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Abstract

Respiratory motion is a complicating factor for cancer treatments. In order to take

fully advantage of the recent technical developments in radiation therapy, where

highly conformal radiation dose distributions are deposited into the tissues, accu-

rate and real-time respiratory motion compensation is necessary. In this thesis

surrogates of the abdominal motion are obtained from tracking points of interest in

2D ultrasound sequences of the liver under free breathing.

This thesis provides a collection of intensity-based methods for vessel tracking in

long ultrasound sequences. The most promising approach is based on exploiting

and learning the repetition in the images in case of approximately periodic motion,

such as breathing.

In addition, I describe the integration of the presented tracking results with a model-

based framework for predicting the motion of the treatment target in a novel hybrid

MR- and ultrasound-guided high intensity focused ultrasound therapy. Finally, I

examined an alternative multimodal approach for predicting the displacements of

points of interest, based on transferring information of the breathing motion across

modalities.



Sommario

Il movimento respiratorio è un fattore complicante nel trattamento dei tumori. Al

fine di trarre il massimo vantaggio dai recenti sviluppi tecnologici nel campo della

radioterapia, grazie ai quali dosi radianti altamente focalizzate sono depositate nei

tessuti, è necessaria una compensazione accurata e in tempo reale del movimento

respiratorio. In questa tesi i surrogati del movimento addominale sono ottenuti dal

tracciamento di punti d’interesse in sequenze ecografiche bi-dimensionali epatiche

sotto respirazione libera.

Questa tesi fornisce un insieme di metodi, basati sull’intensità delle immagini, per il

tracciamento di lunghe sequenze ecografiche. L’approccio più promettente apprende

da e sfrutta la ripetizione delle immagini nel caso di moto approssimativamente

periodico, come la respirazione.

Inoltre descrivo l’integrazione di risultati del tracciamento presentati con un fra-

mework basato su un modello statistico, per predire il movimento del target del

trattamento in un nuovo sistema di ultrasuono ad alta intensità focalizzato, guidato

da immagini ibride ecografiche e di risonanza magnetica. Infine esamino un approc-

cio multi-modale alternativo per predire gli spostamenti di punti di interesse, basato

sul trasferimento di informazioni del movimento respiratorio tra le diverse modalità

d’immagine.
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1
Introduction

Respiratory motion is a complicating factor for the treatment of non-resectable

tumors located in the thorax and abdomen [Keall et al. 2006, Verma et al. 2011]. An

established method for cancer treatment is radiation therapy, which uses ionization

radiation to destroy tumor cells. During radiation therapy, a lethal dose should

be delivered to the cancerous tissue, while sparing the healthy one. Therefore,

accurate target localization and dose delivery are the main challenges in radiation

therapy. The motion of the tumor caused by the patient breathing can compromise

the effectiveness of the treatment.

Recent technical developments in radiation therapy, such as intensity modulated

radiation therapy (IMRT), intensity modulated proton therapy (IMPT), and high

intensity focused ultrasound (HIFU), provide the capability to deposit highly con-

formal radiation dose distributions into the tissues. However, the highly localized

treatment makes these techniques sensitive to organ motion. Therefore compen-

sation for any movement in the treatment region, like respiratory motion in the

abdomen, is vital [Keall et al. 2006, Shirato et al. 2007]. This requires an accuracy

in the range of millimeters and real-time feedback.

Unfortunately, observation and quantification of the motion of all structures of in-

terest in real-time during therapy is often impossible. Instead, several treatment

methods have been proposed to deal with respiratory motion. An obvious solution

is to ask the patient to hold his/her breath while the therapy beam is on. In gated

treatments the beam is only turned on during a certain phase of the breathing cycle,

e.g. end exhalation. Although the aforementioned approaches compensate to some

extent for breathing motion, they require reproducibility of the organ position for

the selected breathing phase and a longer treatment time. Breath-holding also re-

quires patient compliance. In addition, they compensate only for breathing motion,

but not for other motion modes, e.g. organ drift. Thus, they are always sufficiently

accurate within first 3 minutes after the patient set up, but deviated significantly

for most subjects after 20 minutes [von Siebenthal et al. 2007c].
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It would be desirable to keep the target and the treatment beam aligned throughout

the entire breathing cycle. This technique is commonly referred to as tracking. A

common approach is based on surrogate measures of the target motion and a model

which relates target and surrogate motion [Keall et al. 2006]. Such surrogates

include external signals such as recordings from a breathing bellow or a spirometer,

and internal measurements from fast imaging (called image guidance). Studies have

shown that for the abdomen internal surrogates correlate better with the target

motion during breathing than external respiratory signals [Keall et al. 2006]. In

addition, studies of the liver motion showed that an indirect strategy, based on

a statistical motion model in combination with tracking a few surrogate markers

inside the liver, allowed to accurately estimate drifts of the organ [von Siebenthal

et al. 2007b, McClelland et al. 2011]. Thus, tracking internal landmarks has great

potential for motion management.

Image guided therapies use image information gathered during therapy for adjusting

the treatment plan. Image guidance can be achieved using different imaging modal-

ities, such as fluoroscopy, computer tomography (CT), magnetic resonance imaging

(MRI) or ultrasound. The latter represents the only technique capable of imag-

ing and displaying soft tissue deformations and organ displacements in real-time,

together with being non-ionizing and cheap.

Ultrasound imaging is a well established and widely used medical imaging technique.

Echographic systems are inexpensive, easily accessible, relatively small and mobile,

and do not require dedicated rooms. Ultrasound is a safe image modality as it is

relying on non-ionizing radiation. In addition, ultrasound imaging is real-time and

can generate image sequences at a high frame rate. Most available systems are

using 2D probes. As an emerging technology, 3D ultrasound systems allow real-

time volumetric imaging, which is particularly appealing for direct visualization of

3D anatomy and motion analysis. As ultrasound has a high temporal resolution, is

non-invasive and low-cost, it is commonly used in clinical practice for diagnosis and

follow-up, especially for cardiac screening (echocardiography), obstetrics, vascular

imaging, abdominal imaging and breast cancer detection.

However, ultrasound has significant drawbacks compared to tomographic image

modalities, such as MRI and CT, for imaging the anatomy. The generated im-

ages are difficult to understand and interpret. They are often limited by small

acoustic windows and their quality is affected by several types of noise and artifacts.

These include shadows and mirroring, which are mainly due to highly attenuating

structures like bones and/or strongly reflecting interfaces. These artifacts are useful

for some applications to understand the tissue composition, e.g. shadowing below a

breast lesion. However, they are not stable in the presence of motion, as they depend

on the tissue composition along the ultrasound beam. Therefore they represent an

obstacle in estimating tissue motion.
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Ultrasound tracking is the task of following (moving) structures on the ultrasound

sequence over time. To achieve this, the spatial correspondence of a structure ap-

pearing on different frames has to be determined. The resulting displacement vec-

tors of consecutive frames can be concatenated to provide the motion trajectory

of a structure. Tracking features on images is a type of image registration with

the focus on extracting quickly the motion of some structures on image sequences,

rather than spatially transforming whole images to bring them into alignment. In

the clinic, tracking information provides a feedback of the current position to allow

for motion compensation in therapy and surgery guidance, for conformal treatment

systems and quantitative physiopathological analysis.

The capability of imaging and displaying soft tissue deformations and organ dis-

placements in real-time, makes ultrasound an appealing choice for medical appli-

cations which require tracking and analysis of tissue motion. These include blood

flow measurement, strain rate imaging, ventricular deformation analysis, and mo-

tion compensation in image-guided intervention and therapy. The latter application

is the focus of this thesis.

1.1 Application scenario

HIFU is a therapy procedure that applies high-intensity focused sonic energy to

locally heat (up to 85◦C) and destroy tumor tissue through ablation. It is a high

precision (with a focus in the order of millimeters) and minimally or non-invasive

method. The focusing of the ultrasound beam is mostly achieved electronically.

The beam is steered to the target location by dynamically adjusting the relative

phase of the phased array of the therapeutic transducer [Kennedy et al. 2003,

Amin et al. 2008, Zhang and Wang 2010, Wijlemans et al. 2012].

Clinical HIFU procedures are usually guided by an imaging procedure, to enable

treatment planning and targeting before applying the therapeutic thermal dose.

Most commonly are MR-guided HIFU (MRgHIFU) [Ries et al. 2010, Holbrook

et al. 2010, Arnold et al. 2011, Wijlemans et al. 2012] and ultrasound-guided

HIFU (USgHIFU) [Pernot et al. 2003, Pernot et al. 2004, Marquet et al. 2006,

Wu et al. 2005].

The ideal image-guided HIFU treatment would integrate two imaging modalities,

such as MRI and ultrasound, acquired simultaneously, that can provide complemen-

tary and synergistic information. MRI can visualize the tumor and quantitatively

measure the temperature elevation in and around it. Ultrasound imaging can be used

for tracking of specific anatomical landmarks in the images, in order to give real-time

information on the tissue motion. The motion tracking enables to synchronize the

HIFU beam with the respiratory cycle and to lock it onto the target. In such scenario
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the treatment time can be reduced and healthy tissue spared [Petrusca et al. 2012,

Petrusca et al. 2013].

The proposed application scenario for a future HIFU treatment session is as follows:

1. Pre-treatment phase, where a static diagnostic 3D MRI of the patient is

used to establish correspondence with the statistical motion model of the or-

gan under treatment by segmenting the organ and selecting a few natural

landmarks, which are important to predict the organ motion

2. Set up phase, where the ultrasound imaging plane is co-registered with the

coordinate system of the MRgHIFU device and with the pre-treatment 3D

MRI. An initial 2D ultrasound sequence is acquired to train the tracking al-

gorithm

3. Treatment phase, where 2D ultrasound images are continuously acquired.

Tracking is performed on these images in real-time in order to obtain the posi-

tion of the surrogate markers. Based on the latter, the statistical motion model

predicts the organ location and thus the tumor position for the treatment time

For validating the proposed motion compensation framework, simultaneous acqui-

sition of MRI and ultrasound sequences is performed.

1.2 Contributions and organization

The main aim of this project is to develop and evaluate a liver motion prediction

scheme for HIFU treatments. The primary focus of this thesis is to develop and

validate accurate, robust and real-time tracking algorithms for motion compensation

in 2D ultrasound sequences of the liver, acquired for several minutes and under free-

breathing. The specific contributions and the organization of this thesis are as

follows.

Chapter 2, Related works, provides an extensive literature review of the tracking

methods developed for ultrasound time sequences. The tracking problem and its key

components are defined. Existing tracking methods are categorized with regard to

their motion estimation approach. Their main components, strength and weakness

are described and their clinical applicability is discussed. Highly relevant approaches

on 2D ultrasound tracking of the liver are discussed in more details. This chapter

is based on the survey paper [De Luca et al. 2013a].

In Chapter 3, Intensity-based tracking for long sequences, I select two promising

intensity-based tracking methods, namely a local affine registration [De Luca et

al. 2012, De Luca et al. 2013b, Preiswerk et al. 2013] and a scale-adaptive block
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matching algorithm. The latter combines several block-matching components and

includes a novel adaptation of the block size to the feature scale. This work was

originally presented in [De Luca et al. 2013b]. Their performance in long ultrasound

sequences of the liver is assessed. In addition, I describe the characteristics of

the acquired ultrasound sequences and the validation procedure, which is based on

manual annotation of vessels centers for ground truth definition. The described

data and the validation procedure are used to estimate the tracking accuracy of all

evaluated tracking methods in this thesis.

Chapter 4, Learning-based real-time tracking, presents two novel learning-based ap-

proaches that enable robust and real-time tracking for repetitive motion scenarios.

This work was originally presented in [De Luca et al. 2012, De Luca et al. 2013b].

The first method speeds up affine registration by exploiting the redundancy within

the images in the case of repetitive movement, such as breathing. During an initial

training phase the images are registered and the relationship between the image

appearance and the displacements is learned. For each image in the real-time ap-

plication phase, the most similar images in the training set are selected for predict-

ing the associated displacements. I incorporate a mechanism to cope with unseen

variations in the images during the application phase, which allows for tracking of

non-periodic motions. [De Luca et al. 2012]. This method is adaptive, but requires

time consuming affine registration for adaptation. Hence a second method is pro-

posed, where fast and robust block matching is used for adaptation. In details, it is

based on a scale-adaptive block-matching and temporal realignment driven by the

image appearance learned from an initial training phase. I take advantage of the

approximate periodicity of the breathing motion for learning image appearance and

corresponding motion behavior (extracted by accurate but slow image registration)

to allow frequent temporal realignment of the block-matching algorithm for drift-free

real-time tracking [De Luca et al. 2013b].

Chapter 5, Simultaneous MR- and ultrasound-guided radiation therapy, describes

the proposed application scenario, where the ultrasound system is modified to be

MR-compatible. This allows for simultaneous acquisitions of ultrasound and MR

images before and during treatment. Spatial-temporal prediction is based on the

motion information from ultrasound, while the motion information from both co-

registered modalities allows for validation. In details, accurate tracking surrogates

of the liver motion from the ultrasound images is used to predict the tumor position,

in combination with a statistical motion model of the liver. The work of this chapter

is based on [Petrusca et al. 2013, Preiswerk et al. 2013].

In Chapter 6, I present a novel and unconventional approach for multi-modal motion

prediction. It exploits the temporal commonality of multi-modal images acquired

from the same organ at different locations during free-breathing. Strikingly there is

no need for capturing the same region by the modalities. The method is based on

extracting a low dimensional description of the image sequences, using slow feature
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analysis, selecting the common breathing signal for both modalities and finding the

most similar sub-sequences for predicting image feature location. The approach was

evaluated for 3 volunteers on sequences of 2D MRI and 2D ultrasound images of the

liver. Simultaneous acquisition of these images allowed for quantitative evaluation.

The work of this chapter was originally presented in [De Luca et al. 2011].

Finally, Chapter 7 concludes this thesis, where I summarize and discuss the presented

work, and outline future research directions.



2
Related works

Ultrasound tracking is the task of following (moving) structures on the ultrasound

sequence over time. To achieve this, the spatial correspondence of a structure ap-

pearing on different frames has to be determined. The resulting displacement vec-

tors of consecutive frames can be concatenated to provide the motion trajectory

of a structure. Tracking features on images is a type of image registration with

the focus on extracting quickly the motion of some structures on image sequences,

rather than spatially transforming whole images to bring them into alignment. In

the clinic, tracking information provides a feedback of the current position to allow

for motion compensation in therapy and surgery guidance, for conformal treatment

systems and quantitative physiopathological analysis.

This Chapter outlines the state-of-the-art of tracking ultrasound time sequences,

classified according to methodology and clinical applications. I consider only se-

quences of 2D and 3D images, based on radio frequency (RF) and enveloped (B-

mode) data, continuously acquired at the same spatial location. Image classification,

compounding, segmentation, registration of non-consecutive images and multimodal

approaches are not reviewed.

The Chapter is structured as follows. Section 2.1 defines the tracking problem in

ultrasound sequences and gives an overview of the main components in ultrasound

tracking, i.e. the data term, the regularization term and the optimization strategy.

In Section 2.2 I list the main tracking strategies and classify them according to the

used image features. Therefore I discriminate between speckle tracking, intensity-

based registration, feature tracking, and hybrid approaches. For each strategy I

focus on its main components, advantages and limitations, reported performance and

clinical application. In Section 2.3 I discuss the importance of ultrasound tracking

validation and describe the most common performance measures. I also comment

on the state-of-the-art results. Section 2.4 concludes the Chapter with a global

assessment of the current situation and presents possible future research directions.
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2.1 Main components in ultrasound tracking

In a clinical scenario, ultrasound sequences are acquired for estimating the motion

of anatomical structures. The movement of a structure is described by motion vec-

tors, obtained by finding the spatial correspondence of the structure in consecutive

images. Image registration is the process of determining the spatial correspondence

between images. Given two images, a reference (or fixed) and a source (or moving)

image, image registration spatially transforms the source image in order to align it

with the reference image.

The methods for estimating the motion vectors can be categorized into direct and

indirect schemes. Direct methods are intensity-based. This means that the opti-

mization criterion is derived from the intensities of the corresponding pixels after

applying a spatial transformation. Intensity-based methods spatially transform the

source image in order to align it with the reference image, see Figure 2.1. Indirect

methods first extract a set of features, e.g. points, local intensity statistics or edges,

from the images and then match these features across the images to find spatial

correspondences. From these sparse correspondences, a continuous transformation

is then estimated to map the moving image to the fixed image. This estimation

can also serve as regularization and needs to address the issue of outliers. Track-

ing focuses in comparison to image registration on estimating the motion of some

image structures, rather then aligning the images. Beside spatial accuracy, tracking

algorithms need to provide fast motion extraction which is temporally consistent.

Both motion estimation schemes have strength and weaknesses. The main advan-

tage of the direct method is that it does not require the extraction of features. Yet

it is difficult to define an image similarity measure which is robust to changes in

image appearance and large displacements. Contrarily, indirect approaches are usu-

ally faster and better suited for large displacements and intensity variations. The

main drawback is the feature detection. In fact, there may be only a few features

extracted and matched correctly, due to the presence of noise and artifacts in the

images.

Image registration is an ill-posed problem, as it requires one displacement vector

per voxel for transforming the moving image, while the image provides insufficient

information in regions without point features. To address this so-called aperture

problem it is necessary to constrain the solution. Strategies for this include using

a transformation model with fewer parameters; actively changing the displacement

field (e.g. filtering the displacement field to make it divergence-free); or penaliz-

ing unrealistic properties of the displacement fields, like volume changes and non

smoothing deformations, by adding a regularization term to the cost function.

The main components of image registration are the matching criterion, the trans-

formation model and the optimization scheme, which will be discussed next. Many
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Figure 2.1: Illustration of direct (left) and indirect (right) motion estimation ap-

proach.

reviews in the field of image registration and object tracking are currently available
[Maintz and Viergever 1998, Hill et al. 2001, Zitova and Flusser 2003, Yilmaz et al.

2006, Sotiras et al. 2012]. In this Chapter I focus on strategies specifically developed

for tracking ultrasound sequences.

2.1.1 Matching criteria

In intensity-based methods, the data term is formulated using an image similarity

metrics. Ideally, the similarity measure should have a single global optimum when

the images are in spatial correspondence. However, noise, artifacts and missing con-

trast in the images make it difficult to establish the matching between the images.

Intensity-based similarities are usually computed over regions of interest (ROIs) of

the images or over small blocks (e.g. block-matching algorithm). A common sim-

ilarity measure used in ultrasound tracking is based on the difference between the

intensities in the images, such as the sum of squared difference (SSD) or sum of

absolute difference (SAD). The SSD formulation is based on the assumption that

additive, uncorrelated Gaussian noise is predominantly responsible for the differ-

ence between intensities. In ultrasound monomodal applications this assumption

does not always hold, due to the different sources of noise and artifacts. Widely

used approaches are correlation techniques, e.g. cross correlation (CC) and normal-

ized cross correlation (NCC), that assume a linear relationship between the intensity

distributions. NCC has proved to be robust and able to deal with outliers. As the

intensity relationship is not necessarily linear, more sophisticated approaches have

also been investigated, based on the joint probability between the image intensities.
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The most popular example is mutual information (MI), which is based on the rela-

tionship of joint versus marginal entropy. MI was initially developed for multimodal

applications to cope with the same structure having different appearance in the

different modalities. In the context of ultrasound image matching, its performance

is unlikely to be superior to NCC, since shadows and other artifacts in the images

often inconsistently affect different image structures. An ultrasound-specific simi-

larity measure based on a maximum likelihood (ML) framework, has been proposed

by [Cohen and Dinstein 2002]. The likelihood function is based on the assumption

that both images are contaminated by Rayleigh distributed multiplicative noise.

In feature-based approaches the data term is usually formulated as the Euclidean or

Mahalanobis distance between the descriptors of the matched features. In dynamic

contour tracking, deformable models are applied dynamically to the image sequence.

An external energy is used to pull the contour of the previous frame towards match-

ing the current image features, like large image gradients [Cohen and Cohen 1993,

Blake and Isard 1998], local region-based information [Paragios and Deriche 2002],

local phase, or combinations of these. In feature-based tracking there are often

false feature correspondences, due to erroneous extraction and/or matching of the

features. Therefore a more robust way of formulating the data term is by using a

probabilistic approach based on M-estimators [Blake and Isard 1998]. Examples are

least squares and different ML estimators [Jacob et al. 2002, Comaniciu et al. 2004],

which are commonly adopted in Bayesian tracking frameworks.

2.1.2 Transformation models

Transformation models define the space of possible spatial transformations. They

are very useful for constraining the registration problem and act as interpolators for

information-deprived regions. Their choice is also driven by a compromise between

computational efficiency and adequate motion description. The transformations

can be classified according to the involved degrees of freedom (e.g. rigid, affine,

deformable) and their spatial coverage (local or global).

There are several ways for enforcing regularization of the dense correspondences

in a registration problem. In a straightforward approach, one can reduce the de-

grees of freedom of the estimated transformation, like only allowing translations.

More flexible transformations interpolate point correspondences by global or local

functions (e.g. thin-plate spline, B-spline), where the correspondences come from

feature-matching or are determined as transformation parameters during intensity-

based registration [Rueckert et al. 1999]. In a more explicit way, the transformation

model is regularized by an additional term in the cost function, which penalizes

some transformation properties like irregularity. Smoothing the deformation field

in a post-processing step is another strategy for regularization. For time sequences,
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temporal smoothness can usually also be expected and hence temporal regularization

has been applied.

2.1.3 Optimization Schemes

The optimization task in image registration is generally to find the transformation

parameters which provide the global optimum of the matching criteria. Such a

solution can be found via exhaustive search or optimization strategies. Exhaustive

search evaluates the goal function on a full grid defined by a sufficiently fine quantiza-

tion of the transformation parameters. Although exhaustive search is computational

expensive, it is simple to implement and thus still applied in cases where the trans-

formation is limited to translations of a few points within a small neighborhood and

for few spatial points, e.g. block-, points- and contour-matching algorithms.

In many cases the registration problem is characterized by a large number of degrees

of freedom and therefore optimization algorithms are indispensable for reaching

the solution. Optimization strategies can be classified in continuous and discrete

methods [Sotiras et al. 2012]. Continuous optimization methods treat real value

variables, while discrete ones take values from a discrete set. Discrete search spaces

are often fully assessed, while continuous methods explore the search space from

initial values. The latter is computationally expensive if local optima are to be

avoided, but can provide precise results. A third class of optimizers is composed by

heuristic methods. While continuous and discrete methods are limited with respect

to the nature of the cost function, heuristic methods handle a wide range of problems

and solution space. However, they do not provide any guarantee on the optimality

of the solution [Sotiras et al. 2012].

The most common optimizers used in ultrasound tracking are continuous methods,

such as gradient descent (GD) [Snyman 2005], Powell’s conjugate direction [Press

et al. 1992], Levenberg-Marquardt (LM) [Marquardt 1963, Press et al. 1992] and

quasi-Newton methods [Nocedal and Wright 1999]. The simplest and most used op-

timizer is GD, where the optimization takes steps in the direction of the negative of

the gradient of the objective function. A variation of this method, called stochastic

gradient descent (SGD), considers an approximation of the gradient [Bottou 2004].

However GD suffers from slow convergence. More efficient are conjugate direction

search methods, with Powell’s method [Powell 1964] being applicable to none dif-

ferential functions (as no gradients are used) while conjugated GD [Hestenes and

Stiefel 1952] converges faster.

A common quasi-Newton optimizer used in ultrasound registration is the limited

memory Broyden-Fletcher-Goldfarb-Shannon optimization routine with simple bounds

(LBFGSB) [Byrd et al. 1995]. It gives a good performance for the optimization of a
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large amount of parameters, such as in B-spline transformations, while also eliminat-

ing the need for storing the inverse of the Hessian during the optimization routine
[Heyde et al. 2012].

The Gauss-Newton (GN) algorithm is only used to minimize sum of squared function

values [Björck 1996, Nocedal and Wright 1999], like SSD and squared regularization

terms. Its advantage is that it does not require the computation of second deriva-

tives. A related approach is the LM algorithm, which uses a simplified Hessian

matrix [Pennec et al. 2003]. It is slower but more robust than the GN algorithm.

[Mignotte et al. 2001] implemented an optimization technique based on the Genetic

Algorithm (GA) with an elitist strategy, called hybrid GA. GA is a robust stochastic

search and global optimization procedure which mimics the evolution of natural sys-

tems [Goldberg 1989]. Its hybrid implementation combines the genetic search with

a local optimization technique. In details, the elite-preservation strategy [Goldberg

1989] is used to select the individuals of the next generation, based on their higher

fitness. Then a percentage of the best individuals are used to initialize a gradient

ascent.

