
Diss. ETH No. 21939

Speci�ed and Veri�ed

Reusable Components

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
NADIA POLIKARPOVA

Master of Applied Mathematics and Informatics, SPb SU ITMO, Russia

born on
May 20th, 1985

citizen of
Russia

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. K. Rustan M. Leino, co-examiner

Prof. Dr. Peter Müller, co-examiner
Dr. Natarajan Shankar, co-examiner

2014

Acknowledgments

I would like to thank Bertrand Meyer for giving me the opportunity to be-
come part of his group at ETH Zurich1. Bertrand has always seen a greater
potential in me than I have, and respected my opinion even when it was
opposite to his own; the freedom he granted me helped me grow into the
researcher I am now.

I am grateful to my amazing co-examiners�K. Rustan M. Leino, Peter
Müller, and Natarajan Shankar�for the e�ort they have put into evaluating
my work. Their insightful comments and attention to detail helped improve
this thesis a great deal. I am honored and �attered to be accepted into the
�grown-up� scienti�c community by such brilliant people.

There is one person whose contribution to the success of this work is
impossible to overstate. Carlo A. Furia is my scienti�c big brother; he was
always there for me, giving sound advice in technical and cultural matters,
editing my writing, and somehow turning every seeming failure into a research
result.

Throughout my PhD I have been lucky to collaborate with many won-
derful people: Julian Tschannen, Scott West, Yu Pei, and Yi Wei from ETH,
as well as Michaª Moskal and Rustan Leino2 from Microsoft Research. This
thesis would not have been the same without their contributions. And of
course, I would not have even started my PhD without the help of Ilinca
Ciupa, Anatoly Shalyto, and Danil Shopyrin, who led me through my �rst
steps as a researcher during my undergraduate and master's years.

I could not have made it without the support of my two families: the
one that raised me and the one I found at ETH. Apart from the people I
have already listed, this second one also includes: Cristiano Calcagno, Geor-
giana Caltais, Claudia Günthart, Alexey Kolesnichenko, Benjamin Morandi,
Andreas Leinter, Sebastian Nanz, Ðurica Nikoli�c, Martin Nordio, Michela

1I did not start this sentence with ��rst and foremost�, since I know how Bertrand
hates chlichè.

2You guys so rock!

i

Pedroni, Marco Piccioni, Chris Poskitt, Andrey Rusakov, Mischael Schill,
Jiwon Shin, and Stephan van Staden. My irreplaceable o�cemates�Scott
West and Christian Estler�are more than brothers to me: we are basically
the same person.

A special place in these acknowledgments�and in my heart�belongs to
Marco Trudel, who never failed to remind me that it is going to be okay.

Financing

This work was partially supported by the Swiss SNF under the projects
FullContracts (200021-137931) and ASII (200021-134976); I also acknowledge
the support of the Swiss National Supercomputing Centre, which providing
infrastructure for computationally intensive experiments.

ii

Contents

1 Introduction 1

1.1 Motivation and Goal . 1
1.2 Challenges and Contributions 2
1.3 Terminology . 5
1.4 Outline . 6

2 The Ei�elBase2 Library 7

2.1 Overview . 7
2.2 Design Goals . 8
2.3 The Ei�elBase2 Architecture 8

2.3.1 Speci�cation and Veri�cation Challenges 10
2.3.2 The Mathematical Model Library 12

3 Specifying Reusable Components 15

3.1 Introduction . 15
3.2 Motivating Examples . 17

3.2.1 Some limitations of Design by Contract 17
3.2.2 Enhancing Design by Contract with models 19

3.3 Foundations of Model-Based Contracts 21
3.3.1 Abstract Data Types 22
3.3.2 Abstract equality and abstract state space 23
3.3.3 Model-Based Speci�cations 26

3.4 Model-Based Contracts in Practice 31
3.4.1 From Abstract Data Types to Classes 31
3.4.2 Assessing Quality in Practice 38

3.5 Experimental Evaluation . 43
3.5.1 Case studies . 43
3.5.2 Results and discussion 43

3.6 Related Work . 46
3.7 Summary and Future Work 47

iii

4 Testing against Strong Speci�cations 49

4.1 Introduction . 49
4.2 A Motivating Example . 51
4.3 Strong Speci�cations for Testing 52

4.3.1 Representation Constraints 53
4.3.2 Avoiding False Positives 54
4.3.3 Tool support . 56

4.4 Experiments . 57
4.4.1 Research Questions . 57
4.4.2 Ei�el Experiments . 58
4.4.3 C# Experiment . 61
4.4.4 Ei�elBase2 Experiment 62

4.5 Results . 63
4.5.1 Faults Found . 63
4.5.2 Fault Complexity . 65
4.5.3 Usage of Testing Time 67
4.5.4 Runtime Performance Overhead 68
4.5.5 Speci�cation Writing Overhead 68
4.5.6 C# Experiments . 69
4.5.7 Ei�elBase2 Experiments 70
4.5.8 Threats to Validity . 70

4.6 Related Work . 70
4.6.1 Formal speci�cations for testing. 71
4.6.2 Inferred speci�cations for testing. 71
4.6.3 Model-based speci�cations at runtime. 72

4.7 Summary . 72

5 Flexible Invariants for Complex Object Structures 73

5.1 Introduction . 73
5.2 Motivating Examples . 75

5.2.1 Observer pattern . 75
5.2.2 Iterator Pattern . 77

5.3 Existing Approaches . 79
5.4 Semantic Collaboration . 82

5.4.1 Preliminaries and De�nitions 82
5.4.2 Semantic Collaboration: Goals and Proof Obligations . 84
5.4.3 Soundness of the Methodology 86
5.4.4 Examples . 89
5.4.5 Default Annotations 93
5.4.6 Update guards . 94
5.4.7 Extensions . 94

iv

5.5 Experimental Evaluation . 96
5.5.1 Challenge Problems . 96
5.5.2 Results and Discussion 98
5.5.3 Comparison with Existing Approaches 99

5.6 Summary . 101

6 Verifying Reusable Components 103

6.1 Introduction . 103
6.2 A Motivating Example . 104
6.3 Veri�cation Methodology for Model-Based Contracts 106

6.3.1 Encoding of Model Classes 106
6.3.2 Encoding of Model Queries 110
6.3.3 Abstract Framing . 111

6.4 Experimental Evaluation . 114
6.5 Related Work . 116
6.6 Summary and Future Work 118

7 Debugging Failed Veri�cation Attempts 119

7.1 Introduction . 119
7.2 A Motivating Example . 121

7.2.1 Comparison with other approaches 123
7.3 A Runtime Semantics of Boogie Programs 124

7.3.1 Input Language . 125
7.3.2 Runtime Operational Semantics 127

7.4 Boogaloo: Implementation Details 133
7.5 Experimental Evaluation . 136
7.6 Related Work . 138
7.7 Summary and Future Work 140

8 Conclusions 141

v

vi

Abstract

For reusable software components�program modules designed for black-box
usage in arbitrary, a priori unknown contexts�quality assurance is partic-
ularly important and easily justi�ed. Although this is widely agreed upon,
the industry standard is still far removed from a perfect world, in which
components are unambiguously documented and their correctness is estab-
lished with certainty. This thesis aims at providing programmers with prac-
tical tools and techniques for assessing and improving the quality of reusable
components at various stages of the software development process.

Formal speci�cations play a central role in quality assurance, document-
ing the interface between a component and its clients and acting as oracles
for veri�cation. Writing good interface speci�cations�those that include all
relevant details and none of the irrelevant�is challenging in the absence of
precise guidelines and formal assessment criteria. The present work addresses
this challenge with model-based contracts : a speci�cation methodology that
enhances Design by Contract with mathematical models, and supports strong
yet abstract speci�cations. The thesis assesses feasibility and costs of deploy-
ing such strong speci�cations, and demonstrates their bene�ts, which include
boosting automated testing, preventing inconsistent library designs, and de-
creasing the density of implementation defects.

Achieving high con�dence in the quality of component implementations
requires formal correctness proofs. Although static program veri�cation has
made signi�cant progress in recent years, existing methods and tools provide
insu�cient support for model-based contracts, and for the design patterns
often found in object-oriented component libraries. This thesis advances the
state of the art in program veri�cation with two contributions. First, it
proposes semantic collaboration: a new methodology to reason about class
invariants in the presence of inter-object dependencies; the methodology is
�exible enough to accommodate advanced design patters, but comprises use-
ful default annotations, which reduce the speci�cation overhead in common
scenarios. Second, the thesis details a practical veri�cation methodology for
model-based contracts, featuring advanced support for model classes, and

vii

an approach to frame speci�cations that works well for complex inheritance
hierarchies. Both proposed methodologies have been implemented in the
AutoProof program veri�er for the Ei�el programming language.

Another contribution of this thesis facilitates understanding and debug-
ging failed veri�cation attempts�one of the biggest remaining obstacles to
usable program veri�cation.

Practical solutions targeting reusable components must be evaluated on
real software libraries. Two Ei�el data structure libraries, Ei�elBase and its
successor Ei�elBase2, serve as case studies throughout the thesis. In par-
ticular, Ei�elBase2�the �rst example of a data structure library developed
from the start with strong speci�cations and veri�ed (to a signi�cant extent)
for full functional correctness�embodies the vision of high-quality reusable
components promoted in this work.

viii

Zusammenfassung

Für wiederverwendbare Software-Komponenten�Programmmodule, die zur
Black-Box-Nutzung in verschiedenen, im Voraus unbekannten Kontexten ent-
wickelt werden�ist Qualitätssicherung besonders wichtig und der damit ver-
bundene Aufwand gerechtfertigt. Obwohl diese Ansicht weitläu�g akzeptiert
wird, bleibt der Industriestandard weit von dem Idealfall entfernt, in dem al-
le Komponenten eine eindeutige Dokumentation haben und ihre Richtigkeit
zweifellos sichergestellt ist. Ziel dieser Dissertation ist es, Programmierern
anwendbare Werkzeuge und Techniken zur Verfügung zu stellen, die eine
Bewertung und Verbesserung der Qualität von wiederverwendbaren Kompo-
nenten erlauben.

Formale Spezi�kationen spielen bei der Qualitätssicherung eine zentrale
Rolle, da sie die Schnittstelle zwischen Komponenten und ihre Kunden doku-
mentieren, und zur Veri�kation von Implementierungen verwendet werden.
Gute Schnittstellenspezi�kationen zu schreiben�solche, die alle relevanten
aber keine irrelevanten Details beinhalten�ist ohne genaue Richtlinien und
formalen Bewertungskriterien schwierig. Die vorliegende Arbeit beschreibt
einen Ansatz zur Überwindung dieser Schwierigkeiten mit Hilfe von Modell-
basierten Verträgen: eine Spezi�kationsmethode, die Design by Contract um
mathematische Modelle ergänzt, und damit starke aber zugleich abstrakte
Spezi�kationen erlaubt. Die Dissertation evaluiert Durfürbarkeit und Kosten
solch starker Spezi�kationen, und zeigt ihren Nutzen auf, einschliesslich der
Vorteile für automatische Testverfahren, der Vermeidung von inkonsistenten
Bibliothek-Entwürfen, und der Abnahme der Häu�gkeit von Implementie-
rungsfehlern.

Um eine hohe Implementierungsqualität von Komponenten zu garan-
tieren, benötigt man Richtigkeitsbeweise. Trotz bedeutenden Fortschritten,
die statische Programmveri�kation in den letzten Jahren gemacht hat, bie-
ten existierende Methoden und Werkzeuge ungenügende Unterstützung für
Modell-basierte Verträge, sowie für einige Entwurfsmuster, die häu�g in den
objektorientierten Komponenten-Bibliotheken zu �nden sind. Diese Disser-
tation trägt zum Fortschritt der Programmveri�kation in zweierlei Hinsicht

ix

bei. Erstens führt sie eine neuartige Methode, Semantische Kollaboration ge-
nannt, ein, um über Klasseninvarianten in Gegenwart von Abhängigkeiten
zwischen Objekten schlussfolgern zu können; die Methode ist �exibel genug
sich komplexen Entwurfsmustern anzupassen, enthält aber zugleich nützli-
che Standardwerte, die die Kosten einer Spezi�kation in Normalfall gering
halten. Zweitens stellt die Dissertation eine praktische Veri�kationsmethode
für Modell-basierte Verträge vor, die eine fortgeschrittene Unterstützung von
Modell-Klassen bietet und einen Ansatz für Frame-Spezi�kationen umfasst,
der gut mit komplexen Vererbung-Hierarchien funktioniert. Beide Methoden
wurden in AutoProof, einem Programmveri�zierer für die Ei�el Program-
miersprache, implementiert.

Ein weiterer Beitrag der vorliegenden Arbeit erleichtert das Verstehen
und die Fehlerbehebung im Fall von misslungenen Beweisversuchen�eines
der grössten verbleibenden Hindernisse für nutzbare Programmveri�kation.

Praktische Lösungen, die auf wiederverwendbare Software-Komponenten
zielen, müssen anhand echter Software-Bibliotheken evaluiert werden. Zwei
Ei�el Datenstruktur-Bibliotheken, Ei�elBase und ihr Nachfolger Ei�elBase2,
dienen in der gesamten Dissertation als Fallstudien. Insbesondere, Ei�el-
Base2�das erste Beispiel einer Datenstruktur-Bibliothek, die von Anfang
an mit starken Spezi�kationen entwickelt wurde und deren volle funktionel-
le Richtigkeit grösstenteils bewiesen wurde�verkörpert die in dieser Arbeit
verfolgte Vision von hochwertigen wiederverwendbaren Komponenten.

x

xi

Being abstract is something profoundly di�erent

from being vague. . . The purpose of abstraction

is not to be vague, but to create a new semantic

level in which one can be absolutely precise.

Edsger W. Dijkstra

Chapter 1

Introduction

1.1 Motivation and Goal

Correctness is one of the most fundamental aspects of software quality [84].
Since one can only judge whether a software system is correct relative to a
speci�cation, ensuring correctness comprises two principal activities: speci-
fying the system by formalizing informal (often implicit) requirements, and
verifying that the implementation satis�es the speci�cation.

The degree to which these activities are carried out in practice is a matter
of cost-to-bene�t ratio. Di�erent veri�cation techniques o�er di�erent trade-
o�s between the amount of e�ort they require and the level of assurance
they provide. For example, fully automatic static and dynamic analyses
support an inexpensive way of revealing simple errors. Code review and
testing (manual or automated) provide a medium level of assurance: both
are capable of revealing deeper errors than fully automatic analyses, but
can never show their absence. At the high end of the assurance spectrum,
formal proofs of full functional correctness can guarantee deep properties of
the system, but require highly-trained experts and �heroic� e�ort [63, 71].

This motivates two important research goals in the area of software cor-
rectness: (i) reducing the amount of e�ort required by existing families of
veri�cation techniques, and (ii) increasing the diversity of techniques, so
that the most appropriate solution can be chosen for a required assurance
level. The present work contributes to both of those goals.

While in most areas of software industry high-assurance techniques are
considered prohibitively expensive, several factors can justify their use. One
example is extremely high cost of software errors, common for safety- and
mission-critical systems. Another example is software reuse: reusable soft-

2 CHAPTER 1. INTRODUCTION

ware components,1 are developed once and reused as a black box in a large
number of systems, thus minimizing the amortized cost of quality assurance.

Practitioners recognize that quality is particularly important for reusable
components (e.g. [14]), which makes such components attractive for veri�ca-
tion in two ways: ensuring their correctness is not only more important than
for system-speci�c code, but also more realistic, since the starting point is a
module with well-de�ned interface and functionality, as well as high-quality
implementation and documentation.

At the same time, verifying reusable components poses challenges that
do not arise in whole-system veri�cation, since the author of a component is
not aware of the context in which it will be used. For speci�cations it raises
the question of what properties they should express, since it is unknown
which aspects of a component's behavior will be relevant in the client's con-
text. For veri�cation it limits the range of applicable techniques to modular
approaches, where verifying each module of a system in isolation implies
correctness of the system as a whole. In addition, unlike safety-critical sys-
tems, which might give up powerful programming constructs in the name of
correctness [7], general-purpose libraries have to be written in an expressive
programming language within a mainstream paradigm, and cannot be limited
to using the most basic language features, data structures and algorithms.

The goal of this thesis is to advance the state the art towards making
high-quality reusable components�with coherent design, detailed documen-
tation, and provably correct implementations�an accepted software engi-
neering practice. To this end, the thesis proposes practical approaches to
speci�cation and veri�cation of reusable components at several levels of as-
surance.

