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A Bayesian Multilevel Framework for Uncertainty

Characterization and the NASA Langley

Multidisciplinary UQ Challenge

Joseph B. Nagel∗ and Bruno Sudret†

ETH Zürich, Institute of Structural Engineering

Chair of Risk, Safety & Uncertainty Quantification

Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland

The NASA Langley multidisciplinary uncertainty quantification challenge has raised

contemporary open questions to uncertainty quantification. While originating from a spe-

cific aerospace application, an abstract and widely discipline-independent problem formula-

tion prompts researchers and practitioners from various fields in academia and industry to

devise generic problem solutions. In this contribution we will address the uncertainty char-

acterization subproblem of the challenge posed. With responses of a given computational

model the challenge is to learn about unknown model inputs that are subject to epistemic

and aleatory uncertainty. We will approach the problem from a Bayesian perspective to

statistical inversion and uncertainty quantification. Within a probabilistic setting Bayesian

multilevel modeling allows for an elegant formulation and an efficient solution of complex

inverse problems under uncertainty. The mathematical formalism that is necessary to

interpret the challenge problem as calibration of a Bayesian multilevel model will be devel-

oped. Incidentally we will demonstrate how the problem could be solved in the presence of

additional measurement uncertainty and how the entirety of problem unknowns, including

those that are not of declared interest, could be identified. Computational key challenges

posed by Bayesian inference in this context will be discussed and dedicated algorithms to

overcome those will be implemented. Besides the assumptions that our approach rests

upon, we will thoroughly discuss the interpretation and fidelity of the final results.

I. Bayesian Multilevel Modeling

Due to the lack of a universally accepted terminology, we define a multilevel or hierarchical model as “an
assembly of submodels at different levels of a hierarchy”. The hierarchical structure can be due to stochastic
dependencies and deterministic maps between quantities involved. According to that definition multilevel
modeling is sort of an overarching theme in modern multidisciplinary statistics. In the last two decades it has
been extensively studied from a frequentist1, 2 and a Bayesian3, 4 point of view. Bayesian multilevel modeling
establishes a natural framework for solving complex inverse problems in the presence of aleatory variabil-
ity and epistemic uncertainty. Prior elicitation5, 6 and posterior computation7, 8 have been discussed in the
statistical literature. Data augmentation, which naturally emerges in the context of multilevel modeling, en-
hances Bayesian computations by introducing unobserved quantities as auxiliary variables.9, 10 Applications
of multilevel modeling encompass probabilistic inversion11 and optimal combination of information.12, 13

Based on the established theory of Bayesian multilevel modeling we will initially formulate a framework
for the solution of the NASA Langley UQ challenge14 and for the inverse problem posed in the presence
of additional measurement uncertainty.15 While the latter is comparably straightforward within the exist-
ing frame of Bayesian multilevel modeling, we will have to establish the slightly more measure-theoretical
foundation of the former. Eventually Bayesian calibration of the derived Bayesian multilevel model will be
accomplished by appropriately transforming, conditioning and marginalizing probability distributions.

∗PhD Candidate, D-BAUG, nagel@ibk.baug.ethz.ch
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I.A. Uncertainty & Variability

A forward model M : (m,x, ζ,d) 7→ ỹ represents the system or phenomenon under consideration. It formally
maps model inputs (m,x, ζ,d) ∈ Dm × Dx × Dζ × Dd to outputs ỹ = M(m,x, ζ,d) ∈ Dỹ ⊂ R

d. When
carrying out a number of experiments the variability of measured forward model responses can be attributed
to models of input uncertainty. There are fixed yet unknown model parameters m ∈ Dm ⊂ R

p, model
inputs x ∈ Dx ⊂ R

q with imperfectly known aleatory variability, input variables ζ ∈ Dζ ⊂ R
r with perfectly

known aleatory variability, and explanatory variables or covariates d ∈ Dd ⊂ R
s that are entirely known.

With respect to a number of i = 1, . . . , n experiments, forward model inputs are represented as deter-
ministic or stochastic objects within the Bayesian multilevel frame. Throughout the experiments data is
acquired under known but possibly different experimental conditions di. These model inputs di are there-
fore deterministically represented. Fixed albeit unknown model parameters m are assumed to be constant
over the experiments. In Bayesian fashion they are represented as random variables M ∼ πM (m), where
the Bayesian prior distribution πM (m) accounts for a subjective degree of belief or prior knowledge about
their true values. This is the Bayesian conception of reducible epistemic uncertainty. Over the number of
experiments varying model inputs ζ take on unknown experiment-specific realizations ζi of conditionally
independent random variables (Zi |θZ) ∼ fZ |ΘZ

(ζi |θZ). The conditional distribution fZ |ΘZ
(ζi |θZ) with

known hyperparameters θZ states a subjective degree of belief or prior knowledge about the individual
realizations ζi. This is the Bayesian notion of irreducible aleatory variability. Similarly model inputs x

are subject to variability and take on unknown experiment-specific realizations xi of conditionally inde-
pendent random variables (Xi |θX) ∼ fX |ΘX

(xi |θX). The hyperparameters θX determine this variability
throughout the experiments and are fixed but unknown. In turn they are modeled as random variables
ΘX ∼ πΘX

(θX), where the distribution πΘX
(θX) quantifies an a priori degree of plausibility or evidence.

Random variables (X1, . . . ,Xn) ∼
∫ (∏n

i=1 fX|ΘX
(xi|θX)

)

πΘX
(θX) dθX represent the prior knowledge

about the experiment-specific realizations xi. This concept is commonly referred to as exchangeability.16, 17

In short, marginal distributions πΘX
(θX) and πM (m) represent parametric prior knowledge about the

true values of the model parameters m and the hyperparameters θX , whereas conditional distributions
fX |ΘX

(xi |θX) and fZ |ΘZ
(ζi |θZ) encapsulate structural prior knowledge about the problem, i.e. information

about experiment-specific xi and ζi. Probabilities are generally understood as describing subjective degrees
of belief of how the data have come into being.

I.B. Statistical Data Model

As opposed to deterministic solutions, an integral constituent of many statistical approaches to inverse prob-
lems is a residual model. Real observations yi often deviate from model predictions ỹi = M(m,xi, ζi,di)
even if forward model inputs were known with certainty. This discrepancy, which is due to measurement
errors, numerical approximations and model inadequacies, is often accounted for by a statistical data model
yi = ỹi + εi. Residual terms εi are assumed to be realizations of random variables Ei ∼ fEi

(εi), e.g.
with normal distributions fEi

(εi) = N (0,Σi) and experiment-specific, symmetric and positive-semidefinite
covariance matrices Σi. It represents a degree of imperfection of the forward model and experimental appa-
ratus. Hence observations are viewed as realizations yi of random variables (Yi |m,xi, ζi) with distributions
f(yi |m,xi, ζi) = fEi

(yi −M(m,xi, ζi,di)). The overall model formulated thus far can be summarized as

(Yi |m,xi, ζi) ∼ fEi

(

yi −M(m,xi, ζi,di)
)

, (1a)

M ∼ πM (m), (1b)

(Xi |θX) ∼ fX |ΘX
(xi |θX), (1c)

ΘX ∼ πΘX
(θX), (1d)