An discrete optimizer is graph-cuts [Tang and Hamarneh 2010, Ishikawa 2009], which

is based on the max-flow min-cut theorem to define a minimal cut of the graph. The

energy function is usually formulated as a likelihood function, Gaussian mixture

model (GMM) or Markov random field (MRF). A technique invented specifically for

MRF optimization is the Iterated Conditional Modes (ICM) [Geman and Geman

1984]. ICM is a deterministic algorithm that proceeds first by choosing an initial

configuration for the variables. Then, it iterates over each node in the graph and

calculates the value that minimizes the energy given the current values for all the

variables in its neighborhood. The algorithm is guaranteed to converge, and may

be terminated according to a chosen criterion of convergence [Geman and Geman

1984]. ICM was used for block-matching by [Yeung et al. 1998b].

An example of a heuristic search method used in ultrasound tracking is the Nelder-

Mead method [Nelder and Mead 1965, McKinnon 1999, Shekhar and Zagrodsky

2002]. This method does not need to calculate derivatives, can make good improve-

ments for relative few function evaluations, and is simple to understand. However, it

does not guarantee convergence and hence can make negligible progress with many

iterations. Running the algorithm several times with different starting estimates is

used to overcome this problem.

Multiresolution (or coarse-to-fine) approaches have been implemented to increase

the probability of finding the global optimum in the parameter space and to make

the registration procedure faster and more robust. The images are first registered at

a lower resolution for larger expected displacements. The resulting transformation
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is applied to the next resolution level. The process is repeated until the highest

resolution level is reached.

2.1.4 Pre-processing

The high noise level in ultrasound images is a main challenge for tracking. Ultra-

sound images often contain speckle patterns, which are a form of multiplicative, lo-

cally correlated noise [Yu and Acton 2002]. In many applications, speckles represent

the main feature to track, see Sec. 2.2.2. On the contrary, in region- and feature-

based registration the presence of speckles can be counterproductive. Therefore, a

pre-processing filtering step is useful to improve the tracking performance, at the ex-

pense of higher computational costs. Speckle reduction techniques have been listed

in [Noble et al. 2011]. They include multiplicative models, adaptive filters, partial

differential equation- and wavelet-based methods, and non-local-means filter [Noble

et al. 2011]. In ultrasound tracking, examples of common speckle suppression are

anisotropic diffusion [El-Sharkawy et al. 2001, Yu and Acton 2002], Gaussian filter
[Foroughi and Abolmaesumi 2005b, Foroughi et al. 2006b, Foroughi et al. 2006a,

Leung et al. 2009] or median filter [Shekhar and Zagrodsky 2002, Shekhar et al.

2004].

2.2 Tracking methods

This Section reviews the current state of tracking ultrasound image sequences. The

aim is to provide an overview of the existing tracking methods, describe their critical

aspects, and discuss their strengths and limitations. Techniques like speckle track-

ing or optical flow extensions incorporate knowledge of the ultrasound physics, while

registration techniques are often intensity-based. Many tracking approaches consist

of extracting features, e.g. boundaries, and tracking them in each frame. Other

methods incorporate a priori information, such as the likelihood of the shape, de-

formations or appearance; or the relationship between image patterns and motion

vectors, learned from previously analyzed sequences.

2.2.1 Optical flow

Tissue motion in ultrasound images has been estimated by a method called opti-

cal flow (OF). Tracking with OF computes a dense displacement field based on the

assumption that the image intensities remain constant over time. OF methods suc-

cessfully applied to ultrasound sequences can be classified into three groups [Barron

et al. 1994, Boukerroui et al. 2003, Fleet and Weiss 2005]:
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1. Differential techniques

2. Phase-based techniques

3. Block-matching methods

Differential techniques

Differential techniques compute the motion velocity from spatio-temporal derivatives

of the pixel intensities. Typical examples are the Lucas-Kanade [Lucas and Kanade

1981], Horn-Schunck [Horn and Schunck 1981] and Nagel [Nagel 1987] implemen-

tations, which are compared on simulated ultrasound data in [Baraldi et al. 1996].

These methods give reliable results on good quality images, but they are highly sen-

sitive to noise because of the numerical differentiation. The estimation of the dense

displacement field is achieved by minimizing a voxel-based energy function that com-

bines an intensity constraint and a spatio-temporal smoothness constraint of neigh-

boring displacements [Meunier 1998, Pellot-Barakat et al. 2004, Tavakoli et al. 2008,

Fehrenbach et al. 2010, Mukherjee et al. 2011]. In many cases the optimal

solution is computed following a coarse-to-fine approach [Pratikakis et al. 2003,

Pellot-Barakat et al. 2004, Fehrenbach et al. 2010, Mukherjee et al. 2011].

Differential methods produce inaccurate results where the assumption of intensity

constancy is violated, which is likely to happen in ultrasound sequences, e.g. due

to artifacts. To avoid this problem, a MRF model of the OF has been proposed
[Pellot-Barakat et al. 2004]. [Brox et al. 2004] recently introduced an OF method

which additionally includes a gradient constancy assumption and avoids linearization

of the data term. This method leads to a more accurate and less noise-sensitive

performance when applied to intraoperative 4D transesophageal echocardiographical

images [Mukherjee et al. 2011, Mukherjee et al. 2012].

Phase-based techniques

Phase-based techniques rely on an initial decomposition of the image into band-

pass channels, and assume the conservation of the phase in each channel. The

velocity vectors are defined in terms of the phase behavior of the filter outputs. The

main advantage offered by the phase is that it is amplitude-invariant, approximately

linear over relatively large spatial domains, and stable with respect to affine trans-

formations in consecutive frames [Fleet and Jepson 1990, Fleet and Jepson 1993]. A

phase-based scheme was proposed by [Mulet-Parada and Noble 2000] for cardiac wall

velocity estimation. The use of the phase information makes the motion estimation

robust to attenuation artifacts and therefore theoretically suitable for ultrasound

images. However, the performance of such approaches depends on the filter design

and the filter response is only optimal for a limited velocity range.
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Block-matching methods

Block-matching methods compute the local displacements from the translations

which provide the best match of image regions in two consecutive frames. Block-

matching algorithms have been (and are still) extensively researched and developed

to estimate the motion of speckle patterns in ultrasound image sequences. Such

techniques are usually referred to as speckle tracking and are discussed in more de-

tail in Section 2.2.2. In this Section I review only block-matching of image regions

relying on features rather than homogeneous regions containing only speckles.

The optimal match is usually found by maximizing a correlation measure [Stoitsis

et al. 2005, Duan et al. 2005b], by minimizing image dissimilarity, like SSD [Mikic

et al. 1998, Meairs and Hennerici 1999], or by the Cohen and Dinstein ML estima-

tor [Boukerroui et al. 2003]. Compared to differential techniques, correlation-based

block-matching methods are less sensitive to noise and fast motion, but they assume

that the displacements within the local region are the same [Duan et al. 2005b].

Region-matching algorithms have been developed following Anandan’s algorithm
[Anandan 1989, Bergen et al. 1992], which is based on a Laplacian pyramid [Burt

and Adelson 1983] that allows the computation of large displacements and enhances

edges, and a coarse-to-fine SSD-based matching strategy. Such an approach is ap-

plied to characterize the plaque motion in carotid artery stenosis [Meairs and Hen-

nerici 1999]. Another matching technique is based on Singh’s framework [Singh 1990,

Singh and Allen 1992] and tested on ultrasound sequences by [Boukerroui et al. 2003,

Mikic et al. 1998, Duan et al. 2005b, Duan et al. 2005a, Duan et al. 2006,

Duan et al. 2007]. Singh’s matching consists of two stages. In the first stage, the

SSD is computed with three temporally adjacent bandpass filtered images. Then,

the individual squared differences are transformed into probability distributions in

a coarse-to-fine strategy (as in [Anandan 1989]). A confidence measure, based on

the eigenvalues of the covariant matrix calculated from the distributions, is included

to the matching. In the second stage, weighted least squares velocity estimates are

propagated using neighborhood constraints.

The performance of differential OF and block-matching methods was compared for

carotid artery images [Stoitsis et al. 2005].

OF methods are in general computationally expensive for dense flow field estimation.

Therefore the motion estimation is often computed only at some locations, such as

selected points [Veronesi et al. 2006], extracted vessels [Demi et al. 2008, Meairs

and Hennerici 1999] or endocardial walls [Duan et al. 2005b, Duan et al. 2005a,

Duan et al. 2006]. In other cases the OF hypothesis is used to guide active contours
[Mikic et al. 1998, Akgul et al. 1998]. Table 2.1 summarizes the published works

on OF techniques.
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2.2.2 Speckle tracking

Speckle tracking has been used in several clinical applications. Well established fields

are blood flow assessment and elastography. The latter generates displacement fields

resulting from known, applied boundary conditions (forces or displacements). This

quantitative information is used to estimate the (relative) tissue elasticity. Ultra-

sound elastography is typically used for the analysis of the myocardial deformation.

Speckle

Speckle is an inherent characteristic of ultrasound images. It is a random, de-

terministic interference pattern generated by the constructive and destructive su-

perposition of echo signals reflected from very small scatters [Burckhardt 1978,

Bashford and von Ramm 1996]. The interference pattern does not correspond to the

imaged anatomy and hence can limit the quality of the ultrasound images, which

prevents for example discerning fine structures. However, speckles can be useful in

the identification of tissue motion. The interference pattern changes only gradually

when the tissue deforms or moves slightly [Meunier 1998]. For such scenarios, the in-

terframe motion can be recovered by locating the same unique pattern in consecutive

images even if the tissue itself has otherwise a homogeneous appearance.

The speckle pattern is observable in RF data [O’Donnell et al. 1994, Friemel et al.

1995, Bashford and von Ramm 1996, Lubinski et al. 1999, Morsy and Von Ramm

1999, Kaluzynski et al. 2001, Revell et al. 2003, Pernot et al. 2003, Pernot et

al. 2004, Revell et al. 2005, Chen et al. 2005, Yoshikawa et al. 2005, Marquet

et al. 2006, Jiang and Hall 2007, Kuo and von Ramm 2008, Jiang and Hall 2009,

Harris et al. 2007, Harris et al. 2010, Harris et al. 2011, Byram et al. 2010,

Jia et al. 2010, Lediju et al. 2010, Lediju Bell et al. 2012, Compas et al. 2011,

Compas et al. 2012], as well as in envelope-detected and scan converted images [Chen

et al. 1992, Chen et al. 1994, Chen et al. 1995, Meunier 1998, Yeung et al. 1998b,

El-Sharkawy et al. 2001, Cohen and Dinstein 2002, Golemati et al. 2003, Yu et al.

2006, Hsu et al. 2005, Notomi et al. 2005, Lin et al. 2007, Basarab et al. 2007,

Crosby et al. 2009, Korstanje et al. 2010, Touil et al. 2010], and bandpass energy

data [Yeung et al. 1998a]. [Yu et al. 2006] have presented a comparison of the

reliability of different features for speckle tracking, such as envelope-detected, RF

and bandpass filtered signals.

Speckle tracking

Speckle tracking assumes that a given region of interest in the image has a unique

speckle pattern due to the acoustic properties of the surrounding tissue. Therefore,
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the tissue displacement is determined by locating the same unique pattern in the

consecutive frames [Hsu et al. 2005]. The tracking algorithm is performed by block-

matching methods as described above.

In particular, matching is performed using SSD [Yeung et al. 1998b, Yeung et al.

1998a, Yu et al. 2003], SAD [Friemel et al. 1995, El-Sharkawy et al. 2001, Crosby et

al. 2009, Touil et al. 2010] or in most cases (N)CC as matching criteria. In details,

the CC of 1D RF signals was computed in [Lubinski et al. 1999, Pernot et al. 2003,

Pernot et al. 2004, Marquet et al. 2006]. 2D correlation based algorithms were

developed by [Chen et al. 1994, Chen et al. 1995, Friemel et al. 1995, Lubinski et

al. 1999, Golemati et al. 2003, Yoshikawa et al. 2005, Hsu et al. 2005, Pinton et al.

2006, Basarab et al. 2007, Jiang and Hall 2007, Jiang and Hall 2009, Korstanje et

al. 2010, Compas et al. 2011], and successively extended for 3D images [Morsy and

Von Ramm 1999, Kuo and von Ramm 2008, Harris et al. 2007, Harris et al. 2010,

Harris et al. 2011, Jia et al. 2010, Compas et al. 2012]. Phase-sensitive NCC was

originally introduced by [Wear and Popp 1987] and applied in speckle tracking by
[O’Donnell et al. 1994, Kaluzynski et al. 2001, Chen et al. 2005, Byram et al. 2010,

Lediju et al. 2010, Lediju Bell et al. 2012] to counteract the decorrelation due

to variations of the amplitude and phase of the scattered waves. Others proposed

motion estimation with a new ML estimator, which takes account of the image

formulation by using the assumption that both images are contaminated by Rayleigh

distributed, multiplicative noise [Cohen and Dinstein 2002, Lin et al. 2007, Revell

et al. 2003, Revell et al. 2005].

Different matching strategies have been suggested. The simple, single-step block-

matching method was adapted to improve efficiency and accuracy by multiresolution
[Yeung et al. 1998b, Revell et al. 2005, Lin et al. 2007, Basarab et al. 2007] and

deformable block-matching algorithms [Yeung et al. 1998a, Basarab et al. 2007,

Touil et al. 2010]. In addition, speckle tracking has been combined with shape

tracking [Pirat et al. 2008, Compas et al. 2011, Compas et al. 2012], to obtain

complementary displacement values for the target tissue (via speckle tracking) and

its boundary (via shape tracking). In [Kuo and von Ramm 2008] the tracking

accuracy is improved by using statistical analysis of the tracked features to reject

false matches.

The main contributions in speckle tracking are listed in Table 2.2.

Challenges in speckle tracking

The accuracy of the motion estimates depends on the stability of the speckle pat-

tern, which is assumed in speckle tracking. However in practice, the patterns in two

consecutive images are not identical, as the electronic noise distribution varies from

frame to frame. In addition, artifacts and motion ambiguities appear in regions of
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weak acoustic scatterers, image saturation and signal reverberation. Furthermore

real tissues undergo seldom pure translational motion, but also rotation, stretch-

ing, shearing or even non-linear deformations, which all cause speckle decorrelation.

These changes of the speckle pattern appearance are the main limitation of the

accuracy in speckle tracking algorithms.

Tissue motion is not confined to a 2D plane, so it is necessary to track displace-

ments in 3D. Due to technological limitations, initial research in speckle tracking

was conducted in 2D ultrasound sequences [Chen et al. 1992, Chen et al. 1994,

Chen et al. 1995, O’Donnell et al. 1994, Friemel et al. 1995, Yeung et al. 1998b,

Yeung et al. 1998a, Lubinski et al. 1999]. The still limited availability of 3D

ultrasound scanners makes the processing of 2D sequences still an active and impor-

tant research topic [Jiang and Hall 2009, Touil et al. 2010, Korstanje et al. 2010,

Compas et al. 2011]. However, speckle decorrelation due to out-of-plane motion

remains a important issue. The development of real-time 3D scans allows re-

searchers to introduce 3D tracking algorithms and to better understand speckle

decorrelation. [Chen et al. 2005] showed that 3D correlation-based tracking is

more accurate than 2D tracking for elastography, since it overcomes this out-of-

plane decorrelation. The feasibility of speckle tracking in 3D has been studied in

phantoms and simulated volume sequences [Harris et al. 2007, Harris et al. 2010,

Harris et al. 2011]. This includes an extensive study on speckle decorrelation and un-

derstanding the dependence of the tracking performance on the temporal and spatial

resolution of the images. Currently only few 3D speckle tracking studies have been

carried out on human volumetric data, namely on the heart [Crosby et al. 2009,

Byram et al. 2010, Compas et al. 2012] and on the liver [Harris et al. 2010,

Lediju et al. 2010]. The 3D motion field can also be estimated from biplane se-

quences [Yoshikawa et al. 2005], or in real-time from 1D RF signals acquired during

HIFU treatments [Pernot et al. 2003, Pernot et al. 2004, Marquet et al. 2006].

The latter is based on receiving several 1D RF echoes from different subapertures

of the HIFU device. The axial displacement is then estimated for each subaperture

on successive RF signals, and corresponds to the 3D displacement vector along the

beam axis of the corresponding subaperture.

The goal of speckle tracking is to perform the 3D displacement estimation in real-

time. Real-time 2D elastography, based on 2D block-matching, is already com-

mercially available [Hsu et al. 2005, Pinton et al. 2006]. Another fast 2D so-

lution requires the use of parallel computing [Jiang and Hall 2007]. While being

more robust against speckle decorrelation, 3D correlation-based speckle tracking is

computationally expensive. However, the high computational cost can be reduced

by introducing better optimization schemes, such as ICM [Yeung et al. 1998b],

conjugate GD [Yeung et al. 1998a], dynamic programming [Chen et al. 2005,

Jiang and Hall 2009], together with customized hardware solutions [Chen et al. 2005,

Harris et al. 2007, Kuo and von Ramm 2008]. Speed improvements were also re-
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ported in [Kuo and von Ramm 2008] by performing the tracking calculations in the

native spherical coordinate system of the 3D data and parallelizing the computa-

tions.

2.2.3 Intensity-based registration

Only few articles focus on the registration of ultrasound time sequences. Most

consider only two images, eluding the tracking problem, and therefore they are

not reviewed. Tracking applications include cardiac motion estimation [Ledesma-

Carbayo et al. 2001, Ledesma-Carbayo et al. 2005, Shekhar and Zagrodsky 2002,

Heyde et al. 2012], cardiac strain estimation (stress echocardiography) [Shekhar et

al. 2004, Elen et al. 2008], carotid artery examinations [Salcudean et al. 1999,

Metz et al. 2011], brain deformations during neuro-surgical interventions [Pennec

et al. 2003], breast cancer diagnosis [Chen et al. 2006], and respiratory motion in

the abdomen [Nakamoto et al. 2007, Wein et al. 2008].

Image registration methods can be divided into direct methods, based on measuring

the similarity between pixel or voxel intensities, and indirect approaches, based on

image features (e.g. points, edges, surfaces). In this Section, I discuss intensity-

based methods, leaving feature-based approaches to Section 2.2.4. Intensity-based

methods use the image content of the region of interest, operating directly on the

image gray values, without data reduction or segmentation. However, they suffer

from high computational costs, especially in the 3D case. Registration algorithms

can be grouped according to the three key aspects described in Section 2.1.

Matching criteria

Registration methods based on voxel-wise intensity similarity can be divided into

correlation methods [Chen et al. 1991, Salcudean et al. 1999, Nakamoto et al. 2007,

Wein et al. 2008], intensity difference methods, e.g. SSD [Pennec et al. 2003,

Ledesma-Carbayo et al. 2001, Ledesma-Carbayo et al. 2005, Chen et al. 2006,

Heyde et al. 2012], and entropy-based similarity measures, e.g. MI [Krucker et

al. 2002, Shekhar and Zagrodsky 2002, Shekhar et al. 2004, Elen et al. 2008]. In

addition, the region to be registered can be selected by prior segmentation [Shekhar

and Zagrodsky 2002, Chen et al. 2006].

Transformation models

Depending on the mechanical properties of the tissue and the application, tissue

motion in ultrasound images was modeled using a translational [Salcudean et al.

1999], rigid [Chen et al. 1991] or non-rigid transformation. Rigid transformations
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were also used when a neglectable amount of non-rigid deformation was expected

between frames. In many cases, rigid models are applied locally to image subregions,

and the global motion is obtained by stitching [Chen et al. 2006] or by fitting a non-

linear function, e.g. thin-plate splines [Krucker et al. 2002]. A broadly used linear

transformation is affine mapping [Shekhar and Zagrodsky 2002, Shekhar et al. 2004,

Wein et al. 2008].

While rigid transformations are computationally relative inexpensive as they deal

few parameters, they are hardly applicable for soft tissue motion. In practice, more

degrees of freedom are required. A popular choice are free-form deformations [Rueck-

ert et al. 1999, Pennec et al. 2003], which consist of a regular grid of control points

whose displacements are interpolated by B-splines [Ledesma-Carbayo et al. 2001,

Nakamoto et al. 2007, Elen et al. 2008, Metz et al. 2011, Heyde et al. 2012]. Their

advantage lies in the local support of the B-splines and the possibility to appro-

priately select the number of control points. Several methods have been developed

which regularize also for temporal smoothness of the deformation [Ledesma-Carbayo

et al. 2005, Nakamoto et al. 2007, Elen et al. 2008, Metz et al. 2011].

Optimization strategies

Common optimizers are GD strategy [Ledesma-Carbayo et al. 2005, Nakamoto et

al. 2007], adaptive stochastive GD [Metz et al. 2011], the direct Powell-Brent search
[Wein et al. 2008], the simplex Nelder-Mead method [Shekhar and Zagrodsky 2002,

Shekhar et al. 2004], the iterative LM method [Ledesma-Carbayo et al. 2001,

Pennec et al. 2003], and quasi-Newton methods such as LBFGSB [Elen et al. 2008,

Heyde et al. 2012]. A multiresolution strategy is often applied [Ledesma-Carbayo et

al. 2001, Ledesma-Carbayo et al. 2005, Nakamoto et al. 2007, Metz et al. 2011] to

improve the registration performance, in terms of accuracy, speed and robustness.

For the registration of images in ultrasound sequences, two different strategies are

employed. The first strategy is the pairwise or frame-to-frame method. It can be

applied to consecutive pairs of images [Ledesma-Carbayo et al. 2001, Krucker et

al. 2002, Shekhar et al. 2004, Heyde et al. 2012]. The displacement field with

respect to the reference frame is then calculated by sequential composition of the

transformations. It suffers from error accumulation and hence is generally only

suitable for short time sequences. Such systematic errors can be reduced by con-

sidering a spatio-temporal registration model [Ledesma-Carbayo et al. 2005] or

an non-iterative pairwise strategy, where all images are directly registered to a se-

lected reference image of the sequence [Pennec et al. 2003, Nakamoto et al. 2007,

Elen et al. 2008]. In this case, the reference image must be of high quality such that
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only this reference and an initialization from the previous transformation are neces-

sary for registering the whole sequence. A different pairwise approach considers the

first frame of the sequence as moving image to deform with respect to the following

images [Chen et al. 2006]. The second strategy is the groupwise registration [Metz

et al. 2011] (elastix1), which uses an implicit reference frame created from all

images, and therefore avoids any bias from selecting the reference image. Its main

limitation is that such a registration framework has a higher computational com-

plexity than the pairwise approach and becomes computationally very expensive for

long sequences. In particular, for any real-time application, the strategy needs to

change, as updating the reference image for each incoming frame is impractical.

Table 2.3 provides an overview of the discussed intensity-based registration algo-

rithms for ultrasound time sequences.

2.2.4 Feature tracking

Feature tracking in ultrasound sequences is an active research area. Clinical appli-

cations focus especially on the left ventricle (LV) motion and the deformation of the

myocardial borders [Herlin and Ayache 1992, Chalana et al. 1996, Tseng et al. 1996,

Papademetris et al. 1999, Malassiotis and Strintzis 1999, Mignotte et al. 2001,

Jacob et al. 2002, Comaniciu et al. 2004, Yang et al. 2008, Orderud et al. 2007,

Nascimento and Marques 2008, Häme et al. 2012]. Other applications include

liver motion estimation [Zhang et al. 2010, Schneider et al. 2012], vessel tracking
[Das and Banerjee 2004, Guerrero et al. 2007], pelvic structure response to mus-

cle activities [Peng et al. 2006], boundary tracking of the anal canal [Xiao et al.

2007], and tongue tracking in speech sequences [Akgul et al. 2000, Li et al. 2005,

Tang and Hamarneh 2010].

The main purpose in identifying features in a sequence of moving images is to

determine image structures which can reliably be tracked. Rather than inspecting

the entire image, as done for example in OF, feature tracking focuses only on these

image structures. In the case of ultrasound images, used structures are the interfaces

between different tissues or organs, like the walls of the heart chambers and vessels.