1.2 Challenges and Contributions

The starting point for this work is Design by Contract [83]: a practical ap-
proach to speci�cation, originally implemented for the Ei�el programming
language, and more recently supported by other environments [28, 2]. De-
sign by Contract enables programmers to write speci�cations in the form
of contracts, using expressions from the programming language. Empirical
studies show [20, 26, 106, 41] that Ei�el programmers indeed write contracts,
but those contracts are sometimes incorrect and generally incomplete. We
set out to �nd a way of improving these partial speci�cations, and making

1The term component is used in a broad sense, as a synonym of module; in an object-
object oriented system, a component is typically a class or a library of classes.

1.2. CHALLENGES AND CONTRIBUTIONS 3

use of better contracts to ensure software correctness by means of testing and
proofs.

Ei�elBase2. The present work aims for stronger speci�cations, while
retaining the practical nature of Design by Contract; thus all proposed tech-
niques have to be evaluated on a realistic software system of a substantial
size. As the central case study of the thesis we have developed Ei�elBase2 :
an Ei�el container library, which serves both as a motivation for the solutions
proposed throughout the thesis, and as evidence of their feasibility. Contain-
ers are an archetype of reusable components, since a basic container library
is a part of every programming language, and it is reused virtually in every
program written in that language. In addition to serving as a testbed for
techniques proposed in the present work, Ei�elBase2 is a valuable artifact
per se, o�ering high-quality reusable components to the Ei�el community,
and contributing to the Veri�ed Software Initiative [54].

Better speci�cations. We �rst investigate how to turn partial contracts
into strong speci�cations, which would include everything a client might want
to know about the behavior of a component. To express strong speci�ca-
tions, we adopt the model-based approach [58, 49, 98, 134], which uses well-
understood mathematical concepts (sets, bags, relations, sequences, etc.) to
de�ne the semantics of program operations. The main challenge is giving
developers precise guidelines and tools for constructing strong speci�cations
and assessing their quality, which serves the purpose of both improving spec-
i�cations and reducing their cost. To this end, we develop a speci�cation
methodology called model-based contracts, underpinned by four formally de-
�ned quality criteria, which guarantee that a speci�cation is both as strong
and as abstract as possible, for a given component interface. We evaluate
practical feasibility of the methodology by specifying Ei�elBase2.

Better testing. Strong model-based contracts only describe the inter-
face of a software component, and are in general insu�cient for a program
veri�er to carry out a correctness proof (which normally requires signi�cant
additional e�ort in the form of supplying auxiliary annotations). We suggest,
however, that strong speci�cations can also bene�t software quality with no
additional e�ort; in particular they can play an important role in design and
testing. Intuitively, checking stronger contracts at runtime should discover
more (and deeper) faults. The question is whether this e�ect is signi�cant
in practice, and whether the runtime overhead of checking more complex
speci�cations neutralizes the bene�t of strong contracts given a �xed testing
budget. As a result of an extensive empirical study we discovered that strong
model-based contracts make very e�ective test oracles, while incurring only
moderate speci�cation overhead, which puts testing against such speci�ca-

4 CHAPTER 1. INTRODUCTION

tions in an attractive spot on the landscape of veri�cation techniques. At
the same time, through Ei�elBase2 we observed that software developed with
strong speci�cations from the start exhibits signi�cantly fewer faults and ar-
chitectural inconsistencies that software developed with traditional Design
by Contract, which con�rms the e�ectiveness of model-based contracts as a
design methodology.

Better proofs. Next, we investigate full functional correctness proofs
of reusable components. More precisely, we are interested in building an
auto-active program veri�er [76] that can prove, given appropriate auxil-
iary annotations, the kind of complete model-based contracts found in Eif-
felBase2. One central challenge we encountered is related to class invari-
ants2�a notion that is inherent in object-oriented programming and thus a
desirable feature to support in a veri�er [121]. Existing invariant method-
ologies [9, 77, 11, 92, 80, 88, 120, 30] are either not directly applicable to
automatic reasoning or provide insu�cient support for non-hierarchical ob-
ject structures, which arise in common design patters3. To tackle this prob-
lem we propose semantic collaboration: a new methodology to specify and
reason about invariants of arbitrary object structures, which models inter-
object dependencies by semantic means. To evaluate semantic collaboration
we compiled a set of six benchmark problems, each of which contains a unique
challenge for an invariant methodology.

The second set of challenges has to do speci�cally with model-based con-
tracts. Supporting this style of speci�cation in a veri�er requires relating the
concrete state of a class to its model in a way that is sound, practical, and
concise (in terms of auxiliary annotations). We extend an existing program
veri�er for Ei�el, AutoProof [5], with support for models, as well as our new
invariant methodology, and use it to verify the core of Ei�elBase2.

Debugging veri�cation. The �nal part of this work is devoted to mak-
ing the veri�cation process more incremental. When a program proof fails, it
is often hard to understand what went wrong due to false positives and the
absence of concrete executions that expose parts of the program responsible
for the failure. To alleviate this issue, we propose a technique to automati-
cally generate executions of programs annotated with complex speci�cations
(such as those used in full functional correctness proofs). Our approach com-
bines symbolic execution and SMT constraint solving to generate small tests
that are easy to read and understand. We implement the technique for the
Boogie intermediate veri�cation language [73], which is used as a back-end in
AutoProof. Our implementation is available as a tool called Boogaloo [15].

2Also known as object invariants or representation invariants.
3For example, the Iterator pattern, used extensively in Ei�elBase2.

1.3. TERMINOLOGY 5

Summary of Contribution. The following list summarizes the main
contributions of this thesis, along with the publications where they initially
appeared.

1. Model-based contracts : a methodology for constructing strong speci�-
cations and assessing their quality.
[Polikarpova N., Furia C., Meyer B., Specifying Reusable Components, VSTTE'10]

2. An empirical study showing that testing against strong speci�cations
discovers signi�cantly more faults than testing against traditional con-
tracts, with reasonable annotation overhead.
[Polikarpova N., Furia C., Pei Y., Wei Y., Meyer B., What Good Are Strong Speci-

�cations?, ICSE'13]

3. Semantic collaboration: a methodology to specify and reason about
class invariants of arbitrary object structures, implemented in an auto-
active veri�er.
[Polikarpova N., Tschannen J., Furia C., Meyer B., Flexible Invariants through

Semantic Collaboration, FM'14]

4. A practical veri�cation methodology for model-based contracts, imple-
mented in an auto-active veri�er.

5. Ei�elBase2 : a speci�ed and partially veri�ed container library, used in
practice.

6. Boogaloo: a tool for debugging failed veri�cation attempts.
[Polikarpova N., Furia C., West S., To Run What No One Has Run Before, RV'13]

1.3 Terminology

In the rest of this thesis, we refer to common object-oriented programming
constructs using the following terminology, which is established in the Ei�el
community. A program is a collection of classes. Each class is composed of
attributes (data) and routines (operations), collectively known as features.
Routines with a return value are called functions, and otherwise procedures.
Procedures intended for initialization of newly created objects are called cre-
ation procedures (analogous to constructors in Java and C#). The term query
encompasses functions and attributes, while command is a non-creation pro-
cedure. The �rst (implicit) argument of a feature call is known as the target ;
a routine body can refer to its target though a built-in entity Current (this

6 CHAPTER 1. INTRODUCTION

in Java and C#). A function can refer to its return value through a built-in
variable Result.

A class C is e�ective if it supplies implementations of all of its features,
otherwise it is deferred (abstract). C can directly inherit from zero or more
parents ; classes that directly inherit from C are called its children. Ancestors
of C include C itself and, recursively, the ancestors of all its parents; sym-
metrically, its descendants include C and the descendants of all its children.

The built-in entity Void (null in Java and C#) denotes a reference that is
not attached to any object.

1.4 Outline

The rest of the dissertation is organized as follows. Chapter 2 introduces
the Ei�elBase2 library, which is used to evaluate the techniques proposed
in the following chapters. Chapter 3 details the speci�cation and design
methodology based on model-based contracts; in particular, it formalizes the
notion of strong speci�cations. Chapter 4 describes our experiments with
using model-based contracts in testing. Chapters 5 and 6 are devoted to cor-
rectness proofs, with the former focusing on class invariants, and the latter
targeting model-based abstraction techniques and describing the veri�cation
of Ei�elBase2. Chapter 7 introduces Boogaloo: a technique and tool for de-
bugging veri�cation, based on symbolic execution. Finally, Chapter 8 draws
conclusions and discusses directions for future research.

Chapter 2

The EiffelBase2 Library

This chapter introduces the Ei�elBase2 library, which serves to motivate and
evaluate the techniques proposed in the rest of the thesis. Speci�cation and
veri�cation of Ei�elBase2 are presented in the following chapters, together
with the corresponding techniques; here we only give a brief overview of the
library design, scope, and scale.

2.1 Overview

Ei�elBase2 is a general-purpose data structure library for Ei�el. It pro-
vides containers such as arrays, lists, sets, tables, stacks, queues, and bi-
nary trees; iterators to traverse these containers; and comparator objects to
parametrize containers with respect to arbitrary equivalence and order rela-
tions on their elements. The current version of Ei�elBase2 includes 72 classes
totaling about 11'500 lines of code; these �gures make Ei�elBase2 a library
of substantial size with realistic functionalities, comparable to those of .NET
collections and java.util collections.

Since April 2012, Ei�elBase2 is distributed together with Ei�elStudio, the
main Ei�el IDE. For three years, the library has been successfully employed
in teaching introductory programming at ETH Zurich, each time used exten-
sively by over 200 students. We have also relied on Ei�elBase2 ourselves for
the development of Tra�c 4: a graphical library that models and visualizes
public transportation in the city, also used in the introductory programming
course [125]. These experiences con�rm that Ei�elBase2 is usable in practice.

The latest version of the library source code is available from the reposi-
tory [40].

8 CHAPTER 2. THE EIFFELBASE2 LIBRARY

2.2 Design Goals

Ei�elBase2 is intended as a replacement for the Ei�elBase library, which has
played a central role in Ei�el development for over twenty years. Ei�elBase is
representative of mature Ei�el code, extensively exploiting traditional Design
by Contract, and widely used in Ei�el applications. This makes it an excellent
reference point for comparative studies of new approaches in the areas of
design, contracts, or implementation quality.

Ei�elBase2 aims at providing the same general set of functionalities as
Ei�elBase; its ultimate goal, however, is specifying and proving full functional
correctness�backward compatibility is not one of our primary concerns. This
implies that Ei�elBase2 revisits and solves any de�ciency and inconsistency
in the design of Ei�elBase that impedes achieving full functional correctness
or hinders the full-�edged application of formal techniques. In particular,
we simplify the inheritance hierarchy of Ei�elBase, which, as demonstrated
in the following chapters, prevents strong speci�cations at high levels of ab-
straction and causes multiple instances of unexpected behavior.

Another design choice reconsidered in Ei�elBase2 concerns the use of in-
ternal cursors : each Ei�elBase container stores an additional piece of state�
the cursor position, which enables iteration though the container without
creating a separate iterator object. While convenient in simple cases, inter-
nal cursors do not support multiple simultaneous iterations, complicate the
container abstraction, and impose a cumbersome save-restore policy in order
to avoid side e�ects in functions.

2.3 The Ei�elBase2 Architecture

Ei�elBase2 consists of two (mutually dependent) libraries: the container li-
brary, which includes data structures proper, and the Mathematical Model
Library (MML), which provides immutable classes used to express model-
based contracts. In the following we concentrate on the container library,
and present MML in Sect. 2.3.2.

The container part of Ei�elBase2 is split into two class hierarchies: con-
tainers and streams. A container is a �nite storage of values, while a stream
provides linear access to a set of values. A stream is not necessarily bound
to a container, e.g. a RANDOM stream observes an in�nite sequence of pseudo-
random numbers. Streams that traverse containers are called iterators.

Fig. 2.1 and 2.2 depict the class diagram of the two hierarchies. All Ei�el-
Base2 class names start with V_ (for Veri�ed), but the pre�x is omitted from
the diagrams for brevity. The names of deferred (abstract) class are written

2.3. THE EIFFELBASE2 ARCHITECTURE 9

CONTAINER [G]

BINARY_TREE [G]SET [G]

GENERAL_

SORTED_SET [G]
GENERAL_

HASH_SET [G]

SORTED_SET [G
→COMPARABLE]

HASH_SET [G
→HASHABLE]

MAP [K, V]

SEQUENCE [G]

MUTABLE_

SEQUENCE [G]

ARRAY [G] ARRAY2 [G]

LIST [G]

ARRAYED_LIST [G] LINKED_LIST [G]
DOUBLY_LINKED_

LIST [G]

TABLE [K, V]

SET_TABLE [K, V]

GENERAL_

SORTED_TABLE [G]
GENERAL_

HASH_TABLE [G]

SORTED_TABLE [G
→COMPARABLE]

HASH_TABLE [G
→HASHABLE]

DISPENSER [G]

STACK [G] QUEUE [G]

LINKED_STACK [G] LINKED_QUEUE [G]

Figure 2.1: Container class hierarchy.

in ITALICS; lighter �ll color indicates that a class provides an immutable in-
terface to the underlying data; in particular, it is impossible to change the
content of a container through an immutable iterator.

The following table gives brief descriptions of Ei�elBase2 container classes:

class description

CONTAINER Containers for a �nite number of values.
SET Container where all elements are unique with respect to some

equivalence relation. Elements can be added and removed.
GENERAL_SORTED_SET Sets implemented as binary search trees with arbitrary order

relation and equivalence relation derived from order.
SORTED_SET Sorted sets with order relation on keys provided by COMPARABLE.
GENERAL_HASH_SET Hash set with arbitrary equivalence relation on keys and hash

function. Implementation uses chaining.
HASH_SET Hash sets with hash function provided by HASHABLE and with

reference or object equality as equivalence relation on keys.
MAP Containers where values are associated with keys. Keys are

unique with respect to some equivalence relation.
SEQUENCE Containers where values are associated with integer indexes

from a continuous interval.
MUTABLE_SEQUENCE Sequences where the value at a given index can be updated.

10 CHAPTER 2. THE EIFFELBASE2 LIBRARY

ARRAY Indexable containers, whose elements are stored in a continuous
memory area.

ARRAY2 Two-dimensional arrays.
LIST Indexable containers, where elements can be inserted and re-

moved at any position.
ARRAYED_LIST Lists implemented as arrays.
LINKED_LIST Singly linked lists.
DOUBLY_LINKED_LIST Doubly linked lists.
TABLE Maps where key-value pairs can be updated, added, and re-

moved.
SET_TABLE Tables implemented as sets of key-value pairs.
GENERAL_SORTED_TABLE Tables implemented as binary search trees with arbitrary order

relation on keys and equivalence relation on keys derived from
order.

SORTED_TABLE Sorted tables with order relation on keys provided by COMPARABLE.
GENERAL_HASH_TABLE Hash tables with arbitrary equivalence relation on keys and

hash function. Implementation uses chaining.
HASH_TABLE Hash tables with hash function provided by HASHABLE and with

reference or object equality as equivalence relation on keys.
DISPENSER Containers that can be extended with values and make only

one element accessible at a time.
STACK Dispensers where the latest added element is accessible.
LINKED_STACK Linked implementation of stacks.
QUEUE Dispensers where the earliest added element is accessible.
LINKED_QUEUE Linked implementation of queues.
BINARY_TREE Binary trees (doubly linked implementation).

2.3.1 Speci�cation and Veri�cation Challenges

The semantics of data structures o�ered by Ei�elBase2 is, in general, well-
understood, and their implementations are rather straightforward. Neverthe-
less, these textbook data structures present commonly acknowledged chal-
lenges when it comes to speci�cation and veri�cation [56, 70]

First, the library creates and maintains complex object structures in the
heap. Some of those structures are hierarchical (also called aggregate objects),
where one object contains another as part of its internal representation; oth-
ers are collaborative, where multiple objects at the same level of abstraction
work together to achieve a common goal. The most prominent example of
the latter is the collaboration between a container and its iterators.

