
ETH Library

Developing JavaScript applications
in Eiffel

Master Thesis

Author(s):
Dima, Alexandru Ioan

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-010075328

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010075328
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Deve
A

Deve
A

Deve
A

Deve
Application
Deve

pplication
Deve

pplication
Deve

pplication
Deve

pplication
Deve

pplication
Deve

pplication
Deve

pplication
Developing JavaScript

pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

By:

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplication

Master

Supervised by:

Student Number: 09

loping JavaScript
pplications

 Thesis

Supervised by:

Student Number: 09

loping JavaScript
s

Thesis

Supervised by:

Student Number: 09

loping JavaScript
s

Thesis

Supervised by:

Student Number: 09

loping JavaScript

Thesis

Supervised by:

Student Number: 09

loping JavaScript

in

Thesis

Supervised by:

Student Number: 09

loping JavaScript
in

Thesis

Supervised by:

Student Number: 09

loping JavaScript
in

Thesis

Supervised by:

Student Number: 09

loping JavaScript
in

Thesis

Supervised by:

Student Number: 09

loping JavaScript

Thesis

Supervised by:

Student Number: 09

loping JavaScript

Eiffel

Thesis

Supervised by:

Student Number: 09-

loping JavaScript
Eiffel

Thesis

Supervised by:

-934

loping JavaScript
Eiffel

Supervised by:

934

loping JavaScript
Eiffel

934

loping JavaScript
Eiffel

934

loping JavaScript
Eiffel

934-

loping JavaScript
Eiffel

-928

loping JavaScript
Eiffel

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

928

loping JavaScript
Eiffel

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

928

loping JavaScript
Eiffel

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

928

loping JavaScript
Eiffel

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

928

loping JavaScript

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

loping JavaScript

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

loping JavaScript

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

loping JavaScript

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

loping JavaScript

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Prof. Dr.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Dr.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Dr.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Dr.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Dr.

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Dr. Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Christian Estler

Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
Bertrand Meyer

Alexandru Ioan Dima

Dr. Martin Nordio
 Bertrand Meyer

Alexandru Ioan Dima

 Bertrand Meyer

Alexandru Ioan Dima

 Bertrand Meyer

Alexandru Ioan Dima

Bertrand Meyer

Alexandru Ioan Dima

Bertrand Meyer

Alexandru Ioan Dima

Bertrand Meyer

Alexandru Ioan Dima

Bertrand Meyer

Bertrand Meyer

Bertrand Meyer

Bertrand MeyerBertrand MeyerBertrand MeyerBertrand Meyer

Abstract

For numerous reasons, ranging from economical concerns such as distribution
costs to security concerns (latest bug fixes), software projects are nowadays
moving from native applications to web applications. Rich client applications
are enabled by JavaScript, the programming language of the browser. How-
ever, JavaScript makes it easy to introduce errors because it is dynamically
and weakly typed, because it is not compiled and because different browsers
implement the specifications differently.

This thesis presents an automatic translator that transforms Eiffel pro-
grams to JavaScript programs. The translator supports the most impor-
tant Eiffel features, including agents, contracts, exception handling, multiple
inheritance, and once routines, bringing the engineering power of object-
oriented programming practices and tools, together with contracts and void-
safety to web applications. The applicability of the translator has been demon-
strated with several case studies, including one where a full-fledged web-based
source code editor was implemented.

Acknowledgements

I would like to thank my supervisors Dr. Martin Nordio and Christian Estler
for their continuous support, trust and valuable feedback. My deepest grati-
tude goes to Prof. Dr. Bertrand Meyer for being my mentor, for his inspiring
lectures and for giving me the opportunity to write the master thesis at the
Chair of Software Engineering.

I consider myself fortunate and privileged to have Dr. Erich Gamma’s sup-
port, helping me find the topic for this thesis and shaping my work through
the valuable discussions we have had. Special thanks are due to Michael
Schneider, Johannes Rieken and Dr. Dirk Baeumer for their kind support,
precious advice and great feedback.

Especially, I thank Dr. Marius Minea for his great influence in my decision
to pursue a Masters Degree at ETH. Last, but not least, I want to thank my
family which supported me during my whole time at ETH.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 The CloudStudio Project . 6
1.3 Contributions . 6

2 From Eiffel to JavaScript 9
2.1 Brief Overview of JavaScript 9

2.1.1 Objects in JavaScript 9
2.1.2 Inheritance in JavaScript 10
2.1.3 Inheriting directly from other objects 12

2.2 Translating Eiffel language features 13
2.2.1 Multiple inheritance 14
2.2.2 Redefining & Renaming 18
2.2.3 Once routines . 20
2.2.4 Agents . 21
2.2.5 Rescue clauses . 22
2.2.6 Contracts . 23

2.3 Using native browser objects from Eiffel 26
2.3.1 Stubs . 26
2.3.2 Translating externals 28
2.3.3 Special translator directives 29

2.4 “Translating” EiffelBase . 30
2.4.1 Discussion . 31
2.4.2 Redirecting EiffelBase calls 32
2.4.3 EiffelBase and native JavaScript types 33
2.4.4 Special dispatched calls 35

3 Implementation 39
3.1 EVE integration . 42
3.2 The JavaScript Base library 43

3

4 CONTENTS

3.3 Testing . 44
3.4 Limitations . 46

4 Case Study 47
4.1 Circles . 47
4.2 The editor . 51

5 Related Work 55
5.1 JavaScript Language Translators 55
5.2 Eiffel Language Translators 55

6 Conclusions and Future Work 57
6.1 Conclusions . 57
6.2 Future work . 57

Chapter 1

Introduction

1.1 Motivation
Today’s software projects are increasingly moving from native applications
to web applications. A web application is a program that is downloaded
and executed by a web browser. Popular examples are email clients, map
applications or social networks. They have several advantages such as no
installation required (they run in the user’s browser), always up to date
(users always fetch the latest version of the application from the web server),
centralised data and lower maintenance costs.

The most popular programming language of the browser is JavaScript1.
Although it brings flexibility and power, programming with JavaScript in-
troduces several problems. The language is dynamically and weakly typed
and everything runs together in the same global scope, thus making it hard
to define interfaces. Moreover, since JavaScript is not compiled and different
browsers implement the specifications differently, it is easy for programmers
to introduce errors.

Alternatives to JavaScript have been proposed. For example, browser plu-
gins such as Adobe Flash [3] for ActionScript, Microsoft Silverlight [34] for
.NET languages or Java Applets [4] for the Java language have been devel-
oped in order to enable programmers to execute code in the browser and to
avoid writing JavaScript. Lack of adoption of these technologies [32, 33], per-
formance or security issues [2, 11, 31] introduce risks in using these solutions.
Even though some of these browser plugins provide APIs to a programmer
which are not available from JavaScript, with the development and adoption
of HTML5 [14], JavaScript gains even more ground.

1JavaScript is used throughout this thesis to refer to ECMAScript [1]

5

6 Introduction

On the other side, object-oriented programming languages have demon-
strated their power, flexibility and maintainability [20]. Developing programs
in object-oriented languages such as C#, Eiffel, or Java is simpler.

The goal of this thesis is to design and implement an automatic translator
that takes Eiffel programs [22] and produces JavaScript applications. This
will enable developers to benefit from the advantages of web applications
without giving up the engineering power of object-oriented programming
practices and tools.

1.2 The CloudStudio Project
This thesis directly contributes to CloudStudio [28], a project which aims to
develop a web-based development environment. The motivation of CloudStu-
dio lies in the challenges introduced in distributed projects [21, 27, 30], where
teams collaborate in a geographically distributed setting. Such distribution
introduces new challenges [25, 30], for example how to design an API, how
to write requirement documents or how to manage a project.

The CloudStudio project is a result of the experiences from a course on
distributed software development, DOSE [26, 29], taught at ETH Zurich.
During the course, software projects are implemented in a collaborative fash-
ion by students from several universities in Asia, South America, and Europe.
A lack of integrated tools that support distributed software engineering has
been identified during the course.

The web-based Integrated Development Environment (IDE), developed
in the CloudStudio project, addresses this void. Besides collaboration and
project management tools, the IDE implements an awareness system that
allows a developer to view the changes introduced by other team members
in real time, thus helping developers to detect conflicts and problems earlier.
This feature is unobtrusive since the user can select what changes from which
developer to display. For example, developer A can choose whether to display
or not the changes introduced by developer B. Thus, if the code introduced
by B does not compile, A can choose to ignore B’s changes, continuing his
work.

1.3 Contributions
The main contribution of this thesis is an automatic translator that trans-
forms Eiffel programs to JavaScript programs. The translator supports the
most important Eiffel language features, including agents, contracts, excep-

1.3 Contributions 7

tion handling, multiple inheritance, and once routines. Two case studies have
been developed to demonstrate the applicability of the translator.

One of them is a web-based source code editor. The editor code is written
in Eiffel and gets translated to JavaScript. Besides being able to run as a
stand-alone tool, it has also been integrated to the CloudStudio IDE and
serves now as the default source code editor.

This thesis is structured as follows: Chapter 2 presents the main challenges
of translating Eiffel to JavaScript. Chapter 3 describes the implementation
of the translator. Case studies are described in Chapter 4. Finally, related
work and conclusions are presented in Chapter 5 and Chapter 6 respectively.

8 Introduction

Chapter 2

From Eiffel to JavaScript

This chapter presents how Eiffel source code can be translated to JavaScript
source code. It describes the challenges encountered when translating Eiffel
concepts which do not have a JavaScript counter-part.

This chapter will also introduce a JavaScript object, runtime, that imple-
ments the most common operations with objects, handling class declarations,
run-time type checks and some utility functions.

Furthermore, methodologies for using native browser objects from Eiffel
source code and for translating source code which uses EiffelBase are pre-
sented.

2.1 Brief Overview of JavaScript
JavaScript is an object-oriented prototypal programming language [1]. Classes
in JavaScript are not like in other object-oriented languages as C#, Eiffel or
Java because there are no blueprints for instantiating objects. Instead, ob-
jects can be created using a literal notation or using other objects as their
prototypes; objects inherit from objects.

2.1.1 Objects in JavaScript
Listing 2.1 shows how an object can be declared, created and used in JavaScript.
In this example, objects are created using a constructor [1], a function called
with the new keyword (line 16). The function Student is called with the
passed parameters (id=6,name="John") and a new object containing all the
properties defined in Student.prototype is created and usable with the key-
word this. Moreover, because the Student function contains no return state-
ment, the object denoted by this is returned by default [1].