Feature tracking in ultrasound images is especially challenging due to weak echoes,

poor signal-to-noise ratio (SNR), signal dropouts, artifacts and noise. Additionally,

ultrasound images do not necessarily contain complete or closed boundaries. To cope

with these challenges, several frameworks for feature detection and tracking have

been developed. The most successful ones have been those that use prior knowledge

of the object shape, motion or image appearance, such as Bayesian approaches
[Mignotte et al. 2001, Jacob et al. 1999, Jacob et al. 2002, Guerrero et al. 2007,

Orderud et al. 2007, Angelova et al. 2007, Yang et al. 2008, Nascimento and

1http://elastix.isi.uu.nl/
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Marques 2008, Zhang et al. 2010], active contours [Malassiotis and Strintzis 1999,

Xiao et al. 2007] and level sets [Häme et al. 2012, Noble et al. 2011]. The task

of tracking the motion of structures in ultrasound sequences can be divided into

two parts, which will be described next. Firstly, the features to track need to be

defined in terms of their representation, and detect them in the images. Secondly,

the tracking problem, i.e. how to track particular features over time, needs to be

fomulated. Brief reviews on related works in this field are included in [Noble and

Boukerroui 2006, Jacob et al. 2002, Comaniciu et al. 2004, Xiao et al. 2007,

Nascimento and Marques 2008, Tang and Hamarneh 2010].

Features representation and detection

In ultrasound tracking the most common features are geometrically represented by

single points or contours, which describe curve or surface structures.

Point features in 3D volumes are detected based on local extrema of the response

of the Laplacian of Gaussian [Schneider et al. 2012]. Rotationally invariant feature

descriptors are constructed by sparsely sampling the volume on a rectilinear grid

at and around the extrema points. These descriptors, tested on images of porcine

heart and liver phantoms, are computationally inexpensive and provide sufficient

registration accuracy [Schneider et al. 2012].

Contour features, representing curves or surfaces on image boundaries, are used in

most works. Contours are usually assumed to be smooth and deformable models

are often used for determining their position. The deformation of these models

should satisfy some problem-specific constraints related to the object to model. The

contour representation can be explicit or implicit. In the explicit representation,

the contour is defined by a set of points and an interpolation function (e.g. a spline

function) between them. In the implicit representation (e.g. level set), the points

lie on a spatial grid and the evolving contour is described by some properties of an

underlying embedding function.

In 2D images, a very common explicit deformable model is based on active contours,

also called snakes. Snakes were introduced by [Kass et al. 1988, Cohen and Cohen

1993] and used to detect boundaries in ultrasound images by [Herlin and Ayache

1992, Chalana et al. 1996, Malassiotis and Strintzis 1999, Das and Banerjee 2004,

Zhang et al. 2010], [Akgul et al. 2000] (tonTrack algorithm) and [Li et al. 2005]

(EdgeTrak algorithm2). Active contours are energy-minimizing curves or surfaces

which balance between external energies (to pull the contour toward matching the

image features) and internal energies (to keep the contour smooth). The main lim-

itation of snake-based approaches is that they demand good initialization and their

accuracy is compromised by high noise level, which makes their usage for ultrasound

2https://www.eecis.udel.edu/wiki/vims/index.php/Main/EdgeTrak
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images very difficult without a good deformation model. When dealing with 3D im-

ages, the contours of the heart were represented in a parametric and differentiable

way by using a continuous distance transform neural network (CDTNN) [Tseng et

al. 1996], or by employing a 3D B-spline surface model [Papademetris et al. 1999,

Orderud et al. 2007].

In contrast to the explicit representation, the implicit one is topologically flexible,

allowing the contours to break apart, develop holes, or join without the need for

reparametrization. An example of an implicit contour description is the level set

method, used for the tracking of echocardiographic volumes in [Häme et al. 2012].

The level set method allows the treatment of surfaces and images in any dimension.

Deformable models rely in most cases on the information provided by the object

boundary. Several strategies are used for detecting edges in ultrasound images. The

gradient can be extracted by computing the magnitude of the spatial image gradient
[Herlin and Ayache 1992, Chalana et al. 1996, Akgul et al. 2000, Li et al. 2005,

Xiao et al. 2007]. A segmentation software platform [Papademetris et al. 1998],

originally developed for MR images, was used to segment ultrasound cardiac volumes

in [Papademetris et al. 1999]. A simple edge detector based on variable gradient

strength [Rabben et al. 2000] is used to determine the position of the strongest

edge along each normal [Orderud 2006, Orderud et al. 2007]. Boundaries were also

extracted from binary masks, which were generated using Otsu’s method [Peng et al.

2006] or by thresholding noise-filtered images using a histogram-based method [Das

and Banerjee 2004]. [Malassiotis and Strintzis 1999] extracted edges by applying

the Sobel operator and then used these as input for a generalized Hough transform

to find an elliptical approximation of the LV boundary at the first frame of the

sequence.

Some manual inputs are often required to obtain the initial contour. These come

from manually tracing the boundary of the structure of interest [Tseng et al. 1996,

Zhang et al. 2010, Häme et al. 2012] or from manual initialization of a few points on

it [Akgul et al. 2000, Peng et al. 2006] or inside the object to be segmented [Guerrero

et al. 2007, Angelova et al. 2007, Nascimento and Marques 2008]. [Abolmaesumi et

al. 2000, Guerrero et al. 2007] used a probabilistic edge detection function to find

contour points along uniformly distributed rays originating from a seed point inside a

vessel. In [Nascimento and Marques 2008] the initial estimate of the object boundary

from the internal points is based on the shape probabilistic data association filter (S-

PDAF) method [Nascimento and Marques 2004]. The detection of the edge points

is then similar to Active Contours [Blake and Isard 1998, chap. 5]. In details,

the predicted contour is represented by equally spaced samples and the intensity

transitions are detected along the direction orthogonal to the contour. A Monte

Carlo algorithm for extracting contours was also proposed [Angelova et al. 2007].

The initial manual tracing of the endocardial and epicardial contours at end of

systole and end of diastole is used to train the CDTNN [Tseng et al. 1996].
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The low SNR and the poor contrast in ultrasound images make edge detection by

gradient-based operators a challenge. Depending on the orientation of the tissue and

the effects of shadows and artifacts, it is difficult to define a global edge threshold

that works well for different image regions and across images [Jacob et al. 1999].

Therefore [Tang and Hamarneh 2010] calculated instead the gradients of local phase

features [Leung et al. 2009], which can be interpreted as a qualitative description

of salient image regions, such as edges or ridges, that are invariant to changes in

illumination or image contrast. In [Comaniciu et al. 2004] the feature detection

is based on a combination of spatio-temporal noise reduction filtering (2D least

mean squares filter [Evans and Nixon 1996] and integrated backscatter boundary

enhancement) and phase congruency [Kovesi 2000]. [Jacob et al. 2002] developed a

wavelet-based ridge detection algorithm, where the Coifman wavelet series was used

to dyadically decompose the intensity profiles. The latter is reconstructed with a

best-basis algorithm.

Contour-based features can provide reliable information for the shape of the target

and the tracking of its boundary. However, they lack regional information from the

image and may lose their stability when the boundary information is not strong

enough [Xiao et al. 2007]. To deal with noise and unrelated edges in images,
[Mignotte et al. 2001] proposed a Bayesian segmentation framework for detecting

the endocardial boundaries. They considered two classes, blood and muscle, and

assigned to each pixel a membership likelihood for these two classes based on the in-

tensity value. A likelihood energy term segments the image in a ML sense [Mignotte

et al. 2001]. More robust approaches fuse boundary- and region-based information.
[Li et al. 2005] incorporates in the external energy formulation the edge gradient

and the intensity information in local regions around each snake element. [Xiao et

al. 2007] uses the sum of the image gradient magnitude and the region information,

described by a GMM, as external energy.

Matching a deformable model to a given image is defined as an energy minimization

problem, where external and internal forces should be balanced. The external forces

push the model to match the image features (described above) well. The internal

energy is used to describe prior knowledge, like regularity, continuity or shape of

the contour. It helps the estimation of the contour position where image edges are

noisy, weak or absent. In the simpler methods, internal forces are based on general

smoothness and continuity of the curve [Herlin and Ayache 1992, Chalana et al.

1996, Malassiotis and Strintzis 1999, Akgul et al. 2000, Das and Banerjee 2004, Li

et al. 2005, Xiao et al. 2007, Tang and Hamarneh 2010]. In more robust approaches,

a priori knowledge about the likely shapes and deformations of the objects is used.

The shape prior captures statistically the variability of the expected shape. The

shape-space is learned via Principal Component Analysis (PCA) [Malassiotis and

Strintzis 1999, Jacob et al. 1998, Jacob et al. 1999, Jacob et al. 2002, Yang et al.
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2008] or strongly-adapted PCA [Comaniciu et al. 2004] in order to constrain the

deformation of the model.

Feature Tracking

Several strategies have been proposed for tracking features in ultrasound sequences.

First I describe how contours are tracked before summarizing the tracking of other

features.

A simple approach, designed for tracking fast moving contours, extracts the contour

independently on each frame [Herlin and Ayache 1992, Papademetris et al. 1999,

Peng et al. 2006]. Iterative variations of this strategy use the optimal contour of

the previous frame for initialization [Herlin and Ayache 1992, Mignotte et al. 2001,

Das and Banerjee 2004, Li et al. 2005, Xiao et al. 2007]. In the level set formulation,

the tracking method finds strong edges which are parallel to the boundary of the

previous frame, computes the new deformation at these locations, and then propa-

gates the deformation to the rest of the image volume [Häme et al. 2012]. In the

case of snakes, the iterative procedure is very sensitive to noise and does not guar-

antee convergence in the presence of large motion or shadows, which are common

in ultrasound images [Malassiotis and Strintzis 1999]. Therefore knowledge about

the contour dynamics have been learned and exploited to constrain the deforma-

tion. Temporal constraints to the motion are included as regularization terms in the

energy minimization problem [Chalana et al. 1996, Malassiotis and Strintzis 1999,

Akgul et al. 2000, Mignotte et al. 2001, Xiao et al. 2007, Tang and Hamarneh

2010].

Explicit transformation models can be applied to the contour representation, such

as rigid [Xiao et al. 2007], rigid and scaling [Zhang et al. 2010], or affine transfor-

mations [Tseng et al. 1996]. [Guerrero et al. 2007] assumed that the vein center

moves with constant velocity. In [Mignotte et al. 2001] first a local translation is

applied to the contour points and then globally refined using a deformable tem-

plate. [Jacob et al. 1998, Jacob et al. 1999, Jacob et al. 2002] restricted the

model to linear transformations. They introduced a second-order autoregressive

motion model for describing the temporal properties of the contour in addition to a

shape model. More sophisticated approaches differentiate the system dynamics and

the shape constraints by considering the global pose of the contour and the local

shape deformation independently [Papademetris et al. 1999, Comaniciu et al. 2004,

Orderud et al. 2007, Nascimento and Marques 2008]. This separation is intended

to ease modeling, since changes in shape are often parametrized differently from

the deformation associated with global position, size and orientation [Orderud et

al. 2007]. [Yang et al. 2008] proposed an automatic one-step forward prediction

algorithm to generate motion priors by using manifold learning (ISOMAP).
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Motion estimation has been computed using the non-parametric variable-bandwidth

density-based fusion (VBDF) estimator at different scales [Comaniciu et al. 2004].

At each spatial coordinate of a neighborhood, the motion of control points is firstly

estimated as the most significant mode at a large scale. Then, the detected mode

is tracked across finer scales. At each scale the mode detections is initialized with

the converged location from the previous scale by relying on least squares estimates
[Comaniciu 2003]. To avoid error accumulation, the motion of the control points is

compared in each frame to a model extracted from the first fame.

A graph-based approach was proposed by [Tang and Hamarneh 2010]. Here, the

tongue contour tracking is formulated as a unsupervised graph labeling problem.

Each vertex of the contour is labeled with a displacement vector describing its mo-

tion. The final displacement labels are those minimizing a multilabel MRF energy

function composed of data likelihood and spatio-temporal regularization terms.

In a Bayesian framework, boundary tracking is usually formulated as an estimation

of the posterior probability based on the detected contours in all past image frames.

The model parameters are estimated at each frame by alternating prediction and

updating steps. Popular techniques include Kalman filtering (assuming Gaussian

distributions) [Malassiotis and Strintzis 1999, Jacob et al. 1999, Jacob et al. 2002,

Guerrero et al. 2007, Orderud et al. 2007, Yang et al. 2008], particle filtering
[Angelova et al. 2007, Yang et al. 2008], conditional density propagation tracking
[Zhang et al. 2010], and multiple model data association tracking (based on Kalman

filtering) [Nascimento and Marques 2008]. The statistical nature of the Bayesian

approach makes the tracking process robust against noise and fast enough to achieve

real-time capability. However, Bayesian tracking often requires training data.

[Schneider et al. 2012] suggested to match point features in two steps. Firstly to find

a rough correspondence, a rigid transformation is assumed and points are matched

symmetrically by minimizing the Euclidean distance of their feature descriptor vec-

tors. Secondly, the RANSAC algorithm is applied to eliminate outliers and increase

robustness of the tracking. The registration of consecutive images follows a group-

wise strategy [Wachinger et al. 2008].

Many of the developed feature tracking algorithms are real-time [Comaniciu et al.

2004, Guerrero et al. 2007, Orderud et al. 2007, Zhang et al. 2010, Schneider et al.

2012]. Relevant works on ultrasound feature tracking are listed in Table 2.4.

2.2.5 Hybrid image registration

Intensity-based methods are popular in registration, but they are often insufficient

for tracking ultrasound time sequences. Although they operate directly on the im-

age gray values, without data reduction or feature extraction, they are sensitive
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to intensity variations and have problems with matching fine structures. In ad-

dition the low SNR poses a challenge. In 2D sequences topological changes may

occur as anatomical structures move in the out-of-plane direction. Feature-based

methods are potentially fast, but they often require a priori information and good

initialization. Artifacts, such as shadows, might be the cause of feature disappear-

ance. In recent years, researchers have been focusing their attention in developing

so-called hybrid methods, which combine intensity- and feature-based registration

approaches. The main advantage of hybrid methods is that they use complementary

information derived from the images in order to increase the robustness and accu-

racy of the tracking framework. Publications based on hybrid ultrasound tracking

are listed in Table 2.5 and briefly described next. Ultrasound tracking performance

can be generally improved by using a hybrid approach.

Attribute vector

[Foroughi and Abolmaesumi 2005a, Foroughi and Abolmaesumi 2005b] proposed a

variation to the Hierarchical Attribute Matching Mechanism for Elastic Registration

(HAMMER) [Shen 2004]. This method was tested on 3D sequences of the liver
[Foroughi and Abolmaesumi 2005b, Foroughi et al. 2006b, Foroughi et al. 2006a]

and 2D liver and carotid artery images [Leung et al. 2009]. The method starts with

the extraction of image features, so-called attributed vectors, which are employed

for establishing correspondence during tracking and are computed at each image

pixel. The attributes are the intensity of the pixel, the magnitude of the gradient,

the variance of the magnitudes of gradients and the second order derivative, i.e. the

Laplacian of the Gaussian (LoG) [Foroughi and Abolmaesumi 2005a, Foroughi and

Abolmaesumi 2005b]. The attribute vector is the set of the normalized attributes

at two scales. In [Foroughi et al. 2006a, Leung et al. 2009] the attribute vector

is reduced to three elements: voxel intensity, gradient magnitude and LoG. The

intensity guarantees that bright voxels will not be registered to dark ones and vice

versa. The gradient magnitude and LoG emphasize boundaries.

The feature-matching is performed on a set of leading points, which are selected

based on having a high importance. The point importance is calculated for each

attribute vector as a weighted sum of its components [Foroughi and Abolmaesumi

2005a]. The best match between leading points is computed by minimizing an energy

function based on the similarity of the attribute vectors. However, due to shadowing

effects in ultrasound images, it is possible that a feature disappears. To counter this

phenomenon, a threshold for accepting matches of leading points is introduced. Dis-

placements are calculated only from the leading points correspondences. Gaussian

interpolation of these displacements provides a dense displacement field [Foroughi

and Abolmaesumi 2005b]. This algorithm does not require boundaries extraction

nor a numerical optimization procedure and hence is fast. However, with a current
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registration speed of 5.5 frames per second (2D images [Leung et al. 2009]), the

performance is still far from real-time.

Phase and intensity

The local phase (LP) feature was developed by [Morrone and Owens 1987]. LP can

be seen as an amplitude-weighted phase of a bandpass filtered Fourier component of

a signal [Mellor and Brady 2004] and is estimated in 2D images with the monogenic

signal, which is an isotropic extension of the analytic signal [Felsberg and Sommer

2000, Woo et al. 2009, Cifor et al. 2012]. Theoretically, LP measures are invariant

to image brightness and contrast, and thus suitable for ultrasound images [Mulet-

Parada and Noble 2000, Cifor et al. 2012, Woo et al. 2009]. Yet the phase estimation

depends on the 2D bandpass filter, which shows a more complex behavior then the

1D case and can introduce blurring in the images. This blurring is not affine invariant

and therefore limits registration accuracy [Mellor and Brady 2004].

[Woo et al. 2009] incorporated intensity and LP information in the data term. The

tracking problem is defined in a variational framework (see Sec. 2.2.1) to find the

dense displacement field while enforcing a diffeomorphic transformation between the

images. They also compared different similarity measures, such as SSD, NCC and

MI.

[Cifor et al. 2012] proposed a hybrid feature-based Log-Demons registration method.

The registration is based on multichannel Log-Demons [Vercauteren et al. 2008].

The channels represent the features (intensity, LP and phase congruency) [Kovesi

2000] and demons forces are calculated for each channel. Additionally, regional

spatial correspondences are determined by a block-matching scheme based on the

squared distance of the selected features. The deformation field is obtained from a

weighted sum of the voxel-based updates for each image feature and the regional

correspondences. Evaluated on 2D images, this method showed robustness and

accuracy in the presence of shadows, topological changes and variable visibility of

structures of interest.

Speckle and boundaries

Speckle and contour tracking are very common methods used for ultrasound track-

ing. However, both have their weakness. Speckle tracking suffers from the instability

of the speckle patterns, while contours are often difficult to segment in noisy ultra-

sound images. A combination of the two methods could improve the robustness and

accuracy of the tracker.



2.3. Validation 29

[Pirat et al. 2008] used Velocity Vector Imaging (VVI)3 on echocardiographic se-

quences of dogs. This tracking software incorporates speckle and endocardial border

tracking. Off-line processing and required manual delineation of the initial LV con-

tour limit this product.

To achieve robust ultrasound tracking, multiple information, including speckle pat-

terns, boundary detection and motion prediction have been fused in [Wang et al.

2010] to handle noisy and missing data. This learning-based method automatically

estimates the 3D displacements of the myocardium. After automatic detection of the

LV boundaries using Marginal Space Learning [Zheng et al. 2008], the dense motion

tracking employs a multiple cues Bayesian framework. There the likelihood term is

computed from both cues, the boundary detection and the speckle block-matching,

to maximize accuracy and robustness.

2.3 Validation

A registration method can be accepted only after a careful and appropriate vali-

dation. This is not a trivial task and has been discussed in several review papers
[Maintz and Viergever 1998, Hill et al. 2001, Zitova and Flusser 2003]. Generic vali-

dation criteria for medical image processing are also described in [Buvat et al. 1999,

Jannin et al. 2006] and adapted for ultrasound tracking by [Leung et al. 2009].

A validation framework should indicate, and possibly quantify, the precision and

accuracy, robustness, reliability, computational complexity and clinical use of a spe-

cific tracking approach [Maintz and Viergever 1998]. Validation is also fundamental

to compare different methods.

Precision measures the repeatability or reproducibility of the tracking results for the

same or very similar input. Tests include tracking of the same data while using dif-

ferent initializations of the method and tracking data with similar, but changed noise

patterns. The standard deviation or variance of the results are used as a measure

for imprecision. The property of most concern for the clinicians is accuracy [Maintz

and Viergever 1998]. Ideally it measures the closeness of the tracking results and the

actual (true) values. Accuracy can be assessed in a qualitative or quantitative way.

Quantitative accuracy can only be established if the true spatial correspondences are

known (ground truth) or can be estimated in comparison to the performance of an

accepted method (gold standard). Yet, in real ultrasound sequences a ground truth

is rarely available and a gold standard by manual annotations is time consuming

and not without error. Hence the first assessment is generally done in a qualitative

3syngo R© Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division,

Mountain View, California
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manner, e.g. by visual inspection [Fitzpatrick et al. 1998]. This method relies on

experts to judge the results, ideally in a blinded observer study.

In many cases the evaluation is done by considering the improvement of the sim-

ilarity between the source and target images due to registration. However, this

does not constitute an assessment of the registration performance, as there is no

guarantee that the global optimum of the similarity measure provides the maximum

registration accuracy.

Synthetic images and simulated deformation fields applied to real images have the

advantage that the applied displacements are known a priori. A drawback can be

limited realism due to simplistic or biased simulations. Phantom studies are also

very common as they rely on realistic image formation. However, compression and

rotation causes non-rigid deformations that are not always easy to calibrate and the

image content might be unrealistic.

Quantitative measures of the registration accuracy are calculated over regions of

interest (obtained after segmentation), contours, or points. Gold standard anno-

tation is preferably performed by multiple expert observers to enable assessment

of interobserver variability and improve annotation accuracy. Assessment of region

tracking is based on region overlap ratio, volume difference [Pennec et al. 2003]

or the Hammoude distance [Nascimento and Marques 2008]. Often performance

is only assessed for a subset of images or in specific motion positions, e.g. end of

systole/diastole for cardiac sequences, or end exhalation/inhalation for respiratory

motion. The mean registration error (MRE) is often calculated from the difference

between the resulting and the ground truth displacement of a set of points. This

difference is formulated as the mean geometric (Euclidean) distance (MED) between

points, centroids, landmarks, or contour points. Common error measures are the

mean squared error (MSE), the root mean square error (RMSE) and mean absolute

difference (MAD). In case of contours, the Hausdorff distance [Nascimento and Mar-

ques 2008] or the point-to-surface distance [Orderud et al. 2007, Yang et al. 2008,

Wang et al. 2010] is used. Statistical tests include linear regression [Jacob et al.

2002, Veronesi et al. 2006], the Bland-Altman test [Jacob et al. 2002, Veronesi

et al. 2006, Orderud et al. 2007] and the Pearson’s test [Chalana et al. 1996,

Stoitsis et al. 2005] for comparing the resulting segmented regions with the (aver-

age) reference ones.

To evaluate the reproducibility of stochastic tracking methods, [Zhang et al. 2010]

compared several runs of the algorithm on the same dataset. The variance of the

results represents then the imprecision of the method.

Apart from accuracy, many researchers propose to measure robustness by the per-

centage of registrations achieving a certain accuracy [Cohen and Dinstein 2002,

Mignotte et al. 2001, Demi et al. 2008].
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The evaluation strategies and results of the main ultrasound tracking contributions,

considered in this Chapter, are listed in Tables 2.1 to 2.5.

2.4 Conclusion

Ultrasound imaging is a widely available medical image modality and, thanks to its

high temporal resolution, is suitable for temporal analysis, such as motion estimation

of the organs under investigation. In this Chapter, I have presented and discussed

the main ultrasound tracking strategies and listed the most important contributions

to the topic.

Ultrasound images are often characterized by low SNR and affected by noise, shad-

ows and artifacts, which limit the performance of straight-forward tracking algo-

rithms. Therefore new approaches need to be found. There is a rising interest in

using complementary information and incorporating a priori knowledge. The former

is represented by hybrid methods, which consider in the data term the contribution

of different features, e.g. intensity, phase, gradient, to overcome the limitations of

single cues. A priori information is used for feature detection (e.g. shape model) as

well as for transformation estimation (e.g. motion model).

An advantage of ultrasound imaging is the high frame rate, also for 3D acquisitions.

Common frame rates range from 15 to 70 Hz for 2D images and from 5 to 15 Hz for

consecutive 3D volumes. For such temporal resolution, the motion between frames

is generally relatively small. In this case the local motion could be approximated

by linear deformations. However spatio-temporal regularization has proved to be

necessary, in order to avoid error accumulation.

Many studies have been conducted on artificial or phantom data, while only a frac-

tion of algorithms have been successfully tested on real clinical data. The research

community still lacks a publicly available database of real ultrasound sequences with

gold standard information and a common validation framework. These are both crit-

ical for comparing different methods and establishing precisely the state-of-the-art

performance of ultrasound tracking. In addition, routine clinical usage of ultrasound

tracking requires extensive validation on real patient data, which is nevertheless still

missing in many contributions.