Reasoning about complex object structures is complicated by aliasing,
and describing their shapes (e.g. in routine footprints) requires powerful ab-
straction mechanisms. One particular challenge is specifying the consistency
of object structures while preserving information hiding. For example, in or-
der for an iterator to function properly, its state needs to be consistent with
the state of the target container. Modifying the container can invalidate its

2.3. THE EIFFELBASE2 ARCHITECTURE 11
I
N
P
U
T
_

S
T
R
E
A
M

[G
]

C
O
N
S
T
A
N
T
_

I
N
P
U
T
[G
]

R
A
N
D
O
M

S
T
R
I
N
G
_
I
N
P
U
T
[G
]

I
T
E
R
A
T
O
R

[G
]

P
R
O
X
Y
_

I
T
E
R
A
T
O
R
[G
]

S
E
T
_
I
T
E
R
A
T
O
R

[G
]

S
O
R
T
E
D
_
S
E
T
_

I
T
E
R
A
T
O
R
[G
]

H
A
S
H
_
S
E
T
_

I
T
E
R
A
T
O
R
[G
]

M
A
P
_

I
T
E
R
A
T
O
R

[K
,
V
]

T
A
B
L
E
_

I
T
E
R
A
T
O
R

[K
,
V
]

S
E
T
_
T
A
B
L
E
_

I
T
E
R
A
T
O
R
[G
]

S
E
Q
U
E
N
C
E
_

I
T
E
R
A
T
O
R

[G
]

I
N
D
E
X
_

I
T
E
R
A
T
O
R

[G
]

M
U
T
A
B
L
E
_
S
E
Q
U
E
N
C
E
_

I
T
E
R
A
T
O
R

[G
]

A
R
R
A
Y
_

I
T
E
R
A
T
O
R
[G
]

L
I
S
T
_

I
T
E
R
A
T
O
R

[G
]

A
R
R
A
Y
E
D
_
L
I
S
T
_

I
T
E
R
A
T
O
R
[G
]

L
I
N
K
E
D
_
L
I
S
T
_

I
T
E
R
A
T
O
R
[G
]

D
O
U
B
L
Y
_
L
I
N
K
E
D
_
L
I
S
T
_

I
T
E
R
A
T
O
R
[G
]

O
U
T
P
U
T
_

S
T
R
E
A
M

[G
]

S
T
A
N
D
A
R
D
_
O
U
T
P
U
T

S
T
R
I
N
G
_
O
U
T
P
U
T

I
O
_
I
T
E
R
A
T
O
R

[G
]

C
E
L
L
_
C
U
R
S
O
R

[G
]

B
I
N
A
R
Y
_
T
R
E
E
_

C
U
R
S
O
R
[G
]

B
I
N
A
R
Y
_
T
R
E
E
_

I
T
E
R
A
T
O
R

[G
]

P
R
E
O
R
D
E
R
_

I
T
E
R
A
T
O
R
[G
]

P
O
S
T
O
R
D
E
R
_

I
T
E
R
A
T
O
R
[G
]

I
N
O
R
D
E
R
_

I
T
E
R
A
T
O
R
[G
]

F
ig
ur
e
2.
2:

St
re
am

an
d
it
er
at
or

cl
as
s
hi
er
ar
ch
y.

12 CHAPTER 2. THE EIFFELBASE2 LIBRARY

MODEL

BAG [G]MAP [K, V] RELATION [G, H]SET [G] SEQUENCE [G]

INTERVAL

Figure 2.3: Class diagram of the Mathematical Model Library.

iterators, and lead to unexpected behavior. The challenge is to ensure that
this never happens, while still allowing an unbounded number of iterators to
be attached to a container at the same time.

Second, Ei�elBase2 makes substantial use of inheritance. At the design
and interface speci�cation stages, one challenge is developing abstract com-
ponents, such as CONTAINER or DISPENSER. On the one hand, they need to be
general enough to naturally encompass several more specialized components;
on the other hand, they need to be su�ciently self-contained and precise to
be useful for clients and allow for strong speci�cations. For veri�cation, in-
heritance poses additional challenges in terms of modularity and information
hiding: most importantly, when the dynamic type of an object is unknown,
precise de�nitions of its state and operations are unavailable, which aggra-
vates the issues posed by aliasing and inter-object dependencies.

Finally, Ei�elBase2 uses functional objects (called agents in Ei�el) to im-
plement higher-order operations and to parametrize containers with various
relations and functions on their elements. A practical and �exible way of
reason about functional objects is still an open problem in veri�cation.

2.3.2 The Mathematical Model Library

The Mathematical Model Library is a collection of immutable classes that
serve as programming-language counterparts of the mathematical concepts
used in model-based contracts. Similar libraries exist in other languages
that support model-based speci�cation style, e.g. JML [69]; the �rst version
of MML in Ei�el was implemented by Schoeller [111].

Fig. 2.3 depicts the class diagram of MML (as in Fig. 2.1 and 2.2, the
pre�x MML_ is omitted for brevity). The library consists of 7 classes, totaling
1'960 lines of code. Their features correspond to widely used mathematical
operations, such as set union and sequence concatenation. The library pro-
vides implementations of those operations, which can be used for runtime

2.3. THE EIFFELBASE2 ARCHITECTURE 13

checking of model-based contracts. The semantics given to the model classes
by the program veri�er is discussed in Chapter 6.

14 CHAPTER 2. THE EIFFELBASE2 LIBRARY

Chapter 3

Specifying Reusable

Components

The �rst step towards ensuring correctness is creating a formal speci�cation.
In this chapter, we explore what constitutes a �good� speci�cation for a
reusable component, and o�er guidelines for constructing such speci�cations
in the context of an object-oriented programming language.

3.1 Introduction

The case for precise software speci�cations involves several well-known ar-
guments; in particular, speci�cations help understand the problem before
building a solution, and they are necessary for verifying implementations. In
the case of a library of reusable software components, precise speci�cations
have another application: providing client programmers with a detailed de-
scription of the component interface (the API); such descriptions are called
behavioral interface speci�cations [50].

The main purpose of an interface speci�cation for a reusable component
is to enable practical reasoning about programs that use the component
without having access to its implementation. This entails two important
and somewhat con�icting �quality� objectives: on the one hand, an interface
speci�cation has to be strong enough to fully describe the relevant e�ects
of component operations; on the other hand, it has to be abstract enough
to allow several concrete implementations and to shield the clients from any
complexity associated with a particular implementation (in other words, one
should avoid implementation bias [58]). Creating high-quality speci�cations
satisfying these objectives is hard in the absence of detailed guidelines and
formal assessment criteria.

16 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

One of the most practical approaches to interface speci�cations is based
on Design by Contract [83, 84]; it allows authors of reusable modules to equip
them with contracts, usually in the form of routine pre- and postconditions,
and class invariants. As one of its key features, Design by Contract relies
on an assertion language embedded in the programming language to express
contracts. This approach has two important advantages: speci�cations ex-
pressed in a programming language are more easily taught to programmers,
and they can be checked at runtime, thus playing a major role in testing
and debugging. Another aspect that contributed to the practical success of
Design by Contract is incrementality: unlike most �all-or-nothing� formal de-
velopment methods (e.g. [1]), Design by Contract takes the �anything goes�
view: it embraces partial speci�cations, and provides incremental bene�ts
starting with very few, very simple assertions.

This traditional focus on partial speci�cations, combined with insu�-
cient expressiveness of the assertion language in comparison with more �ex-
ible mathematical notations, in practice results in weak contracts. As an
example, the postcondition of a push operation on a stack in the existing
standard Ei�el library speci�es what the new top of the stack will be, and
that the number of items will increase by one, but it does not state that
the existing stack elements are una�ected. This example is typical: several
empirical studies [20, 26, 106, 41] indicate that in practice Ei�el classes con-
tain many contracts, but they cover only part of the programmer's informal
understanding of the behavior. Thus, building high-quality behavioral inter-
face speci�cation on top of Design by Contract requires both increasing the
expressiveness of the assertion language, and establishing more strict rules
about what should actually go into contracts.

One of the �rst formal treatments of the quality aspect of interface spec-
i�cations was developed for algebraic speci�cations of abstract data types
(ADTs) [47, 48, 138]. Arguably the most in�uential work is by Guttag and
Horning [48], which de�nes the notion of su�cient completeness of a set of
axioms de�ning an ADT.

Algebraic speci�cations are very general, but hard to understand and
construct [132]; an alternative model-based approach [58, 49, 98, 134], aims
to simplify understanding and writing speci�cations by expressing them in
terms of a �xed collection of well-understood and highly reusable mathe-
matical theories. For the construction of a model-based speci�cation, one of
the most important design decisions is the choice of the mathematical model
(also called �conceptual model� or �mental model� [96]) for a component; this
choice largely determines the quality of a speci�cation, and thus the quality
of the component itself [133].

Integrating the model-based approach into Design by Contract led to the

3.2. MOTIVATING EXAMPLES 17

concept of model classes in Ei�el [112, 111] and a similar mechanism in the
Java Modeling Language (JML) [69, 24]1. Model classes represent mathe-
matical theories in the programming language, and thus enable model-based
speci�cations within the standard assertion language of Design by Contract.
We will refer to such speci�cations as model-based contracts. The goal of this
chapter is to explore and formalize quality criteria for model-based contracts,
and to turn these criteria into concrete practices and tools.

Sect. 3.2 starts with some real-world examples of weak contracts in Ei�el
libraries, which fail to prevent incorrect implementations and poor designs;
it then demonstrates how strong model-based contracts address these issues.
Sect. 3.3 formalizes high-quality model-based speci�cations in the language
of abstract data types: it shows how an ADT de�nes unambiguously a no-
tion of abstract state space, which in turn determines the model of the ADT;
it also outlines the process of constructing model-based speci�cations, and
�nally proposes formal de�nitions of four quality criteria�completeness, ob-
servability, closure, and controllability�which underpin the intuitive notions
of �strong� and �abstract� speci�cations. Sect. 3.4 applies these theoretical
concepts in the context of Ei�el�an imperative, object-oriented language�
resulting in a practical speci�cation methodology for strong model-based con-
tracts; it also discusses tool support for checking quality criteria, formalized
in the previous section.

Sect. 3.5 describes two case studies that use the proposed speci�cation
methodology to develop libraries of data structures with strong contracts.
The results show that the methodology is feasible and successful in delivering
well-designed components with expressive�usually complete�speci�cations.
Most advantages of standard Design by Contract are retained, while pushing
a more accurate evaluation of design choices and an impeccable de�nition of
interfaces.

3.2 Motivating Examples

3.2.1 Some limitations of Design by Contract

Let us demonstrate the shortcomings of traditional contracts on a couple of
examples from the Ei�elBase library [39] (see also Chapter 2).

Fig. 3.1a shows a portion of class LINKED_LIST, implementing a singly linked
list. Features count and index record respectively the number of elements
stored in the list and the current position of the internal cursor. Routine
put_right inserts an element v to the right of the current position of the

1JML uses the terms modeling types or immutable types.

18 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

class LINKED_LIST [G]
count: INTEGER
-- Number of elements

index: INTEGER
-- Current cursor position

item: G
-- Value at cursor position

require 1≤ index≤ count

do . . . end

put_right (v: G)
-- Add ‘v’ to the right of cursor

require 0≤ index≤ count

do . . .
ensure

count = old count + 1
index = old index

end

duplicate (n: INTEGER): LINKED_LIST
-- Copy of sublist of length ‘n’

-- beginning at current position

require n ≥ 0
do . . .
ensure Result.index = 0
end

end

(a) Class LINKED_LIST.

deferred class TABLE [G, K]
put (v: G ; k: K)
-- Associate value ‘v’ with key ‘k’

require valid_key (k)
deferred

end

end

class ARRAY [G]
inherit TABLE [G, INTEGER]
put (v: G ; i: INTEGER)
-- Replace ‘i’-th entry,

-- if in index interval, by ‘v’

do . . .
end

end

class HASH_TABLE [G, K →HASHABLE]
inherit TABLE [G, K]
put (v: G ; k: K)
-- Insert ‘v’ with key ‘k’

-- if there is no other item

-- associated with ‘k’

do . . .
end

end

(b) Class TABLE with two descendants.

Figure 3.1: Snippets from Ei�elBase classes.

cursor, without moving it. The postcondition of the routine (clause ensure)
asserts that inserting an element increments count by one but does not change
index. This is correct, but it does not capture the gist of the semantics of
insertion: the list after insertion is obtained by all the elements that were in
the list up to position index, followed by element v and then by all elements
to the right of index.

Expressing such complex facts is tedious with the standard assertion lan-
guage; as a result most speci�cations are incomplete in the sense that they
fail to capture precisely the functional semantics of routines. Weak spec-
i�cations hinder formal veri�cation in two ways. First, establishing weak
postconditions is simple, but con�dence in the full functional correctness of
a veri�ed routine will be low: the quality of speci�cations limits the value

3.2. MOTIVATING EXAMPLES 19

of veri�cation. For example, the above postcondition of put_right permits an
implementation that replaces all existing list elements with v. Second, weak
contracts impede client reasoning: it is impossible to establish what a routine
r achieves, if r calls another routine s whose contract is not strong enough
to document its e�ect within r precisely. This is particularly problematic if
s is part of a reusable component, since the set of its potential clients is a
priori unknown.

Weak assertions limit the potential of many other applications of Design
by Contract. Speci�cations, for example, should document the abstract se-
mantics of operations in deferred classes. Weak contracts cannot fully do
so; as a result, programmers have fewer safeguards to prevent inconsistencies
in the design and fewer chances to make deferred classes useful to clients
through polymorphism and dynamic dispatching.

Feature put in class TABLE (Fig. 3.1b) is an example of this phenomenon.
It is unclear how to express the abstract semantics of put with standard
contracts. In particular, the absence of a postcondition leaves it unde�ned
what should happen when an element is inserted with a key that is already
in the table: should put replace the previous element with the new one or
cancel the insertion? Indeed, some descendants of TABLE implement put with
a replacement semantics (such as class ARRAY), while others disallow put to
override preexisting mappings (such as class HASH_TABLE). Some classes (in-
cluding HASH_TABLE) even introduce another feature force that implements the
replacement semantics. This obscures the behavior of routines to clients and
makes it questionable whether put has been introduced at the right point in
the inheritance hierarchy.

3.2.2 Enhancing Design by Contract with models

To address the aforementioned problems we propose model-based contracts :
a speci�cation discipline enabled by the use of model classes [69, 111] (im-
mutable classes representing mathematical concepts). Model-based contracts
are a conservative extension of Design by Contract, aiming at providing
strong speci�cations without the need to extend the notation, which remains
the one familiar to programmers.

Fig. 3.2 and 3.3 show extensions of the examples in Fig. 3.1 with model-
based contracts. LINKED_LIST (Fig. 3.2) is augmented with a query sequence

that returns an instance of class MML_SEQUENCE, a model class representing a
mathematical sequence of elements of homogeneous type. The query can be
implemented either as an attribute, or as a function that builds sequence ac-
cording to the actual content of the list; this choice is discussed in some more

20 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

class LINKED_LIST [G]
model sequence, index
put_right (v: G)
-- Add ‘v’ to the right of cursor

require 0≤ index≤ sequence.count
modify [sequence] Current

do . . .
ensure

sequence = old (sequence.front (index)
.extended (v) +
sequence.tail (index + 1))

end

duplicate (n: INTEGER): LINKED_LIST [G]
-- A copy of at most ‘n’ elements

-- starting at cursor position

require n ≥ 0
do . . .
ensure

Result.sequence = sequence

.interval (index, index + n − 1)
Result.index = 0

end

count: INTEGER
-- Number of elements

index: INTEGER
-- Current cursor position

item: G
-- Value at cursor position

require

sequence.domain [index]
ensure

Result = sequence [index]
end

sequence: MML_SEQUENCE [G]
-- Sequence of elements

. . .

invariant

0≤ index≤ sequence.count + 1
count = sequence.count

end

Figure 3.2: A snippet from class LINKED_LIST with model-based contracts.

detail below. The model clause2 declares the two features sequence and index as
the model of the class; every contract will rely on the abstraction they pro-
vide. In particular, the postcondition of put_right can precisely describe the
e�ect of the routine: the new sequence is the concatenation of the old sequence

up to index, extended with element v, with the tail of the old sequence starting
after index. The keyword modify introduces a routine's frame speci�cation: a
list of all model queries whose value is allowed to change after executing the
routine. For example, routine put_right in Fig. 3.2 may only change the value
of Current.sequence, but not Current.index and not any model query of an object
di�erent from Current3 We can assert that the new postcondition�including

2Here and in the rest of the thesis, newly introduced language constructs are
underlined. In practice we express these elements using Ei�el's note meta-annotation
to avoid changing the syntax.

