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Computing seismic fragility curves using polynomial chaos expansions

B. SUDRET & C. V. MAI
ETH Zürich, Institute of Structural Mechanics, Chair of Risk, Safety & Uncertainty Quantification
Wolfgang-Pauli-Strasse 15, CH-8093 Zürich
email: sudret@ibk.baug.ethz.ch

ABSTRACT: Fragility curves are commonly used in civil engineering to estimate the vulnerability of struc-
tures to earthquakes. The probability of failure associated with a failure criterion (e.g. the maximal inter-storey
drift being greater than a prescribed threshold) is represented as a function of the intensity of the earthquake
(e.g. peak ground acceleration or spectral acceleration). Computing fragility curves relies upon running a large
number of transient dynamic (possibly non linear) analyses using a set of synthetic or measured ground motions.
In this paper we introduce sparse polynomial chaos expansions as a way to reduce the associated computational
burden. Non stationary synthetic ground motions are generated using a method recently proposed by Rezaeian
& Der Kiureghian, which is based on modulating a filtered Gaussian white noise process. Sparse PC expan-
sions of the structural response are computed from a relatively small (e.g. 1,000) set of accelerograms and
post-processed in order to evaluate the fragility curves. The approach is compared to the classical curves de-
rived under the assumption of log-normality. For linear structures the lognormal assumption is validated by our
calculations and the classical approach is improved using some analytical derivations. The various approaches
are illustrated on a typical 3-storey building using the finite element software OpenSees.

1 INTRODUCTION

Fragility curves are commonly used in seismic prob-
abilistic risk assessment in order to estimate the vul-
nerability of structures to earthquakes, e.g. the prob-
ability that a structure fails to fulfil a safety criterion
during the ground motions. The probability of fail-
ure associated with a failure criterion (e.g. the maxi-
mal inter-storey drift being greater than a prescribed
threshold) is represented as a function of the inten-
sity of the earthquake (e.g. peak ground acceleration
(PGA) or spectral acceleration (SA)) [7]. Fragility
curves have become an increasingly popular tool in
the recent years for assessing the safety of various
types of structures such as nuclear power plants [18],
bridges [5], buildings [17] or wind turbines.

From the mathematical point of view, a fragility
curve represents the conditional probability that a pre-
scribed threshold is exceeded given the intensity of
an earthquake. The classical approach to compute
fragility curves consists in assuming that the curves
have a lognormal shape [7, 18], and their parameters
are determined by linear regression. This assumption
can ease the estimation of the curves, but also leads to
a large epistemic uncertainty when used with a lim-
ited set of data.

The computation of fragility curves based on

Monte Carlo simulation (e.g. Incremental Dynamic
Analysis (IDA) in Vamvatsikos and Cornell [16]) re-
quires a large number of transient dynamic analysis
of the structure under seismic excitations, that are ei-
ther recorded or synthetic. Due to the lack of recorded
signals with the properties of interest (e.g. magnitude,
duration, etc.), it is common for researchers to gen-
erate suitable samples of synthetic earthquakes. Both
the generation of a large number of signals and the
transient dynamic analysis of the structure subject to
them are highly time-consuming. Sparse polynomial
chaos expansions (PCE) [3, 4] is therefore an attrac-
tive option to limit the number of transient analysis
and to better take advantage of the results. In this pa-
per we demonstrate the use of PC expansions to es-
tablish fragility curves without assuming a particu-
lar shape. The paper is organized as follows: In Sec-
tion 2, the approach recently proposed by Rezaeian
& Der Kiureghian to generate synthetic earthquakes
is briefly recalled. Then the principle of PCE is de-
scribed in Section 3. In Section 4, the fragility curves
obtained with and without PCE are compared, and a
contribution to classical “lognormal”approach is pro-
posed on the basis of the obtained results.



2 SEISMIC GENERATION

In this section, we summarize the parameterized ap-
proach proposed by Rezaeian and Der Kiureghian
[13] in order to simulate synthetic ground motions.
The seismic acceleration is represented as a non-
stationary process. Der Kiureghian and Rezaeian
separate the non-stationarity into two components,
namely a spectral and a temporal one, by means of
a modulated filtered Gaussian white noise:

a(t) =
q(t,α)

σh(t)

t∫
−∞

h [t− τ,λ (τ)]ω(τ) dτ (1)

in which q(t,α) is the deterministic non-negative
modulating function and the quantity inside the brack-
ets is the stationary response of a linear filter subject
to a Gaussian white noise excitation.

