
ETH Library

A Light Formulation of the E
Interpolated Path Replanner

Report

Author(s):
Philippsen, Roland

Publication date:
2006

Permanent link:
https://doi.org/10.3929/ethz-a-010113621

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010113621
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Light Formulation of the E∗ Interpolated Path Replanner

Roland Philippsen
Ecole Polytechnique Fédérale de Lausanne, Switzerland

roland.philippsen@gmx.net

June 21, 2006

Abstract

The E∗ algorithm is a path planning method capable of dynamic replanning and user-
configurable path cost interpolation, it results in more appropriate paths during gradient de-
scent. The underlying formulation is based on interpreting navigation functions as a sampled
continuous crossing-time map that takes into account a risk measure. Replanning means that
changes in the environment model can be repaired to avoid the expenses of complete planning.
This helps compensating for the increased computational effort required for interpolation.

1 Introduction

Mobile robot path planning approaches can be divided into five classes [7]. Road map methods
extract a network representation of the environment and then apply graph search to find a path.
Exact cell decomposition methods construct non-overlapping regions that cover free space and
encode cell connectivity in a graph. Approximate cell decomposition is similar, but cells are of
predefined shape (e.g. rectangles) and do not exactly cover free space. Potential field methods [4]
differ from the other four in that they treat the robot as a point evolving under the influence of
forces that attract it to the goal while pushing it from obstacles. Navigation functions are free of
local minima but otherwise similar to potential fields.

Grid or graph based methods such as NF1, A∗ [7], or Dijkstra’s algorithm [1] can be con-
sidered to compute a navigation function constrained to movement choices along graph edges or
discrete transitions between grid cells, they thus produce paths that are not optimal for execution.
Frequently, a smoothing step is performed after planning to alleviate this problem, which yields
unsatisfactory results as it only locally addresses a symptom rooted in the discrete nature of the
path choices during planning.

In order to resolve this problem, we formulate navigation functions as a distance measure in
the continuous domain, and devise an algorithm that computes samples of it. The latter are
located at the nodes of a graph or grid which is embedded in the configuration space C of the
robot [8]. The computation of the samples can be likened to graph search: It starts at the goal
nodes and propagates through adjacent edges, assigning monotonically increasing values to nodes.
The continuous formulation allows us to interpolate “between” edges, which resolves the issue
with movement choices at a more fundamental level than methods that employ post-planning
path smoothing.

2 Related Work

The weighted region path planning problem [9,11] is an approach to produce topologically correct
paths that trade off movement cost against path length. However, the underlying environment
representation is not expected to change, as needed e.g. for planning in dynamic environments
such as mass exhibitions [3] or partially explored outdoor areas where regions are neither static
nor known beforehand.

1

Figure 1: Continuous domain wavefront formulation. A contour sweeps outward from the goal
throughout the environment, taking into account obstacle information. The crossing-time map
can be interpreted as a navigation function: Following its steepest downward gradient will create
an optimal path to the goal.

D∗ [6, 13] is graph based, suffering from the drawbacks mentioned in the introduction. Field-
D∗, a recent extension [2], uses linear interpolation to produce paths that are not constrained
to edges. In many respects, it is similar1 to E∗, which was originally developed in [10] using an
event-based formulation and has been replaced by a more “classical” procedure.

3 Overview of the E∗ Approach

The concept underlying the E∗ algorithm is formulated in the continuous domain independently of
any specific C-space representation. Consider a wavefront that propagates from the goal through-
out the environment (see figure 1): If we record the front’s evolution, we obtain a crossing-time
map that is zero at the goal and monotonically increasing. This makes it suitable for gradient
descent to find the goal from any point in the environment. By modulating the propagation speed
in function of environment characteristics, i.e. the effort of traversing certain regions, we can create
a crossing time map that has a steeper gradient when close to obstacles.

