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Abstract

We perform two dimensional direct numerical simulations ofparticle-driven gravity
currents in a lock-exchange configuration. The fluid is described in an Eulerian framework,
whereas the particles are tracked in a Lagrangian manner. The study is restricted to small,
monodisperse particles in dilute suspensions, allowing toneglect particle-particle interac-
tions and the particle mass in the continuity equation. The momentum equations for the
fluid and for the particles are two-way coupled, whereas the feedback forces of the parti-
cles on the fluid are modeled as point forces. We have considered both, particles with and
without inertia. Further, we also perform simulations describing the particles as a number
density in an Eulerian framework for validation purposes. We evaluate the front position,
the mass of suspended particles, the particle deposit and the energy budget of the system.
All parameters are chosen such to match the lock-exchange simulations by Necker [8] as
close as possible.
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Notation

Roman Symbols

cr
p number of real particles per unit area

E energy
Fr Froude number
G generic filter function
g gravity
g′ reduced gravity
K kinetic energy of the fluid
Kp kinetic energy of the particles
l reference length
L domain lengths
m total mass in the domain
M ratio of real to computational particles
np number of particles
PPC averaged number of particles per cell in the reservoir
Qp kinetic energy leaving the domain due to settling particles
r radius
Re Reynolds number
Ri Richardson number
St Stokes number
t time
u fluid velocity
v dispersed phase velocity
V volume
wp function which equals unity within a particle
x fluid position vector
y particle position vector

Greek Symbols

δ Kronecker delta or Dirac delta function
ǫ dissipation rate
φ volume fraction
µ dynamic viscosity
ν kinematic viscosity
ρ density
τ timescale
Ω domain

Superscripts

c computational
r real

v



s suspension reservoir

Subscripts

0 initial
1, 2, 3 coordinate directions
b buoyancy
c cell
d dissipated by the resolved fluid scales
f front
K Kolmogorov
pot potential
re f reference
res reservoir
s settling/ dissipated by microscopic Stokes flow
p particle

Accents
˜ dimensional

vi



1 Introduction

Particle-driven gravity currents are a special class of gravity currents where the density differ-
ence stems from a differential loading of particles [9]. The driving force is the Boussinesq force
of the suspended particles which have a higher density than the carrier fluid. Typical examples
of particle-driven gravity currents in geophysical situations are turbidity currents in lakes and
oceans and powder snow avalanches [8]. Turbidity currents play an important role in erosion
processes and sediment transport, whereas snow avalanchesare a safety issue. In both cases,
prediction of the speed and the run-out length of the currentare of practical interest [9]. Often,
simplified integral models or theoretical approaches are used for such predictions, and often
these models and approaches contain empirical tuning parameters which are determined from
comparison with laboratory experiments of prototype configurations [9]. Whereas the front-
speed and the height of particle-driven gravity currents can be monitored relatively easy in
experiments, detailed features such as the velocity and theparticle distribution within the front
are difficult to measure accurately [9].

To get a more circumstantial insight into the front, Necker [8] has performed high-resolution
simulations resolving all turbulent scales of particle-driven gravity currents in a plane channel.
He considers small particles with negligible inertia in dilute suspensions. This allows to treat
the particulate phase as a particle-number density with thevelocity given by the fluid velocity
superimposed by the constant settling velocity in the direction of gravity. As the velocity field
of the fluid is divergence free due to incompressibility, thevelocity field of the particulate phase
is divergence free as well, obviating the accumulation of particles. The feedback force of the
particulate phase on the fluid is modeled with the Boussinesqapproximation. Due to the usage
of a constant settling velocity for the particulate phase relative to the fluid velocity, the analysis
is limited to particles with very small Stokes numbers.

Bosse [3] has performed direct numerical simulations (DNS)of dilute, heavy particles set-
tling in homogeneous turbulence, whereas the particles aretreated in a Lagrangian manner. The
focus of the study is on the effects of two-way coupling on the turbulence modulation and onthe
enhancement of the particle settling velocity. The latter has been shown to be under-predicted
in the one-way coupling case when compared to experimental data [1] [3]. Bosse [3] has found
that for a particle-fluid combination withSt ≈ 1 and

(

ρ̃p/ρ̃
)

∼ 103, a turbulence modification
can be observed for particle volume fractionsφ & 10−5 [3].

In this thesis, we tie in with the study by Necker [8], in particular with the lock-exchange
configuration in a plane channel. The initial situation of the generic problem considered is
illustrated in figure 1. To overcome the limitation to very small Stokes numbers, we use a
Lagrangian description for the particles as used by Bosse [3].

In section 2, we derive the governing equations of the problem, describe the numerical
method and derive the integral quantities such as the energybudget of the domain. In section 3,
we present simulation results for particles with negligible inertia using the Eulerian concentra-
tion and the Lagrangian particle approach and results for particles with inertia. Section 4 closes
with concluding remarks and possible future work.



x̃3

L̃3 = L̃s
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Figure 1: Sketch of the initial situation in a plane channel of length L̃1, width L̃2 and height̃L3.
The shaded area illustrates the suspension reservoir (length L̃s

1, width L̃s
2 = L̃2, heightL̃s

3 = L̃3)
filled with particle-laden fluid. The remaining part of the channel contains clear fluid. Gravity
acts in the negative ˜x3 direction.
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2 Simulation approach

2.1 Governing equations

We consider small (i.e. smaller than the smallest flow scales), spherical, monodisperse particles.
We only consider dilute suspensions, so the maximum particle volume fraction never exceeds
φmax . 10−3. This allows to neglect particle-particle interactions [3] [4] and the particle mass
in the mass conservation equation, as the coupling between the particle and fluid motion is
dominated by the transfer of momentum rather than volumetric displacement effects [8]. The
mass conservation equation reduces to the continuity equation for an incompressible fluid,

∂ũi

∂x̃i
= 0. (2.1)

Here,ũi and x̃i are the fluid velocity and the coordinate in thei-th direction, respectively, and
we make use of the Einstein summation convention. The tilde is used to denote dimensional
quantities. The particle forces considered are the buoyancy force due to the density difference
and the Stokes drag. Therefore, the momentum equation for each particle becomes

ρ̃p
dṽi

dt̃
=

6πr̃µ̃

Ṽp

(ũi − ṽi) − g̃
(

ρ̃p − ρ̃
)

δi3, (2.2)

whereρ̃p is the density of the particle, ˜vi is the particle’s velocity in thei-th direction, ˜r andṼp

are the particle’s radius and volume, respectively, ˜g is the gravitational acceleration, ˜µ andρ are
the fluid’s viscosity and density, respectively, andδ is the Kronecker delta.

