursors must migrate tangentially from the eminences into the developing pallium[134]

[18] [182]. Because our model does not yet consider the development of all the embedding brain

structures, we simplify the eminencies as a free-standing group of progenitors displaced from

the pallial neuroepithelium. Figure 3.1 shows how the neuroepithelial cells (gray) of the A3

and A6 VZ are laid out as a monolayer plate. The ganglionic eminence population (yellow)

is located at the left (‘medial’) end of the VZ plate. In addition, we consider a representitive

population of thalamic precursors (black), which are located some distance below the eminence.

The relative locations of these three populations approximate very roughly their relationships

in the developing neural tube. The absolute numbers of cells in these three populations are not

known experimentally. Numbers were chosen that are qualitatively reasonable initially, and lead

to ratios of mature cell numbers that are close to what is observed experimentally [23].

The developing neural tube contains a number of neuromorphic signal gradients that devel-

oping cells may use for their orientation [134]. Therefore, our model assumes two embedding

gradients along the long axis of the VZ. One gradient increases linearly from left (medial) to

right (lateral) and the other is disposed in the reverse direction (figure 3.1, planar view). They

cross in the middle of the neuroepithelial plate. The boundary conditions asserted by adjacent

regions of un-modeled neurons, are imposed by a bounding box that provides the necessary

boundary force due to the apposing cells (figure 3.2).

G-Code

Each cell is an autonomous agent exerting only local actions, and using only locally available

information. The behaviors of the simulated cells are determined by intracellular molecular-gene-

like codes that are expressed according to intracellular or extracellular conditions. For specifying

this ‘genome’ we introduced G-Code [213], a formal language based on a set of primitive neural

actions. G-Code is now in its second revision (see Section 2.2.4 and Appendix A).
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NeuroepitheliumGanglionic
eminence

Thalamus

Medial Lateral

Figure 3.1. The starting point of the simulation. In yellow are the simulated cells of the
Ganglionic Eminence, in black the simulated cells of the thalamus and in gray the
neuroepithelial cells. There are two gradients (blue and red), from left to right and from right
to left. From these cells the cortex will be constructed.
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Figure 3.2. Black dashed line: The force boundary that is applied to the cells that enter this
zone. This artificial boundary is a means of the simulation to ensure that the cells do not
escape into the open space where there is no simulation relevant objects around. In biology the
space around the cells would be filled with other cells, but we do not have the means to
simulate the complete brain structures and therefore have to introduce artificial boundaries
that support the simulation.
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G-Code allows the modeler to design and encode cellular mechanisms in a biologically plau-

sible way. The G-Code of a cell is an inert informational structure that specifies networks of the

primitive instructions, and so provides potential complex functions to cells. Under appropri-

ate physical conditions, various coherent regions of this G-Code will be instantiated (expressed).

The expression products of G-Code are intracellular, spatially distributed G-Machines composed

of the primitives as specified by the relevant region of G-Code. The overall behavior of the cell

at any time is the collective result of its currently instantiated G-Machines.

The G-Code of a cell can encode many G-Machines, and any number of these machines can

be expressed within a given cell. However, the operation of a G-Machine is restricted to exactly

one cellular compartment and it can control the behavior of only that compartment. Thus,

G-Machines automatically respect the locality property, meaning that these mechanisms can

only act locally in each cellular element and cannot exert global control or effects. This means

that if machines that are located in different compartments of the same cell, or in different cells,

and they must co-ordinate their activities, then explicit signalling mechanisms (machines) that

provide the necessary physical communication must be G-Coded and appropriately instantiated.

Thus, G-Code permits the modeler to easily design biologically plausible mechanisms, but at

the same time G-Code prevents the modeler from violating the essentially physically localized

nature of these mechanisms. The clear separation between technical simulation support, and

actual model implementation leads to some interesting effects. For example, the coloring of cells

for visualization can be generated by a GRN controlled G-Machine which expresses the ‘color’

of a cell type as if it were expressing a protein such as GFP. In the following description, for

simplicity, we explain the operation of the G-Machines in words rather than using their formal

definition. Since we will often wish to differentiate between specific G-Machines, we will for

convenience use the notation G-Machine(f), or GM(f) to refer to a G-Machine that performs ‘f’.

3.2.3 Preplate

Since all three initial populations derive from the same neural stem cell, they must all contain

the same G-Code. Thus, in principle, the entire genome is available to each and every cell. If we

chose to model development from the original stem-cell, the simulation would begin with one cell

having access to its G-Code and one (possibly more) cell-type specific G-Machine activated in it.

The fact that different cell types arise during the developmental sequence is a consequence of the

GRNs of cells expressing a lineage of different states according to the various intra- and extra-

cellular conditions that arise through the developmental orchestration. Because our simulation

begins with three different cell types, the cells of each of those types must be initialized in the

GRN state that expresses the appropriate cell-type G-Machine(s). This means the model has

three starting points: one for the neuroepithelial cells [2] [131] [142] [153]; one for the cells of the
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Ganglionic Eminence cells [134] [18] [182] [118]; and one for the thalamic cells [127] [150] [130].

The preplate is the first structure to emerge from neuroepithelial proliferation. Each neu-

roepithelial cell undergoes about 14 divisions. Each division leads to one neuroepithelial cell,

and one preplate cell. The first seven divisions generate the denser upper part of the preplate

that will become the marginal zone, while the later seven divisions give rise to the more loosely

packed lower part of the expanding preplate that will later become the subplate. The physics of

cell-cell forces cause the first-born cells to rise to the top, and the later born cells to remain at

the bottom of the preplate. As the presumptive MZ cells stack upward in the cortex, they begin

to form bonds between themselves and so stick together. Here, our model deviates from observed

biology in two ways. Firstly, no pia is created. Instead, the topmost cells become a surrogate for

the pial-boundary. Secondly, the Cajal-Retzius cells arise from the underlying neuroepithelium

rather than the cortical hem [124]. This process is shown in figure 3.3, and the simulation of the

subplate in figure 3.4. The dynamics can been seen in the video http://youtu.be/l6BOL4suYYg

Cortical Plate development.

The neuroepithelial G-Machine that governs preplate repeats the sequence: 〈Grow cell;

divide asymmetrically〉 through about seven cell cycles. Each differentiating preplate cell exiting

from the mitotic cycle instantiates a marginal zone G-Machine(MZ) that characterizes an MZ

cell type [2]. This machine performs the following operations:

• Instantiates a further machine G-Machine(MZbond) that creates physical bonds between

at most two neighbors of the same type. The overall effect of this bonding is to form a

tight mesh of bonded MZ cells.

• Instantiates a growth G-Machine(grow) that causes cells to grow to their target size.

• Instantiates an apoptosis G-Machine(apoptosis) that checks continually whether the cell is

currently in the vicinity of other cells of the same type. If there are too few neighbours of

the same cell type, then the cell considers itself to be misplaced and undergoes apoptosis. If

this machine has not detected misplacement over a period of some hours it will terminates

itself and the cell continues its existence. Such conditional apoptosis makes the overall

assembly of the cortex more stable.

The lower half of the cell stack born from the mitotic neuroepithelial cells are the presumptive

subplate cells [2]. We do not assign any function to these cells other than their mechanical

expansion of preplate. We therefore simulate only a small portion of the future subplate cells,

but each cell will occupy more space than a regular cell and has a larger forcefield around it to

make up for the small cell numbers but to achieve nonetheless a large expansion of this zone.

The G-Machine started in these cells begins the growth of the forcefield of the cells. We do this
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Figure 3.3. Top left: a cartoon of the development of the neuroepithelial cells (gray). Top
right: the birth of the future marginal zone cells (yellow). Bottom: the subplate (white) with
the first layer 6 cells being born (red). These cartoons indicate the initial development of the
preplate that will later on support the formation the cortical plate. The neuroepithelial cells
will develop into radial glial cells and generate the cortical cells of layers 5 and 6 and will
create also the subventricular zone.

to reduce the simulation load, since we are not yet simulating the biological function of the cells.

The growth G-Machine will also be started in these cells to expand their volume to their final

size.

The mitotic neuroepithelial cell line becomes the ventricular zone during the development

of the preplate (see figure 3.5) [131] [142] [153]. These cells then begin to grow fibers radially

in the direction of the surrogate pia [77, 128, 140, 141, 7]. It is these fibers that characterize

the radial glia cells. These radial glial fibers extend upward until they reach the cells of the

presumptive marginal zone. The overall preplate is expanding in thickness, and this raises the

question of how the radial fibers adjust their length accordingly. One possibility is that the

distal ends of the fibers are firmly attached to the MZ cells, and simply stretch as the preplate

thickens. An alternative is that the fibers continue to grow actively in length, their tips holding

station in relation to the MZ cells. We chose to use the latter mechanism as follows. The

fiber G-Machine(fiber) of the radial glial cell extends its fiber radially toward the MZ in much

the same manner as the growth cone G-Machine(gc) of a neurite. The tip idles (but does not

terminally stop) growing when it senses the MZ (surrogate for the pia). The tip also idles on

the condition that there are no cells surrounding it, in which case it has overshot the MZ layer.

If the MZ cell layer continues to be pushed upward past the fiber tip, the idle condition lapses,

and the tip grows upward to touch the MZ layer again. This active elongation machine allows

the radial glial fibers to hold station in the MZ despite the expansion of cortex. Figure 3.6 shows

this process. The simulation of the radial glial fiber extension can be observed in the following

video: http://youtu.be/ligAWNjcFEw ‘The development of the radial glial fibers’.
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Figure 3.4. From top to bottom the development in the simulation of the preplate (yellow),
from the neuroepithelial cells (gray) to the emergence of the future marginal zone cells (top
yellow cells) and the upward movement of the future subplate cells (bottom yellow cells). The
brown cells are the first progenitor cells for the cortical plate (bottom). The simulation sows
here the formation of the preplate in different steps this is happening as a smooth transition in
the actual simulation and has to be depicted here in 3 steps. The preplate structure will
support later on the formation of the cortical plate in the middle of the marginal zone and the
subplate. The gray cells already have radial fibers that the later born excitatory neurons can
use to migrate tangentially into the cortex.
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Figure 3.5. The mouse cell lineage of the ventricular zone. The different cell types emerging
from the progenitor cells, to the last produced layer 2/3 cells. This is a pictogram of how the
gene regulatory network plays out in the progenitor cells. The progenitor cells that are in the
neuroepithelium at the beginning of the simulation produce essentially most of the cells in the
cortical plate. This cartoon depicts the development and the sequential generation of the
cortical cells over time.

Figure 3.6. The growth of the radial glial fibers. From left to right the different stages of the
development, from the neuron-epithelial cells to the fully grown cortical plate. We can clearly
observe the inside out development of the cortical plate where each of the different colors stand
for a different layer from layer 6 in red to layer 2/3 in cyan. The exitatory neurons of the cortex
use the radial glial fibers as a guide for the radial migration to their final nesting destination.
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3.2.4 Cortical Plate

During production of the preplate the radial glia cells continue to divide and so produce inter-

mediate progenitor cells (IPCs) that contribute to the VZ pool and which will later produce

the SVZ pool [152] [147]. The VZ IPCs will give rise to the various neuronal types in the deep

layers of the cortex, while the SVZ gives rise to the more superficial types. In addition, the

IPCs will, according to their location, give rise to two different profiles of neuronal types, which

characterize cortical areas A3 and A6 respectively.

Whether a particular IPC will contribute to A3 or A6 depends on the state of its GRN at its

cell birth. This state is determined by the local concentrations of the two long-range orientation

gradients inherited from the embedding neural tube, which are initialized at the beginning of

the simulation. If the concentration of the left gradient is larger than that of the right, then

these cells will activate the gene regulatory network necessary for generating Area 3. If the right

one is bigger they will activate the gene regulatory network for Area 6 [147].

The G-Machine that is activated at the birth of the progenitors senses the concentrations

of the environmental gradients at its location. These cues enable the G-Machines to activate

the appropriate GRN sub-network of each progenitor cell. Even though there is a rather sharp

threshold in switching between the Area 3 and Area 6 sub-GRNs the emerging cortex exhibits

a smoother transition between Area 3 and Area 6, as can be seen in figure 3.7.

3.2.5 Migrational Processes

Radial Migration

Asymmetrical divisions of intermediate precursors in the subventricular zone and ventricular

zone generate neuronal precursors that must then migrate to take up their appropriate location

in the cortical plate. The precursors do this by first executing a random migration until they

encounter a radial glial fiber. They attach to the fiber, and then migrate upwards in the radial

direction passing through the layers of previously migrated cells, until they encounter the MZ.

Here the precursor neurons release from the fiber and nest into the accumulating layer of their

peers.

The radial migration process is shown in figure 3.8. The model exhibits the expected inside-

out lamination of the various neuronal types. That is to say the layer 6 pyramidal neurons are

born before the layer 5 neurons, layer 5 before layer 4, and layer 4 before layer 2/3 pyamidal

neurons[147] [142] [131] [51]. The cells, though, migrate and settle immediately into the cor-

tex (shown as a pictogram in figure 3.9 and the simulation in figure 3.10) [152]. The layer 6

cells are the first to arrive at the MZ, and as they accumulate they begin to form the cortical

plate, which splits the preplate into the overlying marginal zone, and underlying subplate. The
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Figure 3.7. The boundary formation between Area 3 and Area 6.
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successive neuronal types contribute to the continuing thickening of the cortical plate. In the

video the process can be observed in motion: http://youtu.be/l6BOL4suYYg ‘Cortical Plate

development’.

The same type of radial migration machine is used in all neuronal precursors. However, the

state of the precursor’s GRN determines the type of neuron that it will differentiate into, and

the neuronal type-specific G-Machines that will express the characteristic dendritic and axonal

growth patterns are actived as the precursor beds into its layer.

The production of the cortical plate is governed by the dynamics of the GRNs of the inter-

mediate progenitors of the VZ and SVZ [131] [142] [153]. Asymmetrical division of progenitors

can lead to one or both daughters exiting the mitotic cycle and differentiating towards neu-

ronal precursors. The various types of neuronal precursors will express a common family of

G-Machines that provide for migration, nesting, neurite growth etc. However, the particular

machines are slightly specialized according to neuronal type. It is these relatively sparse special-

izations on a common family of machines that cause individual precursors to exhibit type-specific

behaviors and to generate type-specific neuronal connection patterns. The state of the GRN at

the time a neural precursor is born determines its final neuronal type, and so determines the

type-specificity of the G-Machines that it will subsequently instantiate during the course of its

migration and differentiation. The type of the cell is declared by the secretion of a type-specfic

membrane-bound marker.

When a neuronal precursor is born it instantiates a G-Machine for radial migration. This

machine causes the neuron to wander randomly until it encounters a fiber of an RGC. The

precursor then attaches itself to the fiber and migrates along the fiber in the direction of the

marginal zone. During this migration the precursor is able to sense the cell types surrounding

it due to their type-specific markers. When it encounters nest cells of its own type, it detaches

from the RGC fiber and initiates nesting behavior. If it does not encounter any already nested

peers, the precursor continues migrating along the fiber until it detects MZ cells [134] [118],

which trigger detachment and nesting. In biology the precursors stretch vertically as they as-

cend the fiber. We model this stretching as a reduction in force field of the neuron, so thinning

its horizontal expansion, which enables it to penetrate more easily the layers of cells that have

already nested.

Nesting is the process whereby a neuronal precursor detaches from the RGC fiber [118] and

transforms its morphology of bipolar into multipolar. In our simulations this transformation is

modeled by the expansion the cell’s size and force field. The action of nesting also activates the

appropriate neurite G-Machines, specialized for generating the intra- and inter-laminar axonal



3.2. IN SILICO SIMULATION OF MOUSE CORTICOGENESIS 47

projection patterns that characterize that neuronal type.

As in the case of the preplate development, it sometimes happens that some neuronal pre-

cursors become displaced and isolated from their peers. These cells detect their isolation and

undergo apoptosis using the same kind of G-Machine deployed in the preplate cells.

Time
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l

Figure 3.8. A cartoon of the radial migration of a single layer 2/3 pyramidal cell (cyan) and
what the cell can sense over the course of its migration along the radial fiber (black). In white
the subplate cells, in red the layer 6 cells, in green the layer 5 cells, in blue the layer 4 cells and
in yellow the cells of the marginal zone

Tangential Migration

The inhibitory neurons of the murine cortex are derived from the medial and caudal ganglionic

eminences of the basal telencephalon[18] [118] [129]. The inhibitory precursors migrate laterally

from there into the pallium, where they take up their nesting positions in the developing cortical

plate. In biology these precursors migrate by two routes. The major route is through the

Intermediate Zone immediately beneath the developing cortical plate. The second, minor stream,

is through the Marginal Zone[118] [134] [182] [168]. It is observed that the birth times of the

precursors in the eminence correlates with their target layer in the cortex [18].

In the model, the progenitor cells of the eminence contain the same genome as their pallial
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Figure 3.9. A cartoon of the generation of layers 6 to 2/3. Top left: the Layer 6 cells (red)
and how they split the preplate into the subplate (white) and marginal zone (yellow). Top
right: the nesting of layer 5 cells (green) in the cortical plate. Bottom left: the nesting layer 4
cells (blue) in the cortical plate. The bottom right the nesting layer 2/3 cells (cyan) in the
cortical plate. Note the inside out development of layer 6 (red) then 5 (green) then 4 (blue)
then 2/3 (cyan).
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Figure 3.10. Top to bottom: (1) The emergence of layer 6 cells (red) migrating into the
preplate, splitting it. (2) The generation of layer 5 cells (green) and the settling in the cortex.
(3) The formation of the subventricular zone in the middle of the subplate in dark green. (4)
The formation of layer 4 in dark blue and (5) the settling of the cyan layer 2/3 cells finishing
the cortical plate formation. All of these effects are shown in the real simulation with other
aspects that are discussed later in this chapter.
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counterparts. This must be true, since both populations must inherit from a common embryonic

progenitor. However, the model GRNs of the eminence progenitors are initialized to a slightly

different state than those of the pallium. This means that the generation of inhibitory precursors

in the eminence will follow the same principles as the generation of excitatory precursors in the

pallium, but the specific types and behaviors of the eminence precursors will be different from

those of the pallium. In particular, their migratory behavior will be different, and they will nest

and differentiate with inhibitory characteristics. For convenience we consider only the major IZ

migratory route in these simulations. Little is know from biology about the mechanism whereby

the eminence precursors come to distribute themselves across the breadth and layers of the

developing cortical plate. We propose a mechanism for this process.

In figure 3.11 we show the tangential migration of the interneurons. The tangential migration

and the nesting of the interneurons in the simulation can be observed in the video at

http://youtu.be/RXYjvSscvow

We propose that the inhibitory precursors use the basic orientation gradients of the telen-

cephalic wall (that are taken as initial conditions in the model) to guide their migration. The

progenitors of the ganglionic eminence region are mapped onto the cortical plate by simple trans-

formation of source concentration (in the ganglionic eminence region) to target concentration (in

the cortical plate region). This mechanism establishes a simple addressing system that maps the

birthplace of the interneuronal precursor in the eminence to its horizontal target location in the

cortical plate. The location of the inhibitory precursor in the cortical lamination is determined

by the temporal order of birth, as is the case for the generation of laminar types in the pallium

[18]. This simplification follows from the fact that the same GRN is used in the progenitors

of both the eminence and the pallium. Therefore the same basic cell lineage and G-Machine

patterns are available in both germinal locations, but can be specialized for specific behaviors.

For example, the migratory G-Machines of the pallium assert short-range random tangential

migrations followed by radial migration; whereas the migratory G-Machines of the eminence

assert long-range gradient following tangential migration, followed by radial migration.

The (tangential) migratory G-Machine of the eminence is instantiated by local promotion

conditions, directly after the birth and initial differentiation of the inhibitory precursor. The G-

Machine reads the local concentrations of the orientation gradients. These are used to determine

its target concentrations in the cortical plate. We propose a mechanism whereby the cells read at

their position of birth the concentration of an external gradient. This concentration is translated

into a cell internal signal that is remembered by the cell. The strength of this internal signal

is matched to a gradient in the cortical plate. The strength of the internal signal tells the

cell at what concentration of the external chemical gradient it has reached its tangential goal.

This mechanism need not be exact but can be noisy. A dispersion along the tangential axis
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Figure 3.11. Pictogram of a tangentially migrating cell (yellow) being born from the
ganglionic eminence at a distance from the cortical plate. Top left: the birth of the cell. The
cell reads information about the position where it is born from the blue gradient, Gradient A.
This will later be matched to the green gradient (Gradient B) in order to find the final
tangential position of the cell. Top right: the migration up the green chemical gradient
(Gradient B) through the subplate (white) to (bottom) its tangential position in the cortical
plate.
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in the cortex can still be achieved. The mechanism of reading the gradient and using it as an

address is much like mechanisms that allows cells to decide on their cellular fate dependent

on an external gradient [107]. The interneuron will begin to migrate horizontally as soon as

it is born. It migrates through the intermediate zone below the cortical plate, following the

orientation gradient, and continually compares the current concentration with that observed

at its birth time. In our model, there is no attraction signal coming from above or below the

intermediate zone that the tangentially migrating cells react to, therefore the cells will stay in

the intermediate zone during tangential migration. When the two concentrations match, the

interneuron has found its horizontal location and stops its tangential migration. The G-Machine

now switches to another migration mode which is radial search for the target layer where it will

settle. This target layer is determined by the state of the GRN at cell birth, which determines

its type and destination in a similar manner to the developmental sequence of the cortical plate

in the pallium.

The interneuron detects its destination layer by sensing which neurons surround it. If they

are of correct type, the interneuron will nest with a certain probability. As in biology the

radial migration of interneurons does not make use of the RGC fibers. It might well be that its

destination layer is still under construction at the time that an interneuron begins its tangential

journey. By the time they arrive at their horizontal target location, the layers will have formed

and they can satisfy their radial nesting conditions.

Figure 3.12 shows the migration of the different interneurons into the cortex. In the case

of the interneurons in layer 2/3, the tangential migration G-Machine will instantiate a machine

that grows axons and dendrites. As yet, only the machinery for the outgrowth of layer 2/3

interneurons is modeled, but there is no inherent limitation to also modeling the interneurons

of other layers. The exact outgrowth pattern is explained later in this chapter.



3.2. IN SILICO SIMULATION OF MOUSE CORTICOGENESIS 53

Figure 3.12. The simulation of the interneuron migration. From top to bottom, the birth of
the different types of interneurons that will settle into the cortical plate after undergoing a
tangential migration through the subplate. The cells follow a chemical gradient to the right,
using the concentration of this chemical gradient as a source to calculate their final tangential
destination in the cortical plate by matching the concentration at the birthplace with the
concentration at the destination via a biologically plausible transformation function. In light
red we see the birth of layer 6 interneurons in the ganglionic eminence, their migration below
the cortical plate and the settling of the cells in layer 6. In light green layer 5, in light blue
layer 4 and in light cyan the layer 2/3 interneurons. All are born at nearly the same time as
their matching pyramidal cells and all settle radially in the appropriate layers.
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3.2.6 Thalamocortical and Corticothalamic Ingrowth

Thalamus

The role of the thalamic cells in our model is only to provide thalalamocortical afferents. We do

not consider the development of the thalamus per se, at this stage. The position of the thalamic

cell population is set as an initial condition of the model. Each thalamic neuron is initialized

with a growth cone G-Machine that grows first up in the direction of the cortex and then turns

to follow the orientation gradient tangentially towards the right (laterally). The model deviates

from what is observed in biology. There the thalamocortical (TC) axons route into the internal

capsule in cooperation (‘handshake’) with cortico-fugal axons emanating from from the subplate

[13] [130]. We do not model the internal capsule, nor the handshake mechanism as yet. However

we still simulate the fasciculation of the cortico-fugal axons from layers 6 and 5 (see section 3.2.6)

[127]. Moreover, the growth rules of the TC axons until they reach the model VZ are tailored

for this simplified location of the representative thalamic population, and cannot conform to

biology. However, once the model TC fibers enter the developing cortex, their behavior becomes

biologically plausible. In the mouse cortex it is observed that fibers to grow up into the cortex

distributed over the cortical plate, turning up radially into the cortex at different tangential

locations [150] [127].

In our model the TC axons employ an addressing system that maps the thalamic origin to

the cortical destination that is similar to that used by the ganglionic eminence interneurons.

The first growth step of the TC axons uses the concentration of the linear orientation gradients

to generate a mapping to the concentrations in the cortex. This mapping distributes the axons

nicely in the horizontal plane of the developing cortex. The TC axons arrive at their horizontal

destinations beneath the cortical plate at a time when the plate is still under development [130]

[127] [153] [150]. The axons wait below the cortex at their destined horizontal position until

they receive a signal from the developing plate that it is ready to be innervated. The signal the

model uses is a membrane bound chemical that is expressed by the migrating pyramidal neurons

of layer 2/3, this signaling mechanism ensures that all the destination layers for innervation are

ready for the TC axons. On receiving the growth signal the axons turn upward in the direction

of the superficial cortex. As the growth cone passes through layer 6 it will create sidebrances

with a certain probability. These branches create axonal patches in layer 6. The trunk TC

axon continues growing through layer 5 until it encounters layer 4, where it generates a much

larger patch than its layer 6 branches do. The patches are currently only first approximations to

the branching morphology observed in reconstructed neurons of the real mouse cortex. Further

work is required to improve the growth cone model’s branching behavior so that the model

axonal arborizations conform to observed branching statistics. This is true for the model axonal
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branching patterns of all cell types: they have a strong resemblence to observed patterns, but

their statistics need to be improved.

The growth of a representative thalamocortical axon is shown in the figure 3.13 as a cartoon

and in figure 3.14. The ingrowth of thalamic axons can be followed in the video: http://youtu.be/vGBXP1RPKgk

‘Thalamic Cell’.

Figure 3.13. A cartoon of a thalamic axon (black) growing up to the subplate (left), then
tangentially up the green gradient in the subplate (white), and (right) finally turning up into
the cortical plate at the appropriate tangential location with arborization in layer 6 (red) and
in layer 4 (blue)

The axonal G-Machines generate their behavior using the following rules. The G-Machines

for tangential ingrowth are located in the tips of budding TC neurites. These G-Machines are

activated at the very beginning of the simulation, however they lie dormant with an internal timer

for a first phase of development. We are not concerned with the development of the thalamus in

our model up to the point where it begins to send its axons in the direction of the cortical plate.

Therefore we introduced this waiting period at the beginning of the simulation. This waiting

period is a purely technical means to keep the beginning of the thalamic axonal growth in sync

with the cortical development. During this phase the machine senses the orientation gradient

and remembers its initial position in terms of the chemical concentration of the gradient at that

location. When it begins its work, the growth cone machine will grow in the direction ‘up’ until

it senses that it has reached the height to turn right. At this point the ingrowth G-Machine

switches its behavior to follow the cortical orientation gradient through the subplate, beneath

the developing cortical plate. The initially sensed concentration of the orientation gradient at

its origin provides a reference against which to decide where in the subplate it should stop
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Figure 3.14. From top left to bottom right, the simulation of the outgrowth of a thalamic
cell (black) through the subplate tangentially into the cortex. The growth cone settles in the
subplate until layer 4 has emerged and it receives a signal from the layer 2/3 cells that migrate
by. This signal makes the growth cone turn up into the cortical plate. On its way it produces a
small arborization in layer 6 and a large and final arborization in layer 4. The tangential
position where it should turn upwards is found by matching the concentration of the gradient
at the staring place with the concentration of the gradient at the target through a matching
function.
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tangential migration and wait until it senses layer 2/3 cells migrating radially past it. Since

the axon lies above, or in, the proliferating subventricular zone, it is sure to detect the radially

ascending passage of migrating layer 2/3 precursors. Having received the signal, the G-Machine

will steer the growth of the axon in the radial upward direction. It is still debated whether the

murine TC growth-cones do in fact wait in the subplate as they do in primate development [51]

[130] [127] [153]. We have implemented one plausible mechanism for waiting. We chose layer 2/3

to be the trigger condition for radial migration, but there are alternative triggers, for example

the passage of layer 4 neurons. The G-Machine is rather generic.

The G-Machine senses when it is surrounded by layer 6 cells, and uses that cue to instan-

tiate with a certain probability a side-branch machine in layer 6. This growth cone contains a

further G-Machine that will, when triggered, generate small axonal patches. After generating

the layer 6 offspring growth cone, the G-Machine(TC) continues its growth toward the marginal

zone probing for layer 4 cells as it goes. Having found layer 4 cells it stops upward growth and

instantiates the large-patch generating G-Machine.

The present G-Machine for generating small patches uses probabilities to generate its growth.

It follows the Galton-Watson branching model [94] [24]. This model has three probabilities. Each

time the model is executed it draws a random number and compares it to the three probabilities.

One is the probability to stop, another is the probability to bifurcate and re-invoke the same

G-Machine again, and the third is the probability to make a growth step. The direction of the

growth is given by the outgrowth direction of the axon plus some randomness. In this way it

is possible to generate a self-similar growth pattern giving the emerging axonal tree a fractal

shape that resembles shapes observed in real axons. The G-Machine for creating big patches in

layer 4 also uses the Galton-Watson model but with probabilities that produce larger trees.

These models are a simple abstraction of the axonal growth process, and do not properly

reflect the underlying biological axonal physical growth mechanism. We are currently developing

such models. Meanwhile the Galton-Watson approach provides a good first approximation to

the observed outgrowth patterns.

Corticothalamic Projections

As soon as layer 6 pyramidal neurons have completed their migration and started to nest, a

machine that is activated by the radial migration process begins the outgrowth of axons and

dendrites. The G-Machine(CT) responsible for this growth is instantiated by the differentiation

machine of the layer 6 pyramidal cell, that has in turn been activated by the radial migration

G-Machine. The G-Machine will begin to grow down in the direction of the subplate. Initially

the GM(CT) axon grows ‘downward’ into the underlying subplate in the direction of the white
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matter, en route to the thalamus. After entering the subplate these corticothalamic (CT) axons

stop and idle, waiting for the arrival in the subplate of the thalamo-cortical afferents. When

TC and CT axons meet, they fasciculate (zip) together, and the CT outgrow continues. The

CT axons use their fasiculation with the TC axons to guide their growth toward their thalamic

target, as is proposed to be the case in biology [130] [51] [148] [127]. GM(CT) growth stops

when it reaches the TC axonal initial segment, next to the soma of the TC axon. Because

of the limitation on computational resources in our simulations, we arrange that CT fibers

arise probablistically from only a sample of layer 6 cells. This reduces computational load, and

simplifies the visualization of the axonal growth processes. We have confirmed separately for

smaller cortical simulations that complete axonal growth (from all cells) does not affect the

integrity of the simulation.