The monotonicity of the crossing-time map stems from the upwind property: The wavefront
can be interpreted as the envelope of all possible locations the robot can reach if it starts on
the goal and always moves with the maximum allowed speed. Like grass fire, this envelope is
ever expanding, which allows us to uniquely determine the region of influence of each location by
tracing the propagation direction. If a location is subsequently modified, it is thus possible to
determine which portions of an existing crossing-time map can be kept intact, and which portions
need re-computation. This is the key to efficient replanning by reducing the effort of incorporating
new environmental information.

4 The E∗ Algorithm

As a method for calculating interpolated navigation functions on graphs (or grids) embedded
in a continuous C-space, E∗ can locally repair an existing navigation function. The elements
that are used to achieve this are presented in the following: A common definition of graph-
based environment models, an ordered queue to ensure appropriate propagation, tracing upwind
information for correctly initializing path cost changes, conditions for interpolation kernels, and a
mechanism for determining the set of nodes that can influence the interpolation.

1The differences and similarities between Field-D∗ and E∗ will be discussed in an upcoming collaborative paper.

2

4.1 Environment Representation

The environment in which the robot evolves is represented as an undirected graph G embedded
in configuration space C. Note that grids fall into this category. Several properties are attached
to the nodes c ∈ G, two of which are relevant for a high-level understanding:

• The value v(c) ≥ 0 represents the sample of the continuous crossing-time map at the node
c, or the “height” of the navigation function. This is similar to the optimal path costs of A∗

or the cell labels of NF1.

• The difficulty or cost of traversing a given configuration is encoded in the traversal effort or
risk r(c) ∈ [0, 1]. A lower r implies a higher speed. Effort is converted to meta information
m(c) to allow for different interpolation kernels, as will be explained below.

Many graph-based planners attach effort (path cost) to the edges of a graph, contrary to the
approach taken here. Our choice is based on the rationale that nodes represent regions of the
environment, and edges encode topological information by linking regions that are adjacent to
each other. The robot spends energy for traversing the regions (i.e. nodes), whereas edges are
transitions in the robot’s representation of localization knowledge, their “traversal” does not incur
movement costs.

4.2 Wavefront Propagation

As in A∗, where it is called open list, the wavefront is a queue of nodes that await expansion,
which is the elementary propagation step from a given node to its neighbors. Planning proceeds
until the wavefront is empty or the node “containing” the robot has been expanded. The wavefront
is ordered by ascending key, which is designed to result in a strictly upwind propagation order.
Similarly to D∗-Lite [6], a one-step lookahead of the crossing time called rhs-value is used in
conjunction with the estimated v(c) to calculate the queue key as min(v(c), rhs(c)). When the rhs
and value of a node equal each other, the node is called (locally) consistent. Wavefront propagation
drives the algorithm towards a state where all nodes are locally consistent.

4.3 Upwind Graph

A∗ uses a spanning tree to trace the path from robot position to goal. E∗ extends this to a
directed upwind graph U with unique edges (c1, c2) ∈ U ⇒ (c2, c1) /∈ U). It allows to retrieve the
upwind set U(c) of nodes that were involved in computing v(c) as well as the downwind set D(c)
of nodes that were influenced by v(c) during interpolation of their value. Thus, all descendants of
a node can be determined if its environmental information subsequently changes, similarly to the
backpointers in D∗.

4.4 Interpolation Kernel

An interpolation kernel k, formally defined in (1), is a function that estimates the crossing-time
value of a node, based on the risk (or effort) of traversing it, in conjunction with the values of its
neighbors.

(u, B) = k(c,Q) (1)

where u is the new value for node c, B ⊆ Q(c) is the set of neighbors used in the computation
of u, and Q(c) is the propagator of c at the time of expansion (2), which ensures that only valid
candidate neighbors are provided to the kernel.

Q(c) = {n ∈ N(c) | v(n) < ∞} (2)

where N(c) is the set of neighbors (adjacent nodes) of c. Nodes with infinite value are either
obstacles or have not been expanded yet, such as after initialization or following an increase in

3

r(c). Q is (partially) ordered by ascending v of the contained nodes: v(Qi) ≤ v(Qj) ∀ i < j where
Qi denotes its ith entry.

