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Abstract— This paper addresses the closing loop problem as
the challenge of using all the information from the observation
gathered when closing the loop in order to optimally adjust the
whole map (assuming a correct data association). The proposed
approach is an approximation, which allows the calculation
of the gain without keeping track of all the correlations (i.e.
with a complexity independent of the number of the map ele-
ments). Furthermore, the paper presents an explicit mathematical
demonstration showing that the correlations computed by the
EKF -based SLAM are overestimated. More precisely, it is shown
that these correlations decrease exponentially with respect to the
heading error of the robot.

The approach is then empirically demonstrated by means
of meaningful simulations. The results are then discussed and
conclusions are pointed out in the last section.

Key Words: SLAM, Closing Loop Problem, Kalman
filter, Sensor Fusion, Relative Observation

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) requires
a mobile robot to autonomously explore the environment with
its on-board sensors, gain knowledge about it, interpret the
scene, build an appropriate map and localize itself relative to
this map.

A very successful method is the stochastic map approach.
After the first precise mathematical definition of the stochastic
map [11] early experiments ([5], [7]), have shown the quality
of fully metric simultaneous localization and map building.
One of the most discussed inconvenient of this approach
is the computational requirement, which scales very badly
(squarely) with the number of the map elements due to their
correlations. To overcome this problem, several solutions have
been proposed (e.g. [9], [12]).

Obviously, neglecting the correlations among the landmarks
very far, could be a good approximation in the absence of large
loops. Indeed, when the robot closes the loop, the correlations
contain information about the whole loop which are needed
in order to propagate the correction through the loop.

In this paper we introduce a method computing the neces-
sary correlations between the landmarks and the robot in order
to properly use all the information when closing the loop. We
show that the linearization in the standard approach causes
an overestimation of this information when the loop is large
compared with the parameters characterizing the robot sensors.
In section II we first compute the corrections on the map at the
end of a loop as obtained from the standard approach. Starting

from this computation, we suggest an approximation able to
provide almost the same corrections but with a computational
complexity independent of the number of map elements (O(1)
instead of O(N2)). In section III we compute the same
corrections by avoiding the linearization which characterizes
the Extended Kalman Filter (EKF ) and therefore theEKF -
based SLAM. The results obtained through simulations are
presented in section IV. They compare theEKF -based SLAM
to the approximation withO(1) complexity. We believe that
a complete real experiment would be required to evaluate
the overall performance of these approaches. However, in
this case, the simulation permits to more precisely compare
the results when closing the loop. Finally, conclusions are
presented in section V.

II. T HE MAP CORRECTION AT THECLOSING LOOP

The innovation (defined as the difference between the ob-
servation and its prediction) related to the observation when
the robot closes a loop, contains the information accumulated
by the robot along the whole loop. This innovation can then
be used to correct the configurations of all the landmarks in
the loop. In this section we carry out the computation of the
previous corrections. The section consists of two parts. In
the former, we carry out the computation by adopting the
standard solution to SLAM based on theEKF [6], from
now on AMF (Absolute Map Filter). TheAMF requires
a computational complexity which increases squarely with
the number of landmarks in the loop. For this reason, in
section II-B we suggest a possible solution able to correct
the configuration of all the landmarks in the loop, whose
complexity does not depend on the number of landmarks. It
is possible to implement this solution when the exteroceptive
sensor provides a relative observation between the robot and
one landmark at a time.

For the sake of simplicity, we will refer in the following to
the case of point landmark.

A. Standard Solution

In the AMF the robot configuration and the location of
each landmark are registered in one common global reference
frame. AnEKF is used to estimate the state containing the
previous global coordinates and its covariance matrix.

X = [XT
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where Xv = [x, y, θ]T is the robot configuration,Xi is
the absolute location of theith landmark,Pij is the cross-
covariance between theith and jth landmark location and
Pvi is the cross-covariance between theith landmark and
the vehicle configuration. The ”state transition equation” for
the stateX restricted to the map part (Xi) is the identity.
Regarding the vehicle part, this equation is determined by
the drive system of the robot. TheEKF is used to fuse
the information coming from this transition equation with
the information coming from an observational equation. This
equation models the observation coming from an exteroceptive
sensor and provides a vector depending on the state given in
the equation (1).

Z = h(X,w) (3)

wherew is a vector of temporally uncorrelated observation
errors with zero mean and covariance matrixR.