By only considering particles which are much smaller than the smallest flow scales, we
can treat the feedback forces of the particles on the fluid as point forces [3]. Therefore, the
momentum equation for the fluid can be written as

ρ̃
Dũi

Dt̃
= − ∂p̃
∂x̃i
+ µ̃

∂2ũi

∂x̃m∂x̃m
− 6πr̃µ̃

Ṽp

nr
p∑

j=1

(

ũi − ṽi, j

)

w̃p

(

x̃ − ỹ j

)

(2.3)

wherex andy j are the coordinate vectors of the fluid and thej-th particle, respectively,vi, j is
the i-th component of thej-th particle’s velocity vector and the function ˜wp(ξ̃) equals unity if
|ξ̃| ≤ r̃ and zero otherwise.

By introducing a reference lengthl̃ and a reference velocity ˜ure f , we can non-dimensionalize
our conservation equations (2.1), (2.2), and (2.3) by multiplying them byl̃/ũ2

re f , l̃/(ρ̃pũ2
re f ), and

l̃/(ρ̃ũ2
re f ), respectively. Hence, we obtain

∂ui

∂xi
= 0, (2.4)

dvi

dt
=

1
St

(ui − vi − usδi3) , (2.5)

and

Dui

Dt
= − ∂p
∂xi
+

1
Re
∂2ui

∂xm∂xm
− Ri

us

1
φ0

nr
p∑

j=1

(

ui − vi, j

)

wp

(

x − y j

)

, (2.6)

3



wherewp(ξ) equals unity for|ξ| ≤ r and zero otherwise, hence is the dimensionless analogon to
w̃p, and we introduce the dimensionless parameters

Re =
ũre f l̃

ν̃
, (2.7)

St =
2
9

ρ̃p

ρ̃

r̃2

ν̃

ũre f

l̃
, (2.8)

Ri =
g̃′l̃

ũ2
re f

, and (2.9)

us =
StRi
φ0(ρ̃p/ρ̃)

. (2.10)

We use the same characteristic units as Necker [8], namely half the domain height and the
buoyancy velocity, i.e.

l̃ =
L̃s

3

2
and (2.11)

ũb =

√

g̃′l̃, (2.12)

whereg̃′ is the reduced gravity defined as

g̃′ = φ0
ρ̃p

ρ̃

(

1− ρ̃
ρ̃p

)

g̃. (2.13)

φ0 is the initial particle volume fraction in the reservoir. Given our characteristic units, the
Richardson number equals unity by definition. But we still keep it in the equations for general-
ity.

As the particles are monodisperse, we can express the particle volume in two different ways,
namely as

Vp =
4
3
πr3 (2.14)

and

Vp =
φ0Vres

nr
p0

. (2.15)

These two expressions are equal, and using the relations (2.7) - (2.10) we obtain the initial
number of particles in the reservoir for a given particle volume fraction,

nr
p0 =

3Vres

4π
√
φ0

(

2ReRi
9us

)3/2

. (2.16)

In order to discretize the feedback force in equation (2.6),we must substitutewp for a filter
functionG(ξ). We can do this by integrating the feedback force over a cellvolume and dividing
by the cell volume. Aswp is zero except inside the particle, the velocity difference takes the
value of the velocity difference at the position of the particle as the particle is muchsmaller
than the smallest flow scales. The integration ofwp equals the particle volume. The resulting
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expression is amended by the desired filter function under the condition, that the filter function
G integrated over the domain equals unity. Hence we obtain

Dui

Dt
= − ∂p
∂xi
+

1
Re
∂2ui

∂xm∂xm
− Ri

us

Vres

Vc

1
nr

p0

nr
p∑

j=1

(

ui − vi, j

)

G
(

x − y j,∆
)

, (2.17)

whereVc is the cell volume,nr
p0 the initial number of physical particles in the reservoir,∆ the

filter width vector of the filter functionG, and we use relation (2.15) to substitute the particle
volume. Our governing equations for particles with arbitrary Stokes numbers are equations
(2.4), (2.5), and (2.17).

One part of validating our code is to compare our results to the findings by Necker [8], i.e.
to do simulations of particles with negligible inertia, i.e. small Stokes numbers. For this case,
the momentum equations for the particles (2.5) and for the fluid (2.17) can be simplified. The
homogeneous solution to equation (2.5) for a constant fluid velocity is an exponential decay,
and a particular solution is the right hand side set to zero and solved forvi. The analytical
solution becomes

vi = Ae−t/St + ui − usδi3 for ui = const., (2.18)

whereA is some constant to meet the initial condition. The solutiondecays exponentially to-
wards the particular solution. If the time constantSt is much smaller than the smallest timescale
of the flow, the particle’s velocity approaches the particular solution much faster than the fluid
velocity changes. Thus, forSt ≪ 1, the momentum equation for the particles can be simplified
to

vi = ui − usδi3. (2.19)

Plugging in the expression for the particle velocity (2.19)into the momentum equation for the
fluid (2.17) gives us the simplified equation for particles with negligible inertia.

Dui

Dt
= − ∂p
∂xi
+

1
Re
∂2ui

∂xm∂xm
− Ri

Vres

Vc

δi3

nr
p0

nr
p∑

j=1

G
(

x − y j,∆
)

(2.20)

2.2 Numerical method

The governing equations are solved using the IMPACT simulation code by the IFD [7]. IM-
PACT is a massively parallel incompressible Navier-Stokessolver using high-order finite dif-
ference discretization in space on staggered grids. The pressure field is obtained with a multigrid
method. The integration in time is performed with a third-order Runge-Kutta scheme for the
fluid and the particle equations.