9

10 From Eiffel to JavaScript

The example also shows how to define default values for attributes and
how to add methods to a prototype. It is also important to mention that
referring to the current object’s properties is done exclusively with the this
keyword1.

Listing 2.1: Defining an object in JavaScript

1 // constructor for a Student object
2 function Student (id, name) {
3 if (id) { this.id = id; }
4 if (name) { this.name = name; }
5 }
6

7 // adding a default value for the attributes
8 Student.prototype.id = 0;
9 Student.prototype.name = "";

10

11 // adding a method
12 Student.prototype.learn = function () {
13 ...
14 };
15

16 var stud = new Student(6,"John");
17 console.info (stud instanceof Student);
18 console.info (stud instanceof Object);

The last lines show how the instanceof operator may be used to test
objects against constructor functions. The output to the console is true,
true. The latter shows that objects in JavaScript inherit by default from the
Object type.

2.1.2 Inheritance in JavaScript
Listing 2.2 shows how inheritance can be achieved in JavaScript, by using
other objects as prototypes. In order to express the fact that PhDStudent
inherits from Student the instruction on line 6 changes PhDStudent’s pro-
totype from the default (a new Object) and sets it to a new Student. The
call also motivates the two if statements on lines 3 - 4 from Listing 2.1, the
constructor is called without parameters.

1In other languages like C# or Java, qualifying current object’s attributes or method
calls with this is optional.

2.1 Brief Overview of JavaScript 11

Listing 2.2: Inheritance in JavaScript

1 // constructor for a PhDStudent object
2 function PhDStudent (id, name) {
3 Student.call (this, id, name);
4 }
5

6 PhDStudent.prototype = new Student();
7

8 // adding a new method
9 PhDStudent.prototype.writeThesis = function() {

10 ...
11 }
12

13 var PhDstud = new PhDStudent(5,"Mary");
14 console.info (PhDstud instanceof PhDStudent);
15 console.info (PhDstud instanceof Student);
16 console.info (PhDstud instanceof Object);

The call to the constructor Student from line 3 is for initialization pur-
poses and it is not compulsory in order for the inheritance to work, serving as
an example to how static calls to a function are done in JavaScript. Fig. 2.1
shows the prototype chain for the created objects.

Fig. 2.1: Objects and their prototypes in JavaScript

The output to the console is true, true, true, thus showing how the
instanceof operator travels up the prototype chain of an object until it
finds the constructor function being tested for or until it finds the Object
prototype.

12 From Eiffel to JavaScript

2.1.3 Inheriting directly from other objects
This section describes how inheritance may be achieved in another fashion,
which doesn’t require constructor functions or explicit assignments of the
prototype by the programmer. This method is used in Section 2.2.1 to emu-
late multiple inheritance in JavaScript.

Crockford [5] (see Listing 2.3) defines Object.create, which creates a new
object with a specified prototype. An extended version of Object.create has
been introduced in the 5th Edition of ECMAScript [1].

Listing 2.3: Crockford’s Object.create [5]

1 if (typeof Object.create !== 'function') {
2 Object.create = function (o) {
3 function F() {}
4 F.prototype = o;
5 return new F();
6 };
7 }

The objects created in this manner can be augmented with additional
properties and they can be used themselves as prototypes for other objects.
However, since there are no explicitly declared constructors, instanceof can
no longer be used.

Listing 2.4: Using literal objects and Object.create

1 var Student = {
2 id : 0,
3 name : "",
4 initStudent : function (id, name) {
5 this.id = id;
6 this.name = name;
7 },
8 learn : function () {
9 ...

10 }
11 };
12 var PhDStudent = Object.create(Student);
13 PhDStudent.writeThesis = function() {
14 ...
15 }
16 var stud = Object.create(Student);
17 stud.initStudent(6, "John");
18

19 var PhDstud = Object.create(PhDStudent);
20 PhDstud.initStudent(5, "Mary");

2.2 Translating Eiffel language features 13

Fig. 2.2: Inheriting from other objects in JavaScript

Listing 2.4 shows how the Object.create mechanism can be used to
achieve inheritance. In this example, the Student object is defined using
JavaScript’s object literal notation and it is the prototype for PhDStudent and
stud. PhDStudent is augmented with a new method and it is the prototype
for PhDstud. A convention is used to execute initialization (initStudent).

The only disadvantage to using this approach is that the instanceof
operator can no longer be used, since there are no constructors to test

against (i.e. Student and PhDStudent are objects and cannot be used in an
instanceof check). Thus, object type checks must be implemented manually.

2.2 Translating Eiffel language features
Translating Eiffel source code is done automatically with a translator (see
Chapter 3) that uses the Eiffel compiler [7] and can handle a large number of
Eiffel features. Since both Eiffel and JavaScript are high-level programming
languages, a large percentage of simple Eiffel instructions and expressions
have immediate equivalents in JavaScript.

This section will focus only on the Eiffel concepts which are more com-
plex or which need to be simulated to some extent in JavaScript: multiple
inheritance, redefining and renaming inherited features, once routines, agents,
rescue clauses and contracts.

14 From Eiffel to JavaScript

2.2.1 Multiple inheritance
Since inheritance in JavaScript is designed to allow objects to inherit from
only one other object, multiple inheritance can be achieved by creating an
object which collects attributes and methods from multiple sources and by
using it as a prototype when creating other objects.

Listing 2.5: Multiple inheritance in JavaScript

1 var Teacher = {
2 teach : function() { ... }
3 };
4 var Student = {
5 learn : function() { ... }
6 };
7 var PhDStudent = {
8 teach : Teacher.teach,
9 learn : Student.learn,

10 writeThesis : function() { ... }
11 };
12 var s = Object.create(PhDStudent);

Listing 2.5 shows how multiple inheritance can be emulated by creating a
“stitched” object containing all the attributes and methods from the multi-
ple objects being inherited, PhDStudent in this case, with methods pointing
directly to the ones from its parents. Then, this object can be used as a
prototype in order to create new objects (see line 12).

The runtime object
Since supporting Eiffel’s multiple inheritance is a main goal, defining objects
and then using them as prototypes via Object.create has been chosen. Cre-
ating a “stitched” object with methods and attributes from different sources
must only be done once for each Eiffel class, and then it can be used as a
prototype.

However, doing the “stitching” manually is time-consuming, error-prone
and hard to maintain. Therefore, a JavaScript helper object has been in-
troduced: the runtime. Its purpose is to hide the implementation details of
this “stitching” and to provide a clean and easy to use interface for defining
objects and achieving multiple inheritance, acting as a facade [12].

Declaring an object

Since we are translating Eiffel classes, the following method to declare a new
class refers to the class concept as it is in Eiffel.

2.2 Translating Eiffel language features 15

runtime.declare : function(name, parents, decl)

• name – String with the name of the class being declared.

• parents – An array containing the parents of the declared class. Each
item in this list contains an object with the following fields:

– class_name – String with the name of the parent class
– optional renaming – An object with property-value pairs corre-

sponding to initial - renamed feature’s name pairs.
– optional redefining – An array containing the feature names of

features being redefined

• decl – A literal object containing the feature definitions of the declared
class.

The runtime.declare method creates a new object containing all the
features (methods and properties) from decl and then adds, one by one, all
the features from each parent class, following the renaming and redefining
rules. This object is then stored in an internal cache and will be used as a
prototype when creating new instances of the class (via Object.create), or
when other classes inherit from it.

The runtime.declare method returns a constructor function for the de-
clared class (see Listing 2.6, line 5) so that the newly defined class can be
instantiated with the new keyword. However, when called, the constructor in-
stantiates a new object with Object.create and then returns the new object
(Listing 2.6, line 10).

Listing 2.6: runtime.declare structure

1 runtime.declare = function (name, parents, decl) {
2 var class_prototype = decl;
3 // Inherit features from parents to class_prototype
4 ...
5 return function () {
6 var result = Object.create (class_prototype);
7 // Call the appropiate construction feature
8 ...
9 // Return the newly created object

10 return result;
11 };
12 };

16 From Eiffel to JavaScript

Listing 2.7 shows how the runtime object can be used to achieve multiple
inheritance. The code snippet shows how the “stitching” of methods and
attributes from the parent classes is done automatically by the runtime.

Listing 2.7: Multiple inheritance with the runtime helper in JavaScript

1 var Teacher = runtime.declare("Teacher", [],{
2 teach : function() { ... }
3 });
4 var Student = runtime.declare("Student", [], {
5 learn : function() { ... }
6 });
7 var PhDStudent = runtime.declare("PhDStudent", [
8 {class_name:"Teacher"},
9 {class_name:"Student"}

10], {
11 writeThesis : function() { ... }
12 });
13 var s = new PhDStudent();

Teacher and Student do not inherit from other classes (as the empty
arrays on lines 1 and 4 show), while PhDStudent inherits from both Teacher
and Student. Teacher, Student and PhDStudent are references to construc-
tors and that is why objects can be created with the new keyword (see line
13).

Eiffel types

An Eiffel type is represented in JavaScript by an object with the following
properties:

• optional attached – true or false, depending on whether the type is
declared attached or not

• name – the name of the class

• optional generics – an array containing the actual types for generic
classes.

Here are a few examples of Eiffel types and the JavaScript objects repre-
senting them:

• A =⇒ {name:"A"}

• attached A =⇒ {attached: true, name:"A"}

2.2 Translating Eiffel language features 17

• A[B] =⇒ {name:"A", generics: [{name:"B"}]}

• A[attached B] =⇒
{name:"A", generics:[{attached: true, name:"B"}]}

• A[B,C] =⇒ {name:"A", generics:[{name:"B"},{name:"C"}]}

Constructing objects

When a class is declared using the runtime, a constructor is returned. The
returned constructor may be used in a variety of ways:

• When no creation feature is called, the constructor is used without
parameters:
create {A} =⇒ new A()

• When a creation feature is called, its name is a parameter in the con-
structor call. The constructor automatically calls the creation feature:
create {A}.make =⇒ new A("make")

• When a creation feature is called with parameters, they are added after
the feature name in the constructor call:
create {A}.make(x,y) =⇒ new A("make", x, y)

• When a local variable or attribute is created:
create a.make(x,y) =⇒ a = new A("make", x, y)

• When a class with generics is instantiated, the first parameter in the
constructor is an array containing objects describing the actual types
for the generics. This list is stored in the $generics property of the
newly created object:
create {A[B]}.make(x,y) =⇒ new A([{name:"B"}],"make",x,y)

Object tests

As discussed in Section 2.1.3, the instanceof operator can’t be used with
objects created with the runtime. Therefore, the runtime object implements
the helper method runtime.inherits(obj, type).