3In fact, put_right can also modify the abstract state of objects that constitute the
internal representation of Current, as well as any newly allocated objects, but those changes
do not concern the clients of put_right. The semantics of modify clauses used in this

3.3. FOUNDATIONS OF MODEL-BASED CONTRACTS 21

deferred class TABLE [G, K]
model map

map: MML_MAP [G, K]
-- Map of keys to values

. . .

put (v: G ; k: K)
-- Associate value ‘v’ with key ‘k’

require map.domain [k]
modify [map] Current

deferred

ensure map = old map.replaced_at (k, v)
end

end

Figure 3.3: A snippet from class TABLE with model-based contracts.

the frame speci�cation�is complete with respect to the model of the class,
because it de�nes the e�ect of put_right on the model fully and determinis-
tically. At the same time, the speci�cation of LINKED_LIST is abstract, since
the model does not reveal any representation details, beyond the informa-
tion available through the public interface. These complementary notions
of completeness and abstraction are a powerful guide to writing accurate
speci�cations that makes for well-de�ned interfaces and veri�able classes.

A mathematical map�represented by the model class MML_MAP�is the nat-
ural model for the class TABLE (Fig. 3.3). Even though TABLE is deferred and
does de�ne a concrete data representation, the availability of a model sup-
ports complex speci�cations already at this abstract level. In particular,
writing a complete postcondition for routine put requires committing to a
speci�c semantics for insertion. The example in Fig. 3.3 chooses the re-
placement semantics; correspondingly, all descendants of TABLE will have to
conform to this semantics, guaranteeing a coherent reuse of TABLE throughout
the class hierarchy.

3.3 Foundations of Model-Based Contracts

This section formalizes the notions of �complete� and �abstract� model-based
speci�cations using the mathematical language of abstract data types (ADT).
Sect. 3.3.1 brie�y reviews traditional algebraic ADT speci�cations and the
notion of su�cient completeness of such speci�cations, as proposed in [48];
Sect. 3.3.2 introduces the concepts of abstract equality and abstract state
space of an ADT; �nally Sect. 3.3.3 shows the bene�ts of model-based ADT
speci�cations over arbitrary algebraic speci�cations and presents su�cient

chapter is a simpli�cation; formal details are presented in Chapters 5 and 6.

22 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

conditions to achieve consistency, su�cient completeness and abstraction.

3.3.1 Abstract Data Types

Following the classical work of Guttag and Horning [48], an abstract data
type is a type algebra T = 〈I + {T}, F 〉, where I is the set of supporting
phyla, T /∈ I is a distinguished phylum called the type of interest (TOI), and
F is a �nite set of �nitary partial operations f : V1 × . . . × Vn 7→ V0, where
each Vi ∈ I + {T} and at least one Vi = T .

A type algebra is a special case of a heterogeneous algebra; unlike a generic
heterogeneous algebra, which de�nes multiple phyla by mutual recursion, a
type algebra de�nes a single phylum�the type of interest�in terms of the
supporting phyla. As a consequence, every V ∈ I is assumed to have a �xed
structure, including an equality relation =V (we omit the subscript when
the type of the operands is clear). The equality relation =T of the type of
interest, on the other hand, is not prede�ned, but rather axiomatized, just
like the operations F (the semantics of =T is discussed in more detail below).

The set of operations F can be split into creators (N), queries (Q) and
commands (C), depending on whether T occurs in their signature only on
the right, only on the left, or on both sides, respectively. The sets I and
the operations F together de�ne a set of terms LI,F , which contains all
�strings� f(x1, . . . , xn), where f ∈ F , each xi ∈ V ∈ I or xi ∈ LI,F , and
〈x1, . . . , xn〉 ∈ dom(F). The set of terms can be naturally extended to a
term algebra LI,F = 〈I + {LI,F}, F 〉.

The meaning of operations in F is given by a set of axioms A, each of
which is of the form ∀x1, . . . , xn • lhs = rhs. Here x1, . . . , xn are variables;
lhs is a well-typed term over those variables, built using only operations
in F with the nesting level of one or two; rhs is a well-typed term (of the
same types as lhs) over x1, . . . , xn, built using operations in F or prede�ned
operations of I, including the built-in operation if then else of the phylum
B (Booleans). The meaning of = in each axiom depends on the type of lhs.
Since all free variables of lhs and rhs are always universally quali�ed, the
quanti�er can be omitted.

Example 3.1. We de�ne an ADT QUEUE for queues of integers. Its supporting
phyla are Booleans and integers (I = {B,Z}), and its operations consist of
a creator new, two queries: is_empty and item, and two commands: put and
remove with the following signatures4:

new : → QUEUE

4Here we use the same symbol QUEUE to denote both the ADT and its type of interest.

3.3. FOUNDATIONS OF MODEL-BASED CONTRACTS 23

is_empty : QUEUE→ B

item : QUEUE 7→ Z

put : QUEUE× Z→ QUEUE

remove : QUEUE 7→ QUEUE

The domains of partial operations item and remove can be speci�ed using
precondition predicates: Pitem(q) ≡ Premove(q) ≡ ¬is_empty(q). The follow-
ing axioms A give the meaning of queue operations:

is_empty(new) = >
is_empty(put(q, v)) = ⊥

item(put(q, v)) = if is_empty(q) then v else item(q)

remove(put(q, v)) = if is_empty(q) then q else put(remove(q), v)

De�nition 3.1 ([48]). The set of axioms A is a su�ciently complete axiom-
atization of T = 〈I+{T}, N +Q+C〉, if for every term f(t1, . . . , tn) ∈ LI,F ,
such that (f : V1 × . . .× Vn 7→ V0) ∈ Q, there exists a value u ∈ V0 such that

A |= f(t1, . . . , tn) = u

A is consistent if such a u is unique.

The problem of establishing whether a given set of axioms is su�ciently
complete is, in general, undecidable. Moreover, experience shows that con-
structing su�ciently complete axiomatizations is often nontrivial in practice;
[48] gives a set of guidelines, which signi�cantly restrict the shape of po-
tential axioms, however some of those axioms are still rather non-obvious.
Intuitively, the goal of an ADT speci�cation is to express the e�ect of each
command on the value of each query; however, axioms constructed according
to the guidelines of [48] often involve multiple commands, and sometimes in
a such a way that one side of the identity does not seem simpler than the
other. An example is the last axiom of QUEUE, where the term remove(put(q, v))
is related to put(remove(q), v), which does not immediately seem useful.

In the model-based approach, detailed below, axioms are more structured:
the meaning of each ADT operation is expressed in terms of a single query
m (called the model query), which makes the speci�cation of the operations
more independent, and thus more intuitive and easier to write.

3.3.2 Abstract equality and abstract state space

Associating the type of interest of an ADT with a concrete set would defeat
its purpose of being abstract; instead T is usually de�ned as T = LI,F/ =T :

24 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

a quotient set of LI,F by some congruence relation. In general, there can
be multiple congruence relations compatible with a given axiomatization,
and thus multiple ways to de�ne the type of interest. Some early work on
ADTs [47, 138] makes the assumption that the values of T must be con-
sidered di�erent unless provably equal, thus choosing =T to be the smallest
congruence compatible with the axioms. Guttag and Horning [48] take the
opposite view: they note that the signi�cance of values in T rests solely upon
the di�erence they make�in terms of the prede�ned =V for V ∈ I�for the
results of queries Q; thus it makes sense to regard elements of T as equal
unless demonstrably distinct.

Example 3.2. Consider an ADT SET for sets of integers, with three opera-
tions: new : → SET, has : SET× Z→ B, and put : SET× Z→ SET. A su�ciently
complete (and intuitively pleasing) axiomatization of SET is given by the fol-
lowing two identities:

has(new, x) = ⊥
has(put(s, y), x) = if x = y then > else has(s, x)

The axioms make no mention of =SET, thus the smallest possible congruence
on SET is the (term) identity. With this approach the terms put(put(new, 0), 1)
and put(put(new, 1), 0) are considered di�erent, since there is no way to prove
otherwise using the axioms. Taking the view of [48], however, those two
terms�and in general, any two sets that agree on the value of has for all
integers�are considered equal, which is consistent with our intuitive under-
standing of sets.

In the present work, we formalize this view of [48] through the following
distinguishability relation5.

De�nition 3.2. Two terms x, y ∈ LI,F are distinguishable by the set of
axioms A (written x 6≈A y), if there exists a nonempty sequence of appropri-
ately typed operations f1, . . . , fn ∈ F with (f1 : T 7→ V) ∈ Q, and two values
u, v ∈ V with u 6= v, such that

A |= (f1 ◦ . . . ◦ fn)(x) = u ∧
A |= (f1 ◦ . . . ◦ fn)(y) = v

Otherwise x and y are indistinguishable by A: x ≈A y.
5For clarity of presentation, hereafter we restrict all ADT operations to take exactly

one argument; an extension to multiple arguments is straightforward.

3.3. FOUNDATIONS OF MODEL-BASED CONTRACTS 25

We will omit the subscript A whenever the set of axioms is unambigu-
ous. Note that in an ADT with no queries (Q = ∅), all terms are indis-
tinguishable. Another important observation concerns su�ciently complete
axiomatizations:

Proposition 3.1. If A is consistent and su�ciently complete by De�ni-
tion 3.1, then x ≈A y is equivalent to ∀f1, . . . , fn ∈ F with f1 ∈ Q:

A |= (f1 ◦ . . . ◦ fn)(x) = (f1 ◦ . . . ◦ fn)(y).

Example 3.3. Consider two terms from LQUEUE: x ≡ put(put(new, 0), 0) and
y ≡ put(put(new, 0), 1). Given the axiomatization of Example 3.1, x 6≈ y, since
we can prove that item(remove(x)) = 0 and item(remove(y)) = 1.

Now imagine the QUEUE ADT without the remove operation (and the corre-
sponding axiom). In this new type x ≈ y, since there is no way to observe
any of the queue elements beyond the �rst one. In this example the distin-
guishability relation contradicts our intuition about the ADT, providing a
clue that some operations might be missing, even though the axiomatization
of the existing operations is su�ciently complete.

Lemma 3.1. If an axiomatization A of an ADT T = 〈I + {T}, F 〉 is con-
sistent and su�ciently complete, then ≈A is a congruence relation on T,
compatible with A.

Proof. Since A is consistent and su�ciently complete, for ≈A we can use
the formula from Proposition 3.1. This relation is re�exive, since all f ∈ F
are functions over terms; it is also symmetric and transitive, since =V for all
V ∈ I is symmetric and transitive. Hence ≈A is an equivalence relation.

This relation is compatible with queries Q and commands C. For arbi-
trary terms x and y such that x ≈A y, and an arbitrary query q ∈ Q, we
have ∀f1, . . . , fn ∈ F with f1 ∈ Q, A |= (f1 ◦ . . . ◦ fn)(x) = (f1 ◦ . . . ◦ fn)(y);
instantiating n = 1, f1 = q, we get q(x) = q(y). Similarly, for an arbitrary
command c ∈ C, instantiating fn with c we get A |= (f1◦ . . .◦fn−1)(c(x)) =
(f1 ◦ . . . ◦ fn−1)(c(y)) for any f1, . . . , fn−1 ∈ F , thus c(x) ≈A c(y). Hence ≈A
is a congruence.

Finally, ifA |= x =T y andA |= (f1◦. . .◦fn)(x) = u, then by equational
reasoning we get A |= (f1 ◦ . . . ◦ fn)(y) = u, which means x ≈A y. Thus
≈A is compatible with A.

Indistinguishability has another useful property: it is bigger than all con-
gruences compatible with the structure of the supporting phyla. Consider a
congruence ∼, such that (∼) 6⊆ (≈); then there exist x, y ∈ LI,F such that
x ∼ y but x 6≈ y. Hence ∃f1, . . . , fn ∈ F with (f1 : T 7→ V) ∈ Q such that

26 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

A |= (f1 ◦ . . . ◦ fn)(x) 6=V (f1 ◦ . . . ◦ fn)(y), even though x ∼ y; in other
words, ∼ is not compatible with =V and thus is not a congruence on T.

From the above discussion and Lemma 3.1 it follows, that given a con-
sistent and su�ciently complete axiomatization, indistinguishability is the
biggest (�most abstract�) congruence relation on T. For that reason we also
refer to ≈ as abstract equality, and to the quotient set LI,F/ ≈ as the abstract
state space of an ADT. Given the goal to achieve maximum abstraction, it
makes sense to de�ne =T as ≈, and the type of interest T as the abstract
state space. This turns T into a quotient algebra of the term algebra LI,F
by ≈: T = LI,F/ ≈.

For incomplete axiomatizations A, ≈A is not necessarily transitive, and
thus not an equivalence relation. For example, without the last axiom of the
QUEUE ADT in Example 3.1, one cannot distinguish remove(put(new, 0)) from
any other term, including, for instance put(new, 0) and put(new, 1), which are
distinguishable from each other.

3.3.3 Model-Based Speci�cations

The goal of model-based approaches to speci�cation [58, 49, 98, 134] is to
simplify reasoning about an ADT by mapping it to a concrete set, called
its model, and expressing the semantics of operations in a more structured
manner, in terms of the model.

De�nition 3.3. Given an ADT T = 〈I + {T}, N +Q+C〉, let us augment
the set of supporting phyla I with the model phylum M , and the set of
queries Q with the model query m : T →M . The set of axioms AM is called
a functional model-based speci�cation of T if it has the following form (where
each φi is a composition of operations de�ned in I + {M}):

� for each q ∈ Q, AM contains an axiom ∀x • q(x) = φq(m(x));

� for each c ∈ C, AM contains an axiom ∀x •m(c(x)) = φc(m(x));

� for each n ∈ N , AM contains an axiom ∀i •m(n(i)) = φn(i);

� those are the only axioms in AM .

It is easy to show that a functional model-based speci�cation is always
consistent and su�ciently complete: by induction on the term structure one
can prove that any term f(t1, . . . , tn) where ti ∈ LI,F and f ∈ Q is reducible
to a term containing only φq, φc and φn.

We say that a model-based speci�cation AM is compatible with the set
of axioms A of a general form, if they agree on all terms f(t) ∈ LI,F with
(f : T 7→ V) ∈ Q, that is, if ∃u ∈ V •A |= f(t) = u, then AM |= f(t) = u.

3.3. FOUNDATIONS OF MODEL-BASED CONTRACTS 27

Choosing a Model

Finding a good model for a component is the central problem of all model-
based speci�cation methodologies. In our case, given an ADT T with a
consistent and su�ciently complete axiomatization A, how does one pick the
phylum M and construct AM compatible with the initial axioms? Infor-
mally to make a functional model-based speci�cation possible, M must have
�enough� values to di�erentiate between the distinguishable elements of T ;
on the other hand, it should not contain �too many� values, since that would
defy the pursuit of abstraction. Fortunately, the notion of abstract state
space, introduced above, provides exactly the right level of detail. Thus, M
is a good model if there exists a set of operations Φ, such that the �model
algebra� 〈I + {M},Φ〉 is isomorphic to the quotient algebra LI,F/ ≈; the
operations Φ can then be used in the speci�cation AM as φq, φc and φn. This
condition on M is captured more accurately by the following de�nition.

De�nition 3.4. Given an ADT T = 〈I + {T}, F 〉 with a consistent and
su�ciently complete axiomatization A, a surjective function µ : LI,F → M
is a model function for 〈T,A〉 if

∀x, y ∈ LI,F • x ≈A y ⇔ µ(x) = µ(y).

We can show that whenever such µ exists, it is possible to de�ne a set
of operations Φ and produce a functional model-based speci�cation AM , in
the sense that those operations are indeed functional (univalent). The latter
can be expressed as ∀q ∈ Q, x, y ∈ LI,F • µ(x) = µ(y) ⇒ q(x) = q(y)
and ∀c ∈ C, x, y ∈ LI,F • µ(x) = µ(y) ⇒ µ(c(x)) = µ(c(y)), and follows
immediately from ≈A being a congruence. Of course, the fact that operations
in Φ are functional does not formally guarantee that they can be expressed as
a composition of the prede�ned operations ofM and I, but since the premise
of model-based speci�cations is the existence of su�ciently expressive model
types, these operations are likely available.

Given a functional model-based speci�cation AM based on operations Φ,
and an interpretation µ : LI,F →M of the model query m, it follows directly
from the shape of the axioms that µ is a homomorphism from LI,F to the
model algebra 〈I+{M},Φ〉. Thus, by the �rst isomorphism theorem [18], the
image of µ (im(µ)) is isomorphic to the quotient algebra LI,F/ ∼µ (where
x ∼µ y means µ(x) = µ(y)). If in addition µ is a model function, that
is, (∼µ) = (≈) and im(µ) = M , then the model algebra 〈I + {M},Φ〉 is
isomorphic to LI,F/ ≈, which corresponds to our intuitive de�nition of a
�good� model. In conclusion, choosing a good model for a given 〈T,A〉 boils
down to �nding a model function.

