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Abstract—We improve the method in [1] for increasing the
finite-lengh performance of polar codes by protecting specific,
less reliable symbols with simple outer repetition codes. Decoding
of the scheme integrates easily in the known successive decoding
algorithms for polar codes. Overall rate and block length remain
unchanged, the decoding complexity is at most doubled. A
comparison to related methods for performance improvement of
polar codes is drawn.

I. INTRODUCTION

Polar coding is known as a channel coding construction
that is able to achieve the capacity of many symmetric discrete
memoryless channels under low-complexity O(N log N) en-
coding and successive decoding [2]. Unfortunately, the error
performance of polar codes for finite block lengths is quite
moderate. The key feature of polar coding – when compared
to other existing channel block coding schemes – clearly lies in
its low decoding complexity. Therefore, the trade-off between
computational complexity and error performance for polar
codes is of interest, i.e., the development of efficient meth-
ods that allow for better performance at moderate additional
complexity.

Optimizing the decoding algorithm for polar codes has
been the subject of various work, e.g. [3], [4] and has led
to substantial improvements. Though, apart from the decoder,
the code itself leaves room for improvement as well.

To this end, we propose a modified polar code construction
by means of a serial concatenated scheme with the polar
code used as an inner code. In contrast to many existing
concatenation schemes based on polar codes as inner codes
(as considered, e.g., in [5], [6], [7]), we focus here on coding
schemes that do not change overall rate and block length,
thus facilitating a pure trade-off of complexity and error
performance. The approach is based on our prior attempt [1]
where block codes of small dimension were chosen as outer
codes. In this paper we show that – by an efficient and
systematic design – an equivalent, significant performance gain
is achieved by protecting an inner polar code with only one-
dimensional outer codes, i.e., repetition codes, resulting in an
quite smaller increase of complexity. Furthermore, we relate
the results to methods where the decoder is modified instead
of the code.

The paper is organized as follows: After a brief review on
polar codes and their decoding strategies in Sec. II, we describe
our concatenated code construction in Sec. III, followed by

simulation results in Sec. IV and some conclusive remarks in
Sec. V.

II. POLAR CODES AND THEIR DECODING

A. Code Construction

Since the concept of polar coding is widely known, we only
give a brief overview, focussing on the aspects of importance
for this paper. We follow the original approach in [2] where
the generator matrix is chosen as a subset (indexed by A) of
the rows of the binary matrix

GN = F ⊗n , F =

[
1 0
1 1

]
(1)

with n = log2 N and ⊗n denoting the n-th Kronecker power.

Under successive decoding, the transmission of the partic-
ular source symbols ui may be described by their own binary-
input channels (bit channels) which show a polarization effect
in the sense that their capacities are almost all either near 0 or
near 1. These capacities – or equivalently, the corresponding
failure probabilities pe(i)) – can be easily determined. The
channels with high capacities are chosen to form the set A
whereas the residual channels (frozen channels) transmit fixed
values that are known to the decoder.

B. Successive Decoding

In the successive cancellation (SC) decoding approach [2],
estimates ûi on the source symbols ui (i ∈ A) are calculated
successively, according to the recursion formula

ûi := argmax
b∈{0,1}

{
Pr

(
Ui = b|Y , Û0 · · · Ûi−1

)}
. (2)

Thus, in each step i the decoder checks which of the possible
two values for ui is more likely, given the received vector y as
well as the sequence û0 · · · ûi−1 of data symbols already de-
cided in the previous steps. Due to the special structure of GN ,
the calculation of the probabilities in (2) can be implemented
in an FFT-like fashion, resulting in a low O(N log N) overall
decoding complexity. With increasing SNR, the performance
of the SC algorithm is known to converge to that of an
optimum Maximum-Likelihood (ML) decoder. The decoding
process as a path search is illustrated in Fig. 1a).

The word error performance under SC decoding can be
precisely determined. It is given by the term

WERSC = 1 −
∏

i∈A
(1 − pe(i)) (3)
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Fig. 1. a) SC decoding. b) Successive list decoding (list size L = 2).
Bold face lines: Inspected (and tentatively selected) paths in the SC decoding
process. Dashed lines: Inspected but discarded paths. Thin lines: Never
inspected paths.

where pe(i) denotes the probability of a wrong decision at
stage i of the decoder provided that all previous decisions have
been correct. From (3) it is clear that for an optimal code
construction, A should consist of the bit channels with lowest
failure probabilities pe(i).