(Zi |θZ) ∼ fZ |ΘZ
(ζi |θZ). (1e)

This model is composed of conditional probabilistic and deterministic relations between the quantities in-
volved. As per our previous definition it is a generic Bayesian multilevel model. An intuitive model repre-
sentation is provided by a directed acyclic graph (DAG) such as shown in Fig. 1. Unless stated or denoted
otherwise random variables in Eq. (1) are assumed to be (conditionally) independent. This defines a joint
overall probability density of all probabilistic quantities. By conditioning and marginalizing this overall
density at one’s convenience, one can derive meaningful probability densities. For inferential purposes these
are certain prior and posterior distributions that we will explain in the following.
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Figure 1. DAG of the generic multilevel model. Vertices symbolize unknown ( ) or known ( ) quantities and directed edges
represent their deterministic ( ) or probabilistic ( ) relations. Model parameters m are constant over i = 1, . . . , n experiments. The
variability of experiment-specific realizations xi and ζi is determined by unknown or known hyperparameters θX and θZ , respectively.
Data can be interpreted as “perfect” ỹi = M(m,xi, ζi,di) or “imperfect” observations yi = ỹi + εi with fEi

(εi) = N (0,Σi).

I.C. Inference in Multilevel Models

In what follows 〈qi〉 denotes an ordered n-tuple 〈qi〉1≤i≤n = (q1, q2, . . . , qn). Conditioned on the priorly
known hyperparameters θZ , the joint prior distribution of the unknowns (m, 〈xi〉, 〈ζi〉, θX) is given as

π
(

m, 〈xi〉, 〈ζi〉, θX |θZ

)

=

(

n
∏

i=1

fX |ΘX
(xi |θX)

)(

n
∏

i=1

fZ |ΘZ
(ζi |θZ)

)

πΘX
(θX)πM (m). (2)

It summarizes the available parametric and structural prior knowledge. The joint posterior distribution of
the unknowns (m, 〈xi〉, 〈ζi〉, θX) is obtained by further conditioning the prior Eq. (2) on the data 〈yi〉. By
virtue of Bayes’ law this posterior is up to a scale factor found as

π
(

m, 〈xi〉, 〈ζi〉, θX |〈yi〉, θZ

)

∝

(

n
∏

i=1

fEi

(

yi −M(m,xi, ζi,di)
)

)

π
(

m, 〈xi〉, 〈ζi〉, θX |θZ

)

. (3)

The posterior degree of plausibility about the quantities of interest (QoI) can be extracted by marginalizing
the posterior Eq. (3) over parameters considered nuisance. Provided (m, θX) are QoI and (〈xi〉, 〈ζi〉) are
nuisance parameters, the correspondingly marginalized posterior is

π
(

m, θX |〈yi〉, θZ

)

=

∫

Dn
x

∫

Dn
ζ

π
(

m, 〈xi〉, 〈ζi〉, θX |〈yi〉, θZ

)

d〈xi〉d〈ζi〉, (4)

where d〈xi〉 = dx1 . . . dxn and d〈ζi〉 = dζ1 . . . dζn. Summarized the genuinely unique approach to Bayesian
inference in multilevel models is to construct the posterior of the QoI (m, θX) by conditioning on the
knowns (〈yi〉, θZ) and subsequently marginalizing out nuisance (〈xi〉, 〈ζi〉). Equivalently one could solve
an inherently marginal formulation of the Bayesian multilevel calibration problem, with a marginal prior
π(m, θX) = πM (m)πΘX

(θX) and a marginalized or integrated likelihood L(〈yi〉|m, θX , θZ).
18, 19

I.D. “Perfect” Data Model

The Bayesian multilevel model Eq. (1) was based on probabilistic relations of quantities on one problem level
conditioned on quantities located at the next “higher” level. Subject to measurement uncertainty, data were
interpreted as realizations yi of random variables (Yi |m,xi, ζi) conditioned on direct forward model inputs.
We will introduce the term “imperfect” for this statistical data model in order to distinguish it from the
following. Not being premised on a residual model, an alternative probability model for the data is to view
them as realizations ỹi of random variables (Ỹi |m, θX, θZ) conditioned on the “highest-level” quantities.
The proper Bayesian multilevel model involving “perfect” data can be written as

(Ỹi |m, θX , θZ) ∼ f(ỹi |m, θX , θZ), (5a)

(M ,ΘX) ∼ π(m, θX) = πM (m)πΘX
(θX). (5b)
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Prior knowledge about the unknowns (m, θX) is embodied in Eq. (5b). As a function of the unknowns,
provided the density Eq. (5a) exists and is available, one can formulate a residual-free likelihood function

L
(

〈ỹi〉|m, θX, θZ

)

=

n
∏

i=1

f(ỹi |m, θX, θZ). (6)

For reasons that will be discussed below, we call Eq. (6) the transformed likelihood. As usual Bayesian data
analysis proceeds by conditioning the prior distribution on the acquired data 〈ỹi〉. The posterior follows as

π
(

m, θX |〈ỹi〉, θZ

)

∝ L
(

〈ỹi〉|m, θX, θZ

)

π(m, θX). (7)

Note that the notation of Eq. (7) is reminiscent of classical Bayesian inversion. Indeed the multilevel character
of the problem manifests in the likelihood function Eq. (6) that we will now formulate in more detail.

I.E. Push-Forward Measure

Let (Dx,ζ ,Fx,ζ ,PθX ,θZ
) be the probability space with the sample space Dx,ζ = Dx × Dζ , the Borel σ-

field Fx,ζ = B(Dx,ζ) and the probability measure PθX ,θZ
that is assumed to have independent marginal

densities fX |ΘX
(x|θX) and fZ |ΘZ

(ζ |θZ) for given hyperparameters (θX , θZ). For fixed (m,di) the
mapping Mm,di

: (x, ζ) 7→ ỹi = M(m,x, ζ,di) induces a push-forward probability measure QθX ,θZ
on

(Dỹ,Fỹ,QθX ,θZ
) with the Borel σ-algebra Fỹ = B(Dỹ). For Ỹ ∈ Fỹ it can be written as

QθX ,θZ
(Ỹ) = PθX ,θZ

(

M−1
m,di

(Ỹ)
)

=

∫

Dx

∫

Dζ

I
(

Mm,di
(x, ζ) ∈ Ỹ

)

fX |ΘX
(x|θX) fZ |ΘZ

(ζ |θZ) dx dζ, (8)

where M−1
m,di

is a generalized inverse and I is the indicator function. The underlying assumption is the
measurability of the function Mm,di

: (Dx,ζ ,Fx,ζ) → (Dỹ,Fỹ), between measurable spaces (Dx,ζ ,Fx,ζ) and
(Dỹ,Fỹ). Assuming the existence of a corresponding density function, for fixed (m,di, θX , θZ) it reads

f(ỹi |m, θX , θZ) =

∫

Dx

∫

Dζ

δ
(

ỹi −Mm,di
(x, ζ)

)

fX |ΘX
(x|θX) fZ |ΘZ

(ζ |θZ) dx dζ, (9)

where δ denotes the Dirac delta distribution. Basically Eq. (9) is the solution to forward propagation of the
aleatory input uncertainties (X |θX) ∼ fX |ΘX

(x|θX) and (Z |θZ) ∼ fZ |ΘZ
(ζ |θZ) through the function

Mm,di
(x, ζ) into an output uncertainty (Ỹi |m, θX, θZ) ∼ f(ỹi |m, θX , θZ). At this point it is to be noted

that epistemic uncertainties are not propagated through the forward model.