CT outgrowth is shown schematically in figure 3.15, and the simulation of the process is

shown in figure 3.16. Fasciculation can be observed in the following video:

http://youtu.be/5riTXo7SjTY ‘Fasciculation of Corticothalamic Axons’.
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Figure 3.15. Top right to bottom left: The outgrowth of a layer 6 pyramidal axon (red)
growing down in the direction of the subplate until it finds a fiber originating from the
thalamus (black). This allows the axon to fasiculate to the fiber from the thalamic cell and
follow it back until it reaches the origin of the fiber, the thalamus.
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Figure 3.16. From left to right: The outgrowth of layer 6 axons (red) in the the subplate
(hollow yellow cells). The axon waits in the subplate for the arrival of a thalamic fiber (black)
from the thalamus and then fasiculates to it. Here one example is highlighted. The display of
the other layer 6 pyramidal cells is suppressed after the fasciculation of the first one. The layer
6 pyramidal axon follows the thalamic fiber back to its origin while the thalamic fiber is still
growing into the cortex.
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3.2.7 Neurite Outgrowth and Connection Scheme

The generation of cortico-cortical connections follows similar principles to those of the CT con-

nections. When neuronal precursor cells arrive at their target cortical plate and nest, the G-

Machine responsible for the radial migration instantiates a type-specific G-Machine that guides

differentiation of the precursor toward its final phenotype. One of the actions of the GM(diff)

is to instantiate the machines that cause dendritic and axonal outgrowth. We base our models

on the outgrowth patterns reconstructed and analysed by Binzegger et al. [23].

Although neurons contain type specific machines for constructing their arbors, these ma-

chines all employ the same principles. Thus, a small family of axonal G-Machines, with slightly

different parameter settings create a variety of different types of morphologies. A primary ax-

onal G-Machine extends the trunk axon toward the primary target of the source neuron. In the

pyramidal neuron case these are usually the long range axonal arbors that provide inter-areal

or subcortical projections through the white matter. The trunk usually creates side branches

using a GM(Sidebranch) that steers the branches toward interesting target regions, where the

side branches might bifurcate to increase coverage. Finally a GM(patch) is inserted that gen-

erates a patchy arborization by recursive branching. We expect that the axonal connection

motifs observed in biology arise because of the composition of just a few growth mechanisms.

Indeed, the model axonal motifs are in good qualitative agreement with biologically observed

axonal morphology. In future work the growth cone model will be improved to obtain a better

correspondence with the topology and branch statistics of biological axons.

Representative axonal outgrowth patterns can be observed in 3D in the following video:

http://youtu.be/pBqZ8SouWdQ ‘Development and 3D Rotation of Selected Neurons’.

In this section we will only show the machine descriptions for the machines of the layer 6

pyramidal cell. All the other pyramidal cells modelled and the interneuron are described in

appendix C.

Basal dendrite

Amongst its actions GM(differentiation) instantiates a basal dendrite outgrowth machine, which

causes the soma to grow three primary dendrites in random radial (with respect to the soma)

directions. Each of the three growth cones contains the same G-Machine(BasalDendrite). We

have randomly chosen three initial dendritic branches; the basal dendrite only resembles a real

basal dendrite and is not based on biological data.

The Basal Dendrite machine performs the following operations:

BasalDendrite:
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• Grow the current dendrite in the current direction.

• Reduce the diameter.

• Check if the diameter of the dendrite is not too small and check probabilistically whether

to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(BasalDendrite)

• Check if the diameter is too small

– Yes: stop growing.

This machine results in a radial outgrowth pattern of basal dendrites from the soma.

Layer 6 pyramidal cells

Besides the basal dendrite, the GM(diff) of layer 6 pyramidal neurons will start an apical den-

drite machine GM(P6ApicalDendriteMain) in the direction of the marginal zone.

P6ApicalDendriteMain:

• Grow the current dendrite in the direction of the marginal zone.

• Check if it has reached the marginal zone.

– Yes: wait for a while. (Layers 2/3 and 4 might not yet be established.)

– Check whether the marginal zone has in the meantime been pushed upward

– Yes: Grow further up.

• Check if in layer 2/3

– Yes: stop growing.

• Check if in layer 4 and check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P6ApicalDendriteSide)

P6ApicalDendriteSide;

• Grow the current dendrite in the direction of the marginal zone.
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• Check if it has reached the marginal zone.

– Yes: wait for a while. (Layers 2/3 and 4 might not yet be established.)

– Check whether the marginal zone has in the meantime been pushed upward

– Yes: Grow further up.

• Check if in layer 2/3

– Yes: stop growing.

• Reduce diameter

• Check if the diameter of the dendrite is not too small and check probabilistically whether

to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P6ApicalDendriteSide)

With these two machines nice bouquet apical dendrites are produced. The ceasing of growth

is necessary because the neurons of layer 6 begin to grow out immediately even before layers 5, 4

and 2/3 are established and while layer 6 still has a border to the marginal zone. But the axons

should not grow into the marginal zone and therefore wait for the establishment of the necessary

layers. Layer 2/3 is not permissive for the growth of layer 6 pyramidal cell apical dendrites as

we observe no innervation of this layer in the mouse cortex[23].

The growth of a layer 6 cell is shown as a cartoon in figure 3.17 and the simulation is shown

in figure 3.18. The development of a layer 6 pyramidal cell can be observed in the following

video: http://youtu.be/iGa5F6gYiZ8 ‘Development of a Layer 6 Pyramidal Neuron’.

The differentiation machinery of layer 6 will also start an axon that grows down into the

white matter to the thalamus G-Machine(PyramidalAxonMainL6). This is described in the sec-

tions on corticothalamic projections.

PyramidalAxonMainL6:

• Grow in the direction of the subplate.

• Check if in layer 6 and check probabilistically whether to sidebranch

– Yes: Grow out two to three side branches with G-Machines GM(P6Side1Outgrowth)

• Check if the growth cone is in reach of a thalamic fiber.

– Yes: fasiculate to it and change the growth mode to fasiculation growth.
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– Grow along the thalamic fiber

– Check if the growth has reached the thalamus.

– Yes: stop growing.

P6Side1:

• Grow in the direction of the marginal zone.

• Check if it has reached the marginal zone.

– Yes: wait for a while. (Layers 5, 4 and 2/3 might not yet be established.)

– Check whether the marginal zone has in the meantime been pushed upward

– Yes: Grow further up.

• Check if in layer 2/3

– Yes: stop growing.

• Check if in layer 4

– Yes: stop the machine and instantiate a new G-Machine(BranchLayer4) in the same

growth cone.

BranchLayer4:

• Grow in the outgrowth direction.

• Check probabilistically whether to stop

– Yes: stop growing.

• Check if in layer 2/3, 5, 6 or marginal zone

– Yes: stop growing.

• Check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of the G-

Machine(BranchLayer4)

With these G-Machines the axons side branch in layer 6, grow up to layer 4, and create a

patch in layer 4. (See figures 3.17 and 3.18.)
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Figure 3.17. The connection pattern of a layer 6 pyramidal cell with its axons growing down
and creating offspring side branches in layer 6 that grow up to layer 4, the apical dendrite that
innervates layer 4, and the basal dendrite that stays in layer 6.
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Figure 3.18. From left to right: The simulation of the growth of a layer 6 pyramidal cell
through different stages of the development with its apical dendrite going up and the axon
going down. The basal dendrite forms a local arborization pattern. Parts of the dendrites wait
for the appropriate layers to appear in the cortical plate in order to fulfill their destined
growth patterns.
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3.3 Discussion

The mammalian brain is one of the most complex structures known to man, and the neocortex

is crucial for the intelligent behavior exhibited by higher vertebrates. In the case of humans the

cortex consists of billions of cells. It is arguably the most complicated and effective computational

device on Earth. Although very complex in structure, the cortex essentially constructs itself

from relatively few precursor cells in the dorsal telencephalon. This construction process is

entirely distributed; there is no global control instance that dictates to each cell what it must

do. Although all cells have a copy of the entire genome of the organism, how each cell makes

use of that genome depends completely on its developmental lineage and the local environment

it interacts with. The cells perform their tasks autonomously, and in doing so they collectively

and collaboratively construct the brain. Our model starts out in a nearly unlabeled space. We

introduce three sources of cells and two gradients in the tangential plane. We did this because

we wanted to simulate cortical growth and wanted to start at the point in time when the first

preplate cells emerge at E10 [171]. We show though that the labeling in the radial plane of space

is unfolded entirely autonomously by the developmental process of the model. Any orientation

needed for fibers and cells is self-constructed by the cells. The sources of the approximately

four thousand cells that emerge are only three basic precursor types. Out of these progenitors

more than two hundred thousand cells are created, which can be divided into twenty different

cell types. Each of these cells is completely autonomous and has to act out its fate in the

environment.

Most experimental studies of development focus only on partial aspects of brain develop-

ment. Cx3D simulations offer a complementary method, in which simulations of the physical

development of large regions of brain (here, neocortex) can be performed. To do so, we needed

to integrate findings about gene regulation for the generation of different cell types, radial and

tangential migration, the role of the radial glial fibers, the expansion of the cortical plate, the

layering of the cortical structure, the integration of interneurons into the cortex and the con-

nections of corticothalamic and thalamocortical fibers all together into a model that acts as one

to construct the cortex. While assembling all these partial experimental data into one model it

became apparent that not all aspects of corticogenesis have been thought of. Our model had to

include assumptions in order to bridge gaps in the knowledge of cortical development.

One of the most interesting assumptions is the mechanism of tangential dispersal of interneu-

rons during migration. It is not known how the cells distribute themselves in the tangential plane

in the cortex. We propose an addressing-mechanism that relies on the reading of a local gradient

at birth. When the cell is born in the ganglionic eminence it reads a local gradient, translates

this gradient into a cell internal value and remembers it throughout the migration process. On
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arrival in the cortex, the value is matched to a gradient in the cortex, and the cell places itself

where these values match. Through this mechanism a biologically plausible mechanism for the

tangential distribution of cells is achieved. We propose that it could be checked in experimental

studies whether cells from the same region in the ganglionic eminence end up tangentially in

the same region of cortex. It is important to check whether such a gradient behavior could even

be possible and if cell-internal signals could be found that change with the intensity of this (yet

to be found) gradient. If this assumption were not in our model, the interneurons would have

no means to figure out where to place themselves tangentially in the cortex and when to switch

from tangential migration to radial migration.

Another unconfirmed assumption in the model is that the trigger for the cortical ingrowth of

thalamic fibers is the generation of layer 4 cells in the subventricular zone. This has been hinted

at before by Miller et al. [127] but never confirmed. If this were not in our model, the fibers

from the thalamus would arrive in the cortex much earlier, even before the cortical layers were

present, and the axons would turn up immediately into the cortical structure and grow directly

into the marginal zone without connecting to layer 4.

Finally we assumed a mechanism quite similar to lateral inhibition that is present in each

cortical neuron in case of misplacement in the cortex. These neurons would undergo a process

of programmed cell death or apoptosis if they are misplaced in the cortex. It is known that

several cells do undergo apoptosis in the cortex [79] but it is not yet certain what the triggering

mechanism for this is. In our model we assume that a cell in contact with a majority of cells of

a different cell type will trigger apoptosis. This mechanism was actually necessary in order to

achieve clearly layered structures, otherwise many disturbances in the layering would have been

present in our model.

One of the most subtle but most important assumptions is that of the structure of our

model. The model has as its basis a gene regulatory network (GRN) that produces different

types of cells at the right time. The GRN also ensures that the generation of cells stops at

some point and that no more new cells are produced. If this did not happen, the consequence

would be uncontrolled growth that would destroy the whole structure. In order for the gene

regulatory mechanism to work and produce different types of cells, two principle mechanisms

play an important role, symmetric and asymmetric division. Without these no diversity of cells

would be possible. We will discuss this in chapter 4 in more detail. Only having the GRN

causing the production of cells would create a mass of cells that are not organized at all so it is

crucial to have the right type of cell being born at the right time. That is why the cells need to

be able to express behavior and for that reason the gene regulatory network activates behavioral

G-machines in each of the different cell types. All of these different G-machines are very simple

sequential biological programs, that each on its own does not show any complex or interesting
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behavior. Only in association do they start to show interesting emergent behavior and build

distinct cortical structures.

Our model is constrained through Cx3Dp (see chapter 6) and G-Code (see appendix A and

chapter 2.2.4). Cx3Dp imposes on our model the constraints that cells are physical entities

that occupy space and that two cells cannot occupy the same space at once. G-Code on the

other hand implies that the model can only use behavioral primitives that are biologically

plausible. Cx3Dp and G-code set bounds on how cells can be placed in space and how they

can behave. Additionally to these physical and biological constraints, the documented behavior

of development as described in chapter 2 poses constraints on our model of how cells organize

themselves during corticogenesis. For many cell types specific behaviors have been observed

that the model incorporates. The literature and the collected data on cortical development is

vast and the model follows the most common opinions in the literature. All of the behaviors

documented in the literature put constraints on our model that it has to fulfill in order to be

biologically plausible. Even though the constrains were not all known at the time that the

G-code language was created, G-code is powerful enough to allow for the modeling of all these

aspects without exception.

Looking at the biology of the processes that the model implements from a computer science

point of view there are a few interesting aspects. For example the construct of the cell as an

entity. The processes of DNA replication and reproduction could work without the containment

of a cell. The introduction of the containment achieved via the membrane brings distinct advan-

tages; it allows for a very controlled cell internal environment that cannot be disturbed easily

from the outside. It allows the transportation of all the necessary chemicals at once without

having to rely on the fact that all chemicals are spread around through the entire space. Through

the membrane a cell has very localized control over its cell-internal microenvironment and can

therefore elicit very specific control over the parts of the system. The cell can at different times

express specific receptors in the membrane for specific signals in its local (exterior) environment.

Without a membrane this would all not be possible. It creates an encapsulation of functionality

that is not accessible from outside, and only offers distinct interaction protocols with the outside

world. Much like a well-designed computer program.

The communication between cells is especially interesting. It is very sparse in our model.

A very complex communication scheme between cells was never needed and simple signals were

enough. The cells express receptors that act through simple chemical messages with present

/ not present responses. These signals then trigger cascades inside the cell that can be rather

complex in their chemical nature (which we model more abstractly with G-machines). A sign

of a well designed computer program is that it has very selective and well defined interaction

points between the different components of the system. This decouples the parts of the system
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and makes it easier to extend later on. This enables modularity where different additional parts

of the system can then later be more easily integrated. For example we would imagine that

when a cortical structure first emerged in evolution, the tangential innervating interneurons

would evolutionarily come later in time and could be easily integrated because the tangential

migration could rely on selective markers of space in the cortical structure and would not disturb

the original communication protocols for generating the layering of the cortex.

Another interesting point is that during the cortical construction the cells actually build

structures that serve other cells as a scaffold for building even more complex structures. Like

the preplate generating orientation for the emergence of the cortical plate, the radial glial fibers

that give orientation to the pyramidal cells migrating to the cortical plate, the marginal zone that

acts as a stop signal for the radially migrating cells and the cortical plate with only pyramidal

neurons acting as a scaffold for the tangentially incoming interneurons. This process of building

scaffold after scaffold on top of each other is also known from design principles in software

engineering, for a continuously improving product.

Our model shows very complicated emergent behavior. How is it possible to control this

behavior and for a modeler to create a self-constructing system that shows this complexity

without globally controlling the whole process from a central point without getting lost in the

complexity? We credit this to the abstraction we used for our model, G-code. G-code uses as a

central abstraction, the G-machine. Each G-machine is supposed to model one simple behavior

of one cell. A cell can have many behaviors (G-machines) that are running in parallel to one

another or in sequence. This abstraction allows the modeler to neatly separate the problem into

sub-problems where he does not have to consider the whole simulation at once. Being able to

define well separated sub-problems is a very well known and often used engineering technique

such as it exists in object-oriented or functional programming. In object-oriented programming

the programmer has to think in terms of what the responsibilities of the object are and how

they can encapsulate this as much as possible and only offer very specific interactions with the

outside objects with clearly defined interaction points. In G-Code, the modeler has to take the

perspective of a single cell, a single cell behavior and ask what the interaction points are with

the surrounding cells and the environment and how the G-machine should make the cell behave

during the time it is active. This gives a very focused view where each G-machine only has

to be looked at separately and only very sparse interaction points between G-machines have to

be defined. Out of this follows behavior as we can see in the cortical development simulation

that we present here. This separation into different G-Machines follows our understanding of

how biological development is able to create structures like the cortex (we discuss this further

in chapter 4). G-Code itself was built bottom up, which means that all the primitives that

the G-machines are able to use are all biologically explainable and follow the rules imposed by
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biology. On the other hand, the modeler that uses G-Code can begin to design the problem

top-down. In our case we went from the observation of development of the whole cortex to the

smaller problem sets and eventually separate cellular behaviors. These behaviors could then be

implemented using the primitives offered without the need to worry whether this is plausible

because G-Code ensures this. This mixture of bottom up from G-code and top down design for

modeling allowed us to make more complex behaving systems that show very complex behavior,

without the danger that the modeler gets lost in the biological details of how this process has to

be implemented with actual proteins. Van Ooyen [190] observes that there are these two types

of approach for modeling and we combine both in order to achieve better results. With G-code

the right abstraction for self-constructing developmental models has been found, we discuss this

further in chapter 5.

Of course the molecular mechanisms behind each of the behaviors that we present as G-

machines are very important and themselves extremely complex. For studying the construction

process of the cortex looking at each single mechanism in detail would have led us to be lost in

detail. Now that the model is established each G-Machine could be taken and redefined to be

explained by specific molecular mechanisms. We are aware that it can be that our G-Machines

will not always represent the exact mechanisms that nature chose to implement the observed

behavior, but it is clear that such a mechanism must exist in order for development to work.

We are not the first to try to model development, many interesting approaches have been

taken; Zubler’s investigations [212] have shown that: For example simple organisms [120] [160],

the growth of organs such as blood vessels [123], pancreas [169] or mouse limb buds [116] were

modeled. In cortical development as nicely summarized by van Ooyen [190] there are many

models ranging from neural tube formation [38] and regionalization of the neural tube [101] [117],

to proliferation [162] [172] and migration [32]. Other models include very specific mechanisms

such as delta-notch signaling [43] to more general models of arealization [70] and even cortical

construction [211] created by Zubler et al. in our lab. It is also interesting that especially the

growth of dendritic trees [192] [193] [56] [49] [177], axonal trees [186] [164] [185] and growth

cone behavior [163] [205] have received a lot of attention, often based on ideas dating back to

the Lindenmayer Systems [111]. Also other aspects of development have been looked at such as

fasciculation [83] and synapse formation [191] (neatly summarized in Zubler’s thesis [209]).

Where our model excels compared to others is that our model acts in a minimally labeled

space, the cells that grow are completely autonomous, and every single cell in our simulation

is born on the fly. All of the above models only focus on a very narrow topic and do not

aim at reproducing the self-construction (except for [211]) of the whole cortical structure. We

try to integrate all known and necessary processes from the early preplate production, the in-

nervation of thalamic axons, the integration of the interneurons in the cortical plate and the



72 CHAPTER 3. SIMULATION OF CORTICAL DEVELOPMENT

axonal connectivity between the different cortical layers. Often the models do not integrate the

environment as an active part for construction of the modeled process and we assume this to

be crucial in our model so that the cells actively create an environment that is then exploited

by other generations of cells in order to achieve self-construction. Our model does not purely

rely on statistical measurements but also incorporates observations of very deterministic events

(such as radial migration), although the GRN is inferred from statistical data in order to ac-

curately reproduce the numbers of cells in different layers over time. (For more information on

this see Pfister’s thesis [146].) Our model is an algorithmic model that works with abstractions

of behaviors rather than being purely mathematical as we find in many cases. Even though we

expect behind each of the G-machines well defined interactions between proteins that could be

described in mathematical terms. We chose an algorithmic approach because it allowed us to

more easily compartmentalize the problem and to have a more descriptive form of implemen-

tation that enhances the understanding of people not as versed in mathematics. Moreover it

allowed us also to separate the problem computationally into chunks of easily calculable parts

that can be run in a parallel framework such as Cx3Dp (see chapter 6). With other methods

this might not have been possible or might have been computationally even more expensive.

Looking at the model described one might wonder what the difference is in the simulation

of cortical development as we approach it and the simulation of other complex systems such

as weather simulations or simulations of self-organizing systems such as flocks of birds or other

swarms [36]. In all three cases the simulation is compartmentalized; in the cortical simulation the

cells and their neurite elements are the compartments, in the weather simulation the atmosphere

is compartmentalized and in the case of the simulations of swarms and flocks the individuals are

the compartments to be simulated. In all three cases these compartments need to communicate

with each other, and all of the compartments contain data that represent their current state.

Importantly, in all cases there is an emergent behavior of the overall system that is hardly

predictable by looking at the individual compartments. The biggest difference is that in the case

of our model, the computational compartments do not only contain different data but actually

also contain different behavioral models. That is not the case in the weather simulation, the

simulation substrate there is uniform. Also in the swarm or flock case the individuals are all

behaving the same. In the case of cortical development there are many different cell types

that behave completely differently and hold completely different data, but still work together

to generate one structure, in our case areas 3 and 6 of the mouse cortex. This orchestration

is possible is due to the encapsulation that G-code achieves, the plurality is possible through

the symmetrical and asymmetrical divisions and the very specific and selective communication

between the different cells. This will be discussed in more depth in chapter 5.

As we pointed out, our simulation is not complete and the model is a first step towards an



3.3. DISCUSSION 73

overall cortical development model. There are many questions that are still unanswered, for

example how to construct axonal arbors that are realistic. We have not found an explanation

or a model in the literature that would explain the generation of cortical neurons such that

they appear to be realistic. Nonetheless we were able to generate a general model that allowed

us with very few G-Machines to construct axonal arbors that connect to the right layers and

arborize there.

Other interesting projects that could be spun out of this idea of cortical construction would

be to implement a model starting from one single cell, creating the neural tube and eventually

ending up with the final cortex. Or to see how much of the model needs to be changed in

order to achieve other mammalian cortical construction such as that of monkey. Additionally

it is currently being investigated with G-code how whole cortical circuits could be established

that exhibit actual learning [19]. Also the growth of other organs might be an interesting

target to try and eventually whole organisms. The interesting aspects of models of the kind

we present are that through its complexity new theories about developmental processes can

be tested in the model settings before needing to perform very expensive and time consuming

biological experiments. A screening of potential mechanisms can be done directly on the model

and theories can be tested (these need of course then to be confirmed later in actual biological

experiments). The model might have a predictive nature but can never replace the biological

confirmation.

We have studied development with the example of mouse corticogenesis. We have created

a convincing simulation that shows how cells can assemble themselves into a complex structure

such as the cortex using only local rules encoded in their genome. We have learned how these

cells have to behave in order to cooperate to self-construct a concrete example. But what have

we learned in general about the process of biological self-construction? What are the principle

elements biology has at its disposal to control a developmental process? Each of our G-machines

only contains a few lines of code that are sufficient to control the cells such that they show global

emergent behavior without being globally controlled. How can these simple rules generate such

a complex global emerging behavior? How can all of this be compressed into the initial cells

and create such a large structure in the end? And if these principles are clear, could we derive

engineering techniques from this to program artificial systems to behave like biological ones and

essentially self-construct? How could these principles be implemented in technology, hardware

or software? In the next two chapters, chapters 4 and 5, we will study self-construction more

theoretically from the biological and the engineering side.
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Chapter 4

Theory of Self-construction of

Biological Organisms

The basic principles of the production of proteins were explained in chapter 2. The task at hand

is to create an abstraction that can explain how we can get from gene expression (the production

of proteins) to the behavior of a cell as observed in biology. In this chapter some initial steps to

give a framework that allows for such an abstraction are described.

We start with the idea that proteins can be seen in two ways: as active metabolizing entities

that bring energy into the developing system, or as passive information carriers. From this

single gene oriented view, we make the transition to a network of genes that interact with each

other, but where it is still possible to map the network of genes onto a single strand of DNA in

a textual form.

This network of genes can be viewed as a high dimensional function represented by an

expression landscape. In this landscape the cells of an organism operate and essentially move

through a sequence of states defined by the expression landscape. The states in the expression

landscape are perceived by an observer of a developing cell as cell types. We show in this chapter

that the same notion of production of genes not only gives the cells a state or type but also

seamlessly transitions to functional behaviors of the cells, including the observed changes in

morphology. The goal of this abstraction is to give a framework in which development can be

understood from single genes to cellular behavior.

4.1 Active vs. Passive Signals (Proteins)

The genome is pure information until it is translated into proteins. These proteins serve a

function and have certain properties. We begin the task of describing our model by defining

75
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how we abstract proteins. Models of the real world never carry the complete description of an

object into the abstract model space; it is up to the modeller to choose the properties necessary

such that the model captures the important aspects of the real world object. The same goes for

our abstraction of proteins, we use two abstractions of proteins in this chapter. They are either

metabolising, actively bringing energy into the developing system and making the cell behave in a

particular way, or they are passive and act as pure information carriers. The distinction between

active and passive is purely abstract and depends on the aspect of the produced protein in which

we are interested. In the figures we draw a circle for a passive signalling protein and a square

for an active machinery protein depending on whether we abstract a protein as active or passive.

Transcription factors are an example of proteins that can be seen in these two ways. On the

one hand we abstract the concentration of a transcription factor protein as a passive signal telling

how much it influences the transcription of the promoted gene. On the other hand we abstract

the transcription proteins functionality as the detection of its signal and the combination with

other transcription factors mimicking the function of the regulatory region of the gene. The

functional part of the transcription factors is shown as the ‘Detect’s and the ‘Combinatorial

Filter’s in figure 4.1. Only the exact combination of these transcription factors will lead to the

activation of this specific gene. Therefore the translational machinery can be seen as having

exclusive access to that specific gene and it can be thought of as if the specific production

machinery encapsulates this gene. The transcription complex itself can be seen as the ‘Produce’

in the diagram. ‘Produce’ also incorporates the whole transcription and translation process.

The ‘Produce’ in our abstraction has two possibilities corresponding to our view of active and

passive proteins. It can produce a protein we interpret as a passive signal such as a transcription

factor, or it can be seen as producing a functional element that influences the behavior of the

cell.
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Figure 4.1. Two production-machineries as combinations of transcription factors (signals and
detect’s), core promotor (detects, combinatorial filters) and translation complex (combinatorial
filter and producte) regions. The gene translated by the machinery is embedded in the
machinery, bound by the transcription factors and the translation complex, exclusively
translatable by this production machinery. The passive properties of each transcription factor,
defining how much it is expressed in the cell, are shown in green. Dependent on what aspect
we are interested in we draw the produced protein as a passive signal, or an active Machinery.
In order to distinguish between a cooperating information transmitting relationship and a
production relationship we use two different types of arrows: The normal single-headed arrow
stands for a cooperative relationship and the double-headed and feathered arrow for a
creational relationship.
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4.2 Cellular States as a Consequence of Transcriptional Net-

works

Considering an ensemble of many production machineries as described above we can make

the link with the genetic networks as described in chapter 2. In this chapter we investigate

and analyze interacting genes that regulate each other through transcription factors generating

transcriptional networks and integrate the resulting ideas into our abstraction. The analysis is

based on the production machinery described above.

4.2.1 Interaction of Multiple Production Machines

A developing organism begins with one cell containing a genome. The initial cell is placed in a

particular environment and begins to proliferate and generate an organism. During this process

the genome is inherited by all the cells.

The genome does not change over the lifetime of the organism (we idealize here by ignoring

cases such as random mutation during development, inclusion of genetic material from viruses

etc.). This code defines the final shape of the organism. The genes that build the genome can

be expressed as proteins. Each gene builds many of the same type of proteins when it is acti-

vated and we speak of a concentration of proteins in a cell. The concentration can be regulated:

there can be more or less of a protein expressed in a cell. The concentration is the readable

signal of a transcription factor in our abstraction. The expressed genes and therefore the pro-

tein concentrations can activate or inhibit each other. This activation and inhibition is steered

through transcription factors and their production-machinery (figure 4.1). This regulatory pro-

cess happens inside each single cell separately. We can view this activation-inhibition process

as a network, the so called gene regulatory network (figure 4.2). Each gene can be abstracted

as a production-machinery and the transcription factors explained above (figure 4.1).

We have made a distinction between regulatory genes (production-machines) and genes that

influence the behavior of the cell (machines). We are aware that this distinction is a simplification

but it is helpful for the comprehension of what we describe here.

Taking a description of all these regulatory genes and behavioral genes together and aligning

them in a string we end up with the genome for the organism (figure 4.3) in which production-

machines that produce transcription factors (signals) are regulatory and production machines

that produce machines (active) are behavioral genes. If we show the DNA as a strand we can

imagine that the production machines are aligned in a sequential fashion all working in parallel

on the DNA code producing the activated proteins (figure 4.4).

The important message in these figures is that it is possible to have a textual, completely

passive form of the genome present in a string-like fashion that is sufficient as a description for
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Figure 4.2. A gene regulatory network showing the interaction between different genes as a
network using production machineries and transcription factor signals activating and inhibiting
each other. Top: a network of production machineries. The normal arrows stand for
cooperative relationships and the double-headed arrows for creational relationships. Bottom: a
simplification of the upper diagram. Arrows indicate activation and lines with T-shaped ends
indicate inhibition of the gene.
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the creation of a self-constructing organism.

gene4 gene1 gene3 gene2 Mach1 Mach2 Mach3 Mach4

Figure 4.3. Different genes can be aligned in a strand where some genes act in their
expressed form as transcription factors acting on other genes (labelled gene), and some of the
genes act as machines that will influence the behavior of the cell (labelled Mach). The arrows
indicate the direction of the influence between the genes.
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Figure 4.4. Production-machineries bound to the DNA, encapsulating it and interacting with
the signals in the cell to produce the appropriate protein. The normal arrows stands for
cooperative relationships and the double-headed arrows for creational relationships. Different
genes and their production machines can create other machineries or signals that act together
in the cells for its functionality. Here we show three different exemplars that are on the genetic
string right next to each other. These three show a concept and do not represent any real
existing gene production machines.
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4.2.2 Genetic Landscape

Taking a closer look at the gene interaction as a gene regulatory network as described above,

it can be seen that this network describes a function of gene interactions in a multidimensional

space. This function and therefore the gene regulatory network spans an abstract landscape

called the GRN landscape and shapes its valleys and mountains. This landscape is a continuous

space where each dimension corresponds to the expression level of one gene creating a huge

dimensional space. Here we draw an extremely simplified version of a two dimensional cut

through the GRN landscape showing stable regions as valleys and unstable regions as mountains

(figure 4.5).
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Expression pattern aExpression pattern b

Concentration

Figure 4.5. A simplified version of the complete huge dimensional space of gene expressions
in two dimensions with the intensity of the gene expression (concentration) in the third
dimension. In this projection onto two dimensions the axes of the projection plane are a linear
combination of different gene expressions. The landscape slopes down from the top to the
bottom overlain with a pattern of mountains and valleys. Even though the landscape appears
very regular and traversing between valleys extremely simple, this figure is of course only an
illustration of a much more complicated multidimensional landscape.
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Each point in the GRN landscape is defined by an expression pattern of all the genes in the

system with a unique address in the GRN landscape. Since the genome will not change during

development, the landscape that is defined by the gene regulatory network will also not change

during development and will remain constant. On the contrary the expression pattern of the gene

regulatory network will change over time in each cell. And in each cell the expression pattern is

different, in some cases only slightly different and in others grossly different. The valleys in the

diagram are stable regions where the gene expression will not change much, whereas the steep

mountain slopes (unstable regions) will generate extremely fast changing expression patterns.