Ultrasound tracking of the liver was performed by intensity-based methods in most

of the cases, see Tables 2.1 to 2.5. Yet, quantitative evaluation of tracking the human

liver under free breathing was reported only by [Harris et al. 2010, Lediju et al. 2010,

Lediju Bell et al. 2012, Foroughi et al. 2006b, Foroughi et al. 2006a] for 3D

sequences and by [Zhang et al. 2010, Cifor et al. 2012] for 2D. Intensity-based and

hybrid approaches achieved good accuracy (approximately 1.4 mm mean tracking

error [Harris et al. 2010] and 91% mean overlap ratio [Cifor et al. 2012]), yet they
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were tested for sequences of short duration (less then a minute) and miss real-time

performance. The latter was only achieved by the feature-based approach proposed

by [Zhang et al. 2010].

For ultrasound tracking to be clinically useful it should be accurate, robust, auto-

matic (or with minimal human intervention) and real-time. The current state-of-

the-art accuracy for ultrasound tracking is in the range of 1-2 mm. A critical aspect

of tracking is error accumulation and robustness over long sequences. More effort

should be devoted to solve this problem and more robust and less noise sensitive

algorithms need to be developed. Real-time performance is required for applications

such as image guided interventions and therapy. While several contributions are al-

ready real-time, most are not. Speed improvements should not only rely on hardware

acceleration, but also try to reduce the computational burden of the method.

In summary, ultrasound tracking is an active and promising field of research, with

some methods having already successfully made the transition to clinical practice,

while most still need improvements in accuracy, robustness and speed as well as

proper validation to be clinically applicable. Advancement and availability of 4D

ultrasound scanners will shape tracking developments in the near future.

In this Chapter, I listed the main components (Section 2.1) and the main contri-

butions (Section 2.2) in ultrasound tracking. In the following Chapter, I will de-

scribe the ultrasound sequences of the liver acquired from healthy volunteers under

free breathing, and the tracking validation scheme. I will introduce two intensity-

based approaches that were developed for tracking sequences of the liver and showed

promising results, namely affine registration and a scale-adapted block-matching al-

gorithm.
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Table 2.1: Summary of the main contributions in optical flow (Sec. 2.2.1), sorted

by year of appearance, stating reference, image modality (Im.), key registration

components, validation framework and clinical application (Appl.).

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Baraldi 2D (wL)Sq SmT(t) - QN(*) MVE±SD 0.3±0.4pix, 1 Synth -
[1996] (dI/dt) 0.1±0.2rad

1.6±1.6pix, 1 Sim Heart
0.9±0.8rad

QL - - 1(11) Human

Meunier 3D LSq Aff, - QN MVE 0.0%(transl), 3 Synth -
[1998] (dI/dt) SmT(t) 0.1%(AXrot),

1.8%(Lrot),
0.4%(def)

Mikic 2D SSD (I) SmT(+t) GS QN MAD±SD 1.5±0.3mm 3 Human LV
[1998] 1.7±0.6mm 3 MV

1.8±0.3mm 2 AR

Akgul
[1998]

2D En (I,G) SmT(+t) DP QL - - 11(250tot) Human Tongue

Meairs
[1999]

3D SSD (I) SmT(+t) GN QN TestApp - 45(16-25) Human CA

Mulet- 2D FA (Ph) SmT(t) - QL - - 1(32) Human Heart
Parada
[2000]

Boukerroui 2D ML (I) Transl, GS QL - - 1(100) Human Heart
[2003] SmT(t)

Pratikakis 3D SQE SmT MG QN(*) MAngE±SD 13.8±24.0o 1(2) Sim Brain
[2003] (dI/dt) MSE 9.7vox

∼35vox 1(2) Aphan

Pellot- 2D SAD (I) SmT(t) ICM QN(*) TestApp - 1(73) Phan -
Barakat 2 Human Breast
[2004]

Stoitsis 2D NNC, Transl, - QN(*) Pearson 0.3(0.7) 10(75) Human CA
[2005] SSD (I) SmT(t) AX(R)displ

0.2(0.7)
AX(R)vel

Duan 3D NCC (I) Transl, - QL - - 1(16) Human Heart
[2005, TPS QN MME ∼0mm 3 Synth
2006,2007] (MAngE) (0o)transl,

<0.8mm
(25o)rot,
<2mm
(105o)def

Veronesi 3D SSD Transl - QN LReg r=0.99p<0.05 10(4hb) Human LV
[2006] (dI/dt) BA -0.2mm bias

Demi 2D ErF SmT(t) - QN(*) Fail 10% 15(50) Human CA
[2008] (I,dI/dt)

Tavakoli 2D wLSq Aff(+t), GS QN(*) MAngE(var) 2.6(1.4)o 1 Synth Heart
[2008] (dI/dt) SmT(t) MME(var) 3.7(1.1)%

QL - - 1 Hphan

Fehrenbach 2D SSD (I) Aff, GN QN MAE±SD 0.4±0.1pix 1(100) Synth -
[2010] gTransl QL - - 1(750) Animal Liver

Mukherjee 3D L2 (I) SmT(+t) QP QL - - 28(30-50) Human Heart
[2011,2012] QN(*) MAngE±SD <0.1±0.7o 3 Sim

(transl),
<1.5±7.9o(rot),
<2.4±0.9o(def)
<20.1± 29.3o 1 Phan
(transl)

a Matching criteria. (w)LSq: (weighted) least squares, Li: Li norm, En: energy function, NCC: normalized cross correlation,
SSD: sum or squared differences, MI: mutual information, FA: feature asymmetry, ML: maximum likelihood estimator, SQE:
semi-quadratic estimator, ErF: error function. dI/dt: image flow, I: intensity, Ph: phase, G: gradient.

b Transformation Models. (g)Transl: (global) translation, Aff: affine, SmT: smoothing/regularization term, TPS: thin-plate
spline. (t): temporal, (+t): spatio-temporal

c Optimization strategy. GS: Gauss-Seidel, GN: Gauss-Newton, DP: dynamic programming, QP: quadratic programming, ICM:
iterative conditional modes, MG: mutliresolution/multigrid minimization
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d Evaluation. QN: quantitative, QL: qualitative. (*): comparative study
e MRE: mean registration error, MVE: mean velocity error, MAD: mean absolute difference, MAE: mean absolute error, MSE: mean

squared error, MME: mean magnitude error, MAngE: mean angular error, SD: standard deviation, var: variance, Max: maximum.
Fail: percentage of failure cases. Pearson: Pearson’s test, BA: Bland-Altman test, LReg: linear regression. TestApp: test on
application

f Values rounded to the first decimal digit. AX: axial, L: lateral, R: radial. transl: translation, rot: rotation, def: deforma-
tion/compression, displ: displacement, vel: velocity

g Number of sequences (number of images per sequence). tot: total number of images, hb: heart beats (cardiac cycles)
h Human: patient data, Animal: animal in vivo data, Phan: controlled motion of tissue-mimicking phantom, A(H)phan: controlled

motion of animal (human) cadaver organs/tissues, Sim: simulated deformations applied to a real image/volume, Synth: computer-
generated synthetic sequence

i LV: left ventricle, CA: carotid artery, MV: mitral valve, AR: aortic root

Table 2.2: Summary of the main contributions in speckle tracking (Sec. 2.2.2),

sorted by year of appearance, stating reference, image modality (Im.), key registra-

tion components, validation framework and clinical application (Appl.).

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Chen[1992, 2D (N)CC Transl - QN MED ∼0.2mm (AX), 4 Phan Tissues
1994,1995] Bm (I) ∼1.1mm (L)

O’Donnell 2D NCC Transl - QL - - 1(21) Phan -
[1994] RF (Ph)

Friemel 2D (N)CC, Transl - QL - - - Sim -
[1995] RF SAD (I)

Bashford 3D LMaxSim Transl - QN MAE ∼40% 2(16) Phan Blood
[1996] RF (I,dI/dt)

Yeung 2D SSD (I) Transl, ICM QN(*) MSE 1.0pix(transl), 1 Phan -
[1998b] Bm SmT(t) 0.7pix(rot),

0.7pix(def),
0.2pix(shear)

QL - - 1 Human Muscle

Yeung 2D SSD (I) locDef, CGD QN MSE 0.7-1.2pix 1 Synth -
[1998a] Bm SmT(+t) (vibr),

0.7pix(rot),
0.6pix (def)
0.1pix(transl), 1 Phan
0.0pix(def)

QL - - 1 Human Muscle

Morsy 3D NCC (I) Transl - QN STD ∼±0.1mm(AX), - Phan Muscle
[1999] RF 0.3mm(L)

MTE ∼0.2mm(L)

Lubinski 1,2D NCC Transl - QL - - 2 Phan -
[1999] RF (I,Ph)

El-
Sharkawy

2D SAD (I) Transl - QL - - 1 Human Liver

[2001] Bm

Kaluzynski 2D NCC Transl - QN TestApp - 1(166) Phan Heart
[2001] RF (I,Ph)

Cohen 2D ML (I) Transl - QN(*) PCC,MSE 83%,0.3pix 1(2) Synth -
[2002] Bm TestApp - 1(200)

QL(*) - - 1 Human Fetus

Revell 2D NCC (F), Transl, - QN(*) DFD 41, 26, 184 3 Phan -
[2003,2005] RF ML (I) SmT(t) 139.5 2(30) Hphan Ten

218 14 Human

Yu [2003] 3D SSD Aff - QL - - 2 Phan Heart
RF, (I,PBEn)
Bm

Pernot 1D CC (I) Transl, - QN DispE <1.2mm 1(10s) Synth -
[2003,2004] RF 3Dtriang <6% 1 Phan

QL TestApp - 3 Aphan Liver

Golemati 2D NCC (I) Transl - QN TestApp - 8(85) Human CA
[2003] Bm

Yoshikawa 2.5D CC (I) Transl - QN MTE 0.1-0.5mm 1 Phan -
[2005] RF QL - - 1 Human Liver
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table 2.2 - (Continue)

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Chen 3D NCC Transl DP QN(*) RMS 0.7µm(AX), 1 Phan -
[2005] RF (I,Ph) <15µm(L)

7.0µm(AX), 1(<1s) Synth LV
25.3µm(L),
37.7µm(EL)

Hsu[2005] 2D NCC (I) Transl - QL - - 1(60s) Phan Liver
Bm

Yu [2006] 3D CC (I) Transl, - QN(*) MTE <∼3.5vox(def), 2 Synth -
RF, Rot, <∼8.5vox(Lrot)
Bm axDef TestApp - 1 Phan

QL(*) - - 1 Aphan LV
1 Humam

Marquet 1D CC (I) Transl, - QL - - 3(30- Animal Liver
[2006] RF 3Dtriang 120s)

Pinton 2D NCC Transl, PC QN(*) MTE±SD <∼0.7±17µm 1 Synth -
[2006] RF (Ph) SmT QL(*) - - 1 Aphan Liver

Lin[2007] 2D ML (I) Transl, - QN(*) MAngE <6o 2 Synth -
Bm Interp QL - - 4 Human Muscle

Ten
Liver
LV

Basarab 2D NCC (I) Transl, - QL(*) - - 2(2) Phan -
[2007] Bm Interp

Jiang 2D SSD (I) Transl, PC QN DispE var <10µm2 1 Synth -
[2007] RF Interp QL - - 1 Phan -

2(60,54) Human Breast
1(60) Thyr

Kuo[2008] 3D NCC (I) Transl, PC QN(*) TrD 4.2±1.2mm 3 Phan -
RF dirF vs 4mm

(AZtransl),
9.9±1.1mm
vs 10mm
(AXtransl)

Jiang 2D NCC (I) Transl, DP QL(*) - - 2(25) Human Breast
[2009] RF SmT 3(19-24) Thyr

1 Phan Uterus

Harris 3D NCC (I) Transl - QN MTE±SD <0.4mm(transl) 36(37-65) Phan Liver
[2007,2010] RF RMS±SD 0.8±0.5mm(sin) 3(50)

MAD±SD 1.7±1.5mm 12(15-
50s)

Human

1±0.7mm 6(20s)

Crosby 3D SAD, SmT - QN TestApp - 1(21) Synth LV
[2009] Bm NCC (I) 3(1s) Human

Byram 3D NCC Transl, - QN DispE <0.2mm 3(32) Phan -
[2010] RF (Ph) Interp MAD 0.5cm/s(AX), 4(1s) Human Heart

2.5cm/s(L),
2.5cm/s(EL)

3D 1cm/s(AX),
Bm 3cm/s(L),

2.5cm/s(EL)
TestApp - 1(5s)

Jia [2010] 3D NCC Transl, DP QL - - 1 Animal Heart
RF (I,Ph) Interp

Touil 2D SAD (I) Transl, QN(*) MaxMTE 1.2mm(transl), 2 Sim Heart
[2010] Bm locDef, 0.3mm(def)

Interp QL - - 1 Human

Korstanje 2D NCC (I) Transl, - QN RMS 1.3% 36(100 Aphan Ten
[2010] Bm Interp (MTE±SD) (0.1±0.1mm) -1000)

1.0% 3(100 Hphan
(0.1±0.0mm) -1000)
1.6% 2(100 Human
(0.3±0.6mm) -1000)

Lediju 3D NCC Transl, - QN RMS 1mm(CM), 6(∼144) Human Liver
[2010,2012] RF (Ph) Interp 2-6mm(RM)
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table 2.2 - (Continue)

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Compas
[2011]

2D
RF

NCC
(I,Ph),
EuclD
(I,dI/dt,
curv),
NCC(pt)

Transl,
SmT+
TPS, RBF

DA QN TestApp - 6 Animal LV

Compas
[2012]

3D
RF

NCC
(I,Ph),
SqD(curv),
NCC(pt)

Transl+ In-
terp, TPS,
RBF+ In-
terp(+t)

DP, QL - - 5 Animal LV

* RF: radio frequency data, Bm: B-mode images
a Matching criteria. (N)CC: (normalized) cross correlation, SAD: sum of absolute distances, SSD: sum or squared differences,

SqD: square of differences, ML: maximum likelihood estimator, LMaxSim: local maxima similarity, EuclD: Euclidean distance. I:
intensity, Ph: phase, F: frequency spectrum, PBEn: pass-band energy, dI/dt: image flow, curv: curvature, pt: point coordinates

b Transformation Models. Transl: translation, Rot: rotation, Aff: affine, locDef: local deformation, axDef: axial deformation,
3Dtriang: 3D triangulation, SmT: smoothing/regularization term, Interp: interpolation, RBF: radial basis function, TPS: thin-
plate spline, dirF: directional filtering. (t): temporal, (+t): spatio-temporal

c Optimization strategy. ICM: iterated conditional models, CGD: conjugated gradient descent, DA: deterministic annealing
technique, DP: dynamic programming, PC: parallel computing

d Evaluation. QN: quantitative, QL: qualitative. (*): comparative study
e MTE: mean tracking error (also called mean displacement error), MSE: mean surface distance, MAngE: mean angular error,

MED: mean Euclidean distance, RMS: root mean squared error, MAD: mean absolute difference, MAE: mean absolute error,
DispE: displacement estimated error, TrD: tracked distance versus actual distance. SD: standard deviation, var: variance, Max:
maximum. DFD: displaced frame differencing, PCC: percentage of correct classification. TestApp: test on application

f Values rounded to the first decimal digit. AX: axial, L: lateral, EL: elevation, AZ: azimuth. transl: translation, rot: rotation, def:
deformation, sin: sinusoidal motion, CM: cardiac motion, RM: respiratory motion.

g Number of sequences (number of images per sequence). s: seconds
h Human: patient data, Phan: controlled motion of tissue-mimicking phantom, A(H)phan: controlled motion of animal(human) ca-

daver organs/tissues, Sim: simulated deformations applied to a real image/volume, Synth: computer-generated synthetic sequence
i LV: left ventricle, CA: carotid artery, Ten: tendon, Thyr: thyroid

Table 2.3: Summary of the main contributions in intensity-based registration

(Sec. 2.2.3), sorted by year of appearance, stating reference, image modality (Im.),

key registration components, validation framework and clinical application (Appl.).

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Chen[1991] 2D NCC Rigid - QN MRE 16% 6 Phan -

Salcudean
[1999]

2D NCC Transl - QL - - 1(∼30s) Human CA

Ledesma 2D SSD Bsp LM QN MSE 1.3mm 1 Sim LV
-Carbayo
[2001]

QL - - 2 Human

Krucker 3D MI locTransl, - QN MED±SD 0.2±0.1mm 2(20) Sim Breast
[2002] gTPS MRE±SD ∼0.6±0.3mm 2 Human

∼0.3±0.2mm 2 Phan

Shekhar
[2002,2004]

3D MI Rigid,Aff NM QN MED 2.1mm,4.1mm 5(12-22) Human LV

Pennec 3D SSD SoG LM QL - - 1(10) Phan Brain

[2003] QN MAVD 0.1cm3 1(3) Animal

Ledesma 2D SSD Bsp(+t) GD QN(*) MED 0.7pix 3(32) Sim LV
-Carbayo 1.3pix 1(32) Synth
[2005] QN TestApp - 24 Human

Chen[2006] 2D SSD locRigid,
Interp

- QN TestApp - 100(60) Human Breast

Nakamoto
[2007]

2D NCC Bsp GD QN 2D-MED(Max) 0.4mm(1.0mm) 2(∼14s) Animal Liver

3D-MED(Max) 1.1mm(2.0mm)

Elen[2008] 3D MI Bsp(+t) LBFGSB QN MAD±SD 0.7±0.4mm 12(14-20) Synth LV

Wein[2008] 2D LNCC Aff PB QL - - 4(∼420-
950)

Human Liver
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table 2.3 - (Continue)

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Metz[2011] 2D Var Bsp(+t) SGD QL - - 1 Human CA

Heyde 2D SSD Bsp LBFGSB QN(*) MED ∼2.4pix 16 Animal LV
[2012] TestApp -

a Matching criteria. (L)NCC: (local) normalized cross correlation, SSD: sum or squared differences, MI: mutual information, Var:
variance

b Transformation Models. (loc)Transl: (local) translation, Aff: affine, gTPS: global thin-plate spline, Bsp: B-spline. SoG: sum
of Gaussians, Interp: interpolation. (+t): spatio-temporal

c Optimization strategy. LM: Levenberg-Marquardt, (S)GD: (stochastive) gradient descent, NM: Nelder-Mead, LBFGSB: limited
memory Broyden-Fletcher-Goldfarb-Shannon optimization routine with simple bounds, PB: Powell-Brent

d Evaluation. QN: quantitative, QL: qualitative evaluation. (*): comparative study
e MTE: mean tracking error, MAVD: mean absolute volume difference, MSE: mean surface distance, MED: mean Euclidean distance,

MAD: mean absolute difference, SD: standard deviation, Max: maximum. TestApp: test on application
f Values rounded to the first decimal digit
g Number of sequences (number of images per sequence). s: seconds
h Human: patient data, Animal: animal in vivo data, Phan: controlled motion of tissue-mimicking phantom, Sim: simulated

deformations applied to a real image/volume, Synth: computer-generated synthetic sequence
i LV: left ventricle, CA: carotid artery

Table 2.4: Summary of the main contributions in feature tracking (Sec. 2.2.4),

sorted by year of appearance, stating reference, image modality (Im.), key registra-

tion components, validation framework and clinical application (Appl.).

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Herlin[1992] 2D En (G) SmT - QL - - 4(38) Human Heart

Tseng[1996] 3D L2 (pt) Aff GN QN MAD±SD 1.3±1.1mm 1 Human Heart

Chalana 2D En SmT(+t) - QN MAD±SD 3.6±1.7mm 44(25) Human Heart
[1996] (GaussG) QN(*) Pearson 0.93

Papademetris
[1999]

3D En (pt) locDef,
gPose,
SmT

- QN TestApp - 3(ES-ED) Animal Heart

Malassiotis
[1999]

2D En (G) SmT(+t),
Sh.prior

- QL - - 1(95) Human LV

Jacob[1999] 2D ML
(Lph,pt)

Aff,LMM,
Sh.prior

- QL(*) - - 2(10s) Human LV

Akgul[2000] 2D En (G) Bsp(+t) GD QL - - 1(78) Human Tongue

Mignotte
[2001]

2D ML (I) locTransl,
gDef,SmT

HGA QN PCC 79% 1 Human Heart

Jacob[2002] 2D ML Bsp,LMM - QN TestApp - 1(2.5s) Human LV

(LPh,pt) Sh.prior, LReg r2=0.96 9(27tot)

DC BA -0.84cm2bias
MCD±SD -

1.3±1.5cm2(epiC),
0.2±2.6cm2(endoC)

Das [2004] 2D En (G) SmT - QL - - 1(150) Human LLA

Comaniciu 2D MahalDist locDef, - QN(*) MSSD±SD 8.3±14.3pix 32(18-90) Human Heart
[2004] (I) gPose,

Sh.prior,
const.v.

MAD±SD 1.7±1.6pix

Li [2005] 2D En (I,G) Bsp,SmT DP QN MSD ∼0.8mm 3(33-67) Human Tongue

Peng [2006] 2D Otsu (I) SmT(+t) - QN TestApp - 3(8,25,11s) Human Pelvis

Xiao [2007] 2D En (I,G) SmT(+t) - QN MTE ∼0.1pix 1(12) Human AnC

Guerrero
[2007]

2D SAD (I) Bsp,
const.v.

- QN MED±SD ∼3.8±2.6pix 2(100) Phan Vessel

Orderud 3D SSD (I) locDef, - QN BA 4.1ml bias 21(∼20) Synth LV
[2007] gPose,Bsp MPTSD 2.7mm
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table 2.4 - (Continue)

Reference Im. Match.a Transf.b Opt.c Eval.d Performance Validation Appl.i

Measuree Valuef No.g Typeh

Yang [2008] 3D L2 (SF) M.prior,
TPS

- QN(*) MPTSD
(var,Max)

1.3mm
(1.1mm,9.8mm)

67(11-25) Human LV

Nascimento 2D L2 (I), Transl, - QN(*) HD 20.8pix 2(215,470) Human Heart
[2008] EuclD Bspl, MED 4.8pix

(pt) ModeEl HamD 0.2pix

Zhang
[2010]

2D DenF
(I,pt)

Rigid,
Scal

- QN(*) var <1.6mm 1(909) Human Liver

Tang [2010] 2D En
(LPhG)

Rigid,
SmT(+t)

GC QN(*) MED±SD 4.5±1.6mm 8(∼13s) Human Tongue

Häme 3D LevelSet Band - QN OE±SD 20.4±3.1% 10 Human Heart
[2012] (G) mask VD±SD 11.1±6.6%

MSuD±SD
(RMS±SD,
Max±SD)

1.1±0.2mm
(1.5±0.3mm,
5.1±0.9mm)

Schneider
[2012]

3D EuclD
(LoG)

Rigid,
sym.match

- QN MRE±SD 0.3±0.1mm,
0.4±0.0o

1(437) Aphan Heart

RMS ∼0.4mm,0.8o 34(1hb) Human
TestApp - 15(50-80) Aphan Liver

a Matching criteria. En: energy function, Li: Li norm, ML: maximum likelihood estimator, Otsu: Otsu’s segmentation, SAD:
sum of absolute distances, SSD: sum or squared differences, EuclD: Euclidean distance, MahalDist: Mahalanobis distance, DenF:
density function [Blake and Isard 1998]. I: intensity, (Gauss)G: (Gaussian of the) gradient, LPh(G): local phase (gradient), LoG:
Laplacian of Gaussians, SF: steerable feature [Zheng et al. 2008], pt: point coordinates

b Transformation Models. (loc)Transl: (local) translation, Rot: rotation, Scal: scaling, Aff: affine, (loc,g)Def: (local, global) de-
formation, gPose: global pose, Bsp: B-spline, TPS: thin-plate spline, sym.match: symmetric match, SmT: smoothing/regularization
term, cont.v.: constant velocity, Sh., M.prior: shape, motion prior, LMM: linear motion model, DC: distance constrain, ModeEl:
mode elimination. (+t): spatio-temporal

c Optimization strategy. GN: Gauss-Newton, GD: gradient descent, HGA: hybrid genetic algorithm, DP: Dynamic programming,
GC: graph-cuts

d Evaluation. QN: quantitative, QL: qualitative. (*): comparative study
e MRE: mean registration error, MAD: mean absolute difference, MS(S)D: mean sum of squared distances, MED: mean Euclidean

distance, MCD: mean contour difference, MPTSD: mean point-to-surface distance, HD: Hausdorff distance, HamD: Hammoude
distance, RMS: root mean square, OE: volumetric overlap error, VD: relative absolute volume difference, MSuD: symmetric
surface distance, SD: standard deviation, var: variance, Max: maximum. PCC: percentage of correct classification, LReg: linear
regression, BA: Bland-Altman test, Pearson: Pearson’s test. TestApp: test on application

f Values rounded to the first decimal digit
g Number of sequences (number of images per sequence). ES: end of systole, ED: end of diastole, s: second, tot: total number of

images for QN evaluation.
h Human: patient data, Phan: controlled motion of tissue-mimicking phantom, Aphan: controlled motion of animal organs, Synth:

computer-generated synthetic sequence
i LV: left ventricle, LLA: lower limb artery, AnC: anal canal

Table 2.5: Summary of the main contributions in hybrid registration (Sec. 2.2.5),

sorted by year of appearance, stating reference, image modality (Im.), key registra-

tion components, validation framework and clinical application (Appl.).