I.F. Kernel Density Estimation

Since the transformed likelihood Eq. (6) is rarely available in analytical form, one has to rely on some
numerical approximation. A possible approach is to simulate the response density Eq. (9) by Monte Carlo
(MC) sampling and kernel density estimation (KDE).20 In the d-variate case, given a sample (ỹ(1), . . . , ỹ(K))
from some distribution with an unknown density f(ỹ), a kernel smoothing (KS) estimate of this density is

given as f̂(ỹ) = K−1
∑K

k=1 KH(ỹ − ỹ(k)). The scaled kernel KH(ỹ) = |H |−1/2 K(H−1/2ỹ) is defined by a
kernel function K and a symmetric and positive-definite bandwidth matrix H . Common types of bandwidth
matrices are multiples of the identity matrix H = h2

1d for h > 0 or diagonal matrices H = diag(h2
1, . . . , h

2
d)

with h1, . . . , hd > 0. According to certain criteria and assumptions, “optimal” bandwidths are commonly
selected to prevent over- and undersmoothing, i.e. a classical bias-variance trade-off. The KDE of a univariate
density similar to a Gaussian with kernels of the same type, can be based on Silverman’s normal reference
rule h = (4/3K)1/5 σ̂, where σ̂ is the sample standard deviation. Based on MC and KDE techniques the
transformed likelihood can be statistically estimated as

L̂KS

(

〈ỹi〉|m, θX , θZ

)

=

n
∏

i=1

(

1

K

K
∑

k=1

KH

(

ỹi − ỹ
(k)
i

)

)

, with















x(k) ∼ fX |ΘX
(x(k) |θX),

ζ(k) ∼ fZ |ΘZ
(ζ(k) |θZ),

ỹ
(k)
i = M(m,x(k), ζ(k),di).

(10)

For k = 1, . . . ,K forward model responses ỹ
(k)
i = M(m,x(k), ζ(k),di) are computed for inputs x(k) and

ζ(k) that are randomly sampled from their parent distributions fX |ΘX
(x(k) |θX) and fZ |ΘZ

(ζ(k) |θZ), re-
spectively. As it will be discussed, the application of the abovementioned classical criteria to select kernel
bandwidths is questionable in the present context.
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II. Bayesian Computations

More often than not Bayesian posterior densities do not have analytic closed-form solutions. Nevertheless
one can explore posteriors through Markov chain Monte Carlo (MCMC) sampling techniques.21 The prin-
ciple of MCMC is to construct a Markov chain over the posterior support whose long-run and steady-state
distribution equals the posterior. Prototypical MCMC techniques encompass the Metropolis-Hastings (MH)
algorithm22, 23 and the Gibbs sampler,24 respectively. Below we will review the MH algorithm and reflect
about multilevel-immanent MCMC key issues. Posterior fidelity will be introduced as a major concept.

II.A. The Metropolis-Hastings Algorithm

Let π0(q) the prior distribution and π1(q) ∝ L(q)π0(q) the unscaled posterior distribution of an unknown
QoI q. Initialized at q(0) the MH algorithm generates a Markov chain with equilibrium distribution π1(q)
by iteratively applying the Markov chain transition kernel as follows. For the current state q(t) a candidate
state q(⋆) ∼ P (q(⋆) |q(t)) is sampled from a proposal distribution P (q(⋆) |q(t)). The proposal state becomes
accepted, i.e. q(t+1) = q(⋆), with probability

α
(

q(⋆) |q(t)
)

= min

(

1,
π1(q

(⋆))P (q(t) |q(⋆))

π1(q(t))P (q(⋆) |q(t))

)

. (11)

Otherwise the proposal will be rejected, i.e. q(t+1) = q(t). Note that the MH correction Eq. (11) requires
the computation of posterior ratios, hence only unscaled posterior densities have to be evaluated. Classical
random walk Metropolis sampling is based on local proposals, e.g. sampling candidate states from a Gaussian
q(⋆) ∼ N (q(t),Σq) with covariance matrix Σq. Independence MH samplers are based on nonlocal proposals,
e.g. sampling candidate states from the prior distribution q(⋆) ∼ π0(q

(⋆)) or from some suitable approximation
of the posterior distribution q(⋆) ∼ π̂1(q

(⋆)).

II.B. Key Challenges

Typically MCMC sampling calls for a high number of forward model runs for likelihood evaluations in
Eq. (11). Besides that, the degree as to which MCMC samples will be autocorrelated governs their quality as
posterior representatives. The design and efficient tuning of MCMC algorithms therefore aims at optimizing
the mixing properties, i.e. the speed of convergence of the Markov chain towards its equilibrium distribution.
This is a challenging and highly problem-dependent task that can only be accomplished by employing and
combining the most suitable sampling schemes. MCMC methods demand careful convergence diagnostics,
i.e. the assessment of when the Markov chain has reached its target distribution and has lost the dependency
on its initialization. Moreover MCMC suffers from the curse of dimensionality, a strongly limited degree of
parallelism and difficulties in exploring broad and multimodal posteriors. As far as the latter is concerned,
because of its mode-jumping capability independence sampling can be considerably more efficient than
random walk sampling. As opposed to the “simple” calibration of forward model parameters, multilevel
model calibration pose different multilevel-specific MCMC challenges for sampling the posteriors Eqs. (3)
and (7). An efficient sampling scheme for high-dimensional parameter spaces is beneficial for the former while
the latter demands a sufficiently accurate and numerically efficient evaluation of the transformed likelihood.
In total either of the approaches to Bayesian multilevel model calibration may require an enormous number
of forward model runs. Generally this number easily exceeds the number of forward model runs necessary
for “simple” Bayesian parameter calibration.

II.C. Posterior Fidelity

Due to Bayes’ law, closed-form approximations introduced on the level of the likelihood directly induce
approximations on the level of the posterior. However, if the posterior is explored by means of MCMC and
calls to the likelihood function L are replaced by calls to a statistical estimator L̂, then a modification is
introduced on the level of the Markov chain transition kernel.25, 26 Consequentially there arises the question
of as to what extent the induced equilibrium distribution is in congruence with the true posterior, i.e. the
posterior fidelity. Moreover there is the question of how free algorithmic parameters, e.g. the number of
response samples K and the kernel bandwidth H , can be set in order to provide a convenient trade-off
between posterior fidelity and computational feasibility, i.e. an “optimal” parameter tuning.
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Endeavoring to maintain both fidelity and feasibility, we suppose that it is indeed possible to define
certain criteria that parameter tuning can be based on. Even though this is beyond the scope of this paper,
we have some preliminary comments. Given the current state q(t) of the Markov chain, in the MH correction
Eq. (11) a “random” decision is made whether to approve or to refuse a candidate state q(⋆). This decision
follows the computation of the posterior ratio π1(q

(⋆))/π1(q
(t)). Thus provided that the ratio of estimated

likelihoods approximates the true ratio “reasonably well”

L̂
(

q(⋆)
)

L̂
(

q(t)
) ≈

L
(

q(⋆)
)

L
(

q(t)
) , (12)

an “appropriate” decision is being made. High posterior fidelity is ensured on condition that “appropriate”
decisions are being frequently made over the course of the Markov process. The level of confidence that this
is indeed the case depends on a complex interplay between the quality of the estimation L̂ of L, the true
posterior π1 and the proposal distribution P .