28 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

In De�nition 3.4, the ⇐ direction (terms with the same model are indis-
tinguishable) intuitively means that the model is �expressive enough� or �not
too coarse�. Failure to comply with this constraint results in the inability to
express the operations φf for some f ∈ Q + C, and thus to complete AM .
The⇒ direction (terms with di�erent models are distinguishable) guarantees
that the model is �abstract enough� or �not too �ne-grained�. This property
is also known as observability [133]; failure to establish it leads to models
with too much detail. Finally, the requirement that the model function be
surjective entails that the model phylum M does not contain any �garbage�
values, that do not correspond to abstract values of the ADT; this property
is also known as controllability [133].

Since it is unreasonable to expect that the prede�ned collection of model
types contains precisely the image of every useful model function µ, in prac-
tice it is convenient to represent the model phylum M as {z ∈ Z | IM(z)},
where Z is a prede�ned type and IM is an invariant predicate, which restricts
the possible values of the model to im(µ).

Example 3.4. Recall the QUEUE ADT de�ned in Example 3.1. As the model
phylum for queues we choose integer sequences, Z∗, with a standard set of
operations, including index-based access (s[i]), slicing (s[i..j]), construction
of empty ([]) and singleton ([v]) sequences, and concatenation (s1 + s2). We
can argue that Z∗ is a suitable model by providing an informal de�nition of
the model function µ(q) as �the sequence of elements stored in q in the order
of their insertion�. According to our intuition, the operations of QUEUE cannot
distinguish two queues with the same sequence of elements, and conversely,
two queues with di�erent element sequences can be distinguished; in addition,
for any sequence of values, we can build a queue storing those values; this
makes µ a valid model function.

After ensuring that the model is chosen properly, constructing a func-
tional model-based speci�cation for QUEUE is straightforward:

m(new) = []

is_empty(q) = (m(q) = [])

item(q) = m(q)[1]

m(put(q, v)) = m(q) + [v]

m(remove(q)) = m(q)[2..]

This speci�cation is guaranteed to be consistent and su�ciently complete
independently of our choice of the model. In addition, if our reasoning about µ
was sound, this speci�cation is also abstract and consistent with the intended
semantics.

3.3. FOUNDATIONS OF MODEL-BASED CONTRACTS 29

Now consider QUEUE without remove (see Example 3.3). The model Z∗ is too
�ne-grained for this ADT, since any two queues with the same �rst element
cannot be distinguished. One appropriate model for such a queue is a set,
which is empty for an empty queue, and contains its �rst element otherwise;
this model can be speci�ed through an invariant predicate IM ≡ |m(q)| ≤ 1.
At the same time, for the original QUEUE ADT, this new model is obviously
too coarse, and as a result the operation φremove cannot be de�ned.

Assessing Quality

After the speci�cation AM has been constructed, one can emancipate it from
the original axioms A and de�ne the following internal quality criteria:

De�nition 3.5. A model-based speci�cation AM of an ADT T = 〈I +
{T}, N +Q+ C〉 with M = {z ∈ Z | IM(z)} and a model query m is:

1. complete if ∀x, y ∈ LI,F • x ≈AM y ⇐ m(x) = m(y);

2. observable if ∀x, y ∈ LI,F • x ≈AM y ⇒ m(x) = m(y);

3. closed if ∀(n : V 7→ T) ∈ N, i ∈ V •Pn(i)⇒ IM(φn(i)) and ∀c ∈ C, z ∈
Z • Pc(z) ∧ IM(z)⇒ IM(φc(z)), where Pf is the precondition of f ;

4. controllable if ∀z ∈ Z • IM(z)⇒ ∃x ∈ LI,F • (AM |= m(x) = z).

Completeness always holds for functional model-based speci�cations. Ver-
ifying observability requires providing, for any two terms x, y ∈ LI,F such
that m(x) 6= m(y), a witness sequence of operations that distinguishes them.
Closure and controllability together express that the invariant IM describes
precisely the range of m. Closure always holds for models with a trivial in-
variant. Checking controllability requires providing a witness term that has
a given model.

The fact that AM satis�es the criteria of De�nition 3.5 does not tell
us anything about its relation to the initial speci�cation A; on the other
hand, it does guarantee that AM is consistent and su�ciently complete, and
that M is abstract and minimal. Such internal quality criteria are impor-
tant in practice, since normally the speci�cation process starts with A as
the developer's informal understanding of the ADT semantics. Guided by
this understanding, the developer chooses a model phylum M and a model
function µ that maps intuitively distinguishable objects to di�erent values,
and indistinguishable objects to the same value. With the model at hand,
the developer constructs a formal model-based speci�cation AM , following a
rather strict format of De�nition 3.3. At this point, the quality of AM can

30 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

be checked formally, according to De�nition 3.5. A failure to verify one of
the criteria calls for strengthening the speci�cation, changing the model, or
even adding or removing some ADT operations.

Example 3.5. Let us evaluate the quality of the model-based speci�cation
of the QUEUE ADT from Example 3.4.

1. Completeness holds trivially since the speci�cation is functional.

2. Observability: Given queues q1, q2 with m(q1) = s1, m(q2) = s2 and
s1 6= s2, either exactly one of the sequences is empty (hence, from the
speci�cation of is_empty, is_empty(q1) 6= is_empty(q2)) or both sequences
are nonempty. In that case, either s1[1] 6= s2[1] (and hence, from the
speci�cation of item, item(q1) 6= item(q2)), or s1[2..] 6= s2[2..]. In the
latter case, we can apply the same reasoning recursively to the queues
remove(q1), remove(q2) and sequences s1[2..], s2[2..]

3. Closure holds trivially since IM ⇔ >.

4. Controllability : Given an empty sequence s, by the speci�cation of new
we have m(new) = s. Now suppose that for any sequence of length
k we can construct the corresponding queue; given a sequence s of
length k + 1, we use the induction hypothesis to produce a q such
that m(s) = s[..k], and then use the speci�cation of put to verify that
m(put(q, s[k + 1])) = s.

Relational Model-Based Speci�cations

When the model phylumM (together with the supporting phyla I) does not
provide enough operations to represent some φ ∈ Φ as their composition,
the solution is to axiomatize φ, which leads to speci�cations syntactically
di�erent from functional model-based speci�cations.

De�nition 3.6. For an ADT T = 〈I + {T}, N + Q + C〉, augmented with
M and m : T → M , the set of axioms AM is called a relational model-based
speci�cation if it has the following form (where each ρi is a composition of
operations de�ned in I + {M}):

� for each q ∈ Q, AM contains an axiom ∀x • ρq(m(x), q(x));

� for each c ∈ C, AM contains an axiom ∀x • ρc(m(x),m(c(x)));

� for each n ∈ N , AM contains an axiom ∀i • ρn(i,m(n(i)));

� those are the only axioms in AM .

3.4. MODEL-BASED CONTRACTS IN PRACTICE 31

Although syntactically di�erent, relational model-based speci�cations can
be semantically equivalent to functional speci�cations discussed above, if
every ρf for f ∈ N +Q+C is functional (univalent, right-unique). It is easy
to show that under this condition, a relational model-based speci�cation is
complete as per De�nition 3.5.

Example 3.6. Suppose that our speci�cation language does not o�er se-
quence slicing, but instead provides a sequence length operation (|s|) and
quanti�cation over integer intervals (all i ∈ n..m : p(i)). We have to re-
place the speci�cation of remove in the QUEUE ADT with a relational equivalent
ρremove(m(q),m(remove(q))), where

ρremove(s1, s2) ≡ |s1| = |s2|+ 1 ∧ all i ∈ 1..|s2| : s2[i] = s1[i+ 1].

We can show that ρremove is univalent, since it de�nes uniquely the length
of s2 and �xes its elements at positions from 1 to |s2|. Hence, this new,
relational model-based speci�cation of QUEUE still satis�es the internal quality
criteria of De�nition 3.5.

3.4 Model-Based Contracts in Practice

This section demonstrates how the speci�cation process and quality criteria
de�ned in Sect. 3.3 can be applied to imperative object-oriented programs.

3.4.1 From Abstract Data Types to Classes

The notion of class in object-oriented programming shares many similarities
with abstract data types: the purpose of both is to de�ne a type in terms of
operations that can be performed on it, and both rely on existing types to do
so. Similarly to the ADT operations, the features of a class can be separated
into creators (which initialize new objects), commands (which transform the
object state), and queries (which relate objects to values of other types).
These similarities prompt the reuse of ADT speci�cation techniques for de-
scribing the meaning of classes.

The established approach to reasoning about routines in imperative pro-
grams is based on pre- and postconditions [52]. Algebraic speci�cations of
ADTs, as proposed in [48], cannot be directly rewritten in this form, since
they often relate multiple commands to each other; for instance, it is unclear
how to express the axiom remove(put(q, v)) = . . . from Example 3.1 as a post-
condition of either remove or put6. On the other hand, the restricted form of

6An entirely di�erent view on algebraic speci�cations in an imperative context is out-

32 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

model-based speci�cations, where each operation is de�ned by an indepen-
dent axiom in terms of the model query, makes them easily applicable to
imperative programs, in particular, in the context of Design by Contract.

There are, however, some di�erences between ADTs and classes (as pre-
sent in modern object-oriented languages), which a�ect the way clients rea-
son about the behavior of a reusable component. Most importantly, since
the ADT notation is stateless, the signature of an ADT operation de�nes
precisely its input and output, as a tuple of abstract values. Classes have
state, which is stored on the heap; an �abstract value� of an object is a func-
tion of the heap, and each feature includes the heap as a hidden input and
output. The programming language usually imposes no restrictions on the
set of heap locations a feature may modify, and as a result it may change the
abstract value of virtually any object in the system. Since the goal of inter-
face speci�cations is to simplify client reasoning, we would like to encapsulate
the complexity associated with the heap and express the semantics of a fea-
ture as a function from abstract values to abstract values (just like an ADT
operation). For reasons explained above, however, de�ning the output of a
feature in terms of abstract values is challenging. Our technique for relating
the heap to abstract values is detailed in Chapters 5 and 6, devoted to ver-
i�cation. What matters from the interface speci�cation standpoint, is that
in addition to pre- and postconditions, a feature has to be equipped with
a modify clause, which essentially restricts the abstract values the feature
�outputs�.

Fig. 3.4 shows how one can turn a model-based speci�cation of the QUEUE

ADT, de�ned in Example 3.4, into model-based contracts for class QUEUE. The
rest of the section explains various aspects of model-based contracts in more
detail, using class QUEUE, as well as LINKED_LIST (Fig. 3.2) and TABLE (Fig. 3.3),
as illustrative examples.

Model classes

In practice it is convenient to express the model of a class C using a tuple
MC = 〈M1

C ,M
2
C , . . . ,M

n
C〉 of model types. Model types include elementary

sorts (such as Booleans, integers, and object references), functions over other
model types (encoded in Ei�el as agents [95]), and model classes : immutable
classes designed for speci�cation purposes, which wrap rigorously de�ned
mathematical structures, such as sets, bags, relations, maps, and sequences.
The MML library presented in Chapter 2 provides a variety of such model
classes, equipped with features that correspond to common operations on

lined in [132]: one can de�ne an immutable type that corresponds directly to an ADT and
then use functions of this type to specify the class features.

3.4. MODEL-BASED CONTRACTS IN PRACTICE 33

class QUEUE

create new

model sequence

sequence: MML_SEQUENCE [INTEGER]
-- Sequence of elements

is_empty: BOOLEAN
-- Is the queue empty?

ensure Result =
sequence.is_empty

end

item: INTEGER
-- Head of the queue

require not sequence.is_empty
ensure Result = sequence [1]
end

new

-- Create an empty queue

modify [sequence] Current

ensure sequence.is_empty
end

put (v: INTEGER)
-- Add ‘v’ to the tail

modify [sequence] Current

ensure sequence =
old sequence.extended (v)

end

remove

-- Remove the head of the queue

require not sequence.is_empty
modify [sequence] Current

ensure sequence = old sequence.but_first
end

end

Figure 3.4: Class QUEUE annotated with model-based contracts, equivalent to
the model-based speci�cation of a QUEUE ADT in Example 3.4.

the mathematical structure they represent. For example, class MML_SET mod-
els �nite sets; it includes features for operations such as membership test,
union, intersection, di�erence, etc. MML_SET also supports a restricted form of
quanti�cation through Ei�el's loop expressions : one can write all x ∈ s : B(x)

for universal and some x ∈ s : B(x) for existential quanti�cation, where s is a
set expression and B(x) is a Boolean expression over x.

In Fig. 3.4 the model of a queue is expressed using a single model class
MML_SEQUENCE (for �nite sequences). To represent the model of a linked list
with internal cursor (see Fig. 3.2), we can combine MML_SEQUENCE with the
elementary sort INTEGER (to encode the cursor position); this assumes that no
information about the pointer structure of the list in the heap is accessible
through the interface of the class.

Model Queries

Every class C de�nes a tuple of public model queries 〈m1
C ,m

2
C , . . . ,m

n
C〉, one

for each component of the model M i
C . Like in the ADT case, each model

34 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

query has exactly one argument�the target object�and is total. The clause
model m1

C ,m
2
C , . . . lists all model queries of the class (see Fig. 3.2 and 3.4 for

examples).
It is likely that some model queries are equally suitable for use in the im-

plementation; for example LINKED_LIST.index in Fig. 3.2. Other model queries,
such as LINKED_LIST.sequence, are added solely for speci�cation purposes and
are not meant to be used in executable code.

Speci�cation-only model queries can be implemented either as attributes
or as functions, both with their own pros and cons. The former approach
requires augmenting routine bodies with bookkeeping instructions that up-
date model attributes. Attributes are also more di�cult to �erase� from the
system when contract checking is disabled: they always occupy memory at
run time, unless the programming language provides a ghost construct that
tells the compiler to omit given declarations and instructions during code
generation. Implementing models as functions enforces a cleaner division be-
tween implementation and speci�cation, but can incur performance overhead
for runtime checking (when a model is calculated multiple times in the same
concrete state), and impede veri�cation in several ways (see Chapter 6). Note
that the choice of implementation is immaterial from the interface speci�ca-
tion standpoint, and will only become important in later chapters.

Routine contracts

Just like preconditions and axioms de�ne the meaning of operations in an
ADT, routine contracts (preconditions, postconditions, and frame speci�ca-
tions) express the semantics of class routines. The rest of the section contains
guidelines for creating these speci�cation elements, assuming all involved
classes are equipped with model queries.

Similarly to the ADT case, the precondition of a feature is a constraint
on the abstract values of its arguments. If an argument is of a model type,
its abstract and concrete values coincide; otherwise the abstract value of an
argument is given by its model (the tuple of values of its model queries). For
example, the precondition not sequence.is_empty of feature item in Fig. 3.4 is a
predicate over the model of the feature's sole argument (the target object).

Note that an argument x of a (non-model) reference type actually stands
for two di�erent abstract values: the model of the object that x is attached
to, and the reference x itself. Depending on developer's intention, either one
or even both may appear in contracts. Consider the precondition map.domain [k]

of feature put in class TABLE (Fig. 3.3): it refers to the model of the target
object (through the model query map), and to the actual reference k.

It is good practice to partition features into queries and commands;

3.4. MODEL-BASED CONTRACTS IN PRACTICE 35

queries are functions of the object state, whereas commands modify the ob-
ject state but do not return any value. This command-query separation [84]
is not enforced by object-oriented programming languages, most importantly,
because completely preventing functions from modifying the heap is too re-
strictive. The desired property is known as abstract purity (also called ob-
servational purity): executing a query should leave unchanged the abstract
state of all objects accessible to the client. This is a methodological princi-
ple, which can be expressed more precisely through speci�cation guidelines.
In particular, the model-based contracts methodology prescribes di�erent
postconditions and frame speci�cations for queries and commands.

The postcondition of a command de�nes a relation between the abstract
pre-state and the abstract post-state of its arguments (i.e. the state be-
fore and after executing the command). For example the postcondition
sequence = old sequence.extended (v) of put in Fig. 3.4 relates the new abstract
state of the target object (sequence) to its old abstract state (old sequence) and
the value of the reference v. This postcondition is a direct equivalent of the
axiom m(put(q, v)) = m(q) + [v] from Example 3.4.