At any point in time the expression pattern might be seen as the state the cell is in.

Waddington’s ideas come quite close to the idea of the GRN landscape [196]. (An illustration

of the so-called epigenetic landscape can be found in his book). He describes a multi-dimensional

space that is defined by the genes, and casts this idea into a mental image of a two dimensional

sheet that is being formed by genes. The genes act as poles with ropes that then pull on the

sheet and make it rugged. These ropes can be influenced by other genes through an attached

rope and one pole can have multiple ropes attached therefore forming a kind of a rope network

that would correspond to the influences of genes on one another, essentially forming a regulatory

network for the epigenetic landscape. On this epigenetic landscape Waddington imagines a ball

rolling down a valley as an analogy of a cell following its path to differentiation. We can clearly

see the similarities of the epigenetic landscape and the GRN landscape but we will go one step

further than Waddington. We will show later in this chapter how multiple cells can navigate in

the GRN landscape, what replication means in the context of the landscape and how behavior

emerges as an epiphenomenon of the GRN landscape.

To give the reader a better understanding of how a gene regulatory network creates a GRN

landscape with the function it builds, the example of a bistable switch is shown in figure 4.6.

The bistable switch is a motif of gene regulation that can be observed in real biological gene

networks [39]. In this example the genome consists of only two genes, gene A and gene B. These

two genes interact with each other. Gene A produces a protein that enhances the expression of

gene A and inhibits the expression of gene B using the binding sites in the promotor region to

influence its production (as described in the background chapter, chapter 2). Gene B’s protein

on the other hand activates its own expression and inhibits gene A. Through these interactions

the gene regulatory network forms a function that expresses a landscape with two dimensions

that has two regions of stability: only gene A is expressed or only gene B is expressed. These

two regions are attractors. There is a third region that is an equilibrium in which A and B are

expressed exactly equally but this region is a ridge and therefore unstable. Any other configu-

ration of expression patterns will lead to one of the two attractors. A more detailed description

workings of gene-regulation are to be found in the thesis of Pfister [146].
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Figure 4.6. Top: A gene regulatory network consisting of two genes: gene A and gene B. Gene
A activates gene A and inhibits gene B and vice versa. The gene regulation leads to a two
dimensional GRN landscape function (Bottom) that has two attractor states: gene A fully
expressed or gene B fully expressed.
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Each point in the GRN landscape corresponds to a particular expression pattern. Cells with

similar expression patterns [167] and therefore similar behavior [80] and morphology [167] are

classified in biology as a cell-type. Cell types in the GRN landscape can be seen as confidence

intervals (regions in space) within which a cell is considered to be of a certain type because of its

expression pattern. Therefore cells in the same region of space within a confidence interval are

classified as the same cell type. This means that a certain state region defines a cell type. Figure

4.7 shows certain cell types as regions in the landscape defined by the black lines surrounding

them. The black line can be seen as the confidence interval in which we would classify cells as

being of the same cell type.

4.2.3 Transcription Networks Seen as Classical Dynamical Systems

We can examine the state changes of the cell including the influence of the environment with

the following dynamical system equation:

~xt+1 = A~xt +B(~xt)~xtext

In this equation ~xt is the current state of the cell; the expression pattern it has seen in the

gene expression. A represents the function of the GRN landscape that will modify the current

state into the next one following the gradient of the function A. The equation ~xt+1 = A~xt

therefore describes the cell internal state dynamics ignoring the external input coming from the

local environment. B(~xt) describes the different inputs that the cell can read in the state ~xt.

B(~xt) is state dependent because depending on the gene expression of the cell it has activated

different machinery to read the input. Since all the signals that are being read by the cell must

be actively read, a machine for detecting the external input must exist. (This is explained in

greater detail in section 4.3.3). ~xtext describes all the signals in the environment that the cells

can potentially read.
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Expression pattern aExpression pattern b

Figure 4.7. Black borders describe the confidence intervals within which we associate a cell
with a certain cell type. There can be multiple such cell types in one GRN landscape. Cell
types are only human-perceived categories for cells. This figure is actually the same landscape
as depicted in 4.5 but seen from above. The stable regions that represent cell types are the
vallys of the landscape, where the cells usually can be observed and keep a stable gene pattern
over a period of time. Cells will populate this landscape and especially the stable regions.
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4.2.4 Cellular Development as a Walk through the GRN Landscape

As we already described, each point in the GRN landscape is unique in its gene expression

pattern. Cells from the same organism navigate in this expression pattern landscape and describe

over time a trajectory between different points of this landscape figure (4.8). The trajectory

of a cell in the landscape does not necessarily mean that the cell will leave the region of space

where we consider it to be of one cell type, but it could do so. Of course there are also stochastic

processes at work that make the gene expression pattern change which lead to variations and not

exact trajectories along the gradient. However this noise in regulation and therefore in trajectory

is largely compensated by the effect of stabilization that occurs through the attractors in the

landscape. Waddington describes a similar gene regulation process in his epigenetic landscape

[196]. In his analogy of a ball rolling down the slope of the epigenetic landscape, the valleys

have a stabilising effect on the ball and therefore on the cellular development. Waddington calls

the stabilising effect that the valleys create the creode (a combination of the greek roots for

necessary and path).
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Expression pattern aExpression pattern b

Figure 4.8. The transition diagram between different cell types. The green and the red
points are cells operating in the landscape and the green and red lines are their past
trajectories. The arrows show specific pathways along which cell types can be reached from
other cell types. The regions that do not have any arrows leaving the region are regions of fully
differentiated cell types. The cells that arrive in these regions will stay there.
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Now we can imagine a trajectory of the states an initial cell must have taken during devel-

opment to reach one of the final cell types (figure 4.9).

Expression pattern aExpression pattern b

Figure 4.9. In red, the path followed by one initial stem cell after each division until it
reaches a state of full differentiation. In green, an offspring cell following another path after a
division. The regions represent different cell types and the arrow indicate the transitions
between the cell types. Because cells can divide asymmetrically and distribute the expressed
protein content asymmetrically into their offspring cells can take different paths during the
development.
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Long before DNA was discovered, cells have been categorized into types [155] defined by their

shape, function and behavior; nowadays they would be determined by gene expression patterns

[167]. These measured expression patterns are an epiphenomenon of the gene regulation. The

gene regulation will activate the behaviors of the cells that will aid in the construction of the

final organism and assure its survival after development. This means that at different points

in the GRN landscape functional genes are activated to switch on a certain behavior of a cell

through the expression of functional proteins. These behaviors can be shared between different

cell types. For example the necessary genetic machinery for replication stays accessible for many

kinds of cells not only for one type. There are many such examples of cell behaviors that are

shared between different cell types (e.g. migration [151]). In general, the type of a cell is assessed

through the sum of its behavioral characteristics. Cell types, although very well justified, are

only abstract classifications that help humans understand of their functionality. We understand

the cell-type in our GRN landscape as a sub manifold, a subregion that clusters the cells of a

certain type within its boundaries.

Each of these behaviors needs to be activated by one or multiple genes. Assuming it is

activated by a single gene, this would mean that in a dimension of our GRN-space a concentration

has to reach a certain threshold for this behavior to be activated. We cannot show the activation

of behavior in our landscape diagram directly but would need to switch projection planes to

show the appropriate dimension (figure 4.10). Because of this, certain properties are accessible

through dimensions we do not draw in our diagrams and are therefore accessible from multiple

points on our surface. (Shown in figure 4.18 in section 4.3.)

It is possible to access multiple gene expressions for different behaviors for a single point

in our projected landscape. For visualization purposes one cannot see those other dimensions.

Due to this high dimensionality it is moreover possible that multiple points of the projected

landscape have access to the same behavior.
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Figure 4.10. The GRN landscape turned such that the dimension of axonal outgrowth is
visible. Two example cells are shown, a layer 2/3 cell and a layer 5 cell, that are beginning to
express the gene that is responsible for the outgrowth of an axon. If a certain threshold of this
expression is reached the cells will grow axons. This dimension is in principle accessible to any
cell, given that the function that the gene regulatory network builds permits the cell to express
the gene. Since the two example cells follow the gradient that the GRN function forms and the
expression of the axonal outgrowth factor is part of that gradient path, the cell will inevitably
extend an axon.
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4.2.5 Cellular Division (Replication) in the GRN Landscape

The initial stem cell will not stay alone in the developmental process but it will divide and create

many cells to build a fully functional organism. Division of a cell is a functional process, that

has to be mapped to cascades of gene expressions. In order to reach a state where it is possible

to divide, the cell has to reach a position in the GRN-space where the gene is activated that

codes for the division machinery (figure 4.11).

Axis describing gene 
expression 

for Replication machinery

Expression pattern aExpression pattern b

Figure 4.11. A projection in three dimensions, emphasizing the expression of the division
machinery in the vertiacal axis and the GRN landscape in the horizontal axes. After a division
there will be two cells which instantly have different expression patterns than their mother cell.
Here the cells do not have an expression pattern that is different enough to place them into
different cell types after a division.
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When a cell divides it has to split its contents (chemicals, expressed proteins...). These

contents are the expressed genes, this means that during a division process the mother and the

daughter cell will have to divide up the expressed genes, namely the quantity of all proteins.

The mother cell can define which expressed genes will be distributed in what proportions to

itself and the daughter cell [157]. Assuming it would distribute the contents equally we obtain

a symmetrical division, which might leave both of the cells in the same region of the landscape

as the mother cell has been in (figure 4.12), or, it might cause the cells to end up at different

points in the landscape changing the cell type of both cells (figure 4.13). Another possibility is

that the mother cell divides the expressed genes asymmetrically between the two cells and we

obtain an asymmetrical division making one daughter cell change its cell type but the other cell

keeps the mother’s cell type (figure 4.14). In any case the cells will make a jump in the GRN

landscape, because of the sudden change of concentration of the genes expressed.

Figure 4.12. The division of a cell in a region of space where the daughter cells will remain
the same cell type after the division. This type of division is called symmetric division. The
content of expressed proteins is divided in same amounts to the offspring cells making them
copies of each other. In this particular case they stay in the same region of the GRN- landscpae
as the mother cell and are therefore not changing cell types compared to their mother cell.
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Expression pattern aExpression pattern b

Figure 4.13. A proliferative cell dividing and giving rise to two cells in different states than
the mother cell was. Each of the new cells’ state lies in a completely different region of the
GRN landscape therefore both cell types change from the original cell type.
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Figure 4.14. Asymmetric division where the mother cell stays in the same region of space
and gives rise to a daughter cell with a different state. That state is in another region of space
that lies in a confidence interval of a cell type other than that of the mother cell.
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Asymmetrical divisions give the organism a powerful tool. It makes it possible to follow two

different trajectories on the landscape, therefore breaking the symmetry and allowing different

parts of the state space to be explored by different cells, opening up the possibility for cells

to behave differently even though they have been replicated from the same source. Allowing

more cell diversity and a more complex construction processes leads to the possibility of com-

plex self constructing organisms as we observe them in biology. As soon as the first cell has

divided, the construction process begins to be parallel. Two cells navigate independently in the

GRN landscape. By the end of the organisms development the landscape contains billions of

independently navigating cells.

In Waddington’s abstraction the cell fate is the consequence of the cells following the valleys

in the epigenetic landscape. When a cell reaches the end point of the valleys it is completely

differentiated and therefore no longer moves through the landscape. Waddington does however

not explain exactly how cells choose the valley to go down and he does not describe replication

in the context of the epigenetic landscape.

4.2.6 Gene Regulation as a State Diagram

If we assume an initial cell beginning the development of a new organism, we see that the initial

cell will at some point differentiate and be integrated into the final organism. That means it

will change its state and go through a sequence of cell types. Hence there must be a sequence

of transitions between the initial cell and all the reachable cell states in the organism otherwise

certain cell types would never be expressed. There must therefore be a sequence of transitions

between stem cell types and the final differentiated cell types.

Since there is not just one type of proliferative cell but multiple types and they must all have

arisen during development from the initial cell, we can draw diagram of transitions between

different proliferative types and to the types of their differentiated offspring. We end up with

a state diagram overlaying the GRN landscape figure (4.16) in which a cell type with outgoing

transitions is a proliferative type and the leaves are fully differentiated cells. The starting state

of this state diagram is where the zygote starts at the very beginning of the existence of the

organism. Gene-expression pattern can therefore be seen to give a state to the cell. And the

gene regulatory network can be seen as a state machine that defines all possible states a cell

could have in the system and defines all the transitions between the states.
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Figure 4.15. Abstraction levels of state diagrams that show the transitions between different
cell types. On the top we depict the GRN- Landscape, with its cell type regions and the
transitions between the different states. This Landscape can then be abstracted as only the
stable regions and their transitions (bottom left) to a fully abstract state machine diagram
(bottom right).
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Since the regulation of genes is running separately in each cell and the cells can have different

expression patterns as described above, it is the case that each cell is in a different state but

operating with the same state machine, still completely controlled by the developmental process.

Having all the cells controllable in different states during the development leads to a state

machine that is running in the overall organism in a distributed way. With each replication

of cells the system has another actor playing out the GRN state machine. This will make the

system even more distributed (see figure 4.16).
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Figure 4.16. A Cell lineage tree. In each replication the state of the daughter cells can
change according to the state diagram (a GRN Network). It will either stay in the same state
or change state. At the leaves of the lineage tree, at the end of development, a final state is
reached for each cell, and the cells are then called fully differentiated.
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4.3 From Cell States to Cell Behavior

Cells that have reached a certain cell state or cell type undergo morphological or behavioral

changes. These changes enable biological cells to find their target positions in the final structure

of the organism to be constructed. Hence there must be a mechanism that links the states of the

cells to the behavior that the cell should execute and that mechanism must seamlessly integrate

into the abstraction that is given here. Indeed there exists such a mechanism, in section 4.1 it

was described how there are production machineries that produce active, metabolizing proteins

that we call machines. These machines can be activated in much the same way as other genes in

the gene regulatory network, with the same mechanism of promotion as in the case of regulation

in the gene regulatory network. Functional machines can be regulated and therefore activated

in different states. In figure 4.17 this can be seen being played out in the state machine where

a state activates a certain behavior of the cell that is defined for its cell fate.
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Figure 4.17. This figure is an extension of figure 4.16. We show an example of a cell which
has reached the last differentiated state which happens to be the state in which a cell becomes
a layer 5 neuron. Therefore the state activates a machine F: Differentiate L5 that will express
the morphological transformations of the cell to a layer 5 neuron. This machine starts another
machine E: Grow Dendrite that will begin to grow out a dendrite, given the right condition in
form of a signal S in the environment is present. The normal arrow stands for a cooperative
relationship and the double-headed arrow for a creational relationship.
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Lets take a step back in the abstraction going back to the GRN landscape. As we have

shown in section 4.2.4 it is possible that certain cellular behaviors such as axonal outgrowth are

reachable by different types of neurons. To visualize the process of the cell starting the axonal

outgrowth machinery we needed to re-project the multidimensional GRN-space to include this

dimension. That certain functions are accessible to different cell types is generally true. The

multi-accessibility of functions implies potential for the reuse of machinery in cells of different

types. This leads to the picture of figure 4.18 in which it can be seen that multiple of these

behavioral machines are potentially activated from different points in the GRN landscape. The

activation would happen in dimensions of the GRN-space that are not shown in the figure; it is

obvious that for each machine different dimensions are involved.

It has even been shown that proteins can be produced on demand at remote places in the cell

such as in the dendrites at the synapse or the growth cone [179] [100] [180] [33] [50] [46]. This is

in accordance with the idea of local machines in cellular compartments that can be assembled

on demand at the needed locations. The remote production is the reason why we can safely

say that machines can be produced and start in different places in the axons, the dendrites and

potentially their synapses.
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Mach1 Mach2 Mach3 Mach4

Expression pattern aExpression pattern b

Figure 4.18. In the GRN landscape, multiple points can access a certain behavioral
expression of a cell. But the functionality is only accessible via certain dimensions. We would
need to project to another plane in order to see the dimension of the particular expression for
a particular functionality.
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Shifting the view point to the gene regulatory network as an ensemble of interacting production-

machineries it can be seen that the gene regulatory network and the behavioral functional ma-

chines interact with each other through the same mechanisms (see figure 4.19). It is even possible

that a behavioral machine contains a sub-GRN. This interaction implies that the sub-network

is activated by the state-giving gene regulatory network, as we can see in the figure. The in-

teraction between functionality and state neatly integrates into our framework of abstraction.

It is already clear that all of the machines are assembled by primitives of functionality that are

the same in the gene regulatory network and in the behavioral machineries. This fact will be

expanded on in the section on the assembly of machines, section 4.3.1.
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Figure 4.19. This diagram is a continuation of the diagram 4.2 on gene regulation. This
diagram shows a gene regulatory network in which one of the genes, in this case Gene 2,
produces on promotion a behavioural machine. The behavioural machine is composed of
different primitives. This machine will detect a signal and depending on this signal it will
make the cell move and produce another signal. The normal arrow stands for a cooperative
relationship and the double-headed arrow for a creational relationship.
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In figure 4.20 a concrete example is given in which part of the gene regulatory network from

the simulation of cortical growth is shown. This shows the coordination of the machines as it

happens in the simulation (see chapter 3). The gene regulatory network produces cells one after

another, first layer 5 cells, then layer 4 cells and finally layer 2/3 cells. Layer 5 cells start a

migration machine C as soon as they are born. The migration is stopped by an external signal

from layer 1 cells that are already present from an earlier stages of development. The signal

activates the differentiation machine D of the layer 5 neuron and starts the dendritic outgrowth

machine E that targets layer 2/3. Now since layer 2/3 is not existent at this point the machine

cannot yet finish its program and waits for layer 2/3 to appear. The growth cone waits therefore

for an extracellular signal from other cells to continue its growth. While the other cells play out

the described behavior, the progenitor cell keeps on dividing spawning layer 2/3 later in the gene

regulatory network state program. The layer 2/3 behavior is activated. This is first acted out

by using a copy of a migration machine C. The migration machine is signaled by layer 1 cells’

membrane markers to stop the migration and to activate the machine F for the differentiation

of layer 2/3. The differentiation machine in turn expresses a membrane marker that the waiting

dendritic machine E has been waiting for. After that signal the dendritic machinery can now

finally begin to act out the branching pattern that is encoded in the machine G Branch. This

example shows that extracellular interaction between machines of different cells are also possible

and desirable for shaping a final structure. We show here that it is possible to go from a gene

regulatory network (states) to behavioral function of cells in a multi-cellular environment, where

the cells can communicate with one another. None of the functionalities described violate our

abstraction framework.
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4.3.1 Composing Machines

A single functionality or behavior of a cell is not necessarily performed by a single protein.

Often they are the result of multiple proteins binding together (an example of this multi-protein

binding has been described for the DNA replication machinery [54]), or of a biochemical pathway

of multiple proteins and chemicals [125]. Therefore we use a composite component system to

represent a functional machinery. But a higher level machinery can always be decomposed down

to the level of single protein interactions. Proteins on the other hand can participate in multiple

functionalities of a cell. For example tubulin which participates in the splitting of the DNA

during mitosis [170], in the migration process of cells [156] and in the growth cones in neurites

[74]. This means that one functionality might rely on a specific protein. This protein might

though also be used in another functionality. What behavior exactly is being called for depends

on a higher level process that only recruits the protein on demand.

In order to activate the production of the high-level machine composed of multiple proteins,

the production-machinery of each of these genes is activated and the machine is assembled in

sequence. To have multiple proteins contributing to one single process we need to be able to let

the initiating production-machinery activate the necessary protein production. Since the access

to the genes is only granted for each gene by a specific production-machinery we need a system

where genes can refer to other genes on demand. Hence to allow one gene to activate multiple

genes in sequence to assemble a higher complex of protein transcribed from multiple genes. How

the process of assimilation of multi-protein complexes exactly works is still under investigation.

It is already clear that not only one but multiple processes could be responsible for the assembly

of multi-protein complexes, one example is the 1D diffusion along DNA or Chromatin via weak

binding [54].

Production for a higher level machine can therefore be seen as an abstract description of

the whole cascade that is being initiated to assemble the machine to be produced. This pro-

duction though might be more abstract and might not only involve one transcription complex

but multiple transcription complexes. The term production here stands for the whole process

it takes to assemble the machinery for a complex behavior a cell is exhibiting. This production

machinery can therefore produce a machine that is acting on a higher abstraction level than the

protein production we have shown so far but follows the same rules of activation. The possibility

of higher level activation and reuse of machinery allows for a component composite scheme of

recombination of partial machines to higher level ones. Functionality or behavior that is built

on the basis of other already existing functionalities and/or behaviors.
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Figure 4.21. Production machinery for a higher level function that is based on multiple
proteins. This figure is an extension of figure 4.1 The expression of the genome does reference
the proteins. These proteins get assembled by the production process into larger
protein-complexes or even biochemical pathways. Gene sequences (green) referencing genes
coding for proteins (brown) in the machinery. The initiation of the production of the resulting
machinery stays exclusively available to the combination transcription factors that must be
available. The normal arrow stands for a cooperative relationship and the double-headed arrow
for a creational relationship. The production of the whole which we indicate with a double
arrow here is in fact a whole complex activation of other transcription factors and assembly
processes that lead to the machinery that is to be activated.
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We define a machine as an active part that describes a coherent function. It stands for

proteins interacting with one another, a biochemical pathway executing a certain function as

explained before in figure 4.21. An active machine is a direct result of the activation of a certain

production-machinery. A machine can be another production-machinery taking care of other

parts of the gene translation, or it can be of cellular behavioral nature (a behavioral machine)

e.g. one that is responsible for cell migration. Machines can interact with one another through

writing and reading passive signals. Since the production-machinery is also a machine it is

possible to have a machine activating another machine, giving rise to another cellular behavior.

In our model we use the term primitives for something that executes a single abstract func-

tion, that is observable through the behavior of the cell e.g. movement, detection, secretion.

These primitives are a combination of the interaction of one or many proteins. Every machine,

production machine or machines for behavioral functions are built of these primitives; all ma-

chines have been shown to be composable from these few primitives. As described by Zubler

[213], it is also clear that one can combine machines to form larger machines. All of these prim-

itives are, as Zubler states, biologically plausible. The work of Zubler has been briefly reviewed

along with the primitives he proposes in section 2.2.4. In figure 4.22 a machine is shown that

is assembled from different primitives acting together to build a behavioral machine. Another

more complex example of such a machine can be seen in figure 4.23. In this figure it is shown

how the assembly of functionality comes about within a machine. A subnetwork of the gene

regulatory network produces primitives that are then assembled into a functional behavioral

machine. In figure 4.22 the subnetwork is hidden but implied as an underlying process for as-

sembly. The machines can be recombined and reused. This recombination allows for a hierarchy

of functionality and we therefore call the machines that are composed of other machines higher

level machines.

The composability described abstracts away from the view of single genes and proteins but

is fully compatible with the basic abstraction, allowing us to look at processes happening within

cells at higher levels. The level of abstraction is chosen by the observer of the behavior and can

in the extreme be broken down to single protein chemical interactions, making very complicated

protein interactions humanly comprehensible.



112 CHAPTER 4. BIOLOGICAL SELF-CONSTRUCTION

F

M
D

signal

P

D signal

Figure 4.22. A sample machine made of some primitives, interacting with the cellular
environment through passive signals The arrows stand for cooperative relationships. This
diagram tries to explain the concept of assembled machines. Here we have an exemplar signal
that is beeing detected by two detect primitives that feed into a filter and into a move
primitive or that feed into a production machinery that then again produces another signal.
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Figure 4.23. The inner workings of a high level machine. A high level machine might contain
a sub-GRN in order to produce required parts from different genes that act then together to
cause one behavior that is encoded by the machine. A high level machine is composed of
different primitives that are assembled together, and can even be composed of other high level
machines. The higher level machine shown here will produce a signal protein S. The normal
arrows stands for cooperative relationships and the double-headed arrows for creational
relationships.
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4.3.2 Machine Interaction Causation and Communication

In the previous section it has been shown how machines can be composed of machines and

primitives. Additionally, in figure 4.20 we hint at how machines can interact. Figure 4.20 shows

that cells can activate behavior dependent on their state and how machines can interact in a

multicellular environment. This interaction between machines needs further investigation.

There are two different modes of interactions between machines; one machine causes another

one to come into existence or two already existing machines working in parallel communicate

with each other. If we focus on the causal relationship between machines we see a call-tree

like structure. The causal relation tree indicates an unfolding over time: a machine that causes

another machine to come into existence must exist first before the second machine can come into

existence. Examples of this causal relationship are given in figure 4.24 indicated by the black

arrows. In this view, the machine history can be understood as a causal tree of machines. It

indicates a sequence of events but not the accurate timing. The same holds true for a family tree.

In an un-annotated family tree we get the sense that the children must come after the parents

but there is no information given on the date of birth of each child. In the case of the causal tree

the ‘causing’ machine must be there before the ‘caused’ machine but when these machines exist

in time is not given. This unfolding in time is dependent in the case of the machine on the gene

regulatory state and on some environmental (intracellular or extracellular) factors. Figure 4.24

shows the development of a single precursor cell and its offspring. The causal tree is shown at

the bottom and the unfolding in time at the top. One can see that different machines cause one

another with a certain timing. It can be seen in the example that the L1 differentiation machine

B produces a signal as a membrane marker that will inform a layer 5 cell born later that runs

the radial migration machine C to stop its migration and to differentiate. This communication

between the two machines is inter-cellular via environmental factors (indicated with the blue

arrows for communication through the environment). The machines B, C and D in this example

are deactivated as soon as they have fulfilled their purpose. The communication between the

two cells would not have been possible if the layer 1 cell would not have already been there

to interact with the layer 5 cell. It is important to notice that cells build an environment for

later cells and their machines in which the machines can operate on a scaffold that has been

established by earlier-born cells. Hence it is important that the right cells of the right type are

born with the right timing. But luckily through control mechanisms like the distributed GRN

state machine and the causal tree of machines this timing is easy to achieve and to modify.

Of course the interaction between two machines need not only be intercellular but can also be

intracellular, with the same effects.
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Figure 4.24. Top: the time development of the offspring of a single precursor cell (gray)
where the letters inside the spheres indicate the machines responsible for the behavior of the
cells. These machines are shown in the lower part in a causation (black arrows) and
communication (blue arrows) diagram. This figure shows how sophisticated global behavior
can be achieved through local rules encoded in these machines. The machines B, C and D are
deactivated as soon as they have fulfilled their purpose.
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It can be seen how this communication with and through the environment works from the

point of view of a single cell. Machines in cells can interact with each other intracellularly, they

can be produced by a production machine and the machines can interact with the environment

and the surrounding cells by deploying signals. Since all the signals and machines must have a

physical representation, their physical properties can be used to aid the communication process.

For example cells can use a morphogen’s diffusibility property to communicate with other cells.

The passive signals used for communication can in addition have a physical meaning such as

adhesion molecules attaching cells together [76]. In this case we would see the adhesion molecule

still as a passive signal since it does not take part in the metabolism but acts as a passive physical

bond. (See figure 4.25)
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Figure 4.25. The interaction of the machines in a single cell with the environment. The cell’s
machines can produce other machines that then produce signals that go out into the
environment. These environmental signals might then be read by other cells. The figure also
shows that passive signals can be used in their physical instantiation capacity as proteins for
structure, as is shown here as a physical bond (adhesion) to another cell. The normal arrows
stand for cooperative relationships and the double-headed arrows for creational relationships.
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We see now that ensembles of cells steered by behavioral machines timed by the distributed

GRN state machine can cause highly complex behaviors as we observe in biology. Of course

everything depends on the actual genetic program that defines how these machines and cells play

out. It is a logical next step to see how the many emerging cells interact with each other and

how the information encoded in the DNA is unfolded into the environment to build a desired

structure.

4.3.3 Multicellular Organization

We have now explained how it is possible to generate different cell types at different stages of

development. We have potentially a huge diversity of cells and many of each type, but now the

cells must arrange themselves in the environment in order to build a functional organism that

can survive in this environment. One single cell is a microenvironment, confined in a membrane.

It has a position in space and occupies a part of the space. The interaction radius of a cell

is bound to the cell’s location and its spread in space. It can only interact locally with the

environment and other cells. The need for controlled interaction leads to the second part: the

coordinated behaviors of the cells. Cells must be able to arrange themselves in the environment

relative to other cells to build a functional organism.

The necessity for communication between cells, the movement of cells, the shaping of cell

morphology and their functional properties arises. Cells can secrete morphogens [12] into the

extracellular space, or express membrane proteins [47] [208] to communicate with other cells.

Now these signals must be read and there must be an active machinery in the cells that is

converting these external signals coming from other cells into internal signals that influence the

gene regulatory network in the cell and change their positions in the GRN landscape. Cells are

therefore able to influence the behavior of their neighbouring cells (delta-notch signaling) [9] or

even to broadcast a signal using extracellular morphogens. These signals though will only be

read by cells that are expecting to read them (figure 4.26). They have to have the machinery for

it otherwise the signal is meaningless to them. The reading machinery for external signals further

allows that the cells can adjust their path in the GRN landscape according to external signals

that are around. Cells can therefore remain in a waiting position until they receive external

signals that will activate certain parts of the regulatory network and that might push the cells

expression pattern out of a local minima in the GRN landscape into another one. Through

these mechanisms cells can be synchronized, for example cell type one will remain in a waiting

position until cell type two has generated a certain signal that lets cell type one go on toward

its fate.
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Figure 4.26. Machines in two autonomous cells exchanging information through the means of
an extracellular signal in the environment. Both the sending mechanism and the receiving
mechanism have to be actively present as machines in order to exchange information. The
single arrows −→ stand for cooperative relationships and the double headed arrow =⇒ for a
creational relationship.
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The same mechanism can be used by cells to label the environment, where other cells that

migrate through the environment can then integrate all the information and react to the signals

they need (e.g. permissive cues, chemoattraction, chemorepulsion, and start/stop signals are

possible and used [133] [156] [201]). Passive physical (non biological) processes are exploited by

the cells to perform self-construction. These processes include diffusion for long range commu-

nication or forces that do not permit cells be in the same place at the same time.

The position of the cell in the abstract GRN landscape defines which reading or writing

mechanisms are active in which time point in a cell. The gene regulatory network navigates

through the state space but also integrates information the cell picks up from the environment.