At each sub-timestep the fluid velocity has to be interpolated to the particle position in order
to solve equation (2.5) or (2.19). This is done by a trilinearinterpolation from the surrounding
grid points in the 3D and by bilinear interpolation in the 2D case. The filter function in equa-
tions (2.17) and (2.20) is set to the tent function, which forthe 1D case in thei-th direction is
defined as

Gi (ξi,∆i) =






∆i−|ξi |
∆i
, if |ξi| ≤ ∆i

0, otherwise
(2.21)

with the filter width∆i in the i-th spatial direction. For higher dimensions, the tent function is
obtained by multiplying the 1D tent functions in the according directions. For example, the 3D
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tent function can be written asG (ξ,∆) = G1 ·G2 ·G3. The filter widths are chosen to be the local
grid spacings in the accordant directions. This equates to distributing each particle’s feedback
force to the surrounding grid points.

As the necessary number of real particles becomes very large(nr
p0 ∼ 108), we make use

of the concept of computational particles to reduce the required memory and computational
time [3]. Each computational particle represents a cloud ofreal particles and is described by
equation (2.5) or (2.19). By introducing the ratio of real tocomputational particles

M =
nr

p

nc
p

=
nr

p0

nc
p0

, (2.22)

we can modify the feedback force in equation (2.17). The sum is then over all computational
particles instead of over all real particles. As a computational particle representsM real parti-
cles, the feedback force has to be multiplied byM [3]. But this again cancels out if we substitute
nr

p0 by Mnc
p0 in the denominator. Hence we obtain

Dui

Dt
= − ∂p
∂xi
+

1
Re
∂2ui

∂xm∂xm
− Ri

us

Vres

Vc

1
nc

p0

nc
p∑

j=1

(

ui − vi, j

)

G
(

x − y j

)

. (2.23)

Elghobashi [5] analytically derived two criteria for the ratio M in the case of isotropic particle-
laden turbulence. The first criterion ensures that the point-force approximation correctly rep-
resents the local flow properties around a computational particle and gives a restriction for the
particle Reynolds number [3].

Rep =
|ũ − ṽ j|r̃
ν̃

= |u − v j|
(

9φ0usRe
2Ri

)1/2

≤ 1
M

(2.24)

The second criterion ensures that the power spectrum of the two-way coupling source term does
not deviate from the one due to real particles [3].

1 ≤ M ≤ O
(

φη3

r3

)

(2.25)

Here,η is the Kolmogorov length andφ the local volume fraction of the particles.
The boundary conditions for the fluid are chosen to be the sameas used by Necker [8].

The lateral boundaries (i.e. in thex1-x3- and in thex1-x3-plane) are described by symmetry
boundary conditions. The top and bottom of the domain are treated as no-slip boundaries for
the fluid [8]. Particles which cross a boundary are mirrored back into the domain, except at the
bottom where they fall out of the domain to model the settling. Resuspension of particles is not
taken into account, as at the Reynolds numbers considered inthis thesis it is unlikely to happen.
This can be shown using the classical Shields criterion [8].

2.3 Integral quantities

We consider the mass of suspended particlesmp, the front positiony f , the particle deposit, and
the energy budget. The mass of suspended particles is given normalized with the initial mass of
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suspended particles in the reservoir. This is calculated asthe number of particles currently in
the domain divided by the initial number of particles in the reservoir.

mp

mp,0
=

nr
p

nr
p0

=
nc

p

nc
p0

(2.26)

For the front position, we take the maximumx1 position over all computational particles, i.e.

y f = max
1≤ j≤nc

p

y1, j. (2.27)

The particle deposit is evaluated by distributing a settling particle to the surrounding grid points
at the bottom with a 2D tent function.

The energy budget for particle-driven gravity currents consists of the kinetic energy of the
fluid K, the potential and kinetic energy of the particlesEpot andKp, respectively, the dissipated
energy of the resolved flow scalesEd, and the dissipated energy of the microscopic Stokes flow
around the particlesEs. The kinetic energy of the fluid is defined as

K̃ =
1
2
ρ̃

∫

Ω

ũiũidṼ, (2.28)

whereΩ is the entire domain. We non-dimensionalize this by dividing by ρ̃ũ2
bl̃3 and obtain

K =
1
2

∫

Ω

uiuidV. (2.29)

The dimensional potential energy of the particles is definedas

Ẽpot =

nr
p∑

j=1

(

ρ̃p − ρ̃
)

Ṽpg̃ỹ3, j. (2.30)

After non-dimensionalizing and by using the definition of the Richardson number (2.9) and the
expression for the particle volume in the monodisperse case(2.15), we get

Epot =
RiVres

nr
p0

nr
p∑

j=1

y3, j. (2.31)

The dimensional kinetic energy of the particles within the domain is defined as

K̃p =
1
2

nr
p∑

j=1

ρ̃pṼpṽi, jṽi, j. (2.32)

By using the definition of the settling velocity (2.10) and the expression for the particle volume
in the monodisperse case (2.15), we get

Kp =
1
2

St
us

RiVres

nr
p0

nr
p∑

j=1

vi, jvi, j. (2.33)
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For negligible particle inertia, the kinetic energy of the particles vanishes, i.e. it is neglected if
equation (2.19) is solved instead of (2.5).

The dissipated energy componentsEd andEs are derived by summing up the derivatives of
K, Epot, andKp with respect to time. Some terms cancel each other out, showing that one form
of mechanical energy is converted to another. The remainingterms are the derivatives ofEd

andEs. Taking the derivative ofK and using the momentum equation (2.17) to substitute the
derivative ofui, we obtain

dK
dt
=

1
2

d
dt

∫

Ω

uiuidV

=

∫

Ω

ui
∂ui

∂t
dV

= −
∫

Ω

2
Re

sklskldV
︸            ︷︷            ︸

ε(t)

+
RiVres

nr
p0us

nr
p∑

j=1

(

ui, jvi, j − ui, jui, j

)

, (2.34)

whereskl is the rate of strain tensor

skl =
1
2

(

∂uk

∂xl
+
∂ul

∂xk

)

, (2.35)

andε is the dissipation rate of the resolved flow flow scales. Hence, we obtainEd by integrating
ε over time,

Ed (t) =
∫ t

0
ε (τ) dτ. (2.36)

Taking the derivative of equation (2.31) gives

dEpot

dt
=

RiVres

nr
p0us

nr
p∑

j=1

usv3, j, (2.37)

and taking the derivative of equation (2.33) and using the particle momentum equation (2.5) to
substitute the particles’ accelerations gives

dKp

dt
=

RiVres

nr
p0us

nr
p∑

j=1

(

ui, jvi, j − vi, jvi, j − usv3, j

)

. (2.38)