The Gaussian white-noise process denoted by ω(τ)
will pass a filter h [t− τ,λ(τ)] which is selected as an
impulse-response function:

h [t− τ,λ(τ)] = 0 for t < τ

h [t− τ,λ(τ)] =
ωf (τ)√
1− ζ2

f (t)
exp [−ζf (τ)ωf (τ)(t− τ)]

× sin
[
ωf (τ)

√
1− ζ2

f (τ)(t− τ)
]

for t ≥ τ

(2)

where λ(τ) = (ωf (τ), ζf (τ)) is the vector of time-
varying parameters of the filter h. ωf (τ) and ζf (τ)
are the filter’s natural frequency and damping ratio
at instant τ , respectively. They represent the evolving
predominant frequency and bandwidth of the ground
motion. The statistical analysis of real signals shows
that the ζf (τ) may be taken as a constant (ζf (τ) ≡ ζ)
while the predominant frequency varies linearly in
time:

ωf (τ) = ωmid + ω′(τ − tmid) (3)

in which tmid is the instant at which 45% of the ex-
pected Arias intensity Ia is reached, ωmid is the fil-
ter’s frequency at instant tmid and ω′ is the slope of
linear evolution. After being normalized by the stan-
dard deviation σh(t), the integral in Eq. (1) becomes
a unit variance process with time-varying frequency
and constant bandwidth.

The non-stationarity in intensity is then captured by
the modulated function q(t,α). This time-modulating
function determines the shape, intensity and duration
T of the signal. A Gamma-like function is usually
used:

q(t,α) = α1t
α2−1exp(−α3t) (4)

where α = (α1, α2, α3) is directly related to the fol-
lowing characteristics of the signal, namely the ex-
pected Arias intensity Ia, the duration of the strong
motion phaseD5−95 between the instants at which the
5% and 95% of Ia are reached, and the instant tmid.

The acceleration in Eq. (1) can be discretized as
follows:

â(t) = q(t,α)
n∑
i=1

si (t,λ(ti)) Ui (5)

where the standard normal random variable Ui repre-
sents an impulse at instant ti = i× T

n
, i = 1, . . . , n,

(T is the total duration) and si(t,λ(ti)) is given by:

si(t,λ(ti)) =
h [t− ti,λ(ti)]√∑i
j=1 h

2 [t− tj,λ(tj)]
(6)

As a summary, the proposed model consists of 3
temporal parameters (α1, α2, α3), 3 spectral parame-
ters (ωmid, ω

′, ζf ) and the standard Gaussian random
vector U of size n.

In this study, we generated the accelerograms with
deterministic parameters {α1, α2, α3, ωmid, ω

′, ζf} .
However, due to the Gaussian white-noise processU ,
the resulting synthetic signals have different trajecto-
ries and effects on the structure.

3 POLYNOMIAL CHAOS EXPANSIONS

Consider a mechanical system described by a compu-
tational modelM(U). In civil engineering,M is usu-
ally a black box program solving a set of partial dif-
ferential equations, e.g. a finite elements code. Let us
assume that the input vector U has n independent in-
put random variables U1, ...,Un with prescribed joint
probability density function fU . Polynomial chaos ex-
pansion (PCE) aims at representing the functionM(.)
onto a suitable orthonormal basis {ψα(U), α ∈ Nn}
as follows:

M(U) =
∑
α∈Nn

aαψα(U) (7)

In this equation the ψα(U)’s are multivariate or-
thonormal polynomials (w.r.t the probability measure
associated with fU ) and aα’s are the deterministic co-
efficients to be computed. In the present application
the ground motions are simulated using a set of stan-
dard normal random variables (Eq.(5)). The associ-
ated polynomials are the so-called Hermite polynomi-
als. In practice a truncated series is used, for instance
by retaining only those polynomials whose total de-
gree is smaller than or equal to p. When using such
a truncation scheme the number of unknowns of the
problem is:

P =
(n+ p)!

n!p!
(8)



when n is the size of the input random vector. The co-
efficients may be computed by solving a mean-square
minimization problem [1]. However the number of
unknowns dramatically increases with n and makes
such a direct approach intractable for large n, which
is the case here since earthquake signals need typi-
cally a few hundred random variables for an accurate
representation.