Reference Im. Match.a Transf.b Eval.c Performance Validation Appl.h

Measured Valuee No.f Typeg

Foroughi 3D L2 Transl, QN MRE ∼1.4mm 30(2) Human Liver
[2005,2006] (I,G,LoG) GInterp ∼1.3mm Sim

Pirat [2008] 2D VVI*(I,G) VVI* QN TestApp - 7(∼50) Animal Heart

Leung [2009] 2D L2 Transl, QN MRE 0.9mm 20(20-40) Sim Liver
(I,G,LoG) GInterp 0.1mm 20(20-40) Sim CA

QL - - 10(50) Human Liver
QN MOvR±SD 93±1.5% 10(50) Human CA

Woo [2009] 2D L1 (I,LP) SmT QN(*) MRE±SD 3.8±6.8pix 1(2) Synth -
QL(*) - - 1(2) Animal Heart

1(2) Human

Wang [2010] 3D ML (I,SF) Markov QN MPTSD±SD 2.7±2.6mm 264 Human LV
Motion QL(*) TestApp -

Cifor [2012] 2D L2
(I,LP,PC)

locTransl,
SmT

QN(*) MOvR±SD 90.8±5% 8(22-71) Human Liver
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a Matching criteria. Li: Li norm, ML: maximum likelihood estimator. I: intensity, G: gradient, LoG: Laplacian of Gaussians,
LP: local phase, SF: steerable feature [Zheng et al. 2008], PC: phase congruency

b Transformation models. (loc)Transl: (local) translation, GInterp: Gaussian interpolation, SmT = smoothing/regularization
term

* VVI: syngoR© Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California
c Evaluation. QN: quantitative, QL: qualitative. (*): comparative study
d MRE: mean registration error, MOvR: mean overlap ratio, MPTSD: mean point-to-surface distance, SD: standard deviation.

TestApp: test on application
e Values rounded to the first decimal digit
f Number of sequences (number of images per sequence)
g Human: patient data, Animal: animal in vivo data, Sim: simulated deformations applied on a real image/volume, Synth: computer-

generated synthetic sequence
h CA: carotid artery, LV: left ventricle



3
Intensity-based tracking for long

sequences

In Chapter 2 a description of the relevant approaches for analyzing 2D sequences of

the liver under free breathing has been presented. Examples of these approaches are

explained in details in this Chapter. Their tracking performance is evaluated for long

2D ultrasound image sequences, which are first described in Section 3.1. Section 3.2

describes the evaluation scheme used to validate and quantify the tracking accuracy.

This evaluation scheme will be adopted also in Chapter 4. I will adapt two intensity-

based methods, local affine registration (see Section 3.3) and a novel scale-based

block-matching algorithm (see Section 3.4), for the tracking of long sequences. The

computational complexity of each strategy is calculated. Finally, I will show and

discuss the results of the aforementioned methods.

3.1 Ultrasound sequences

Ultrasound sequences of the liver of 9 volunteers during free breathing were acquired

at the Geneva University Hospital [Petrusca et al. 2013, Petrusca et al. 2011]. An

Acuson clinical ultrasound scanner (Antares; Siemens Medical Solutions, Mountain

View, CA), modified to be MR-compatible, generated real time second harmonic

images (center frequency: 1.8-2.2 MHz). Ultrasound and MR images were simul-

taneously acquired. The ultrasound images were exported on-the-fly using a frame

grabber device [Petrusca et al. 2013]. The image sequences consist of 2D slices

of the liver acquired at a fixed location (longitudinal or intercostal plane) over 5-

10 min, in order to evaluate ultrasound tracking performance for ultrasound- and

MR-guided treatment scenarios. More details regarding the simultaneous acquisi-

tion of ultrasound and MR images will be provided in Chapter 5. The sequences

have a temporal and spatial resolution of 14-25 Hz and 0.3-0.7 mm, respectively.

Their lengths are 5 min 21 sec (1 sequence), 5 min 28 sec (7 sequences) and 10 min
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08 sec (1 sequence). The number of frames per acquisition ranges between 2650 and

14516.

The main difficulties related to these images are, in addition to a low SNR, small

acoustic windows and shadows due to the presence of ribs, and radio frequency (RF)

interferences from the MR scanner. The mentioned artifacts are visible in Figure 3.1.

During the acquisition of four sequences, few images (0.04% - 0.2%) were skipped

by the frame grabber device. These skipped frames never occurred within the first

minute of acquisition, i.e. always after at least 1100 frames.

In the rest of this thesis I will use the following notation. 2D ultrasound images,

characterized by D pixels, are acquired at a frame rate f Hz, resulting in a temporal

sequence of T images I(ti) at time ti = t0 + i/f for 0 ≤ i ≤ T − 1. The first frame

of each of the 9 sequences is shown in Figure 3.1.

3.2 Evaluation method

The methods were tested for a total of 25 vessels in 9 sequences, see Figure 3.1.

I qualitatively assessed by visual inspection the tracking results for all vessels. I

quantitatively evaluated the tracking error for the 15 vessels, which the observer was

confident to be able to reliably annotate. I randomly selected 10% of the images

from the real-time application phase and manually annotated the position (denoted

as P̄v) corresponding to the selected landmark Pv(t0).

For the annotated frame (t̂), I calculated the tracking error

TEv(t̂) =
∥∥Pv(t̂)− P̄v(t̂)∥∥ . (3.1)

I summarize the results by the mean (MTE), standard deviation (STD) and 95th

percentile of all TEv(t̂), considering all the landmarks as a single distribution. I

also computed the mean tracking error for each landmark v (MTEv) and report the

range for the 15 vessels. I included the motion magnitude of the vessels, defined as∥∥Pv(t0)− P̄v(t̂)
∥∥ . (3.2)

I estimated the inter-observer variability of the results. Two additional experts

annotated 3% of randomly selected images from the real-time application phase. I

then defined as ground truth the mean position over the 3 annotations and calculated

the tracking error as before.

The paired Wilcoxon signed-rank test was used for assessing if median results were

statistically significantly different at the 0.001 level. The Wilcoxon test was cho-

sen because the distribution of TEv for all annotated images and vessels was not

normal and not transformable to a normal distribution by means of a logarithmic

transformation [Siegel 1956].
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Figure 3.1: First frame I(t0) of the 9 sequences and manual annotation of the tracked

vessel centers Pv(t0), v ∈ [1, . . . , 25]. Quantitative evaluation was based on the 15

Pv marked by ’x’. Artifacts visible in these images include MR-RF interferences

(first row, second image) and small acoustic windows (last row).
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3.3 Affine registration

This section describes how features on the ultrasound sequences are tracked by

employing affine registration. The method is first described in details and followed

by the analysis of its computational complexity. Results of its tracking performance

are given in Section 3.5.

In short, the images I(ti) are registered to the first image I(t0), in order to obtain

spatial correspondence at each time ti. The position of features to track, e.g. Pv(t0)

for vessel v, are manually selected in I(t0), see Figure 3.1. The proposed registration

optimizes the parameters of an affine transformation with respect to normalized cross

correlation (NCC). The transformation is defined over a manually selected region

around Pv(t0).

3.3.1 Registration details

In the 2D domain, the affine transformation T(x), at position x = [x; y], is defined

by 6 parameters, 4 representing implicitly the combination of rotation, anisotropic

scaling and shearing (am,n, m,n ∈ [1, 2]), and 2 translation coefficients (τm, m ∈
[1, 2]):

T(x) =

[
a1,1 a1,2

a2,1 a2,2

] [
x

y

]
+

[
τ1

τ2

]
(3.3)

The registration task is then to find these 6 free parameters Θ such that the images

are aligned, which is indirectly quantified by an image similarity measure. This can

be formulated as the optimal transformation Topt:

Topt = argminT∈ΘC(T), (3.4)

where the cost function C(T) measures the dissimilarity between the image region

A and the transformed image region BT, i.e. C(Tv) = −ρ(A,BT), where ρ is

a similarity measure. NCC is chosen as similarity measure and for each tracked

region v, the NCC is given by:

ρ(Av, B
T
v ) =

∑W
n=1(Av[n]− Āv)(BT

v [n]− B̄T
v )√∑W

n=1(Av[n]− Āv)2

√∑W
n=1(BT

v [n]− B̄T
v )2

, (3.5)

whereAv[n] andBT
v [n] denote the intensity of Av andBT

v at pixel n. Av is a manually

selected region around Pv(t0) of size W < D pixels, and Bv the corresponding region

in the transformed image I(ti)
T of same size. Āv and B̄T

v are the mean intensity

values of Av and BT
v , respectively.

I use a Gradient Descent (GD) optimizer to solve Eq. (3.4). At each iteration step,

GD advances the parameters in the search direction of the gradient. To improve
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accuracy and robustness, a multiresolution approach with 2 levels is chosen. In

addition, registration is initialized by the result from I(ti−1) to I(t0). This is based

on the assumption that the main motion is continuous. Such initialization allows

for a faster convergence of the solution, removing the initial major components of

misalignment between I(ti) and I(t0).

As mentioned in Section 3.1, few frames in the sequences were skipped by the frame

grabber device. In such cases the frame-to-frame displacement can be particularly

high and the registration can fail. Therefore, the images immediately following the

drop out were manually identified and the registration initialized by the results from

a similar image in the first breathing cycle.

The registration algorithm was implemented using the Insight Segmentation and

Registration Toolkit (ITK) [Ibanez et al. 2005].

3.3.2 Computational complexity

For image registration, the computational complexity per image region v depends

on I, E, V and R, where:

• I is the average number of iterations (maximum set to 300)

• E is the number of image similarity calculations per iteration and transforma-

tion parameter. Assuming numerical gradient calculation, E = 2

• V is the number of calculations for the image similarity per registration pa-

rameters. Assuming the fixed image region of W pixels, the number of com-

putations required to calculate the NCC are W for the numerator, 2W + 3

for the denominator and one division (see Eq. (3.5)). The affine transfor-

mation is characterized by n2W calculations, where n is the image dimen-

sion (n = 2 for 2D). Therefore the number of main computations is given by

V = W + 2W + n2W = 7W .

• R is the number of transformation parameters. It is equal to (n + 1)n for a

nD affine transformation, i.e. 6 parameters for 2D affine registration

For 2D images, the number of computations required by the affine registration is

84IW , with I � W . Therefore the complexity can be approximated by O(W ).

3.4 Scale-adaptive block-matching

Block-matching algorithms (BMAs) compute the local displacements from inter-

polating the translations which provide the best match of image regions in two
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consecutive frames. Many BMAs have been proposed (e.g. [Boukerroui et al. 2003,

Revell et al. 2005, Lin et al. 2007, Byram et al. 2010, Harris et al. 2010]), yet their

performance has so far only been assessed on relative short sequences (<1 min).

Therapy guidance requires the tracking of long sequences, which poses a special

challenge for BMA due to its iterative nature. Furthermore the tested sequences

suffer from noise, interferences, low SNR and frame drop outs. In order to create

a robust framework for feature tracking in long sequences, I propose an algorithm,

which combines several block-matching components and includes a novel adaptation

of the block size to the feature scale.

The key components of the proposed scale-adaptive block-matching method (SA-

BMA) are a novel adaptation of the block size to the feature scale and the new

combination of the interpolation function from [Lin et al. 2007] and the temporal

realignment from [Revell et al. 2005].

3.4.1 Block configuration

Traditionally the size of the blocks is chosen empirically [Morsy and Von Ramm 1999,

Harris et al. 2007] or is equal to the size of the ultrasound speckle element [Kaluzyn-

ski et al. 2001]. In the presented work, I adapt the block size to the feature size

in order to ensure that every block contains a part of the feature, which limits the

aperture problem and avoids ambiguous matches due to homogeneous blocks.

As in the previous Section, the position of features to track, e.g. Pv(t0) for vessel

v, are manually selected in the first frame I(t0), see Figure 3.1. A region of interest

ROIv(t0) around feature v is selected. Such region is generally smaller then the

affine registration region (see Section 3.3.1). BM is performed for each ROIv(t0),

which covers a MxN grid of equally sized squares (called blocks) Bi,v of size ∆bv
with center points Gi,v, i ∈ [1, . . . ,MN ]. Size ∆bv is determined as a function of

the feature size. As vessel cross sections can be approximated by an ellipse, I search

for blob-like features centered at Pv. A scale-space approach (local maxima of a

Difference of Gaussian (DoG)) [Lindeberg 1998, Schneider et al. 2012] is used to

detect the most likely blob in ROIv(t0). The size of the blob is derived from the

Gaussian kernel size s that minimizes the DoG, where s relates to the minor semi-

axis rv of an ellipse fitted to the vessel cut by rv =
√

2s. ∆bv is obtained by rounding

rv to the next greater integer value.

3.4.2 Displacement calculation

I compute the motion field in each ROIv by determining the displacement at Gi,v

via block-matching, and use weighted interpolation [Lin et al. 2007] to obtain the
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displacement of Pv. At time step t∗ the displacement of Gi,v(t
ref ) in the reference

frame tref to Gi,v(t
∗), denoted as dGi,v(t

∗), is determined by the displacement v

which maximized the NCC between Bi,v(t
ref ) and the block from I(t∗) centered at

Gi,v(t
ref ) + v, see Eq. (3.5). The values of v are restricted to cover only a certain

search region, which is of size ∆bv + 2βv, where βv is determined by the maximum

expected frame-to-frame displacement of the vessel of interest.

The reference frame is generally the previous frame (t∗ − 1). Other strategies for

tref are described in Section 3.4.3. The displacement of the tracked point from tref

to t∗ (dv(t
∗)) is deduced from the single block displacements dGi,v(t

∗) by weighted

interpolation:

dv(t
∗) =

∑
î

wîdGî,v(t
∗), (3.6)

where wî are the weights and î = {i|Q(i, t∗) = 1}. In details, Q(i, t∗) is the neigh-

borhood filtering mask for ROIv, which is defined by:

Q(i, t∗) =

{
1 for the 9 Gi,v(t

ref ) closest to Pv(t
ref )

0 otherwise
(3.7)

I consider the weights wî [Lin et al. 2007]:

wî = 0.5
1

D2
î

+ 1

1∑
î

1
D2
î
+1

+ 0.5
αî∑
î αî

, (3.8)

with Dî the Euclidean distance from Gî,v(t
ref ) to Pv(t

ref ), and αî = σ2
î
/µî the ratio

between the variance(σ2
î
) and the mean (µî) of the pixel intensities in Bî,v(t

∗). This

interpolation scheme has the advantage that it incorporates regularization (first

term) and takes into account the relative image content (second term) [Lin et al.

2007]. The position of the tracked point is Pv(t
∗) = Pv(t

ref ) + dv(t
∗).

3.4.3 Reference frame definition

Block-matching methods can generally only cope with small deformations and ap-

pearance changes, as they are based on the translations of local regions. Hence

block-matching is applied to temporally consecutive frames (i.e. tref = t∗ − 1) for

tracking. However, this strategy is subject to error accumulation leading to drift.

Such errors are particularly relevant in long sequences. Yet the approximate peri-

odic nature of respiratory motion provides frequently frames which are similar to the

initial frame and the block-matching is again applicable for aligning these [Revell et

al. 2005]. In order to reduce drift, the current image region ROIv(t
∗) is realigned

with the initial frame ROIv(t0) when the correlation between the two images is high.

Errors occur also due to the quantization of dGî,v . To reduce the quantization error,
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the reference frame remains unchanged when the current displacement dv(t
∗) is very

small. In details, I introduce the following strategy:

if ρ(ROIv(t0), ROIv(t
∗)) > θNCC,v then t

ref = t0
else if ‖dv(t∗)‖ ≤ εd then t

ref = trefprev
else tref = t∗ − 1 end

where ρ(ROIv(t0), ROIv(t
∗)) is the NCC between image regionROIv(t0) andROIv(t

∗)

(see Eq. (3.5)), θNCC,v is the 84th percentile of the NCC values, with respect to

ROIv(t0), gathered from an initial subset of the sequence, dv(t
∗) is the displace-

ment of the tracked point in the current frame t∗ (see Eq. (3.6)), εd = 0.01 pixel,

and trefprev denotes tref from the previous image pair.

3.4.4 Computational complexity

In this thesis, I consider the case of the exhaustive search block-matching. The

drawback of this algorithm, also known as full search, is that it is the most compu-

tationally expensive BMA [Lin and Tai 1997]. The computational cost can be easily

reduced by using faster matching algorithms [Lin and Tai 1997], such as hierarchical

search [Lin et al. 2007]. For each image and tracked vessel v, the complexity of the

proposed algorithm depends on the following steps:

• The K = 9 closest grid points Gi(t
ref ) to P (tref ) are selected using K-nearest

neighbor (K-NN) search with KMN log(MN) computations, where MN is the

number of all grid points Gi. Hence the complexity is O(MN log(MN)).

• The complexity of the BMA for K grid points is given by the calculation of

the NCC at each searching position. In details, the complexity of each NCC

calculation is O(B) (see Section 3.3.2), where B = ∆b2 is the number of pixels

per block. The number of iterations in the search area is (2β + 1)n. Therefore

BMA requires KnB(2β + 1)n computations, with n = 2 for 2D images

• The displacement of the vessel is calculated via interpolation of K blocks, see

Eq. (3.6). The complexity of the interpolation is dominated by the complexity

of calculating α in Eq. (3.8), which is O(B)

This results in a total of 9MN log(MN) + 18B(2β + 1)2 + 9B calculations. With

β < B, B ≈MN and β2 > log(B), the complexity is O(Bβ2).
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3.5 Results

I compared the performance of the affine registration (see Section 3.3) and SA-BMA

(see Section 3.4). As baseline BMA, I modified the SA-BMA to have fixed block

size of ∆bv = 16.

I tracked a total of ∼50000 frames, acquired over a total of ∼50 min. ∆bv is in the

range of [4, 22] pixels and the size of the tracked vessels varies from 2 to 9 mm. βv
varies from 3 to 10 pixels (from 1 to 4 mm), while the total number of grid points

MN ranges in [30, 520]. Manual initialization of the affine registration because of

skipped frames was necessary for a total of 36 images, i.e. ∼0.007%.

Results for the approaches described in this Chapter, affine registration and SA-

BMA, are listed in Table 3.1. The best performance is achieved by affine registration

with a MTE of 0.90 mm. The introduction of scale-adapted blocks improved the

tracking performance by 35% compared to standard SMA, reducing the MTE from

3.22 mm (BMA) to 2.19 mm (SA-BMA). In Figure 3.3 I illustrate the benefit of the

SA-BMA for the worst case of BMA.

Similar results were achieved for the inter-observer data set (Table 3.2). The inter-

observer MTE ± STD is 0.32 ± 0.19 mm and the range of MTEv over all observers

is [0.16, 0.70] mm. Manual annotation is therefore substantially better than any

of the proposed method, i.e. MTE is reduced by 64% and 85% with respect to

affine registration (MTE=0.90 mm) and SA-BMA (2.18 mm), respectively. Fig-

ure 3.2 summarizes the TE results for each of the 15 vessels and the 3 proposed

methods (i.e. BMA, SA-BMA and affine registration), by showing the minimum,

25th percentile, median, 95th percentile and maximum of the TEv distribution for

all images annotated by 3 observers. It can be observed that the affine registration

clearly provides the lowest errors apart from vessel 4. SA-BMA has lower errors

than BMA for all but two vessels (number 2 and 14). BMA has a total failure

case (vessel 7 illustrated in Figure 3.3), where the MTE7 is higher than the mean

vessel motion (12.16 vs. 3.00 mm). The median TEv of BMA and SA-BMA, and of

SA-BMA and affine registration were statistically significantly different at the 0.001

level (Wilcoxon signed-rank test).
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Table 3.1: Tracking results (in mm) for the different methods w.r.t. manual anno-

tation from one observer (10%, ∼7500 images). Best results are in bold face.

MTE ± STD (95th TE) range MTEv

VesselMotion 5.17 ± 3.21 (10.59) [2.81, 11.48]

Affine 0.90 ± 0.37 (1.51) [0.34, 1.82]

BMA 3.22 ± 2.26 (7.24) [1.25, 12.35]

SA-BMA 2.19 ± 1.46 (4.90) [1.20, 5.79]

Table 3.2: Tracking results (in mm) for the different methods w.r.t. manual anno-

tation from three observers (3%, ∼2500 images). Best results are in bold face.

MTE ± STD (95th TE) range MTEv

VesselMotion 5.22 ± 3.23 (10.57) [3.00, 11.30]

Affine 0.90 ± 0.35 (1.45) [0.35, 1.90]

BMA 3.20 ± 2.26 (7.17) [1.26, 12.16]

SA-BMA 2.18 ± 1.45 (4.83) [1.22, 5.78]

3.6 Conclusion

In this Chapter, I compared two intensity based frameworks for vessel tracking in

long ultrasound sequences.

The methods were evaluated on long 2D sequences of the liver of 9 volunteers under

free breathing. Vessel were tracked for 5-10 min. To my knowledge, this is the first

evaluation for tracking such long ultrasound sequences.

Using affine registration, I achieved a mean accuracy of 0.90 mm. Such performance

improves the state-of-the-art in 2D ultrasound tracking of the human liver (1.6 mm
[Zhang et al. 2010]). The affine registration is extremely accurate. However, its

computational complexity is linear with the size or the region to track. In addition,

the number of iterations required by the optimizer might increase with larger dis-

placements (from 50 to 300 iterations). Another drawback of the proposed strategy

is that it requires manual reinitialization when frame drop outs occur.

The proposed BMA is computationally faster, as B, β � W , and potentially real-

time [Hsu et al. 2005, Pinton et al. 2006]. This tracking strategy is only partially

affected by frame drop outs, as an adequate search area is used and a more sophisti-

cated temporal realignment strategy is introduced. However, the accuracy of BMAs

is lower. The failure of standard BMA in long sequences might be due to an inap-

propriate block size, changes in the image similarity values and error accumulation.
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Figure 3.2: Summary of the tracking error distribution (TE) in mm for each of the 15

vessels and 3 methods, BMA (red), SA-BMA (green) and affine registration (blue).

The error bars indicate the minimum and maximum error, while the colored bars

define the 25th percentile, median and 95th percentile of the TE. Affine registration

provides a relative robust performance for all vessels, while BMA (SA-BMA) has

several (a few) very poor results (median>2.5 mm, 95%>10 mm).

The introduction of scale-adaptive blocks was significant for the improvement of the

results. While adaption to the feature size reduces the error caused by ambiguous

matches, the use of NCC for measuring the opportunity of temporal realignment

can be misleading. Even with adaptation to the individual ultrasound sequence,

temporal realignment of the tracking was often too sparse.

In the following Chapter, I propose a learning based approach to achieve accurate,

robust and fast tracking. The main idea is to exploit the repetitive nature of res-

piration and to learn the relationship between image appearance and registration

results.
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Figure 3.3: Comparison of the block-matching tracking performance for a failure

sequence of BMA (MTEv=12.4 mm). (Top) Main motion component of manual

annotation and dv from 2 methods for a temporal subset. (Middle) Corresponding

NCC to first image. (Bottom, left to right) First image with annotation (Pv(t0)),

image with tracking results at last realignment (ta) of (SA-)BMA, at tb = ta + 30 s

and tc = ta+60 s. Drift occurs in a significant (moderate) way for BMA (SA-BMA)

for t > ta.



4
Learning-based real-time tracking

In the previous Chapter, two intensity-based approaches for ultrasound tracking,

namely a local affine registration and a novel scale-adaptive block-matching algo-

rithm (SA-BMA), were presented, evaluated and discussed. While the fist method

is extremely accurate, it suffers from high computational costs. Contrary, BMAs

can achieve real-time performance, but their accuracy on long sequences is lower.