It is possible for Q to be empty (Q = {}) or contain a single node (Q = {Q1}). Handling these
cases is part of the required properties for a kernel (3).

(a) u(c,Q) > v(Q1)
(b) u(c,Q) ≤ u(c, {Q1})
(c) u(c,Q = {}) = ∞

(3)

where (a) is the upwind condition that ensures monotonic propagation, (b) signifies that using in-
terpolation yields a lower value than taking a discrete movement choice (which might be necessary
as fallback solution even in the presence of more than one propagator), and (c) formalizes that it
is not valid to propagate unless at least one neighbor is a non-obstacle node which is known to be
reachable.

Another important condition, which is not formalized in (3), is that B must accurately reflect
the information used for the computation of u. This is required such that modifications to the
environment model can be consistently propagated to all concerned nodes.

4.5 The Algorithm

Listing 1 shows pseudo-code for E∗. {gi} is the set of goal nodes, W denotes the wavefront
queue, and key(c) is the key with which c has been inserted into W . Note that D(c) in line 23
has to be copied, because the call to UpdateVertex(d) changes the upwind graph U . Procedure
ComputePropagator(c) applies equation (2), Pop(W) removes and returns the top node from W ,
and TopKey(W) returns the key of the top node or ∞.

5 The LSM Kernel

Early development of E∗ was closely linked with an adaptation of the Level Set Method (LSM) [12]
to mobile robot path planning. The LSM provides a robust grid-based algorithm for calculating
the time-dependent position of an evolving curve. The results of this adaptation are available as
the LSM kernel kLSM in E∗. It is applicable when the C graph G is a four-connected regular grid.
This section starts with an introductory summary of the LSM and the Fast Marching Method,
a special case formulation applicable to path planning [5]. These summaries are necessary for
understanding the expressions for kLSM presented afterward.

5.1 The Fast Marching Level Set Method

The attempt to determine the evolution of a front such as the one in figure 1 by using a pa-
rameterized curve, deriving its normal vector, and moving discrete points of the curve along this
normal, is called the Lagrangian formulation. It presents several drawbacks [12]. A solution lies
in using a Eulerian formulation, which adds a dimension to the problem and then defines the
wavefront as the intersection between a surface and the zero-level of the additional dimension.
This is illustrated in figure 2(b) and equation (4).

Γ(t) : closed (N − 1)D surface
Φ(~x, t) : RN → R
t0 : Φ(~x, t = 0) = ±d(~x,Γ(t = 0))
⇒ Γ(t) = {~x | Φ(~x, t) = 0}

(4)

where Γ denotes the wavefront at instant t, N is the supporting dimension, and Φ is the surface
that is intersected with the zero level to yield Γ. The line labeled t0 indicates that Φ is initialized
to the signed distance from the initial wavefront.

4

Listing 1 Pseudo code of the core procedures in E∗.

procedure Requeue(c)
01 if v(c) = rhs(c)
02 if c ∈W then remove c from W
03 else
04 if c /∈W
05 insert c with key = min(v(c), rhs(c)) into W
06 else if key(c) 6= min(v(c), rhs(c))
07 remove c from W
08 insert c with key = min(v(c), rhs(c)) into W
procedure UpdateVertex(c)
09 if c /∈ {gi}
10 Q← ComputePropagator(c)
11 (rhs(c), B)← k(c, Q)
12 for all u ∈ U(c) remove (u, c) from U
13 for all b ∈ B
14 if (c, b) ∈ U then remove (c, b) from U
15 add (b, c) to U
16 Requeue(c)
procedure Propagate()
17 c← Pop(W)
18 if v(c) > rhs(c)
19 v(c)← rhs(c)
20 for all n ∈ N(c) UpdateVertex(n)
21 else
22 v(c)←∞
23 for all d ∈ D(c) UpdateVertex(d)
24 UpdateVertex(c)
procedure main()
25 initialize rhs(c) = v(c) =∞ ∀c ∈ G
26 initialize goal rhs(g) =true distance ∀g ∈ {gi}
27 initialize W with {gi}
28 while (rhs(crobot) 6= v(crobot)) or TopKey(W) < v(crobot)
29 if W = {} then the goal is unreachable
30 Propagate()