The first parameter accepted by this method is a JavaScript object created
with a constructor produced by the runtime and the second one is an object
representing an Eiffel type.

The method uses information collected when the object’s class was de-
clared (from which parents the class inherits) and information collected when
the object was created (if it has generics).

18 From Eiffel to JavaScript

2.2.2 Redefining & Renaming
One of the interesting problems encountered while developing the translator
and the object representation is the support for Eiffel’s feature redefining
and renaming. Listing 2.8 shows an example where class B inherits from A,
redefining A.g and renaming A.f to old_f. Furthermore, B defines a new
feature named f which coincidentally has the same signature as A.f. The
signature of B.f and A.f need not be the same, as there is no relation between
them. However, B.g needs to have the same signature as A.g, since the former
is overriding the latter.

Listing 2.8: Redefining and renaming in Eiffel

1 class A
2 feature
3 f: STRING do Result := "A.f" end
4 g: STRING do Result := "A.g" end
5 end
6

7 class B
8 inherit
9 A

10 redefine g
11 rename f as old_f
12 end
13 feature
14 f: STRING do Result := "B.f" end
15 g: STRING do Result := "B.g" end
16

17 test
18 local
19 b: B; a: A;
20 r1, r2: STRING
21 do
22 create b;
23 a := b;
24 r1 := b.f + "," + a.f
25 r2 := b.g + "," + a.g
26 end
27 end

Running the above code and executing feature test will result in r1 being
"B.f,A.f" and r2 being "B.g,B.g". Since b is assigned to a on line 23, a and
b hold the same object at run-time. However, b.f calls feature f from class B
and a.f calls feature f from class A, as shown in r1. This is because feature
calls in Eiffel depend also on the target’s declared type, not only on the
target’s run-time type and on the called feature’s name. However, calls in

2.2 Translating Eiffel language features 19

JavaScript depend only on the run-time target type and the method name.
In order to solve this problem, Eiffel feature names are translated to

fully qualified method names (i.e. unique in the system): each class in the
system receives an unique identifier, which is appended to its feature names.
Assuming A has id 1 and B has id 2, the translation of the previous example
to JavaScript looks similar to Listing 2.9.

Listing 2.9: Redefining and renaming translated to JavaScript

1 var A = runtime.declare("A", [], {
2 f_1 : function () { return "A.f"; }
3 g_1 : function () { return "A.g"; }
4 });
5

6 var B = runtime.declare("B", [
7 {class_name:"A", renaming:{"f":"old_f"}, redefining:["g"]}
8], {
9 f_2 : function () { return "B.f"; }

10 g_2 : function () { return "B.g"; }
11 test_2 : function () {
12 var b, a, r1, r2;
13 b = new B(); a = b;
14 r1 = b.f_2() + "," + a.f_1();
15 r2 = b.g_2() + "," + a.g_1();
16 }
17 });

The call to b.f has been translated to b.f_2 and the call to a.f has been
translated to a.f_1, thus disambiguating the calls and resolving the prob-
lem. The downside to using unique method names is that native JavaScript
overriding can no longer be used to implement feature redefining: the call to
b.g is translated to b.g_2 and the call to a.g to a.g_1. However, in both
cases, the same feature must be called, feature g written in B.

This is solved by the runtime; when inheriting a feature which is rede-
fined, its implementation is replaced with a proxy function which redirects
the call to te redefining feature. This is shown in Fig. 2.3, where feature B.g_1
has been defined as a proxy to B.g_2. This approach is modular and allows
for multiple redefinitions of the same feature: should a third class inherit
from B and wish to redefine B.g, it is only B.g_2 which shall be overridden
with a method that calls the new feature.

Fig. 2.3 also shows that there is no prototypal relationship between A and
B.

20 From Eiffel to JavaScript

Fig. 2.3: Objects and their prototypes in JavaScript

2.2.3 Once routines
A once routine is a routine which is executed only the first time it is called.
If the routine has a return value, subsequent calls return the result from the
first execution. If it has no return value, subsequent calls have no effect [22].

Listing 2.10 shows an example of using once routines in Eiffel. Routine
b of class C only executes the first time it is called, creating a new object of
type B and assigning it to the result. After the first call, further calls return
the same object.

Listing 2.10: Once routines in Eiffel

1 class
2 C
3 feature -- Access
4 b: B
5 once
6 --| Other code here
7 create Result
8 end
9 end

The same behaviour in JavaScript can be obtained with a self invoking
function which returns a closure, like in Listing 2.11. The function declared on
line 2 is self-invoking and will execute immediately, even before the runtime
.declare call (since it is part of a parameter). Executing the outer function
immediately means that the inner function, declared on line 4 closes over
(i.e. captures) the $cached and $executed variables and is assigned to b.

2.2 Translating Eiffel language features 21

Listing 2.11: Once routines in JavaScript

1 var C = runtime.declare("C", [], {
2 b : (function () {
3 var $cached = null, $executed = false;
4 return function () {
5 if (!$executed) {
6 $executed = true;
7 // Other code here
8 $cached = new B();
9 }

10 return $cached;
11 };
12 })() // self invoking because of ()
13 });

The if statement in the inner function (line 5) guards that the body of
the translated routine only executes the first time it is called and then stores
the Result in $cached. Subsequent calls do not execute the code inside the
if statement and proceed directly to return the stored Result.

2.2.4 Agents
Agents [22] in Eiffel are first class citizens, they represent operations as run-
time objects. Agents can be handled as any other object, they may be passed
as parameters, they can be assigned to variables and so on. Agents may be
inlined or created from an object’s feature and they may contain open or
closed arguments.

Listing 2.12 presents how agents may be used in Eiffel. The inline agents
created on lines 2 - 5 are assigned to different positions in the list and on
line 8, one is retrieved and called.

Listing 2.12: Inline agents in Eiffel

1 from i := 1 until i > 10 loop
2 x[i] := agent(a, b: INTEGER): INTEGER
3 do
4 Result := a + b
5 end (?, i)
6 i := i + 1
7 end
8 check x[2].item([1]) = 3 end

In the example, a list of agents is created, x; each x[i] contains a proce-
dure with one open argument, a, and one closed argument, b, that has the

22 From Eiffel to JavaScript

value i, for its entire lifetime. Therefore, when called with a parameter a,
each x[i] returns a + i.

A direct equivalent to agents in JavaScript are functions. Listing 2.13
shows how agents are translated to functions. The outer function on line 2
is self-invoking; it executes for each iteration in the loop, each time with a
different value for b. The inner function on line 3 is returned and it closes
over b (i.e. it captures a different b each time).

Listing 2.13: Inline agents in JavaScript

1 for (i=1; i<=10; i++) {
2 x[i] = (function (b) {
3 return function (a) {
4 return a + b;
5 };
6 }(i)); // self invoking with i as a parameter
7 }
8 if(!x[2](1) === 3)) { throw "Assertion does not hold."; }

2.2.5 Rescue clauses
Exceptions in Eiffel represent contract violations and they may be triggered
whenever a contract is broken, an assertion does not hold or an unexpected
error is encountered [22]. Such exceptions may be handled in a special part
of a procedure, namely a rescue block. If the code path in the rescue block
contains a retry instruction, the routine is re-executed. If not, the routine
fails and the exception is propagated to the routine caller.

Listing 2.14: Rescue example in Eiffel

1 rescue_example
2 local
3 retry_count: INTEGER
4 do
5 --| Risky code here
6 rescue
7 --| Exception handling code here
8 if retry_count < 10 then
9 retry_count := retry_count + 1

10 retry
11 end
12 end

Listing 2.14 shows a feature, rescue_example, which contains a rescue
block. This particular example is written such that the body of the feature

2.2 Translating Eiffel language features 23

may be executed a maximum of 10 times. The two comments, on line 5 and
7 represent placeholders for code.

Listing 2.15 shows the translation of feature rescue_example to JavaScript
and reveals the intrinsic repetitive nature of a feature which has a rescue
block. A local variable, $retry is automatically introduced by the translator,
which is always set to false at the beginning of each iteration (see line 4) and
which controls the repetition of the feature’s body. Eiffel’s retry instruction
is translated to $retry = true (see line 11).

Listing 2.15: Rescue example in JavaScript

1 rescue_example : function() {
2 var $retry = true, retry_count = 0;
3 while ($retry) {
4 $retry = false;
5 try {
6 // Risky code here
7 } catch ($err) {
8 // Exception handling code here
9 if (retry_count < 10) {

10 retry_count = retry_count + 1;
11 $retry = true;
12 }
13 if (!$retry) { throw $err; }
14 }
15 }
16 }

A JavaScript try - catch construct is generated; the feature’s body is
wrapped around a try and the rescue body is inserted in the catch. Line 13
shows how the exception is re-thrown if the retry instruction is not called
from the rescue block.

2.2.6 Contracts
Eiffel has native support for contracts [18, 19, 22] and they represent a key
feature of the Eiffel language. Contracts are expressed as preconditions, post-
conditions and class invariants. Since JavaScript does not support such con-
structs at language level, they are represented in JavaScript as manual as-
sertions (if statements).

Listing 2.16 shows a class implementing a queue and one of its routines,
push. The class in the example has an invariant, labeled valid which states
that the number of elements is always smaller or equal to the queue’s capacity.
This invariant is evaluated before and after every call a client class makes to
one of its features.

24 From Eiffel to JavaScript

Listing 2.16: Using contracts in Eiffel

1 class
2 QUEUE [G]
3

4 feature -- Access
5 count, capacity: INTEGER
6

7 push (element: G)
8 require
9 has_space: count < capacity

10 do
11 ...
12 ensure
13 count_increased: count = old(count) + 1
14 end
15

16 invariant
17 valid: count <= capacity

Feature push has a precondition, requiring that there is still space left
to accommodate for the new element and a postcondition ensuring that the
new element count is equal to the old count plus one. The specifications are
not complete, but they serve as good examples to show how contracts may
be used in Eiffel.

Listing 2.17: Translation of contracts to JavaScript

1 QUEUE = runtime.declare("QUEUE", [], {
2 count : 0,
3 capacity : 0,
4 push : function (element) {
5 if (!(this.count < this.capacity)) {
6 throw "Precondition does not hold.";
7 }
8 var $old1 = this.count;
9 ...