The sum of equations (2.34), (2.37), and (2.38) is the total change in mechanical energy and
therefore the negative change in thermal energy of the system,

d
(

K + Epot + Kp

)

dt
= −ε − RiVres

nr
p0us

nr
p∑

j=1

(

ui, j − vi, j

) (

ui, j − vi, j

)

︸                                   ︷︷                                   ︸

εs(t)

. (2.39)

Here,εs is the dissipation rate of the microscopic Stokes flow aroundthe particles.Ed is ob-
tained by integratingεs over time,

Es (t) =
∫ t

0
εs (τ) dτ. (2.40)
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The time integrations forEd andEs are performed with a second-order trapezoidal method.
In the limit of small Stokes numbers, the kinetic energy of the particles is neglected and the

dissipation rateεs can be simplified using (2.19) to

εs =
RiVres

nr
p0us

nr
pu2

s . (2.41)

We notice, that the only varying quantity in relation (2.41)is the number of particles in the
domain. Using equations (2.26) and (2.40), the Stokes dissipation for particles with negligible
inertia can be written as

Es (t) = RiVresus

∫ t

0

mp (τ)

mp,0
dτ. (2.42)

To assure that the implementation is correct, we check the total change of energy of the
system. Here, it is important that we defineKp as the kinetic energy of the particles within the
domain in equation (2.32). Hence, the kinetic energy flux of the particles leaving the domain is
not included in the above analysis. Physically, this energyis dissipated by the inelastic collision
of the particles and the ground. Formally, we define it as a sink term Qp. If we include this in
the energy balance of the system, then the total energy of thesystem

Etot = K + Epot + Kp + Ed + Es + Qp (2.43)

must be constant over time.
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3 Simulations

We only perform 2D simulations due to time limitations, but the 3D case is implemented as
well. We choose all parameters to match the lock exchange simulations by Necker [8] as close
as possible. All simulations are performed with the following parameters:

Re = 2236 (3.1)

us = 0.02 (3.2)

Ls
1 = 1 (3.3)

Ls
2 = L2 = 1 (3.4)

Ls
3 = L3 = 2 (3.5)

φ0 = 10−4 (3.6)

nr
p0 = 1.869· 108 (3.7)

Necker [8] does not explicitly define an initial particle volume fraction due to the concen-
tration transport equation being normalized with the initial concentration in the reservoir. But
as particle-particle interactions are neglected, it is implicitly assumed that the volume fraction
never exceeds 10−3. As Bosse [3] has observed particle accumulation in homogeneous turbu-
lence resulting in local volume fractions one order of magnitude larger than the initial volume
fraction, we have chosen the valueφ0 = 10−4. From a numerical point of view it is desirable to
chose the volume fraction as large as possible as the initialnumber of necessary real particles
is proportional toφ−1/2

0 , as we can see from equation (2.16). It should be noted that Bosse’s
observation of particle accumulation is for particles withinertia. For the Eulerian concentration
approach with negligible particle inertia, the velocity field of the concentration is divergence
free and accumulation can not occur [8]. For the Lagrangian particle approach with negligible
particle inertia, it is not possible to argue in the exact same manner as the particles are discrete
rather than continuous. But as both approaches aim to describe the same physical situation,
we would expect to find less particle accumulation for the Lagrangian approach with negligible
particle inertia than for the Lagrangian approach with particle inertia, if any at all. This would
allow us to use a larger particle volume fraction in the former case, which would require less real
particles. Still we choose the same initial volume fractionfor both cases for better comparison.

Unless noted otherwise, we use the same domain length as Necker [8], i.e. L1 = 18. For
the grid refinement studies of the particle simulation, we use a shorter domain length ofL1 =

14 to save computational time when using finer grid resolutions and smaller ratios of real to
computational particles. The grid resolution used for the particle simulation is 2049× 513,
unless noted otherwise. The grid is stretched in thex3-direction as illustrated in figure 2 to
account for the larger gradients at the top and bottom boundaries.

Given our parameters (3.1) - (3.7), we can estimate an upper boundary for the ratio of real
to computational particlesM using the criteria (2.24) and (2.25). This estimation should be
treated with caution, as the second criterion is derived only for isotropic turbulence. For an
estimation using the first criterion, we assume the velocitydifference to take the value of the
settling velocityus. This is exact for particles with negligible inertia, and a rough estimation
otherwise.

M1 .
1
us

(

2Ri
9φ0usRe

)1/2

≃ 350 (3.8)
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Figure 2: Illustration of the stretched grid.
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Figure 3: Illustration of the initial particle distribution in the suspension reservoir. Left: Struc-
tured on a fixed grid. Right: Structured on a grid superimposed by noise.

For the second criterion, we assume a maximum local particlevolume fraction of 10−4, which is
the initial volume fraction in the reservoir. For the Kolmogorov scale, we use the two different
values 10−3 and 10−2, which are a rough estimation of typical grid spacings in thedomain as
used by Necker [8].

M2 . O
(

φη3

r3

)

≃





O (0.4) for η = 10−3

O (400) for η = 10−2
(3.9)

There is a large difference between the two values in equation (3.9), whereas thesmaller one
would indicate that we could not make use of the concept of computational particles. We use
M = 100 for most simulations, but also investigate the effect of varying this ratio.

Unless noted otherwise, the particles are initially positioned on a structured grid as illus-
trated in figure 3. Other initial particle distributions presented are on a structured grid super-
imposed by noise of controlled maximum amplitude as illustrated in figure 3 and completely
random.

The time step limit for the numerical integration is controlled by evaluating the CFL condi-
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Figure 4: Comparison of the concentration simulations withthe IMPACT code with grid resolu-
tions 1025× 257 (solid line) and 2049× 513 (dots) with the results by Necker [8] (dashed line).
All simulations use the parameters (3.1) - (3.5), the Schmidt numberSc = 1 and the domain
lengthL1 = 18. The simulation by Necker [8] has a grid resolution of 1440× 221.
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Figure 5: Comparison of the integral quantities of the concentration simulations withSc = 10
(solid line and bottom left) andSc = 1 (dashed line and bottom right).

tion. For particles with negligible inertia, we choose a value of 0.75. For the heavy particles,
the time step limit has to be adjusted to assure stability andwe use a value of 0.5.