In image-guided therapy, the compensation for any organ movement should be highly

accurate and precise, and be achieved in real-time, i.e. faster than the image acqui-

sition rate. Several techniques have been proposed to handle real-time respiratory

organ movement in image-guided applications. Most of the current tracking systems

are based on fluoroscopy images [Shirato et al. 2006] with the major disadvantages

of higher dose to the patient and the need to implant fiducial markers. [Ries et al.

2010] proposed tracking of 2D MRIs based on a Kalman predictor combined with

a compensation for through-plane motion. Experiments carried out on images of

the kidney under regular respiratory motion due to mechanical ventilation showed

a tracking precision (STD) of ± 1.1 mm and processing time of 40 ± 8 ms. A

2D real-time ultrasound tracking method based on active contours and conditional

density propagation was proposed in [Zhang et al. 2010] and evaluated on a short

sequence (10 breathing cycles). Results showed a precision (variance) of 1.6 mm

and a processing time of 5 ms per frame.

While feature-based tracking methods are potentially fast, they might suffer from

bad initialization, feature disappearances and feature location inaccuracies. Intensity-

based methods do not require feature extraction and hence can work in regions with

weak features. They usually need no pre-processing, but are generally computa-

tionally expensive. During treatment, images are acquired continuously over several

minutes and, as seen in the previous Chapter, their temporal realignment is crucial

to ensure robust tracking and to avoid error accumulation.

In this Chapter, a learning-based tracking framework, which combines the strengths

of the aforementioned methods to achieve robust, accurate and fast vessel tracking

in long ultrasound sequences, is introduced. It exploits the repetition in the images
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in case of organs subject to repetitive movement, such as breathing, and is divided

into an initial training phase (see Section 4.1) and a real-time application phase (see

Section 4.2). In the application phase the redundancy in the data is investigated for

accelerating affine registration (see Section 4.2.1) or for initializing the SA-BMA (see

Section 4.2.2). Experiments and results are described in Section 4.3. The Chapter

is concluded by Section 4.4 with a discussion on the performances and advantages

of the proposed tracking methods and on potentials areas of improvement.

4.1 Training phase

During the training phase, a sequence covering 10 breathing cycles is acquired,

resulting in T10C images I(ti), with ti ∈ [t0, . . . , T10C ].

PCA

In order to store the image appearance efficiently, I use a preprocessing step to

reduce the dimensionality of the data. A large number of dimensionality reduction

methods have been proposed and compared [Van der Maaten et al. 2009]. On

real data, the performance of linear methods was not inferior to that of nonlinear

ones. As linear methods are computationally less expensive, I choose Principal

Component Analysis (PCA) for embedding I(ti) ∈ RD into a low-dimensional data

representation S(ti) = [s1(ti); . . . ; sL(ti)] ∈ RL, with L� D.

Each image I(ti) is reshaped into a single column vector x(ti) ∈ RD. I calculate

the mean with respect to time (x̄) and the covariance matrix C = X̂T X̂, where the

(i+ 1)-th column of X̂ is equal to x̂ = x(ti)− x̄. I then solve the eigenproblem

Cwj = λjwj, (4.1)

∀j ∈ [1, . . . , Ttr] and Ttr ≤ T10C being the number of training images. The eigen-

problem in (4.1) is rearranged such that the eigenvalues λj are sorted (λj ≥ λj+1),

with wj being the corresponding eigenvector. For each j-th eigendirection I calcu-

late the data projection pj = (wj)
T x̂, so that the original image sequence can be

reconstructed by

x =
Ttr∑
j=1

pjwj + x̄. (4.2)

The most reconstructive information is captured by the eigenvectors associated with

the largest eigenvalues and data reduction is achieved by considering only the first

L eigenvectors, i.e. sj(ti) = pj(ti) for j ∈ [1, . . . , L]. The selection of L is based

on the energy accumulated in the first L eigenvectors (calculated by the normalized
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cumulative sum of the eigenvalues λ1 to λL) as this describes the reconstruction

accuracy. I choose L such that the cumulative energy just exceeds 95%.

In addition, I extract the breathing signal sB from the PCA space S, by selecting

the sj that captures the main respiratory motion. In details, I compute the Fast

Fourier Transform (FFT) of each sj and choose the one that provides the maximum

of the power spectral density within a frequency range of 0.15-0.4 Hz (2.5-6 s), which

corresponds to common breathing.

Image Registration

The images I(ti), with ti ∈ [t1, . . . , Ttr], are registered to the first image I(t0) to

obtain spatial correspondence at each time ti. This enables the extraction of tra-

jectories for individual points, e.g. vessel centers Pv. The registration optimizes

the parameters of an affine transformation with respect to NCC over a manually

selected region around Pv(t0), and is initialized by the result from registering I(ti−1)

to I(t0), as described in Section 3.3.

The low-dimensional representation S of the images and the corresponding registra-

tion results (e.g. spatial locations for points of interest Pv) are stored at each time

step ti ∈ [t0, . . . , Ttr].

4.2 Real-time application phase

During a real-time procedure, new images are continuously acquired. Given the

current image I(t∗), I want to find the most similar images in the training database

for obtaining a prediction of the current displacements for point of interest Pv (Sec-

tion 4.2.1), or for temporal realignment of BMA (Section 4.2.2). For this, I first

project the new image into the PCA space:

S(t∗) =
L∑
j=1

pjwj (x(t∗)− x̄) . (4.3)

4.2.1 Learning-based affine registration

I determine the K -nearest neighbors (K -NN) in the training database to S(t∗). In

details, I find tmk ∈ [t0, . . . , Ttr] with the K smallest Euclidean distances

dk(t
∗) = ||S(t∗)− S(tmk)||2 =

√√√√ L∑
j=1

[sj(t∗)− sj(tmk)]
2, (4.4)
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with 1 ≤ k ≤ K. The distances are sorted so that dk ≤ dk+1. Having determined

the K -NN PCA representations from the training set, I retrieve the K associated

positions Pv(tmk) per point of interest Pv(t0).

The prediction of the vessel center v at time t∗ is obtained by weighted linear inter-

polation of Pv(tmk):

P̂v(t
∗) =

K∑
k=1

(
1− dk(t

∗)∑
k dk(t

∗)

)
Pv(tmk). (4.5)

Outliers

Completely repetitive motion is very unlikely. Therefore a mechanism to cope with

previously unseen variations (outliers) and adapt to these (e.g. drift of exhale posi-

tion or deeper inhalation) is incorporated. In order to detect such outliers I establish

a threshold on the image similarity, which is based on the statistics of the training

data. Specifically, for each training image I find its nearest neighbor to the re-

maining training samples and calculate the minimum Euclidean distance d1(ti), for

ti ∈ [t0, . . . , Ttr], similar to (4.4). The threshold θout is then set to the 95th per-

centile of the distribution of the minimum distances. During the application phase,

if dK(t∗) > θout then I(t∗) is categorized as outlier and affine registration is com-

puted as described in Section 3.3. Finally I update the training database by adding

the registration result and the PCA description of the outlier, and by recalculating

θout. Summarizing, the tracking strategy is as follows:

if dK(t∗) < θout then do prediction, see Eq. (4.5)

else do affine registration and update S end

4.2.2 Learning-based block-matching algorithm

Alternatively, the training information can be used to allow frequent temporal re-

alignment of the scale-adaptive block-matching algorithm (SA-BMA), previously

described in Section 3.4, in order improve its robustness and accuracy.

Depending on the similarity of S(t∗) to the training data, the initial frame and the

previous frame, a reference frame is chosen. The logic proposed for the learning-

based block-matching (LB-BMA) is as follows:
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outlierFlag = false

if ||S(t∗)− S(t0)||2 < θ0 then tref = t0
else if d1(t∗) < θout then t

ref = tm1

else if ||S(t∗)− S(t∗ − 1)||2 < θout then t
ref = t∗ − 1

else outlierFlag = true end

if (outlierFlag == false) then do SA-BMA

else do affine registration and update S end

The threshold θ0 is the 5th percentile of the Euclidean distance between S(t0) and

S(ti) ∀t0 < ti ≤ Ttr. d1(t∗) is the smallest Euclidean distance between S(t∗) and the

training set S, see Eq. (4.4). θout is the 95th percentile of the distribution of the

minimum Euclidean distances between the S(ti) in S, see Section 4.2.1.

4.2.3 Computational complexity

During the application phase, vessels of images that are not an outlier can be tracked

by predicting the displacements from (a) the training data (see Section 4.2.1), or (b)

by the learning-based SA-BMA (see Section 4.2.2). The computational complexity

of the tracking methods is:

• Projection of the new image into the training PCA space: O(LD), where L is

the number of selected eigenvectors and D the number of image pixels

• Method (a): Computation of the point displacement

– K-NN search: let Ttr ≤ T be the size of the search space (i.e. the num-

ber of training images), then the K nearest neighbors can be found in

KTtrlogTtr calculations

– Prediction via interpolation: for each 2D point, the complexity depends

on 2K

• Method (b): BMA requires 9MN log(MN) + 18B(2β + 1)2 + 9B calculations,

see Section 3.4.4

For v points per image (1 ≤ v ≤ 5), method (a) requires a total of LD+KTtrlogTtr+

2Kv operations. As K, v < L � D and Ttr � D, the main complexity is linear in

D and can be approximated by O(LD). The complexity of method (b) is based on

LD + 9MN log(MN) + 18B(2β + 1)2 + 9B, and with B ≈ MN and Bβ � D is

again O(LD).
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4.3 Results

The training phase has one parameter, i.e. the number of training images (Ttr). In

order to get a good trade-off between the size and the information content of the

training set, I apply the L-curve method to determine Ttr. Specifically, I calculate

the threshold value θout (see Section 4.2.1) for increasing number of training images.

Then I fit a low-degree (degree=4) polynomial curve to the data and finally find the

point on the curve which is closest to the origin. The number of training images

associated with this point are used as Ttr. An example of L-curve is shown in

Figure 4.1a. Ttr is in the range of [52, 193] for all datasets, while T10C varies from

519 to 966 frames.

The PCA space, derived from the Ttr training images, is characterized by L in the

range of [12, 52], vs. D > 23000.

The learning-based affine registration (LB-Affine) has an additional parameters,

i.e. the number of nearest neighbors (K), which is determined using the remaining

training images (from Ttr+1 to T10C). I calculate the prediction error for the images

in the remaining training set, defined by the Euclidean distance between the vessel

position from Eq. (4.5) and the one from affine registration. I allow K = 1, 2, . . . , 20,

and then choose the K that corresponds to the minimum mean error. The chosen

K varies in [3, 8]. Figure 4.1b shows an example of the mean prediction error as a

function of K for a representative sequence.

I firstly evaluated the registration error for the images acquired during the training

phase (from t0 to T10C). The affine registration achieves an accuracy of 0.63 ±
0.36 mm (1.30 mm) on average (MTE ± STD (95th percentile of TE)), with a

MTEv range of [0.42, 0.84] mm.

As in the previous Chapter, I tracked the same ∼50000 frames, acquired over a total

of ∼50 min. For comparison, I computed the motion magnitude of the landmarks,

see Eq. (3.2). I compared two versions of the LB-BMA, called LB-BMA95 and LB-

BMAB, considering S and sB respectively. Additionally, LB-BMA was tested using

Ttr = T10C (LB-BMA(10C)). Then the PCA space is characterized by L in the range

of [86, 287].

Results for all methods are shown in Tables 4.1 and 4.2. The highest accuracy is

achieved by LB-Affine with a MTE of 0.86 mm. The best block-matching perfor-

mance is provided by LB-BMA95(10C) with a MTE of 0.96 mm. Using a larger

training set improved the MTE by 44% (36%) for LB-BMA95 (LB-BMAB). In ad-

dition, the improvement with respect to (SA-)BMA is substantial (see Section 3.5).

The MTE of the 3 observers annotation is 0.32 mm (more details in Section 3.5),

which improves the accuracy with respect to the proposed automatic methods by

62% and 67% for LB-Affine (MTE=0.84 mm) and LB-BMA95(10C) (0.97 mm),
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(a) Training phase L-curve

(b) Mean prediction error (in mm) vs. number of near-

est neighbors

Figure 4.1: Example of parameter optimization. (a) The number of training images

Ttr is selected to provide a good trade-off between density and size of the training set

using the L-curve method. (b) K is chosen so that the mean prediction error (MPE)

evaluated over the remaining training images (from Ttr + 1 to T10C) is minimum.

respectively, see Table 4.2. Figure 4.2 compares the results of individual vessels

for LB-BMAB(10C), LB-BMA95(10C) and LB-Affine, showing the minimum, maxi-

mum, median, 25th and 95th percentile of the TEv distribution of all images anno-

tated by 3 observers for each vessel. It can be observed that using only the breathing

signal (LB-BMAB(10C)) leads to comparative high 95th percentile (>5 mm) for 8

vessels. The corresponding median values are not that different, suggesting that the

method can perform well, but is not very reliable. When using more PCA compo-

nents (LB-BMA95(10C)) only one 95th percentile is that high and for LB-Affine all

of them are below 3 mm.

For the inter-observer data set, the statistical significance of the median TEv of

SA-BMA and LB-BMA95(10C) and LB-Affine was tested using the paired Wilcoxon

signed-rank test. The probabilities (p) of equal medians are as follows:
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SA-BMA vs. LB-BMA95(10C) p<0.001

SA-BMA vs. LB-Affine p<0.001

LB-BMA95(10C) vs. LB-Affine p=0.23

No other statistical tests were performed.

Figure 4.3 illustrates the benefit of a learning-based approach (LB-BMA95(10C))

for the worst case of BMA (see Section sec:res). Figure 4.4 shows a case of skipped

frames during acquisition and the advantage of a learning-based approach (LB-

BMA95(10C)) over SA-BMA.

The percentages of images similar to the training phase and the outliers during the

application phase are reported in Table 4.3. The percentage of required registrations

during the application phase for LB-Affine and all 25 tracked vessels is on average

4.7% and always below 21%. For LB-BMA95 (LB-BMAB) tref is picked from the

training set for 72.0% (99.0%) of the frames, while less then 0.3% requires affine

registration (see Table 4.3). For the remaining frames tref = t∗ − 1. For LB-

BMA95(10C) (LB-BMAB(10C)) the mean percentage of detected outliers is 1.4%

(1.0%). Figure 4.5 compares the percentage of required affine registrations during

application phase for LB-BMAB(10C), LB-BMA95(10C) and LB-Affine for each of

the 15 manually annotated frames. Generally, no correlation between the tracking

error (Figure 4.2) and the amount of affine registrations (Figure 4.5) per vessel can

be observed. The affine registration percentage is particularly high for LB-Affine

for vessel 4 (20.8%). However, its accuracy (see Figure 4.2) is slightly worse than

LB-BMA95(10C) for the same vessel, which requires only 1.3% of affine registrations.

LB-BMA95(10C) requires for one case 8.2% affine registrations, while otherwise these

are always below 2.1%.

The average computational time for each PCA projection (see Eq. 4.3) was 1.4 ms for

LB-Affine and LB-BMA, and 13.0 ms for LB-BMA(10C). The average time needed

to calculate the motion prediction of the tracked vessel per frame in the application

phase was 0.06 ms for LB-Affine and 100 ms for block-matching methods. The latter

had a range of [30, 350] ms. These measurements exclude outliers, i.e. the images

that required affine registration, which is computed in approximately 800-2500 ms

per image region. These results were obtained using non-optimized Matlab software

and no GPU parallel computing (single PC with Intel R©CoreTMi7-920 at 2.66 GHz

processor and 8 GB RAM).

4.4 Conclusion

I proposed a novel, simple and robust framework for vessel tracking in long ultra-

sound sequences. The method is based on learning the relationship between image

appearance and feature displacements, in order to speed-up image registration or
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Table 4.1: Tracking results (in mm) for the different methods w.r.t. manual anno-

tation from one observer (10%, ∼7500 images). Best results are in bold face.

MTE ± STD (95th TE) range MTEv

VesselMotion 5.17 ± 3.21 (10.59) [2.81, 11.48]

LB-Affine 0.86 ± 0.46 (1.68) [0.65, 1.03]

LB-BMAB 1.93 ± 1.83 (6.12) [1.55, 2.34]

LB-BMA95 1.70 ± 1.26 (4.23) [1.38, 2.28]

LB-BMAB(10C) 1.24 ± 1.41 (3.81) [1.04, 1.49]

LB-BMA95(10C) 0.96 ± 0.64 (2.26) [0.38, 2.34]

Table 4.2: Tracking results (in mm) for the different methods w.r.t. manual anno-

tation from three observers (3%, ∼2500 images). Best results are in bold face.

MTE ± STD (95th TE) range MTEv

VesselMotion 5.22 ± 3.23 (10.57) [3.00, 11.30]

LB-Affine 0.84 ± 0.44 (1.60) [0.64, 1.00]

LB-BMAB 1.96 ± 1.94 (6.57) [1.60, 2.36]

LB-BMA95 1.69 ± 1.24 (4.20) [1.38, 2.21]

LB-BMAB(10C) 1.21 ± 1.39 (3.67) [0.98, 1.49]

LB-BMA95(10C) 0.97 ± 0.65 (2.20) [0.36, 2.24]

Table 4.3: Comparison of the partitioning performance of the different methods

during the application phase for all 25 vessels. Training: percentage of interpola-

tions/initializations from images in the training set. Registration: percentage of

images categorized as outliers and hence requiring affine registration.

Training % Registration %

mean range mean range

LB-Affine 95.3 [79.2, 99.2] 4.7 [0.8, 20.8]

LB-BMAB 99.6 [90.6, 100] 0.0 [0, 0.3]

LB-BMA95 73.5 [49.5, 94.7] 0.1 [0, 0.3]

LB-BMAB(10C) 99.0 [95.8, 99.7] 1.0 [0.3, 3.8]

LB-BMA95(10C) 68.3 [27.2, 94.1] 1.4 [0.3, 8.2]
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Figure 4.2: Summary of the tracking error distribution (TE) in mm for each of the

15 vessels for LB-BMAB(10C) (red), LB-BMA95(10C) (green) and LB-Affine (blue).

The error bars show the minimum and maximum error, while the colored bars define

the 25th percentile, median and 95th percentile of the TE.

to allow frequent reinitialization of a scale-adaptive block-matching algorithm. The

method exploits the redundancy of the images in a repetitive motion scenario while

still being able to adapt to irregularities.

The method was evaluated on long ultrasound sequences of the liver of 9 volunteers

under free breathing and achieved a mean accuracy of 1 mm for tracking vessels for

5-10 min. Compared to non-learning intensity-based approaches (see Chapter 3),

the proposed method is automatic, robust to interference, noise (see Figure 3.1),

and frame drop outs (see Figure 4.4).

The temporal realignment of the tracking was often too sparse for (SA-)BMA (see

Section 3.4). In contrast, the learning based approach enables more frequent re-

alignments to relevant images by exploiting the repetition in the images and learn-

ing the main variation in image appearance. This allows to cope with and adapt to

previously unseen variations by detecting these, registering the current image and

updating the training set.

Tests on respiratory liver motion show that on average only 1-5% of the images

required registration during the application phase, despite acquisitions up to 10

min and irregular changes in exhale position (drift) [von Siebenthal et al. 2007a].

Furthermore, the training images are acquired in a relatively short time (<1 min).

Reducing computational costs by using only the breathing signal for measuring

image similarity increased the LB-BMA mean errors (1.70 vs. 1.93 mm and 0.96 vs.

1.24 mm).
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Figure 4.3: Comparison of the block-matching tracking performance for a failure

sequence of BMA (MTEv=12.4 mm, see Table 3.1). (Top) Main motion component

of manual annotation and displacement dv from 3 methods for a temporal subset.

(Middle) Corresponding NCC to first image. (Bottom, left to right) First image

with annotation (Pv(t0)), image with tracking results at last realignment (ta) of

(SA-)BMA, at tb = ta + 30 s and tc = ta + 60 s. Drift occurs in a significant

(moderate) way for BMA (SA-BMA) for t > ta, while LB-BMA remains robust.

While affine registration performed well on the training set, it was only applied to

outliers during the real-time application phase due to its computational complexity

(see Section 3.3.2).

The ultrasound tracking should provide continuous feedback on the displacements

of points of interest in time. Therefore the main requirements for the tracking

algorithm are both accuracy and speed. LB-Affine achieved on average the highest

accuracy and the computation of the predicted displacements is with 1.5 ms real-

time, i.e. faster then the image acquisition time (40-70 ms, 14-25 Hz). Yet, the

number of affine registrations during the application phase is still too high to obtain

continuous tracking of the images. The mean accuracy of LB-BMA95(10C) is also 1

mm. Even if the average computational time of 113 ms is higher, the percentage of

registrations needed is lower (1.4%). Therefore the displacements of points of interest
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Figure 4.4: Example of frames skipped during acquisition for one volunteer. (a,b)

Main motion component of displacements dleft and dright of the (a) left and (b)

right vessel from SA- and LB-BMA for a temporal subset around the frames shown

in (c). MTEright is 2.04 mm and 0.92 mm for SA- and LB-BMA, respectively. The

left vessel was not quantitatively evaluated. (c) Image region with tracking results

before (tskip − 1) and after (tskip and tskip + 1) skipping happened, showing that

motion compensation is insufficient for SA-BMA when dropouts occur, while LB-

BMA remains robust.

can be computed without interruptions. Additionaly, real-time implementation of

BMA is possible [Hsu et al. 2005, Pinton et al. 2006].

I expect the proposed method to be generally beneficial for real-time tracking of

mainly repetitive motion (e.g. respiratory, cardiac). In particular, it will sub-

stantially improve the real-time capability of intensity-based 3D image registration,

which has a considerably higher computational complexity. The temporal reinitial-

ization strategy could also be used to speed-up the training phase by searching for

the most similar previous image for initialization of affine registration, instead of

using the previous image (t− 1).

In this Chapter, I proposed two learning-based methods for real-time, robust and

accurate tracking of long ultrasound sequences of the liver. The achieved accu-



4.4. Conclusion 64

Figure 4.5: Percentages of affine registration required during application phase by

LB-BMAB(10C), LB-BMA95(10C) and LB-Affine for each of the 15 manual anno-

tated vessels.

racy and robustness of the proposed tracking method for long and very difficult

ultrasound sequences makes it applicable for real-time ultrasound guidance during

radiation therapy under free-breathing. In the following Chapter, I will describe a

novel treatment scenario, where MR and ultrasound images are acquired simultane-

ously (for validation) during MRgHIFU. The motion vectors obtained from tracking

ultrasound images of the liver are used as internal surrogates for a model-guided

spatio-temporal prediction of the tumor position in the liver during treatment.



5
Simultaneous MR- and

ultrasound-guided radiation

therapy

In Chapter 4, I introduced a robust and fast algorithm for accurate tracking of

anatomical landmarks, such as vessel centers, of the liver under free breathing in

long ultrasound sequences. In this Chapter, I describe the clinical scenario where

this ultrasound tracking method is used. In Section 5.1, a novel hybrid ultrasound

and MR imaging system for guidance in HIFU treatments of the upper abdomen,

subject of respiratory motion, is introduced. During treatment the direct observation

of the target motion is often impossible. Therefore a novel strategy for its motion

compensation is proposed. Simultaneously acquired MR and ultrasound images are

co-registered in the pre-treatment phase (see Section 5.1.3). Tracking of ultrasound

images during the application phase generates surrogate signals of the organ motion.

These surrogates are combined with a statistical motion model of the liver (see

Section 5.2.1) in order to obtain spatio-temporal motion prediction of the target

(see Section 5.2.3). Results showing the applicability of such system in clinical

practice are presented in Section 5.3 and discussed in Section 5.4.

5.1 Hybrid ultrasound/MR imaging system

Hybrid imaging systems integrate two modalities, taking advantages of their strengths,

in order to gain more information on the investigated anatomy. Hybrid ultra-

sound/MRI systems were developed only recently [Curiel et al. 2007, Tang et al.

2008, Feinberg et al. 2010, Viallon et al. 2010]. The combination of ultrasound

and MR imaging can improve guidance and assessment in thermal therapies, such

as HIFU. Their successful combination is mainly due to the complementary infor-

mation which the two modalities provide.
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Ultrasound and MR imaging are both non-ionizing techniques, but are characterized

by different spatial and temporal resolutions, and are also characterized by a differ-

ence in sensitivity when measuring tissue properties. Ultrasound imaging has the

advantages of being portable, inexpensive and free of geometrical distortion. Due to

its fast imaging rate, ultrasound is a valuable tool for motion tracking [Pernot et al.