When a relative observation between the robot and the
landmarkith occurs, the function in (3) will be

Z = h(X, w) ≡ h(Xv, Xi, wi) (4)

whose Jacobian with respect to the state in (1) will be

Hi = [HXv , 0, ..., 0, HXi , 0, ..., 0] (5)

When theEKF is adopted to update the state in (1) and its
covariance in (2) by using this relative observation, the result
is [6]:

X(k | k) = X(k | k − 1) + Wi(k)νi(k) (6)

P (k | k) = (7)

= P (k | k − 1)−Wi(k)Si(k)WT
i (k)

where

Wi(k) = P (k | k − 1)HT
i (k − 1)S−1

i (k) (8)

Si(k) = Hi(k − 1)P (k | k − 1)HT
i (k − 1) + Ri(k) (9)

and X(k | k − 1) and P (k | k − 1) are respectively the
predicted state and its covariance (see equations (10) and (12)
in [6]) and νi(k) is the innovation (equation (13) always in
[6]).

By a direct computation it is easy to obtain from equations
(5), (8) and (9)
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Si = HXv
PvvHT

Xv
+ HXv

PviH
T
Xi
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+ HXi
PivHT
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T
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where, for the sake of simplicity, we omitted the timek
and in particular we indicated withP the predicted covariance
P (k | k − 1).

The previous equations allow to compute the Kalman gain
on all the landmarks in the map and on the robot when a
relative observation between theith landmark and the robot
occurs.

Let us consider now the closing loop problem and let us
suppose that themth landmark was the first one observed in
the loop. This means that all the landmarks in the loop were
introduced into the map after themth landmark. We assume
that the error on themth landmark is zero (i.e the matrixPmm

is the null matrix). This corresponds to put a new reference
frame on this first landmark. Our assumption implies that also
each block elementPmj is null.

When the loop is closed, namely themth landmark is
observed again, the Kalman gain can be computed for each
map element starting from the equations (10) and (11). We
obtain:

PHT
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PjvHT
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...
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PNvHT
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(12)

Sm = HXvPvvHT
Xv

+ Rm (13)

where the line with0 in (12) corresponds, clearly, to the
Kalman gain on themth landmark perfectly known at the
beginning.

From the two previous equations it is possible to conclude
that, in order to use the information coming from the observa-
tion at the closing loop, it is sufficient to maintain at each time
step the blocks in the covariance matrix containing the robot
(Pvv andPvj). In theAMF it is not possible to separate these
blocks from the rest of the covariance matrix in (2). Indeed,
from (7) it is possible to see that the update forPvv andPvj

requires the update of the other blocks. In II-B we suggest an
approximated method to update onlyPvv andPvj .



B. Approximated Solution

The motion of the robot can be described through the uni-
cycle model, i.e. through the following differential equations:

ẋv = vcosθv (14)

ẏv = vsinθv (15)

θ̇v = ω (16)

where the knowledge of the robot configuration at a given
time and of the functionv(τ) andω(τ) are required to know
the robot configuration at a subsequent time. Let us suppose
that at the timet∗ the robot configuration is[x∗, y∗, θ∗]

T . By
integrating the equations (14-16) we obtain for the timet (t >
t∗):

xv(t) = x∗ + A(t, t∗)cosθ∗ − B(t, t∗)sinθ∗ (17)

yv(t) = y∗ + A(t, t∗)sinθ∗ + B(t, t∗)cosθ∗ (18)

θv(t) = θ∗ + K(t, t∗) (19)

where

K(t, t∗) = Ω(t) − Ω(t∗) (20)

A(t, t∗) = cosΩ(t∗) [C(t)− C(t∗)]+ (21)

+ sinΩ(t∗) [S(t)− S(t∗)]

B(t, t∗) = cosΩ(t∗) [S(t)− S(t∗)]− (22)

− sinΩ(t∗) [C(t)− C(t∗)]

and

Ω(t) =
∫ t

t0

ω(τ)dτ (23)

S(t) =
∫ t

t0

v(τ)sinΩ(τ)dτ (24)

C(t) =
∫ t

t0

v(τ)cosΩ(τ)dτ (25)

wheret0 can be any time beforet∗.
From the equations (20-25) it is possible to expressA(t, t∗)

andB(t, t∗) as functions of the robot translations (v(τ)dτ ) and
rotations (ω(τ)dτ ) occurred aftert∗. We have:

A(t, t∗) =
∫ t

t∗
v(τ)cos

(∫ τ

t∗
ω(τ ′)dτ ′

)
dτ = (26)

=
∫ t

t∗
v(τ)cosK(τ, t∗)dτ

B(t, t∗) =
∫ t

t∗
v(τ)sin

(∫ τ

t∗
ω(τ ′)dτ ′

)
dτ = (27)

=
∫ t

t∗
v(τ)sinK(τ, t∗)dτ

The AMF estimates at each time step the robot configura-
tion. From two subsequent robot configurations it is possible
to obtain the robot translation and the robot rotation occurred
during the considered step. Since these displacements are shift
and rotation invariant, in some cases it can be reasonable to
assume that they are independent of a landmark previously
observed by the robot. This assumption is obviously an ap-
proximation. However, when this landmark is very far from
the robot this assumption is satisfied. Therefore, a distanceD
is introduced: when the distance between the robot and the
landmark is larger thanD the approximation is valid. Clearly,
the parameterD depends on the parameters characterizing the
robot sensors, both exteroceptive and proprioceptive.