For comparisons of the Lagrangian particles with the Eulerian concentration approach, we
also perform simulations with the equations used by Necker [8] with the IMPACT code. Fig-
ure 4 compares our results from the Eulerian approach for twodifferent grid resolutions to the
ones by Necker [8] for the values given in (3.1) - (3.5) and theSchmidt numberSc = 1. The
Schmidt number is defined asSc = ν̃/D̃, whereD̃ is the diffusion coefficient in the dimensional
concentration transport equation. The results for the two simulations with the IMPACT code
only show minor deviations in the front position fort & 20. Apart from that they agree very
well, indicating that the grid resolution for the coarser grid suffices. The results by Necker are
in good agreement with the results obtained with the IMPACT code. Noticeable differences
are that the particles initially settle faster and that the front moves slower for the simulation
performed by Necker.

As we do not have any diffusion for the simulations with the Lagrangian particle approach,
we also perform concentration simulations with the SchmidtnumberSc = 10 to investigate the
influence of diffusion. As a higher Schmidt number means a lower prefactor forthe diffusion
term in the concentration transport equation, we choose a finer resolution (2049× 513) for
the simulation withSc = 10 to resolve the resulting steeper gradients. Figure 5 compares the
integral quantities of the simulation withSc = 10 to the simulation withSc = 1. We can see,
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that the particles settle faster, the front moves more slowly and the potential energy overall is
lower forSc = 10. Further, we see that the dissipation aftert & 10 is dominated by the resolved
flow scales rather than by the microscopic Stokes flow around the particles, i.e.Ed > Es for
t & 10 andSc = 10.

The gain in total energy stems from the diffusion of the solid phase which causes a mean
transport of particles in the positivex3 direction due to the particle concentration mostly being
lower for larger values ofx3. This produces potential energy in the system which physically
would be compensated by a reduction of thermal energy. We do not take this effect into account
for the energy balance. We calculate the total energy gain tobe 3.98 · 10−3 for Sc = 10 and
4.30· 10−2 for Sc = 1. It is lower in the former case as a higher Schmidt number corresponds to
a lower diffusion coefficient.

Figures 6 and 7 both show a sequence of contour-plots of the concentration simulations with
grid resolution 2025× 513 and Schmidt numberSc = 10 andSc = 1, respectively. We can see
that as the particles move down, the front develops and eventually Kelvin-Helmholtz vortices
form. We also see that for the higher Schmidt numberSc = 10, there are much finer structures
in the Kelvin-Helmholtz vortices than for the lower SchmidtnumberSc = 1.

We also performed a simulation withSc = 10 and a grid resolution of 4097× 1025 up till
t = 20. A longer simulation was not feasible. We did not observe any difference in the integral
quantities to the coarser grid up during this period. For comparisons with the particles, we use
the resolution 2049× 513 and the Schmidt numberSc = 10 for the concentration simulation.
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Figure 6: Contour plots of the concentration simulation with Sc = 10. The quantity plotted is
φ/φ0. The plotted range of this value is chosen lower for better comparison with the scatter-plots
of the particle simulation.
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Figure 7: Contour plots of the concentration simulation with Sc = 1.
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3.1 Particles with negligible inertia

Figure 8 shows a sequence of scatter-plots of a particle simulation. Comparing the particle sim-
ulation in figure 8 with the concentration simulation in figure 6, we see a very good agreement
in the front position and height and in the formation of the vortices. An agreement in the shape
of the vortices is hard to determine due to the nature of the scatter-plots, but there seems to be a
qualitative agreement.

Figures 9 and 10 compare the integral quantities of these twosimulations in figures 8 and 6.
We can observe a faster settlement and a lower front speed forthe particle simulation. The
curve for the front position of the concentration simulation in figure 10 dips towards the end.
This is due to the way we determine the front position in the concentration approach. We take
the front position as the maximumx1 value where the local volume fraction normalized with
the initial volume fration in the reservoir exceeds a predefined threshold, which we have chosen
as 0.01. Thus the dips in the curve are due to dilution. A further difference we observe is that
for the particle simulation, more energy is dissipated by the resolved scales and less by the
microscopic Stokes flow around the particles. We can see thisin figure 9 where the two curves
intersect earlier for the particle simulation than for the concentration simulation and from the
final values in figure 10.

These are all differences we also observe in figure 5, where we compare the concentration
simulations withSc = 10 andSc = 1. This indicates that the differences in the integral quan-
tities of the particle and the concentration simulation in figures 9 and 10 could be due to our
Lagrangian particle approach not containing any diffusion.

To investigate the influence of grid refinement and variationof the ratio of real to computa-
tional particlesM, we perform six simulations with the domain lengthL1 = 14 up till t = 20.
The integral quantities are presented in figure 11. We can observe slight variations as we vary
the ratioM, but it is hard to see any regularity. For the finer grid we observe an increase in
Ed compared to the coarser one for allM, which we also observed when we refined the grid in
the concentration approach. Further, we observe a loss in the total energy of the system. We
calculate the relative energy loss of the system att = 20, i.e. (Etot(20)− Etot(0))/Etot(0). For the
coarser grid, this energy loss is 6· 10−3, and for the finer grid 2· 10−3, independent ofM. An
image sequence of scatter-plots of the simulation with the finest grid and the lowest ratioM is
shown in figure 13. Noticeable is that fort ≥ 10, the shapes of the vortices seem to agree worse
with the concentration simulation in figure 6 than the vortices for the particle simulation with
the higher ratioM in figure 8.

While testing the code, we have found that the energy loss of the system is an indicator
for determining whether the grid resolution and the ratioM are sufficient. Figure 14 shows
the relative energy loss att = 3 for very coarse grids and few particles. We can see that the
energy loss depends on both, the grid resolution and the number of particles. This indicates
that the ratioM was chosen sufficiently, but that the solution might still improve for finer grid
resolutions.