Fortunately large-dimensional problems often obey
the “sparsity of effect” principle meaning that not
all input variables have a significant impact on the
model output. This idea has lead to the development
of sparse polynomial chaos expansions [2, 3]. In par-
ticular the least angle regression algorithm (LAR) [8]
allows one to find directly the non zero coefficients in
a given expansion and leads to sparse solutions. This
algorithm may be used with fixed or adaptive exper-
imental designs [3] and with scalar or vector output
quantities when used together with principal compo-
nent analysis [4].

4 PC EXPANSIONS OF INTER-STOREY
DRIFTS

4.1 Problem statement

In this section, we use polynomial chaos expansions
together with transient finite element analysis in or-
der to evaluate the fragility curve of a 3-storey 3-span
steel frame structure with the following dimensions:
storey-height H = 3 m, span-length L = 5 m. The
considered frame is supposed to have a linear elas-
tic behavior. The Young’s modulus of steel is equal to
E = 205,000 MPa, and the Poisson’s ratio is ν = 0.3.
The loading consists of dead-load (from the frame el-
ements as well as the supported floor), and variable
load in accordance with Eurocode 1.

L
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H

a(t)^
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Figure 1: Steel frame structure

The structure is subject to ground motions mod-
eled by the time-history of acceleration at the ground
level. According to the model described in Section
2, the following values are used: α1 = 4.2 10−4,
α2 = 5.5576, α3 = 0.3192, ωmid = 40.05 rad/s, ω′ =
−0.5279 rad/s, ζf = 0.1985. Each ground motion is

modeled by an input vector U made of 500 indepen-
dent Gaussian random variables Ui. The resulting sig-
nals will have similar spectral content, total duration,
shape and effective duration (Figure 2 ). Using such a
representation, the range of the peak ground acceler-
ation (PGA) is from 1.3 to 4.3 m/s2.
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Figure 2: Seismic signal generated from a particular realization
of 500 random variables Ui

In this study, the PGA is used as an intensity mea-
sure to plot fragility curves and the admissible max-
imal inter-storey drift is denoted by δ0. The differ-
ent values of δ0 define the level of damage that the
structure suffers if the maximal inter-storey drift ∆
exceeds the criterion δ0, e.g. slight damage if ∆

δ0
≥ 1

400

or severe damage if ∆
δ0
≥ 1

150
. We first run a set of

1,000 transient dynamic analyses using the finite ele-
ment code OpenSees [11]. From these 1,000 runs, we
built the metamodel of the time-history inter-storey
drift δk (ti) for story k = 1,2,3 at instants ti varying
from 5 s to 30 s with time step dt = 0.02 s. This leads
to the computation of 3753 sparse PC expansions.

Once the PC expansions are obtained, they
are post-processed by Monte Carlo simulation us-
ing N = 105 samples, say

{
uj, j = 1, . . . ,N

}
.

For each realization, we compute the maximal
inter-storey drifts ∆ (u0) = max

k=1,2,3
max
ti∈[5,30]

|δk (ti, u0) |

caused by the ground motions â (t, u0). The
pairs

{(
PGA

(
uj
)
,∆
(
uj
))
, j = 1, . . . ,N

}
were

collected and postprocessed following different ap-
proaches to establish the fragility curves. The data
from 1,000 original runs were also used in the classi-
cal approach based on a lognormal assumption.

4.2 PCE for instantaneous response

Let us consider first the PCE of instantaneous inter-
storey drifts for the 3 stories at different instants, e.g.
10 s, 20 s, 30 s. To validate the metamodels, a new set
of 50 input vectorsU was generated. The correspond-
ing inter-storey drifts were then calculated using both
the finite element model and the PC expansion for val-
idation purpose. The results are compared in Figure 3.

The quality of the PC expansion is measured by the
leave-one-out Q2 estimate (see [2] for details). Figure
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Figure 3: Prediction of the first inter-storey drift at t=20 s

3 shows the accuracy of the PC metamodel for the first
story drift at t=20 s. The mean-square error is equal
to 1−Q2 = 5.10−3. The final basis obtained by Least
Angle Regression happens to contain first order poly-
nomials only, which already ensure a high accuracy
of the approximation. The explanation can be found
in Figure 4: the PDF of the instantaneous inter-storey
drift is indeed a Gaussian distribution. This explains
why the instantaneous drift can be approximated with
a first order polynomial function of the input vector
U . This was expected since the seismic signals have
deterministic temporal and spectral content, i.e. at ev-
ery instant, the signal is a linear combination of Gaus-
sian random variables Ui, see Eq. (5). As a conse-
quence, the response of a linear system to a zero-mean
Gaussian process is a zero-mean Gaussian process. In
conclusion, under our current assumptions the instan-
taneous drift is normally distributed, and the proposed
PC expansion scheme perfectly captures this feature.
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Figure 4: Probability density function of the first inter-storey
drift at t=20 s from PCE-based prediction (105 samples of the
PCE) and Gaussian distribution