It is important to note that the position of the cell in the environment and the position of the

cell in the abstract GRN landscape have two completely different meanings. The position in

the GRN landscape gives information about the state the cell is in, whereas the position in the

environment describes the physical location of the cell in relation to 3D space.

With the mechanisms explained in this section it is possible to self-construct complex looking

structures without a global controller.

4.3.4 Complexity and Information Flow

Complexity is a difficult issue for human perception; we can create systems perceived as having

complex behavior with relatively simple programs. For example, with simple local rules we can

generate many different patterns with local computation, such as the famous Turing patterns

[188] or fractal patterns such as the Mandelbrot set [115]. Although these patterns are perceived

to be very complex, the rules to generate them are relatively simple. We must be careful not

to confuse the human perceived complexity with the measurable complexity of a system that is

defined by Kolmogorov [105] as the length of the shortest program to create a certain pattern

using the universal Turing machine. Roth already described this issue of complexity in his thesis

[159]. The Kolmogorov complexity [105] is a measure of complexity for an object, typically an

object represented as a string. This complexity is described by the minimal length of a program

to generate the string. Or in other words how short the maximally compressed description of

an object can become.

In our abstraction the flow of information is critical for the construction of the final structure.

The idea is to extract information from various sources and to use that information to build a

structure in the environment. In order to understand the flow of information it is important to

identify the sources of information that the system has at its disposal.

In our case the closed system would be the environment in which the organism develops.

The sources of information are therefore enclosed in this environment. We identify three basic

sources of information. One source is the string of genome, that describes the program to be
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executed during the development (DNA). Another other source of information are all the signals

that are potentially read by the cell (Einf(t)) at a given time t. And the last would be the rules of

the environment such as gravity or force interactions between objects (Erules). If we investigate

the complexity of the program versus the complexity of the final structure in a closed system

we can look at it under the Kolmogorov’s constraints [105]. The application of the Kolmogorov

complexity constraints implies that structures in our system cannot be of higher complexity

than the shortest program that generates them. If we keep the initial conditions Einf in our

environment and the rules of our environment Erules constant we can therefore expect that the

complexity of the final structure is not more complex than the program that describes it. In

our case this program is the DNA. Now the concept of Kolmogorov complexity holds true. If

we take a global view of the system the information content will not change globally, but what

will change is how the information is distributed in the system. In our case the program of the

DNA gradually unfolds itself in the environment and builds a structure.

On the other hand, if we change our perspective and do not look at the system as a global

observer but from the perspective of a single cell, the information content of the environment

can change. If we follow the initial cell’s course of development we can observe the following

changes in the environment. At the very beginning of development, the initial cell contains one

copy of the DNA code. At this point the distribution of information in the the environment

is obvious (figure 4.27). The cell A is in state a0 and has all the information available in the

environment:

Pr(a0|IDNA, Erules, Einf(t0))

This means that the state a0 of cell A depends on the environmental rules Erules, on the

initial conditions Einf(t0) and the information IDNA available in the DNA (figure 4.27). During

the development of the system the initial cell A will split into two and create cells B and C in

the states b0 and c0 respectively (see figure 4.28). At the moment of cell-division the question

arises what information each cell has available for changing to the subsequent states bi and ci?

(Figure 4.29.) Compared to the starting point of the development the information begins to

be distributed in the environmental space, therefore no single cell has the complete information

in the system. This makes the environment a potential source for information to be integrated

into each cell. What state bi the cell B will choose next is dependent on the environment and

the DNA that it has received from cell A. From the viewpoint of cell B, the information from

the DNA stays constant but the information in the environment changes over time. This gives

the choices of the next state for cell B:
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Pr(bi|IDNA, Erules, Einf(t), b0)

where b0 is the previous state of the cell and bi the future state of the cell. From the viewpoint

of cell B we consider cell C and its state c0 part of the the environmental information Einf(t).

In the case of the cell C the view point is different. The cell C has to decide which state ci

to take next. As for the next state bi of cell B, the next state ci of cell C is dependent on the

environment and the DNA that it has received from cell A. But for cell C, cell B and its state

b0 are part of the environmental information Einf(t). The following formula describes the choice

of cell C for its next state ci, where c0 is the previous state of the cell and ci the future state of

the cell.

Pr(ci|IDNA, Erules, Einf(t), c0)

The information content of the environment will be determined as a function of time and the

cells acting in it, Einf(t) = f(Erules, CELLS, Einf(t− 1)) where A,B,C ∈ CELLS, t is time, and

each of the cells has a state. Looking at individual cells emphasizes that depending on the cell,

the view of the information sources changes and gives the cell the opportunity to learn about its

environment. This means that from the cell’s point of view the environment and its information

content apparently changes, over time there might be more and more cues providing information

to this single cell.

But for the total system the sources of information have not changed. It is still the Einf(t),

Erules and the DNA that act as sources of information. We can also see that the information

that is coming from the DNA and that describes the program that the cells follow, transforms

the structure of the environment. This process is transferring information locked away in the

DNA into the environment manifesting itself in global structure in the environment.

If we think about a system that is not closed, in which the environment is influenced by

many processes that have initially nothing to do with the development of the organism, we

can see that the organism can potentially make use of the information available and integrate

it at any developmental step into the construction, but still it would only react to signals it

expects (e.g. rods and cones [206] that are receptive to light). Thus the information that can be

potentially integrated grows with the potential for absorbing this information. This potential

for information integration grows on the other hand with the number of cells in the system.

Further it implies that the information for the construction of an organism comes more and

more from the environment rather than from the DNA during its development. This is because

the available information from the DNA is constant and millions of orders of magnitude less

than the information available in a natural environment. Hence the organism can exceed the
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Environment

A a0

Figure 4.27. The initial situation of the environment and the initial cell in its initial state.
The small green dots in the cell represent the DNA. The initial cell contains all the
information that is then to be expanded into an organism. The cell will start to divide and
copy its DNA to it’s offspring cells. The information in the DNA will be transformed into a
structure built by the cells.

complexity of its DNA. This was not the possible in the closed system case explained before.

This influx of external environmental information has two implications. First, the system can

exploit the information in the environment for its construction. And second, if we have a

system that is constantly reshaping its structure dependent on the environment it is not finished

with constructing, but under constant reconstruction and it is becoming potentially more and

more complex in its structure. An example of this behavior would be a constructed brain that

rearranges or reconstructs itself and the connectivity within it depending on the information

available from the environment, where the DNA plays only an assisting role in providing the

machinery to extract this information (synaptic learning [119]). In this case the processes that

define how to react to the environment are still encoded in the DNA. The DNA sets up and

maintains a scaffold that is able to integrate information coming from a vast environment. This

implies that the scaffold changes (integrates information) from the surrounding environment

and changes it structure accordingly; it adapts to and/or learns from the environment. Even

with such a learning process in place the information theoretical ground rules of Kolmogorov

complexity are not violated because the information that flows into the developmental process

is provided by a vast natural environment. This means that the developing organism can no

longer be seen as a closed system but the overall system must be seen as the organism and the

huge environment it is in, including all the information present in this huge environment.
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Figure 4.28. The situation in which two cells are introduced. Top: the moment when A
splits into B and C, and bottom: after splitting, each cell carries the information of the DNA,
but each cell is in a different state. The new offspring cells B and C contain the same DNA as
the initial cell A had. From the viewpoint of the complete system the information content is
still the same. But the individual cells do have different view points of the system and do not
have all the systems information directly available.
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Figure 4.29. The question of which state a cell shall take next is dependent on the
environment and on its previous state. From a global view point the information content of the
system does not change on cell B choosing a state. Since single cells can not take the global
perspective the cells surrounding B might still rely on the information that the cell B and its
state provide.
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4.4 Discussion

In this chapter we have presented a differentiated view of biological development. We present

a model of the biological system that ranges from a specific gene to the behavior of ensembles

of cells. We do not make assumptions about single genes or single cell types but about how in

general processes in a cell can lead to cellular behavior.

We began by describing a single gene and how it is transforms into proteins that have an

active metabolizing functional aspect or a passive informational aspect. Then we showed how

genes can interact and build in ensembles to build a gene regulatory network (GRN) based on

the work of Pfister [146], with genes inhibiting and exciting each other. This network spans the

whole genome and can be seen as a function with a high dimensionality where each dimension

corresponds to the expression level of one gene. A specific genetic expression pattern forms one

point in this function, and the function defines through its gradient how over time the expression

will change. We show how cells let the activities in the network evolve and therefore navigate

the functional landscape that we call the GRN landscape, whereby the points in the landscape

need not only be seen as an expression pattern but also as the state of the cell. We showed

how the GRN landscape of gene expressions can be interpreted as a state machine where the

gradient defines the transitions, and that in this state space confidence interval-like regions can

be defined that represent cell types. For the example of an initial cell of an organism, the path

through this state space was shown. But also the effects of replication are shown, namely that

the cells jump in the GRN landscape, since at division the cell has to distribute the available

expression pattern. This replication process is a key point for how millions of different cells can

be created with thousands of different cell types in a coordinated way through symmetrical and

asymmetrical division. We explain how a specific function in a cell can arise through assemblies

of proteins that work together and through the reuse of proteins for different purposes. These

higher level functionalities that influence the cell’s behavior are named here machines. We show

that it follows naturally from looking at the landscape how such machines can be activated by

the different cells, allowing for many different cell types to use the same types of machines or

express the same proteins for different kinds of machines.

Considering Zubler’s work [213] on G-Code, we show how G-Code fits into the notions of

assembled machines that we describe in our abstraction. This allows cells to have explicit be-

havior such as movement or secretion of morphogens. The coordination of cells is subsequently

addressed and it is shown how cells can organize themselves to build a whole organism. We sup-

port the viewpoint that studying single genes will not increase the understanding of the cellular

behaviour because there is always a large pathway involved composed of multiple genes that

can participate in potentially multiple behaviours. The expressed proteins would have to be
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investigated in their participating behavioural machine. The complete machine is the important

aspect to investigate. Looking at the single gene is like looking at each type of nut and bolt in

an airplane to see what it does.

Having shown the whole process, we analyze the flow of information, and show that the

information is partly coming from the DNA and partly from the environment. The environment

that defines the physics can potentially contain some preexisting morphogens and it provides

a space for the assembly of the organism. That means that all the information of the whole

developmental process is present from the beginning but is just transferred, or computed, into

structure. The system never violates the principles of Kolmogorov complexity since the entire

expansion of the organism is computed using the DNA and the rules of the environment. This

means that the final organism’s information content can at least be compressed back to the DNA

code and the rules of the environment. The complexity of the whole organism cannot be greater

than the complexity of the DNA and the information supplied to the system by the environment.

The environment includes the starting conditions, physical rules and the information presented

to the organism during development. Roth [159] observes the complexity of the organism and

realizes correctly that complexity has a high perceptual component, if not analyzed under the

strict scope of Kolmogorov complexity. If humans perceive something as complex it does not

mean it requires a complex description to generate it. One popular example is the fractal

Mandelbrot set [115] that looks extremely complex but can be defined with just a few lines of

code, this would not qualify as immensely complex under the scope of Kolmogorov complexity.

Waddington’s epigenetic landscape [196] has gained a lot of attention. Waddington shows

a cell that develops and figuratively follows a downhill path in a landscape. This landscape is

shaped by underlying genes that are analogous to poles with ropes attached that pull on the

landscape, sometimes more than one gene pulls on one rope and sometimes one gene pulls on

multiple ropes. The landscape is imaginary, defined by the genes to influence the cells’ paths

during development. The ropes and poles can be interpreted as the functional dependance of

the landscape on these ropes and therefore on the interaction of the genes as a gene network.

It has been a very influential work and must therefore be compared to our view of the genetic

network, in order to avoid confusion. Waddington’s epigenetic landscape bears a certain re-

semblance to the GRN landscape we present here. A GRN landscape is in a high dimensional

space, and what we show is just a projection of this space. Waddington also imagined a high

dimensional space but instead of projections of this space he works with the analogy of the two

dimensional landscape with the underlying genes that pull on the landscape. The GRN land-

scape is completely fixed, defined by the genome or gene regulatory network of the organism and

does not change over the course of development. The GRN landscape would only change if the
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genome would. It is not entirely clear whether Waddington imagines the epigenetic landscape to

change during development or whether it stays fixed. Waddington speaks of cells navigating the

epigenetic-landscape but never specifically mentions how the cells decide which route to take; he

stops his explanations there. We take it from there and begin to explain how cells can navigate

the landscape though divisions and therefore jumps between regions in space. We additionally

explain how to get from these states in the GRN landscape to functional behaving cells and

from these cells to multicellular organization.

In terms of the validity of our present model it is clear that it does not describe the biology

of development in every detail, but it is very helpful to think in these terms in order to get a

grasp at the problem of understanding biological development. The model presented will break

down at some level of detail but it helps to a certain extent to describe observable processes.

One should view our work as a first attempt to bring a general model of development to biology.

With this theory we want to provide a tool for how to think about biological development, in

the spirit of Newton’s model (Newton’s laws of motion [137]) in physics and the Bohr model

(Rutherford-Bohr model [27]) in chemistry: both will break down at some point but are often

sufficient for practical problems.



Chapter 5

Developmental Programming

Paradigm

In this chapter it is shown how the theory of biological development from chapter 4 is directly

relevant for a new style of programming. The main goal of the thesis is to derive a potential

engineering technique from biology to be able to program systems that have the ability to self-

construct as we observe it in biology. First it is explained why the need for a new paradigm

arises. Then the relevance of biological development is explained in the context of a programming

paradigm — how the biology contains directly applicable lessons for the programming of self-

constructing systems. Having explained the paradigm, it is compared with functional and object-

oriented programming that are currently state of the art to indicate the differences.

5.1 Standard Paradigms are Inadequate to Describe Highly Par-

allel Processes

In the middle of the last century the first programmable computers were created [25]. In the

beginning the programs for these early computers were written on punching cards that were fed

one after the other to the computer [91]. It was extremely time consuming to write programs

and extremely difficult to find errors, only one hole too few or too many would destroy the result

of the intended calculation. With the invention of assembler code it became possible to tell the

computer with human comprehensible commands what it should do. Assembler improved the

usability for the programmer compared to earlier methods, but it is still hard to write programs

that are more than a few hundred lines. Assembler programming can lead to confusing jump

sequences that are very hard to keep track of (the famous spaghetti code) [53]. The structured

programming paradigm [26] has a remedy for exactly this problem: it only allows for jumps in

129
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the flow of control where no unconditional jump statements are permitted but only control loops

and if-then-else constructs, resulting in much more understandable code without hampering the

computational power of the code. Control loops were implemented in programming languages

such as Algol [14] and Pascal [202]. In programming it often occurs that the same piece of code

has to be executed at different locations. If the code is just copied each time the maintenance

of the code becomes a nightmare. The introduction of the procedure call in the procedural

programming paradigm [92], in which blocks of code are associated in a logical module (the

subroutine or procedure) that is then invoked when needed increased maintainability greatly.

Typical programming languages of this type are C or BASIC. This paradigm used variables and

data structures as its abstractions, allowing for collections of associated values for accessing the

data and, the routines would operate on these collections. [203] Even though many successful

programs are written in these languages, it is still a hard task to create large programs.

Built on the idea of mathematical functions and the lambda calculus [41] another program-

ming paradigm surfaced: functional programming [89]. This paradigm is based on functions that

are allowed to take arguments, run using those arguments, and return calculated values. There

is no other way to pass values between different parts of the program than to use arguments

and return values. This scheme of value passing leads to a system that is very nice to make

proofs about because the flow of data is very strict and clear. But as a programming paradigm

for the masses it never had a huge success: most programs are still written in object-oriented

languages, we suspect because humans tend to get lost in recursions. Programming languages

such as Haskell [90] or R [64] are instances of the functional programming paradigm.

Object-oriented programming, in which the central point of programming is the object, inte-

grates the idea of the data structures very well. Each object has associated data and functions,

allowing the programmer to use the objects’ functions without knowing exactly how they are

implemented. The object-oriented view led to a revolution in computer science that allowed for

much bigger programs that were much easier to maintain, to be developed in parallel by multiple

programmers and to be reused [108]. The success of this paradigm is not that it is easier for a

computer to work with such code, but that it is a very natural way to think about a problem

for a human. Collections of objects and what they can do is very much how we see the world,

such as cars that can drive, doors that can open and close, or many other objects with which

we associate functions and properties. It is very human to reason about a problem with objects.

The object-oriented programming paradigm is implemented in languages that are the current

state of the art, such as Java, C++ and C# [61]. There are many more paradigms that shed

light on different aspects of thinking about a problem but the most influential ones have been

covered.

At the beginning of this century the first multi-core / parallel processors started to become
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commonly available [198]. Now it was possible to do the work of one program with two processors

in theory in half the time. But it turned out to be not so simple. Even though all the major

programming languages are able to make use of multi-processor environments and have control

structures to steer these, it is not a trivial task to parallelize a program to efficiently make use of

all the available computing power. It is hard for humans to reason about parallel programming

in the world of object-oriented programming. It requires a lot of training and experience to

be able to write efficient parallel code, and often there is just one task or very few tasks that

are parallelized where all the parallel processes do the same thing at the same time. A good

paradigm that captures parallel programming efficiently is still missing.

Currently many interesting developments are being made in different fields of science. In

biology the first artificial cells are being made [71] by creating artificial genomes for single cell

organisms. In nano-technology we are getting closer and closer to creating machines at the nano-

scale that are execute the tasks they are constructed for. In computer science we are getting

more and more cores in one processor. If any time soon now it will be possible that any of these

technologies begins to create self-replicating behavior we are at the beginning of a technological

revolution. Multicellular, agent systems will be possible that develop out of an initially placed

cell or agent, that have the potential to construct organisms that are made of active partial

automatons. Already now we see the first systems that are potentially able to have replication

behavior, if not in the physical sense then in the informational sense. Such systems include grid

computers, clouds, chips such as the SpiNNaker chip [102] or sensor networks where programs

are entered at one point and have to be spread through the whole system through the means of

information replication. Let’s say we have a new system that is able to exhibit self-replicating

behavior. How would we think about programming such a system? How would we go about it

and let it construct complex ‘organisms’ out of an initial agent or cell? Biology is an instance of

such a system that already has self-replicating parts. Our bodies are based on billions of cells

that have been constructed out of one single individual cell at the beginning of our biological

development. The processes of construction and maintenance are heavily parallel and performs

many completely different tasks at once. Programming such a system in an object-oriented way

would clearly be unsuited to the problem. We need a better way to reason about programs that

are executed by such systems.

We found a way to abstract biologically developing systems and implemented G-Code for

simulated simplified versions of them. But if we were to move to another system we would have to

re-implement a language equivalent to G-Code [213]. Our goal is to capture the basic principles

of how such a language is implemented. What would an engineer have to do in order to obtain a

system that is as easy to code in as G-Code is. I want to define a ‘developmental programming’

paradigm that captures the basic ideas of G-Code and generalizes it for other systems. G-Code
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is to the ‘developmental programming’ paradigm as C++ is to object-oriented programming.

An instance of a language following the principles of the paradigm. ’Developmental programing’

should be considered as a style of thinking about a problem.

Object-oriented programming has become very influential in computer science for software

development, because it allows us to abstract physical world objects into a computer executable

model that is humanly comprehensible even if the number of lines of code in the system increases

drastically. It allows for a structuring and encapsulation of data that is humanly understand-

able. The objects in a program in this paradigm work hand in hand to build very complex

systems. Object-oriented programming supports standard software methods and patterns that

help engineers to design correct code. But as soon as we have systems that are massively parallel

in a non-trivial way, object-oriented programming breaks down. It might be because the object

abstraction is no longer the right abstraction for thinking about the problem the software is

trying to solve. For systems that undergo self-construction, we can think about any program in

the ‘developmental programming’ way. Where we have the object, in our system we will use the

notion of machine that acts through a cell on an environment. The machine executes commands

through a container (cell) in the environment with only local awareness. In these systems there

is no single global controller. Languages following the ‘developmental programming’ paradigm

are inherently parallel. These languages would be not require active consideration of thread

synchronization.

The ‘developmental programming’ paradigm will become very influential as soon as a pro-

grammable cheap self-replicating systems exist, such as nano-robots or programmable synthetic

cells. Or even for configuration and setup of grid computers or other computational platforms

that have to be set up and configured (organization of computational resources). How to pro-

gram nano-robots to perform sophisticated behaviors while having a limited amount of memory

available to execute a program is still an open question. Engineers will have to implement al-

gorithms for these systems that are massively parallel and hard to analyze if not seen from the

viewpoint of the ‘developmental programming’ paradigm.

We show in this chapter that if a system implements a language according to the ‘devel-

opmental programming’ paradigm it will be universal Turing complete, allowing a system that

implements such a language to create the ‘Any Shape’, meaning that for each computable shape

there exists a program in this language that will generate it. And that these shapes can be con-

structed in reasonable time. What are the necessary operations such a system must support in

order to be able to exhibit self-construction? We will explain the Developmental Programming

paradigm using the example of the G-Code language.
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5.2 Biological Implications on a Programming Paradigm for Self-

Construction

In the chapter about the developmental theory, chapter 4, we have discussed how biology can

create a complete organism from one cell through the process of development which is a self-

constructing process. It was explained how single genes interacting in networks can direct cellular

behavior, how these behaving cells can interact with one another, and where the information for

this process comes from.

Now what general principle can be extracted from this biological theory?

There are prerequisites for a system that can self-construct. The first is to define the substrate

that consists of an environment and one or more containers. In biology the environment is given

by the rules of nature i.e. physics and chemistry. In our simulation of the developmental process,

this environment is given by Cx3Dp defining the physical interaction of cells and the extracellular

diffusion. The container in biology is the cell. Proteins mainly define the behavior of the cell

they are produced in, not other ones. In our simulation of cortical development there are two

types of containers, the soma and the neurites of the cell. The containers of the system are the

components the self-constructed object is made of. Another prerequisite is that the instruction

code for the system needs to be available in all the containers, in a textual form. In biology the

textual instruction code would correspond to the DNA and in the simulation the instruction code

would be our artificial DNA-code defining the G-Machines. This code is selectively translated

on demand by each container individually. Typically, not all the code is used at once in all

containers. The container needs to be capable of maintaining a status over time; the container

needs to be stateful. In biology this state is given by the expression pattern of the genes. In

the simulation this process is mimicked with intracellular substances and active machines. This

statefullness of the container leads to the need to define state transitions. The state transitions

are defined in biology by the gene regulatory network that defines the state transitions that the

cell can undergo. In the simulation these state transitions are mimicked by an artificial gene

regulatory network and by the successive activation from one machine to the next. The ability

to have a state is only useful if the behavior of the container can be changed. Therefore the

container needs certain abilities. For example it must be able to move, to interact with the

environment, and to read and write information. In biology these abilities would correspond

to the abilities a cell has i.e. migration, and the secretion and detection of chemicals in the

extracellular or intracellular environment.

Besides these abilities the container needs to be able to run instructional machines. These

machines are the actual agents that define the behavior of the container. Multiple agents can
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be active at a time in one container. As an example in biology, cells have many different

proteins active at once that define the behavior of the cell. The agent in biology can be seen

as one biochemical pathway or protein complex that leads to a certain behavior e.g. migration

or apoptosis. In our simulation these agents are called G-Machines, defining the actions of the

simulated cells and growth cones. These instructional machines are fully encoded in the textual

form in the artificial DNA and can only be produced inside the containers. The instructional

machines on the other hand cannot leave the container and can only make use of the abilities

given by the container. A container can only be controlled by its instructional machines and

cannot be directly controlled from the outside. The relationship between instructional machines

and containers can be seen as equivalent to the relationship between software and hardware.

Software can only make use of the abilities the hardware provides. The interaction of software

with the environment is only possible through the hardware. In biology this distinction is not as

sharp, since proteins are used also as structural entities for giving the cell shape and structure.

Viewing proteins as signalling, structural or as behavior-defining entities leads back to the dual

view of signaling proteins versus active proteins from chapter 4.

A system that shall be capable of self-construction must therefore define what its environ-

ment, container and machines are. The container has to have a state and the machines are

activated depending on that state. The abilities of a container must be made available to the

machines in oder to execute the behavior. All the code for the machines must be available in all

containers in textual from. This interplay of environment, container and instruction machine is

captured in figure 5.1.

5.3 The Machine Concept

Machines are autonomous agents that steer the behavior of the container. This machines exist

only inside containers and do never leave them. The machines are compositions of the containers

abilities/primitives in cascade with one another. Machines can contain functionalities that are

defined by other machines thus creating a hierarchy of composable machines. Machines are

defined in the code in textual form and can be translated into an active form as agents that

influence the behavior of the container. In the textual form it is defined how the available

primitives or abilities of a container are combined in order to define the behavior that the

machine should elicit on the container. These machines correspond to the biological machineries

described in chapter 4 that represent from single proteins up to complete biochemical pathways.

In G-Code these machines are called G-Machines.
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Figure 5.1. An abstract view of a stereotypical system that is capable of self-construction.
The container (octagon, center) acts in the environment (bottom) steered by the behavioral
machines (top)

5.4 Abilities of the Container

We have described how the interaction between environment, container and machine occurs. We

have shown how we got to this abstraction by the analysis of the biological theory. It is described

that these primitives are composed into machines that they reside inside the container to steer

its behavior. But what are these abilities of the container exactly? What must it be capable of?

These abilities corresponds strongly to the primitives found in G-Code [213]. However, G-Code

is only valid for Cx3Dp but there must be a way to define categories of primitives/Abilities of

the container that allows for the directing the container behavior via Machines. We will now

give a list of these categories and explain why these categories of abilities are important for a

functioning system.

5.4.1 The Central Role of Replication

We described replication in biological systems in chapter 4. A replication event generates a copy

of the source cell and brings the new cell and the old cell into a specific state. Both cells are

active afterwards and contribute computationally to the system.

In the more abstract case, if we do not allow replication in our system, theoretically we can
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still generate a structure in the environment, but the whole structure is passive except for one

active container, the initial container, that computes the whole structure. The drawback of a

system that has only one constructor is that all of the computation has to be done from this

single constructor.

Let’s now imagine this single constructor container has the ability to generate container-like

structures that are not active and therefore cannot contribute further to the generation of the

structure once they are created. These pseudo-containers have all the physical parameters of a

real container but no active components. Placing one of these pseudo-containers from the active

constructor container would be like writing to the environment.

If we imagine this we see that one single constructor container is able to generate the same

structure as a system that can replicate the constructor since it is able to move, write and read in

the environment. Now in biology a single cell takes about eight hours to replicate in the fastest

case, which would mean that creating one of these pseudo-cells in our thought experiment

would take the same amount of time. If this single constructing cell now had to generate a

whole human body with its trillions of cells we would end up with a time for construction

longer than the lifetime of the universe so far. Hence in a reasonable time it is not possible

for a single constructor container to generate all the containers of a single organism. If we

now allow replication of the constructor container, this means that a replication process really

does create another active constructor, making it in theory possible to cut the construction

time in half after each doubling of constructors. This is of course not counting the mutually

exclusive construction parts that can only be done in sequence, one after the other. Following this

argument, if we can double the constructors we will get an exponential speed up in the execution

of the construction. Allowing systems of huge dimensions to be constructed in reasonable time.

In theory we can construct a system that has twice the size of another system in only one

more step. That further means the construction will not be slowed down by the availability of

constructors but rather by the availability of the resources that are needed for the computation

of the individual constructors. The ability to replicate is important for being able to construct

faster, and theoretically exponentially faster. In figure 5.2 the execution of a ‘replicate’ primitive

is shown in a stereotypical environment that is be able to exhibit self-constructing behavior. That

replication is one of the most important features of a paradigm concerning self-construction can

be seen in the attention that Roth’s thesis [159] devotes to it. He gives a nice summary of

the work of von Neumann who invented a theoretical universal self-replicating machine with 29

states, giving essentially a description of what a container has to implement in order to be able

to replicate [194] [31].

It is important to note that multiple cell types in biology are only possible because the new-

born cell’s state can be changed through asymmetrical division. If asymmetrical division was
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Figure 5.2. Top: the effect of the replicate for the environment, the container and the
machine level. A new container is created and in it a new machine is started. After the
replication process, both of them are independent of the creating container. Bottom: an
example of a replicating container. Replicate introduces a new container into the system and
starts a new machine in the container created. (The yellow rectangles represent information.)
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not possible, then the whole system would only produce, exponentially fast, cells of the same

type for ever. Having all cells in the same state is not desirable; containers need obviously to be-

have differently otherwise nothing sophisticated could be constructed. Therefore any ‘replicate’

primitive must allow for state changes in the newly born cell.

The paradigm states that there must be a replicate primitive; it does not define how the

replication should happen. The replication therefore does not have to be a physical replication

but can also be a purely informational replication. In fact information replication is what

happens in G-Code, G-Code defines replication as a purely informational transfer. It creates

a new object in the memory that is a copy of the source object with the ability to start a

different G-Machine in the new object on replication and with the possibility to have intracellular

substance that are divided potentially asymmetrically to change the state of the simulated cell.

The possibility of asymmetrical replication is one of the key points that a system must have to

exhibit self-constructing behavior.
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5.4.2 Eliminate

‘Eliminate’ is the ability to remove a container from the system. During the development of

the system, replicate generates additional instances of containers in the system. Some of these

containers are only created to act as guidance for other containers and do not later contribe

to the final constructed structure or organism. The containers can therefore act as a transient

scaffold only for the orientation of other containers. Furthermore it can be that through a

mishap a container is placed at the wrong point, or is damaged. In that case it must be possible

to remove it. In biology, eliminate is quite common and is named apoptosis. If a cell is in the

wrong place during development it can undergo programmed cell death (apoptosis). Apoptosis

is used to remove virus-infected cells [60], and it is also used to allow for the separation of the

fingers in the hand during development. These cells are function purely as a scaffold for the

construction of the fingers and toes [16]. Any system that wants to allow for this scaffolding

effect or for the correction of mistakes must have the ability to remove one container from the

system, even if the actual implementation only moves the container physically out of the way

of the rest of the construction process. Cell death is actually a process executed autonomously

by the cell, but the cell has special receptors that allow external signals to trigger its internal

cell death program. It is again the case that in biology a cell apoptoses itself and it is not done

from the outside. In Cx3Dp’s G-Code the process that does eliminate is called die. Figure 5.3

shows an eliminate process happening in a stereotypical environment.
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Figure 5.3. Top: the effect of Eliminate in each of the elements involved (machine level /
container / environment). Bottom: the effect in a stereotypical self-constructing system. An
eliminate primitive removes a container from the system. (The yellow rectangles represent
information.)
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5.4.3 Activate

Activate abilities are responsible for the translation of a machine from its textual form into an

active agent that then begins to influence the behavior of the container. Machines can only be

activated within the container. No outside influence can activate a machine in the container. It

is possible through a cascade of read and activate to activate a machine within the container as

a reaction to outside signals. But this mechanisms of ‘listening’ to such a signal must be present

in the form of a machine. Activate primitives are needed such that the passive textual from can

be translated. If activate were missing, the container could never change its behavior and would

constantly do the same thing. It is very much wanted that containers can change their behavior,

otherwise the orchestration of the cells would not be possible, and the container would remain

in the same state. How the actual implementation is handled, i.e. whether the machine is really

translated on the fly or just activated when needed does not matter from a theoretical point of

view. All that matters is that the functionality of the machines can be called into action on

demand. The biological cell activation would correspond to a translation from the genome into

a functional protein/protein-complex/biochemical pathway. In G-Code activate corresponds to

the primitive instantiate that creates a new machine within the container. Figure 5.4 shows an

activate process in a stereotypical environment that allows for self-construction.
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Figure 5.4. Top: the effect of activate in each of the elements involved (machine level /
container / environment). Bottom: the effect in a stereotypical self-constructing system. An
activate primitive translates a machine from code into active form within the the same
container as the activating machine. (The yellow rectangles represent information.)
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5.4.4 Terminate

The primitives of the terminate category are the opposite of the ones in the activate category.