The figures 15 and 16 show the deposit att = 2, 4, 6, 8, 10, and 12 and att = 5, 10, 20, and
100, respectively, and the corresponding scatter-plots. The deposit is described in terms of the
number densitycr

p defined as the number of real particles per unit area. Lookingat figure 15,
we see an almost linear decrease incr

p for larger values ofx1 for times t ≥ 6. From this we
can conclude that for an undisturbed front, the deposit at a certain position is proportional to
the time for which this position has been covered with particles∆tcovered. To illustrate this, we
predict the slope of the curves in figure 15. As we do not expectany particle accumulation, we
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Figure 8: Scatter-plots of particles with negligible inertia with domain lengthL1 = 18, grid
resolution 2049× 513 and real to computational particles ratioM = 100. The particles are
color-coded into four groups depending on their initial position.
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Figure 9: Integral quantities of the particle simulation infigure 8 (solid and bottom left) and the
concentration simulation in figure 6 (dashed and bottom right) for 0 ≤ t ≤ 20.

assume the volume fraction of the particles within the frontto equal the initial volume fraction
in the reservoir as long as there is no dilution. And as the fluid can not penetrate the wall, the
velocity of the particles at the wall is the constant settling velocityus in the negativex3 direction.
So we can write

cr
p (x1) =

nr
p0

Vres
us∆tcovered (x1) , (3.10)

where we use equation (2.15) to convert the volume fraction to a number density. From fig-
ure 9, we find an almost constant increase in the front position, i.e. a constant front speed
v f , for 3 . t . 12. From the results of the simulation presented in figure 15,we calcu-
late a mean front speed ofv f = 0.577 for the time period 5. t . 10. For a constant
front speed and as long as the considered position remains covered by particles, we can write
∆tcovered (x1, t) = (max(xcovered(t)) − x1) /v f , where max(xcovered) is the maximumx1-coordinate
covered by particles at timet. This lets us express the derivative of 3.10 as

∂cr
p

∂x1
= −

nr
p0

Vres

us

v f
= −3.241· 106. (3.11)

From the data of the deposit att = 10 in figure 15, we calculate a slope of−3.244 · 106 for
3.7 ≤ x1 ≤ 7.3, which corresponds to the time period used for the calculation of v f . For earlier
times we can see deviations from this slope as the front is still accelerating, and for the curves
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Figure 10: Integral quantities of the particle simulation in figure 8 (solid and bottom left) and
the concentration simulation in figure 6 (dashed and bottom right) for 0≤ t ≤ 100.

at t = 20 andt = 100 in figure 16 a deviation as the front has slowed down again and dilution
occurs. Equation (3.10) also gives us an upper bound for the deposit as the settling velocity is
constant and the volume fraction of the particles can never exceedφ0.

For the curvest ≥ 6 andt ≥ 8 in figure 15, we can see significant drops in the deposit
aroundx1 ≈ 1 and x1 ≈ 3, respectively. This is due to the formation of Kelvin-Helmholtz
vortices, as we can see in the scatter-plots. These vorticescause an entrainment of clear fluid
into the current which dilutes the suspension and hence reduces the deposit. Figure 17 shows
the deposit evolution for the particle simulation withM = 100, the particle simulation with
M = 50 and the concentration simulation. The curves for the particle simulation withM = 100
are much noisier than for the simulation withM = 50. The peak aroundx1 ≈ 2 for t ≥ 8
is highest forM = 100 and lowest for the concentration simulation. This is dueto the dip
before the peak being narrowest forM = 100 and widest for the concentration simulation.
The concentration simulation differs from the particle simulations in terms of that the curves
flatten ascr

p approaches zero and that fort ≥ 6 the small peak right next to the left wall and
the following dip are less distinct. These are both regions of low fluid velocity and therefore
these differences are probably caused by concentration diffusion. Diffusion is also the reason
for the curves being smooth as it evens out the large gradients we get for the noisy sections
of the deposits from the particle simulations. Further, thecurve fort = 2 shows much higher
values than the same curves in the particle simulations.
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Figure 11: Mass of suspended particles and front position for two different grid resolutions and
three different ratiosM.

Figure 18 shows the final deposit for the particle and the concentration simulation att = 100.
For x1 . 5, there is a good agreement in the magnitude and shape of the peaks and dips, but they
appear a little further downstream for the concentration simulation. Forx1 & 5, the shapes do
not agree as well anymore. Overall the concentration simulation deposits more matter further
downstream than the particle simulation, which can be verified by the difference in the mass of
suspended particles in figure 10.

The instantaneous findings for the deposits must be treated with care, as the deposit is sen-
sitive to the initial particle distribution. Figure 19 shows two simulations with the particles
distributed randomly in the reservoir instead of structured as illustrated in figure 3. From the
variation in magnitude and location of the dints and peaks wecan conclude that the Kelvin-
Helmholtz vortices form at different locations and to a different extent. To gain more detailed
insight into the sensitivity, we have performed simulations where we superimposed noise of
varying maximum amplitude on the otherwise structured particle positions, as illustrated on the
right in figure 3. ForM = 100, the distance between the particles on the perfectly structured
grid is 10−3 in both directions, and the amplitude of the noise varies from 10−8 to 10−3. These
simulations, as well as the reference without noise, are performed with a grid resolution of
1025× 257. The final deposits for all simulations att = 100 are shown in figure 20. We can see
that all simulations agree with the reference without noisefor small values ofx1. Further, we
observe that the smaller the noise amplitude, the further the deposit agrees with the reference.
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Figure 12: Energy plots for the same simulations as in figure 11.
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Figure 13: Scatter plots of the simulation with the finest grid (1537x513) and the lowest ratio
M = 50 from the grid refinement study.
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reservoir(PPC) for three different grid resolutions.

After the deposits differ substantially from the reference, there is no strict correlation between
the noise amplitude and the level of disagreement. The earlyevolution of the deposit for the
simulation with the largest noise amplitude is shown in figure 21. We can see that for the earlier
times shown, the deposit agrees well with the reference, andthen differs for the later times for
x1 & 2. Figure 22 shows six selected particle paths for the same simulations as shown in fig-
ure 21. We can see that especially the blue and the yellow curve differ significantly forx1 & 4.
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Figure 15: Deposit evolution and corresponding scatter-plots for the particle simulation in fig-
ure 8 with grid resolution 2049× 513 andM = 100.
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Figure 16: Deposit evolution and corresponding scatter-plots for the particle simulation in fig-
ure 8 with grid resolution 2049× 513 andM = 100.
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Figure 17: Deposit evolution. Top: Particle simulation with grid resolution 2049×513, domain
lengthL1 = 18 andM = 100. Middle: Particle simulation with grid resolution 1537× 513,
domain lengthL1 = 14 andM = 50. Bottom: Concentration simulation with grid resolution
2049× 513 and domain lengthL1 = 18.
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Figure 20: Final deposits att = 100 of the simulations with superimposed noise (solid) and
without noise (points).
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Figure 21: Deposit evolution of the simulation with noise amplitude 10−3 (dashed) and of the
reference without noise (solid).
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3.2 Particles with inertia

Figure 23 shows a sequence of scatter-plots of a particle simulation with St = 0.01, i.e. we
solve the equations (2.5) and (2.17) rather than (2.19) and (2.20) as in the previously presented
particle simulations. We use the grid resolution 2049× 513, the ratioM = 100 and the domain
lengthL1 = 18. We only simulate up tillt = 80 rather thant = 100 like for the particles with
negligible inertia as simulations with particle inertia take more time to run. Figures 24 and 25
compare the integral quantities of this simulation to the simulation of particles with negligible
inertia and identical grid resolution and ratioM shown in figure 8.