If we use the previous approximation, in order to maintain
the block elementPvv, it is not necessary to implement the
fully correlated AMF (i.e. update all theN2 correlations
among the landmarks). Indeed, the same result can be achieved
if, at each step, only the landmarks whose distance from the
robot is smaller thanD are included in theEKF . We call
this EKF the Local SLAM (LSLAM ). Due to its locality,
the complexity ofLSLAM does not depend on the number
of landmarks.

In section II-A we showed that to use the information
coming from the observation at the closing loop, it is necessary
to know bothPvv andPvj . In the following, we provide the
expression for the latter (sinceLSLAM provide automatically
the former).

Let us indicate withtj the time when the distance between
the robot and thejth landmark is equal toD. This means
that, starting fromtj , the robot translation and the robot
rotation estimated throughLSLAM are independent of the
jth landmark. The robot configuration at the timet is given
by the equations (17-19) wheret∗ = tj . Since the quantities
A(t, tj), B(t, tj) andK(t, tj) contain only the displacements
estimated throughLSLAM after tj (see the equations (26),
(27) and (20)), they are independent of thejth landmark.
Therefore,Pvj can be easily obtained by linearizing (17-19)
in [x∗, y∗, θ∗]

T = [x(tj), y(tj), θ(tj)]
T . We obtain:

Pvj = F (t, tj) Pvj(tj) (28)

where Pvj(tj) is the covariance at timetj estimated by
LSLAM and the matrixF (t, tj) is the Jacobian of the
function in (17-19) in[x(tj), y(tj), θ(tj)]

T

F (t, tj) = (29)



=




1 0 −A(t, tj)sinθ(tj)−B(t, tj)cosθ(tj)
0 1 A(t, tj)cosθ(tj)−B(t, tj)sinθ(tj)
0 0 1




By using these last equations it is possible to computePvj .
The computation requires to update the function in (23-25).
Therefore, the complexity is independent of the number of
landmarks.

III. C OMPUTATION OF THECORRELATIONS WITHOUT

L INEARIZATION

The computation carried out in the previous section is based
on two approximations: the former is the introduction of the
LSLAM instead of theAMF . The latter is the linearization.
This second approximation is present also in theAMF .
Indeed, theAMF is based on theEKF which requires to
linearize the equations characterizing the dynamics and the
observation of the system [2]. The problems arising from this
linearization are not negligible forSLAM (see for example
[3]).

In the following we compute the blockPvj by avoiding the
linearization. We will show that the result depends dramati-
cally on the error on the robot orientation. On the other hand,
the error in the orientation is the element(3, 3) in the block
Pvv. This last covariance is estimated throughLSLAM .

We have

Pvj ≡
〈[

x̃(t), ỹ(t), θ̃(t)
]T

X̃j

〉
(30)

where we indicate with̃ the error on the corresponding
quantity (that is the difference between the true (unknown)
value and its estimated mean value).

To proceed we have to use the equations (17-19) witht∗ =
tj and [x∗, y∗, θ∗]

T = [x(tj), y(tj), θ(tj)]
T . We obtain for the

three lines ofPvj respectively:
〈
x̃(t)X̃j

〉
=

〈
x̃(tj)X̃j

〉
− (31)

−A(t, tj) sinθ(tj) ℵ −B(t, tj) cosθ(tj) ℵ
〈
ỹ(t)X̃j

〉
=

〈
ỹ(tj)X̃j

〉
+ (32)

+A(t, tj) cosθ(tj) ℵ −B(t, tj) sinθ(tj) ℵ
〈
θ̃(t)X̃j

〉
=

〈
θ̃(tj)X̃j

〉
(33)

where the quantities
〈
x̃(tj)X̃j

〉
,

〈
ỹ(tj)X̃j

〉
and〈

θ̃(tj)X̃j

〉
are the three lines of the matrixPvj(tj)

(estimated byLSLAM ) and ℵ indicate the following mean
value:

ℵ =
〈
sinθ̃(tj) X̃j

〉
(34)

The previous result is obtained by observing that〈
cosθ̃(tj) X̃j

〉
= [0, 0] since the functioncos is an even

function. Regarding the integral appearing in (34) we obtain
through a direct computation [10]:

ℵ =
〈
θ̃(tj) X̃j

〉
exp

[
−σ2

θ(tj)
2

]
(35)

whereσ2
θ(tj) is the error in the robot orientation at the time

tj .
By comparing equations (28-29) with the equations (30-35)

we note that the linearization approximates the exponential
term in (35) with1. This results in an overestimation on the
blocks Pvj and consequently, the corrections at the closing
loop on all the map elements, will be erroneous because
actually a not negligible amount of the information is lost.
When the exponential term is included, the corrections will
be smaller.