Since the programming language allows a command r to modify the ab-
stract state of any object in the system, completing the speci�cation of r ne-
cessitates providing a modify clause. A clause of the form modify [m1

C ,m
2
C , . . .] o

in the speci�cation of a command r gives it permission to modify model
queries m1

C ,m
2
C , . . . of the object o and nothing else (instead of a single ob-

ject o, one can specify an arbitrary set of objects, encoded as an instance
of MML_SET). For example, the modify clause modify [sequence] Current restricts
the e�ect of put in Fig. 3.4 to the abstract state of the target object. In the
corresponding ADT operation of Example 3.4, this property is encoded in
the signature, QUEUE× INTEGER → QUEUE, which means that the operation only
produces a queue and nothing else.

The postcondition of a query de�nes the abstract state of its result in
terms of the abstract state of its arguments. Once again, if the result y of
a query is of a reference type, its abstract value is a pair of a reference y
and the model of the object that y is attached to. For example, compare the
postcondition of query item from class LINKED_LIST (Fig. 3.2), which de�nes
a reference to the returned list element, with the postcondition of query
duplicate in the same class, which speci�es the model of the returned list.

Models assign a precise meaning to the notion of �abstract value� of an
object, whereby giving a formal interpretation to the concept of abstract
purity. In the model-based contracts methodology, a feature is (abstractly)
pure if it does not have a modify clause, which implies that it does not alter
the model of any object accessible to the client; this is the recommended
default for queries.

36 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

Apart form queries and commands, there is a third kind of features, which
corresponds to creators in an ADT. Creation procedures are used to initialize
newly created objects, and are designated in the class interface using a create

clause (see Fig. 3.4 for an example). Contracts of creation procedures are
similar to those of commands, except that they cannot mention the abstract
pre-state of the target object.

Class Invariants

Model-based contracts prescribe three types of class invariant clauses.
Model constraints restrict the values of model queries to match precisely

the abstract state space of the class; they correspond to the invariant predi-
cate IM de�ned for ADTs in Sect. 3.3.3. For example, model queries sequence

and index of LINKED_LIST in Fig. 3.2 are constrained by an invariant clause
0≤ index≤ sequence.count + 1.

Attribute de�nitions play the same role for public attributes as model-
based postconditions do for functions. Public attributes, from the class inter-
face standpoint, are indistinguishable from public functions, and thus their
values should be de�ned in terms of model queries. Syntactically, Ei�el al-
lows attributes to have postconditions; they are, however, ignored during
runtime checking and their semantics for veri�cation is unclear, since the re-
sponsibility to maintain those properties lies on the routines of the class and
not on the attributes themselves. Hence our methodology prescribes placing
public attribute de�nitions in the class invariant. For example, in Fig. 3.2
the attribute count of LINKED_LIST is given a de�nition count = sequence.count.

Finally, linking invariants are related to inheritance and are detailed in
the next section.

Inheritance and model-based contracts

A class C ′ that inherits from a parent class C may or may not re-use C's
model queries to represent its own abstract state. It is often desirable to
replace a parent's model query with another one, for example, because the
richer interface of C ′ gives rise to an extended abstract state space. It is
also possible to abandon a parent's model query entirely, when the child
class imposes additional constraints, making some dimensions of the abstract
space obsolete. Naturally, C ′ can also add new model queries, orthogonal to
the parent's model.

For every model querymC of the parent class that is not among the child's
model queries, C ′ should provide a linking invariant to guarantee consistency
in the inheritance hierarchy. The linking invariant is a formula that de�nes

3.4. MODEL-BASED CONTRACTS IN PRACTICE 37

deferred class COLLECTION [G]
model bag

bag: MML_BAG [G]

is_empty: BOOLEAN
ensure Result = bag.is_empty end

wipe_out

modify [bag] Current

ensure bag.is_empty end

put (v: G)
modify [bag] Current

ensure bag = old bag.extended (v) end
end

deferred class DISPENSER [G]
inherit COLLECTION [G]
model sequence

sequence: MML_SEQUENCE [G]

invariant

-- Linking invariant:

bag.domain = sequence.range
all x ∈ bag.domain :
bag [x] =
sequence.occurrences (x)

end

Figure 3.5: Snippets of classes COLLECTION (left) and DISPENSER (right) with
model-based contracts.

the value of mC in terms of the model queries of the C ′. This guarantees that
the new model is indeed a specialization of the previous model, in accordance
with the notion of sub-typing inheritance.

A properly de�ned linking invariant ensures that every inherited feature
has a de�nite semantics in terms of the new model. However, the new seman-
tics may be weaker in that a command whose contract in the parent class
was deterministic becomes underspeci�ed in the child class. In general, the
quality criteria of Sect. 3.3.3, whose application to model-based contracts is
discussed in more detail in the next section, might not be preserved in this
case and have to be re-veri�ed.

Consider class COLLECTION in Fig. 3.5, a generic container of elements whose
model is a bag. Class DISPENSER inherits from COLLECTION and specializes it
by introducing a notion of insertion order; correspondingly, it replaces the
parent's model with a sequence. The linking invariant of DISPENSER de�nes
the value of the inherited feature bag in terms of the new feature sequence:
the domain of bag coincides with the range of sequence, and the number of
occurrences of any element x in bag corresponds to the number of occurrences
of the same element in sequence.

The linking invariant ensures that the semantics of features is_empty and
wipe_out is unambiguously de�ned also in DISPENSER. On the other hand, the
model-based contract of put in COLLECTION and the linking invariant are insuf-

38 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

�cient to characterize the e�ects of put in DISPENSER, as the position within
the sequence where the new element is inserted is irrelevant for the bag.

3.4.2 Assessing Quality in Practice

The internal quality criteria for model-based ADT speci�cations formulated
in De�nition 3.5, carry over rather straightforwardly to model-based con-
tracts, and can be encoded in a program veri�er in order to enable formal
checks. Such checks provide feedback on consistency and usefulness of in-
terface speci�cations early in the development process (before constructing
an implementation and attempting a correctness proof), and may point to
poorly chosen conceptual models, missing contract elements and even missing
features. For each of the four quality criteria, this section shows a possible
encoding in a veri�er, using the examples of QUEUE (Fig. 3.4) and LINKED_LIST

(Fig. 3.2); it then discusses the implications of checking the criterion for the
development process. Implementing the proposed encoding and evaluating
the feasibility and usefulness of formal quality checks is part of future work.

The four criteria can be split into two groups according to the way they
are checked. Completeness and closure are proved individually for each fea-
ture (the latter only for commands and creation procedures), which reduces
to showing correctness of an automatically generated routine.7 Observability
and controllability are instead checked once per class; since the properties
involve an existential quanti�er over programs, these checks amount to pro-
viding a provably correct implementation for a given speci�cation.

Completeness

Consider command put_right of class LINKED_LIST; we can show that its post-
condition is complete by verifying the correctness of put_right_complete pro-
cedure in Fig. 3.6. Indeed, if the code is correct, executing put_right on
two arbitrary lists with the same model produces lists whose model is again
the same. Since modular veri�cation only relies on the contract of put_right
to complete the proof, we have shown that the postcondition of put_right

is univalent�that is, de�nes the new model of the list as a mathematical
function of its old model and the argument v�which corresponds to the def-
inition of completeness given above. Similarly, for queries, we have to show
that their result is de�ned as a mathematical function of the arguments; an
example for query item is shown in Fig. 3.6.

7In auto-active veri�ers [76], this is an established way of checking properties that do
not directly correspond to user-written speci�cations elements, such as well-formedness of
expressions or admissibility of class invariants.

3.4. MODEL-BASED CONTRACTS IN PRACTICE 39

put_right_complete

(l1, l2: LINKED_LIST [G]; v: G)
require

l1.sequence = l2.sequence
l1.index = l2.index
0≤ l1.index≤ l1.sequence.count

do

l1.put_right (v)
l2.put_right (v)

ensure

l1.sequence = l2.sequence
l1.index = l2.index

end

item_complete (l1, l2: LINKED_LIST [G]):
(v1, v2: G)
require

l1.sequence = l2.sequence
l1.index = l2.index
l1.sequence.domain [l1.index]

do

v1 := l1.item
v2 := l2.item

ensure

v1 = v2

end

Figure 3.6: Encoding completeness checks in a veri�er: correctness of pro-
cedures put_right_complete and item_complete implies that postconditions of
put_right and item in Fig. 3.2, respectively, are complete.

Query postconditions in the form Result = exp (m, a) or Result.m = exp (m, a)

and command postconditions in the form m = exp (old m, a)�where exp is a side-
e�ect free expression, m denotes a generic model query, and a is an argument�
correspond to functional model-based speci�cations for ADTs and are triv-
ially complete. Even when postconditions are written in a di�erent form,
verifying completeness only relies on the background theories that encode
model types in the veri�er; thus, given rich enough theories, it should be
possible in most cases to verify completeness fully automatically.

How useful is completeness in practice? As a norm, it is a valuable yard-
stick to evaluate whether the contracts are su�ciently detailed for any in-
ference a client might want to make, given the chosen mathematical model.
Incompleteness calls for strengthening the postcondition, and the impossibil-
ity of systematically writing complete contracts is a strong indication that
the model is chosen poorly.

While complete postconditions should be the norm, there are recurring
cases where incomplete postconditions are unavoidable or even preferable.
Three major sources of benign incompleteness are the following.

� Inherently nondeterministic abstractions, including those that accept
input from the outside world; for example, a random number generator
or a network socket.

� Partial abstractions, resulting from the use of inheritance to factor out

40 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

put_right_closed (s1, s2: MML_SEQUENCE [G]; i1, i2: INTEGER; v: G)
require

0≤ i1≤ s1.count + 1 -- Invariant (of ‘LINKED_LIST’)

0≤ i1≤ s1.count -- Precondition (of ‘put_right’)

s2 = s1.front (i1).extended (v) + s1.tail (i1 + 1)) -- Postcondition

i2 = i1 -- Modify clause

do

ensure

0≤ i2≤ s2.count + 1 -- Invariant

end

Figure 3.7: Encoding a closure check in a veri�er: correctness of procedure
put_right_closed implies that the invariant of LINKED_LIST in Fig. 3.2 is closed
under the postcondition of put_right.

common parts of (complete) speci�cations. For example, class DISPENSER
in Fig. 3.5 is a common ancestor of STACK and QUEUE. If its interface in-
cludes features item, put and remove, its model must be isomorphic to a
sequence. Then, it becomes impossible to write a complete postcondi-
tion for put in DISPENSER: the speci�cation of put cannot de�ne precisely
where an element is added to the sequence; a choice compatible with
the semantics of STACK will be incompatible with QUEUE and vice versa.

� Imperfections in information hiding. For example, class ARRAYED_LIST is
an array-based implementation of lists which exports a query capacity

returning the size of the underlying array; this piece of information is
then part of the model of the class. Default constructors set capacity to
an initial �xed value. Their postconditions, however, do not mention
this default value, hence they are incomplete. The rationale behind not
revealing this information is that clients should not rely on the exact
size of the array when they invoke the constructor.

In all these cases, reasoning about completeness is still likely to improve the
understanding of the classes and to question constructively the choices made
for interfaces and inheritance hierarchies. A benign incompleteness can be
indicated through user annotations in order to suppress the veri�er warning.

Closure

For the same command put_right of LINKED_LIST checking closure amount to
proving procedure put_right_closed in Fig. 3.7. The procedure takes as ar-
guments two copies of a list model, 〈s1, i1〉 and 〈s2, i2〉; it assumes that the
�rst copy satis�es the precondition of put_right and the model constraint IM

3.4. MODEL-BASED CONTRACTS IN PRACTICE 41

distinguish (q1, q2: QUEUE)
require

q1.sequence 6= q2.sequence
modify [sequence] q1, q2

do

. . .
ensure

q1.is_empty 6= q2.is_empty or else

(not q1.is_empty and

q1.item 6= q2.item)
end

. . .
do

if not q1.is_empty and not q2.is_empty
and q1.item = q2.item then

q1.remove
q2.remove
distinguish (q1, q2)

end

ensure

. . .

Figure 3.8: Encoding an observability check in a veri�er: existence of a
provably correct implementation of procedure distinguish implies that the
speci�cation of class QUEUE in Fig. 3.4 is observable; one example of such an
implementation is shown on the right.

extracted from the invariant of LINKED_LIST, and moreover, it is related to the
second copy through the postcondition of put_right. We aim to prove that
the second copy 〈s2, i2〉 also satis�es IM . Similarly to completeness, showing
closure in most cases need not require user interaction.

For routines with incomplete postconditions, a failing closure check is
of limited value. If, however, the postcondition has been proven complete,
failure to verify closure most likely indicates a missing precondition clause,
or an incorrect (or missing) invariant clause.

Observability

Let us check observability of the QUEUE interface speci�cation, given in Fig. 3.4.
We can reason that this check amounts to constructing a provably correct
implementation of routine distinguish (shown in Fig. 3.8 on the left) that
always executes the same sequence of commands on its two arguments. Recall
that the model of a queue is given by sequence, and its only two (non-model)
queries are is_empty and item. Given two arbitrary queues with di�erent
models, the body of distinguish must drive them into a state where at least
one of the queries q is applicable to both queues and returns a di�erent
result. Thus, for each concrete input, the executed sequence of commands,
together with the query q, is precisely the sequence of operations required for
observability in De�nition 3.5. In general, the implementation of distinguish
must be provided by the developer, but it might be possible to �nd heuristics

42 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

build (s: MML_SEQUENCE [INTEGER]): QUEUE
require

True -- Invariant of QUEUE

do

. . .
ensure

Result.sequence = s

end

do

if s.is_empty then

create Result.new
else

Result := build (s.but_last)
Result.put (s.last)

end

ensure

. . .

Figure 3.9: Encoding a controllability check in a veri�er: existence of a prov-
ably correct implementation of procedure build implies that the speci�cation
of class QUEUE in Fig. 3.4 is controllable; one example of such an implementa-
tion is shown on the right.

for generating such programs automatically in common cases. A syntactic
check can make sure that any command call on one of the arguments is
immediately followed by a call to the same command on the other argument.

The importance of observability for understandable speci�cations is dis-
cussed in detail in [133]; most importantly, non-observable speci�cations are
confusing for clients, because they make irrelevant distinctions in the men-
tal model. When an observability check fails, the course of action depends
on whether the developer can provide an implementation of distinguish that
is intuitively correct. If yes, the postconditions of the features involved in
distinguish should be strengthened; otherwise, the developer should recon-
sider his choice of model, or add more features to the class interface. Lack of
observability can be justi�ed for nondeterministic and partial abstractions,
described above in connection with completeness.

Controllability

Showing that the interface speci�cation of class QUEUE is controllable amounts
to providing an implementation of routine build that conforms to the contract
given in Fig. 3.9 on the left. For every valid value of the model sequence (in
the case of QUEUE, a model is trivially valid), such program must construct a
QUEUE object with the given model.

Most observations about distinguish also apply to build. In particular,
a failed veri�cation can be attributed either to weak postconditions, or to
missing commands or model constraints. Apart from nondeterministic and
partial abstractions, lack of controllability can be justi�ed for immutable in-

3.5. EXPERIMENTAL EVALUATION 43

terfaces, which do not provide any commands, but nevertheless are commonly
considered useful. Additionally, deferred classes are deemed uncontrollable
according to the de�nition of build given above, because an object of a de-
ferred class normally cannot be created. An alternative de�nition of build

could take an extra argument q: QUEUE and ensure q.sequnce = s.

3.5 Experimental Evaluation

This section describes experiments in developing model-based contracts for
real object-oriented software written in Ei�el. The experiments target two
non-trivial case studies based on data-structure libraries with the goal of
demonstrating that deploying high-quality model-based contracts is feasible,
practical, and useful.

3.5.1 Case studies

The �rst case study targeted Ei�elBase: a mature Ei�el data structure li-
brary, extensively exploiting traditional Design by Contract. We selected 7
classes from Ei�elBase, for a total of 304 features (254 of them are public)
over more than 5700 lines of code. The 7 classes include 3 widely used con-
tainer data structures (ARRAY, ARRAYED_LIST, and LINKED_LIST) and 4 auxiliary
classes used by the containers (INTEGER_INTERVAL, LINKABLE, ARRAYED_LIST_CURSOR,
and LINKED_LIST_CURSOR). Our experiments systematically introduced models
and conservatively augmented the contracts of all public features in these 7
classes with model-based speci�cations.

The second case study developed Ei�elBase2, a new general-purpose data
structure library, designed from the start with expressive model-based speci-
�cations. The container part of Ei�elBase2 consists of 61 classes with a total
of 689 features (558 of them public). For more detail on Ei�elBase2, see
Chapter 2.