4.3 Sensitivity analysis: structural “memory”

In this section we investigate the role of each sin-
gle input random Ui variable (used for representing
the ground motion) onto the instantaneous drift of
the structure. For this purpose, let us introduce the
so-called Sobol’ indices [14]. The first-order Sobol’
index Si, i = 1, . . . , n corresponds to the fraction of

the variance of the output quantity (here, the instan-
taneous drift) that may be attributed to input variable
Ui. Higher order indices Si1, ... ,ik represent the joint ef-
fect (interactions) between variables {Ui1 , . . . ,Uik}.
It has been shown in Sudret [15] that the Sobol’ in-
dices can be computed as a mere post-processing of
the PC expansion when the latter is available.

As an example here we compute the Sobol’ indices
of the instantaneous drift at t0 = 20 s (Figure 5). For
causality reasons this drift cannot depend on the part
of the input signal that is posterior to t0: the cor-
responding indices are indeed exactly equal to zero.
However, the drift does not depend either on the vari-
ables that were related to the very first time instants
of the earthquake, since the corresponding indices are
also equal to zero. The analysis of these indices for
different time instants has shown that, whatever t0,
the instantaneous drift only depends on about 50 vari-
ables corresponding to the time instants ti (in the
sense of Eq.(5)) such that t0− 5 s≤ ti ≤ t0. As a con-
clusion, each instantaneous response depends only on
50 Gaussian variables instead of the whole 500 vari-
ables (this subset of 50 variables depends of course
of t0). This remark helps to considerably reduce the
number of basis terms considered in the LAR proce-
dure as well as the time needed for computing the as-
sociated coefficients.
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Figure 5: Sobol’ indices of drift at t0 = 20 s to random variables
Ui, i = 1, . . . ,M

As described above (Figure 2), the range of PGA
obtained through our simulations is [1.3 - 4.3 m/s2],
which is not large enough for establishing the fragility
curves in practical applications. In order to obtain a
larger range of PGA, we scaled the synthetic seismic
signals by a factor Usc which follows a uniform distri-
bution on the support DUsc = [0.1,6]. We built a new
PCE metamodel to predict the responses to scaled ex-
citations. Due to the linear behavior of the structure,
at any considered instant, the drift is expected to be
the product of the scale factor Usc and the linear com-
bination of Gaussian variables Ui. It means the drifts
can be correctly surrogated by second order polyno-
mial functions.



4.4 PCE for the drift time history

For establishing fragility curves, we need to com-
pute the maximal inter-storey drift ∆ over time and
storeys, see Eq. (9). However, this max-like quantity
is not a smooth function ofU and not easy to be repre-
sented by PC expansions. Indeed, the maximal inter-
storey drift can occur randomly at different instants
during the different earthquakes. This is the reason
why this quantity does not depends constantly on a
given subvector of U but rather on all components: no
low order polynomial is capable of representing the
maximal drift. As an example, using a PCE of degree
3 to predict the maximal inter-storey drift ∆, we ob-
tained the leave-one-out Q2 estimate equal to 0.8322,
which is rather low. As an illustration, Figure 6 shows
the large discrepancy between the distribution of ∆
as computed from the original 1,000 samples and that
obtained from the PC expansion.
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Figure 6: Maximal inter-storey drift obtained from the original
Finite Element results and by a direct polynomial chaos expan-
sion

However, PCE was shown to be efficient and accu-
rate in predicting instantaneous inter-storey drifts. In
order to obtain a metamodel of the full time-history
of the structural response, we build PCE metamodels
of responses at each instant during the earthquake’s
duration. At each instant, the PCE of the response is
built from the scale factor Usc and the input variables
Ui within 5 seconds before it (this corresponds to 51
input variables). The accuracy of the approximation
was then checked, leading to Q2 ≥ 0.9768. Figure 7
compares the drifts predicted by PC expansion and the
original finite element model for a particular realiza-
tion of the input variables u0, which shows an almost
perfect superposition.