10 if (!(this.count = $old1 + 1)) {
11 throw "Postcondition does not hold.";
12 }
13 },
14 $invariant : function() {
15 if (!(this.count <= this.capacity)) {
16 throw "Invariant valid does not hold.";
17 }
18 }
19 });

2.2 Translating Eiffel language features 25

Listing 2.17 shows how contracts are translated to JavaScript. Like de-
scribed in Section 2.2.5, when contracts are not respected, an exception is
thrown. Preconditions, postconditions and invariants therefore throw excep-
tions when they do not hold.

Preconditions are checked at the beginning of methods, before any other
logic has been executed (line 5). In order to deal with old expressions, which
refer to the values of expressions before executing any instruction in the
routine’s body, the translator automatically introduces local variables which
hold the value of the old expressions (line 8). These local variables are then
substituted in the postcondition check (line 10), which is always located at
the end of the method’s body.

The invariant is translated to a method, $invariant, which doesn’t have
any arguments and is always called before and after any feature call. List-
ing 2.18 shows a client of the QUEUE class which calls routine push. Listing 2.19
shows how feature calls in JavaScript are always preceded and followed by
calls to the object’s invariant.

Listing 2.18: A queue client in Eiffel

1 local
2 q : QUEUE [INTEGER]
3 do
4 ...
5 q.push (2)
6 ...
7 end

Listing 2.19: A queue client in JavaScript

1 var q;
2 ...
3 q.$invariant();
4 q.push(2);
5 q.$invariant();
6 ...

26 From Eiffel to JavaScript

2.3 Using native browser objects from Eiffel
When executed inside a web browser, global objects2 are available to JavaScript
programs. They enable the programs to interact with the user and the
browser API. One of the most important global objects is the window object,
through which JavaScript programs can access the current document and
work with the nodes composing the Document Object Model (DOM) Tree
or with the Cascading Style Sheets (CSS) rules of the web page. Commonly,
these objects are used to implement a user interface in a web application.

One of the problems tackled by this thesis is exposing these native browser
objects to Eiffel programmers, such that interaction with them can be achieved
straight from Eiffel source code. To allow for this interaction, a stubbing
methodology has been devised: In order to use a native JavaScript ob-
ject from Eiffel source code, a special Eiffel class, called a stub,
must be created.

This section shows how a stub can be defined, what rules to keep in mind
when writing their external features and how special directives can be used
to influence the translator’s behavior for a certain class. Section 3.2 presents
the Eiffel library which contains stubs for native browser objects.

2.3.1 Stubs
A stub usually describes a JavaScript object, therefore all its features are
external and they represent a method or a property in the corresponding
JavaScript object. The name of a stub’s feature is decoupled from the name
of the JavaScript property through the use of the alias part of the external.
This decoupling allows to maintain the generally accepted coding style of
Eiffel, where “_” is used in feature names to separate different words (as
opposed to JavaScript, where camel case is the norm).

Section 2.3.2 discusses and shows how the alias part of externals may be
used in various scenarios. Stubs are used by the translator only at compile
time and all the calls to a stub’s features are inlined and replaced with the
alias part of the external feature.

Listing 2.20 shows the interface of one native object available when run-
ning JavaScript in a browser: the History object [14].

2The specification of JavaScript [1] is independent from the specification of the different
objects available in a browser [14, 39, 40, 41, 42]

2.3 Using native browser objects from Eiffel 27

Listing 2.20: IDL Definition of the History object [14]

1 interface History {
2 readonly attribute long length;
3 void go(long delta);
4 void back();
5 void forward();
6 void pushState(any data, DOMString title, DOMString url);
7 };

Listing 2.21 shows the Eiffel stub corresponding to the History object
and it shows the relation between Eiffel features and the available JavaScript
attributes and methods. The javascript entry in the note list at the be-
ginning of the class represents a translator directive and offers a vital piece
of information to the translator: the JS_HISTORY class is a stub for a native
JavaScript object named History.

Listing 2.21: Eiffel stub for the History object

1 note
2 javascript: "NativeStub:History"
3

4 class
5 JS_HISTORY
6

7 feature -- Basic Operation
8

9 length: INTEGER
10 external "JS" alias "length" end
11

12 go (a_delta: INTEGER)
13 external "JS" alias "go($a_delta)" end
14

15 back
16 external "JS" alias "back()" end
17

18 forward
19 external "JS" alias "forward()" end
20

21 push_state (a_data: ANY; a_title: STRING; a_url: STRING)
22 external "JS" alias "pushState($a_data, $a_title, $a_url)"

end
23 end

It is important to mention that the existence of the native browser objects
has not been hard-coded in the translator, they have been described through
the use of stubs, in a library (see Section 3.2), since the interfaces for native
browser objects change as specifications evolve over time.

28 From Eiffel to JavaScript

2.3.2 Translating externals
Externals, as seen in the previous section, are very useful because they em-
power Eiffel programmers to use objects and concepts from JavaScript and
the browser. This section explains and discusses the rules for the translation
of externals.

The translator uses the alias part of an external feature and then applies
the following algorithm in order to produce a JavaScript call:

Listing 2.22: Algorithm for translating external calls

1 isStatic ←false
2 result ← alias
3 if result.startsWith(”#”) then
4 result.removeHead(1)
5 isStatic ← true
6 end if
7 if result.contains(”$TARGET”) then
8 result.replaceAll(”$TARGET”, callTarget)
9 isStatic ← true

10 end if
11 for all argi : arguments do
12 result.replaceAll(”$argi”, callParameteri)
13 end for
14 if not isStatic then
15 result.prepend(”.”)
16 result.prepend(callTarget)
17 end if

The above algorithm shows how an external feature’s arguments or the
call target may be used inside externals. The following examples clarify how
the algorithm functions:

a) A simple example. The call target is maintained by the translator
and the feature invoked is substituted with the string found in the
alias section of the external.

b) Using arguments. The feature’s arguments can be used in the exter-
nal by prepending a $ to their name. All occurrences are substituted
with the actual call’s parameters.

c) Using the call target. Sometimes, the generated JavaScript will not
have the form target.method(..), and therefore $TARGET may be used
inside the alias section.

2.3 Using native browser objects from Eiffel 29

d) It is possible to use $TARGET or a feature’s arguments multiple times
inside the alias.

e) Sometimes $TARGET isn’t used, but a static call is still desired. This is
achieved by beginning the alias with #.

Eiffel Source Generated JavaScript

a) as_lower: attached STRING
external "JS" alias "toLowerCase()" end

my_str.as_lower =⇒ my_str.toLowerCase()

b) at alias "@" (i: INTEGER): CHARACTER
external "JS" alias "charAt($i-1)" end

my_str.at (some_index) =⇒ my_str.charAt(some_index-1)

c) abs: INTEGER
external "JS" alias "Math.abs($TARGET)" end

my_int.abs =⇒ Math.abs(my_int)

d) sign: INTEGER
external "JS" alias "($TARGET>0?1:($TARGET<0?-1:0))" end

my_real.sign =⇒ my_real>0?1:(my_real<0?-1:0)

e) max_value: REAL
external "JS" alias "#Number.MAX_VALUE" end

my_real.max_value =⇒ Number.MAX_VALUE

2.3.3 Special translator directives
A clear distinction has been made between the translator and the rules used
at translation-time. To allow for better maintainability, as much informa-
tion as possible has been defined outside of the translator. For example, the
translator intrinsically knows how to translate an Eiffel string constant to
JavaScript, but it has no hard-coded knowledge about the STRING class fea-
tures.

Due to this fact, a methodology to feed external information into the
translator has been devised. Classes are handled in different ways by the
translator if the note list of the class contains an entry with the name
javascript. Here are the four special types of classes recognized by the
translator and how they influence the translation process:

30 From Eiffel to JavaScript

Native Stubs

Native Stubs are stubs for objects available when running JavaScript in a
browser, for example. The translator does not generate any code for classes
which have the entry javascript:"NativeStub" in the note list. All features
must be externals; object tests for such classes work correctly if the name of
the native JavaScript object is present in the note value and the instanceof
operator is used to translate them.

Simple Stubs

Sometimes, the programmer may want to write a class in JavaScript and
then use it from Eiffel. A possible use case is when dealing with non-standard
browser operations, such as copy-pasting, which are implemented differently
in every major browser. The note entry javascript:"Stub" denotes an Eiffel
class which describes the object written in JavaScript. All features must be
externals. No code is generated for it and object tests are handled by runtime
.inherits.

EiffelBase

The note entry javascript:"EiffelBase" marks a class which contains a
JavaScript equivalent for one or more EiffelBase classes. Usually, features are
not externals and code is generated for the class. Section 2.4 discusses and
shows in detail how using EiffelBase is possible from source code that gets
translated to JavaScript.

EiffelBase Native Stubs

The entry javascript:"EiffelBaseNativeStub" in the note list denotes
a special kind of JavaScript equivalent for one or more EiffelBase classes,
namely a native JavaScript object. This entry is used only for the EiffelBase
classes presented in Section 2.4.3. All features must be externals; no code is
generated for these classes.

2.4 “Translating” EiffelBase
To be adoptable by already existing projects with a large Eiffel code base it is
important that existing source code can be translated to JavaScript without
modification.

Therefore, it is critical to handle source code using classes from EiffelBase,
“a library of fundamental structures and algorithms covering the basics of

2.4 “Translating” EiffelBase 31

computing” [10]. EiffelBase is written mostly in Eiffel with the exception
of some special built-in features and some external C constructs which “fill
gaps”.

This section presents how the tool translates source code which uses Eif-
felBase classes and why I have chosen to redirect EiffelBase feature calls to
JavaScript equivalents.

2.4.1 Discussion
Before describing the actual devised solution, since EiffelBase is mostly writ-
ten in Eiffel, one may argue that a good solution would have been to translate
the entire EiffelBase library to JavaScript and then replace the C constructs
which filled in the gaps with equivalent JavaScript constructs which would
have filled in the same gaps with the same logic. Although this solution might
seem advantageous, in reality it presents a number of problems.

The biggest problem is that the implementation of some crucial Eiffel-
Base classes are written with the target (C in this case) in mind. On one
side, EiffelBase’s STRING and ARRAY use class SPECIAL as their data model –
a continuous memory zone –, while on the other side, JavaScript supports
both strings and arrays natively, offering a wide range of methods and oper-
ations [1].