III. The NASA Langley Multidisciplinary UQ Challenge

Now we will interpret the uncertainty characterization subproblem A of the NASA Langley UQ chal-
lenge14, 15 in Bayesian terms. For that purpose we will compose an appropriate Bayesian multilevel model
and formulate the main objective, i.e. the reduction of epistemic uncertainties, as Bayesian calibration of
this multilevel model. Inputs (p1, p2, p3, p4, p5) of the forward model M ≡ h1 are subject to uncertainty.
Model inputs ζ ≡ p3 that are subject to aleatory variability constitute the category I parameters. There
is epistemic uncertainty about the true value of the category II model parameter m ≡ p2. Category III
subsumes those parameters x ≡ (p1, p4, p5) that are subject to a mixed-type uncertainty.

III.A. Category I: Aleatory Uncertainty

For experiments i = 1, . . . , n category I model inputs ζ ≡ p3 ∈ [0, 1] take on experiment-specific realiza-
tions p3,i. The population distribution is a uniform distribution U(a3, b3) determined by perfectly known
hyperparameters θZ ≡ θ3 = (a3, b3) with (a3, b3) = (0, 1). We will write this as follows

(P3,i |θ3) ∼ f3(p3,i |θ3) = U(0, 1). (13)

It corresponds to a prescribed aleatory variability or structural uncertainty that is irreducible in the sense
that by analyzing available data ỹi for i = 1, . . . , n “past” realizations p3,i could be inferred in principle,
whereas the knowledge about “future” realizations p3,i′ with i′ > n cannot be improved.

III.B. Category II: Epistemic Uncertainty

Category II model inputs are physically fixed yet unknown model parameters m ≡ p2 ∈ [0, 1]. A given
epistemic interval ∆ = [0, 1] is known to contain the true value of p2 prior to any data analysis. We translate
this available information into a flat and uniform Bayesian prior probability density

P2 ∼ π2(p2) = U(0, 1). (14)

It represents an a priori degree of plausibility about the true value p2. It is reducible in the sense that
Bayesian updating provides an a posteriori degree of evidence. Note that the quantification of parametric
Bayesian priors is always a controversial business, and that priors assign a relative evidence structure over
the set of admissible values that goes beyond bare interval-like statements.

III.C. Category III: Mixed Uncertainty

Category III comprises those model inputs x ≡ (p1, p4, p5) that are subject to aleatory variability across
experiments i = 1, . . . , n. The natural variability is parametrized by hyperparameters θX ≡ (θ1, θ45) that
are themselves epistemically uncertain. This is a mixed-type uncertainty model that is sometimes referred
to as imprecise probability or distributional p-box. In this context the proper Bayesian interpretation of
imprecise probability is exchangeability.16, 17
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III.C.1. Unimodal Beta

Model inputs p1 ∈ [0, 1] are distributed according to a unimodal beta distribution. Beta distributions
Beta(α1, β1) are commonly parametrized by shape hyperparameters α1, β1 > 0. Instead we will here
parametrize the beta distribution Beta(µ1, σ

2
1) by its mean µ1 and variance σ2

1 . Thus with unknown hyper-
parameters θ1 ≡ (µ1, σ

2
1) experiment-specific realizations p1,i are drawn from the population distribution

(P1,i |θ1) ∼ f1(p1,i |θ1) = Beta(µ1, σ
2
1). (15)

On the one hand, provided the shape parameters (α1, β1), the expected value µ1 = E[p1] and the variance
σ2
1 = Var[p1] of the density function Beta(µ1, σ

2
1) are given as

µ1 =
α1

α1 + β1
, σ2

1 =
α1β1

(α1 + β1)2(α1 + β1 + 1)
. (16)

On the other hand, given the statistical moments (µ1, σ
2
1), the shape parameters (α1, β1) of the density

function Beta(α1, β1) can be obtained by

α1 =

(

σ2
1 + µ2

1 − µ1

σ2
1

)

(−µ1) , β1 =

(

σ2
1 + µ2

1 − µ1

σ2
1

)

(µ1 − 1) . (17)

The required unimodality, i.e. the fact that the distribution features a single mode within its support,
translates into α1, β1 > 1. Moreover it is required that 3/5 ≤ µ1 ≤ 4/5 and 1/50 ≤ σ2

1 ≤ 1/25. In order to adopt
this epistemic uncertainty model about the hyperparameters θ1 we state the uniform hyperprior distribution

Θ1 ∼ π1(θ1) = U(Dθ1
), with

Dθ1
=
{

(µ1, σ
2
1) ∈ R

2
∣

∣ 3/5 ≤ µ1 ≤ 4/5, 1/50 ≤ σ2
1 ≤ 1/25, α1 > 1, β1, > 1

}

.
(18)

If λ(Dθ1
) is the Lebesgue measure of the set Dθ1

⊂ R
2, then the uniform density Eq. (18) is 1/λ(Dθ1

) on Dθ1

and zero elsewhere. In practice the normalization constant λ(Dθ1
) is unknown, but since priors are flat and

only ratios are compared in the MH correction Eq. (11), only the set membership of MCMC proposals has
to be determined. Consequently we can treat the prior Eq. (18) as π1(θ1) = π(µ1)π(σ

2
1) with independent

marginals π(µ1) = U(3/5, 4/5) and π(σ2
1) = U(1/50, 1/25) and reject proposals that do not respect α1, β1 > 1

with the aid of Eq. (17). This practical prior choice is ambiguous in the sense that priors could be assumed
for shape parameters (α1, β1), too. However, this could yield improper prior distributions. Moreover we
consider (µ1, σ

2
1) statistically more “natural” than the shape parameters. In addition they underlie strong

prior constraints which is advantageous to exploring the posterior by means of MCMC.

III.C.2. Correlated Gaussian

The model inputs p4, p5 ∈ R will be modeled as possibly correlated Gaussian random variables. Across
the experiments i = 1, . . . , n these model inputs take on different unknown realizations (p4,i, p5,i). This
inherently aleatory variability is represented by the population distribution

(

(P4,i, P5,i)|θ45

)

∼ f45
(

(p4,i, p5,i)|θ45

)

= N
(

µ45,Σ45

)

. (19)

For j = 4, 5 the means µj = E[pj], variances σ2
j = Var[pj ] and the coefficient of correlation ρ45 = E[(p4 −

µ4)(p5−µ5)] constitute the hyperparameters θ45 ≡ (µ4, σ
2
4 , µ5, σ

2
5 , ρ45). Those hyperparameters are unknown

constants that determine the mean µ45 and the covariance matrix Σ45 of the bivariate normal density by

µ45 =

(

µ4

µ5

)

, Σ45 =

(

σ2
4 ρ45 σ4 σ5

ρ45 σ4 σ5 σ2
5

)

. (20)

Besides the natural bounds |ρ45| ≤ 1 it is requested that −5 ≤ µj ≤ 5 and 1/400 ≤ σ2
j ≤ 4. We translate these

intervals into flat and independent marginals π(µj), π(σ
2
j ) and π(ρ45) of the common hyperprior π45(θ45) by

π(µj) = U(−5, 5),

π(σ2
j ) = U(1/400, 4),

π(ρ45) = U(−1, 1),











Θ45 ∼ π45(θ45) =





5
∏

j=4

π(µj)π(σ
2
j )



 π(ρ45). (21)

The ambiguity in quantifying parametric Bayesian priors is especially obvious for spread hyperparameters,
insofar as priors for spread hyperparameters could refer to standard deviations or variances alike.
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III.D. Bayesian Problem Statement

The primary objective of the UQ challenge subproblem A is the reduction of epistemic uncertainties about
the true values of the forward model parameter p2 and the hyperparameters (θ1, θ45).