Terminate will make a machine stop. Note the difference to elimination where the complete

container is removed from the environment. The terminate category of primitives or abilities

is necessary for the same reasons as the activate is necessary, without it it would be hard to

change the cells’ behavior on demand. At some point a machine has reached its goal and finished

its task within a container. That is when the machine should be terminated in the container.

Terminate is only possible within a container and can not be controlled directly from outside

without a signaling cascade machine involving a read and a terminate. In biology, terminate

corresponds to the degradation of a protein/protein-complex/biochemical-pathway to ineffective

levels. In G-Code the only primitive that does termination is ‘kill’ that will remove a G-Machine

from the cell. The effects on the system are shown in figure 5.5.
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Figure 5.5. Top: the effect of terminate in each of the elements involved (machine level /
container / environment). Bottom: the effect in a stereotypical self-constructing system. A
terminate primitive removes a machine within the container. (The yellow rectangles represent
information.)
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5.4.5 Read

In order to be able to communicate between two machines that are not in the same container it

is necessary to have a way to read from the environment. Even for two independent machines

within a container it is important to be able to communicate, to coordinate behavior. Com-

munication always refers to information transfer. This information can come in different forms

and/or encodings, but always serves the purpose of communication. Communication between

containers is essential in order to allow for coordination of the containers. Read and write abil-

ities of the container allow for such communication. Another aspect of a read ability is that if a

machine that contains such a primitive is not active in a container, the container will not notice

even if there are potentially readable chemicals in the the vicinity. Read is a way to selectively

choose which signals should be integrated into the cell. Roth calls this effect of only selectively

reading signals into the container a ‘symbolizer’ [159]. Having such symbolization in place, there

can be many signals around for multiple orchestration purposes and only the cells that should

read a signal do read it. Read is designed to be an active process and not just something passive

that happens to a container. In biology this read mechanism is implemented through sensing

the membrane proteins [47] [208] of neighboring cells or through the ability to sense morphogens

[12], and other possibilities. In G-Code typical read actions include the sensing of neighboring

cells, reading of gradients and concentrations of extracellular chemicals, and also reading the

physical parameters of the cell such as its size or the tension it is under.

Figure 5.6 shows a stereotypical read primitive in action.
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Figure 5.6. Top: the effect of read in each of the elements involved (machine level / container
/ environment). Bottom: the effect in a stereotypical self-constructing system. An read
primitive transfers information from the ‘physical’ environmental world into the reading
machine. (The yellow rectangles represent information.)
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5.4.6 Write

The write abilities are the counterpart of the read abilities. Write primitives are needed to

communicate between machines of different containers or within the same container. It is im-

portant to note that all the written signals must be readable or have a passive effect on the

environment. Otherwise the information is not able to reach other containers. It is obvious that

matching read and write abilities are needed so that the cells are able to read what has been

written. Typical write abilities of the cell in biology are secretion of morphogens or expression of

membrane chemicals. In G-Code typical write primitives of the artificial cells include secretion

of intracellular chemicals or the change of cell properties through morph, or even attachment to

other cells via physical bonds (which has a passive influence on the physics of the environment

and can be read by the other cell). Figure 5.7 shows a stereotypical write.
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Figure 5.7. Top: the effect of write in each of the elements involved (machine level /
container / environment). Bottom: the effect in a stereotypical self-constructing system. A
write primitive transfers information from the machine to the ‘physical’ environmental world.
(The yellow rectangles represent information.)
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5.4.7 Filter

The ability to filter signals by applying either mathematical or logical functions is essential

for signal transformation between different primitives. In biological cells such abilities include

dampening or amplifying of signals detected in the vicinity. Even very small changes in gradient

can have a huge effect on the direction of growth of growth cones [158], for example. Even

decisions to change behavior based on the detection of a signal such as the stopping mechanism

for the radial migration of cells upon arrival at the marginal zone [152] are executed by the cell

which is essentially a logical if operation. In G-Code, mathematical and logical abilities and

filters such as addition, multiplication, AND, OR and IF are used to transform signals. Signal

filtering is a machine-internal action and does not interact in any way with the world outside of

the machine (see Figure 5.8).

5.4.8 Move

The ability of the container to move in the environment adds to the coordination possibilities of

the whole system. The container can move in the dimensions of the environment and translocates

the information and the function encapsulated within it. In addition, move allows the container

to gather more information about the local environment. Movement of cells can be observed in

biological development in many places. Move helps to coordinate cell fates and to make sure that

cells end up at the right place. One example would be the radial migration of pyramidal neurons

to reach the cortical plate [151]. Movement of cells is often coupled with the sensing of a gradient

of chemicals that will give the move a direction. In Cx3Dp’s G-Code movement is allowed in

all three dimensions. The primitive is called move. Instead of moving containers, one could

imaging just replicating in a certain direction with later elimination of the original cells. However,

movement through replication is an extreme waste of resources if it is done for each translocation

action. Move and movement through replication are possibly interchangeable. This was already

noted by von Neumann who distinguished between cellular and kinematic self-replication [31].

The latter implements real movement whereas the former moves through replicate and eliminate.

Information transport is essentially the target of move: bringing information and/or functionality

to the right place in the structure.

In some abstract environments the dimensionality of move is not necessarily three: one could

also imagine higher dimensional spaces or even varying dimensions for the translocation of the

containers.

A stereotypical move is shown in figure 5.9.
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Figure 5.8. Top: the effect of a filter (the box with the double-line sides) in each of the
elements involved (machine level / container / environment). Bottom: the effect in a
stereotypical self-constructing system. A filter primitive transforms and transfers information
within the machine between primitives. It can transform the information according to the
mathematical or logical rules it defines. The filter has no state and always executes the same
transformation. (The yellow rectangles represent information.)
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Figure 5.9. Top: the effect of move in each of the elements involved (machine level /
container / environment). Bottom: the effect in a stereotypical self-constructing system. A
move primitive translocates the container (and all its associated information and machines) in
the environment. (The yellow rectangles represent information.)
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5.5 Principle of Locality, Limitations and Computational Power

of Developmental Programming

The implementation of a system that permits the developmental style of programming requires

the definition of an environment (dimensionality, physics etc.); the definition of one or more

containers that live in the environment (e.g. soma, growth-cone); the definition of the abilities

or primitives that the containers can execute according to the categories given in section 5.4 and

the ability to assemble these primitives into machines. Of course a DNA like structure needs to be

available to store the machines that are programmed. If a system follows these criteria, it offers

future programmers a framework in which they can take full advantage of the Developmental

Programming paradigm. Note that there is a distinction between the programmer of the system

and the provider of the system. The programmer does not need to worry about how to comply

with the rules of the Developmental Programming paradigm since the programmer is forced to

only use the available language implementation. This language is necessarily compatible with

the paradigm; the provider of the system has to ensure that. For example in Java, an object-

oriented language, the provider of the system is the one who defines for the Java language what

is valid and what is invalid to use where and the programmer must obey these rules to be able to

compile his code in Java. The same analogy goes for the Developmental Programming paradigm.

In a system that supports the Developmental Programming paradigm each container is

independent of the others. This independence allows for a high degree of parallelism. This

means that each container can potentially be computed separately due to the locality principle

which says that the containers can only be at a certain place in the environment and interact

only at this place. This implies that a concurrency protocol is only needed in these local places

in the environment and only when reads and writes to the environment occur. The programmer

of the system never needs to think about the concurrency aspects since the concurrency protocol

is inherently given by a system that supports the Developmental Programming paradigm. The

containers can replicate themselves, implying that the number of processing units and therefore

the computational power of the system can grow potentially exponentially.

Although a system implementing this Developmental Programming paradigm limits the pro-

grammer to use just the given primitives for the containers, it automatically enables the pro-

grammer to write code that runs inherently in parallel and is therefore scalable. The paradigm

limits the programmer to only use the developmental style of programming, these limits however

are not computational. A system that follows this paradigm is computationally Turing complete.

Hence any computable shape can be computed in such a system. The Turing completeness fol-

lows from that fact that the container (a writing head) can read and write on the environment

(tape like structure), it can move in the environment and the container has a state through
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the execution of the machine [187]. All the necessary functionality is given in order to have

a universal Turing complete system. Though having the program encoded in a DNA-like text

form that cannot be changed at runtime makes the system closer to a von Neumann architecture

than to a Turing machine directly [195].

5.6 G-Code: A Language Based on the Developmental Pro-

gramming Paradigm

The new version of G-Code (Appendix A) is a concrete example of a language implementing

the Developmental Programming paradigm. The new version of G-Code is based on Zubler’s

original implementation [213] (see section section 2.2.4 for a description). The new version of

G-Code was written for Cx3Dp (see section 6).1 Cx3Dp provides the ability to direct cellular

growth. The virtual cells in Cx3Dp are approximated with a spherical soma and a cylindrical

neurite element. Cx3Dp provides an implementation of physical interactions between cellular

compartments and a diffusion grid for diffusing extracellular and intracellular substances. In

this section it is shown that G-Code follows all the important criteria that are needed for an

implementation of a self-constructing system. In the following we describe each of them.

Looking at the system from the view point of the Developmental Programming paradigm,

the system provides an environment (the physics implementation) and two types of containers:

a container for the cell body (soma) and a container for the neurities (neurite element). In order

to provide the possibility to control the soma or the neurite element with behavioral programs,

a set of primitives have been developed. These primitives allow the programmer to use all

the possible abilities that somas or neurites can exhibit. In table 5.1, all the primitives are

shown categorized into the eight categories: Replicate, Eliminate, Activate, Terminate, Read,

Write, Filter and Move. Since G-Code has two different types of containers, two different

implementation of the base machine were needed since the primitives have slightly different

effects. For example the Move in the soma would dislocate the soma where as the move in an

element at the tip of a neurite would elongate the neurite. But still both implementations would

relocate the executing container. Because the abilities and primitives of both containers are very

similar both have been integrated into the same table, table 5.1.

The Replicate category is interesting because one can see that there is more than one primi-

tive namely the replicate and the fork primitives. The primitive replicate is simply the function-

ality of creating a new cell when executed on a soma; the cell will divide. Executing replicate

1 During the implementation of G-Code, more primitives were added to the system but they all belong to the
categories of Read, Write and Filter, improving the communication between the containers in the system. The
other categories remained nearly identical.
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introduces a new container (another soma) and activates a machine in the soma. A very fitting

primitive for the replicate category. Fork on the other hand does not look suitable for the cat-

egory of replicate at first glance. Fork has the effect in a soma of growing out a new neurite,

and in the neurite will add a new branch (bifurcation or side-branching). But if we look more

closely at the behavior of fork, it introduces in both cases a new container, a neurite with a

new machine in it (a growth cone machine). The effect of fork fits perfectly into the replicate

category according to our definition in section 5.4.1.
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In simulation we show that the interplay of Cx3Dp and G-Code is working and mimics the

behaviors observed in biology. That this claim holds true can be seen in chapter 3. Since the

containers are virtual and do not create new computational power in the hardware sense, it

means that as the system grows, the developmental process gets slower. The hardware does not

replicate with the software. But it can be seen that the whole system is very well suited for

parallelization. Each cell could in theory run on an independent core. It can also be seen that

the available computational power is quickly used up by the replicating cells. Even though the

program runs in parallel the programmer of the containers never has to worry about how to

parallelize the code written as it is automatically parallel.

5.7 State of the Art Programming Paradigms vs. Developmen-

tal Oriented Programming

The two most popular programming patterns that have arisen over the last few years are object-

oriented programming and functional programming [73] [176]. Object orientation is used in

industry standard languages such as Java, C++ and C#. It is often used for large software

projects. Functional programming is more of a niche paradigm. It is ideal for being able to

prove the correctness of a program [15]. It is has a high degree of similarity to lambda calculus

[41]. Functional programming is often used in safety-critical applications where software bugs

can have fatal consequences. [82]. In this section the Developmental Programming paradigm is

compared to the object-oriented and functional programming paradigms to see the similarities

and differences and to show that they are related but not the same.

In object-orientation, the central abstraction is the object, or rather the class. Classes have

certain functionalities and data associated with them. In functional programming the function

is the main abstraction. The Function takes information as input and transforms it to an

output; no other information may enter the computation. By comparison the Developmental

Programming paradigm takes the machine as the main abstraction. The machine defines the

behavior of a container in the environment. The container can be seen as an object, but in the

Developmental Programming paradigm the container is given and does not have to be modeled

by the programmer of the system whereas in object-orientation the goal of the programmer

is to define the object. In developmental-oriented programming there are no objects that can

be programmed. In developmental-oriented programming there are only emerging structures

that appear during the execution of the program. These structures are made entirely of the

containers. But these ‘structural-objects’ are not under the direct control of the programmer

but must be controlled by their building blocks, the containers.

Communication in these three paradigms is very different in each case. The communication
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in object-oriented programming is through the access to objects’ data either through their

functions or through fields provided by the objects. Objects are writeable and/or readable

by other objects but can be restricted to be completely unwritable and only readable from the

outside of the object. In functional programming [89] the communication is handled via the

input values to the function and its return value. The machines in Developmental Programming

are by definition completely independent of other machines, the only method of communication

is through the environment via the functionality provided by the container. A machine can read

and write through the given primitives of the container that are defined by the system to be

programmed.

Concurrent programming in these paradigms is directly related to the communication, be-

cause wherever there is communication potential problems with synchronization can occur. In

functional programming it is possible on function calls to introduce parallelism because each

function is completely independent of all the others as soon as the input is provided [145]. In

object orientation, concurrency is one of the major problems of the paradigm. It is very hard to

write correct concurrent code in object-oriented languages, because the interdependence of the

program is often non-trivial; one cannot define each object as a parallel process. There are no

fixed pattern solutions to this problem, but many attempts to solve it [4] [109] [75] [10]. In De-

velopmental Programming, through the independence of the machines each machine is in theory

executable in parallel. Concurrent access to data via read and write has to be ensured by the

environment that is given. The only interaction of machines is through containers that have a

location in the environment. Therefore no global communication is possible, which ensures only

local concurrent access in the environment. Each machine can be seen as an infinite loop that

is only stopped on calling the kill primitive. Parallelism in this paradigm is inherent. Another

way to put the difference in concurrency between object-oriented and developmental-oriented

programming programming is that in object-oriented programming, parallel processes operate

on the object structure whereas in the Developmental Programming paradigm the machines are

the parallel processes. This difference shows how the data is encapsulated in the three different

paradigms. In object-orientation, data is stored in the objects and potentially hidden in the

object. In functional programming, the data is stored during execution in the input and output

values of the functions. In the Developmental Programming paradigm the data is stored in

the environment, the containers ‘physical’ parameters and the potential states of the machine.

The data in the machine is only accessible via the machine and the data in the container and

environment is only locally accessible by machines that are in containers located in the vicinity.

In the Developmental Programming paradigm the data is where the processing happens or if

the processing container wants to access other data it has to move to the data. Location is the

main encapsulation of data.
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Code reuse is another important aspect of programming. In object-orientation, polymor-

phism encourages the reuse of classes and the class encapsulation the reuse of their functions. In

functional programming it is the subroutines that allow for the reuse of code. In Developmental

Programming it is the machine that can be integrated into other machines. Code reuse is in all

cases possible and desirable.

The program itself in each of these paradigms in stored as definitions either of objects

(classes), functions (function definitions) or machines (artificial DNA). It has to be stressed

that in Developmental Programming the code has to be accessible explicitly in each container,

otherwise new machines cannot be produced. The execution of the program starts in object-

orientation usually with a main method that acts as the root of the program. At the end of

the program the end of the main method is reached and the program usually terminates (there

are exceptions to that are not described here). In functional programming it is guaranteed that

at the end of the initially-called function the program is terminated. In the Developmental

Programming paradigm, the initial machine in the initial container starts the process of devel-

opment. When the machine creates another machine via activate or replicate it has no further

control over the initiated machines. The machines live independently and have no knowledge of

who created them and will not report back to their parent machine on termination via kill. It

can even be the case that the machines never cease to exist during the lifetime of the developed

organism. For example, this effect allows for the constant monitoring needed for self-repair or

constant adjustment to the environment of the organism. (A biological example would be the

learning rules in synapses implemented via proteins [119].) Following the developmental scheme

of execution, the system is inherently distributed with no global control. Interestingly enough,

Developmental Programming in contrast to object-oriented programming does not have explicit

loops. One can do ‘for each’ loops in order to check all neighboring objects but not a logical

loop. That there are no loops needed arises from the fact that each machine is in principle a

never ending loop encapsulating the machines program and is executed constantly. Functional

programming also does not have explicit loops but uses recursion to emulate it [89].

All of these paradigms deal with a model of computation that is Turing complete. All of

these paradigms are just an abstraction for helping the programmer to think about a problem.

It would be possible to implement all of the algorithms from one paradigm in another one,

but it might be easier for humans to think about the algorithm in one paradigm then in the

other. Where Developmental Programming is really strong is in creating controllable parallel

executable developing systems that potentially grow in computational power exponentially dur-

ing construction. Parallelism is where the object-oriented approach struggles but technology is

heading exactly towards highly parallel systems. The Developmental Programming paradigm

helps the programmer with its limitations to program the behavior of a given system that allows
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for self-construction. The system ensures that all the programming primitives are given, just

like a compiler for an object-oriented programming language ensures that all the right assembler

instructions for the given CPU’s are used.

5.8 Discussion

We have made a bridge between what can be learned about the construction process in biology,

the biological development, and self-construction as an engineering principle. We have attempted

to transfer this insight into an engineering method, namely the Developmental Programming

paradigm.

We have explained how a system has to be designed in order to support the Developmen-

tal Programming paradigm. Such as system consists of an environment, one or more physical

container types and an instruction language to program these containers with the help of ma-

chines. These machines are stored in a textual from in a single string and can be activated on

demand by the containers. An active machine guides the behavior of the container. G-Code

is an implementation of the Developmental Programming paradigm [209]. We show that such

systems are computationally powerful enough to compute any computable problem by being

Turing complete.

Systems that follow the Developmental Programming paradigm have inherently many ad-

vantages. Among the strongest are: the capability to self-repair, the potentially exponential

acquisition of computing power, and the lack in general of a single point of failure. They are

suited to the iterative improvement of structure during construction, which means that in-

termediate goals can be defined in the design process that act later on as a scaffold for future

structures. This idea of iteratively improving scaffolds makes the systems following the Develop-

mental Programming approach also suitable for evolutionary improvement, where the structure

of the system (namely the number of primitives and their parameters) already puts boundaries

on the search space, and intermediate results can be checked for their ‘fitness’. In addition,

after the system is designed the construction process is fully automatic and requires no human

input. Such a system will therefore computationally not be more powerful than any other given

paradigm such as object-orientation, but the abstraction is more suited for instructing container

behavior than object-oriented programming is.

Object-orientation seems not to be the right tool to think about the behavior of entities

operating in parallel. That this approach fails can be seen in that it is thought to be a very

hard process only for experts to do concurrent programming with objects and in that there are

no parallel programming patterns that always work [10]. In the Developmental Programming

paradigm, all the objects are already given, or they are constructed as part of the organism to
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be developed. The abstraction needed for a developing system does not follow the classical view

of entire objects but rather the view of how a nearly unimaginable number of small behaving

entities can organize themselves. This organization involves a huge amount of parallelism that

is hard to express in an object-oriented way, but follows naturally from the Developmental

Programming paradigm.

Functional programming is also not the right fit for a developing system. The replication of

a container resembles the call to a new function, since in both cases a new functional element

is invoked. But in the case of functional programming, the function ends, which it does not do

in the case of the newly created container. The function returns to its caller function whereas

in developmental oriented programming the new container is completely autonomous and does

not know about its ancestry nor can it be controlled by it.

A programming language for a system that follows the Developmental Programming paradigm

will only have very limited functionality that is offered to the programmer through the abilities

of the container. The central point for a programmer of such a system will be the development

of machines and hence the behavior of the container. The challenge for the programmer is when

to activate what behavior in order to achieve global coordination. The programmer in such a

language is forced to use local rules bound to single containers. Through their locality property

the containers are automatically executable in parallel. We enforce a programmer to think in a

way that is drastically different from the object-oriented standard way of programming.

Replicate is one key aspect of the Developmental Programming paradigm. Through repli-

cation it is possible to exponentially enhance or consume the computational power of the given

system. With the possibility of having state in each container and that the state is decidable on

replication, a symmetry-breaking effect is achieved that is very controllable. Replication with

state change permits a vast number of containers to behave in different ways and solve complex

tasks. Potentially, each container can execute different programs or machines and therefore

behave differently. Through reading and writing, communication is assured between containers

and allows for coordination of assembly. An noteworthy contribution on replication was written

by von Neumann who gave a theoretical example of a self-replicating universal machine [194]

[31]. But he did not consider how the automata finally constructed would interact with each

other to work towards a common goal.

There are many similar concepts such as self-assembly and self-organization that should not

be confused with self-construction. In self-assembly, we often talk about agents that all behave

the same and assemble in a particular way that is usually uniform. Therefore self-assembly is

often used in the context of materials science where certain materials passively, by moving to

a state of minimal energy, assemble large sheets of structures that exhibit ordered properties

[199]. Self-organization is a process in which local identical agents interact locally to give rise to a
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global structure, behavior or organization. There are examples of self-organization in many fields

including physics [6] and biology[34]. As in self-assembly and self-organization, self-construction

is agent based. In all three, the agents act towards an emergent global behavior that cannot

be predicted purely from the single element; they have emergent behavior. But in the case of

self-construction, the agents do not necessarily need to be of the same kind; not all agents need

to exhibit the same behavior. It is important though that in self-construction, the agents can

be produced on demand, and traced back to a single source. The Developmental Programming

paradigm is an instance of self-construction.

Roth [159] already identified that the interaction between cell, environment and the DNA

is a crucial one for understanding self-construction. We followed in his footsteps in the direc-

tion of creating design principles for self-construction. Compared to Roth though, we left aside

completely the notion of learning even though we did not exclude it from our paradigm. Learn-

ing could be realized with reconfiguration of the structure through machines that are running

locally in the containers, where reads are able to pick up signals that are relayed through a

classical electrophysiological type of interaction between the containers. But this reconfigura-

bility would need to be investigated further and more clearly and is not directly part of this

thesis. Interestingly enough Roth identifies that it is necessary to have design principles that

form a language, even though he is thinking of motifs whereas we rather have the idea of a pro-

gramming paradigm that describes the necessary properties of a system to allow programmable

self-construction and how a programmer can be guided to use the right abstraction. Roth pro-

poses that the task for the engineer will become easier with self-construction. We cannot agree

with this proposition since the whole process still has to be designed and programmed. The

design step is not automated with this paradigm, but it is strongly guided in that it cannot

violate the self-construction capability. Another interesting aspect is Roth’s ideas on factories

of reactors and competences which go in the direction of defining machines made of primitives.

These ideas have been pursued by Zubler who gave a first implementation of a language [213]

and an environment [211] that basically follows the rules of the self-construction paradigm. We

have gone one step further and have given an abstraction of how such a language has to be

designed to program self-constructing systems.

The concept of having a repertoire of software design patterns as described by the gang of four

[68] is also an interesting concept which could be developed for the Developmental Programming

paradigm. Such concepts might include:

• State space definition: For having one central machine acting as a gene regulatory machine

defining the states of proliferating containers.

• Scaffolding: The idea of developing scaffold after scaffold.
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• Encapsulation of function: Using many machines as high level reusable functions.

• Communication scheme: A Delta-Notch [9] handshake protocol for communication be-

tween containers.

• Homeostasis: For self-regulating local conditions and their restoration or reacting to a

change in the standard conditions.

• Turing patterns: Turing shows interesting pattern formation for computable structures

that could be used for generating global patterns [188].

• Self-repair: A general Pattern for the regeneration of damaged parts in the system.

Design patterns for the Developmental Programming paradigm are not part of this thesis but

should be investigated in further work. That design patterns in self-construction are important

has already been identified by Roth [159]. He even implicitly or explicitly identifies some of

them. But he asks for off-the-shelf components — finished machines — that can just be reused

in any situation. Off-the-shelf components exist for object-oriented programming like libraries

or whole frameworks. Often though these off-the-shelf software components need a lot of rework

before they can be used in situations other than originally intended [67]. Each programming

task is always a tradeoff between the flexibility of the code and the direct solution to approach

just the current problem at hand. For each organism to be designed the design differs, therefore

also the code will differ and it would be hard to anticipate every single machine that will ever

be needed for all the imaginable organisms. Sure, as we encountered in chapter 3 there will be

certain machines that are nearly identical and could be made into off the shelf machine, but the

subtle differences make a machine work in the needed situation or not. One can not anticipate

in all the situations where these subtle changes come have to be made.

We expect that in the near future many systems will be created that are either not globally

controllable or that are massively parallel in their nature or are even able to have replicating

structures. Prominent candidates are nano-robotic systems. Nano-robots have been an idea

for a long time, and it is beginning to be possible to create minute designed structures [143].

The trouble is that even if we had existing nano-robots we would not yet be able to make

them behave in a such a way that they follow a coherent behavior. Algorithms exist that let

robots behave in an organized way [135] [8] but these algorithms are hard to design and are not

generalizable. If it was possible to design nano-robots such that they follow the Developmental

Programming paradigm, then the engineering of swarms of nano-robots would become much

easier. Robotic structures are currently being made that would act as smart dust, such as the

robotic pebble. The robotic pebble cube-like robots are able to transform from one shape into

another but they are not in the classical sense programmable [72]. These robotic pebbles do not



5.8. DISCUSSION 163

have the capability to self-replicate but are designed to be cheap to produce, as in general smart

dust systems are designed to be. Of course for a nano-robotic system one of the problems is that

the available resources are very limited. These limitations make the developmental paradigm an

interesting choice because the machines are only active and only need memory when they are

currently serving a function. Hence most of the code in a container is in a dormant form that

does not use resources except for storage. The translation process into active form and therefore

the access speed to the storage need not be fast but could be rather slow and the system would

still work. Our simulation of cortical growth has shown that in general only one or two machines

are active at a time in one cell, limiting the need for resources even further. In general the single

container must not be extremely fast. The advantage comes in the massive parallelism and the

self-replication capability. This fact implies for nano-robots that there is no need for a huge

memory and fast processing. Some of these nano-robots in these massive numbers are bound

to fail. Using the Developmental Programming paradigm, self-repair mechanisms can easily be

implemented through local means. The problem is though that a self-replicating nano-robotic

structure has not yet been created. Even though investigations have been carried out in the

1970’s, no self-replicating machinery could so far be produced. Von Neumann worked on a self-

replicating machine [31] but never found a practical implementation. NASA’s ‘grey goo’ was also

an attempt to create self-replicating machines for a moon base but their efforts remained fruitless

[57]. This was inspired by Feynman’s idea of ever smaller factories that can produce smaller

factories that then produce smaller factories for materials and so on until the nano-scale would

be reached [62]. In recent times the search for self-replicating structures has gained new traction

with the new nano-technology. This new research has produced some interesting and promising

techniques where the creation of controlled self-replicating shapes is possible. DNA origami is

one of these techniques to create self-replicating systems [174]. Recently even structures that

can carry varying information and that can self-replicate have been created [197].

The only systems that truly self-replicate are biological systems, with their cells as the con-

tainers, proteins as the machines and the DNA code as the program. In synthetic biology, efforts

are already being made to create artificial living cells. In 2010, Venter [71] and colleagues created

an organism based on a genome that was completely artificially created on a computer. The

single cell organism was able to live and replicate. The approach was not yet real programming

but rather a stripping down of an existing genome with certain modifications. At some point it

should be possible to identify the genome that lets a cell exhibit abilities as described in section

5.4. A synthetic cell would then be completely controllable in the sense that we described in

this chapter, and one could program a multicellular organism that develops out of a single cell.

A complete organism engineered or programmed and not evolved. Fully controlled engineering

of multicellular organisms would open possibilities of designed organisms for food, as machines,
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for their function, or for building large structures out of biological materials — the cell as a

construction worker guided by a programmer. Genetic modification would become more like

programming than the bio-engineering it is now. The possibilities and opportunities would be

enormous.

Biological or artificial self-constructing programmable systems would change the way objects

are currently constructed by a global controller to being constructed by a distributed process.

It will change the way to reason about construction. Physical self-replication in combination

with programmability is not yet possible in an artificial system, but virtually it is possible. The

current trend in processor design is moving away from ever faster single-cores, to multi-core

architectures. If the trend continues these numbers will reach the thousands, millions or even

billions of cores. But somehow these processors have to be instructed or programmed. If this

programming is done sequentially, the process could take a long time. The idea would be to create

a virtual container, that can exist in the memory close to the processor. A virtual container

would allow for the Developmental Programming paradigm and hence for the implementation

of a virtual assembly of containers. These virtual containers could then cooperate in an cell-like

way to compute the structure of a virtual computational ‘organism’.

One system that is in principle designed to have millions of cores is the SpiNNaker system

[102]. Through its completely decentralized design, it is an ideal candidate for the implemen-

tation of a programming language following the Developmental Programming paradigm. The

SpiNNaker chip contains small local memory for the execution of programs (or potentially ma-

chines) and a memory structure shared between multiple cores that is a bit slower that can store

a larger amount of data (or the artificial DNA code). The system is designed to be locally con-

nected, each processor is connected to just a few other processors. To deliver a program to the

whole chip, only one of the cores needs to be communicated with. This is ideal for the seeding

of a single virtual container that would then develop and spread the virtual organism over the

whole of the spinnaker chip. The system is currently scalable up to approx. one million cores,

a scale which should soon be reached. The same idea could be used to harvest the potential

parallel computing power of LANs, clusters, and grid or cloud computers, or even better for

larger scale networks such as the internet with millions of nodes. The network acts as a hybrid

virtual/real environment with virtual containers spreading over it. Roth already proposes a

similar network in his thesis [159]. It could be thought of as a piece of software that acts as a

virtual environment for containers. The containers would populate the environment as a virtual

organism to serve a computational function. For each new purpose of the virtual system a new

artificial DNA code would be created and a new organism could be developed inside the virtual

substrate.