Looking at figure 24, we see that in the early stage the mass of suspended particles and
the front position both take similar values for both simulations. In the energy plots, we see
that the phase of fast decrease in potential and fast increase of kinetic energy lasts longer for
St = 0.01. But the kinetic energy of the fluid is lower forSt = 0.01, as the kinetic energy of
the particles is not negligible anymore. After the fast increase, the kinetic energy decays more
slowly. As the kinetic energy of the particles decreases as well and the kinetic energy of the
settling particles is negligible, i.e.Qp is nearly zero, we can conclude that most of the kinetic
energy of the particles is converted into kinetic energy of the fluid. The curves for the potential
and the kinetic energy of the fluid are less wiggly, which could indicate a damping effect due to
the inertia of the particles.

In figure 25 we see that the slopes of the mass of suspended particles and the front position
change later and more abruptly forSt = 0.01. In the energy plots, we see that less energy is
dissipated by the Stokes flow around the particles and more bythe resolved scales, i.eEs is
smaller andEd is larger for the simulation withSt = 0.01. We can also see that we have a
larger energy loss in the system which we have found to be an indicator for a too coarse grid
for the particles with negligible inertia. We calculate therelative energy loss for the simulation
with St = 0.01 att = 20 to be 5· 10−3. This is comparable to the loss for the coarser grid of
the simulations with negligible particle inertia (6· 10−3), where we have found the solution to
improve after refining the grid.

Figure 26 shows a sequence of scatter-plots of a particle simulation with St = 0.1, grid
resolution 2049× 513 and ratioM = 100. It differs substantially from all previous simulations
with smaller particle inertia. The initial column of particles sinks much slower. Later on, the
height of the front is much smaller and we see less Kelvin-Helmholtz vortices forming.

Figure 27 compares the integral quantities of the simulation with St = 0.1 to the simulation
with negligible particle inertia. We see that the suspend particle mass decays much faster. The
front travels slower at first, but then catches up and att = 20 is almost at the same position as
the reference with negligible particle inertia.

In the energy plots, we see that the curves for the simulationwith St = 0.1 are hardly wiggly,
what could confirm our assumption of the particle inertia having a damping effect. The potential
energy initially decays slower than for the reference, but for t & 5 it is lower and att = 20 there
is hardly any potential energy left. A lot more of the potential energy is converted to kinetic
energy of the particles than to kinetic energy of the fluid. Att = 20, the particles hardly have any
kinetic energy and the kinetic energy of the fluid is significantly lower than for the reference.
Instead, more energy is dissipated, especially by the Stokes flow around the particles. We also
see that the kinetic energy of the particles leaving the domain is not negligible anymore, i.e.
Qp , 0.

We also observe that there is a gain in total energy for the simulation with St = 0.1. We
calculate the relative energy gain att = 20 to be 1.4·10−2. Considering the previous simulations
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Figure 23: Scatter-plots of particles with Stokes numberSt = 0.01 with domain lengthL1 = 18,
grid resolution 2049× 513 and real to computational particles ratioM = 100.
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Figure 24: Integral quantities of the particle simulation with St = 0.01 in figure 23 (solid and
bottom left) and the particle simulation with negligible inertia in figure 8 (dashed and bottom
right) for 0≤ t ≤ 20.

with identical grid resolution and ratioM, we have observed an energy loss of 5· 10−3 for the
simulation withSt = 0.01 and of 2· 10−3 for the simulation with negligible particle inertia.
For the grid refinement study in section 3.1, we have found theenergy loss to decrease if the
grid is refined. We find the same to be true for the energy gain for simulations withSt = 0.1,
as illustrated in figure 28 which shows the energy plots for two simulations withSt = 0.1 and
M = 100, but different grid resolutions. If we assume the magnitude of the energy error to make
a statement about how much too coarse the grid is, we can conclude that larger Stokes numbers
require finer grids than smaller Stokes numbers, as for the same grid resolution the magnitude
of the error is smaller for smaller Stokes numbers. Elghobashi and Truesdell [6] have found
a decrease of the Kolmogorov scales for small particles in homogeneous decaying turbulence
due to an increase of the dissipation rate. They have also found this effect to increase for larger
particle response times [6], i.e. for larger Stokes numbers. For the simulation withSt = 0.1, we
find no dependence of the energy gain on neither the time step nor the ratioM.

Figures 29 and 30 show the deposit evolution of the simulation with St = 0.01 and the
corresponding scatter-plots. In figure 29 we see the same almost linear decrease on the right as
in the case with negligible inertia. We calculate the slope according to equation (3.11) att = 10
for 4 ≤ x1 ≤ 6 to be−3.22 · 106 and measure−3.29 · 106. This is a slightly worse agreement
than we find for the particles with negligible inertia.
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Figure 25: Integral quantities of the particle simulation with St = 0.01 in figure 23 (solid and
bottom left) and the particle simulation with negligible inertia in figure 8 (dashed and bottom
right) for 0≤ t ≤ 80.

We also see the first dint forming at the same time as for the particles with neglected inertia,
but it is much narrower. The first peak forms right at the end ofthe reservoir and again is
much narrower than for negligible particle inertia. For thedeposit att = 12, there are more and
smaller peaks to the right of the first large peak atx1 ≈ 1 than for the particles with negligible
inertia. This could be due to more and smaller large scale vortices, which is hard to verify in
the presented scatter-plots. From the final deposit in figure31 at t = 80, we see the effect of
the later and more abrupt change in the slopes of the mass of suspended particles and the front
position aroundt ≈ 20. The last peak appears later and the following drop off is steeper than
for the particles with negligible inertia.