(a) 1D case (b) Eulerian (c) Eikonal

Figure 2: In the Eulerian perspective, the wavefront is interpreted as the intersection between a
graph (b) and the zero-level of an additional dimension Φ. (a) shows the one-dimensional case of
the Eulerian formulation to clarify how equation (5) describes the wavefront’s evolution: In order
to make the intersection move towards the right with speed F , the whole curve Φ has to move
downwards with speed F |∇Φ|. The Eikonal case (c) leads to a simplified formulation of the Level
Set Method that can be solved very efficiently. Notation has changed from Φ to T .

5

The advantage of adding an extra dimension is that topology changes (e.g. merging of a front
after propagation around an obstacle) do not require special treatment, and that numerically stable
methods are available for solving the differential equation that describes the front’s evolution. This
is illustrated in figure 2(a) and equation (5).

∂Φ
∂t

+ F |∇Φ| = 0 (5)

where F is the propagation speed. The LSM can be summarized as follows: Convert the initial
wavefront Γ(t = 0) into a surface Φ(~x, t = 0) by taking the signed distance from ~x to the initial
front; repeatedly solve equation (5); determine the front’s evolution Γ(t) by intersecting Φ(t) with
the zero level. This requires a discrete approximation of the gradient operator ∇, a finite timestep
∆t, as well as some numerical adaptations to make it robust [12].

The Fast Marching Method can be used when the propagation speed is always positive (or
negative) and depends on position only, i.e. the path planning problem we want to solve. This is
called the Eikonal case, which allows efficient computations: It treats Φ as a crossing-time map
and Γ(t) is obtained by intersecting Φ with the level of height t. In order to stress this difference, a
notational change is introduced: Φ becomes T . Figure 2(c) and equation (6) illustrate the Eikonal
case.

F = F (~x) > 0
Γ(t) = {~x | T (~x) = t}
|∇T |F = 1

(6)

where F denotes the propagation speed and the wavefront Γ is the intersection between the
crossing-time map T and a given instant t. Now, T can be built outward starting at T = 0. This
is due to the upwind property, a location is traversed only once by the wavefront, because F ≥ 0.

Given that the LSM is calculated on a grid, a discrete notation is introduced: T (~x) becomes
Tι with ι an N -dimensional index, F (~x) becomes Fι, and ∇ is replaced by the finite difference
D±xi with xi an axis of the grid, resulting in (7) for numerically solving |∇T |F = 1.

N∑
i=1

(
max(D−xiTι, 0)2 + min(D+xiTι, 0)2

)
=

1
F 2

ι

(7)

The Fast Marching Method incrementally solves this equation throughout the grid. This
resembles E∗ but does not provide replanning. By translating (7) into kLSM, the advantages of
the LSM approach can be combined with the replanning capabilities of E∗.

5.2 LSM Kernel Based on Fast Marching

Here we present a two-dimensional implementation of kLSM using a first-order upwind interpolation
scheme for (7). It is trivial to add more dimensions. Equation (8) gives the expressions for D±xi .

D−xTij = (Tij − Ti−1,j)/h

D+xTij = (Ti+1,j − Ti,j)/h

D−yTij = (Tij − Ti,j−1)/h

D+yTij = (Ti,j+1 − Ti,j)/h

(8)

where (i, j) is the grid index, x1 = x, x2 = y, and h is the grid resolution (distance between two
nodes along).

Developing D±{x,y}Tij leads to a quadratic equation with coefficients that take values based on
a switch on the sign and magnitude of the finite difference operators. A brute-force computation
would enumerate all permutations, calculate their resulting T , and then choose the smallest valid
one. However, it is possible to proceed in a more informed manner. A geometric interpretation
helps to determine the terms that will yield the optimal solution prior to interpolating. Figure 3(a)

6

shows the situation, following the development in [5]. The cell in the center is being updated.
Interpolation implies using up to two neighbors, which need to lie on different axes. Without loss
of generality, it can be assumed that the two neighbors leading to the best interpolation are A
and C, and that TA ≤ TC. The update equation becomes (9).