3.5.2 Results and discussion

This section addresses the following two research questions based on the
experience with Ei�elBase and Ei�elBase2:

1. How many di�erent model classes are needed to write model-based
contracts?

2. Are the four criteria of model-based contract quality applicable in prac-
tice?

44 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

class SET [G]
model set, eq
has (v: G): BOOLEAN
-- Does this set contain ‘v’?

ensure

Result = some x ∈ set : eq (x, v)
end

set: MML_SET [G]
-- The set of elements

eq: PREDICATE [G, G]
-- Equivalence relation on elements

end

(a) Class SET.

class BINARY_TREE [G]
model: map
add_root (v: G)
-- Add a root with value ‘v’

-- to an empty tree

require

map.is_empty
ensure

map.count = 1
map [Empty] = v

end

map: MML_MAP [MML_SEQUENCE[BOOLEAN], G]
-- Map of paths to elements

end

(b) Class BINARY_TREE.

Figure 3.10: Examples of nonobvious models in Ei�elBase2.

How many model classes?

One of the biggest objections to the model-based approach to speci�cation
is that its reliance on a �xed collection of prede�ned mathematical theories
severely limits the domain where the approach is applicable. Our experiments
suggest that a moderate number of well-understood mathematical models
su�ces to specify a general-purpose library of data structures. In particular,
model-based contracts for Ei�elBase used elementary model types such as
Booleans, integers, and references, as well as model classes for (�nite) sets,
relations, and sequences. Ei�elBase2 additionally required (�nite) maps and
bags, as well agents for modeling (in�nite) equivalence and order relations.

Determining to what extent this is generalizable to software other than
data-structure libraries is an open question which belongs to future work.
Domain-speci�c software may indeed require complex domain-speci�c model
classes (e.g., real-valued functions, stochastic variables, �nite-state machines),
and application software that interacts with a complex environment may be
less prone to accurate documentation with models.

Another interesting observation is that the correspondence between the
limited number of model classes needed in our experiments and the classes
using these model classes is far from trivial: data structures are often more
complex than the mathematical structures they implement. Consider, for
example, class SET in Fig. 3.10a: Ei�elBase2 sets are parameterized with
respect to an equivalence relation, hence the model of SET is a pair of a

3.5. EXPERIMENTAL EVALUATION 45

mathematical set and a predicate. Another signi�cant example is BINARY_TREE

(Fig. 3.10b): instead of introducing a new model class for trees or graphs,
BINARY_TREE concisely represents a tree as a map of paths to values; the model
of a path is in turn a sequence of Booleans.

Are quality criteria applicable?

To determine if model-based contracts in Ei�elBase and Ei�elBase2 satisfy
the quality criteria of completeness, observability, closure, and controllabil-
ity, we reasoned informally, but rigorously, guided by the check procedures
outlined in Sect. 3.4.2.

The experiment mostly focused on assessing completeness, since it is the
main indicator of strong speci�cations, and also the precursor to precise eval-
uation of the other three criteria. Only 7% of public features in Ei�elBase
with model-based contracts and 4% of public features in Ei�elBase2 have
incomplete postconditions. All of them are examples of benign incomplete-
ness mentioned in Sect. 3.4.2. Ei�elBase2, in particular, was designed trying
to minimize the number of incomplete postconditions, and does not exhibit
incompleteness due to imperfections in information hiding.

These results indicate that model-based contracts make it feasible to write
systematically complete contracts; in most cases this was even relatively
straightforward to achieve. Unsurprisingly, using model-based contracts dra-
matically increases the completeness of contracts in comparison with stan-
dard Design by Contract. For example, 66% of public features of class LIST

in the original version of Ei�elBase (without model-based contracts) have
incomplete postconditions, including 31% without any postcondition.

For other quality criteria our analysis was limited to the Ei�elBase2 li-
brary. We only found two examples of closure and observability violations:
classes INPUT_STREAM and RANDOM, both of which are highly nondeterministic ab-
stractions. Informal reasoning about closure revealed 6 cases of missing class
invariant clauses. For some container classes, two objects with di�erent mod-
els can only be distinguished using an iterator; intuitively such classes should
be deemed observable, since the container and its iterator are really parts of
the same reusable component. As part of future work, the observability check
proposed in Sect. 3.4.2 should be adapted for this case.

On the other hand, only about 57% of Ei�elBase2 classes are controllable
as per the encoding in Sect. 3.4.2. Another 15% are uncontrollable only
due to their deferred status, which can be �xed by adopting an alternative
de�nition of controllability discussed at the end of Sect. 3.4.2. The rest of
the classes provide immutable and partially mutable interfaces.

46 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

3.6 Related Work

The ultimate goal of this chapter is to help developers design better interfaces
and write better interface speci�cations for reusable components. Literature
in various areas, within and outside software engineering, o�ers plenty of in-
formal advice on good interface design: [96, 14, 84] to name just a few. In
the present work, we are interested in formal principles, expressed in terms
of formal behavioral speci�cations and amenable to mechanized (ideally, au-
tomatic) reasoning.

Consistency and completeness of interface speci�cations were �rst for-
mally explored for algebraic speci�cations of ADTs [48, 47, 138]; these results
were discussed in Sect. 3.3.1. [59] introduces a de�nition of expressiveness
of the operation set of an ADT, which captures whether an ADT de�nes
enough operations for a client to implement all computable functions on its
values. A notion similar to our indistinguishability relation is de�ned in [13].
All these lines of work share the primary goal with the present chapter, but
since their speci�cations are algebraic, the results are not directly applicable
to imperative object-oriented programs.

A more practical approach to strong speci�cations of reusable components
is provided by the model-based style, pioneered in speci�cation languages
such as Larch [49], Z [134], VDM [58], and RESOLVE [98]. Central to quality
of model-based speci�cations is the problem of choosing an appropriate model
for specifying a given interface. For example, [58] introduces a semi-formal
notion of an �unbiased� or �su�ciently abstract� model.

The most detailed and formal treatment of quality criteria for model-
based speci�cations can be found in the context of the RESOLVE frame-
work [132, 114, 133]. The latter is probably the work most related to ours; it
discusses de�nitions of observability and controllability for components im-
plemented in an imperative programming language. The given de�nitions
are very similar to the checks we propose in Sect. 3.4.2, but there are two
major di�erences in terms of method and scope. First, [133] directly en-
codes the informal intuition behind observability and controllability in the
programming language, and then explores subtle di�erences between various
encodings; the present work �rst de�nes the quality criteria at a more ab-
stract level, in terms of ADTs, which promotes better understanding of the
principles before introducing the full complexity of an imperative program-
ming language. With this approach, we managed to recast some well-known
properties of algebraic speci�cations for model-based speci�cations, and to
come up with a precise mathematical characterization of a �good� model (as
a homomorphic image of an ADT with a uniquely de�ned kernel), which
encompasses and uni�es both observability and controllability, as well as two

3.7. SUMMARY AND FUTURE WORK 47

complementary quality criteria of closure and completeness.8 The second
di�erence is that we assume a mainstream object-oriented programming lan-
guage, with dynamic memory and aliasing, while in RESOLVE aliasing does
not arise, which simpli�es the mapping between program objects and their
abstract values. In particular, RESOLVE speci�cations do not need modify
clauses.

The speci�cation notation of this chapter is a direct extension of the
work by Schoeller on model-based contracts [112, 111]. In terms of scope,
our approach strives to be more methodological and systematic, with the
primary target of fully contracting a complete library of data structures.
Outside of Ei�el, the Java Modeling Language (JML) [69, 68] is likely the
notation that shares the most similarities with ours: JML annotations are
based on a subset of the Java programming language and the JML framework
provides a library of model classes mapping mathematical concepts. Previous
research on models in JML [17, 24, 33] focuses mostly on their role in runtime
checking and veri�cation, and does not discuss guidelines for writing model-
based speci�cations or criteria for assessing their quality.

3.7 Summary and Future Work

This chapter introduced a methodology to write strong behavioral interface
speci�cations for reusable object-oriented components. The methodology is
based on the idea of expressing abstract states of objects though models,
and features formal de�nitions of four complementary quality criteria, which
together guarantee that a speci�cation is both as strong and as abstract as
possible, for a given component interface. The application of the method-
ology to two libraries of general-purpose data structures demonstrates its
practical feasibility and usefulness.

One important direction for future work is implementing the proposed
quality checks in an auto-active veri�er, such as AutoProof [5], and evaluat-
ing whether these checks capture our intuitive understanding of the quality
criteria for real software components. A technical challenge is to automate
the checks as much as possible: in particular, propose heuristics for generat-
ing witness programs, required in observability and controllability proofs.

Another direction of future work is exploring feasibility of strong model-
based contracts beyond libraries of general-purpose data structures.

8We should remark that [133] does not consider completeness desirable.

48 CHAPTER 3. SPECIFYING REUSABLE COMPONENTS

Chapter 4

Testing against Strong

Specifications

In the previous chapter, we have presented a methodology for equipping
object-oriented components with strong contracts. Whether such contracts
can be adopted in practice depends on their cost-to-bene�t ratio. This chap-
ter explores the bene�ts of strong contracts for automated testing and esti-
mates their cost in terms of annotation overhead.

4.1 Introduction

Many years of progress in the theory and practice of formal methods notwith-
standing, writing software speci�cations still seems to be �disliked by almost
everyone� [104]. In many cases, this aversion is a consequence of a high
cost/bene�t ratio�perceived or real�of writing and maintaining accurate
speci�cations on top of the code. After all, developers will write speci�-
cations as long as they are simple, and help them write and debug code
better and faster. One example is Design by Contract, discussed in detail in
the previous chapter, where simple executable speci�cations support design,
incremental development, and testing and debugging. Another one is test-
driven development [12], where rigorously de�ned test cases play the role of
speci�cations in de�ning correct and incorrect behavior. Experiences with
these techniques show that providing lightweight speci�cations is an accepted
practice when it brings tangible bene�ts and integrates well with the overall
development process.

But what about strong speci�cations�like the ones proposed in the pre-
vious chapter�which attempt to capture the entire (functional) behavior of
the software? Should they be deemed impractical on the grounds that the

50 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

e�ort required to write them is not justi�ed against the bene�ts they bring in
the majority of mundane software projects? This chapter studies the impact
of deploying strong behavioral interface speci�cations, for detecting errors in
software by means of automatic testing.

Using strong contracts involves costs and possible bene�ts. Among the
former, we have the programming e�ort necessary to write such strong spec-
i�cations and the runtime overhead of checking them during execution. The
bene�ts may include �nding more errors, �nding more subtle errors, �nding
errors more quickly, and exposing errors in ways that are easier to understand
and correct. Our contributions address the cost factors�by measuring and
trying to mitigate them�and assess the bene�ts:

� Sect. 4.3 proposes an extension to the speci�cation methodology pre-
sented in Chapter 3, which enables runtime checking of model-based
contracts using standard Ei�el mechanisms and tools; the extension is
supported by a contract pre-processor we implemented.

� Sect. 4.4 and 4.5 describe an extensive empirical study that evaluates
the use of strong contracts for real software and measures their costs
and bene�ts in terms of defect detection.

The bulk of our empirical study targets Ei�elBase: Ei�el's standard con-
tainer library (see Chapter 2). The production version of Ei�elBase includes
traditional (partial) contracts, which are nonetheless quite e�ective at �nding
implementation bugs automatically using contract-based random testing [86],
where executable contracts serve as oracles and enable a push-button testing
process. In this study, we augment the simple contracts that come with Eif-
felBase using the methodology of Chapter 3, with a few extensions discussed
in Sect. 4.3. The result is Ei�elBase+: a version of Ei�elBase with identical
implementation but strong (mostly complete) speci�cations.

In an extensive set of experiments, we compare the e�ectiveness of random
testing on Ei�elBase and Ei�elBase+, with the goal of assessing whether
the additional e�ort invested into the strong contracts pays o� in terms of
quantity and complexity of the bugs found. Our experiments show that
these measures dramatically increase when deploying strong speci�cations:
random testing found twice as many bugs in Ei�elBase+, and the simple
contracts of Ei�elBase would have uncovered none of the newly found bugs.
The overhead size of speci�cations, in contrast, remains moderate, with the
speci�cation-to-code ratio going from 0.2 to 0.46.

Our approach to writing strong speci�cations that are e�ective for test-
ing is not limited to Ei�el programs. In a companion set of experiments,
we applied the same technique to writing strong speci�cations for the DSA

4.2. A MOTIVATING EXAMPLE 51

merge_right (other: LINKED_LIST [G])
require

not after

other 6= Void

other 6= Current

ensure

count = old count + old other.count
index = old index

end

(a) Standard speci�cation.

merge_right (other: LINKED_LIST [G])
require

not after

other 6= Void

other 6= Current

modify [sequence] Current

ensure

sequence = old (sequence.front (index)
+ other.sequence
+ sequence.tail (index + 1))

end

(b) Model-based speci�cation.

Figure 4.1: Speci�cation of routine merge_right in LINKED_LIST.

C# library [36], and tested the result using Pex [124]; in this case too we
discovered new bugs with reasonable additional e�ort.

Somewhat orthogonally to the goals of the rest of the chapter, our third
set of experiments applies automated testing to Ei�elBase2: a new general-
purpose data structure library, designed from the start with expressive model-
based speci�cations (see Chapter 2). This experiment discovered signi�cantly
fewer defects than the one targeting Ei�elBase+, which serves as evidence of
the important role strong speci�cations play in software design.

4.2 A Motivating Example

The following example illustrates and justi�es the use of strong speci�ca-
tions in testing. Consider the Ei�elBase class LINKED_LIST�Ei�el's standard
implementation of linked lists. Like all containers in Ei�elBase, LINKED_LIST

includes an internal cursor to iterate over elements of the list. The query
index gives the cursor's position, which can be on any element of the list in
positions 1 through count, or take the special boundary values 0 (�before� the
list) and count + 1 (�after� the list). The attribute count denotes the number
of elements in the list.

Fig. 4.1a shows the Ei�elBase speci�cation of the routine merge_right

from LINKED_LIST. The routine inserts another list other passed as argument
into the current list immediately after the cursor position. For example, if
Current stores the sequence of elements b·a·r·t with cursor positioned on the
�r� (index = 3) and other stores o·n·e, merge_right changes Current to b·a·r·o·n·e·t.
The precondition speci�es that the routine cannot be called when the cursor
is after: there is no valid position to the right of it. It also demands that other

52 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

be non-Void and not aliased with the Current list: otherwise, merging is not
well de�ned. The postcondition describes some expected e�ects of executing
merge_right: the Current list will contain as many elements as it contained
before the call to merge_right plus the number of elements of the other list;
and the cursor's position index will not change.

The contracts in Fig. 4.1a are a good example of the kind of speci�cation
that Ei�el programmers normally write [106]: it is correct and nontrivial, and
it can help detect errors in the implementation, such as performing partial
merges or incorrectly leaving the cursor at a di�erent position. Unfortunately
the speci�cation is also incomplete, because it does not precisely describe the
expected state of the list after merging. In fact, the current implementation
of merge_right contains an error that is undetectable against the speci�cation
of Fig. 4.1a. The error occurs in the special case of calling merge_right with
cursor before the list (index = 0): the implementation will insert other at the
second rather than at the �rst position. For example, merging f·o·l·d and u·n
when the cursor is before yields f·u·n·o·l·d instead of the correct u·n·f·o·l·d.

Chapter 3 presented a methodology to write, with moderate e�ort, strong
speci�cations that extend and, whenever possible, complete this kind of par-
tial speci�cation. Fig. 4.1b shows the strong speci�cation obtained by apply-
ing the methodology to merge_right, the way it appears in Ei�elBase+. As is
common in most Ei�el projects, the programmer who wrote merge_right did a
good job with the precondition, which is su�ciently detailed and need not be
strengthened. The postcondition, however, turns into a single assertion that
de�nes the sequence of elements stored in the list after calling merge_right as the
concatenation (operator +) of three segments: Current's original sequence up
until position index (written sequence.front (index)), followed by other's element
sequence, followed by the original sequence from position index + 1 (written
sequence.tail (index + 1)). In order to complete the speci�cation of merge_right,
we add the clause modify [sequence] Current, which means that merge_right may
only modify the sequence of elements in the Current list and nothing else. Us-
ing the strong postcondition in Fig. 4.1b, completely automatic testing with
the AutoTest tool [86] detected the error that occurs in merge_right when the
cursor is before.