It is clear that the potential fields of application for the Developmental Programming paradigm
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are tremendous.
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Chapter 6

Cx3Dp: A Framework for Large

Scale Tissue Growth Simulation

This chapter presents the simulation tool Cx3Dp. This tool has been developed over the course

of this thesis in order to allow for the simulation of cortical growth simulation. Cx3Dp makes

the the scale of the simulation presented in chapter 3 possible. Cx3D would not have sufficed

for that. It is shown how the principles of the simulation tool work and it is compared with

state of the art simulation tools for neural growth and other large scale simulation tools from

different fields that face similar challenges for simulation.

6.1 Introduction

The development of an organism is a complex process of self-construction. Beginning with

a single precursor cell, a series of mitotic divisions gives rise to a lineage of more specialized

cells. As the lineage progresses, the successive mother-cells progressively distribute more specific

construction information to their offspring through inheritance of particular configurations of

gene regulatory networks, as well as by local environmental labeling. This combination of

information affects division, migration, and differentiation of the individual in the context of

the larger scale collective organization of its cousins. The process is all the more fascinating

for neurons, whose final differentiation involves the elaboration of huge dendritic and axonal

arborizations often on a spatial scale that is many orders of magnitude larger than the diameter

of the soma. Understanding the principles of this extraordinary biological self-construction is a

major intellectual challenge, the solution to which will have significant implications for biology,

health, and technology.

In [211] we introduced a software framework, Cx3D, that permits the simulation of cell

167
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growth and behavior in a 3D space that respects physical processes such as cell division, cell-cell

interactions, movement and chemical diffusion. The behavior of these cells is determined by

intracellular molecular-gene-like codes that are expressed according to intracellular or extracel-

lular conditions [213]. Cx3D is the first general purpose simulation tool for exploring neural

development in a physical 3D environment, and is now being used successfully for productive

research [1] [20]. The significance of the Cx3D approach is that individual cells as well as their

expressed intracellular mechanisms behave as independent agents, able to sense only local ‘phys-

ical’ information, and able to act only through local ‘physical’ actions. Consequently, for the

self-construction process to play out correctly in this simulation, the genetic configuration of

the precursor cell must be correctly specified. The entire developmental process is implicitly

encoded in this first cell. Furthermore, since there can be no appeal to a pre-labelled metric

3D space, this initial code must also contain arrangements whereby early generations of cells

actively label the developmental space for use by their offspring. We will not discuss here the

methods and results of these developmental simulations. These have been partially described in

[213, 20, 212], and will be dealt with more fully in [78]. Our purpose in this chapter is to describe

the technical advance which makes Cx3D scalable across multiple processors and machines.

The previous implementation of Cx3D has been very successful as a research tool. However,

this prototype was designed for only single-threaded / single-computer implementation and so

practical simulations were restricted to a few thousand cells. The restriction arises because the

complex neuronal morphology is compartmentalized, and these large structures require many

calculations to resolve the physical interactions occurring during the growth process [1]. Research

questions on the scale of cortical development require simulation methods for cell populations a

few orders of magnitude larger. There are no other software tools available for simulating such

detailed growth models, and so we report here on a parallelized version of Cx3D that we denote

Cx3Dp, with which it is possible to simulate systems of millions of growing cells on a network of

only a few inexpensive commodity computers. The performance of Cx3Dp scales nearly linearly

with the number of processors and machines over the range that we have been able to test so

far.

In this chapter we describe and discuss briefly the interesting software design challenges

that arise in cellular growth simulations of this kind, and our approach to their solution. We

demonstrate the power of the parallel version of Cx3Dp using a number of characteristic cases.

The first case demonstrates simple growth of a very large cellular sheet. The cells have a simple

divide and grow rule, and simulation of the expanding sheet spreads over three computers. The

second case tests the growth of axonal structures over multiple computers. Two opposing sheets

of neurons grow axons towards each other. This case shows demonstrates that not only complete

cells but also partial cells can cross computer boundaries. The third case demonstrates the
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integrity of physical diffusion processes across the distributed simulation using a simple diffusion

scheme with several release sites and a volume distributed uptake. We demonstrate that Cx3Dp

and the original version Cx3D are capable of running the same models and simulations. We

compare the accuracy of execution by comparison with the original Cx3D using very nearly the

same code as in the original. The final case simulates exponential growth to explore how Cx3Dp

performance scales with computers and cores.

6.2 Biophysical Modeling

In Cx3D and Cx3Dp we have aimed to create tools that permit the simulation of huge devel-

opmental models in a similar manner to existing software tools for large electrophysiological

simulations on morhoplogically specified neurons [126] [144] [28], except that in our case the

focus is on simulating the physical growth processes of these neurons in a manner suitable for

investigating corticogenesis at the level of cellular mechanisms, such as those responsible for cell

morphology and the formation of inter- and intra-areal connectivity. In these tissue simulations

each cell (and its expressed mechanisms) is an autonomous agent using only locally available

information, and so development is inherently a densely distributed process that lends itself

to parallel computation. The continual changes in the morphology and connection topology of

neurons during development, as well as the continued synaptic changes of adult learning, place

severe demands on methods of simulating distributed models.

The original version Cx3D contains a three layered model aimed at simulating cellular growth.

In the top layer of the simulation, the biological parameters of the cell are modelled, i.e. how the

cell behaves and its biological parameters. This biological layer heavily relies on the physical

layer of the model. In this layer, all the physical properties are modelled such as the forces

between somas and neurites, forces within the cell such as the tension within the neurites,

and intracellular and extracellular diffusion of chemicals. In order to allow the physical layer

to compute interactions between different cells, Cx3D contains a third and bottom layer that

models the spatial relations between the cellular elements of the simulation. This spatial model

is implemented by a 3D Delaunay triangulation in order to compute the neighbours of each

cellular element, so that the forces between the cell elements can be computed. Cx3D does not

need a large amount of machinery to organise the computation within the model, because it is

single threaded and one computer only. It consists mainly of the model itself and a scheduler

that computes one cellular component after the other.

The fundamental computational organisation of Cx3D has been retained in Cx3Dp (figure

6.1). The cell / environmental model has three layers of abstraction: spatial location, physical

implementation, and biological implementation. The lowest ‘spatial’ layer of Cx3Dp models
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the spatial locations and spatial relationships between physical objects. The middle ‘physical’

layer represents physical properties such as mass and size and models physical processes such

as interactive forces and diffusion. The top ‘biological’ layer assigns biological properties to

physical components and wraps collections of these components as individual cells.

The layers interact with one another: each object in the biological abstraction is associated

with a shaped object in the physical world that grants that part of a cell its physical properties.

Thus, the biological layer represents somas and parts of neurites (neurite elements), and these

biological parts are associated with spheres and cylinders in physical layer, while on the lowest

layer the spatial organization of these physical layer objects are associated with their unique

space-nodes, each representing the position of a physical object in the overall 3D model space.

The interaction between these layers can be understood through the example of a biological

mechanism that senses the concentration of a signal molecule in the extracellular space. This

biological ‘molecular’ mechanism is localized to a particular physical compartment of a neu-

rite. The compartment is localized by its internal spatial node. This spatial node is linked to

neighboring internal nodes (in adjacent neurite segments), and also to nodes in the neighboring

extracellular space. The biological mechanism senses the required signal by examining the con-

centration of that signal in the spatial nodes that are external neighbors of the compartment’s

own node. When a signal is above a certain threshold the neurite may shorten by contraction,

in which case the biological mechanism might increase the internal tension of its physical com-

partment. The distributed shortening of affected compartments will cause the overall neurite

to shorten, and this shortening will move the spatial nodes of the affected compartments. As

in the single-threaded version of Cx3D we assume that cells are embedded in an extracellular

matrix to which they can stick. We have also retained the original force model. This model

does not use standard Newtonian forces but rather an over-damping force model that evaluates

the resistance of the extracellular matrix to acceleration [211].

The three model layers are supported by a technical simulation layer that provides simu-

lation services such as schedulers and data-loggers, and does not form part of the theoretical

model being simulated. This simulation layer was very simple in Cx3D. For example, the en-

tire simulation was run on a single processing thread. This situation has changed radically in

Cx3Dp.

The original Cx3D simulation framework was not naturally parallelizable, even though the

model that it simulates is. The original simulation framework contained many dependencies

between between the data of different abstraction layers, meaning that the interfaces between

different classes were not defined sharply enough. These dependencies had the effect that changes

in one part of the simulation could lead to global effects on the whole simulation directly, and

not only through propagation of a well defined signalling process. The three layers are now more
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clearly distinguished to remove dependencies and provide better code encapsulation, so that the

layer can perform distinct and concise tasks.

In Cx3D it was possible to control the whole simulation from a single main program, a

central global control over the whole simulation. In Cx3Dp this is still possible though only

if it is run on one single computer and it does not take advantage then of the multi-threading

capabilities. Cx3Dp is optimised for an agent-based approach where each cellular part in the

system is controlled locally by that cell part itself, by a small local program that is running in

the soma or the neurite to mimic biological behavior.

6.3 Model and Simulation Services

Figure 6.1 shows the model of Cx3Dp; this model has has been kept from the Cx3D version.

It defines the physical and biological processes of objects and the spatial relationships between

these objects.

Spatial-
Organization

Physics

Biology Soma Neurite element

Sphere

Cylinder

Space-Node

Figure 6.1. Computational layers of Cx3Dp: From top to bottom the different layers of
abstraction: Biology, Physics and Spatial Organization. Cells are represented by
compartments. There are two types of compartment (lilac), neurite elements for modeling
axons and dendrites, and somas. Each element has a representation in each layer of
abstraction. The top layer’s somas are represented as spheres in the physics layer and as
space-nodes (position indicators; green) in the spatial organization layer. The neurite elements
are represented in the physics layer as cylinders that are each associated with a space-node.
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To run a successful simulation the model has to be embedded in a simulation framework

that takes care of keeping the model consistent. In Cx3Dp this administrative part is clearly

separated from the model aspect of the system. The interaction scheme on the physical and

biological levels remains the same as in Cx3D allowing us to offer the same user interface to

users of Cx3Dp. The administrative part of Cx3Dp though has changed drastically, to prepare

the simulation for use on multi-core/multi-computer architectures. In figure 6.2, in the very

center of Cx3Dp is the model.
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Figure 6.2. Model and Simulation Services: At the center of Cx3Dp is the model (outlined
in blue), the biological and physical model that the system simulates. Outside of the model,
administrative services are provided to ensure the consistency of the simulation, and the
accurate computation of the model in each time step. Each box outside of the model represents
a simulation service that has a clear task in the system. These tasks will be explained in the
following sections. The arrows indicate the communication between the different services.
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It is surrounded with components that ensure that the model remains consistent over the

course of simulation in a multi-core/multi-computer environment. Each subcomponent of Cx3Dp

has clear responsibilities. At the centre of Cx3Dp is the model, this model has been broken into

smaller parts we call particles (see section 6.3.1). These particles are entities that cannot be

further subdivided computationally and must stay together in order to assure the consistency of

the computed results. We have three types of particles: particles representing somas, particles

representing neurite-elements and particle and diffusion particles that represent diffusion space,

see figure 6.3.

Soma & 
Biology Modules

Sphere

Space-
Node

Neurite element &
Biology Modules

Cylinder

Space-Node

Figure 6.3. The three particle types in Cx3Dp. Left: the soma with its biological modules,
sphere and space-node. Center: the neurite element with its biology modules, cylinder and
space-node. Right: the diffusion compartment of the extracellular space. The black border
around the particle indicates the inseparability of computation of the structure. The particle is
all that is contained in the black box. For the soma particle this is the soma, its physical sphere
and its space-node, for the neurite-element particle it is the neurite-element, its cylinder and its
space node, and for the diffusion particle it is the part of the space of the octree it represents.

These particles have spatial relationships to one another, and if they are close enough they

can interact. These spatial relationships are managed by the octree (see section 6.3.2). Whenever

a particle needs to find out who its neighbours are it must ask the octree to find them. The

particle itself does not possess the information as to which are the neighbouring particles (this has

changed compared to Cx3D). The octree additionally manages all the diffusion of extracellular

chemical substances since it possesses information about the spatial relationships in the system.
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Additionally all the particles on a computer are registered in a global list (see section 6.3.3). Each

simulation step in Cx3Dp calculates the changes of the system within a small time step. The

organisation of the simulation is performed by the scheduler (see section 6.3.6). The scheduler

engages the simulation process. One call to the scheduler leads the simulation to go through

one simulation step. The scheduler has access to the global list of particles and assembles them

into work packages because the simulation’s task is to calculate the properties of each particle

one time step after the other. The work packages are then passed on to the Work Manager that

distributes the work to be executed by a pool of threads called the complex workers and simple

workers (see section 6.3.3). To allow for a multi-computer system a communication framework

(see section 6.3.4) has been devised that takes messages and/or tasks from other computers

and executes them on the local computer. It also sends messages from this computer back to

the neighbouring computers in the system. The scheduler organises when in the simulation

process these messages are sent and when they are expected to have arrived. To allow multiple

computers to participate in the simulation, the simulation work has to be distributed. Since the

entities to be simulated are the particles, these particles are distributed among the computers of

the system. In Cx3Dp, the space and the particles it contains are chosen as a way to partition

the simulation. This requires a load balancing strategy (see section 6.3.8) to distribute the

computation as efficiently as possible among the computers but also a strategy to exchange the

data at the borders of space between computers, because the particles need to know about their

neighbours in order to compute the next simulation step even though they might be located on

an other computer. This is handled by the margin management (see section 6.3.5).

The model’s state can be reported by the system in two ways: via the visualisation and the

reporting that both have direct read only access to the model and can inspect all of its aspects

(see section 6.3.7).

6.3.1 Simulation Particles

In the original CX3D, the model was mixed with the simulation framework and was processed

on a single computer by a single thread. Now, to allow Cx3Dp to operate across multiple

threads, processors and machines, we parcelate the model into multiple (very large numbers)

simulation units that we call ‘particles’. Each particle is an independent container embedded in

the simulation layer that extends across the entire simulation system. Each particle is responsible

for performing only local computation on its properties and will not calculate any properties of

other particles. This means that all the data represented by a particle is immutable to all other

particles; only the particle itself can change its data. In the case of a soma particle, this data

includes its position, the concentrations of intracellular chemicals, the size of its soma and so

on.
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Each particle provides a range of simulation services for the model compartment that it

contains. Typically this model compartment contains at least one space-node, and possibly

also physical, and biological layers. The simulation particles are distributed across the available

computational resources (machines, processors, and processing threads). Overall, the particles

mask from the model its distribution across the simulation system.

The line between the different aspects and abstraction layers of the simulation, physical,

biological and spatial has been more sharply drawn.

To be able to do simulations of the magnitude of one million cellular particles and more, it is

important that the simulation is parallelizable. This parallelization is on two levels. The first is

that Cx3Dp can use all of the processors available in the system on a single computer. Secondly,

Cx3Dp can also make use of a multi-computer system in order to use not only the computational

power but also the memory available. At each simulation step for each particle independently,

all the necessary information for the next computational step is gathered. Then in the second

step the computation is executed on all the particles, and in the third step all the computational

results are applied to again reach a coherent state in which the time step has advanced by one.

In this way, all of the particles could in theory be computed at the same time. This allows us

to make a pool of work where each thread can just pick any as yet un-computed particles and

execute the computation necessary. The theoretical limit of how parallel the system can be is

given by the number of particles the whole simulation has. There are typically many thousands

of particles in a simulation implying that even large arrays of processors could be made use of.

This allows the full use of the processors available in state of the art systems.

6.3.2 3D Space and Diffusion

The overall simulation container tracks and maintains the organization of the model space.

Tracking the relationships between neighbouring objects in the model space is crucial, because

neighbouring particles interact via forces and chemical signals, as well as via simulation level

information. In each simulation step the position and the size of nearly all the particles changes.

Maintaining the spatial relationships between all the particles is computationally very expensive

because the position of particles is relative. In order to perform an accurate simulation, all the

particles need to know what the neighbouring particles are to compute the correct next steps of

the simulation.

Cx3D uses a three dimensional Delaunay Triangulation to define spatial relationships be-

tween the space-nodes (not particles, which are a Cx3Dp concept) of the model. The explicit

triangulation has the advantage that a node can immediately access its neighbors across existing

edges, and does not need to perform a search. On the other hand, maintaining the triangula-
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tion has an overhead: the Delaunay criteria must be checked continually, and the triangulation

adapted accordingly. And unfortunately, maintaining this triangulation violates the requirement

that local changes in one part of the space should not influence distant parts. If the position of

one node changes it might affect more than just its local vicinity. In some cases the effects of a

single move might propagate widely, and sometimes involve the whole triangulation. These long

range effects become extremely complex to manage when the triangulation is distributed across

multiple computers, and the update problem is particularly intense for growth simulations where

a large fraction of the space-nodes are changing position at each time-step. Therefore the space-

model of Cx3Dp has been completely recast. The new version uses a compartmentalisation of

space based on octrees [122]. An octree is a tree like data-structure where each node has exactly

eight or zero children. It is used to compartmentalise 3D-space because if one cuts a cuboid in

half along each dimension, exactly eight pieces of equal size result.

If we were to check whether each pair of particles in the simulation are neighbors, the

computational demand would increase quadratically with the number of particles. Therefore

we require a data structure that allows us to perform a nearest neighbor search as quickly as

possible. Particles of the simulation must be addressable, therefore they must be managed by a

data structure. We chose a data structure based on the 3D simulation space: an octree.

Octrees were used by Meagher [122] to represent 3D objects, whereas we use them to dis-

cretize space. In an octree, each box can be segmented into eight other boxes giving eight new

boxes by cutting each box in half in all three dimensions. Each of these new boxes has the same

size. In this way it is possible to create different spatial resolutions in different regions of space.

This has the effect that each of the octree boxes manages approximately the same amount of

particles. If the object count of one box becomes too high, that box can be divided into eight

equally sized boxes. Each space node knows its spatial location, and can therefore quickly de-

termine which octree box it is in. Therefore, when a given node must probe for neighbors, it

need only search those boxes in its interaction radius.

Simulating the diffusion of multiple substances in the 3D model space is a difficult problem,

and computationally expensive. To keep diffusion computationally tractable, the diffusion space

must be quantized at a resolution that somehow matches the precision required by the cellular

detection mechanisms, cellular density, etc. Previously, in Cx3D we chose to compute diffu-

sion on the tetrahedron of the Delaunay triangulation, in which each node was a space-node.

Now that tetrahedral quantization is no longer available, and the extracellular space has to be

represented by a different data structure. Here again we can make use of the octree. In the

diffusion process a single compartment is a leaf in the octree that handles the information and

computation of the extracellular substances in a small part of the space (Figure 6.4 shows an

illustration of the compartments). Each of these diffusional compartments is contained within
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a simulation particle. Using octrees, the resolution of the diffusion grid can be made dependent

on the concentration of cellular compartments in space or can even be chosen to be completely

regular if needed. It can be tuned for the needs of the modeler.

Figure 6.4. Space Model of Cx3Dp: In Cx3Dp, space is divided by an octree into spatial
boxes. In this diagram, the 3D space is projected to two dimensions, for better visualization.
The resolution of the spatial division is adjusted depending on the density of space-nodes in
the region.
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6.3.3 Threading Framework for Parallelization

Our scheme for distributing computational load across the available processors available on a

single computer uses a modified producer-consumer principle. In our scenario, the producer is

the Cx3Dp Scheduler (section 6.3.6). It generates tasks to be processed and adds them to a

queue. The consumers are worker threads (workers). Workers dispatch the tasks from the queue

and compute them. A typical task is computing the position advancement of a particle’s space

node.

In Cx3Dp there are two kinds of tasks to be performed, first the general number crunching

that advances the model simulation (computing forces, biological models, positions etc.); and

secondly system-maintenance tasks required to maintain the organization of the simulation level

itself. Such tasks include the load-balancing of the system or work flow signals to keep the com-

putation synchronized. System-maintenance work needs to be handled faster than the number

crunching so as to maintain the flow of the simulation.

We created a dedicated worker type called ‘simple worker’ to provide this fast meta-processing.

There can be many of these simple workers. The work that is fed to them typically consists of

short tasks that are quickly executed and do not depend on other workers finishing where short

response times are important. Typically these are the receiver threads that are responsible for

receiving information from other connected computers. Each simple worker has its own work

queue and any producer can fill the queue with simple work tasks to be processed. This work is

distributed across the queues in a round robin fashion.

All the other work is done by complex workers. That is the heavy computational work such

as calculating forces or calculating the influence of biological modules on the cells. There can be

many complex workers in the system, typically as many as there are processors available. Each

complex worker has its own queue where a work-producing thread places work packages that

the worker consumes. Typically the producer-thread is the scheduler for complex work tasks.

The distribution of work to the different complex and simple workers is performed by the ‘work

manager’, which distributes work to the appropriate queues. The work manager can invoke a

barrier at which the producer threads must wait until the current work is all finished. This

barrier allows us to impose discrete computational steps in the simulation. In our simulations

we use one simple worker and as many complex workers as cores are available on the computer.
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Figure 6.5. Work-Queue: The scheduler and receivers produce work that is then distributed
by the work manager onto queues to be handled by the various worker threads. Work with low
latency such as packages received by other computers in the network will typically be handled
by the simple workers (low latency and very short duration work), whereas other tasks such as
the heavy computation will be executed by complex workers.

6.3.4 Communication Framework

To allow communication between computers we require a framework that permits control of the

complete communication flow between the different computers of the simulation system. In the

spirit of our threading framework we used worker tasks as messages for communication between

the computers. The protocol of the communication is as follows. The sending computer generates

a new task of a certain type, the sender collects the necessary supporting data (and compresses

it when large amounts of data are to be transmitted). The task object and its data are then

serialized (converted into a stream of bits) and transmitted over the network to the receiver,

which deserializes the data back into the task object, decompresses its data (if necessary), and

posts the task to the appropriate local execution queue for the workers. These tasks are often

a mixture of data and functions to be executed on the other machine. Compression is a crucial

point to reduce the amount of data that must be communicated, and saves communication time.

Compression is worthwhile because fast CPUs and high compression rates provide an advantage

over the transmission of uncompressed data over the relatively slow communication networks.

Due to the overhead inherent in sending a package of data, it is preferable to send one

big package rather than many small ones. Send and forget communication is preferable to

handshake, because it does not hold up the process on the sending computer waiting for an

acknowledgement. This means waiting for data only when it is absolutely unavoidable, such as

when return data from the destination computers is required to compute the next time step.
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The lack of handshake does not entail that data loss would lead to a corrupt simulation. All

the data transfer is still monitored through the means of the communication protocols that the

operating system provides to Java; this provides all the data loss recovery and data correction

protocols needed.

There are simple and complex communication tasks. Simple tasks include mostly status

messages such as the transfer of the current system status for reporting progress on the simulation

and iteration of the time step, short tasks that indicate some control behavior such as save

commands, pause commands or reporting commands. Complex communication tasks typically

involve migration of parts of space to another computer, transfer of moving single particles that

have moved to a space handled by another computer and transmission of stub information for

generating marginal zones between computers (see section 6.3.5).

Serialize

Collect Data

Send

Zip

Deserialize

Distribute Data to 
targets

Receive

Unzip

Worker thread Worker thread

Receiver 
Thread

Sender
Thread

Sender Queue 
Work Queue 

Computer 1 Computer 2

Figure 6.6. Inter computer communication: This figure shows the communication protocol
between two computers. A worker thread collects the data to be sent, serializes it, compresses
it and puts it in a queue to be sent. This queue is then accessed from a sender thread that
sends the data in the queue. On the other end of the communication, there is another
computer with a receiver thread. The receiver thread takes the message and puts it into the
work queue. This work queue is processed by a worker thread which takes the received data,
decompresses it, deserializes it and distributes the data to the target structures in Cx3Dp.
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6.3.5 Margin Management

The simulation on a given computer needs to receive the result of computation of the previous

step in the neighboring computers in order to advance the correct and seemless computation of

the next step of the simulation. This means that each particle needs to know how its neighbors

have changed since the last time-step. Therefore we need to know only about the state of those

remote particles that interact with local particles. This requirement holds true for all particles.

Every computer handles a region of the model 3D space. These spaces are continous across

machine boundaries. This means that a given computer needs to know which particles on

neighboring machines (spaces) border its own space. The neighbors on the other hand need to

know about the particles on the border of the space from this computer. This region where

particles need to be sent to other computers is called the ‘margin’. On the local computer

particles in the margin region need to be collected and transmitted to the neighboring computers.

A special task object (such as the ones described in section 6.3.3) is provided with all the

particles that need to be transferred for the margin. The task object uses a custom serialization

procedure, only serializing the important data, such as physical manifestations (substances,

mass, etc.), spatial properties (radius, position etc.) and biological properties (cell type, etc.).

This data is then compressed and sent to the destination computer, where it is uncompressed

and applied to that computer’s marginal zone.

Using this tactic, each source computer only sends one margin package per simulation step

to each of its two potential neighbors. Additionally, since this is a lot of data to be sent we select

only the necessary particles and we transmit from each particle only the data that is needed by

the local particles for their correct computation. We also compress this package to reduce the

data to the minimum that we can send. It is a complicated task to do, but it is worth saving on

the transfer cost since here the potential for losing time on communication is biggest. Figure 6.7

shows the margin relationships between computers and figure 6.8 shows a cartoon of the data

distribution over time in a simulation.

6.3.6 Scheduler

The scheduler is the central organisation node in Cx3Dp. It leads the simulation through all the

phases necessary to execute one simulation step. It dispatches work to the threading framework

for execution. The scheduler is the one part of Cx3Dp that must be called at every time-step.

There is one scheduler per machine. In order to execute the simulation, the process scheduler

requires access to all of the structures representing the particles on the local system. This is done

via a data structure which lists the particles on the local computer. This list is implemented

as an array for fast access. Deleted entries are assigned nulls, while new entries are added only
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Computer 1 Computer 2 Computer 3

Figure 6.7. Space-margins for inter-computer communication: A computer system in which
each computer sends parts of their local information as margins to their neighboring
computers. The green filled dots represent particles, the green empty dots represent stub
copies of the particles. The red/green boxes are the part of the computers space that has to be
mirrored to the neighboring computer. The red/green-dotted boxes represents the mirrored
marginal zones. The arrows indicate what is copied where. The green boxes are copied to the
computers to the left (green dashed boxes) and are attached to their spatial models on the
common boundary. The red boxes are copied to the right (red dashed boxes) and attached to
the that computer’s space model at the common boundary.

to the end of the list. The scheduler skips over the null entries and executes only the valid

entries. Newly added particles are added at the end of the list and are only accessible in the

next simulation step. This strategy obviates the costly rearrangements of the list. If the array

fills up, it is doubled in size on each expansion. Such expansion occurs rather infrequently and

does not much affect overall performance.

The schedulers generate tasks that are handled by the local workers, and they are responsible

for the synchronization of the overall simulation’s processing steps. Figure 6.9 shows the various

operations a scheduler performs. First it generates the margins of the system for the neighboring

computers. This step can be performed partly in parallel: the work manager waits for the local

workers to complete their jobs by creating a barrier. Having gathered the necessary information

to be sent to the neighboring computers, the information is then transmitted to them in one

chunk. The local computer then waits for its neighbors to send their reciprocal information.

When all the data is available on the local machine, the scheduler can procede to compute the

next simulation step.
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Figure 6.8. Distribution of space among computers: a typical simulation on three computers
connected to each other. Top: The simulation is just about to get too big to be handled on
Computer 1 and will ‘diffuse’ onto Computer 2. The simulation is split along planes
perpendicular to the horizontal x-axis. The spatial boxes act as parts that can be shipped
between computers. When this happens, the sending computer is relieved of the duty to
compute this region of space. All the space-nodes (green dots) and diffusion boxes of the region
are bound to the spatial box and are shipped off to the other computer along with it. Middle:
The arrangement after the distribution step. Now Computers 1 and 2 need to exchange
information at each simulation step in order to correctly compute neighboring relations
between space-nodes and between diffusion boxes. Over time, the growth process will produce
more and more space-nodes and diffusion boxes, increasing the computational requirement and
changing the computation in terms of where in the space computational power is needed.
Bottom: The system can then expand to more then two computers and slowly diffuse over the
linear list of computers connected to the simulation. Communication (black arrows) is however
only needed between neighboring computers in the list. Additional computers can simply be
added to the simulation on the fly or at the start of the simulation, whenever the modeler sees
fit to add more computational power to the system. Such computers will automatically be
integrated into the simulation, and Cx3Dp will balance the computational tasks between the
different computers such that all the computers in the system will be loaded approximately the
same (in terms of execution time for a given time-step).

Each simulation step has three phases. (1) Gathering all the data needed for each particle

(information about particle neighbors, parent and daughter nodes, diffusion partners, bonding

partners, etc); (2) Calculating the next time step for each particle based on the information

gathered in the previous phase; and (3) applying the calculated information locally to each
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particle. As shown in figure 6.9, each of these three phases is separated by a barrier. On

the other hand, each ‘Prefetch all neighbors’, ‘Calculate biology modules’, ‘Calculate physics /

diffusion’, and ‘Apply local calculations’ operation can be executed in parallel for each particle

separately. Because there are usually far fewer cores available than there are particles, the

particles must be grouped into chunks to make work packages (see figure 6.10). These chunks

reduce the overhead of passing work to the workers.

Figure 6.9. Scheduler of Cx3Dp: Each box indicates a separate operation to be performed.
White boxes are tasks; red boxes indicate communication between neighboring computers. The
blue hexagons are synchronization points where all worker threads are joined. The red
hexagon is the synchronization point for this and the neighboring computers.

The scheduler separates in machine time all the ‘Prefetch all neighbors’, ‘Calculate biology

modules’, ‘Calculate physics / diffusion’, and ‘Apply local calculations’ operations. This sepa-

ration allows us to neglect read and write protection for the data, because reading and writing

do not occur at the same time. Having executed the computational steps and applied all the
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Figure 6.10. Work packages of particles: Work packages that are distributed to the Complex
Workers are responsible for a sub-set of the list of particles. The particles (structures below
the list in the diagram; with arrows) are stored in a computer wide accessible list; removing
particles will cause null values (no arrow) that are ignored by the work packages. New
particles are added to entries at the end of the list (dashed boxes).

results to the data, the simulation is back in a coherent state on this computer.

The scheduler then communicates which particles have changed spatial position such that

they crossed computer boundaries, these particles are sent to the appropriate neighboring com-

puter since they are no longer the responsibility of the local computer.

The scheduler now waits for all the neighboring computers to send it their particles that

must now be handled on this computer. Having exchanged particles, the simulation is now

coherent across all computers that are relevant to the calculations on this computer’s scheduler.