(T − TA)2 + (T − TC)2 = h2/F 2

⇔

{
T = tA = tC

(tA − TA)2 + (tC − TC)2 = h2/F 2
(9)

where T is to be determined, TA and TC are the values of the best neighbors, h is the distance
between two neighbors, and F is the propagation speed at (i, j).

Figure 3(b) shows the overall geometrical interpretation for a given (TC, TA). The two param-
eters tC and tA are interpreted as the axes of a Cartesian coordinate frame. The solutions for (9)
are found at the intersections between the diagonal tA = tC and a circle of radius h/F centered
at (TC, TA).

The max and min operators surrounding D±xiTι in (7) lead to constraints that need to be
added to (9): Either it has a real solution T with T > TC, or a real solution to the degenerate
form (10) with TA < T ≤ TC. In figure 3(b), the degenerate (fallback) solution is equivalent to
the intersection between a horizontal line tA = TA + h/F and the diagonal tA = tC.

(T − TA)2 =
h2

F 2
⇔

{
T = tA = tC

tA = TA + h/F
(10)

Equation (9) has to be solved only if the point (TC, TA+h/F) lies above tC = tA (i.e. the inter-
polating curve in figure 3(b)), and only the higher of the two intersections has to be computed (11).
The final equations for kLSM are given in (12).

T =

{
TA + h/F ⇐ TC − TA ≥ h/F
1
2

(
−β +

√
β2 − 4γ

)
otherwise

β = − (TA + TC)
γ = 1

2

(
T 2

A + T 2
C − h2/F 2

) (11)

(u, B) = kLSM(c,Q)

u = T

B =

{
{Q1} ⇐ TC − TA ≥ h/F

{Q1, Q2} otherwise
TA = v(Q1)

TC =

{
∞ ⇐ Q = {Q1}
v(Q2) otherwise

F = m(c)

(12)

recall that TA ≤ TC and note that F → 0 ⇒ T → ∞. Also note that nodes which do not have
neighbors of type A and C, such as neighbors of obstacles or cells on the grid border, use the
fallback solution TA + h/F .

The LSM kernel maps zero effort r = 0 to the maximum propagation speed Fij,max = 1,
and obstacles r = 1 to Fij = 0. Thus, the meta information for kLSM is the propagation speed:
m(c) = F (c). Note that choosing a unit Fij,max conveniently yields the distance to the goal in
environments that can be modeled as either pure free-space or obstacle.

7

(i, j)
A B

D

C

(a) situation

fallback

interpolating

h/F

T = t = t

T

t

t

T

A

A

C

C

C A

limit

(b) geometrical interpretation

Figure 3: Geometric interpretation of LSM interpolation, (a) shows the node neighborhood. Equa-
tions (9) and (10) can be read as finding the intersection between the line tC = tA and the thick
solid curve labeled interpolating in (b). Two dashed curves illustrate how the interpolation be-
haves when h/F becomes smaller (limit and fallback curves). The small solid circle indicates the
intersection that serves as solution for the interpolating case, and the small dashed circles show
the same for the limit and fallback cases.

Zig-zag map
cell size 0.67 0.37 0.20
kNF1

No dyn. propagations 1’242 3’926 13’627
No replan prop. 2’209 7’279 26’226
gain 43.8 % 46.1 % 48.9 %
kLSM

No dyn. propagations 1’759 6’417 20’260
No replan prop. 2’243 7’337 26’192
gain 21.6 % 12.5 % 22.6 %

Maze map
cell size 0.71 0.38 0.20
kNF1

No dyn. propagations 3’521 11’890 43’836
No replan prop. 6’881 25’463 95’075
gain 48.8 % 53.3 % 53.9 %
kLSM