14 In order to accom-
plish that goal, the forward model, data and prior knowledge is available. Preventing to reverse engineer
its mathematical character and numerical implementation, the forward model h1 is distributed as a pro-
tected MATLAB p-code file, i.e. a blackbox model. Available data 〈ỹi〉1≤i≤50 comprises n = 50 scalar
observations ỹi = h1(p1,i, p2, p3,i, p4,i, p5,i) which have been realized as forward model responses complying
with the true uncertainty model of forward model inputs, i.e. the model parameter p2 takes on its true
value and (〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) have been randomly sampled from their true population distributions.
Notwithstanding that the observations provided are “perfect”, in general they might very well be subject to
an additional model-measurement discrepancy,15 i.e. “imperfect. Data have been arranged into two distinct
configurations of observations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 whose separate and joint analysis is envisaged to
indicate how the number n of processed samples impacts the significance of the final results. The available
prior knowledge has been translated into parametric and structural Bayesian prior distributions. We have
pointed out that this formulation endows the problem with a subjectivist interpretation of probability and
suffers from the ambiguity in the chosen parametric prior and its influence on the resulting posterior.

The problem statement as well as the framework and the algorithms introduced so far grant ample scope
of formulating and solving the problem as Bayesian inference of the QoI (p2, θ1, θ45) within a multilevel
context. In the first place the Bayesian multilevel model Eq. (5), defined by parametric priors Eqs. (14),
(18) and (21) and structural priors Eqs. (13), (15) and (19), establishes the natural framework for solving
the original problem posed. For the sake of completeness the devised multilevel model is summarized as

(Ỹi |p2, θ1, θ45, θ3) ∼ f(ỹi |p2, θ1, θ45, θ3), (22a)

P2 ∼ π2(p2) = U(0, 1), (22b)

(P1,i |θ1) ∼ f1(p1,i |θ1) = Beta(µ1, σ
2
1), (22c)

(

(P4,i, P5,i)|θ45

)

∼ f45
(

(p4,i, p5,i)|θ45

)

= N
(

µ45,Σ45

)

, (22d)

Θ1 ∼ π1(θ1) = U(Dθ1
), (22e)

Θ45 ∼ π45(θ45) = π(µ4)π(σ
2
4)π(µ5)π(σ

2
5)π(ρ45), (22f)

(P3,i |θ3) ∼ f3(p3,i |θ3) = U(0, 1). (22g)

The posterior Eq. (7) of the QoI follows Bayesian data analysis of given forward model responses ỹi, i.e.
realizations of random variables (Ỹi |p2, θ1, θ45, θ3). In the second place one could solve the inverse prob-
lem posed in the presence of additional measurement noise. To that end the Bayesian multilevel model
Eq. (1) establishes the proper framework. Synthetic and noisy observations yi = ỹi + εi could be obtained
by perturbing the given model responses ỹi with residuals εi that are randomly sampled from prescribed
distributions fEi

(εi). Parameters of the residual model, e.g. the residual variances σ2
i , could either be treated

as knowns or as further unknowns. By analyzing “imperfect” data yi, i.e. realizations of random variables
(Yi |p1,i, p2, p3,i, p4,i, p5,i), and treating latent variables (〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) as nuisance, inference of
the QoI would be based on the posterior Eq. (4). A DAG of the Bayesian multilevel model corresponding to
our challenge problem interpretation with “perfect” and “imperfect” data, respectively, is depicted in Fig. 2.

IV. Bayesian Data Analysis

We will now apply the inferential machinery of Bayesian multilevel calibration for solving the Bayesian
incarnation of the uncertainty characterization subproblem A of the NASA Langley multidisciplinary UQ
challenge. The problem will be solved in its original formulation involving “perfect” data. Motivated by
findings from first preliminary problem analyses, posterior densities of the QoI will be sampled by a suitable
independence MCMC algorithm. This sampler will be implemented in MATLAB and serially run on a
modern CPU. Nevertheless we will discuss possible parallelization strategies. The total data 〈ỹi〉1≤i≤50

and its subconfigurations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 will be analyzed with the devised algorithm. Based
on heuristic parameter tuning and plausibility checks we will try to assess the fidelity of the posterior.
Promising a boost of posterior fidelity we will lastly devise a hybrid MCMC scheme which is based on data
augmentation and both independence and random walk sampling.
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Figure 2. DAG of the NASA UQ challenge subproblem A. The hyperparameters θ1 and θ45 and the forward model parameter
p2 located at the “highest” hierarchical level are the QoI. Realizations (〈p1,i〉, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉) on the “intermediate” problem level
are considered nuisance. “Perfect” ỹi = h1(p1,i, p2, p3,i, p4,i, p5,i) or “imperfect” data yi = ỹi + εi constitute the “lowest” model layer.

IV.A. Preliminary Analyses

A basic understanding of an inverse problem under consideration allows to judge the performance of various
types of MCMC schemes. Since this allows to design efficient algorithms and prevents from obtaining
misleading results that are due to inapplicable samplers, gaining first insights into the multilevel calibration
problem is indispensable. Initial MCMC runs had therefore been based on crude random walk Metropolis
sampling. The principal nature of the posteriors Eqs. (3) and (7) could be provisionally assessed. Main
findings from sampling the posterior Eq. (7) indicate that posterior marginals of the QoI (p2, θ1, θ45) can be
multimodal and broad distributions that significantly overlap with the marginal priors. Sampling the joint
posterior Eq. (3) of the entirety of unknowns (〈p1,i〉, p2, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉, θ1, θ45) has provided additional
insight. Experiment-specific unknowns 〈p1,i〉 occur to be identifiable, i.e. the corresponding posterior features
a single mode. Those are valuable information that will eventually motivate the final MCMC samplers.