A difference in the level of abstraction offered by the two target languages
(C and JavaScript) gives birth to another problem: direct memory access,
pointer arithmetic, etc. are available in C, while JavaScript is at the same
level of abstraction as Eiffel, offering a prototypal object model, garbage col-
lection and so on. For example, since JavaScript supports random position
insertion, deletion or retrieval for arrays, arrays are an equivalent for Eif-
felBase’s ARRAYED_LIST. Another similar example is the case of EiffelBase’s
HASH_TABLE which has a direct equivalent in JavaScript, objects. Objects in
JavaScript consist of pairs of attribute names and values or function names
and functions.

Therefore, translating EiffelBase to JavaScript would add an unneces-
sary layer of abstraction and would not make use of JavaScript’s language
features. Moreover, doing such a translation would treat JavaScript more
as a Virtual Machine (VM) for Eiffel than a language, impacting perfor-
mance, since JavaScript’s base data structures are optimized in JavaScript
VMs [15, 38].

Furthermore, due to time constraints, I have aimed at a solution which
allows an incremental definition of EiffelBase classes and features, as it is
outside the scope of this thesis to support the entire EiffelBase library. My
solution takes advantage of JavaScript’s dynamic nature: when translating

32 From Eiffel to JavaScript

Eiffel to JavaScript, the translator requires that there are JavaScript
equivalents only for the EiffelBase classes and features that the
programmer actually uses.

2.4.2 Redirecting EiffelBase calls
My solution consists of redirecting feature calls to EiffelBase classes to JavaScript
equivalents at translation-time. Let C.f be a notation for the feature named
f from class C.

We define µ(C,f), the redirection of feature f from class C:

µ(C, f) =

C.f if C is not an EiffelBase class
B.f if C is an EiffelBase class and B is a class that has

an "EiffelBase" javascript note entry listing C
EIFFEL_C.f otherwise

where EIFFEL_C is the class obtained by prepending "EIFFEL_" to C’s
name. If EIFFEL_C is not found in the known universe, an error is generated.

The above function shows that feature redirection is performed only for
EiffelBase classes and that the translator, by default, looks for EiffelBase
equivalents by prepending "EIFFEL_" to their names (e.g. EIFFEL_INTEGER
for INTEGER, EIFFEL_LIST for LIST, etc.). However, the translator can be

directed to different equivalents through the use of the javascript entry in
the note list, where EiffelBase classes can be listed (see Section 2.4.3 for an
example).

An interesting discussion is what part of a feature call to use for this
redirection. To familiarize the reader further with the issue, let’s analyze a
concrete example which uses EiffelBase. Listing 2.23 shows a code snippet
from a class providing a prime number test, with the first 1000 prime numbers
precomputed in known_primes.

Listing 2.23: Simple EiffelBase feature call example

1 class
2 PRIMES_PROVIDER
3 feature -- Basic Operation
4 is_prime (a_number: INTEGER): BOOLEAN
5 -- Is `a_number' a prime number?
6 do
7 -- Test to see if in precomputed set
8 if a_number < 1000 then
9 Result := known_primes.has (a_number)

10 else

2.4 “Translating” EiffelBase 33

11 ...
12 end
13 end
14 feature {NONE} -- Implementation
15 known_primes: SET[INTEGER]
16 -- A set of all prime numbers to 1000.
17 end

Ignoring the translation problems associated with booleans and integers,
an interesting problem is how to redirect the call on line 9. Feature has called
on line 9 is written in CHAIN and is inherited by SET. Even so, the call is not
redirected to µ(CHAIN,has), but it is redirected to µ(SET,has), because the
tool redirects based on the call target’s type.

This allows to define EiffelBase class equivalents in JavaScript incremen-
tally and independently of EiffelBase’s class hierarchy. In this case the tool
requires the equivalent for SET and not for both SET and CHAIN. Thus, the
process of supporting EiffelBase classes and creating the JavaScript equiva-
lents is significantly simplified.

Inheritance may still be used in the EiffelBase JavaScript equivalent
classes. The redirection methodology only requires that a feature with the
same name is present in the equivalent JavaScript class, that feature may
very well be inherited from some other class.

2.4.3 EiffelBase and native JavaScript types
Some of EiffelBase’s classes have obvious JavaScript native type equivalents.
For performance reasons, instead of creating wrappers around native types
and always boxing and unboxing, a selected number of classes from EiffelBase
get translated straight to native JavaScript types. The native types available
in JavaScript are: Undefined, Null, Boolean, String, Number and Object [1].
JavaScript’s Array inherits from Object.

Listing 2.24: Features from the JavaScript equivalent for EiffelBase REAL

1 note
2 javascript: "EiffelBaseNativeStub: REAL, REAL_32, REAL_64"
3

4 class EIFFEL_REAL
5

6 inherit
7 ANY redefine out end
8

9 feature -- Basic Operation
10

11 divisible (other: INTEGER): BOOLEAN

34 From Eiffel to JavaScript

12 external "JS" alias "($TARGET%%$other===0)" end
13

14 max (other: REAL): REAL
15 external "JS" alias "Math.max($TARGET,$other)" end
16

17 max_value: REAL
18 external "JS" alias "#Number.MAX_VALUE" end
19

20 out: attached STRING
21 external "JS" alias "($TARGET).toString()" end
22

23 end

The translator maps the following EiffelBase classes to native JavaScript
types:

• BOOLEAN maps to JavaScript’s Boolean type.

• CHARACTER maps to JavaScript’s String object. At run-time a character
and a one character string have the same representation, thus producing
false-positive object tests.

• NATURAL, INTEGER and REAL map to JavaScript’s Number type. Again,
at run-time there is no way to differentiate between a floating point
variable which holds an integer and an integer variable. Listing 2.24
shows a few of the equivalent features for EiffelBase REAL class. The
note on line 2 instructs the translator to redirect all calls to features
from classes REAL, REAL_32 and REAL_64 to features with the same name
of EIFFEL_REAL.

• STRING maps to JavaScript’s String type.

• FUNCTION and PROCEDURE map to JavaScript’s Function.

• ARRAY maps to JavaScript’s Array object. Unlike arrays in other lan-
guages3, arrays in Eiffel allow programmers to have a variable lower
index bound. Therefore, the JavaScript arrays representing an Eiffel
array hold at index 0 the array’s lower property.

Element al al+1 ... au−1 au
Eiffel index l l + 1 ... u − 1 u

JavaScript index 1 2 ... u − l u − l + 1

3Arrays in Java, C, C# are 0-based, i.e. 0 is the hard-coded lowest index bound.

2.4 “Translating” EiffelBase 35

This mapping may sometimes lead to interesting externals, as a code
snippet from EIFFEL_ARRAY, presented in Listing 2.25, shows:

– lower: the value is stored at index 0 in the JavaScript array.
– count: the number of elements in the JavaScript array minus 1,

representing the element at index 0 (lower).
– since count = upper - lower + 1 =⇒ upper = count + lower

- 1, which explains the external for upper.
– working with Eiffel indices always requires the translation by lower

-1 to the left, as can be seen in features at and put.

Listing 2.25: Features from the equivalent for EiffelBase ARRAY

1 note
2 javascript : "EiffelBaseNativeStub: ARRAY"
3 class
4 EIFFEL_ARRAY [G]
5

6 feature -- Basic Operation
7

8 lower: INTEGER
9 external "C" alias "$TARGET[0]" end

10

11 count: INTEGER
12 external "C" alias "($TARGET.length-1)" end
13

14 upper: INTEGER
15 external "C" alias "($TARGET.length+$TARGET[0]-2)" end
16

17 at alias "@" (i: INTEGER): G
18 external "C" alias "$TARGET[$i-$TARGET[0]+1]" end
19

20 put (v: G; i: INTEGER)
21 external "C" alias "$TARGET[$i-$TARGET[0]+1] = $v" end
22

23 end

2.4.4 Special dispatched calls
The mapping of some EiffelBase classes to native JavaScript types and objects
raises an interesting problem: variables declared as ancestors of some
EiffelBase classes may be both objects or primitive values at run-
time.

36 From Eiffel to JavaScript

Listing 2.26 shows a simple implementation of the Bubble Sort Algorithm.
The notable fact about this implementation is that the BUBBLE_SORT class
is generic and its generic is constrained to be a descendant of EiffelBase’s
COMPARABLE.

Listing 2.26: A Bubble Sort Implementation in Eiffel

1 class
2 BUBBLE_SORT [G <- COMPARABLE]
3

4 feature -- Basic Operation
5 sort (lst: LIST[G])
6 -- Sort `lst' ascending
7 local
8 i: INTEGER
9 sorted: BOOLEAN

10 temp: G
11 do
12 from sorted := false until sorted loop
13 from sorted := true; i := 1 until i > lst.count loop
14 if lst[i-1].is_greater (lst[i]) then
15 sorted := false
16 temp := lst[i-1];
17 lst[i-1] := lst[i];
18 lst[i] := temp
19 end
20 i := i + 1
21 end
22 end
23 end
24 end

At run-time, G can be a user-written class inheriting from COMPARABLE. In
this case, translating the call to is_greater on line 14 is no different than
translating any other call to a feature. However, the problem appears if G is
an EiffelBase class which gets translated to a native JavaScript type, such as
STRING or INTEGER4 because these native types do not have a method named
is_greater.

Due to this fact, a helper method has been added to the runtime object
to help dispatch calls to ancestors of EiffelBase classes which are translated
to native JavaScript types. Therefore, the call on line 14 is translated to a
call to runtime.special_dispatch, as in Listing 2.27.

4In EiffelBase, both STRING and INTEGER have COMPARABLE as an ancestor, therefore
represent proper substitutes for G at run-time.

2.4 “Translating” EiffelBase 37

Listing 2.27: JavaScript Bubble Sort Translation

1 var BUBBLE_SORT = runtime.declare("BUBBLE_SORT", [], {
2 sort : function (lst) {
3 var i = 0, sorted = false, temp = null;
4 while (!(sorted)) {
5 sorted = true;
6 i = 1;
7 while (!(i > lst.count())) {
8 if (runtime.special_dispatch(
9 lst.i_th(i-1), "is_greater", lst.i_th(i))) {

10 sorted = false;
11 temp = lst.i_th(i-1);
12 lst.put_i_th(lst.i_th(i), i-1);
13 lst.put_i_th(temp, i);
14 }
15 i = i + 1;
16 }
17 }
18 }
19 });

The method runtime.special_dispatch has a structure similar to the
one presented in Listing 2.28. The method collects the arguments of the call
in args and then proceeds to test the type of the call target, obj, in an outer
series of ifs. Then it tests the feature name, in each case performing the
correct operation. If the call target is not a native JavaScript type, then it
must be an object of a user-written class and therefore a normal call is made
(line 14).