No dyn. propagations 5’464 18’887 74’880
No replan prop. 8’565 26’880 116’271
gain 36.2 % 29.7 % 35.6 %

Table 1: E∗ replanning performance

8

zig−zag

empty
maze

Figure 4: Evaluation environments: Solid lines denote a-priori known obstacles, dotted lines
indicate obstacles that need to be discovered by the robot during its movement. The empty circle
is the start, and the solid circle the goal. The empty environment is used for determining in which
way the initial goal radius influences the convergence towards the true Euclidean distance. The
zig-zag and maze environments are used to determine the gain from dynamic replanning and to
compare the path smoothness produced by different interpolation methods. The grid resolution
was higher than shown during simulations.

cell size 0.71 0.38 0.20
Zig-zag map
relative burden ρ(NF1) 0.562 0.539 0.520
relative burden ρ(LSM) 0.784 0.875 0.774
ρ(LSM)/ρ(NF1) 1.39 1.62 1.49
Maze map
relative burden ρ(NF1) 0.512 0.467 0.461
relative burden ρ(LSM) 0.638 0.703 0.644
ρ(LSM)/ρ(NF1) 1.25 1.50 1.40

Table 2: E∗ relative computational complexity.

9

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ax

 e
rr

or
 [%

]

goal radius

max interpolation error, 10x30 empty environment

NF1
HPR
LSM

(a) max e in 10× 30 empty environment

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ax

 e
rr

or
 [%

]

goal radius

max interpolation error, 33x33 zig-zag environment

NF1
LSM

(b) max e in 33× 33 zig-zag environment

Figure 5: Relative error between E∗ and true distance. The maximum error e is plotted in function
of the kernel and the goal radius {0.1, 0.5, 1, 2, 4}. kLSM with e ∈ [0.302%, 20.7%] performs better
than kHPR and kNF1 with e ∈ [20.5%, 41.1%]. The three lines per interpolation method correspond
to the three cell sizes: h = 1 at the top, h = 0.5 in the middle, and h = 0.1 at the bottom. The
overall heightened errors of (b) with respect to (a) are due to the difference between ground truth
calculation using the exact endings of the walls, and the propagation, which goes through the first
non-occupied cell near the end of each wall.

10

6 Results

The precision of E∗ has been tested in comparison to ground truth distances in completely known
environments, and replanning consistency and efficiency gains have been measured in simulated
exploration of an initially unknown environment. To quantify the effects of interpolation, the
NF1 kernel kNF1 is introduced. It mimics the NF1 algorithm. The update equation (13) is
straightforward, and the meta information is m(c) = 0 for free space and m(c) = ∞ for obstacles.

(u, B) = kNF1(c,Q) with

u =

{
∞ ⇐ Q = {}
minq∈Q (v(q) + h + m(c)) otherwise

B =

{
{} ⇐ u = ∞
{arg minq∈Q (v(q) + h + m(c))} otherwise

(13)

Figure 4 shows the experimental set-ups. Cells within circular goal region are initialized to the
Euclidean distance to the goal point. First we measured how the kernel, the resolution, and the
goal radius influence the relative error e = (v(c)− d(c))/d(c), where d(c) is the true distance from
c to the goal. Figure 5 shows the maximum values of e for the empty and zig-zag environments.
None of the kernels under-estimates the distance to the goal, all improve e when increasing the
ratio of goal radius over cell size. Note that the first run in each series initialized using a single
goal cell and thus indicates the effects of fallback solutions.

Second, we determined the amount of work saved by replanning, which depends on the en-
vironment and the update frequency. We simulated a point robot descending the gradient (see
figure 6) with bounds on acceleration and speed, equipped with a sensor of limited range. When
a new obstacle is detected, propagation is performed until the robot node has a value lower than
TopKey(W), counting the number of propagations.

Table 1 lists replanning performance: The gain from dynamic over complete replanning is
lessened for kLSM, cell size is not very significant. No dyn. propagations is the expansion count
over the whole run when using replanning; No replan prop. is the event count over the whole
run when using re-initialization and planning from scratch; gain is the relative reduction in the
number of events, calculated as (ncomplete − ndynamic)/ncomplete.