To save time and memory, we considered only the
strong motion phase (i.e. from 5 s to 30 s). Unlike the
intrusive approach mentioned in e.g. [9], where the
PCE fails to represent the solution after a certain time
because of the accumulated error in long time inte-
gration, no deterioration was detected here since PC
expansions are built at each time instant separately, a
feature that is only possible because of the low effec-
tive dimension of the problem (only 50 variables) and
the very efficient LAR algorithm.
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Figure 7: Time-history inter-storey drift of first floor: FE analysis
vs PC expansion

5 COMPUTATION OF FRAGILITY CURVES

Fragility curves represent the probability of failure
given the intensity of an earthquake. In this paper, it
is the conditional probability that the maximal inter-
storey drift ∆ exceeds the admissible threshold δ0

given PGA:

Frag(PGA) = P[∆ ≥ δ0|PGA] (9)

5.1 Classical approach

The classical approach to establish fragility curves
consists in assuming a lognormal shape for the
curves. More specifically, the maximal inter-storey
drift ∆ is modeled by the lognormal distribution in
which the log-mean value λ is a linear function of
PGA:

ln ∆ ∼ N (λ, ζ) λ = A ln (PGA) +B (10)

Parameters A and B are determined by means of lin-
ear regression in a log-log plot, as shown in Figure
8. The same approach is widely applied in the litera-
ture, see e.g. Choi et al. [5], Padgett and DesRoches
[12] among others. In this study, the coefficient of
determination R2 of linear regression is 0.95. The
standard deviation ζ is evaluated in accordance with
its definition [10]. Let us denote by ei the resid-
ual between the actual value of the dependent vari-
able and the value predicted by the linear model:
ei = ln ∆i − A ln (PGAi) − B. Then we obtained
ζ2 =

∑m
i=1 e

2
i / (m− 2) withm= 1,000 observations.

In the present case, we obtained the following values
for the parameters: A = 0.9784, B = −7.1585 and
ζ = 0.1994.

The probability of failure in Eq. (9) is then given
by:

Frag(PGA) =P [ln∆ ≥ lnδ0] = 1− P [ln∆ ≤ lnδ0]

=1−Φ

(
lnδ0 − [Aln (PGA) +B]

ζ

)
(11)
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where Φ (t) =
t∫
−∞

e−u
2/2/
√

2πdu is the Gaussian cu-

mulative distribution function. Figure 9 depicts the
fragility curves associated to the different values of
δ0.
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Figure 9: Fragility curves obtained by the lognormal approach

5.2 Empirical approach

Having at hand a large sample set of pairs
{(PGAj,∆j) , j = 1, . . . ,N}, it is possible to use a
non parametric, so-called empirical approach to com-
pute the fragility curve. Let us consider a given ab-
scissa PGAo. Within a small bin surrounding PGAo,
say [PGAo − h,PGAo + h] one assumes that the
maximal drift ∆ is linearly related to the PGA. (Note
that this assumption is exact in the case of linear
structures but would be only an approximation in
the non linear case). Therefore, the maximal drift
∆j ∈ [PGAo − h,PGAo + h] related to PGAj is
converted to the drift ∆o which would be related to
a similar input signal having a peak ground accelera-
tion of PGAo as follows:

∆(PGAo) = ∆j
PGAo
PGAj

(12)

The value of the fragility curve at PGAo is obtained
by a crude Monte Carlo estimator:

F̂rag(PGAo) =
Nf (PGAo)

Ns (PGAo)
(13)

where Nf (PGAo) is the number of observations in
the vicinity of PGAo such that ∆(PGAo) > δo and
Ns(PGAo) is the total number of observations that
fall into the bin [PGAo − h,PGAo + h].

The vicinity is defined by the bin width 2h, which is
selected according to the sample set of observations.
In this study, h = 0.1 m/s2 is chosen. This empirical
approach is close to the incremental dynamic anal-
ysis (IDA) in Vamvatsikos and Cornell [16], except
for this: while using IDA, the failure probability at a
given PGAo is obtained from analyses of excitations
with the exact PGAo, due to the rescaling of the sig-
nals. The data post-processing on the 105 observations
leads to the fragility curves in Figure 10. We also es-
tablished the curves using only 20,000 samples. Fig-
ure 10 shows that resulting curves are consistent with
the curves from 100,000 samples even for the low
probability of failure.