The scheduler then advances the simulation one time step and tells its neighbors in which time

step it is. At this point load balancing can be executed if necessary. The topology of the system

changes only slightly at each simulation step, and so the check for load balancing is performed

only every n’th step. How many steps there are between balancing operations is defined by the

user. In the simulations we present we used n values of either 49 or 101.

6.3.7 Visualization, Data-Logging and Persistence

Once the simulation is coherent and balanced, reporting such as view updates and exports can

be performed on the local data. There is of course a need to report on and vizualize the results
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of huge simulations. The scheme for visualisation of the simulation has to be able to report the

data from all threads on all computers in the simulation system, to give an accurate picture of

the whole simulation.

We have implemented new reporting functionality that is able to export different aspects of

the simulation. Each modeller can easily write their own set of exporters and/or vizualizations

for the reporting functionality that they need. Each exporter or visualisation can be switched

off completely if not needed to avoid overhead. This function has to be assessed carefully since

reporting can be a bottleneck due to the fact that all the data has to be available to the reporting

system.

The system can also be instructed to save its current state into files, so making a snapshot

of the current simulation. This persistence permits the simulation to be stored, and possibly

continued from this time step in future. Persistence also provides a fallback in case a machine

fails during a simulation. The optional reporting and persistence completes one scheduler cycle,

and one time step of the overall simulation.

Cx3Dp is intended to produce Big Data; we cannot expect to keep all data that is produced

over time. This would exceed the capabilities of the computers doing the simulating. Bell

reports on the fact [21] that big simulations can produce nearly unprocessable amounts of data.

Therefore the reporting must be selective. This means that for each simulation, which aspects

of the simulation need to be reported on in order to show the results of the simulation has to

be carefully planned. The modeller must be aware that the right reporting is as important as

the correctness if the simulated model in order to be able to present the desired results.

6.3.8 Load Balancing

Cx3Dp’s ability to use a multi-computer system is achieved through the segmentation of space.

The octree discretization is used along the x-axis of the simulation in order to distribute the

space box-wise to all of the available computers. Using this discretization of space, each computer

needs to communicate with only two neighboring computers.

Typically, the developmental simulation begins in just one computer. As development pro-

cedes, the model grows in its computational needs, and the simulation distributes itself onto an

additional computer. If further additional computers are avaliable in the system then they can

also accept work until all of the computational nodes are similarly loaded with work.

Thus the computational work begins on one computer and slowly ‘diffuses’ to the other

computers that are available in the simulation system. This also means that computers can be

assigned dynamically to the running simulation as the users of the system see fit. The number

of computational nodes that can be deployed is limited only by practical considerations. And,

because each computer communicates only with its neighbors in simulation space, there need
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be no centralized global control of the simulation. There is only local communication.

Conversely, simulation space cannot be pre-allocated to particular computers, because the

computational needs of the simulation in a growth process change dynamically, are assigned

dynamically and they cannot be easily predicted in advance.

Load balancing between the computers is also performed locally. Each computer compares

its load to that of its neighbors in simulation space. If one of the computers is less busy then its

neighbors it receives additional work from its busiest neighbor. A computer is considered less

busy if it has to wait for the results of the neighboring computers longer than its neighbors. In

fact, the computers are balancing which parts of the simulation space are computed by which

computer. These parts are space boxes: each box contains space-nodes that are associated

with particles and diffusion particles. On the busier machine, boxes on the border between

two neighboring computers are selected for re-distribution. Their contents are removed from

the local data structure and transferred to the destination computer. The boxes selected are

transferred in one chunk, so minimizing the communication overhead.

We chose a strategy of load balancing which divides the simulation along one axis, which

is analogous to simulating slices of dynamic thickness. We considered alternative strategies for

minimizing communication between computers at each simulation step, i.e. which margins would

have to be transferred in order to grant the neighboring computer the data that it requires to

calculate the next step in the simulation. Our goal was to minimize the data sent between

computers and to minimize the connection fan-out of each computer, so reducing the overhead

in sending many packages of data and managing many sender and receiver threads. Simulations

in Cx3Dp should therefore always be planned to be optimally distributable in the x-axis.
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6.4 Results: Cx3Dp Applied

Cx3Dp was developed for exploring the development of neurons with their complex morphol-

ogy, however it can also be used as a general purpose simulation environment for exploring

growth processes in other tissues. Here we demonstrate the power of the parallel version of

Cx3Dp using a number of characteristic cases, each chosen to exhibit some important aspect

of Cx3Dp performance. For each simulation we use biological modules to control the behavior

of the cell [213]. These biological modules can only act through their own cell, and each can

only interact with its local environment. These restrictions mean that the models respect the

locality property of cellular growth as observed in biology. Each simulation demonstrates a

simple model that makes use of the Cx3Dp framework. The models can be downloaded from

http://www.ini.uzh.ch/projects/cx3d/. All of our simulations have been configured to run with

reporting turned off in order to minimize latencies in accessing mass storage.

6.4.1 Exponential Cell Growth

This growth process begins with one cell and then grows exponentially, according to just a few

simple rules. This model is only for the purpose of illustrating the operation of Cx3Dp, and

does not pretend to model any particular biological process. An initial cell is placed in Cx3Dp

space. This cell is loaded with a biological module allowing it to divide and to grow. When the

simulation is started, the biological module of the first cell begins to run and increases the size of

the cell gradually. When a certain threshold of cell size is reached, the cell divides in a random

plane, copying its own local biological module to its two daughter cells, and so these cells will

repeat the growth and division behavior of their parent. This process leads to an exponentially

growing mass of cells. When cells are formed through division, they must occupy space, and so

they push their neighbors away. This means that there are local pressures on developing cells

due to other cells in their neighborhood. Cell division is inhibited if the incident forces from

the surrounding cells are too high. Cells color themselves yellow where the pressure threshold is

exceeded. This exponential cell growth calls for exponential growth in computational resources.

Here we simulate the growth until there are approximately one million cells spread across three

computers (see figure 6.11).
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Figure 6.11. Growing tissue distributed over multiple computers: Three stages of the
growth. Top: initial condition with a single cell, starting on one computer. Middle: A stage at
which the tissue has expanded. The simulation has expanded to two computers. Bottom: Fully
grown tissue consisting of one million simulated cells, spread over three computers. For better
visibility only a slice through the simulation of a thickness of one cell is shown.

6.4.2 Comparison to Non-paralellized Cx3D Simulation

To confirm that the capabilities of the new Cx3Dp are the same as the old Cx3D, we demon-

strate that a model that was constructed for the single threaded Cx3D can be used with little

modification in the parallel version. We simulated the neuronal growth described in figure 9 of

Zubler’s paper [211]. The changes to the original code of the growth cone model from the Cx3D

single threaded version were minimal. The overall growth model grows 11 excitatory neurons

(gray) and one inhibitory (red) neuron in a dish like set up (pseudo-two dimensional). The

outgrowth of the axonal structures is mediated by a random growth process. The neurons are

placed at random x y coordinates in the dish and with a fixed z of 0. The thickness of the axon
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diminishes with length and branching points. It can be observed that the two dishes have a

close resemblance to one another. Even though there are certain differences in how the forces

are calculated and where they apply, we obtain qualitatively similar results in growth patterns

in Cx3Dp, see figure 6.12.

Figure 6.12. Two simulations to compare Cx3D and Cx3Dp. Left: Grown with the original
version, Cx3D [211]. Right: Grown with the new parallel version, Cx3Dp.
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6.4.3 Axons Crossing Computer Boundaries

To demonstrate the ability of Cx3Dp to grow cellular morphologies across machine boundaries

we created a simple model in which growing axons cross computer boundaries. The model

provides for two opposing planes of a thousand neurons each. Each of the neurons extends a

neurite that grows towards the other plane following the initial outgrowth direction. Blue cells

project a neurite in the direction of the green cells and vice versa. The axonal growth model

is to elongate and bifurcate with a certain probability, and to stop the growth with a certain

probability. After each bifurcation the probability of further bifurcation is increased. There

are approximately 2000 cells in this system with a total of approximately 0.5 million cellular

compartments. As can be seen in figure 6.13 the growth across computer boundaries works as

expected.
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Figure 6.13. Inter-computer growth of neurities: Top box: The initial two planes of cells
facing each other on one computer. Middle boxes: The two thousand cells growing their initial
axons distributed over two computers. Bottom boxes: The neurites crossed the computer
boundary and are meeting in the middle of the structure. At the very bottom, two of the
opposing neurons are shown growing in each other’s direction.
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6.4.4 Diffusion of Extracellular Substances

Diffusion is a central aspect of Cx3Dp, a crucial feature of many growth models. We present

here an example illustrating diffusion. The model specifies 671 randomly placed cells located

in a 128 × 128 × 128 micron space. The resolution of the diffusional octree was adjusted to

provide a resolution of 1× 1× 1 micron resulting in just over two million diffusional boxes. The

diffusion constant was 320 m2/s. The diffusible substance undergoes linear uptake (degradation)

throughout the whole simulation volume with an uptake rate of 4 s−1. The simulation step is

0.005s. Steady state is reached after approximately ten modeled seconds (see figure 6.14). This

simulation was executed on one computer having 24 cores.

0nM 10nM 30nM 33nM 100nM 1000 nM

Figure 6.14. Diffusion simulation: Concentration levels of a chemical diffused through the
Cx3Dp extracellular space. The colors indicate the concentration. We show a slice through the
center of the space in the x-y plane. We can clearly distinguish radial diffusion patterns that
overlap and build various shapes as would be expected with multiple emitting sources.
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6.4.5 Scaling Behavior

We demonstrate the scalability of Cx3Dp using a simulation of a layer of cells, which regularly

undergo division. The cells contain a biological module that cause them to migrate randomly in

space, and so create a computational load. The exponentially increasing number of cells leads

to exponentially increasing load.

At first the overhead for simulating the distributed system overwhelms the simplicity of

the computations required for the cellular behavior. The question is, at what number of cells

does one gain the advantages of having multiple threads and multiple computers? We use

two configurations for the simulation. One compares the speed-up over the number of working

threads, and the other compares the speed-up over the number computers. The advantages

of numbers of threads cannot be directly related to the numbers of computers because the

simulation configuration (in terms of communication, for example) must be modified slightly

to operate with multiple computers. The number of cells in the multi-computer case is greater

than in the single computer, varying number of threads case, so as to expose the advantages of

splitting the simulation across multiple computers. The number of cells in the single computer,

multi-threading case reaches 32,000, while in the multi-computer case it reaches 720,000.

Each simulation was repeated ten times to obtain a good average of the speed. Checks for

load balancing were performed at the beginning of the simulations. Simulations were performed

on four machines of the same type. Each has 64 GB of memory, 2 2GHz AMD Opteron 6168

series 12-core processors and is running Ubuntu version 10.04 ‘Lucid Lynx’. Hyper-threading was

disabled. Figure 6.15 shows that speed-up scales very well with numbers of threads. The increase

is linear until the processing speed saturates under the constraints of the single computer’s

architecture. The speed-up also scales linearly with the number of computers.
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Figure 6.15. Scaling behaviour of Cx3Dp. Top: How Cx3Dp performance scales with the
number of worker threads on a 24-core machine. We ran simulations using up to 120 worker
threads. The blue area covers all the speeds measured, whereas the dotted blue line shows the
interpolation of the average performance and the crosses show the actual measurements. For
each simulation we measure the time of execution and compare it to the time used for one
simulation. This yields a speed up factor. The performance drops at 23 threads because the
scheduling overhead begins to slowdown the computation.
Bottom: The same type of measurement as above but with respect to numbers of computers
used in the simulation. The speed-up measurement started as soon as the balancing strategy
has successfully brought the workload to a stable state in order to avoid fluctuations in the
measured data over the different trials. All of the computers in the simulation were working at
the optimal point of 23 threads.
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6.5 Discussion

Cx3Dp was created to enable modelers to perform large-scale simulations of neural tissue growth

with millions of cells. There is no other software framework for simulation of neural development

that provides for chemical and physical interactions with an environment as Cx3Dp does.

Cx3Dp provides a 3D space in which simulated cells can be placed, and the means to model

local biological processes so that these cells can interact with each other. Cells can change their

shape, grow axons and dendrites, divide, change their physical properties, and can secrete and

detect chemicals intra- and extra-cellularly. All of these biological growth processes are based

on a complex physical interaction system that is provided by Cx3Dp. Cells occupy space, exert

forces on each other, and chemicals they produce diffuse intra- and extra-cellularly. Cx3Dp

is well structured with layers of abstraction. The user of Cx3Dp writes models that interact

with the interface of Cx3Dp that allows the control of biological processes such as cell division,

migration and neurite outgrowth. This biological layer interacts automatically and hidden from

the user with a physical layer that simulates all the physical processes such as intercellular

forces, and intra- and extra-cellular diffusion. The physical layer uses the information provided

by the spatial organisation layer to find out which cellular elements interact with each other.

And finally, orthogonally to that, Cx3Dp implements a scheduler that executes the necessary

biological, physical and spatial organisation processes in the right order.

The design and performance of Cx3Dp is a significant improvement over the original Cx3D

and it also enables larger simulations. It solves rather elegantly the technical problems of

parallelization of neuronal growth, and permits very large simulations to be run in multi-core,

multi-computer environments. It is easy to add more computers to the system on the fly while the

simulation is running. The computation spreads gradually over the computational landscape,

depending on computational need. The performance of Cx3Dp scales well with the number

of cores and networked computers, both in speed and in the size of simulation possible. It

exploits efficiently the entire memory and processing power of the networked machines. Specific

‘biological code’ used to specify cell behavior in Cx3D runs in the new paralellized version with

only minor modifications.

All parallelization is subject to Amdahl’s law [3], which states that maximum speed-up scales

hyperbolically with the number of cores available and the fraction of executing code which is

parallelized. In the case of Cx3Dp we do not yet see the asymptote implied by Amdahl’s law.

Of course, there are a number of aspects of the execution of our simulation which we have not

been able to completely characterize. We do not have a speed-up per core that is fully optimal.

This may be due to spurious inter-locking in the code, the presence of barriers, and access to

the memory that is shared between the computers. However, we can directly observe that the
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running Cx3Dp program usually spends well over 99.9% of the total execution time processing

in parallel code, which promises good Amdahl behavior.

Our multi-computer speed-up scales well with the number of computers deployed, almost

too well. This excellent performance can be explained by caching. If more of the data can be

kept closer to the computation, the computational speed-up can appear to scale better than

simply the increase in processing cycles offered by the number of computers in the system. We

also observe large fluctuations in cycle time. This is to be expected because the computers must

communicate intensively, and must sometimes wait for a neighbour’s data before computing the

next time step. This variability in the cycle time is probably due to variabilites in network speed

and load balancing that varies between simulation trials. However, we must emphasize that the

scale up in the memory domain provides the biggest advantage, because it permits ever larger

simulations.

Nelson [136] and Modha [5] identified three challenges in multi-computer environments:

memory, processing power, and communication between the computational nodes. Modha pro-

poses an additional fourth challenge — the load balancing — which we see as given implicitly by

the first three challenges. Additionally Bell indicates that the computation must happen close

to the data in order for a system to scale [21].

The processing power challenge refers to the limited amount of computational cycles available

to software on a system. Although the speedup of single core computers has saturated in

recent years, the introduction of compact multiple core architectures has effectively sustained

the Moore’s law-like growth in processing power [132] [10]. Cx3Dp’s threading framework is

able to exploit these multi-core systems very well.

The memory challenge refers to the problem of optimizing the use of processing power by

delivering data from memory to the CPU (and vice versa) as quickly as possible. Off-processor

RAM speeds are typically an order of magnitude slower than processor speeds, and mass mem-

ory (such as disk) an order slower again than RAM. So the solution to the memory challenge

involves minimising mass memory access, and maximising the amount of high speed CPU cache

memory, as well as primary RAM. Fortunately the speed and the amount of memory available

in commodity computers continues to rise every year, making ever larger simulations possible in

reasonable time even on single machines. The ability to distribute the problem over a network

of such fast RAM/processor units further improves the prospects for large scale simulation, as

we have demonstrated using Cx3Dp’s multi-computer framework (see figure 6.15). We respect

Bell’s proposition to keep the data close to the place where it is to be computed [21].

The communication challenge refers to the information that must be transmitted between

the memory/processor units of the networked computers in order to maintain cohesion of the

simulation across the entire system. Communication rates are typically very much slower than
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memory and CPU processing rates, and so the available communication bandwidth must be

used as efficiently as possible. This means transmitting as little data, as sparsely, and as highly

compressed (or encoded) as possible. In Cx3Dp we have devoted considerable effort to optimising

inter-computer communication in these ways. In addition, we have chosen to distribute the

simulation along only one spatial axis of the model, so reducing the number of neighbouring

machines involved in communication. And, only the nodes in the margins of the spaces computed

on each machine are communicated to the neighboring machines. These marginal nodes provide

sufficient synchronisation of the distributed simulation. Other parellization schemes are no doubt

possible, but we have demonstrated that our strategy for the Cx3D type of simulation scales

excellently over multiple cores and machines.

Our aim is that Cx3Dp should be easily used on networks of relatively inexpensive standard

computers, using only public domain software, and with a minimum of administrative overhead.

For these reasons we chose to implement Cx3Dp in Java. Although Java is not the fastest

language, it has the advantages of providing a relatively easy and secure environment for system

developers as well as for the user modellers. Moreover, Java’s cross platform compatiblity allows

Cx3Dp to be run on almost any system, without the need for aditional specialized packages.

Cx3Dp could probably be specialized for use on high performance supercomputers, but that has

not been our aim.

There are other simulation tools for simulation of neural growth such as Netmorph [104],

NeuGen [58] or L-Neuron [11] that focus specifically on the growth of axons and dendrites.

There are simulation tools for single cells such as E-Cell [184] and for multi-cellular tissue growth

CompuCell [93] [181] or Jeschke et al. [95]. However, none of these tools are designed for multiple

cores and/or computers, and none address the physical interaction between neurons and their

environment as Cx3Dp does. The need to simulate the electophysiology of large networks of

neurons has led to a number of parallel implementations, for example Neuron [85], Genesis [17]

and PCSIM [144]. However, these packages simulate only static topological structures and do

not offer a simulation of the physical environment for growth and development of neurons. Our

simulations are usually of growing structures that evolve over time. This means that one cannot

predict what the overall best distribution of the computation is at the very beginning of the

simulation. This has to be done during the course of the development of the simulated tissue.

This requirement differs significantly from the needs of other simulation tools that exist. They

often know how many computational particles they have and can distribute them across the

computational landscape at the beginning of the simulation. This distribution of computation

seems like a very complicated task, and hard to program, but the opposite is the case. If the

programmer takes the local perspective of what a single cell has to do in the system and not

how the global system has to behave, the programming of the cells is very straightforward;
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no experience with concurrency is needed in order to implement models running in Cx3Dp.

Taking the local perspective of a cell follows naturally from biology. In [213] we investigated

what the minimal set of behaviours for cells is in order to program virtual cells such that they

can behave as observed in biology. We call the resulting programming language G-Code. G-

Code programs combined with Cx3Dp naturally scale to multi-threading and mutli-computer

environments without the need for the modeller to explicitly write paralellizable code.

There exist state of the art frameworks that are optimized for interprocessor and interprocess

communication, e.g. MPI and ProActive. MPI is defined as a standard [55]. Mostly it is

implemented as a framework based on C/C++ and mostly used in cluster environments. Each

MPI process is called a node where each node is usually run on one processor (lightweight

threading in MPI is uncommon). Thus, although MPI relieves the developer of the responsibility

of establishing connections between computers, it comes at the cost of monopolizing cores. We

wanted to preserve local cores for productive simulation, and so running a separate process for

each core (as MPI does) seemed like too much overhead. For the present we have chosen to

avoid this overhead of MPI, and program our rather high-level communication scheme directly

in Java. This decision brought the advantage that our simple communication framework neatly

integrates with our scheme of tasks that distributes work among processors. However, it might

be worthwhile casting our communication scheme onto the more standardized MPI framework

in future.

ProActive is a framework that supports many communication schemes and many communi-

cation topologies are provided for [35]. At the center of ProActive are so-called ‘active objects’

that are completely thread safe (no other threads are allowed). In Cx3D we need to exchange a

huge amount of data for all of the margins and parts of the simulation that move dynamically

between the computers in the system. It was clear from the beginning of the Cx3Dp project that

the communication load would be very high, and should be a focus of optimization. Therefore

the profiling of communication is paramount. We started out using ProActive as a foundation

for our parallelization, but soon discovered that it was difficult to detect and debug errors in the

system, and moreover the overhead of ProActive slowed down the single threaded Cx3D by two

orders of magnitude. We were therefore driven to our own less general, but highly optimized

implementation. One should also bear in mind that using a standard framework that promises

easy parallelization and deployment does not relieve the programmer of design decisions relat-

ing to the division of the simulation between computers, nor of the decisions of how to organize

communication and what has to be communicated. In our case these aspects were the largest

part of the work.

Tests of Cx3Dp on a four machine cluster have been successful, as we have shown here. This

cluster is now being used for production runs that simulate the physical development of two areas
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of mouse cortex involving a quarter of a million neurons. It would be interesting in future to

extend these simulations to clusters with many more computers, or perhaps to a supercomputer.

We also plan to extend the functionality of Cx3Dp in various ways. One route will include

electrophysiology, so that the developed neuronal circuits can express electrical processing. It is

also widely believed that the electrical activity of maturing neurons influences their growth and

connectivity. Therefore we are developing an additional module that can be added to the existing

Cx3Dp framework that allows the simulation of simple compartmental electrophysiology. The

major technical issue here is the combination of two very different timescales within a single

simulation, because the electrophysiological behavior of neurons plays out on a much shorter

time scale than growth processes. Another useful development path will be the improvement of

reporting. Our current scheme could be greatly improved upon. For example, Java reflection and

dynamic loading could be used to dynamically design, write, and load data exporters during the

runtime of a simulation. Large simulations are inherently expensive in terms of computational

and human resources. To be scientifically useful and economically justifiable, they should deliver

high quality insights that compress the simulation data intelligently, and that go well beyond

simple compression and pictorial representation of the large volumes of patterns that simulations

generate. This will require a new generation of novel research tools for Cx3Dp that, for example,

make use of simulation layer meta-data to detect and dynamically deploy intelligent reporters

against improbable dynamics in the model.
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Chapter 7

Discussion

In the discussion section of this thesis we will first assess whether we achieved the goals of the

thesis and to what extent. Since we already discussed each chapter separately we will in the

second part summarize the discussions and will provide an integrated discourse on the chapters.

7.1 Achievement of the Set Goals

In this section we show that the main three goals of the thesis have successfully been achieved.

We will shortly highlight them one after the other:

1. Simulation of Mouse Cortex Areas 3 and 6: On the basis of biological findings on how the

cortical development in mouse happens we created a model of a developing cortex of mouse

area 3 and 6. Our model starts in a nearly unlabelled space, with only a few thousand

progenitor cells of three types and constructs a cortical structure as observed in biology.

The final structure contains of tens of different cell types and hundreds of thousands of

cells, and two million cellular compartments. The model integrates cellular behaviour as

described in the literature and all parts of the model are implemented in a biologically

plausible way with the help of the G-Code programming language. Cx3Dp acts as the sim-

ulation tool to simulate this cortical structure. The whole cortical structure is guided only

by the artificial genome inserted into the first few cells. Each cell is completely autonomous

and is not guided by a global controller. The cells in the simulation autonomously take

different roles and the cortex essentially self-constructs. This self-construction is guided

by a gene regulatory network. A cortical developmental simulation of this complexity has

not been achieved before and we have only been able to create it because we found the

right abstraction level in G-Code.

203
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2. Extraction of Self-Construction Principles into an Engineering Technique: Having achieved

the simulation of corticogenesis from a few progenitor cells to a fully layered cortex as

seen in biology, we wanted to abstract engineering principles that we could to program

self-constructing systems. But to define a new engineering principle that is able to do

self-construction we first needed a theoretical framework for how biology achieves self-

construction in development. In chapter 4 we constructed a theory that goes from a single

gene, via networks of genes, to behavior of cells, to cells interacting with each other and

organizing themselves into structure. We were able to show that the work of Waddington

[196] concerning the epigenetic landscape and the work of Zubler [213] on finding primitives

to abstract cellular behavior fit perfectly into this theoretical framework. The important

lesson learned from analyzing biological development that cells have a state and are able

to replicate in symmetrical and asymmetrical ways is one of the key points for how biol-

ogy controls development. In chapter 5 we showed that we have been able to derive an

engineering technique called the Developmental Programming paradigm from this analy-

sis. We explain in that chapter what a system has to fulfill in order to be programable

such that it can exhibit self-constructing behavior. We identify categories of primitives

that languages that follow the Developmental Programming paradigm must have. We

explain the Developmental Programming paradigm on a general system, in relation to our

simulation, the defined biological theoretical framework, and for the example of G-Code

(a language following the paradigm). We show that languages that follow the Develop-

mental Programming paradigm will be Turing complete and therefore universal in their

computational power. We discuss the complexity of developing systems with relation to

the complexity of the final object versus its genome. It becomes clear over the course of

chapters 4 and 5 that such systems can organise themselves into a coherent global struc-

ture without a global controller only through local interactions between the containers

(e.g. cells).

3. Parallelization of Cx3D: The goal for the Cx3D [211] simulation software was to make a

parallel framework that takes advantage of multi-processor and multi-computer systems.

Chapter 6 described how Cx3Dp was parallelized and the changes we applied to the system

in order to make it efficiently use the available computational resources. Cx3Dp is designed

to scale with the number of processors as well as the number of available computers. A

clever balancing strategy ensures that all computers and processors in the system are used.

It is possible to run Cx3Dp on any Java-capable operating system which includes Linux,

Windows and Mac OSX, and all of them are potentially able to work together in a network

of heterogeneous computers.
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With this we have achieved the aims set out in section 1.2.

7.2 Conclusion to the Whole Thesis

In this thesis we have explored self-construction properties for the example of the mouse cortex

areas 3 and 6. We have first given the background of the current knowledge about how the de-

velopment of the cortex unfolds in time. Using G-Code and a new parallel version of Cx3D we

created a model of the development that is in agreement with the literature, that recapitulates

cortical development while respecting the biological properties and constraints. This develop-

mental process by which the cortex essentially self-constructs has then been analysed and we

show how biology is able to achieve self-construction from a theoretical point of view. Finally we

generalise this biological self-construction to an engineering principle we call the Developmental

Programming paradigm. The Developmental Programming paradigm defines what a system

needs to have in order to be able to exhibit self-construction and it shows how such systems can

be programmed. In the next few paragraphs we will discuss these results in more detail.

The mammalian brain is one of the most fascinating structures, especially the cortex that

in human is thought to be the seat of intelligence. From very few precursor cells and cell types

the cortical structure is generated with its billion of cells (in humans) and huge diversity of cell

types. This process of construction is highly parallel, all the cells that are taking part in the

development are autonomous and are not globally controlled. The only source of information

the cells have at their disposal to assemble themselves into the cortex is the genome and their

environment. The genome remains the same for all cells during the development. Only the

activation of the different genetic expression patterns differs between the cells. With these

limited sources of information, the cells are able to create a sophisticated structure such as

the cortex. We created a model that is able to recapitulate this process following the same

constraints: no global control, autonomous cells and one genome.

We model the cortical development in our simulation environment Cx3Dp and use our in-

house developed programming language G-Code to compose the model. Our model starts at the

beginning of cortical development of mouse at around E10 [171], at this stage of development

certain environmental conditions are already established for the embryo. The model starts off

with three types of cells, and two gradients all in the tangential plane. These three sources

are the precursors to the cortical plate, precursors to the interneurons originating from the

ganglionic eminence and neural cells from the thalamus. We do not model the development of

the thalamus or the ganglionic eminence but only their role in the construction of the emerging

cortical plate. Except for these starting conditions the space in our simulation is unlabeled.

When the simulation commences, the cortical precursors start to divide to create new cells
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that build the pre-plate, the pre-plate is then split into marginal zone and sub-plate by the

emerging cortical plate. The precursors start to become radial glial cells, generate the ventric-

ular zone cells, then subventricular zone cells and produce over this time the different layers of

the cortical plate During this phase the ganglionic eminence produces inhibitory neurons that

tangentially migrate and eventually turn up radially into the cortex in order to match up with

the right layers of the cortical plate. Additionally the thalamic cells send out axonal fibers that

connect to the appropriate layers of the cortex. (See video http://youtu.be/pBqZ8SouWdQ

‘Development and 3D Rotation of Selected Neurons’ for a visualization of this process.) In the

model we integrated many detailed steps that are necessary for the cortical development to work,

for example radial migration, radial glial fibers, inter-laminar axonal growth and apoptosis of

misplaced cells. We found that even though the literature is very detailed on cortical develop-

ment there are still a few mechanisms we have not found any information about but that were

absolutely crucial for the success of the modeled development. For example the mechanism for

distributing the interneurons in the tangential plane has not been described. In these cases we

took the initiative and created a hypothesis for how these mechanisms could work. In the case

of the tangential distribution we assume an addressing mechanism that maps the interneurons

born in the ganglionic eminence to the cortical plate. This addressing mechanism depends on

two gradients, one in the ganglionic eminence that is read at the birth of an interneuron just

before its tangential journey begins and another gradient in the cortical plate that is read by

the migrating cell and compared to the concentration at the birthplace of the cell. Through

a mechanism such as this we could create a tangential distribution of the intereurons. We do

not claim that our suggestions for this tangential addressing or other mechanisms are correct,

but mechanisms similar to the proposed ones must exist in order for the cortical construction

to work. We are however sure that the implemented mechanisms are at least biologically plau-

sible. Our addressing mechanism for example can be seen as a hypothesis that can be tested

experimentally in a real mouse model with cellular labeling.

The basis of the model is the Gene Regulatory Network. The gene regulatory network

generates all the different types of cells in the right order at the right time. It is able to generate

this huge amount and variety of differently behaving cells with two important mechanisms:

symmetrical and asymmetrical division. The gene regulatory network is activated in all the

precursor cells at the beginning of the simulation. In each cell at its birth the gene regulatory

network activates behavioral G-machines corresponding to the cell’s type. These behavioral

G-Machines are simple sequential programs executed in each cell separately. Each G-Machine

on its own does not elicit interesting cellular behavior. Only in association with other cells and

their G-Machines does the development of cortex emerge.

Our model is restricted by the simulated physical properties that exist in Cx3Dp and the
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biological restrictions that the G-Code language imposes. Additionally our model is restricted

by the findings in the literature and therefore the knowledge about the cellular behavior during

cortical development. G-Code was powerful enough to model all the documented behaviors

without exception.