Table 2 compares the propagation counts. ρ = ndynamic/ncomplete normalizes the number of
dynamic replanning events. ρ(LSM)/ρ(NF1) indicates how much wider raise events spread when
using interpolation. The theoretical increase is twofold (twice as many backpointers), however the
observed values lie between a 25% and 62% increase. However, that the operation cost for one
step in kLSM is up to 37% higher than for kNF1 (details not shown here).

Figure 6 shows the smoothness of the paths produced with kLSM during the runs that served
to collect the above data. They are close to the line-of-sight towards the edge of an obstacle (if
discovered) or the goal.

7 Conclusion and Outlook

The E∗ algorithm allows to calculate and update smooth navigation functions that approximate
true distance much better than other grid or graph based methods – by an order of magnitude
or more given the right conditions. The additional computational complexity required for this
achievement is a factor of two in the theoretical worst case, but experiments suggest a factor of
approximately 1.2 to 1.6 in practice. Each of the propagation steps becomes more elaborate as
well, this amounts to a factor below 1.4 in the case of the robust LSM interpolation when compared
with NF1.

The core E∗ algorithm is similar to D∗-Lite, which is capable of focused heuristic search to
speed up planning. This is feasible for E∗ as well. However, interpolation introduces a complication

11

Figure 6: Paths from exploring the maze map using kLSM, the robot starts in the upper right
without any knowledge of the environment and proceeds to reach the goal in the lower right,
discovering obstacles that come into its sensor range. Thick dots are places where new obstacle
information was incorporated.

12

that has not been resolved yet: When the node containing the robot is made consistent with a
value below the smallest queue key, this does not mean that the best interpolated route has been
found. In fact, interpolation will arrive “a bit later”, and we are working on a robust method of
figuring out when this has occurred.

Implementing kLSM in higher dimensions or using higher-order interpolation is possible. Ex-
tending it to non-grid representation is also feasible, the LSM has been applied to triangulated
domains in [5].

In addition to providing an interpolated navigation functions with dynamic replanning, E∗ is
independent of interpolation details and can thus be used to evaluate different kernels in terms of
their quality and computational costs.

Acknowledgment

The authors would like to thank Kurt Konolige for pointing out the Level Set Method, and Dave
Ferguson for pointing out D∗-Lite as well as his support and many worthwhile discussions.

References

[1] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[2] Dave Ferguson and Anthony Stentz. Field D*: An interpolation-based path planner and
replanner. In Proceedings of the International Symposium on Robotics Research (ISRR),
2005.

[3] B. Jensen, R. Philippsen, and R. Siegwart. Motion detection and path planning in dynamic
environments. In Proceedings of the Workshop on Reasoning with Uncertainty in Robotics,
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[4] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research, 5(1), 1986.

[5] R. Kimmel and J.A. Sethian. Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci.
USA, 95(15):8431–8435, July 1998.

[6] S. Koenig and M. Likhachev. D* lite. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2002.

[7] J.-C. Latombe. Robot motion planning. Kluwer Academic Publishers, Dordrecht, Netherlands,
1991.

[8] Tomás Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transactions
on Computers, 32(2):108–120, February 1983.

[9] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: Finding shortest
paths through a weighted planar subdivision. Journal of the ACM, 38(1):18–73, 1991.

[10] Roland Philippsen. Motion Planning and Obstacle Avoidance for Mobile Robots in Highly
Cluttered Dynamic Environments. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
2004.

[11] N. C. Rowe and R. S. Alexander. Finding optimal-path maps for path planning across
weighted regions. International Journal of Robotics Research, 19(2):83–95, 2000.

[12] J.A. Sethian. Level Set Methods – Evolving interfaces in geometry, fluid mechanics, computer
vision, and materials science. Cambridge University Press, 1996.

13

[13] Anthony Stentz. Optimal and efficient path planning for partially-known environments. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1994.

14