Listing 2.28: runtime.special_dispatch

1 runtime.special_dispatch = function (obj, feature_name) {
2 var args = Array.prototype.slice.apply(arguments, [2]);
3 if (typeof obj === "number") {
4 if (feature_name === "is_greater") {
5 return obj > args[0];
6 } else if (feature_name === "abs" {
7 ...
8 } else {
9 ...

10 }
11 } else if (typeof obj === "string") {
12 ...
13 } else { ... }
14 return obj[feature_name].apply(obj, args);
15 };

38 From Eiffel to JavaScript

It is import to mention that the runtime.special_dispatch is generated
automatically by the translator from JavaScript EiffelBase equivalents of the
classes listed in Section 2.4.3 and therefore needs not be of concern to a
programmer.

Chapter 3

Implementation

This chapter describes the implementation of the automatic translator from
Eiffel to JavaScript. The translator’s source code resides in a project named
javascript_compiler and depends only on the core of the Eiffel Studio
compiler. The class JAVASCRIPT_COMPILER is the facade [12] for the translator
and features add_class_to_compile and execute_compilation expose it.

The Eiffel compiler implemented and distributed with Eiffel Studio [7]
is used in order to parse the Eiffel source code, analyze it semantically and
create an abstract syntax tree. Furthermore, the Eiffel compiler resolves types
and creates a simplified version of the abstract syntax tree called byte code
tree.

Therefore, the translator runs only after the Eiffel compiler has already
run and no errors have been found. It is implemented as an Eiffel byte code
visitor and translates each byte code node to logically equivalent JavaScript
source code, stitching all the different translations together in order to form
the translation of complex source code.

The translator features an extensible architecture so that only Eiffel’s
language features have been implemented in the translator itself. The actual
translation rules reside in an external library (see Section 3.2). The mecha-
nism through which they are fed into the translator have been discussed in
Section 2.3.

After the desired classes to be translated have been added and feature
execute_compilation has been called, the translator proceeds to search the
system, looking for special translator directives (see Section 2.3.3) and for
ancestors of EiffelBase classes which get translated to native JavaScript types
(see Section 2.4.4). It populates a JSC_CLASS_INFORMER object with the spe-
cial classes it has found and then proceeds to translate the required classes,
one by one.

39

40 Implementation

Listing 3.1: Features from the JSC_CLASS_INFORMER class

1 class
2 JSC_CLASS_INFORMER
3

4 feature -- Status Report
5

6 is_native_stub (a_class_id: INTEGER): BOOLEAN
7 -- Is the class a stub for a native JavaScript object?
8

9 is_fictive_stub (a_class_id: INTEGER): BOOLEAN
10 -- Is the class a placeholder of externals?
11

12 is_stub (a_class_id: INTEGER): BOOLEAN
13 -- Is the class a stub?
14

15 is_ancestor_of_native_type (a_class_id: INTEGER): BOOLEAN
16 -- Is the class an ancestor of an EiffelBase type which

gets translated to a JavaScript primitive type?
17

18 feature -- Basic Operation
19

20 get_native_stub (a_class_id: INTEGER): STRING
21 -- Get the qualified name of the native JavaScript class

for a native stub
22

23 find_class_named (a_class_name: STRING): detachable CLASS_C
24 -- Find `a_class_name' in universe.
25

26 is_eiffel_base_class (a_class: CLASS_C): BOOLEAN
27 -- Is `a_class` an EiffelBase class?
28

29 redirect_class (a_class: CLASS_C): CLASS_C
30 -- Redirect `a_class' to equivalent JavaScript class if `

a_class' belongs to EiffelBase
31

32 redirect_feature (a_class: CLASS_C; a_feature: FEATURE_I):
FEATURE_I

33 -- Redirect `a_class'.`a_feature' to equivalent JavaScript
class.feature if `a_class' belongs to EiffelBase.

34

35 end

Listing 3.1 shows some of the feature of the class JSC_CLASS_INFORMER.
This class is used throughout the translation process, as it contains features
providing different pieces of information. Feature redirect_feature imple-
ments the function redirecting EiffelBase calls, µ(C,f) (see Section 2.4.2).

The translation is done through a series of writer classes, each with a

41

precise scope and each handling a specific part of the translation. The classes
work with a byte code tree generated by the Eiffel Studio compiler and are
implemented as visitors [12].

• JSC_CLASS_WRITER: Translates an entire Eiffel class to JavaScript, by
dispatching to various other writers. It handles the generation of class
declarations and invariants.

• JSC_ATTRIBUTE_WRITER: Translates an attribute.

• JSC_DEFAULT_VALUE_WRITER: Handles the default values for different
types: false for booleans, 0 for numeric types and null for objects.

• JSC_CONSTANT_WRITER: Handles the translation of constant literals.

• JSC_SIGNATURE_WRITER: Handles the signature of the JavaScript method
representing an Eiffel procedure or a once feature.

• JSC_BODY_WRITER: Translates the body of a feature, dispatching the
translation of each instruction to JSC_INSTRUCTION_WRITER. It handles
the generation of precondition and postcondition checks, the local vari-
ables and the equivalent JavaScript code for rescue clauses.

• JSC_INSTRUCTION_WRITER: Translates an Eiffel instruction.

• JSC_EXPRESSION_WRITER: Translates an Eiffel expression.

All the writer classes use the JSC_SMART_BUFFER class which is a stack of
buffers. This proved to be a very valuable addition to usual buffers, as it often
happens that constructs which are nested need to be translated and it is con-
venient to reuse the same class instances. The generated strings, abstracted
by JSC_BUFFER_DATA are “stitched” together, producing the JavaScript out-
put.

Another class used by the writers is JSC_CONTEXT, which provides a shared
context for the writers. For example, when translating an instruction, the
context contains information such as: the current class and the current fea-
ture being translated, the names of the feature’s arguments or the names of
the feature’s local variables, etc. It also provides helper features to create
warnings and errors: add_error and add_warning.

The warnings and errors are stored in SHARED_JSC_ENVIRONMENT, from
where they get added to EVE’s Error List if the translator is invoked from
the Graphical User Interface or they get printed to the standard error output
if it is invoked from console.

42 Implementation

3.1 EVE integration
The translator is integrated in the Eiffel Verification Environment [9], an
experimental branch of Eiffel Studio. From the Graphical User Interface, it
is available as a tool and invoking the translator will translate all the classes
in the current project to JavaScript (see Fig. 3.1). The tool automatically
translates any other referenced classes.

During the translation, the status bar of the tool is updated to reflect the
progress and if warnings or errors are found, they are displayed in the Error
List (see Fig. 3.2).

Invoking the JavaScript translator from the console is straightforward and
requires that the extra flag, -js_compile, is used:

ec.exe -config prj.ecf -target -js_compile

The generated JavaScript files are written to the hard disk in the EIFGENs
/target/JavaScript folder.

Fig. 3.1: Invoking the translator over the current project

3.2 The JavaScript Base library 43

Fig. 3.2: Warnings generated by the translator

3.2 The JavaScript Base library
Because a lot of information has been externalized from the translator, all
projects which are translated to JavaScript must include the javascript_base
library. This library contains essential information the translator needs, such
as JavaScript equivalents for EiffelBase classes, but also includes a large col-
lection of stubs for native browser objects.

Using the methodology described in Section 2.3, the library defines stubs
for native browser objects as specified in:

• W3C Document Object Model Core Specification [41]

• W3C Document Object Model Events Specification [42]

• W3C HTML5 Specification [14]

• W3C Cascading Style Sheets Object Model Specification [39]

• W3C Cascading Style Sheets Object Model View Module Specification [40]

Te specifications describe the interfaces for the native browser objects in
an Interface Definition Language (IDL). Therefore, a parser has been writ-
ten which reads the interfaces and generates the 126 browser native stubs

44 Implementation

included in the javascript_base, accounting for more than 10,000 lines of
code.

The programmer does not refer directly to the JavaScript equivalents
for EiffelBase classes, she writes her code on top of EiffelBase. Through
the mechanisms described in Section 2.4 the translator substitutes the used
classes with equivalents in the generated source code, transparently to the
user. The library contains JavaScript equivalents for 44 EiffelBase classes.

Besides the ones which get translated to native JavaScript types, as pre-
sented in Section 2.4.3, the library also contains JavaScript equivalents for
the following EiffelBase classes:

• LIST, ARRAYED_LIST, LINKED_LIST

• ARRAY2

• HASH_TABLE

• SET, LINKED_SET

• TREE, LINKED_TREE

These classes provide a minimum set of data structures an application
needs. They are supported because they have been needed during the devel-
opment of the case studies (see Chapter 4).

3.3 Testing
Tests have been written in order to prevent breaking changes in the trans-
lator. They ensure that the translator functions end-to-end: the tests are
written in Eiffel, they get translated to JavaScript and are executed inside
a browser. Besides serving as smoke-tests, they validate two aspects of the
translation:

• the fact that Eiffel language features are translated in such a way that
their original behaviour is the same in the translated code.

• the fact that the EiffelBase equivalents are implemented correctly.

To support these tests, a helper class, named TEST, has been created which
has helper features such as: invoke_test, assert or expects_exception to
ease the writing of tests.

3.3 Testing 45

Listing 3.2: Testing object tests

1 class
2 TEST_OBJECT_TESTS
3 inherit
4 TEST
5

6 feature {NONE} -- Initialization
7 make
8 do
9 invoke_test ("generics", agent

10 local
11 l: LIST[STRING]
12 do
13 create {LINKED_LIST[attached STRING]}l.make
14

15 assert (attached {LINKED_LIST[attached STRING]} l)
16 assert (attached {LINKED_LIST[STRING]} l)
17 assert (attached {LIST[attached STRING]} l)
18 assert (attached {LIST[attached ANY]} l)
19 assert (attached {LIST[ANY]} l)
20 assert ({LIST[STRING]} l)
21 assert (not attached{LIST[INTEGER]} l)
22 end
23)
24 end
25 end

Listing 3.2 shows a test which validates an Eiffel language feature: that
object tests function correctly with generic types. Listing 3.3 shows a test
which validates that the equivalent for EiffelBase class LINKED_SET works
correctly in a border case.