Figure 32 shows the evolution of the deposit for the simulation with St = 0.1 in figure 26.
There is only a minor dip forming aroundt & 8 at the beginning of the domain, followed by a
minor peak downstream. We calculate the slope of the depositat t = 12 for 4≤ x1 ≤ 7 according
to equation (3.11) to be−3.60 · 106, and measure−3.24 · 106. This is a larger deviation than we
find for St = 0.01 and for negligible particle inertia.
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Figure 26: Scatter-plots of particles with Stokes numberSt = 0.1 with domain lengthL1 = 18,
grid resolution 2049× 513 and real to computational particles ratioM = 100.
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Figure 27: Integral quantities of a particle simulation with St = 0.1, grid resolution 2049× 513
and M = 100 (solid and bottom left) and the particle simulation withnegligible inertia in
figure 8 (dashed and bottom right) for 0≤ t ≤ 20.
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Figure 28: Comparing the energy plots of two simulations with St = 0.1 and two different grid
resolutions.
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Figure 29: Deposit evolution and corresponding scatter-plots for the particle simulation with
St = 0.01 in figure 23.
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Figure 30: Deposit evolution and corresponding scatter-plots for the particle simulation with
St = 0.01 in figure 23.
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Figure 32: Deposit evolution and corresponding scatter-plots for the particle simulation with
St = 0.1 in figure 26.
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4 Concluding remarks and future work

We have derived the governing equations for particle drivengravity currents for small, spherical,
monodisperse particles tracked in a Lagrangian manner. We only consider dilute suspensions as
to neglect particle-particle interactions. The equationsare available for particles with negligible
and with inertia. Further, we make use of the concept of computational particles. We have de-
rived the energy budget of the gravity current based on the governing equations. The equations
are implemented in the IMPACT code by the IFD, where we use bilinear interpolation to de-
termine the fluid velocity at the particle position and the tent function to distribute the particle
feedback force on the fluid. We have also implemented algorithms to determine the mass of
suspended particles in the domain, the front position and the deposit. We have performed 2D
simulations with the Eulerian concentration approach for particles with negligible inertia and
with the Lagrangian particle approach for both, particles with negligible and with inertia. The
parameters are chosen in order to match the simulations by Necker [8] as close as possible.

For the concentration approach, we find a good agreement withthe results by Necker [8] for
Sc = 1. By increasing the Schmidt number toSc = 10, we find the particles to settle faster, the
front to travel more slowly, and the dissipation to be dominated by the resolved scales rather
than by the Stokes flow around the particles. ForSc = 10, we find the concentration approach to
agree very well with the Lagrangian particle approach with negligible particle inertia. The slight
differences we observe (i.e. a faster particle settlement, a lower front speed, more dissipation
by the resolved fluid scales and less by the Stokes flow around the particles for the Lagrangian
approach) are the same differences we observe for the concentration approach when we increase
the Schmidt number. Thus we can conclude that these slight differences are most likely due to
the Lagrangian approach not containing any diffusion.

The grid refinement study for the particles with neglected inertia shows that the relative
energy loss of the system is a good indicator to determine if the flow is adequately resolved. For
the very coarse grids with few particles, we find the relativeenergy loss to depend on both the
grid resolution and the ratio of real to computational particlesM. For the finer grid resolutions,
we find no visible dependence of the relative energy loss on the ratioM.

We find that the instantaneous forming of the Kelvin-Helmholtz vortices, especially further
downstream, is highly sensitive to the initial particle distribution in the reservoir. We also find
that these vortices are responsible for the dints and peaks in the deposit plots due to entrainment
of clear fluid into the current. Taking this into account, there is a good agreement in the deposits
for the particle and the concentration approach.

We present two simulations where particle inertia is considered. We find that as the Stokes
number is increased, the relative energy error increases aswell, indicating that larger Stokes
numbers require a finer grid resolution. This is in good agreement with the findings by El-
ghobashi and Truesdell [6]. We also find that the potential energy and the kinetic energy of the
fluid become less wiggly if the Stokes number is increased. Weinterpret this as a damping
effect of the particle inertia. Also, we observe a faster settling of the particles for increasing
Stokes numbers. Compared to the simulations with negligible inertia, the kinetic energy of the
fluid is lower due to the presence of kinetic energy of the particles. We find that as the kinetic
energy of the particles decays, it is mainly converted into kinetic energy of the fluid.

Regarding future work, it would be helpful to determine and write out the local particle
volume fraction. This would simplify the comparison with the concentration approach. For
the particles with resolved inertia, it could be used to check if particle-particle interactions
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are negligible and would help to determine effects of particle accumulation and dilution when
evaluating the results.

For the relative energy loss analysis in figure 14, we find a strong dependence of the energy
loss on the number of particles. It might be interesting to investigate if more sophisticated in-
terpolation schemes for determining the fluid velocity at the particle position and/or a different
filter function for distributing the particle feedback force on the grid of the fluid have a posi-
tive influence on the solution. Balachandar and Maxey [2] investigated different interpolation
schemes and found that for turbulent single particle dispersion, all but the trilinear interpolation
give the same results and propose using Lagrangian interpolation scheme for single particle
statistics due to it being the fastest after the linear interpolation.

From the two simulations with particle inertia, we see some tendencies for increasing Stokes
numbers. But the differences between the results for the two Stokes numbers presented are
significant. For a deeper insight, it would be helpful to perform more simulations with different
Stokes numbers. Especially important would be to determinefor which Stokes numbers we can
neglect particle inertia without hesitation, as this reduces the computational cost significantly.

Our findings are solely based on 2D simulations and should be seen as the groundwork for
3D simulations. These should be performed, and the findings for the 2D case should be verified.
For example, Necker [8] found no influence of larger Schmidt numbers for the concentration
approach, which does not agree with our findings. This could be due to differences in the 2D
and the 3D case.

For particles with negligible inertia, we find the computational cost for the Lagrangian par-
ticle approach to be much higher than for the Eulerian concentration approach, but do not find
any significant differences in the results. If it is found that 3D simulations with particle inertia
are not feasible or not efficient using the Lagrangian particle approach, it could be helpful to
look into different approaches, for example the two-fluid approach as described in [4].
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