IV. RESULTS AND DISCUSSION

In this section we compare the results obtained by using
the AMF with the approximated solution introduced in II-
B. Since the aim is to point out the differences among the
previous approaches for the estimation at the moment when
the loop is closed, the simulations are more appropriate than a
complete experiment. However, in order to validate the overall
performance a complete experiment would be necessary.

A. Simulated Environment

In our simulated experiment the data coming from the
encoder sensors were delivered at the frequency of1KHz, in
agreement with the experiments carried out on real platforms
in our laboratory (e.g. [1]). The simulated robots are equipped
with a differential drive system. We adopted the same odome-
try error model introduced in [4] where the actual translation
of the right and left wheel at a given time step is assumed to be
a gaussian random variable satisfying the following relation:

δρR/L = δρ
R/L

+ νR/L (36)

δρ
R/L

= δρeR/LδR/L (37)

νR/L ∼ N(0,KR/L|δρeR/L|) (38)

In other words, bothδρR and δρL are assumed to be
gaussian random variables, whose mean values are given by
the encoder readings (respectivelyδρeR and δρeL) corrected
for the systematic errors (which are assumed to increase
linearly with the distance travelled by each wheel), and whose
variances also increase linearly with the travelled distance.
Furthermore, it is assumed thatδρR andδρL are uncorrelated.
In our simulation we adoptedδR = δL = 1 (i.e. encoders
perfectly calibrated) andKR = KL = 5 10−5m (that is the
value experimentally estimated for our robot in our laboratory,
[8]).

The exteroceptive sensor provides the bearing angles and
the distances of the6 landmarks closest to the robot. The
frequency for this simulated sensor is1Hz. The errors on
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Fig. 1. The simulated experiment. The lines represent the robot trajectories;
+ represent the landmark positions. The unities arem.

the bearing and the distance are independent and respectively
with the variances:σ2

b = (1o)2 andσ2
d = (0.02m)2. The robot

speed is0.2m/s.
In the simulated experiment, the robot moves along a

circumference. The number of landmarks is30. The motion
of the robot is interrupted when the first landmark is observed
again after the loop. The trajectory and the landmarks are
displayed in figures 1. The length of the path followed by
the robot is50m.

Instead of introducing the distanceD introduced in II-B to
define the locality ofLSLAM , we characterize this locality by
fixing the maximum number of elements for the state estimated
throughLSLAM . In particular, this state contains the closest
10 landmarks to the robot.

B. Results

In the figures 2 and 3 we plot the mean error on the
estimated landmark positions vs the distance travelled by the
robot. We do not observe any relevant difference among the
two approaches before and after closing the loop. In particular,
the final error is slightly smaller in the case of theAMF .
However, the difference is smaller than2%. All the solutions
are able to reduce enormously the error in the estimation.

V. CONCLUSIONS

In this paper we presented the computation of the correction
of the map when a robot closes a loop. The computation is
carried out for three different methods based on the stochastic
map approach. The first is the standardEKF solution of
SLAM which updates a fully correlated covariance ma-
trix, namely with a computational requirementO(N2). The
second one is an approximation of the standard approach
which updates only the correlations among landmarks close
to each other. For this approximation we suggested a method
to compute the correlations between the robot and all the
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Fig. 2. The mean error on the landmarks in the simulated experiment,
obtained by adopting theAMF . ∗ indicates the error after the loop.
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Fig. 3. The mean error on the landmarks in the simulated experiment,
obtained by adopting the solution introduced in II-B.∗ indicates the error
after the loop.

landmarks needed to propagate the correction along the loop.
The computational requirement of this method is independent
of the number of landmarks.

Finally, we compute for the same approximated solution the
correlations by avoiding the linearization (which characterizes
the Extended Kalman Filter and therefore the standard solu-
tion). This computation points out a very important result:
the correlation between the robot and the landmarks are
overestimated by the standard solution. In particular, the true
correlation decreases exponentially with respect to the heading
error of the robot.

The simulations confirm the results stated in the previous
sections, namely that the approximated solution performs
similarly to the standard one.
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