IV.B. “Perfect” Data Analysis

For the calibration of the Bayesian multilevel model Eq. (5) we devise a blockwise independence MCMC
sampler. Since the algorithm is based on MCMC, MC and KS techniques, hereinafter it will be referred to as
MC3KS. QoI are grouped in blocks (p2), (µ1, σ

2
1), (µ4, σ

2
4 , ρ45) and (µ5, σ

2
5) that are consecutively updated

by sampling blockwise candidates from the corresponding prior distributions. In many cases independence
sampling from the priors is inefficient due to a negligible overlap between the priors and the posterior
distributions and the resulting low acceptance rates. However, on account of the multimodality of the
posteriors and their overlap with the the priors, that were indicated by first analyses, independence sampling
promises rapid mixing for the problem at hand. Moreover in the context of Eq. (12) we suppose that wide
jumps in the parameter space, that are induced by independence sampling on average, are beneficial in
terms of posterior fidelity. Another advantage of the devised MCMC scheme over random walk sampling
is that it does not require extensive fine-tuning of the proposal distribution. Updating in blocks intents to
minimize the number of calls to the likelihood Eq. (10) that are necessary for each block in each MCMC
iteration, while maintaining high acceptance rates. With the help of Eq. (17) the constraints α1, β1 > 1 are
enforced by rejecting nonconforming proposals. The MC3KS sampler is initialized by setting parameters in
the middle of their admissible intervals. Generally speaking we expect that forward model parameters and
mean hyperparameters are easier to identify than spread or correlation hyperparameters.

IV.B.1. Likelihood Estimation & Posterior Fidelity

For the estimation Eq. (10) of the transformed likelihood Eq. (6) we choose kernel functions K of Gaussian
type. In order to achieve a convenient trade-off between the conflicting endeavors posterior fidelity and ease
of its computation, the number of samples K and the bandwidth h have to be set. In practice resource
limitations restrict the total number of affordable forward model runs, hence we approach parameter tuning
from the situation of given K. Owing to the absence of a rigorous means to define a corresponding and
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“optimal” bandwidth h, we study the posteriors obtained for fixed K = 104 and decreasing h in a cascade
of runs. We observe an initial shrinkage of the posterior, i.e. evolving from the flat prior it takes on definite
shape, and an eventual collapse, i.e. the posterior flattens out again and looses its structure. The initial
shrinkage is associated with significant changes of the posterior shape, the eventual breakdown is QoI-
dependent, and in between the posterior is relatively stable with respect to h. We remark that this behavior
is consistent with Eqs. (11) and (12). Significant oversmoothing the target density Eq. (9), i.e. a strongly
biased estimator Eq. (10), can falsely assign posterior mass to QoI-values that do not well-explain or even
contradict the data. Considerable undersmoothing of the target density, i.e. a high variance of the estimator
Eq. (10), can cause “arbitrary” acceptances in the MH correction. We speculate that in between those
extremes, the more stable the posterior is with respect to small changes in h, the more confident we can be
to have revealed the true posterior. Beyond that we presume that a high degree of distinctiveness of the
posterior with respect to the prior indicates high posterior fidelity, even though the converse statement does
not hold. In addition to those heuristics we perform plausibility checks based on monitoring the accuracy of
evaluating likelihood ratios Eq. (12) over the Markov chain.

Following this discussion K = 104 and h = 0.002 constitutes our final parameter setup. The principle
of estimating the density Eq. (9) and the transformed likelihood Eq. (6) is visualized in Fig. 3. Samples
of K = 104 and K = 107 forward model responses are simulated for two different (hyper)parameter values
(p2, θ1, θ45)high and (p2, θ1, θ45)low. As judged from our final results, these are (hyper)parameter values of
high and low degree of posterior evidence, respectively. For the smaller sample with K = 104 estimates
of the sought densities f(ỹi |p2, θ1, θ45, θ3) are shown. For reference purposes a histogram of the larger
sample with K = 107 is shown. It can be seen that response densities f(ỹi |p2, θ1, θ45, θ3) for (p2, θ1, θ45)high
and (p2, θ1, θ45)low significantly overlap. This is a problem characteristic that complicates the identification
of the QoI (p2, θ1, θ45). It can also be seen that the employed bandwidth h = 0.002 amounts to a slight
undersmoothing of the target density, i.e. a bias-variance trade-off favoring lower bias yet acceptable variance.
This is advantageous because it allows to capture local small-scale features of the target density, e.g. sharp
peaks and edges, in the posterior. Since the target density significantly differs from a normal distribution,
automatic bandwidth selection cannot be based on the normal reference rule. The resulting oversmoothing
of the target density, i.e. a significantly biased KDE, would veil its important characteristics. Finally the
(hyper)parameter values (p2, θ1, θ45)high can be seen to lead to a response density that explains the data
sample 〈ỹi〉 reasonably well.

(hyper)parameters:

(µ1,σ
2
1) = (0.666,0.032),

(µ4,σ
2
4) = (2.87,2.0),

(µ5,σ
2
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Figure 3. Estimation of f(ỹi |p2, θ1, θ45, θ3). Evaluating the transformed likelihood Eq. (6) for MC3KS is based on the forward
model response density Eq. (9). For two different values of the (hyper)parameters (p2, θ1, θ45) a KDE of f(ỹi |p2, θ1, θ45, θ3) with
K = 104 and h = 0.002 is shown. As a reference a histogram is shown for a larger number K = 107 of forward model responses.

IV.B.2. Final Results

First of all we analyze the total data 〈ỹi〉1≤i≤50. For N = 105 iterations of the MC3KS algorithm the total
program runtime amounts to t ≈ 30 h on a single core. Blockwise acceptance rates were found to be ca.
20% for (p2), 40% for (µ1, σ

2
1), 60% for (µ4, σ

2
4 , ρ45) and 10% for (µ5, σ

2
5). With Eq. (16) a number of

10327 blockwise proposals (µ1, σ
2
1) had been rejected because of violating the prior requirement α1, β1 > 1.
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Posterior marginals of the QoI are shown in Figs. 4 to 7. The densities shown have been obtained by kernel
smoothing of the MCMC posterior samples based on appropriate boundary correction methods. We assign
an acceptable degree of fidelity to the posteriors obtained, i.e. we are confident to have revealed the true
posteriors, regardless of whether some are flat and only weakly informative.

Note that Bayesian probability densities feature a richer structure than mere epistemic intervals. They are
read as a relative degree of evidence and may contain complex dependency structures. Parameters that were
assumed to be statistically independent a priori, can be statistically dependent a posteriori. The marginal
densities shown hide this possibly existing posterior correlations. Small negative correlations between µ1 and
σ2
1 or µ4 with linear Pearson’s coefficients of correlation rµ1,σ2

1
= −0.08 and rµ1,µ4

= −0.22 were discovered.
In order to provide final results of interval-like character one could define suitable Bayesian credible intervals
or sets that accumulate a certain proportion, e.g. 95%, of the total posterior mass. However, the definition
of such intervals is ambiguous and would still bear the probabilistic interpretation, therefore we refrain from
defining Bayesian credible intervals.

We also analyze the data subconfigurations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 separately. The posterior densities
produced by separate analyses may differ considerably. With respect to the posteriors yielded by analyzing
〈ỹi〉1≤i≤50, the two data subconfigurations are representative to a different degree. Those findings indicate
that n = 25 is a comparably low number of observations while n = 50 is moderately satisfying for the
Bayesian calibration of mean hyperparameters and the forward model parameter. Properly identifying the
variance and correlation hyperparameters would require a higher number of observations. This is hardly
surprising regarding the complex uncertainty setup, the number of unknowns, the unknown character of the
forward model, and the inverse nature of the calibration problem.