Listing 3.3: Testing the EiffelBase equivalent for LINKED_SET

1 class
2 TEST_LINKED_SET
3 inherit
4 TEST
5 feature {NONE} -- Initialization
6 make
7 do
8 invoke_test ("one_element_set_test", agent
9 local

10 l_set: SET[attached STRING]
11 do
12 create {LINKED_SET[attached STRING]}l_set.make
13 assert (l_set.is_empty)
14

46 Implementation

15 l_set.extend ("foo")
16 assert (not l_set.is_empty)
17 assert (l_set.has ("foo"))
18 assert (l_set.count = 1)
19

20 l_set.prune ("foo")
21 assert (l_set.is_empty)
22 assert (not l_set.has ("foo"))
23 assert (l_set.count = 0)
24 end
25)
26 end
27 end

The test suite has been run before every commit of a translator change to
the configuration management tool used for development (a SVN repository),
effectively reducing the number of introduced defects.

3.4 Limitations
This section lists the unsupported Eiffel language features and other limi-
tations of the current implementation of the translator. These issues do not
reflect problems in the general approach, but rather refer to the specific cur-
rent implementation:

• not supported: renaming inherited attributes

• not supported: feature selection in multiple inheritance

• not supported: the default_rescue feature.

• semantic difference: strings in Eiffel are mutable, while in JavaScript
they are immutable.

• constants are inlined

• a class with multiple generics does not name what generic it uses when
inheriting from a class with only one generic.

Some solutions to these issues are described in Section 6.2.

Chapter 4

Case Study

This chapter presents some of the applications written in Eiffel and translated
to JavaScript using the automatic translator. These applications have been
developed mostly in order to test the translator, but to also show different use
cases for it. The circles example shows how code can be reused and the editor
example is a full-fledged web-based application, proving the applicability of
the translator for a large project.

4.1 Circles
The first example developed as a show case for the translator aims to prove
one of the translator’s goals: code reusability. Two applications have been
created: one which runs natively, with an user interface built with EiffelVi-
sion2 [8] and another one which runs in a browser, with an user interface
built with JavaScript Base (Section 3.2).

The example consists of a world (a fixed size rectangle) filled with mov-
ing circles of different colors and sizes. A rudimentary physics engine has
been written to simulate totally elastic collision between circles. The formu-
las to compute the velocities of two colliding objects have been found on
Wikipedia [23]:

v1 =
m1 −m2

m1 + m2

u1 +
2m2

m1 + m2

u2

v2 =
m2 −m1

m1 + m2

u2 +
2m1

m1 + m2

u1

, where v1 and v2 are the final velocities of the circles, u1 and u2 are the
initial velocities and m1 and m2 are the masses.

47

48 Case Study

The classes which model the world, the circles and their collision are
independent to the user interface. Therefore, they have been grouped into a
separate project (a library):

• VECTOR: a 2D vector with common operations like addition, subtraction,
dot product, normalization, scalar multiplication, scalar division, etc.

• COLOR: representation for color: both in html form and in RGB (red,
green, blue).

• CIRCLE: a circle with a position, radius, mass, color and velocity (see
Listing 4.1).

• WORLD: a rectangle containing circles. Has a feature update which up-
dates the state of the circles with a_delta_time milliseconds.

• SETUP: a class which creates a world with 7 circles of different colors
and sizes.

Listing 4.1: A class modelling a circle

1 class
2 CIRCLE
3

4 inherit
5 DOUBLE_MATH
6

7 create
8 make
9

10 feature {NONE} -- Initialization
11

12 make (a_pos: VECTOR; a_radius: DOUBLE; a_color: COLOR)
13 do
14 ...
15 end
16

17 feature -- Access
18

19 color: COLOR
20 radius, mass: DOUBLE
21 pos: VECTOR
22 velocity: VECTOR
23

24 end

4.1 Circles 49

Fig. 4.1: The circles example running as a native application

The library containing the model classes is used by an EiffelVision2 ap-
plication, which contains a simple window with a background thread that
updates and renders the updated world. Listing 4.2 shows how the circles are
rendered using EiffelVision2. A pixel map is created and each circle is drawn
onto it. Later on, the pixel map is drawn on the window. Figure 4.1 shows a
still screenshot of running the EiffelVision2 application.

Listing 4.2: Rendering the circles in EiffelVision2

1 render: attached EV_PIXMAP
2 local
3 color: EV_COLOR
4 c: CIRCLE
5 do
6 create Result.make_with_size (world.width, world.height)
7 from world.circles.start until world.circles.after loop
8 c := world.circles.item
9

10 create color.make(c.color.r, c.color.g, c.color.b)
11 Result.set_foreground_color (color)
12 Result.fill_ellipse (c.pos.x-c.radius, c.pos.y-c.radius,

2*c.radius, 2*c.radius)
13

14 world.circles.forth
15 end
16 end

50 Case Study

Fig. 4.2: The circles example running in a browser

The same library containing the model classes is also used by a second
application, one which contains a JavaScript user interface. Listing 4.3 shows
how the circles are rendered using div DOM nodes. Figure 4.2 shows a still
screenshot of running the application in a browser.

Listing 4.3: Rendering the circles in the browser

1 render
2 local
3 dom_node: JS_HTML_DIV_ELEMENT; c: CIRCLE
4 do
5 from world.circles.start until world.circles.after loop
6 c := world.circles.item
7

8 create dom_node.make
9 dom_node.style.position := "absolute"

10 dom_node.style.left := (c.pos.x - c.radius).out + "px"
11 dom_node.style.top := (c.pos.y - c.radius).out + "px"
12 dom_node.style.width := (2 * c.radius).out + "px"
13 dom_node.style.height := (2 * c.radius).out + "px"
14 dom_node.style.background := c.color.html
15 set_border_radius (dom_node, c.radius.out + "px")
16

17 world_dom_node.append_child (dom_node)
18 world.circles.forth
19 end
20 end

4.2 The editor 51

In conclusion, this example shows how the same Eiffel source code is
both compiled to C, as part of a native application and how it is translated
to JavaScript, as part of an application running in the browser.

4.2 The editor
As part of this thesis, a full-fledged web-based source code editor has been
developed. In its incipient form, the editor served for testing the translator,
but soon took off to become a powerful standalone application. In fact, the
editor influenced greatly the development of the translator itself, as it became
the main driving force behind translator features. For example, the supported
EiffelBase classes (see Section 3.2) came from the needs encountered during
the development of the editor.

The main features of the editor are:

• source code highlighting

• concurrent editing by multiple developers with an implicit line-based
versioning system

• virtual rendering (only the visible lines are actually rendered)

• commenting/uncommenting multiple lines of code

• indenting/unindenting multiple lines of code

• full mouse support

• copy-pasting

• searching in file

• support for annotating lines

• handling of variable width fonts

• handling of thousands of lines of code

As a full description of the editor is outside the scope of this document,
this section only provides a brief explanation of how the editor works.

The motivation for the editor appeared when several problems were iden-
tified in the previous editor used in the CloudStudio IDE: there was no sep-
aration between the view and the model, it was implemented with a browser

52 Case Study

textarea, thus prohibiting any sort of extensions; it offered no built-in sup-
port for concurrent editing or for restoring the cursor position.

The new editor is implemented with a clear separation between the view
and the model and the communication between them is done exclusively with
events. The model in this case consists of a list of lines, each with a proper
unique identifier and with the capability to represent multiple versions of its
content. View options are then applied to the model, basically acting as a
filter and choosing which version of a line is rendered on screen.

Browser

Model

View

mouse,

keyboard

(1) user

actions

(2) edit

operations

(3) model

 events

User

operations

Fig. 4.3: Events in the editor

Since the view is completely separated from the model and it updates on
model events, the following two scenarios are possible:

• From the view to the model. The user can trigger an action by
using the mouse, the keyboard (e.g. clicking, dragging, typing, pasting,
etc.) or by clicking on buttons. When a user action has been triggered,
an event describing it is generated ((1) in Fig. 4.3):

– move cursor
– press the delete/backspace keys
– press the enter key
– press other keys
– cut

4.2 The editor 53

– paste
– select all
– commit
– rollback

These events reach the class modeling the cursor. Based on the current
cursor position and on the current selection, the cursor transforms the
events in one or more of the following logical operations ((2) in Fig. 4.3):

– insert new lines
– change existing lines
– delete lines
– commit lines
– rollback lines

These operations are then relayed to the model and to the server.

• From the model to the view. When the current user has triggered a
series of line operations or when such operations are received from the
server, the model reacts and properly treats them (e.g. new lines are
added to the model or new versions for a line’s content are created, etc.).
After acting on the operations, a further series of events are broadcasted
to the view ((3) in Fig. 4.3)::

– cursor change
– line change
– line annotation change
– delete lines
– insert lines
– scroll view

The latter series of events are processed by the view, which, given the
current visible lines, updates the DOM nodes representing the source
code accordingly.

54 Case Study

Fig. 4.4: Viewing other users changes

Fig. 4.5: A conflict is seen in real-time

Chapter 5

Related Work

5.1 JavaScript Language Translators
Google Web Toolkit (GWT) [13] is an open source framework for creating
web-based applications, with a Java to JavaScript compiler at its heart. The
main differences are that the GWT compiler produces object-oriented byte-
code, the JavaScript object model closely resembles Java’s (i.e. the model
supports single inheritance) and it has a monolithic approach to compila-
tion, in order to optimize the generated code. The translator developed in
this thesis produces JavaScript code which is human-readable and actually
looks like source code that a programmer could have written. This allows to
take full advantage of the tooling available in browsers (e.g. for debugging,
for performance testing, etc.). Also, the translator allows for dynamic (i.e. at
run-time) definition of new classes.

JDojo [16] is a Java to JavaScript compiler integrated in the Eclipse
Java Compiler [17] which generates human-readable JavaScript code. The
main differences are that JDojo creates JavaScript source code which only
works with the Dojo toolkit [35] and that “the programmer does not pro-
gram against the Java JDK classes, but against Dojo and JavaScript stubs
that JDojo provides” [16]. The translator developed in this thesis generates
JavaScript source code which runs independent on the existence of a library
and allows programmers to write code against EiffelBase.

5.2 Eiffel Language Translators
AutoProof [24, 37] is a translator which transforms Eiffel programs to an
intermediate language, BoogiePL [6], and then uses the Boogie verifier to

55

56 Related Work

check if the program satisfies the specifications. This compiler only covers a
subset of Eiffel and it focuses on developing techniques to verify programs.
This thesis develops a translator from Eiffel to JavaScript which covers a
much higher percentage of Eiffel’s features.