2004]. In HIFU treatments, ultrasound can also directly visualize acoustic obstacles

and sonosensitive microbubbles [Dindyal and Kyriakides 2011], and characterize the

HIFU thrombolysis [Wright et al. 2012]. Yet currently ultrasound cannot provide

robust thermometry information. MRI offers multiplanar views, good soft tissue

contrast, and techniques for real-time thermometry during treatment [Ishihara et

al. 1995, Holbrook et al. 2010]. Therefore it is widely used for guidance in HIFU

treatments [Hynynen 2010]. However, its lower temporal resolution is a limit for

fast motion compensation.

5.1.1 MR-compatible ultrasound imaging

In the proposed hybrid system developed at the Radiology Department of the Uni-

versity Hospital of Geneva [Petrusca et al. 2011, Petrusca et al. 2013], ultrasound

and MR images are acquired simultaneously. MR-compatible ultrasound imaging

was achieved using an Acuson clinical ultrasound scanner (Antares; Siemens Medi-

cal Solutions, Mountain View, CA) and a CH4-1 transducer (256 phase array trans-

ducer, 1.8-4.0 MHz frequency bandwidth, multifocal option), which was modified

by the manufacturer to avoid magnetic materials. The ultrasound scanner was inte-

grated with 1.5 T Espree and 3 T Trio clinical MR scanners (Magnetom; Siemens,

Erlangen, Germany).

In order to obtain MR-compatible ultrasound imaging, additional electromagnetic

(EM) shielding was required. A customized holder for the ultrasound probe was

produced using the stereo-lithography (electrical insulator resin). The probe head

was placed centrally inside the holder, allowing an internal gap of 3-4 cm from

the holder edge. To prevent noise at the RF detection range of the MR scanner,

the holder and the transmission line (a 7 m-long cable) were entirely shielded using

cooper and aluminum coating. The transmission line was further coated by a flexible

plastic tube (electrical insulator). The frontal edge of 2 mm thickness of the holder

was left non-metalized, in order to avoid electrical contact with the skin.

The ultrasound probe was accommodated in a thin plastic bag, shaped to match

the cavity of the holder and filled with standard ultrasonic gel, free of air bubbles

(Aquasonic, Parker Laboratories, Fairfield, NJ), see Figure 5.1a. This configuration

ensures careful acoustic coupling with the volunteer skin and respiratory motion

decoupling. In addition, it reduces the risk of residual susceptibility artifact from

the probe and avoids electrical contact with the patient skin.
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The shielded transducer was attached to an orbital ring using an articulated handler,

see Figure 5.1b, to obtain a fixed position of the ultrasound probe in the MR envi-

ronment. Both the orbital ring and the handler were MR-compatible. The orbital

ring was positioned on the MR bed approximately at the isocenter of the scanner.

To facilitate the adjustment of the ultrasound probe position, the proposed setup

allowed for 5 degrees of freedom: head/feet translation of the ring on the MR bed,

circular revolution of the handler on the perimeter of the ring, 2 rotations in the

handler, and translation of the ultrasound holder parallel to the base of the handler,

to control the distance between the ultrasound transducer and the patient skin.

During image acquisition, the ultrasound imaging probe operated inside the magnet

bore, while the ultrasound scanner operated outside the magnet room. Therefore,

the transmission line was passed through the Faraday cage via waveguide and the

EM shielding structures were grounded to the cage.

(a) The ultrasound transducer is accommo-

dated in a plastic bag filled with ultrasonic

gel and in a EM-shielded holder.

(b) The ultrasound holder is attached to the MR-compatible

orbital ring using an articulated handler.

Figure 5.1: MR-compatible ultrasound system. Adapted from [Petrusca et al. 2013].
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Mutual influence of the two modalities

In vitro tests on a static gel phantom were performed to assess the mutual influence

of the two modalities. MR images were acquired according to clinical T1 VIBE (T1-

weighted fat-saturated volume interpolated gradient echo) and 4D imaging protocols
[von Siebenthal et al. 2007a]. Simultaneously, the ultrasound scanner was turned on

and off. The SNR of the MR images with and without ultrasound, was computed.

Main results are summarized in Section 5.3, while more details and further tests can

be found in [Petrusca et al. 2013].

The influence of the MR system on the ultrasound images was evaluated on a gel

phantom with echogenic inclusions. Ultrasound images were recorded while pausing

the MR scanner, performing automatic shimming within a volume of interest, or

running a 4D sequence. Two successive ultrasound images acquired for a given

status of the MR system were subtracted. The root mean square (RMS) of the

difference image was then computed within an angular sector, set at a radial distance

of approximately 8 cm from the transducer and including more than 4000 pixels.

5.1.2 Simultaneous motion monitoring of the liver

Simultaneous MR and ultrasound temporal sequences of the liver of healthy volun-

teers were acquired. The imaging setup with the volunteer positioned on the MR

bed is illustrated in Figure 5.2a. We acquire data of 6 subjects, consisting of 2

female and 4 male subjects between 28 and 45 years of age, under free breathing.

Pre-treatment scan

Firstly, we acquired for each subject a 2D ultrasound image and a 3D MRI during

breath-hold. These images were co-registered to allow initial spatial correspondence

between the two image modalities, see Section 5.1.3. During image acquisition,

all volunteers are instructed to suspend respiration at end exhalation. 2D second

harmonic ultrasound images are characterized by 14-17 Hz temporal and 0.28-0.4

mm spatial resolution, depth range of 18-21 cm, single focus mode, center frequency

of 2.2 MHz, 20 dB output gain and 45-60 dB dynamic window. All the ultrasound

images in this Chapter have the aforementioned characteristics. MR images were

acquired on a 1.5 T scanner. A standard six-element phased-array body coil was

used for signal acquisition, see Figure 5.2. A high resolution abdominal image was

obtained from T1 VIBE scan (TE/TR equal to 1.96/4.36 ms, flip angle of 10o, spatial

resolution 1.25 mm x 1.25 mm x 2 mm).
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(a) Volunteer positioning on the MR bed with

the ultrasound imaging setup.

(b) Ultrasound subcostal longi-

tudinal scan.

Figure 5.2: Example of imaging setup.

Simultaneous time sequences

Ultrasound and MR images were simultaneous acquired to obtain the ground-truth

motion for validation. Data from both modalities was recorded in 3 to 5 blocks for

a duration of approximately 5 min 30 s each, with a break of 1 min between blocks.

2D second harmonic ultrasound sequences were acquired to observe the liver motion

of each subject. The images were exported on-the-fly from the ultrasound recon-

structor to an external PC for processing using a Video Graphics Array-Universal

Serial Bus grabber (native resolution, 1280x1024 exported 1:1 uncompressed, 30

Hz). Subcostal/intercostal oblique/longitudinal scans were chosen as a compromise

between maximizing the size of the acoustic window (narrowed by the presence of

ribs) and minimizing the of the out-of-plane motion, see Figure 5.2b.

MR images were generated with a balanced steady-state free precession (bSSFP)

sequence. This sequence allows for high vessel-tissue contrast, necessary for the

detection of the organ position. The main acquisition parameters are as follows:

TE/TR 1.38/3 ms, flip angle 78o, in-plane resolution 1.82 mm isotropic, slice thick-

ness 6 mm, slice gap -2 mm, 30 slice positions, image matrix 192x192, parallel

imaging acceleration factor 2.

The acquisition sequence of the MR images consisted of alternating between 2D

sagittal navigator slices (at a fixed spatial position) and 2D sagittal data slices (at
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different locations to cover the right liver lobe equidistantly) with a frequency of

2.6 Hz. 4D MR images can be created by sorting the data slices based on the

similarity of the enclosing navigator slices [von Siebenthal et al. 2007a]. In details,

non-rigid 2D registration of the liver in all navigator images [Rueckert et al. 1999] is

performed, resulting in a 2D displacement field for each navigator. Since every data

slice is enclosed by a preceding and a subsequent navigator, data slices belonging

to the similar positions of the liver can be retrieved by comparing the deformation

fields of their enclosing navigators. 2D frames are then retrospectively stacked to

create time-resolved 3D images [von Siebenthal et al. 2007a, Preiswerk et al. 2013].

The multimodal acquisitions started at approximately the same time point (0.1 s

offset), triggered by optical pulses generated by the MR scanner, which unfroze the

ultrasound acquisition.

5.1.3 Images co-registration

The advantage of a simultaneous hybrid image acquisition is that the images can

be inherently spatially and temporally registered [Curiel et al. 2007]. Establishing

spatial correspondence in such a imaging setup is easier as the motion of the volun-

teer does not need to be compensated for. Hence only the spatial correspondence

between the two image coordinate systems need to be determined. Multimodal

registration of ultrasound and MR images from separate acquisitions at different

times was reported by [Porter et al. 2001, Penney et al. 2004, Huang et al. 2005,

Curiel et al. 2007, Milko et al. 2009, Chandrana et al. 2011, Mercier et al. 2012].

The spatial correspondence between the 2D ultrasound imaging plane and the 3D

MRI reference frame is retrospectively established in the pre-treatment phase from

the breath-hold images, see Figure 5.3. The shielded ultrasound probe is not directly

visualized in MR images. Yet, the resin-made wall of the transducer holder and

the external part of the coupling gel-bag are visible in the 3D MRI. I manually

localized the ultrasound holder in the 3D MR volume, see Figure 5.3a. The position

of the ultrasound plane with respect to the holder is known by design and hence

can easily be related to the MRI, resulting in a 3D rotation R3D ∈ R3x3. A final

in-plane rigid transformation aligns manually annotated anatomical landmarks in

the two modalities. The rigid transformation is composed of rotation R2D ∈ R2x2

and translation T2D ∈ R2x1. Finally, 2D points P in the ultrasound image are

transformed to 3D physical positions in the 3D MRI coordinate system by:

P3D = R3DT↑3D (R2D ·P + T2D) = M ·P, (5.1)

where T↑3D ∈ R3x2 maps 2D into 3D coordinates.
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(a) Registration of the ultrasound holder model in the

reference frame of the 3D MRI.

(b) 2D MRI. (c) Ultrasound image. (d) Fused image.

Figure 5.3: Example of co-registration of the pre-treatment breath-hold images.

(b) Interpolated 2D MRI in the corresponding ultrasound imaging plane (c). (d)

Overlay of the registered 2D MRI and the gradient magnitude ultrasound image.

The gradient of the ultrasound image was only computed for visual purposes.

5.2 Model-guided respiratory motion prediction

In our proposed work, a population-based statistical motion model, aligned to a

pre-operative 3D scan of the subject, is used together with a Bayesian reconstruc-

tion algorithm to compute a spatio-temporal prediction of the organ position based

on partial information obtained from tracking ultrasound images [Preiswerk et al.

2013].
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5.2.1 Statistical model of the respiratory motion of the liver

To model and predict the respiratory liver motion in our experiments, the population-

based statistical motion model from [Preiswerk et al. 2012] was used. This model

consists of liver motion data from 4D MRIs of 20 healthy individuals and does not

include the 6 datasets acquired for this study.

To build a population-based motion model, mechanical correspondence is established

along the involved datasets. This correspondence is achieved by a semi-automatic

framework and results in a master shape for each subject, consisting of 900 corre-

sponding surface points. Correspondence within the organ is established computing

the mean shape of all the master shapes and embed it in an isotropic grid of 10 mm

spatial resolution. The grid is then warped to all master shapes.

The motion model is computed using PCA of the motion fields extracted from the

registration results at the corresponding grid locations. For subject s at time t, we

consider the relative offset of the liver ls(t) to the master exhalation state ľs:

xs(t) = ls(t)− ľs. (5.2)

We compute the mean motion vector over the n considered respiratory states for all

subjects x̄ = 1/n
∑n

i=1 xi and the covariance matrix

Σ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . (5.3)

Singular value decomposition (SVD) of Σ yields to

Σ = UΛUT , (5.4)

where U is the matrix of the eigenvectors and Λ = diag(λ1, . . . , λn−1) is the matrix

of the corresponding eigenvalues.

The projection of the liver data into the model space is

cs(t) = diag(σ−1
i )UT (xs(t)− x̄), (5.5)

with σi =
√
λi, sorted in descending order.

5.2.2 Ultrasound tracking

During the application phase, accurate tracking of points of interest in ultrasound

sequences was achieved using learning-based affine registration, described in Chapter

4. The tracked points Pp(t) are distributed on the diaphragm, liver surface and vessel

centers, see Figure 5.4.



5.2. Model-guided respiratory motion prediction 73

Figure 5.4: First frame I(t0) of the 6 ultrasound sequences with overlaid tracking

results (red) for five breathing cycles, Pp(t) ∀t ∈ [t0, . . . , T5C ]. Tracked points include

vessel centers within the liver and points along the liver surface (mostly on the

diaphragm). Adapted from [Preiswerk et al. 2013].

A typical exhalation position P̌p of each tracked fiducial p in the ultrasound sequence

is chosen and assigned to its nearest grid point k in the liver. As the organ motion

is observed in 2D images, the tracked points are mapped to the 3D MRI coordinate

frame (see Eq. 5.1):

Pp,3D(t) = MPp(t). (5.6)

Given the displacement vector ∆Pp,3D(t) = Pp,3D(t) − P̌p,3D(t) and the mean mo-

tion x̄k of grid point k, the point displacement is projected onto the mean motion

direction assigned to k in order to correct for out-of-plane motion:

∆P̂p,3D(t) = cos(α)
‖∆Pp,3D(t)‖ x̄k

‖x̄k‖
, (5.7)

with α being the angle between ∆Pp,3D(t) and x̄k. The ultrasound motion vectors

∆P̂p,3D(t) are used as sparse observations for the prediction of the complete motion

of the liver.
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5.2.3 Spatial and temporal prediction

Spatial prediction

At each time step t, we estimate the motion vector xs(t) from the sparse observations

r := ∆P̂s,3D(t). This is achieved following the Bayesian approach of [Blanz and

Vetter 2002], where the most probable model reconstruction from partial data is

computed through a maximum a posteriori estimation of the model coefficients c̃.

More details are available in [Preiswerk et al. 2013, Blanz and Vetter 2002]. In

short, this amounts to minimizing the cost function

E = ‖Qc̃− r‖+ η ‖c̃‖ , (5.8)

where Q = LUdiag(σi), r = Lx, L is a linear transformation relating the motion

vector to the partial observation r, and η is a weight factor. After SVD Q = UWVT ,

with W = diag(wi) and VTV = VVT = I, and the solution to the Bayes problem

is given by [Blanz and Vetter 2002]:

c̃s(t) = V · diag

(
wi

w2
i + η

)
·UT ·∆P̂s,3D(t). (5.9)

Finally, the deviation of the liver shape ls(t) from its exhalation position ľs is com-

puted as follows:

ls(t) = ľs + diag(σi)Uc̃s(t) + x̄. (5.10)

For efficiency, the data is reconstructed considering only the first eigenvalues that

correspond to the 95% of the cumulative sum of λi.

Temporal prediction

The treatment system has a lag time to process input signals and adjust the treat-

ment beam to the current target position. Therefore at time t we need to estimate

the target position in the future t + ∆t. Firstly, the temporal prediction of the

partial observation is computed (from ∆P̂s,3D(t) to ∆P̃s,3D(t + ∆t)). Then the

spatial prediction of the motion vector xs(t + ∆t) is computed from the estimated

∆P̃s,3D(t+ ∆t) instead of ∆P̂s,3D(t), as described in the previous section.

Various methods for temporal prediction of motion traces have been proposed [Verma

et al. 2011]. Here, an artificial neural network (ANN) [Sharp et al. 2004] is

used to generate the output ∆P̃s,3D(t + ∆t). The ANN uses an input signal of 3

states, corresponding to the past two time states and the current state [∆P̂s,3D(t−
2),∆P̂s,3D(t − 1),∆P̂s,3D(t)], and one hidden layer of 10 neurons [Preiswerk et al.

2013]. A schematic representation of the ANN is illustrated in Figure 5.5. The input
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time states Ii, i = [1 . . . 3], corresponding to ∆P̂s,3D(t−3+ i), are connected to each

node of the hidden layer

Hj =
1

1 + e−
∑3
i=1 wi,jIi

, (5.11)

with j = [1 . . . 10]. Then, the output status, corresponding to ∆P̃s,3D(t + ∆t),

is computed from the hidden layer O =
∑10

j=1 vjHj. The weights wi,j and vj of

the network are trained using the Levenberg-Marquardt backpropagation algorithm
[Hagan and Menhaj 1994] on the 2D ultrasound tracking results Pp,train from a

training phase of 1 min, prior to the simultaneous MR/ultrasound sequence.

Figure 5.5: Schematic overview of the artificial neural network with trained weights

w and v for generating the temporal prediction. Adapted from [Preiswerk et al.

2013].

Evaluation

Quantitative evaluation of the prediction was done with respect to 3D motion vectors

from the ground truth xs(t). In details, at each time t of the reconstructed sequence,

The distance between the predicted displacement and the ground truth is computed

at each model point k. The prediction error is therefore defined as the mean distance

for all subject over the complete sequences. We also report the range of the mean

distance resulted from each subject.

5.3 Results

No significant mutual interferences were detected during the simultaneous acquisi-

tion of ultrasound and MRI, with MR sequences that are commonly used in clinical

routine, see Section 5.1.1. The SNR of the MR images dropped from 64.08 (ultra-

sound system turned off) to 58.60 (on) for the T1 VIBE, and from 44.08 (ultrasound

off) to 44.85 (on) for the 4D sequence, corresponding to a SNR loss of 8.55% and

1.75%, respectively. The ultrasound image quality was visually invariant to the MR
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system status and to the position of the ultrasound transducer inside or outside the

magnet bore. The electronic noise RMS in the selected ROI of the second harmonic

ultrasound images increased by 1.5% during MRI shimming and by 4.8% during 4D

MRI. Further results are provided in [Petrusca et al. 2013].

Visual assessment of the multimodal registration confirmed accurate spatial match-

ing between the 2D ultrasound and the corresponding MRI plane acquired during

breath-hold. An example of the co-registration is shown in Figure 5.3.

A total of 49 points for the 6 ultrasound sequences were tracked, see Figure 5.4.

Quantitative evaluation was performed on 11 points (vessel centers) including all

the 6 sequences, see Section 3.2 and Figure 3.1 (last two rows). Ultrasound tracking

achieved an accuracy of 0.80 ± 0.37 mm (1.40 mm) on average (MTE ± STD (95th

percentile of TE)), with a MTEp range of [0.34, 1.24] mm.

For spatio-temporal prediction, ∆t was set to 200 ms. The regularization factor η

in Eq. 5.9 was experimentally determined and set to 1.0 (3.0) for spatial (spatio-

temporal) prediction. Both spatial and spatio-temporal prediction were evaluated

for the first block of simultaneously acquired images (∼ 5 min 30 sec). Results are

summarized in Table 5.1. For comparison, both the mean breathing amplitude and

the reconstruction error are listed. In the latter the spatial prediction is computed

replacing ∆P̂p,3D(t) with the actual 3D motion vectors from the ground truth xs(t).

On average, the use of 2D ultrasound surrogates for 3D spatial prediction increases

the error by 56%, i.e. by 0.9 mm. While for 5 subjects the mean prediction errors

are acceptable (<3.0 mm spatial, 3.3 mm spatio-temporal), subject number 4 shows

3.3 mm (4.9 mm) average spatial (spatio-temporal) error, and 2.3 mm mean recon-

struction error, with respect to a mean motion amplitude of 7.7 mm, see Table 5.1.

More detailed results can be found in [Preiswerk et al. 2013].

5.4 Conclusion

Dynamic acquisition of simultaneous ultrasound and MR images in the abdomen

was achieved by integrating clinical devices and was used for validating a novel

method to predict respiratory liver motion. This method computes a spatial or

a spatio-temporal prediction of the organ motion only from sparse points tracked

in the ultrasound images. A potential application is the ultrasound/MR hybrid

guidance of HIFU therapies in the liver. The proposed approach is completely non-

invasive and predicts the motion of the liver accurately within clinical requirements
[Kennedy et al. 2004, Shirato et al. 2007] over long time scales.

Further improvements could be envisioned from enhanced handling of patient mo-

tion. Even if a comfortable position is ensured, subjects often move slightly over

the course of the imaging/treatment session. Therefore, both the subject and the
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Table 5.1: Mean prediction error (in mm) for 5.5 min continuous spatial motion

prediction (forth column), spatio-temporal motion prediction (last column), w.r.t.

breathing amplitude (second column) and reconstruction error, i.e. spatial motion

prediction from 3D ground truth (third column).

Subject Motion Reconstruction Spatial Spatio-temporal

amplitude error prediction prediction

1 6.7 1.2 2.0 2.5

2 9.5 1.6 2.9 2.9

3 10.4 1.3 2.1 2.6

4 7.7 2.3 3.3 4.9

5 6.7 1.5 1.8 2.2

6 15.9 1.9 3.0 3.3

Mean 9.5 1.6 2.5 3.1

transducer can be tracked to detect deviations from their initial positions, e.g. us-

ing optical markers. Additionally, the co-registration of MR and ultrasound images

should not be limited to the pre-treatment breath-hold phase, but could be auto-

mated when the transducer is tracked.

In this Chapter, I described the system developed for acquiring simultaneous ultra-

sound and MR images for hybrid MR/USgHIFU treatment. In addition, I showed

the feasibility of using the tracking results from the ultrasound images for predicting

the motion of the region under treatment. In Chapter 6, I describe an alternative

and unconventional method for transferring information between MR and ultra-

sound images for predicting the breathing motion. This method does not require

multimodal image registration and is based on slow feature analysis to capture the

breathing patterns in each image modality.



6
Alternative liver motion prediction

In Chapter 5, I described a novel clinical scenario for HIFU treatment where ultra-

sound and MR images are acquired simultaneously prior to and during treatment.

Tracking structures on the ultrasound sequences (Chapters 3 and 4) is used for pro-

viding surrogate measures of the tumor motion, which often cannot be observed in

real-time during therapy. Tumor motion prediction is based on a statistical motion

model of the liver.

Specifically, a statistical motion model of the liver [von Siebenthal et al. 2007b,

Preiswerk et al. 2013] was used to learn the motion pattern of the whole organ.

The tumor motion is then predicted from the motion of a few landmarks in the

organ. Vessel motion information was obtained from tracking ultrasound images, as

described in Chapter 4. This approach requires that spatial correspondence between

the surrogate and the organ motion model can be established, e.g. registration of

the ultrasound and MR images.

Relating the ultrasound structures back to the pre-therapeutic MRI is not an easy

task, especially for 2D images. A main challenge is to define an effective image

similarity measure. For liver ultrasound images, approaches include gradient images
[Milko et al. 2009], matching of extracted vessels [Porter et al., Penney et al. 2004],

simulations of ultrasound images from CT images [Wein et al. 2007, King et al. 2010]

and hybrids [Lange et al. 2009]. Assuming the same breathing phase, alignments are

often optimized with respect to a rigid transformation. The reported registration

errors were on average in the range of 3.7 mm.

In this Chapter, I propose an unconventional approach for transferring information

between multimodal images. It exploits the temporal commonality of multimodal

images acquired from the same organ during free-breathing. Based on the hypoth-

esis of the presence of a global temporal pattern in the data, it is possible to relate

multimodal images of a moving organ without the need for explicit image registra-

tion. For a clinical setup without simultaneous MR and ultrasound acquisitions, I

propose to acquire a short pre-therapeutic 4D MRI, and record ultrasound images
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of the same organ during treatment (details in Section 6.1). The organ under inves-

tigation is then the same before and during therapy, while the position of the image

acquisition and modality have changed, see Figure 6.1. Instead of multimodal image

registration of two static images, I propose a novel approach, which is based on the

observation, that the appearance changes of the organ in time are mainly due to a

common cause, i.e. the breathing.

The method, described in Section 6.2, is based on extracting a low dimensional de-

scription of the image sequences, selecting the breathing signal for both modalities

and finding the most similar sub-sequences for predicting image feature location.

The approach was evaluated for 3 volunteers on sequences of 2D MRI and 2D ultra-

sound images of the liver acquired at different locations. Simultaneous acquisition

of these images allowed for quantitative evaluation of the predicted MRI feature

location with respect to ground truth data). The evaluation protocol and results

are presented in Sections 6.3 and 6.4, respectively.

Figure 6.1: Left: MR and ultrasound images of the liver are acquired at different

spatial locations (e.g. sagittal MRI, right subcostal oblique ultrasound). Center:

typical liver images from simultaneously acquired 2D MR (top) and ultrasound

(bottom) in end exhalation and end inhalation position are depicted. Right: from

the images sequences, a description of the breathing as common cause is extracted,

which is invariant of the image modality and slice location, in order to transfer image

information between the two modalities.