C. Successive List Decoding

As an improved version of the SC decoder for increased
performance in the low-SNR regime, list decoding for polar
codes has been proposed [3]. The successive list decoder does
not take hard decisions on the ui immediately. Instead, both
possible values are examined in separate decoding branches,
and the corresponding likelihood values are determined. If
the number of branches exceeds a certain design parameter
L (the list size), the least probable branches are discarded, as
examplary visualized in Fig. 1b) for L = 2. The complexity
of decoding scales linearly with the list size L and is of order
O(LN log N). Note that only the decoder is modified here
while the code does not change.

In an extended version of the above-mentioned paper [8],
the authors propose a serial concatenation scheme with an
inner polar code and a very high-rate outer CRC (cyclic redun-
dancy check) code. Decoding for this scheme is accomplished
in two steps: First, the successive list decoder generates a list
of L possible codewords. After that, the CRC sums for each
entry of the list are calculated in order to check for the correct
codeword. By this means, correct decoding is possible in
principle even when another polar codeword in the list belongs
to a more likely path, enabling successful decoding beyond the
performance of an ML decoder for the inner polar code alone –
as long as the correct codeword is part of the output list. It has
been shown [8] that by this means, a significant performance
gain is achieved.

III. CONCATENATED CODE CONSTRUCTION

Here, we follow a different approach based on the varying
bit channel capacities under successive decoding. The pro-
posed coding scheme follows the conventional serial concate-
nation principle where the source symbols are first encoded by
an outer code, followed by an inner encoding. Thus, the overall
rate is given as R = RoRi with Ro and Ri being the rate of
outer and inner code, respectively. In our approach, outer and
inner code are decoded jointly by a single algorithm.

The generator matrix G of a (N, K) polar code constructed
in the conventional way may be represented as

G = P A · GN (4)
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Fig. 2. Failure probabilities pe(i) for a polar code (R = 1/2, N = 256, BI-
AWGN channel at Es/N0 = −0.5 dB). Gray circles: original code. Markers:
concatenated code. Red lines: Repetition blocks of outer code.

where P A is a (K × N) projection matrix with rows built
from the i-th unit vectors of length N (i ∈ A, |A| = K). We
now aim to construct an optimized generator matrix of equal
dimensions by a serial concatenation of the form

G∗ = Go · (P A∗ · GN ) (5)

based on an enlarged set of channel indices A∗ with K <
|A∗| ≤ N . The (K × |A∗|) matrix Go serves as a generator
matrix of a suitably chosen outer code 1.

In the following, we demonstrate the code construction by
means of an example considering a rate-1/2, length-256 polar
code.

A. Inner Code Design

The gray circles in Fig. 2 show the failure probabilities
pe(i) of the bit channels after transmission over a binary-
input AWGN channel at Es/N0 = −0.5 dB. The black line
corresponds to the design rate R = 1/2 of the original code.
The indices i with pe(i) below this threshold form the set A.

For construction of a concatenated code with equal rate
and block length from a given (N, K) polar code, we choose
the inner code as a polar code with same length N but
with a higher rate Ri > R. This is easily accomplished
by enlarging the set A of information symbols, i.e., using
additional (previously frozen) bit channels for transmission to
form the set A∗.

B. Outer Code Design

As can be derived from (3) and Fig. 2, the word error rate
is dominated by a comparatively small fraction of bit channels
close to the threshold. We now aim to protect these least-
reliable bit channels by a suited outer code including some

1While the code is designed to operate inside the successive decoding
process, from the encoding procedure (5) it becomes clear that it serves in
fact as an outer code. In our prior paper [1], the denotation ”inner code“ had
been used from the decoding perspective which indeed is misleading.
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additional (formerly frozen) channels that are provided by the
inner enlarged polar code.

In contrast to our previous approach [1], in this paper we
aim to minimize the additional complexity introduced by outer
decoding which imposes a number of constraints on the code
construction that are explained in the following:

First, we focus on simple one-dimensional codes, i.e., repe-
tition codes. Thus, the outer coding actually consists in setting
some of the source symbols to the same value and building
small sets of combined channel indices from A∗ (repetition
blocks). For further complexity reduction, we require that these
blocks do not overlap (in the sense that the contained indices
do not overlap).

The use of more than one bit channel for transmitting
a single bit of information may be represented by a single
equivalent bit channel (red markers in Fig. 2). We found that
protecting (merging) two channels in this way always leads
to an improvement w.r.t. the first-positioned channel, but not
necessarily when compared to the second one. This is due to
the successive decoding strategy: The decision on a repetition
block is made at reaching the end of the block, like explained
in detail in the next subsection. If already at the first index
of a block a wrong codeword corresponds to the more likely
path, decoding of the following symbols (that are in general
not protected by the outer code) is quite likely to fail, even
when both possible values for the first symbol are pursued.
Therefore, a high misdecoding probability at the first index of
a repetition block has a more fatal influence than an unreliable
decision at the end. Consequently, a repetition block should
always start with the most reliable bit channel. Blocks of
larger length are built in an analog fashion. Here, also the
most reliable bit channel should be put in front.