IV.B.3. Conclusion

With the proposed MC3KS sampling scheme we have solved the Bayesian formulation of the challenge prob-
lem. The shortcoming of the approach was the unclear assessment of the fidelity of the posterior, i.e. its
dependency on algorithmic tuning parameters. We had to base parameter tuning on heuristic criteria and
plausibility checks. The fidelity of the posteriors could only be provisionally assessed. The efficiency of the
proposed independence sampling MCMC scheme can be easily increased. Obtained posterior distributions
may be approximated by suitable distributions that are easy to sample. Utilizing these posterior approx-
imations as proposal distributions will lead to higher acceptance rates and better mixing properties than
sampling from the priors. Most Bayesian computations can only be parallelized by running several Markov
chains simultaneously. Another parallelization strategy of the devised algorithm is to parallelize the estima-
tion of the transformed likelihood on the level of single forward model runs. This suggests the possibility of
studying the posterior for significantly larger K and smaller h. Moreover different classes of kernel functions
K, e.g. with bounded nonzero support, or more advanced KDE techniques, e.g. locally adaptive schemes,
can be employed.
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Figure 4. Posteriors of µ1 and σ2

1
. The posterior of µ1 features a clear structure as compared to the prior. While separate

analyses of 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 lead to different posterior modes, the joint analysis of 〈ỹi〉1≤i≤50 leads to a mode in between

the aforementioned ones. The posterior of σ2

1
is seen to be comparably structureless and therefore less informative.
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Figure 5. Posteriors of p2 and ρ45. Due to the fact that data subconfigurations 〈ỹi〉1≤i≤25 and 〈ỹi〉26≤i≤50 are to a different
degree informative about hyperparameters, the posteriors obtained for the constant model parameter p2 deviate as well. Analyzing
〈ỹi〉1≤i≤50 reveals two clear and separated posterior modes. As expected the posterior of the correlation hyperparameter ρ45 is flat.
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Figure 6. Posteriors of µ4 and σ2

4
. Both the posteriors of µ4 and σ2

4
that were sampled by MC3KS are rather flat and uninformative.

On the contrary, the posterior of µ4 explored by MC3DA features more definite structure. This questions the fidelity of the posterior.
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Figure 7. Posteriors of µ5 and σ2

5
. The posteriors marginals of µ5 and σ2

5
feature a distinctive structure as compared to the priors.

The posterior of µ5 is multimodal whereas the one of σ2

5
is unimodal. With respect to the posteriors sampled by MC3KS, the posteriors

that are due to MC3DA are only slightly more evolved in structure. This indicates an acceptable degree of posterior fidelity.
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IV.C. Partial Data Augmentation

As a potential improvement over the employed MC3KS sampler we will devise a new hybrid MCMC sampling
scheme. Since the scheme will be based on data augmentation (DA), henceforth it will be referred to as
MC3DA. Traditionally DA can be a powerful tool for enhancing the computational efficiency of MCMC
posterior sampling.9, 10 Instead we will herein utilize DA as a means to reformulate the multilevel model
calibration problem in a complementary way, such that it allows for more adequate likelihood estimations
which in turn promises enhanced posterior fidelity. Rather than directly sampling the posterior of the
QoI (p2, θ1, θ45), one can sample the posterior of an augmented number of unknowns (〈p1,i〉, p2, θ1, θ45)
and obtain the posterior of the QoI by subsequently marginalizing over nuisance 〈p1,i〉. Presuming that
sampling from π(〈p1,i〉, p2, θ1, θ45 |〈ỹi〉, θ3) is “easier” to accomplish than straightforwardly sampling from
π(p2, θ1, θ45 |〈ỹi〉, θ3), a de facto improvement is achieved. The introduction of 〈p1,i〉 as auxiliary variables
is a partial form of data augmentation. As indicated by preliminary problem analyses, the forward model
h1 seems to be in such a way dependent on its input p1, that data 〈ỹi〉 can be inverted for the unknown
〈p1,i〉, under uncertainty of (p2, 〈p3,i〉, 〈p4,i〉, 〈p5,i〉). Moreover the likelihood corresponding to partial data
augmentation can be estimated more adequately and the approach will allow for automatic kernel bandwidth
selection based on a classical yet well-approved criterion, namely the normal reference rule. Indeed the
aforementioned facts will allow to sample π(〈p1,i〉, p2, θ1, θ45 |〈ỹi〉, θ3) with higher fidelity than sampling
π(p2, θ1, θ45 |〈ỹi〉, θ3). We will introduce the formalism of partial data augmentation below.

IV.C.1. Augmented Multilevel Model

If the unknowns (p2, θ1, θ45) of the multilevel model Eq. (5) are augmented by 〈p1,i〉, then the collective of
unknowns (〈p1,i〉, p2, θ1, θ45) has to be inferred explicitly. The associated Bayesian prior density is given as

π
(

〈p1,i〉, p2, θ1, θ45

)

=

(

n
∏

i=1

f1(p1,i |θ1)

)

π1(θ1)π2(p2)π45(θ45). (23)

It comprises both parametric and structural prior knowledge. Given the density f(ỹi |p1,i, p2, θ45, θ3) of the

distribution of random variables (Ỹi |p1,i, p2, θ45, θ3), the corresponding augmented likelihood follows as

L
(

〈ỹi〉|〈p1,i〉, p2, θ45, θ3

)

=

n
∏

i=1

f
(

ỹi |p1,i, p2, θ45, θ3

)

. (24)

Adopting the formalism and notation of Eq. (9), but omitting the technical details, the definition of the
augmented likelihood Eq. (24) rests on the correspondingly transformed probability density

f
(

ỹi |p1,i, p2, θ45, θ3

)

=

1
∫

0

+∞
∫

−∞

+∞
∫

−∞

δ
(

ỹi −Mp1,i,p2
(p3, p4, p5)

)

f3
(

p3 |θ3

)

f45
(

(p4, p5)|θ45

)

dp3 dp4 dp5. (25)

Here δ denotes the Dirac delta function and Mp1,i,p2
: (p3, p4, p5) 7→ M(p1,i, p2, p3, p4, p5) formalizes the

map that the forward model M ≡ h1 defines for fixed inputs (p1,i, p2) and functional arguments (p3, p4, p5).
With the combined parametric and structural prior Eq. (23) and the augmented likelihood Eq. (24), the
augmented posterior of the unknowns (〈p1,i〉, p2, θ1, θ45) is according to Bayes’ law proportional to

π
(

〈p1,i〉, p2, θ1, θ45 |〈ỹi〉, θ3

)

∝ L
(

〈ỹi〉|〈p1,i〉, p2, θ45, θ3

)

π
(

〈p1,i〉, p2, θ1, θ45

)

. (26)

Since we are not interested in inferring experiment-specific realizations 〈p1,i〉 per se, they are treated as
nuisance. Thus the posterior of the QoI (p2, θ1, θ) is found by marginalizing Eq. (26) as follows

π
(

p2, θ1, θ45 |〈ỹi〉, θ3

)

∝

1
∫

0

. . .

