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Bruno, Sudret
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The art of robust engineering requires to take the random nature of design parameters into account
in order to predict the dispersion of the performance of a structure. When dealing with reducing
this dispersion, one has to identify the parameters the variability of the performance is the most
sensitive to. Global sensitivity analysis (GSA) is a statistical field that aims at identifying and
prioritizing the design parameters that contribute the most to the dispersion of the response of a
model. This quantity is in most cases described by the statistical variance of the model response.
The so-called ANOVA (ANalysis Of VAriance) technique ranks the parameter according the share
of the model response variance they are responsible for.

Let us consider a performance Y described by a physical modelM(X) where X is n−dimensional
random vector with independent components. Such an apportionment of the total variance can be
processed thanks to a functional decomposition of the model M [1] reading:

M(X) =M0 +

n∑
i=1

Mi(Xi) +
∑

16i<j6n

Mij(Xi, Xj) + · · ·+M1...n(X1, . . . , Xn)

=M0 +
∑

u⊆{1,...,n}

Mu(Xu)

(1)

where M0 is a constant and where the components have zero mean and are mutually orthogonal.
This decomposition also holds when dealing with the variance of Y :

V [Y ] =

n∑
i=1

V [Mi(Xi)] +
∑

16i<j6n

V [Mij(Xi, Xj)] + · · ·+ V [M1...n(X1, . . . , Xn)] (2)

The so-called Sobol’ index [2] of a variable Xi is defined by the ratio between the variance of the
component that only depends on Xi and the total variance of Y, namely:

Si =
V [Mi(Xi)]

V [Y ]
(3)

The index Si represents the share of the variance of Y that is due to both the physical role of Xi

in M and its random nature. An index Si close to 1 indicates a strong contribution of Xi to the
dispersion of Y whereas an index close to 0 denotes a weak incidence.

Computing the ANOVA sensitivity indices requires to identify the different component of the
functional decomposition. This task can be achieved by a projection method but the corresponding
computing cost is substantial. On top of that, if the response of the model M is expensive
to evaluate (if M is a FEM code for instance), then performing a sensitivity analysis is almost
inconceivable. In order to circumvent this limitation, one may substitute the physical model by
a surrogate model M̂, namely a analytical representation built from a reasonable-sized design
of experiment D = {X , Y =M(X )} that is much cheaper to evaluate than M. One adequate
method is referred to as polynomial chaos expansion [3]. The principle is to expand the model
response on a suitable polynomial basis, namely:

Y ≈ M̂(X) =

P−1∑
j=0

ajΨj(X) (4)
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In practice, the basis B = {Ψj , j = 0, . . . , P − 1} is truncated to a finite number P of terms,
e.g. according to the maximal total degree of the retained polynomials or according to a sparser
scheme. Then, defining a substitution model forM consists in evaluating the coefficients aj of the
development, using a regression method for instance.

GSA techniques for models with independent input parameters are well-established and computa-
tionally efficient when coupled with surrogate models. When the input parameters are no longer
independent, the functional decomposition in (1) does not hold since the components of the de-
composition are no longer orthogonal. A generalization of the ANOVA for models with correlated
input has been introduced in [4]. The principle of the ANCOVA (ANalysis of COVAriance) is to
express the variance of Y as its covariance with the functional decomposition of M, namely:

V [Y ] = C [Y,M(X)]

= C

Y, ∑
u⊆{1,...,n}

Mu(Xu)


=

∑
u⊆{1,...,n}

[
V [Mu(Xu)] + C [Mu(Xu), Y −Mu(Xu)]

] (5)

The following triplet of indices (Su, S
U
u , SC

u ) can be derived from (5):

Su =
C [Mu(Xu), Y ]

V [Y ]
, SU

u =
V [Mu(Xu)]

V [Y ]
, SC

u = Su − SU
u (6)

The index SU
u represents the uncorrelated contribution of Xu to the variance of Y , that is the

contribution that would be left if the variables where independent. On the contrary, the index
SC
u represents the contribution of the correlation of Xu with the other parameters. The global

contribution index Su = SU
u + SC

u is the sum of the two contributions.

The issue of the functional decomposition is solved here by using the one provided by the polynomial
chaos expansion in (4). Since the expansion of the correlated parameters is not expressed in
the physical space because of the isoprobabilistic transformation, the approach proposed in [5]
is to build the expansion with the joint distribution of the input random vector X featuring an
independent copula to preserve the link between the physical and standard variables and to evaluate
the variances and covariances by simulating realizations of X with its true dependence structure.

The ANCOVA technique coupled with polynomial chaos expansion is first applied on analytical
test functions found in the literature in order to exhibit how the uncorrelated an correlated parts
behave when the correlation between the input parameters varies. It is then carried out on a simple
mechanical application.
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