Trudel et al. [36] implemented a compiler that takes Java programs and
produces Eiffel programs. The translation is done from a high level language
(Java) to another high level language (Eiffel), similar to the translator of
this thesis which also transforms a high level language (Eiffel) to another
high level language (JavaScript). The main difference is that in Trudel et
al.’s work [36], the input object model is similar to the output object model.
This is not the case in this work, since a suitable representation for Eiffel
classes in JavaScript had to be defined.

Chapter 6

Conclusions and Future
Work

6.1 Conclusions
An automatic translator that transforms Eiffel programs to JavaScript pro-
grams has been designed and implemented. It supports the most important
Eiffel language features, including agents, contracts, exception handling, mul-
tiple inheritance and once routines, mapping Eiffel concepts to counter-parts
in JavaScript or emulating them where no JavaScript equivalents exist.

The translator is built with an extensible architecture and with mech-
anisms to enhance the translation rules. A library consisting of 126 classes
describing native JavaScript objects (i.e. stubs) and of equivalents for 44
EiffelBase classes enhances the translator.

The applicability of the translator has been demonstrated with several
case studies. One shows how the same Eiffel source code can be either com-
piled to C or translated to JavaScript without any changes. The other case
study is a full-fledged web-based source code editor. The editor has been in-
tegrated to the CloudStudio IDE, making up for 10,000 lines of code or 35%
of the project.

6.2 Future work
The work presented in this thesis offers several opportunities for further re-
search and improvement. At first, the limitations identified in Section 3.4
may be addressed. They represent restrictions of the current implementation
which can be resolved through additional implementation effort:

57

58 Conclusions and Future Work

• renaming attributes can be achieved by introducing a getter and a
setter for each attribute of a class. Attributes should then be accessed
only through those methods. When renamed, the two methods may
be overwritten by the runtime to assign and read the new attribute.
However, accessing attributes through methods all the time would lead
to a decrease in performance and it might therefore be acceptable that
the translator does not support attribute renaming.

• feature selection may be introduced as another parameter in each object
of the parents array used when declaring a class. Then, the runtime.
declare can be enhanced to take feature selection into consideration.

• constants may be referred to statically rather than inlined.

• when inheriting from a class which has generics, an extra parameter
in each object of the parents array may account for what generic is
used to inherit from the parent class. The runtime.inherits can be
enhanced to take this into account.

Besides fixing the limitations in the implementation, the following ideas
can be considered future work:

• adding more EiffelBase equivalents to the javascript_base library.

• developing a new implementation of EiffelVision2, one which is built
on top of javascript_base, such that programmers write their User
Interface code once against EiffelVision2 and then they can translate
their code to JavaScript and run it in the browser.

• writing helper methods to hide and provide safe wrappers around com-
mon entry points for DOM-based vulnerabilities: around the innerHTML
property of HTMLElements, around window.location, etc. Then, a new
subclass of STRING may be created, SAFE_STRING for example, which
can be used to achieve statical, compile-time safety.

Bibliography

[1] ECMA-262: ECMAScript Language Specification, December 2009.
Available at http://www.ecma-international.org/publications/
standards/Ecma-262.htm.

[2] Adobe acknowledges critical security flaw in software. http://www.bbc.
co.uk/news/10257411, May 2011.

[3] Adobe Flash. http://www.adobe.com/software/flash/about/, May
2011.

[4] Applets. http://java.sun.com/applets/, May 2011.

[5] D. Crockford. Prototypal inheritance in javascript. http://javascript.
crockford.com/prototypal.html, Apr. 2008.

[6] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical report, Microsoft Re-
search, 2005.

[7] Eiffel Software. EiffelStudio. A Complete Integrated Development En-
vironment. http://www.eiffel.com/products/studio/, May 2011.

[8] Eiffel Software. EiffelVision2. A platform independent Graphical User
Interface (GUI) library. http://www.eiffel.com/libraries/vision2.
html, May 2011.

[9] Eiffel Verification Environment (EVE). http://eve.origo.ethz.ch/.

[10] EiffelBase. http://docs.eiffel.com/book/solutions/eiffelbase,
May 2011.

[11] Expert says Adobe Flash policy is risky. http://news.cnet.com/
8301-27080_3-10396326-245.html, May 2011.

59

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.bbc.co.uk/news/10257411
http://www.bbc.co.uk/news/10257411
http://www.adobe.com/software/flash/about/
http://java.sun.com/applets/
http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html
http://www.eiffel.com/products/studio/
http://www.eiffel.com/libraries/vision2.html
http://www.eiffel.com/libraries/vision2.html
http://docs.eiffel.com/book/solutions/eiffelbase
http://news.cnet.com/8301-27080_3-10396326-245.html
http://news.cnet.com/8301-27080_3-10396326-245.html

60 BIBLIOGRAPHY

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13] Google Web Toolkit. http://code.google.com/webtoolkit/, May
2011.

[14] Hypertext Markup Language (HTML) Specification 5th major revision.
http://dev.w3.org/html5/spec/Overview.html, May 2011.

[15] JavaScript:TraceMonkey – MozillaWiki. https://wiki.mozilla.org/
JavaScript:TraceMonkey, May 2011.

[16] JDojo. https://jazz.net/wiki/bin/view/Main/JDojo, May 2011.

[17] JDT Core Component – Eclipse. http://www.eclipse.org/jdt/core/,
May 2011.

[18] B. Meyer. Design by Contract. In D. Mandrioli and B. Meyer, editors,
Advances in Object-Oriented Software Engineering, pages 1–50. Prentice
Hall, 1991.

[19] B. Meyer. Applying “Design by Contract”. IEEE Software, 25(10):40–51,
1992.

[20] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

[21] B. Meyer. The Unspoken Revolution in Software Engineering. IEEE
Computer, 39(1):121–124, 2006.

[22] B. Meyer (editor). ISO/ECMA Eiffel standard (Standard ECMA-367:
Eiffel: Analysis, Design and Programming Language), June 2006.
available at http://www.ecma-international.org/publications/
standards/Ecma-367.htm.

[23] Momentum – Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Momentum&oldid=430943981, May
2011.

[24] M. Nordio, C. Calcagno, B. Meyer, P. Müller, and J. Tschannen. Rea-
soning about Function Objects. In J. Vitek, editor, TOOLS-EUROPE,
LNCS, Berlin, Heidelberg, 2010. Springer-Verlag.

http://code.google.com/webtoolkit/
http://dev.w3.org/html5/spec/Overview.html
https://wiki.mozilla.org/JavaScript:TraceMonkey
https://wiki.mozilla.org/JavaScript:TraceMonkey
https://jazz.net/wiki/bin/view/Main/JDojo
http://www.eclipse.org/jdt/core/
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://en.wikipedia.org/w/index.php?title=Momentum&oldid=430943981
http://en.wikipedia.org/w/index.php?title=Momentum&oldid=430943981

BIBLIOGRAPHY 61

[25] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and E. D.
Nitto. How do Distribution and Time Zones affect Software Develop-
ment? A Case Study on Communication. In 6th International Confer-
ence on Global Software Engineering. IEE, 2011.

[26] M. Nordio, C. Ghezzi, B. Meyer, E. D. Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni. Teaching Software Engineering using
Globally Distributed Projects: the DOSE course. In Collaborative Teach-
ing of Globally Distributed Software Development - Community Building
Workshop (CTGDSD), New York, NY, USA, 2011. ACM.

[27] M. Nordio, M. Joseph, B. Meyer, and A. Terekhov. Software Engineer-
ing Approaches for Outsourced and Offshore Development, 4th Inter-
national Conference, St. Petersburg, Russia. Lecture Notes in Business
Information Processing 54, Springer-Verlag, 2010.

[28] M. Nordio, B. Meyer, and H.-C. Estler. Collaborative Software Devel-
opment on the Web, 2011.

[29] M. Nordio, R. Mitin, and B. Meyer. Advanced Hands-on Training for
Distributed and Outsourced Software Engineering. In ICSE ’10: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, New York, NY, USA, 2010. ACM.

[30] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and G. Tambu-
relli. The Role of Contracts in Distributed Development. In Software
Engineering Approaches for Offshore and Outsourced Development, vol-
ume 35 of LNBIP, Berlin, Heidelberg, 2009. Springer-Verlag.

[31] Pwn2Own 2010: interview with Charlie
Miller. http://www.oneitsecurity.it/01/03/2010/
interview-with-charlie-miller-pwn2own/, May 2011.

[32] Rich Internet Application Market Share. http://www.statowl.com/
custom_ria_market_penetration.php, May 2011.

[33] Rich Internet Application Statistics. http://riastats.com/, May 2011.

[34] Silverlight. http://www.microsoft.com/silverlight/, May 2011.

[35] The Dojo Toolkit. http://dojotoolkit.org/, May 2011.

[36] M. Trudel, M. Oriol, C. A. Furia, and M. Nordio. Automated Translation
of Java Source Code to Eiffel. In TOOLS-EUROPE, LNCS, Berlin,
Heidelberg, 2011. Springer-Verlag.

http://www.oneitsecurity.it/01/03/2010/interview-with-charlie-miller-pwn2own/
http://www.oneitsecurity.it/01/03/2010/interview-with-charlie-miller-pwn2own/
http://www.statowl.com/custom_ria_market_penetration.php
http://www.statowl.com/custom_ria_market_penetration.php
http://riastats.com/
http://www.microsoft.com/silverlight/
http://dojotoolkit.org/

62 BIBLIOGRAPHY

[37] J. Tschannen. Automatic Verification of Eiffel Programs. Master’s thesis,
ETH Zurich, 2009.

[38] V8 JavaScript Engine. http://code.google.com/p/v8/, May 2011.

[39] World Wide Web Consortium Cascading Style Sheets Object Model.
http://dev.w3.org/csswg/cssom/, May 2011.

[40] World Wide Web Consortium Cascading Style Sheets Object Model
View Module. http://www.w3.org/TR/cssom-view/, May 2011.

[41] World Wide Web Consortium Document Object Model Core. http:
//www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html,
May 2011.

[42] World Wide Web Consortium Document Object Model Events.
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/
DOM3-Events.html, May 2011.

http://code.google.com/p/v8/
http://dev.w3.org/csswg/cssom/
http://www.w3.org/TR/cssom-view/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html