1
∫

0

π
(

〈p1,i〉, p2, θ1, θ45 |〈ỹi〉, θ3

)

d〈p1,i〉, (27)

where d〈p1,i〉 = dp1,1 . . . dp1,n as before. In practice the marginal posterior Eq. (27) can be accessed by
probing the joint posterior Eq. (26) and simply discarding samples of 〈p1,i〉. Indeed this marginalization is
a prominent application of MCMC sampling.
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IV.C.2. Augmented Likelihood Estimation

In practical terms the augmented likelihood Eq. (24) can be estimated analogously to Eq. (10). To that end
the response density Eq. (25) is estimated for each p1,i and subsequently evaluated for the given responses
ỹi, respectively. Hence a KDE-based estimate of the augmented likelihood is given as

L̂DA

(

〈ỹi〉|〈p1,i〉, p2, θ45, θ3

)

=

n
∏

i=1

(

1

K

K
∑

k=1

Khi

(

ỹi − ỹ
(k)
i

)

)

,

with



























p
(k)
3 ∼ f3(p

(k)
3 |θ3),

(

p
(k)
4 , p

(k)
5

)

∼ f45
(

(p
(k)
4 , p

(k)
5 )|θ45

)

,

ỹ
(k)
i = Mp1,i,p2

(p
(k)
3 , p

(k)
4 , p

(k)
5 ),

hi = (4/3K)1/5 σ̂i.

(28)

For k = 1, . . . ,K inputs p
(k)
3 ∼ f3(p

(k)
3 |θ3) and (p

(k)
4 , p

(k)
5 ) ∼ f45((p

(k)
4 , p

(k)
5 )|θ45) are sampled from the

corresponding population distributions, responses ỹ
(k)
i = Mp1,i,p2

(p
(k)
3 , p

(k)
4 , p

(k)
5 ) are computed accordingly

and σ̂i denotes the standard deviation of the response samples (ỹ
(1)
i , . . . , ỹ

(K)
i ). The number of samples for

each of these estimations is set to K = 103 and selection of the bandwidths follows the normal reference rule
hi = (4/3K)1/5 σ̂i. Note that for sampling the posterior Eq. (26) by MC3DA the density f(ỹi |p1,i, p2, θ45, θ3)
has to be individually estimated for each p1,i with i = 1, . . . , n.

Let us compare the transformed densities Eqs. (9) and (25). The density f(ỹi |p2, θ1, θ45, θ3) explicitly
depends on θ1 and thus implicitly involves the uncertainty of p1,i. In contrast f(ỹi |p1,i, p2, θ45, θ3) directly
depends on p1,i but does not bear reference to θ1. Hence f(ỹi |p2, θ1, θ45, θ3) is the more complex and broader
density, whereas f(ỹi |p1,i, p2, θ45, θ3) is simpler and easier to estimate. In turn this means that likelihood
estimations for MC3DA are less biased and have a smaller variance than for MC3KS and thus the approach
promises a higher degree of posterior fidelity. In Fig. 8 the density f(ỹi |p1,i, p2, θ45, θ3) is shown for values
(p2, θ45)high and (p2, θ45)low that have been chosen as the same values already used in Fig. 3. Following our
final results, the value p1,i has been exemplarily chosen as the posterior mean of p1,i with i = 36. When
comparing Figs. 3 and 8 one can clearly see the essential difference between the densities f(ỹi |p2, θ1, θ45, θ3)
and f(ỹi |p1,i, p2, θ45, θ3). The latter is distinctly simpler and clearly better resembling a Gaussian density.
Moreover it can be seen that the chosen values p1,36 and (p2, θ45)high lead to a response density consistent
with the observation ỹ36.
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Figure 8. Estimation of f(ỹi |p1,i, p2, θ45, θ3). Evaluating the augmented likelihood Eq. (24) for MC3DA is based on the response
density Eq. (25). For p1,36 = 0.465 and two different values of the (hyper)parameters (p2, θ1, θ45) a KDE of f(ỹ36 |p1,36, p2, θ45, θ3) is

shown with K = 103 and automatic bandwidth selection according to the normal reference rule. For reference purposes a histogram is
shown for a larger number K = 107 of simulated forward model responses.
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IV.C.3. MCMC

The augmented posterior Eq. (26) will be explored by means of a dedicated MC3DA sampler. Updating is
done in blocks (〈p1,i〉), (µ1, σ

2
1), (p2), (µ4), (µ5) and (σ2

4 , σ
2
5 , ρ45). Each p1,i in the block (〈p1,i〉) is concurrently

updated with a random walk Metropolis sampler based on independent Gaussian proposals with standard
deviation σp1,i

= 0.01. As before the remaining blocks are initialized in the middle of the corresponding
epistemic intervals and updated with independent prior proposals. Acceptance rates amounted to ca. 10%
for (〈p1,i〉), (p2), and (µ5), 15% for (µ4) and (σ2

4 , σ
2
5 , ρ45), and 30% for (µ1, σ

2
1). A number of 10219 proposals

in the last-mentioned block were rejected due to violating α1, β1 > 1. We start with preliminary MCMC runs
with K = 103 and hi = 0.02 in order to identify the posterior modes of 〈p1,i〉. Experiment-specific realizations
〈p1,i〉 are initialized in the middle of their epistemic intervals and converge within ca. 1000 MCMC iterations.
The initial convergence and final posterior of an experiment-specific realization p1,i with i = 10 are shown in
Fig. 9. This shows that individual experiment-specific realizations 〈p1,i〉 can indeed be inferred. As opposed
to classical Bayesian inversion, the width of the posterior is not due to a prior and residual model, but due
to posterior uncertainty of the remaining unknowns. The danger of the approach is that missing further
posterior modes of 〈p1,i〉 would alter the sampled posteriors of the remaining unknowns, above all the one of
θ1. Convergence checks have therefore been accomplished by initializing 〈p1,i〉 within admissible regions of
the parameter space that have not been visited in previous runs. Ultimately the chain converged to the same
posterior modes which were found before. We therefore initialize the final sampler within these posterior
modes of 〈p1,i〉. With K = 103 and automatic selection of the bandwidths hi we draw N = 105 posterior
samples. Total execution time amounts to t ≈ 90 h on a single core. The resulting posterior marginals of
the QoI are added to Figs. 4 to 7. As compared to the results obtained by MC3KS the posteriors found by
MC3DA have been slightly shrunk and evolved in structure. Resting upon the assumption that the posterior
modes of 〈p1,i〉 have been correctly identified, we take this as an indication of a gain in posterior fidelity.
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Figure 9. Convergence and identifiability of p1,i. With N = 105 iterations of the MC3DA algorithm the augmented posterior

Eq. (26) is explored by analyzing 〈ỹi〉1≤i50. For K = 103 and hi = 0.02 the converging Markov chain and the resulting posterior of an
experiment-specific p1,10 is shown. The width of the posterior is governed by the posterior uncertainty of the remaining unknowns.

V. Conclusion & Outlook

Addressing the uncertainty characterization subproblem of the NASA UQ challenge has turned out to be
a challenging yet rewarding task. We devised a Bayesian multilevel model involving “perfect” data in order to
formulate the problem as statistical inversion and proposed computational techniques dedicated to sampling
the corresponding posterior distribution. In turn this problem solution has given rise to new questions
relevant to MCMC posterior exploration and statistical likelihood estimation in the context of Bayesian
multilevel calibration. First related thoughts were given and an in-depth consideration has been initiated.
In sum we hope that these efforts prove to be a solid contribution to the NASA challenge problem in particular
and to the theory and practice of Bayesian data analysis and uncertainty quantification in general. Future
research work encompasses the design of more sophisticated methods to simulate the likelihood function and
the rigorous assessment of the posterior fidelity.
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