Finally, the rate of the original code has to be preserved,
which leads to further obvious restrictions on the number of
possible repetition blocks. Finding the optimum from the re-
maining possible outer coding schemes is easily accomplished
by an exhaustive search.

Fig. 2 shows an example of an outer coding scheme
constructed according to the above-mentioned constraints. The
markers represent the bit channels used by the concatenated
code. Here, the repetition blocks are visualized by red lines, the
red markers denote the corresponding equivalent bit channels
while the black markers stand for the unmodified bit channels
of the concatenated code. We remark that further increasing
the rate Ri of the inner code has no significant effect on the
performance.

Clearly, the proposed scheme can easily be extended to
using higher-dimensional outer codes for increased perfor-
mance, as considered in [1], though at the cost of an increased
complexity. Moreover, the results from [1] indicate that the
possible additional gain will not be large.

C. Decoding

For joint decoding of inner and outer code, we apply
the original SC algorithm with a slight modification, only.
Decoding of a received vector starts as usual. Assume now
that two source bits ui and uj are protected by a repetition
code, i.e., ui = uj for some j > i. On reaching stage i,

c c c c c c c c c c c c c c c c

c c c c c c c c

c c c c

c c

c u0
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u2

u3 = u0

u4

Fig. 3. SC decoding of an outer repetition code operating on u0 and
u3. Bold face lines: Inspected (and tentatively selected) paths in the SC
decoding process. Dashed lines: Inspected but discarded paths. Thin lines:
Never inspected paths.

instead of taking a hard decision on ui, the decoder creates
a new branch and tests both possibilities by determining the
sequences

s0 = 〈0, û0,i+1 · · · û0,j−1, 0〉 ,

s1 = 〈1, û1,i+1 · · · û1,j−1, 1〉 .

For decisions on the symbols û0,i+1, . . . , û0,j−1 and
û1,i+1, . . . , û1,j−1, the conventional SC decision rule (2) is
applied. Afterwards, the more likely of the two sequences is
selected:

〈ûi · · · ûj〉 := sb∗ (6)

where

b∗ = argmax
b∈{0,1}

{
Pr

(
Sb = sb|Y , Û0 · · · Ûi−1, Sb

)}
. (7)

The other path is discarded. The decoding scheme is visualized
in Fig. 3 for a simple example code with u0 = u3. Repetition
codes of larger length are decoded in an analog fashion.
Clearly, the decoding complexity is at most doubled since
we exclude overlapping blocks. Furthermore, the decoding of
outer repetition codes in this way can easily be integrated into
improved versions of the SC decoder, e.g., list decoding.

IV. SIMULATION RESULTS

Fig. 4 shows simulation results for polar coding schemes
of block length N = 256 and N = 1024 transmitted over
a BPSK-AWGN channel. The shorter and longer code have
been optimized (according to (3)) for Eb/N0 = 2.5 dB and
Eb/N0 = 2.0 dB, respectively.

Compared to the original, SC-decoded polar codes (blue),
the use of an improved decoder like the successive list decoder
(green) shows an SNR-dependent effect: In the low-SNR
region, significant gains are achieved while for increasing
SNR the performance advantage vanishes. Here, both decoders
perform close to ML decoding.

The proposed scheme (red) leads to an improved perfor-
mance in a similarly efficient way with a complexity compara-
ble to that of a list decoder with L = 2. However, in contrast
to an optimized decoder, it achieves a constant coding gain
of approx. 0.3 dB (0.2 dB for the longer code) over the SC-
decoded code at all SNR regimes. Therefore, at high SNR it
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Fig. 4. Simulation results: BPSK-AWGN channel, polar code block length
N = 256, 1024, rate R = 1/2. Blue: SC decoding. Green: successive list
decoding (list size L = 2, 4). Red: proposed concatenation scheme.

is able to outperform even a list decoder with large list size or
an ML decoder, but with much lower complexity, because the
rate- and length-preserving concatenation yields an improved
code.

V. CONCLUSION

The proposed concatenation scheme may be seen as a
method to overcome the quantization effect when constructing
a polar code that is caused by a hard selection of the bit chan-
nels (each channel is either used for information transmission
or frozen).

As this quantization vanishes with increasing block length
and polarization, the scheme is certainly restricted to polar
codes of short to moderate length. Although the achievable
performance gain is not too large, it comes at very small
additional costs. When used together with an improved polar
decoder, the beneficial effects of both approaches are com-
bined. Furthermore, the proposed scheme can itself be used as
an inner code in other concatenation approaches – at least if
inner and outer decoding are performed separately there like
in [6]. In this case, the coding gain in error performance is
preserved.
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