As a summary, although they are prone to some sta-
tistical noise, the curves established by this empirical
approach are stable provided that a sufficient num-
ber of observations in each interval is available. This
is only possible when using a large sample set (e.g.
N = 105) which can only be carried out when a sur-
rogate model is used.
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Figure 10: Fragility curves by empirical approach using
N=100,000 and N=20,000 samples

The curves obtained by the classical and the PC
expansion-based approaches are compared in Figure
11. Due to the accuracy of the PC expansion, the
fragility curves based on a large sample (100,000)
evaluated by PCE can be considered a reliable bench-
mark. The “classical” fragility curve obtained under
the lognormal assumption is then validated in the case
of the elastic structure using the polynomial chaos
surrogate and a non parametric representation of the
results. One should remark that the lognormal curve
becomes slightly less accurate for the more severe
level of damage.
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Figure 11: Comparison of fragility curves from empirical and
lognormal approach

5.3 Modified lognormal approach

Due to the linearity of the system, we can use the
following strategy to compute the conditional prob-
ability in Eq. (9). The seismic signals are scaled to
get a PGA that is equal to a reference value, e.g.
PGAref = 1m/s2 ( the choice of PGAref does not
affect the final curves). The corresponding maximal
drifts are also consistently scaled:

∆(PGA) = ∆ref
PGA

PGAref
(14)

Eq. (9) becomes:

F̂rag(PGA) = P
[
PGA ∆ref

PGAref
≥ δ0

]

= P
[
∆ref ≥

PGAref
PGA

δ0

]
= 1− F∆ref

(
PGAref
PGA

δ0

)
(15)

If we assume that the maximal inter-story drift ∆ref

at PGAref has a lognormal distribution as in Eq. (10),
then Eq. (15) becomes:

F̂rag(PGA) = 1−Φ

 ln

(
PGAref
PGA

δ0

)
− µln ∆ref

σln ∆ref



=1−Φ

(
ln δ0 −

(
lnPGA+ µln ∆ref

− lnPGAref
)

σln ∆ref

)

(16)

where µln ∆ref
and σln ∆ref

are respectively the mean
value and standard deviation of the random variable
ln ∆ref . Comparing Eq. (11) and (16), one can ob-
serve that they are fully consistent provided A = 1,
B = µln ∆ref

− lnPGAref = −7.1946, ζ = σln ∆ref
=

0.2005.

We can then derive the fragility curves using the
lognormal approach with parameters evaluated by
Eq. (16) and a limited number of observations (1,000
in this case). The resulting curves are more consistent
with the empirical ones than the original lognormal
curves obtained by regression.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

PGA (m/s2)

P
ro

ba
bi

lit
y 

of
 fa

ilu
re

 

 

δo = 1/400 δo = 1/200

δo = 1/150

Empirical approach
Classical lognormal
Proposed lognormal

Figure 12: Comparison of fragility curves from PCE and modi-
fied lognormal approach

The proposed approach takes advantage of the lin-
ear behavior in the model, which imposes the unit
value A = 1. Note that Cornell et al. [6] also empir-
cally propose to take this parameter equal to 1.

6 CONCLUSION & PERSPECTIVE

In this paper, polynomial chaos expansions are intro-
duced in the framework of seismic probabilistic risk
assessment to compute the fragility curves of a struc-
ture under earthquake excitation.

Due to the high computational cost, the current
practice relies on a limited number of transient finite
elements analyses as well as a strong assumption on
the shape of fragility curves, e.g. a lognormal cumu-
lative distribution function. Polynomial chaos expan-
sions surrogates the responses of interest, then allow
the computation of responses to numerous excitations
without running new finite elements analyses.

We proved the accuracy of the PCE approach in
predicting the time-history of the inter-story drift of
a linear frame structure subject to seismic excitations
with similar spectral and temporal contents. The com-
parison between PCE-based and “classical” fragility
curves showed that the assumption on lognormal
shapes is correct for this type of structure. Moreover,
the linear regression technique applied to determine
the parameters of lognormal curves leads to accurate
fragility curves in particular for slight damage. We
also proposed a new manner for estimating parame-
ters of the lognormal curves which makes the result-
ing curves more consistent with the MCS-based ones.

However, due to the fact that the PCE of every
instantaneous response needs to be computed, PCE
approach remains costly. Principal Component Anal-
ysis [4] may provide a suitable solution to reduce



the computational costs involved. Further improve-
ments of the method are currently investigated. First
the spectrum of synthetic signals shall be enlarged
for real application without using a scaling factor.
This can be carried out by randomizing the 6 param-
eters {α1, α2, α3, ωmid, ω

′, ζf}. This work is currently
in progress.
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