The model presented here is not the first model of development. There have been many

models of development ranging from neural tube formation [38] and regionalization of the neural

tube [101] [117], to cortical growth [211] and many other models that model aspects of cortical

development. (A more detailed discussion of the literature can be found in the conclusion to

chapter 3.) The model presented here is however the first to recapitulate cortical construction

to that level of detail. It starts in a nearly unlabeled space and all the cells are completely

autonomous and not globally controlled. The autonomy of the cells allowed us to separate the

model into sub-compartments and simulate the development in a highly parallel fashion in our

newly developed simulation framework Cx3Dp, therefore we were able to scale the simulation

to hundreds of thousands of cells and millions of cellular compartments.

Our model is far from complete, but it is a good starting point for further cortical develop-

ment simulations. First, electrophysiology is missing, after having grown all of these complicated

neuronal connections one could use these to create functional networks out of it. Another di-

rection to push the model would be to simulate the developmental process from even earlier

stages, possibly from one initial cell. Or to move towards a developmental model of higher

mammalian cortices such as monkey cortex. Additionally the model could serve as a starting

point for showing how biology implements on a molecular level the behavior we simulate more

abstractly with G-machines. Models and simulations such as these can help biologists to find

theories about development. These theories could then be tested first on the in silico model and

then confirmed by doing actual biological experiments. This could help speed up the process of

finding new interesting mechanisms.

The power of the development is given by the autonomy of the cells. Through their mem-

branes, cells are only able to react to specific simple signals in the environment that can then

start a cascade of more complex processes internally. The membrane encapsulates the cell’s

internal environment and its function. This allows for a very localized control of development

where each cell controls very specifically a small part of the overall system. In engineering it is a

sign of a good product if the functionality is well encapsulated and the communication between

the different parts of the system is simple and well defined. In development we find these princi-

ples as well, simple extracellular signals can encourage complex intracellular processes that lead

to cell behavior. We see in our model and the corresponding biology that the communication

between the different cells is very sparse, this fact decouples the cells from one another and

allows for the high degree of parallelization we observe.
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Another interesting observation is that the earlier born cells provide the scaffold for their

successors. They label the space with molecular signals and mechanical boundaries, so enabling

their successors to orient themselves. Like the preplate does for the emerging cortical plate. This

is also a technique known from engineering using scaffolds for the construction of ever larger,

more complex products.

That our model shows emergent complex behavior arising out of very simple and small be-

havioral programs is due to the level of abstraction we chose. We program the G-machines that

define the behaviors of the simulated cells in G-Code. G-Code is constructed such that all the

primitives offered to the programmer are biologically plausible, G-Code itself is therefore con-

structed from the bottom up not with the behavior but with the actual biological implementation

in mind. G-Code itself can then be taken by a programmer and used as a tool to construct a

model top-down, using the primitives to construct an observed behavior without having to look

at the detailed biology. However G-Machines (behaviors) written in G-code remain biologically

plausible because of how G-Code was designed. This abstraction gives the modeler a powerful

tool that allows for a separation of the overall problem into simpler sub-problems. In our case

it allowed us to take apart the complex self-construction process of the cortex into sub-tasks

for each type of cell, sub-tasks such as radial migration or lateral inhibition. The autonomous

cells have different G-machines activated at their birth. Through the communication protocols

between the G-machines running in these cells, complex emergent behavior can be controllably

programmed into the self-constructing system without the need for a global controller.

Once we had implemented an example of a self-constructing structure we were in the position

to give a theoretical framework that abstracts biology in such a way that the framework allows

us to explain the developmental process with basic rules (see chapter 4). The framework starts

by recapitulating the transcription of single genes into proteins and that these genes can be ar-

ranged in a sequence as the genome and that they influence each other in their expression. The

interaction of genes builds a Gene Regulatory Network (GRN) that has been intensely analyzed

by Pfister in her thesis [146]. The GRNs implement a function in a large dimensional space

called the GRN landscape. The GRN landscape is fixed for each genome. Only if the genome

changes do the dimensions change. We explained how cells operate in this GRN landscape and

that each point in that space corresponds to a single protein expression pattern that a cell can

have and is therefore a state of the cell. Regions in this state space can be understood as the

classical cell types. And cells operating in that space can transition between different states by

following the gradient of the Gene Regulatory Network function. In this way cells can transition

between different cell types. The GRN landscape has a close relation to the epigenetic landscape

of Waddington but is not exactly the same. Whereas Waddington’s epigenetic landscape [196]

really is two dimensional, we only projected our landscape onto two dimensions for visualization
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purposes, but in truth it is extremely high-dimensional, for each gene there is one dimension.

Even though Waddington describes the high dimensionality he does not phrase his visualiza-

tions that way. Furthermore, Waddington does not exactly explain how multiple cells can take

different paths in this landscape but only says that this choosing of different paths happens

somehow. There Waddington stops with his explanation of the epigenetic landscape. We on the

other hand elaborated on the behavior of cells based on the GRN landscape. The importance

of replication has been shown. Dividing cells have to distribute their contents to their offspring.

Through division the daughter cells perform a jump in the GRN landscape since their gene

expression pattern alters abruptly. Symmetrical and asymmetrical division allows cells to take

different paths in the GRN landscape. With that the cells will end up in different local minima

of the gene regulatory network function and eventually in different fully differentiated states.

The behavior of single cells is shown to be a direct effect of the gene regulatory network that

might in a certain space activate proteins that code for behavioral function. We show that these

proteins can be combined into ensembles of proteins coding for a particular function and that

certain proteins can be reused for other functions. We name these behavioral functions machines.

This reusability leads to a component composite principle of recombination of machines, where

for example replication is one of the behaviors that can be exhibited. It has been described by

Zubler [213] how one can think of these assemblies of proteins in terms of primitives. He describes

how these primitives are biologically plausible and implementable by proteins. He showed that

it is possible to abstract more complex behavior as a recombination of these primitives. We

show that it is possible for cells to reach states in the GRN landscape where genes get actively

transcribed that contribute to building these primitives and therefore also to the building of the

behavioral machines. Since each of the cells in the developing organism can potentially reach

different states through asymmetrical division, an organism with billions of cells can end up with

thousands of cell types Through replication this process of proliferation can potentially follow

exponential growth. In a further step we discussed how cells can communicate and organize

themselves in a decentralized fashion and build sophisticated structures. The communication

between cells is a crucial point for their ability to organize themselves.

This process of development looks very complex since many of the cells seem to magically

know where to go in the organism and all of this happens in parallel. We touched on this

complexity by explaining the flow of information in the system. The end state of the developed

organism can be seen as an unfolding of the code encrypted in the DNA. The DNA and the

environment with its rules and preconditions for development is enough to describe reproducibly

the development of the organism. Therefore the DNA and the environment present at the be-

ginning of the developmental process can be seen as the program and the final structure as the

computed output. The organism is therefore fully compressible to its DNA and the environmen-
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tal rules, implying that the final organism is of the same complexity as the code it is described

by, according to Kolmogorov complexity [105]. With this we have shown a framework for how

to understand the developmental process from a single gene to a fully assembled organism. Of

course this framework is a first attempt and might not hold true down to every detail of molec-

ular biology but it is a good first attempt at a framework for how to think about development.

Having explained the biological framework, this left us at a point where we understand

development as a process. This allowed us to make one step further to abstract away the

principles of construction from the biology into an engineering principle (see chapter 5). We

describe the new Developmental Programming paradigm that defines how a system has to be

designed in order to be programmed to exhibit developmental-like construction, also known as

self-construction. We explain the Developmental Programming paradigm with the example of

G-Code, the language that was developed in order to simulate the cellular behavior in Cx3Dp

[213]. Each such system needs an environment, a container (cell like structure) and machines

that govern the behavior of the containers, where a container is a localized structure in the

environment and the machines are the agents controlling the container and interacting with the

environment through the container. This design does not allow for a global controller but only

for many local ones nested in the containers. The machines are based on primitives that can

be assigned to one of eight different categories that range from inter-container communication

(read/write/filter) to behavioral instantiation (activate/terminate) to proliferation of containers

(replicate/eliminate) and for displacement in the environment. One of the most important

categories is the replication category. Replication must copy the container of the machine that

is executing a primitive of this category. But replicate must define the new state of the emerging

two containers that do not necessarily need to be the same following the natural process of

replication that can also put cells after a division in completely different states. This process

is very important since it allows for very controlled symmetry breaking in the developing or

self-constructing system. With a system of this type, it is ensured that a programmer of the

system is able to make use of the advantages of self-construction. Programs written in a language

following the Developmental Programming paradigm are automatically fully parallel executable,

locally controlled rather then globally, allow for self-repair, have no single point of failure, self-

construct without needing interaction with a human, and exhibit potentially exponential growth

in computing power. Especially the last point could be of great interest. If a highly parallel

computational substrate were available, an implementation of the Developmental Programming

paradigm would allow for fast spreading of the computation. Or assuming a system with self-

replicating containers exists and implements the Developmental Programming paradigm, the

system could create its own computing substrate and thereby allow for exponentially growing
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computational power. By defining a new programming paradigm we followed the suggestions of

Roth [159] who asks for a higher level language for doing self-construction. With this paradigm

we provided a description on how such languages have to be implemented. In addition our

work is comparable to the work of von Neumann in which he gave the first description of a self-

replicating universal machine [194]. He defines all the steps necessary to achieve self-replication

but then does not explain how to organize the self-replicated entities such that they work towards

a common global goal.

Languages following the Developmental Programming paradigm are Turing complete, like

languages of the functional and the object-oriented paradigms. The differences of these two

paradigms to the Developmental Programming paradigm have been pointed out. Whereas in

object-orientation the object is the central point of abstraction, in Developmental Programming

it is the machine or thee behavior of the container. All the objects in the Developmental

Programming paradigm are already given, they are the containers. Only the emerging structure

or sub-structure can be seen as another object and this is completely built out of containers.

As Roth already mentioned, a need for patterns arises for the Developmental Programming

paradigm, much like the patterns for object-oriented programming [68]. These will have to be

defined in the future and are not part of this thesis, but a few examples were given of what kinds

of patterns could be worked out. With the current developments in synthetic biology where we

are on the verge of being able to program cells, the need for programming in a developmental

oriented way will arise sooner or later [71]. Additionally current chip designs go in the direction of

having more and more cores that work in parallel and become more like decentralized networks,

as is the case in the SpiNNaker project currently [102]. These decentralized networks of cores

will have to be instructed in a way that is not globally controlled, which creates an opportunity

for using the Developmental Programming paradigm because it achieves an organized structure

in a decentralized way. Of course there are also the obvious candidates such as nano-robots, large

sensor networks and smart dust that need to be instructed such that the individual elements

work together as a whole. Achieving global behavior through local interaction is preferable

rather than having a global controller that controls each entity separately. Furthermore, as

soon as it is possible to have any kind of physically self-replicating programmable entities, the

developmental programming scheme is the obvious choice for creating a construction process.

Developmental programing can be of use even today: large clusters, clouds and other large

computer networks could be integrated into a virtual environment that is built such that it

supports the Developmental Programming paradigm. Developmental programing would allow

for the integration of these networks into a big artificial ‘organism’ with local communication

only, no global control, and completely distributed, but the system would still exhibit a coherent

global behavior.
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Lastly we have created a parallel implementation of Cx3D [211] that is called Cx3Dp (see

chapter 6). We have shown the simulation of a self-constructing cortex with more than two

million compartments (see chapter 3). To simulate such large systems would not have been

possible without the extension of the Cx3D software package to a fully parallel system. Cx3D

was a single-threaded simulator of tissue growth that was capable of growing tissue on the size

of thousands of neurons. In order to be able to simulate large scale tissue growth such as our

model of cortical growth that we describe in this thesis we had to extend Cx3D to run in parallel

to handle such big systems in reasonable time. To achieve this goal the basic structure of Cx3D

was reimplemented such that all the computation can be executed on the cellular compartments

separately. For that, the underlying spatial structure that gives the neighbor relationships of

the cell compartments in space that was implemented using a Delaunay triangulation had to

be reimplemented as an octree. The octree scales much better for multi-computer systems. We

explain what we see to be the main challenges in parallel programming, namely the challenge

of processing power, the challenge of memory access and the challenge of communication. The

challenge of processing power is to use as many CPU cycles as possible for the actual simulation

while wasting as few cycles as possible on waiting. In an ideal case, all the CPUs would be

maximally busy with processing the simulation. We showed that using a concurrent system,

Cx3Dp can exploit the multi-core architectures that are expected to increase further the numbers

of cores per processor. The memory challenge is about having the data as close as possible to

its processing core, with current trends RAM will grow even further in the future and we would

expect to have ever larger amounts of memory available on local machines. If the data is on

another machine or on a slow medium like the hard drive, CPU cycles will be lost by waiting

for the data to be transferred to the processing core. The last challenge is communication

between multi-computer nodes. Communication takes time, ideally as little as possible should

be transferred between the different computer nodes. If the communication of shared data

between computer nodes is too slow, CPU cycles will be lost on waiting for the data to arrive

at the processing cores.

Cx3Dp was compared to state of the art parallel systems such as Neuron [85], Gadget-2 [175]

and NAMD [136] that are not related to tissue growth but face the same challenges of how to

parallelize simulations. For nearly all parallel systems the MPI framework [55] is used, or a

similar framework such as ProActive [35]. We deliberately used none of these systems because

they posed serious limitations for Cx3Dp. For example with MPI we would need to create a

separate process for each core and that would have meant a lot of overhead (JVM, shipping

memory between the processes etc.). We prefer the more light-weight threads that all have

access to the same memory and can all be run in the same process. In general we wanted to

have the maximal control over the system to define optimal connection schemes, for debugging
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and to be more independent of third-party software. Therefore we did not rely on any other

framework than Java itself for Cx3Dp. It was explained that Cx3Dp uses a scheduling scheme

that works in three phases and overcomes with this the need for interlocking between the threads

to access data. First a data gathering phase is performed for each thread (read), then the future

values of the variables are computed (compute) and lastly these values are applied to the data

in the system (write). With this three phase protocol read and write do not overlap and that

saves a lot of thread interlocking problems. Finally we explain that we can with this scheme

reach a parallelizable degree of execution in the 99.9% range allowing therefore nearly all the

computationally heavy code to run in parallel. In Cx3Dp the computational tasks are spread

to all of the computers dynamically. This distribution of computational tasks is done via a

balancing scheme that checks how busy a computer is compared to its neighbor. The balancing

will be done locally between the computers for the complete system. It can be viewed as if the

computational tasks diffuse one dimensionally between the computers. The balancing strategy

directly addresses the three challenges of parallel computing. Following this strategy lets the

computers keep an equilibrium of speed so that all of them finish one computation step of the

system in nearly the same time, minimizing therefore the waiting time between computers. The

balancing automatically keeps the data that has to be computed close to the processors that

compute it. The balancing addresses the processing power and the memory challenges. Further

communication is only done with neighboring computers (maximally two) and we only com-

municate the necessary data to the neighboring computers. This strategy addresses therefore

the communication challenge. In the future it would be interesting to see how Cx3Dp runs

on a cluster machine, another possibility still remaining is to include electrophysiology and to

further optimize the data structures of Cx3Dp in order to achieve faster simulations. In terms

of reporting, we imagine more dynamical ways of loading reporting structures into the running

systems that can be loaded on demand. If all aspects of the simulation were to be reported on

at once, the reporting would take even longer than the simulation step itself.

With this we conclude this thesis. We have shown a growth model for mouse cortex areas

3 and 6 that follows the known literature and the biophysical constraints of development, and

that can construct a cortex in a self-constructing way (see chatper 3). We deduced from this

modelling experience a theory for how biology can achieve self-construction (see chapter 4).

From this we deduced a theory of self-construction as an engineering technique that we call the

Developmental Programming paradigm (see chapter 5). Lastly we gave an overview of the tool

Cx3Dp that enabled us to simulate the cortical model on the required scale (see chapter 6).
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Appendix A

The New G-Code

In chapter 2 we described the original G-Code. The actual implementation was done in Java.

In the original implementation of G-Code, the primitives are each implemented as an objects.

Each primitive has input and output ports that read in values from other primitives and write

out values to other primitives. These primitives (objects) can be combined with links that are

unidirectional, these are basically single-valued containers that forward a value output by one

primitive to the input of another. Each primitive could have certain properties which could be

set, for example in the primitive replicate, one could define which new machines are to be started

in the new cell after replication. The machine was also a class that could contain multiple of

these primitives and links, both had to be registered with the machine. This is depicted in

figure A.1. Machines could be reused as primitives in other machines. The G-Code language

was written for Cx3D.

A.1 Issues with the Old G-Code Implementation

There where a few issues with the old implementation. The coding of machines was done either

directly in Java or in an XML form. Both ways of coding were very inconvenient and led to

enormous files. There was no checking of data types, no autocompletion for fast writing and

when giving wrong arguments to a primitive in the code it was not always corrected. There was

no support from an integrated development environment like Eclipse that is really essential for

writing code fast. Using objects for the primitives also had another disadvantage on debugging

as it was hard to find the source of an error since type checking was not done. So errors that

could have been seen at the compilation stage only showed up at runtime, which was a very

unpleasant experience for the G-Code programmer. The objects had in addition the runtime

problem of being extremely slow because of the immense call depth of functions to communicate
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Primitive A

Output

Output

Input

Primitive B

Output

Input

Input

Machine 1

Figure A.1. A typical machine that has two primitives with input and output ports.
Primitive A is connected to primitive B and feeds information to primitive B. This is how the
old G-Code was directly implemented. Each of the primitives, input/output ports and links
between the ports were Java objects.

between objects. Since machines could run in the soma and in the growth cones there were

two different implementations intermixed in one primitive. For example move would have to

execute completely different code for growth cones or somas. Some of the primitives had a

multitude of functionality, for example morph was used to change volume, change mass and any

other physical property, all at once. This made some of the primitives overly powerful. Due

to all these problems, many programmers chose to circumvent G-Code by building additional

high level machines directly in Java and one could therefore no longer be sure whether they

complied with G-Code’s principle of locality and what cells in Cx3D should be able to do. A

new implementation had to be found that solves these problems.

A.2 The New Implementation

The new implementation of G-Code uses an abstract Java class Machine as its base machine. For

a derived class the method to be implemented is the run method. This run method describes

the machine and is its actual implementation. The abstract Machine class provides all the

primitives as functions, overloading is used to handle primitives with multiple input and varying

parameters. All the parameters that had been properties of the primitive before have been

merged into the call of the primitive. Primitives that served multiple purposes such as morph
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have been taken apart into different functions. Functions either return a value when they

are supposed to deliver information into the machine (reading primitives) or do not return

values (writing primitives) but change the state of the cell or the environment. In order to

distinguish between somas and growth cones, the Machine class has been derived further to

produce an abstract class SomaMachine and an abstract class NeuriteMachine. SomaMachine

implements all the primitives from a soma point of view whereas the NeuriteMachine implements

the primitives for the growth cone. The modified primitives are is shown in table 5.1 where they

are also sorted into the categories of the Developmental Programming paradigm.

Since G-Code is very Java like it can be edited in an integrated development environment like

Eclipse, but this comes with the problem that all Java code would be valid in the run method of

machines. To prevent this problem as much as possible before compilation, the primitives only

accept data types that are specified separately as classes. G-Code specific data types allow for

control over how data can be manipulated. Furthermore, to prevent any control of the machine

from the outside, all the functions of primitives are private and therefore are only accessible from

the run method. Since it would still be possible to write Java code that does not interact directly

with the machines, a code checker was written that makes sure that only G-Code compliant code

is written in the machines.

One of the problems with this way of coding the machines is that we lose the ability to

directly reuse a Machine in another machine. Reuse is now only possible trough subroutines and

inheritance, which means that certain functionality that is used by the run method is extracted

and moved into a subroutine. This subroutine can be used from another class that extends

the original one by inheritance. This is not ideal but bearable regarding all the advantages of

writing G-Code in this way. The advantages include that it is faster to write, it has integrated

development environment support, data type checking on compilation, very short and readable

code, and debugging directly in the code. The artificial DNA is in theory now the collected code

of all the machines that derive from the original SomaMachine and NeuriteMachine, but it is

usually not as nicely collected as in the XML version.
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Appendix B

Download and Execution

Instructions

All the code that has been produced for this thesis can be downloaded from

http://www.ini.uzh.ch/˜haurian/workspace.zip. In order to run the code, workspace.zip has to

be unpacked. Then eclipse can be used to open the unpacked directory as a workspace (eclipse

can be downloaded from: http://www.eclipse.org/downloads/.)

The main simulation, the one that is described in chapter 3 and appendix C, can be executed

by running the main program ‘Launch’ (package: ini.Cx3D.simulations.fred.ctx).

The programs in chapter 6 can be executed by running the main programs in the package

Cx3DpPaperSim.
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Appendix C

Machine Description

In this appendix we describe the G-Machines that are necessary in order to achieve an inter-

laminar connection between the layers of the modelled cortex. This appendix is an extension of

chapter 3.

Layer 5 Pyramidal Cells

The differentiation machine of layer 5 will start the basal dendrite outgrowth G-Machine(BasalDendrite),

start an apical dendrite outgrowth G-Machine(P5ApicalDendriteMain) and an axonal outgrowth

G-Machine(PyramidalAxonMainL5). Along with the PyramidalAxonMainL5 an additional G-

Machine(P5SideOutgrowth) is launched in the same growth cone that controls the outgrowth

of side branches in the appropriate regions. Figure C.1 shows the growth of layer 5 cells as

a cartoon and figure C.2 in simulation. The development of a layer 5 pyramidal cell can be

observed in the following video: http://youtu.be/gTSQbjLjwow ‘Development of a layer 5 pyra-

midal neuron’.

P5ApicalDendriteMain:

• Grow the current dendrite in the direction of the marginal zone.

• Check if it has reached the marginal zone.

– Yes: wait for a while. (Layers 2/3 and 4 might not yet be established.)

– Check whether the marginal zone has in the meantime been pushed upward

– Yes: Grow further up.

• Check if in layer 2/3 and check probabilistically whether to bifurcate
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– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P5ApicalDendriteMain)

• Reduce the diameter

• Check if the diameter is too small

– Yes: stop growing.

PyramidalAxonMainL5:

• Grow in the direction of the subplate

• Check if the growth cone is in reach of a thalamic fiber.

– Yes: fasiculate to it and change the growth mode to fasciculation growth.

– Grow along the thalamic fiber

– Check if the growth has reached the thalamus.

– Yes: stop growing.

P5SideOutgrowth:

• Check if in layer 4 and check probabilistically whether to sidebranch

– Yes: Grow out two to three side branches with G-Machines(P5SideLong)

P5SideLong:

• Grow in the direction of the marginal zone.

• Check if there are no layer 5, 4 or 2/3 cells present

– Yes: wait. (Layers 4 and 2/3 might not yet be established.)

• Check if in layer 4 and check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P5SideLong)

• Reduce diameter

• If the diameter is too small

– Yes: stop growing.
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This PyramidalAxonMainL5 deviates from the biology in that not only thalamus is targeted

by layer 5 pyramidal cells but also the brain stem. These machines produce patches in layer 2/3

and a growth through layer 4 of many sidebranches where the sidebranches do not bifurcate in

layer 4 but only in layer 2/3.

Figure C.1. Cartoon of a mature layer 5 pyramidal neuron with local basal dendrites, an
apical dendrite in layer 2/3, and an axon that grows down to the subplate and projects side
branches to layer 2/3.
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Figure C.2. From top left to bottom right: The development of a layer 5 pyramidal cell,
growing out an initial axon in the direction of the subplate, sending out side branches in the
direction of layer 2/3. The axons bound for layer 2/3 wait at the marginal zone border for the
future layers to appear. The basal dendrites are sent out radially and the apical dendrite grows
in the direction of layer 2/3.



227

Layer 4 Pyramidal Cells

The differentiation machine of the layer 4 pyramidal cells starts the basal dendrite outgrowth

G-Machine(BasalDendrite) and an axon generating G-Machine(PyramidalAxonMain). Along

with the machine PyramidalAxonMain a second G-Machine(P4Side1Outgrowth) is placed into

the growth cone that controls the outgrowth of side branches.

PyramidalAxonMain:

• Grow in the direction of the subplate

• Check if the growth has reached the subplate.

– Yes: stop growing.

P4Side1Outgrowth:

• Check if in layer 4 and check probabilistically whether to sidebranch

– Yes: Grow out two to three side branches with G-Machine(P4Side1) and G-Machine

(P4Side2Outgrowth)

P4Side2Outgrowth:

• Check probabilistically whether to sidebranch

– Yes: Grow out two to three side branches with G-Machines(P4Side2)

P4Side1:

• Grow in the direction of the marginal zone.

• Reduce the diameter

– Yes: stop growing.

P4Side2:

• Grow in the direction of the marginal zone.

• Check if the marginal zone is reached

– Yes: wait. (Layer 2/3 might not yet be established and the marginal zone is not

growth permissive for this axon.)
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• Reduce the diameter

• Check if the diameter is too small

– Yes: stop growing.

• Check if layer 2/3 cells are detected and check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine(P4Side2)

In figure C.3 we show a cartoon of a layer 4 cell and figure C.4 shows a simulation of a layer

4 pyramidal cell that is growing. The development of a layer 4 pyramidal cell can be observed

in the following video: http://youtu.be/qIh1jlqzZgM ‘Development of a Layer 4 Pyramidal

Neuron’.

Figure C.3. Cartoon showing a mature layer 4 pyramidal cell projecting to layer 2/3 with
axonal side branches, and with the main axon growing down to the subplate. The apical
dendrite projects to layer 2/3 and a basal dendrite arborizes locally.
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Figure C.4. From left to right: The outgrowth of a layer 4 pyramidal cell with local basal
dendrites growing out. The cell is sending out an axon in the direction of the subplate that
branches in layer 4 and projects to layer 2/3.
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Layer 2/3 pyramidal cells

The layer 2/3 pyramidal neuron outgrowth pattern is started by the differentiation G-Machine

of this type. This G-Machine(BasalDendrite) grows out the basal dendrite as described previ-

ously, an apical dendrite G-Machine(P23ApicalDendrite) is created and an axon is grown in the

direction of the white matter by the G-Machine(PyramidalAxonMain).

P23ApicalDendrite:

• Grow the current dendrite in the direction of the marginal zone.

• Reduce the diameter

• Check if the diameter is too small

– Yes: stop growing.

• Check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P23Side23)

• Check if marginal zone cells or Layer 2/3 cells are present

– Yes: stop growing.

The down growing axon is driven by the PyramidalAxonMain G-Machine (the same as in the

Layer 4 Pyramidal cells) using additionally the P23Side23Outgrowth and P23Side5Outgrowth

machines in the same growth cone to produce side branches in layers 2/3 and 5.

P23Side23Outgrowth:

• Check if in layer 2/3 and check probabilistically whether to grow out

– Yes: grow out two to three side branches containing G-Machine(P23Side23) in the

growth cone

P23Side5Outgrowth:

• Check if in layer 5 and check probabilistically whether to grow out

– Yes: grow out two to three side branches containing G-Machine(P23Side5) in the

growth cone
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P23Side23:

• Grow in the outgrowth direction.

• Check if layer 2/3 has been left

– Yes: stop growing.

• Reduce the diameter.

• Check if the diameter is small enough and check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P23Side23)

• Check if the diameter is too small.

– Yes: stop growing.

P23Side5:

• Grow in the outgrowth direction.

• Check if layer 5 has been left

– Yes: stop growing.

• Reduce the diameter.

• Check if the diameter is small enough and check probabilistically whether to bifurcate

– Yes: bifurcate and create two new growth cones containing instances of G-Machine

GM(P23Side5)

• Check if the diameter is too small.

– Yes: stop growing.

The recursive calls to P23Side23 and P23Side5 produce patches at a certain distance from

the main trunk due to the waiting time until the diameter of the axon is small enough. P23Side5

works like P23Side23 except that it reduces the diameter faster and that it needs layer 5 cells

around to grow. This results in layer 5 innervation that has shorter side branches than layer 2/3

and therefore less innervation. The development of a layer 2/3 pyramidal cell can be observed

in the following video: http://youtu.be/unD0BqpcDq0 ‘Development of a Layer 2/3 Pyramidal

Neuron’
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Figure C.5. A cartoon showing a fully grown layer 2/3 pyramidal cell that has projected an
apical dendrite to layer 1. Its axon has grown down to the subplate and it has projected to
layer 2/3 and layer 5 with each projection having a patch at the end.
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Figure C.6. From left to right: The outgrowth of a layer 2/3 pyramidal cell, its axon growing
down to the subplate, projecting side branches in layer 2/3 and in layer 5 creating patches
away from the main trunk. It sends out an apical dendrite that projects to the marginal zone
or future layer 1.
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Layer 2/3 Basketcell (Interneuron)

The layer 2/3 interneurons will settle into the cortex after their migration tangentially into

the cortex. This tangential migration G-Machine starts the differentiation G-Machine of the in-

terneurons in layer 2/3 after nesting. The differentiation G-Machine will start the basal dendrite

outgrowth G-Machine (BasalDendrite) and an axonal growth G-Machine (Bas23StemDown).

The same growth cone also contains a G-Machine(Bas23HorizontalOutgrowth) that will create

side branches.

Bas23StemDown:

• Grow out in the direction of the marginal zone.

• Grow in the direction of the subplate

• Check if the growth has reached the subplate cells

– Yes: stop growing.

• Check if layer 6 cells are detected

– Yes: stop the G-Machine in the growth cone and replace it with the G-Machine

GM(Bas23BasketPatch6).

Bas23HorizontalOutgrowth:

• Grow out four to five side branches where the growth cones contain the G-Machine

GM(Bas23BasketPatch23).

• Grow out three side branches where the growth cones contain the G-Machine(Bas23Horizontal).

Bas23BasketPatch23:

• Grow in the outgrowth direction.

• Check if layer 2/3 has been left

– Yes: stop growing

• Check probabilistically whether to stop growing:

– Yes: stop growing

• Check probabilistically whether to bifurcate
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– Yes: bifurcate and start two new growth cones with G-Machine(Bas23BasketPatch23)

containing an increased probability to stop growing.

Bas23Horizontal:

• Grow in the outgrowth direction.

• Check if layer 2/3 has been left

– Yes: stop growing

• reduce the diameter.

• Check if the diameter is too small.

– Yes: stop the G-Machine and replace it with G-Machine(Bas23BasketPatch23)

Bas23BasketPatch6:

• Grow in the outgrowth direction.

• Check if layer 6 has been left

– Yes: stop growing

• Check probabilistically whether to stop growing

– Yes: stop growing

• Check probabilistically whether to bifurcate

– Yes: bifurcate and start two new growth cones with G-Machine(Bas23BasketPatch6)

containing an increased probability to stop growing.

The discrepancy between outgrowth direction and growth direction allows the cells to create

a looping structure at the beginning of the axon. The two axonal patch generating G-Machines

Bas23BasketPatch6 and Bas23BasketPatch23 are essentially the same, just intended for other

layers to create a patchy structure through recursion.
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VZ

Subplate
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II/ III
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Figure C.7. An interneuron of layer 2/3 with a local basal dendrite and an outgrowing axon
that projects to layer 4.
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