6.1 Material

Ultrasound and MR images of the liver were simultaneously acquired for 3 volunteers

during free-breathing at the Radiology Department of Geneva University Hospital
[Petrusca et al. 2011]. This was accomplished by modifying the ultrasound equip-

ment to be MR compatible (see Section 5.1). The sequence of 2D ultrasound images

obtained from real time ultrasound second harmonic imaging (center frequency =
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2.2 MHz) had a temporal resolution of 25 Hz and a spatial resolution of 0.6 mm. The

acquisition sequence of MR images consisted of alternating between 2D navigator

slices (at a fixed spatial position) and 2D data slices (at different locations to cover

the liver) with a frequency of 2.45 Hz for the first two volunteers and 2.86 Hz for

the third volunteer. From the aforementioned acquisition sequence, 4D MR images

can be created by sorting the data slices based on the similarity of the enclosing

navigator slices [von Siebenthal et al. 2007a], see Section 5.1.2. This allows for pro-

cessing 2D navigators and extending the results to 3D MR volumes. MR navigator

images had a spatial resolution of 2.34, 2.42 and 1.72 mm for the first, second and

third volunteer respectively.

6.2 Method

The proposed method (illustrated in Figure 6.2) consists of 3 steps, namely

Dimensionality Reduction. Given an image sequence Im from modality m ∈
{MRI,US}, Im is embedded into a low-dimensional data representation Sm

using dimensionality reduction techniques.

Selection of Common Cause Signals. The components from SMRI and SUS char-

acterized by a global repetitive pattern related to breathing are selected.

Prediction of Feature Location. The prediction of image feature locations in

one modality is achieved by evaluating the similarity between the breathing

signals and selecting the associated images.

6.2.1 Dimensionality reduction

I aim to find an invariant description of the breathing signal with respect to the

image modality and independently from an exact spatial correspondence. I assume

that the breathing signal lies in a low-dimension manifold extracted from the data.

Numerous methods are available for dimensionality reduction [Van der Maaten et al.

2009]. However, it is often unclear which method is applicable for a specific prob-

lem. I explored the following dimensionality reduction methods: Principle Compo-

nent Analysis (PCA), Slow Feature Analysis (SFA) [Wiskott and Sejnowski 2002],

Isomaps [Tenenbaum et al. 2000] and Laplacian eigenmaps [Belkin and Niyogi 2003].

Especially, SFA was proposed to capture the invariant temporal structures in the

data by extracting slowly to quickly changing components [Wiskott and Sejnowski

2002].
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For each modality m ∈ {MRI,US}, I acquire images characterized by Dm pixels at

a frequency rate of fm. I consider a time sequence of Tm images Im(τmi ), with τmi =

τm0 + i/fm for 0 ≤ i ≤ Lm − 1. Dimensionality reduction methods transform the

initial dataset Im(τmi ) ∈ RDm into a new dataset Sm(τmi ) = [sm1 (τmi ); . . . ; smd (τmi )] ∈
Rd, with d � Dm. I used the dimensionality reduction toolbox from Laurens van

der Maaten [Van der Maaten et al. 2009] for manifold learning of Isomaps and the

Laplacian eigenmaps, and Matlab for PCA and SFA.

PCA

Each image Im(τmi ) is reshaped into a single column vector xm(τmi ) ∈ RDm . I

calculate the mean with respect to time (x̄m) and the covariance matrix CX̂ =

X̂mX̂m, where the i-th column of X̂ is equal to x̂m(τmi ) = xm(τmi )− x̄. I then solve

the eigenproblem

CX̂wPCA
j = λPCAj CX̂wPCA

j , (6.1)

∀j ∈ [1, . . . , Tm]. λPCAj is the i-th largest eigenvalue and wPCA
j the corresponding

eigenvector. In each j-th eigendirection I calculate the data projection pPCAj =

(wPCA
j )T x̂m. I consider a set of d projections so that smj (τmi ) = pPCAj (τmi ) for

j ∈ [1, . . . , d].

SFA

I perform SFA on the PCA projections in order to extract signals with increasing

temporal frequency from PPCA =
[
pPCA1 ; . . . ; pPCAJ

]
∈ RJ×Tm , with J � Tm. Let

P̂PCA be the zero-mean data matrix. I solve the generalized eigenproblem

ĊP̂PCAwSFA
j = λSFAj CP̂PCAwSFA

j , (6.2)

where CP̂PCA and ĊP̂PCA are the covariance matrix of the dataset and the tem-

poral difference, respectively. The slowest components in P̂PCA are the projec-

tions onto the eigenvectors wSFA
j associated with the smallest λSFAj and smj (τmi ) =

(wSFA
j )T P̂PCA,m, ∀j ∈ [1, . . . , d].

Isomap

Isomap is a nonlinear dimensionality reduction technique that attempts to preserve

global properties of the original data in the low-dimensional representation, such as

the pairwise geodesic distances between centered datapoints x̂m(τmi ).

Every datapoint x̂m(τmi ) is connected in a neighborhood graph G to its K -nearest

neighbors (K -NN) in X̂ based on pairwise Euclidean distances
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dx̂m(i, j) =
∥∥x̂m(τmi )− x̂m(τmj )

∥∥. As in [Van der Maaten et al. 2009], I choose K =

12. The shortest paths in G are computed using Dijkstra’s shortest-path algorithm
[Dijkstra 1959], resulting in a matrix DG that contains the shortest path distances

between all Tm datapoints. The low-dimensional embedding PISO is constructed by

minimizing the following function:

φ(PISO) = ‖ϕ(DG)− ϕ(DPISO)‖2 (6.3)

where DPISO i,j = dpISO(i, j) and dpISO(i, j) =
∥∥pISO(τmi )− pISO(τmj )

∥∥ are the Eu-

clidean distances between the low-dimensional representations pISO(τmi ) and pISO(τmj )

of the paired datapoints x̂m(τmi ) and x̂m(τmj ), respectively. The operator ϕ(D) is
[Tenenbaum et al. 2000]

ϕ(D) = −HD2H/2, (6.4)

where D2 is the matrix of the squared distances, with D2
i,j = d2(i, j), and H is the

centering matrix (i.e. ensuring that the mean of ϕ(D) is zero) with components

Hi,j = δi,j − 1/Tm. More details can be found in [Tenenbaum et al. 2000]. The

low-dimensional embedding PISO, which minimizes (6.3), is determined using eigen-

decomposition of ϕ(DG), as in (6.1) for the covariance matrix CX̂. Let λISOp be the

p-th eigenvalue (sorted in descending order) and wISO
p the corresponding eigenvec-

tor. I consider a set of d projections so that smp (τmi ) = pISOp (τmi ) = (wISO
p )T x̂(τi)

m

for p ∈ [1, . . . , d].

Laplacian eigenmaps

Laplacian eigenmaps preserve local properties of the manifold. For all centered image

vectors x̂m(τmi ), j ∈ [1, . . . , Tm], the Laplacian eigenmaps algorithm constructs a

neighborhood graph G, in which each x̂m(τmi ) is connected to its K -NN in X̂ in a

weighted manner. As for Isomaps, I select K = 12. The weights between x̂m(τmi )

and its K neighbors x̂m(τmj ) are defined by

wi,j = e−‖x̂m(τmi )−x̂m(τmj )‖2
/2, (6.5)

resulting in a sparse adjacency matrix W, with Wi,j = wi,j, as weights decay ex-

ponentially and weights outside the neighborhood are zero. The low-dimensional

representation PLE is obtained by minimizing the following cost function:

φ(PLE) =
∑
i,j

(
pLE(τmi )− pLE(τmj )

)2
wi,j. (6.6)

Let M be a diagonal matrix with Mi,i =
∑

j wj,i (approximating the number of

edges attached), then the Laplacian matrix is given L = M−W. It can be proved

that φ(PLE) = 2(PLE)TLPLE, see [Belkin and Niyogi 2003, Van der Maaten et al.
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2009]. The minimization problem of φ(PLE) is then reduced to the solution of the

generalized eigenproblem (similar to (6.2))

LwLE
p = λLEp MwLE

p . (6.7)

The p-th data projection into the low-dimensional representation is given by pLEp =

(wLE
p )T x̂m. I select the first d components for smp (τmi ) = pLEp (τmi ) for p ∈ [1, . . . , d].

For all the aforementioned strategies, the individual components smi (τmi ) are then

normalized to zero mean and a standard deviation of one. The signals are further

normalized to a common sampling frequency f = min
{
fMRI , fUS

}
(in the specific

case f = fMRI). I denote the normalized low-dimensional descriptions as Ŝm(t) =

[ŝm1 (t); . . . ; ŝmd (t)], with t = τm0 +i/f and 0 ≤ i ≤ Tm−1. Figure 6.2a shows examples

of ŜUS and ŜMRI .

6.2.2 Selection of common cause signals

I aim to select corresponding individual components in ŜUS and ŜMRI . Relying on

the statistical assumption that a similar breathing pattern is observed in the two

modalities, I want to find the components which indicate the breathing as common

cause. Hence, I employ frequency analysis (i.e. Fast Fourier Transform) to the 1D

eigenmodes of both modalities. Then I choose the signals characterized by a power

spectral density maximum at a frequency in the range of 0.15-0.40 Hz (common

breathing frequency window). I denote the selected breathing signals as ŝmB (t) for

modality m ∈ {US,MRI}.

6.2.3 Prediction of feature location

After normalization and selection of the breathing signals, I look for their similarity.

I select the most similar short sequences in ŝMRI
B from a finite number of observations

in ŝUSB , in order to predict MR navigators. My observation consists of a short

sequence [ŝUSB (t − (N − 1)/f), . . . , ŝUSB (t/f)] from the selected signal ŝUSB , in order

to take into account the breathing history (e.g. exhalation, inhalation). I calculate

the K -NN in ŝMRI
B to this sequence. In detail, I find tMRI

k so that, for a given tUS,

the distance

dk =

√√√√N−1∑
n=0

[ŝUSB (tUS − n/f)− ŝMRI
B (tMRI

k − n/f)]
2
, (6.8)
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∀ 1 ≤ k ≤ K is minimized, see Figure 6.2b. I considered N = 4 and K = 3. Having

found the K -NN MR short sequences from the ultrasound sequence, I selected the

associated MR navigator images, see Figure 6.2c.

I evaluated this approach on vessel center locations on the MR navigators. Specifi-

cally, vessels with cross-sectional cuts were semi-automatically segmented from MR

navigator images1 and their center locations v(t) extracted. For each of the N

frames, I linearly interpolate the K center locations, to get the prediction of the

vessel center position (see Figure 6.2d):

v̄MRI(tUS − n/f) =
K∑
k=1

(
1− dk∑

k dk

)
vMRI(tMRI

k − n/f). (6.9)

6.3 Prediction evaluation

I used data from 3 volunteers (Vol.1 - Vol.3). For each volunteer I considered one

ultrasound sequence and two MRI sequences and differentiate between two setups.

For Seq1 the ultrasound and MR sequences were acquired simultaneously. The

MR images of this sequence define the ground truth (GT) data, to validate the

method. For Seq2 I use MR images acquired minutes later and the ultrasounds

from Seq1. This setup was used to evaluate the performance for an independent MR

set, similarly to the targeted clinical application.

I also assessed the effect of replacing ŝUSB with the main diaphragm motion (first PCA

eigenmode of a point displacement at the diaphragm). The diaphragm displacement

was obtained from affine registration of ultrasound liver image regions covering the

diaphragm. For registration details, refer to Section 3.3.

I quantified the prediction error by computing the mean of the Euclidean distance

between the ground truth vessel center location vGT and the corresponding location

on the predicted MR images v̄MRI , see Figure 6.2d:

ĒtUS =
1

N

N−1∑
n=0

∥∥vGT (tUS − n/f)− v̄MRI(tUS − n/f)
∥∥ . (6.10)

I summarized the results by the mean and standard deviation (STD) of ĒtUS ∀tUS.

6.4 Results

Table 6.1 lists the mean prediction error Ē obtained from each volunteer and tested

method. It can be observed that SFA achieved on average lowest errors closely

1Sagittal navigator images were acquired. Hence out-of-plane motion is expected to be minor

(2 mm) compared to the captured in-plane motion (15 and 8 mm) [Nguyen et al. 2008].
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followed by PCA. Average errors increased by 1 mm (0.6 mm) for diaphragm tracking

for Seq1 (Seq2 ). When assuming no respiratory motion (using the mean position

of vGT over Seq1 as prediction), I obtained an average prediction error over all 3

volunteers of 5.94± 2.11 mm (7.49± 3.55 mm) for Seq1 (Seq2 ).

For the best approach (SFA), I evaluated the linear dependence between the se-

lected breathing signals ŝUSB and ŝMRI
B , and between ŝMRI

B and vGT . I compared the

correlation with that of the common prediction approach, i.e. diaphragm tracking

to vGT , see Table 6.2. SFA provides on average higher correlations, supporting the

better performance of SFA over diaphragm tracking for Seq1 (Table 6.1).

Table 6.1: Mean ± STD of the prediction error (in mm), see Eq. (6.10) for all the

proposed approaches, namely Isomap (ISO), Laplacian eigenmaps (LE), Principal

Component Analysis (PCA) and Slow Feature Analysis (SFA). Best results are in

bold face and second best are underlined.

Proposed approach

Tracking ISO LE PCA SFA

Vol.1 3.91 ± 1.94 2.86 ± 1.66 3.73 ± 1.13 1.89 ± 0.98 1.72 ± 0.93

S
eq

1 Vol.2 3.00 ± 1.97 4.36 ± 2.52 3.08 ± 1.76 2.98 ± 1.72 2.89 ± 1.63

Vol.3 4.02 ± 2.85 4.64 ± 3.45 3.39 ± 2.45 3.57 ± 2.45 3.35 ± 2.37

Mean 3.65 ± 2.25 3.96 ± 2.54 3.40 ± 1.78 2.81 ± 1.72 2.65 ± 1.65

Vol.1 5.87 ± 3.60 5.14 ± 2.38 6.05 ± 2.59 3.58 ± 1.55 3.36 ± 1.50

S
eq

2 Vol.2 3.99 ± 1.33 3.31 ± 1.73 6.40 ± 3.41 4.84 ± 2.64 4.60 ± 2.57

Vol.3 4.55 ± 2.69 6.98 ± 5.07 10.83 ± 6.77 4.32 ± 2.64 4.67 ± 2.88

Mean 4.80 ± 2.54 5.14 ± 2.73 7.76 ± 4.26 4.25 ± 2.28 4.21 ± 2.31

Table 6.2: Correlation between extracted signals and vGT .

SFA

Tracking - vGT ŝUS - ŝMRI ŝMRI - vGT

Vol.1 30.7 % 92.3 % 87.6 %

Vol.2 84.4 % 79.6 % 94.8 %

Vol.3 85.1 % 91.7 % 87.6 %

Mean 66.7 % 87.9 % 90.0 %
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6.5 Conclusion

In this Chapter, I proposed an unconventional method for relating multimodal im-

ages sequences. It is based on representing the acquired data in a low-dimensional

embedding, extracting common cause signals (e.g. breathing) from both image

sequences, finding the most similar sub-sequences of these signals, and using the

associated images in order to predict the location of image features. The method

generates the prediction in a completely unsupervised manner.

Using this approach, I predicted the location of anatomical landmarks by relying

on a temporal pre-therapeutical MRI sequence based on the observation of ultra-

sound images acquired during therapy with an average accuracy of 4.2 mm. The

achieved performance is comparable to state-of-the-art methods (3.7 mm for mul-

timodal registration [Penney et al. 2004, Wein et al. 2007, Lange et al. 2009], 1.4

mm for ultrasound tracking of the liver [Foroughi et al. 2006a, Harris et al. 2010])

while being less complex. Lowest mean errors were achieved when employing slow

feature analysis. This demonstrates the advantage of explicitly using the temporal

information stored in the data and supports previous investigations [Wiskott and

Sejnowski 2002].

After these encouraging results, the method could be tested for predicting the dis-

placement of landmarks in ultrasound images acquired during treatment from pre-

therapeutic data, as in the application scenario described in Chapter 5. Potential

improvements could be investigated when combining the presented approach with

statistical breathing models [von Siebenthal et al. 2007b, Preiswerk et al. 2013].

Additionally, the method could be applied to 3D landmark prediction by using 4D

MR techniques [von Siebenthal et al. 2007a].
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Figure 6.2: (a) Low-dimensional representation of the images and selection of the

breathing signals (ŝUSB , ŝMRI
B ). (b) From the observation of a short sequence of ŝUSB ,

I find the most similar sequences in ŝMRI
B . (c) I select the associated MR images and

extract image information (vessel center locations). (d) For evaluation, I interpolate

the vessel center locations (v̄MRI) and calculate the prediction error ĒtUS w.r.t.

ground truth (vGT ).



7
Conclusion

In this thesis I proposed a novel framework for tracking ultrasound sequences of the

liver under free breathing. The approximate periodicity of the breathing motion is

exploited for learning the image appearance and corresponding motion behavior to

allow fast and accurate computation of the displacement of points of interest. All

the presented approaches were tested on long sequences (5 to 10 min) and validated

with respect to multiple observers’ manual annotation on a subset of images. An

accuracy of below 1 mm was achieved. Applicability of the tracking method for a

novel hybrid MR/USgHIFU treatment scenario was also tested. There model-based

spatio-temporal prediction of the liver motion was driven by the ultrasound tracking

results as surrogates. The specific contributions of each Chapter are described next.

Thoughts on future research avenues conclude this Chapter.

7.1 Contributions

In Chapter 2, Related works, I provided an extensive literature review of the track-

ing methods developed for ultrasound time sequences. I have discussed the main

strategies and listed the most important contributions to the topic. While only few

methods have been already successfully applied in clinical practice, most still need

improvements in accuracy, robustness and speed as well as proper validation. The

most promising methods (intensity-based) for tracking long ultrasound sequences

were selected for further investigations.

In Chapter 3, Intensity-based tracking for long sequences, I compared two intensity-

based frameworks (affine registration and a scale-adaptive block-matching algo-

rithm) for vessel tracking in long ultrasound sequences (5-10 min each) of the liver

of 9 volunteers under free breathing. To my knowledge, this is the first evaluation

for tracking such long ultrasound sequences. Using affine registration, I achieved a

mean accuracy of 0.90 mm. Such performance improves the state-of-the-art in 2D

ultrasound tracking of the human liver. However, it requires manual reinitializa-

tion when frame drop outs occur and has high computational costs. The proposed
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block-matching algorithm is computationally faster and potentially real-time. Yet

its accuracy is lower (2.18 mm), due to a suboptimal strategy for temporal realign-

ment of the tracking.

In Chapter 4, Learning-based real-time tracking, I proposed a novel, simple and

robust learning-base framework for tracking ultrasound sequences. The method

learns the relationship between image appearance and feature displacements, in

order to speed-up image registration or to allow frequent reinitialization of the scale-

adaptive block-matching algorithm. The method exploits the redundancy of the

images in a repetitive motion scenario while still adapting to irregularities. The

method was evaluated on the long ultrasound sequences of the liver described in

Chapter 3. A mean tracking accuracy of 0.84 mm and 0.97 mm was achieved for

the learning-based affine registration and block-matching algorithm, respectively.

The latter copes better with larger image variations and ensures an overall faster

performance, as fewer registrations due to outliers are required.

In Chapter 5, Simultaneous MR- and ultrasound-guided radiation therapy, I show

the feasibility of using the ultrasound tracking results as input for a model-based

spatio-temporal prediction of the target motion during a novel hybrid MR/USgHIFU

treatment system. Results show a clinically acceptable accuracy for the spatial

prediction (2.5 mm), when compared to the clinical margins of error, which are

generally included during treatment planning. Yet, a real-time implementation for

the prediction is missing.

In Chapter 6, Alternative liver motion prediction, I explored the possibility of trans-

ferring motion information between image modalities, without using image registra-

tion, in order to predict the displacements of points of interest in one modality from

the observation of the other. The method represents the acquired images in a low-

dimensional embedding via slow feature analysis, extracts the breathing signal from

both image sequences, finds the most similar sub-sequences of these signals, and

uses the associated images to predict the location of image features in a completely

unsupervised manner. The location of anatomical landmarks is predicted from a

pre-therapeutical MRI sequence and from the observation of ultrasound images ac-

quired during therapy. An average accuracy of 4.21 mm is obtained, comparable to

state-of-the-art methods for multimodal registration and ultrasound tracking of the

liver, while being less complex.

7.2 Future work

Real-time

The accuracy and robustness of learning-based tracking method over long ultra-

sound sequences is already sufficient for the clinical application. Yet real-time per-
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formance during the whole application phase is missing. This problem could be

solved by optimizing the current implementation for run-time. Preliminary tests

on the block-matching algorithm support this expectation. Additionally, methods

that better adapt to and compensate for image variations should be preferred, as

fewer image registration are required, which are computational expensive and hence

require interruption of the treatment.

Learning

In the training phase of the proposed leaning-based tracking, the displacements of

points of interest are computed by affine registration. In the current strategy, the

registration of each image to the initial frame is initialized by the results from the

previous frame. Unfortunately, frame drop outs might occur in an unpredictable

way and manual initialization of the registration is necessary. Online learning of the

image appearance during the training phase could be used to find the most similar

images, and therefore to automatically select the best transformations for initializing

the registration algorithm.

The image appearance is learned using PCA. Other unsupervised learning tech-

niques, such as non-linear dimensionality reduction methods, could be tested. Bayesian

frameworks have been successfully used in feature tracking, but were not considered

in this thesis, mainly due to their higher complexity.

The presented work is generally beneficial for tracking approximately repetitive mo-

tions. While in this thesis I focused on respiratory motion in the liver, another

potential application could be tracking cardiac sequences. The proposed learning-

based tracking could be applied to other image modalities. Experiments were al-

ready successfully carried out for tracking 2D MR sequences of the liver [De Luca

et al. 2012]. Finally this method could be especially beneficial for 3D tracking,

considerably reducing its computational cost.

Hybrid tracking strategy

In Chapter 4, I proposed two learning-based tracking strategies. While the learning-

based affine registration achieves the best accuracy, the learning-based scale-adaptive

block matching algorithm can better compensate for outliers. In future work these

two strategies could be fused. In detail, the inlier treatment of the learning-based

affine registration (interpolation of associated displacements) could be combined

with the outlier strategy of the learning-based block matching (block-matching with

previous frame if similar enough). This strategy could allow for prediction of the

displacements of points of interest without interruptions.
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Diaphragm tracking

In this thesis I mainly focused on the tracking of vessels, apart from including di-

aphragm tracking using learning-based affine registration for liver motion prediction

(see Chapter 5). However, a dominant image structure, generally at least partially

visible on liver ultrasound images and correlated with respiratory motion is the di-

aphragm. Yet local intensity-based tracking methods might fail due to the aperture

problem. Therefore larger regions for matching are necessary to achieve globally

consistent alignments. At the same time the computational cost increases.

A possible approach, building upon to the learning-based block-matching algorithm

presented in Chapter 4, could include a more sophisticated training phase, where

the relationship between the displacement of multiple features in the images, e.g.

vessels and points on the diaphragm, is additionally learned. This information could

be used during the application phase to allow for directional search of the best match

of points on the diaphragm, where a bigger area is necessary to avoid the aperture

problem. In detail, the displacement vectors of diaphragm points could be searched

in two directions, one perpendicular to the diaphragm line and the other given by the

main motion direction. The latter could be obtained by computing the displacement

vectors of the other features in the same image and of all features in the most similar

images in the training set, and by interpolating along these vectors.

Feature-based tracking methods, such as contour tracking, are generally faster. Yet

robust detection and extraction of the contour-based features is difficult. Contours

can provide reliable information for the shape of the diaphragm, but lack regional

information from the image and may lose stability when the boundary information

is not strong enough, e.g. in the presence of noise, shadows and acoustic occlusions.

Therefore I would recommend to follow an hybrid approach that fuses boundary-

and region intensity-based information.

MR/USgHIFU

Multimodal registration involving ultrasound and MR images has not been studied

in this thesis. During hybrid ultrasound and MR guidance, the exact spatial rela-

tionship of the two image modalities with respect to the 3D MRI coordinate system

should be established automatically. Additional sensors for tracking devices in the

MR scanner (e.g. Hall sensors) would facilitate this automatic registration and help

detect changes in the ultrasound probe position. Moreover, patients might move

during treatment. Hence co-registration should not be limited to the pre-treatment

phase.
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