4.3 Strong Speci�cations for Testing

This section discusses additional annotations and tool support necessary to
exploit the full potential of model-based contracts for runtime checking and
testing. We refer to the resulting extended methodology, as well as to the
supporting tool, as RunMBC (for runtime model-based contracts).

4.3. STRONG SPECIFICATIONS FOR TESTING 53

class LINKED_LIST [G]
model sequence, index

index: INTEGER
-- Current cursor position

count: INTEGER
-- Number of elements

. . .
-- Implementation:

first_cell: LINKABLE [G]
-- First cell of the list

last_cell: LINKABLE [G]
-- Last sell of the list

-- Specification:

sequence: MML_SEQUENCE [G]
-- Sequence of elements

. . .

invariant

-- Model constraint

0≤ index≤ sequence.count + 1
-- Attribute definition

count = sequence.count
-- Linking invariant

bag = sequence.to_bag
-- Internal representation constraint

not sequence.is_empty implies

last_cell.item = sequence.last
end

Figure 4.2: Excerpt of the model-based speci�cation of LINKED_LIST in Ei�el-
Base+.

We �rst introduce the RunMBC extensions for class invariants in order to
discover more faults (Sect. 4.3.1) and avoid spurious violations (Sect. 4.3.2);
Sect. 4.3.3 discusses the choice of implementation for model classes and model
queries, as well as tool support for runtime checking of framing speci�cations
and other additional annotations.

4.3.1 Representation Constraints

Chapter 3 details three kinds of class invariants present in model-based con-
tracts: model constraints, prescribing which abstract object states are valid;
de�nitions of public attributes, expressing attribute values in terms of model
queries; and linking invariants, enabling the reuse of ancestor speci�cations
stated in terms of a di�erent model. Fig. 4.2 gives examples of all three kinds
of invariants used in the class LINKED_LIST from Ei�elBase+.

RunMBC introduces another kind of class invariant clauses: internal rep-
resentation constraints, which relate the values of model queries to the private
attributes of the class. For example, the last invariant clause in Fig. 4.2 says
that the item stored in the last_cell of the linked list coincides with the last
element of list's sequence (whenever the sequence is not empty).

Unlike other model-based speci�cations, invariants of this type do not
describe the public interface of the class and usually cannot be made com-
plete without revealing unnecessary implementation details in the model.

54 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

However, even in this limited form, they turned out to be very e�ective at
revealing errors that corrupt object's internal representation (see Sect. 4.5.1).

4.3.2 Avoiding False Positives

The semantics of class invariants becomes tricky in the presence of callbacks,
inter-object dependencies, and state updates that might make objects tem-
porarily inconsistent. A sound veri�cation methodology must ensure that in-
variants always hold at certain program points, while allowing them to be bro-
ken at other points. The next chapter of this thesis develops one such invari-
ant methodology, building on top of much related work [9, 77, 11, 92, 80, 30].
Although diverse, all those methodologies have something in common: in
return for the soundness guarantee, they demand a signi�cant amount of
auxiliary annotations.

In a dynamic setting, where the goal is �nding faults rather than showing
their absence, soundness concerns are largely irrelevant. Some aspects of the
tricky invariant semantics are, however, also harmful for testing, since they
may cause false positives : spurious runtime violations that arise when an
invariant is being checked at a program point where it need not hold. To
address this problem we introduce additional dedicated constructs for com-
plex invariant properties. We borrow some ideas from existing veri�cation
methodologies (e.g., [11, 80], among many)1; unlike these sophisticated tech-
niques, the present solution for class invariants does not target soundness
or comprehensiveness, but requires very few annotations and is su�cient in
practice to avoid spurious invariant violations.

Standard Ei�el mechanisms check class invariants at the beginning and
at the end of every quali�ed2 call on an object of the class. This rule suc-
cessfully prevents checking the invariant whenever routines of a class call one
another within the boundaries of a single object, in order to accomplish a
common task, as the object will normally be inconsistent (�open�) until all
operations are completed. When circular dependencies between objects arise,
this semantics may lead to spurious invariant violations: a problem known
in the Ei�el community as the dependent delegate dilemma [85].

Consider an example derived from real code in Ei�elBase: a binary tree
data structure, where each node has a link to its parent and left and right

children. The Current node is executing one of its routines and is temporarily
in a state that violates the invariant; to restore it, it makes a quali�ed call on,
say, its right child. The object right, however, does not know that its parent is

1Chapter 5 develops these same ideas into a full-�edged veri�cation methodology.
2A call t.r is quali�ed when the target t is an object other than Current.

4.3. STRONG SPECIFICATIONS FOR TESTING 55

in the middle of executing a call; if right calls back to Current, then, it detects
an invariant violation even if right's call does not rely on the invariant.

RunMBC deploys a runtime semantics where these spurious invariant
violations do not occur. Objects are implicitly equipped with a Boolean
attribute open that is set to true at the entrance of every public routine call
on the object and restored to its previous value when the routine terminates;
class invariants are checked only if open is false. This automatically solves
the dependent delegate problem in the presence of callbacks: when right calls
back to Current, the latter is open, and hence its invariant is not checked.

This �implicit opening� mechanism is not su�cient to avoid spurious in-
variant violations when an object's invariant depends on the state of other
objects. Consider again binary trees; an invariant states that the Current

node is its parent's left or right child:

parent 6= Void implies (parent.left = Current or parent.right = Current)

Routine prune_left removes Current's left child as follows:

old_left := left

left := Void

if old_left 6= Void then

old_left.set_parent (Void)
end

When old_left.set_parent (Void) is called to remove the back-link from Current's
child, old_left's class invariant is violated: its parent's left is already set to
Void and old_left is not open; in fact, the very reason for calling set_parent

is to remove this inconsistency. RunMBC provides the keyword depend to
declare that an invariant clause depends on the state of an attribute, and
hence it should be checked only if the object attached to the attribute is
closed. Annotating the invariant in the example with depend parent removes
the spurious invariant violation (old_left.parent is Current, which is open).

In the few cases when �ne-grained control over the opening of objects is
necessary, RunMBC provides the unwrap clause for routines, which explicitly
opens the objects attached to some of the routine's arguments when the
routine begins execution and restores them when the routine terminates (as
we discussed, the target is always opened implicitly). Consider a variant of
the binary tree example where nodes have an attribute is_root that should
be true when their parent node is Void:

parent = Void implies is_root

In this variant, prune takes an argument of class NODE that is supposed to be
its left or right child and removes it as follows:

prune (n: NODE)

56 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

do

if left = n then

left.set_parent (Void) ; left.set_root (True) ; left := Void

end

if right = n then . . . end -- analogously to ‘right’

end

When prune's call to left.set_parent returns, the invariant of left is violated :
left.parent = Void but left.is_root is still false. Annotating prune with unwrap n

sets n.open to true at the beginning of the routine, and restores it to its
previous value at the end, which suspends checking of n's invariant until
prune terminates, thus removes the spurious invariant violation.

As we discuss in Sect. 4.4, in Ei�elBase+ we had to deploy explicit depend

and unwrap annotations only in a very few cases, limited to doubly-linked list
nodes, and binary and n-ary trees.

4.3.3 Tool support

Most model-based contracts can be checked at runtime and used in testing
out of the box: with the same tools and user experience as standard Ei�el
contracts. In our experiments, model queries introduced for speci�cation pur-
poses are implemented as regular functions that compute the abstract model
value from the concrete object state. Compared to an alternative, attribute-
based implementation, function-based approach is usually more concise, less
error-prone, and enforces a cleaner separation between the implementation
and the speci�cation, since model queries do not require explicit initialization
or updates in the code. The speci�cation classes we provide in MML are also
regular Ei�el classes, implemented in a functional style. Even though this
approach to implementation of model queries and model classes potentially
incurs a high runtime overhead, the experiment results in Sect. 4.5 con�rm
its feasibility for contract-based testing.

Checking frame speci�cations and complex class invariants requires addi-
tional tool support. At the same time, those speci�cations are conservative:
if executed with standard Ei�el mechanisms, they are simply ignored instead
of producing spurious violations. Newly introduced speci�cation constructs,
such as modify, depend and unwrap, do not have any e�ect in the standard
Ei�el semantics, since they are speci�ed using note meta-annotations (sim-
ilar to Javadoc or C#'s meta-data). To specify subtle invariant clauses in
a conservative way, we exclude them from the original class invariant and
encapsulate them into invariant functions : regular Boolean functions tagged
with a dedicated note annotation.

We have developed a simple tool that rewrites the annotations described

4.4. EXPERIMENTS 57

above into plain Ei�el, according to the following rules.

� A frame speci�cation modify [f] x, where x is an argument of a routine r,
generates postcondition clauses x.g = old x.g for every model query g 6= f

declared in the class of x; as well as a clause y 6= x implies y.h = old y.h

for all other arguments y of r. This does not capture the full semantics
of the modify clause, which prohibits changing the model of any object
di�erent from x, not only those attached to the routine's arguments;
full frame checks at runtime are, however, infeasible.

� A Boolean attribute open is added to every class under test. The body
of every public routine is extended with new instructions, which set
open to True in the beginning, and restore its old value at the end.

� The body of every routine annotated with unwrap x is extended with
new instructions, which set x.open to True in the beginning, and restore
its old value at the end.

� Every invariant clause inv is replaced with not open implies inv. Every
invariant function f generates an invariant clause not open implies f. If
an invariant function f is annotated with depend x, it generates an in-
variant clause (x 6= Void and not open and not x.open)implies f.

Our experiments show (Sect. 4.5) that postconditions and invariants au-
tomatically generated by RunMBC are e�ective at �nding faults and suc-
cessfully avoid common sources of spurious violations, while requiring very
little e�ort compared to writing equivalent assertions manually.

4.4 Experiments

We performed an extensive experimental evaluation to assess the bene�ts of
using strong speci�cations for �nding errors in software.

4.4.1 Research Questions

The overall goal of this evaluation is assessing and comparing the advantages
and the cost of deploying strong speci�cations in the form of model-based
contracts when applied to automatic contract-based testing of real software.

This materializes into the following research questions:

1. Are strong speci�cations e�ective for �nding faults in software?

2. Do strong speci�cations �nd subtle and complex faults?

58 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

3. Do strong speci�cations �nd faults in little testing time?

4. What is the performance overhead of checking strong speci�cations at
runtime?

5. What is the development e�ort required to provide strong speci�cations
for existing software?

To answer these questions, we conducted two sets of experiments, tar-
geting software written in Ei�el (Sect. 4.4.2) and C# (Sect. 4.4.3). In both
cases, we selected an open-source library, speci�ed it following the RunMBC
methodology, and extensively tested it with a standard automatic testing
tool. The rest of this section discusses the experiments; Sect. 4.5 presents
the results.

We also report on a preliminary study that applied automated testing to
software designed with strong contracts from the start (Sect. 4.4.4). This
study is targeting a di�erent research question: namely, if using strong spec-
i�cations at the design stage improves software quality.

4.4.2 Ei�el Experiments

The main experiments target Ei�elBase (rev. 506)�Ei�el's standard base
library�from which we selected 21 classes of varying size and complexity.
Using the facilities of the Ei�elStudio IDE, we built the �at version of each
class, which is a self-contained implementation including all inherited mem-
bers explicitly in the class text. This simpli�ed the task of writing speci-
�cations without being distracted by Ei�elBase's deep multiple inheritance
hierarchy. For each of the 21 classes in their �at version, Tab. 4.1 lists the
size (in LOC) and the number of public routines (PR), possibly also includ-
ing helper classes directly used in the class implementation. Since di�erent
classes may share some parent or helper classes, the totals at the bottom of
the table are in general less than the sum of the elements in each column.

Like most Ei�el software, Ei�elBase comes with partial speci�cation in
the form of contracts: the 21 classes include 561 precondition clauses, 985
postcondition clauses, and 250 class invariant clauses. In Ei�elBase+ we
completely replaced Ei�elBase's original postconditions and class invariants
with model-based annotations, but we kept Ei�elBase's preconditions (with a
few exceptions discussed below)3. Ei�elBase+'s strong speci�cation includes
589 precondition clauses, 1066 postcondition clauses, and 164 class invari-
ant clauses (21% model constraints, 23% attribute de�nitions, 10% linking

3All the code developed as part of the study, as well as descriptions of found faults are
publicly available online [123].

4.4. EXPERIMENTS 59
T
ab
le
4.
1:

E
i�
el
cl
as
se
s
un
de
r
te
st
an
d
re
su
lt
s.

E
if
f
e
l
B
a
se

E
if
f
e
l
B
a
se
+

C
l
a
ss

L
O
C

P
R

T
C

S
p
e
c

In
c

R
e
a
l

N
e
w

L
O
C

P
R

T
C

In
c

R
e
a
l

N
e
w

A
R
R
A
Y

8
3
1

5
3

2
.8

2
0

2
1

9
8
6

5
9

1
.2

0
3

2
A
R
R
A
Y
E
D
_
L
I
S
T

1
8
4
0

8
6

3
.5

0
0

0
0

2
0
3
7

9
2

1
.7

0
1

1
A
R
R
A
Y
E
D
_
Q
U
E
U
E

5
3
7

3
2

1
.8

0
0

2
0

6
4
8

3
7

3
.8

0
2

0
A
R
R
A
Y
E
D
_
S
E
T

1
9
6
0

4
9

5
.8

3
1

8
0

2
0
5
3

5
8

5
.4

0
1
6

8
B
I
N
A
R
Y
_
T
R
E
E

1
1
2
2

6
4

1
.0

2
5

6
0

1
3
6
6

7
0

1
.1

0
1
6

1
0

B
O
U
N
D
E
D
_
Q
U
E
U
E

5
5
8

3
2

1
.4

0
0

2
0

6
5
9

3
7

3
.8

0
2

0
H
A
S
H
_
T
A
B
L
E

1
3
4
5

5
1

0
.9

1
0

1
0

1
6
2
6

6
3

0
.9

0
2

1
H
A
S
H
_
T
A
B
L
E
_
I
T
E
R
A
T
O
R

2
1
7

1
5

0
.4

0
0

0
0

2
4
8

1
5

0
.5

0
0

0
I
N
D
E
X
A
B
L
E
_
I
T
E
R
A
T
O
R

1
8
6

1
4

1
.0

2
0

0
0

2
2
8

1
5

2
.7

0
0

0
I
N
T
E
G
E
R
_
I
N
T
E
R
V
A
L

5
1
9

4
2

4
.3

1
1

0
0

6
3
7

4
5

0
.9

0
3

3
L
I
N
K
E
D
_
L
I
S
T

1
7
5
9

6
9

2
.0

0
0

2
0

1
9
4
2

7
7

2
.5

0
5

3
L
I
N
K
E
D
_
L
I
S
T
_
I
T
E
R
A
T
O
R

3
1
1

1
5

0
.7

0
0

0
0

3
5
7

1
6

0
.7

0
0

0
L
I
N
K
E
D
_
S
E
T

2
1
2
8

8
3

5
.4

5
2

7
0

2
4
1
0

9
4

4
.8

0
2
4

1
7

L
I
N
K
E
D
_
S
E
T
_
I
T
E
R
A
T
O
R

3
1
1

1
5

0
.7

0
0

0
0

3
5
7

1
6

0
.7

0
0

0
L
I
N
K
E
D
_
S
T
A
C
K

1
0
7
7

2
7

1
.0

0
0

3
1

1
0
7
8

3
2

3
.2

0
6

4
T
W
O
_
W
A
Y
_
L
I
S
T

2
0
0
7

7
1

0
.8

0
0

3
0

2
1
8
4

7
9

2
.2

0
6

3
T
W
O
_
W
A
Y
_
L
I
S
T
_
I
T
E
R
A
T
O
R

4
1
2

1
5

0
.7

0
0

0
0

4
6
2

1
6

0
.7

0
0

0
T
W
O
_
W
A
Y
_
S
O
R
T
E
D
_
S
E
T

2
7
0
6

9
1

5
.3

5
2

9
0

2
9
8
3

1
0
2

4
.8

1
3
4

2
5

T
W
O
_
W
A
Y
_
S
O
R
T
E
D
_
S
E
T
_
I
T
E
R
A
T
O
R

4
1
2

1
5

0
.7

0
0

0
0

4
6
2

1
6

0
.7

0
0

0
T
W
O
_
W
A
Y
_
T
R
E
E

2
5
4
8

9
0

1
.4

4
4

2
2

5
2
8
6
5

1
0
1

1
.3

0
2
9

1
2

T
W
O
_
W
A
Y
_
T
R
E
E
_
I
T
E
R
A
T
O
R

4
1
2

1
5

0
.7

0
0

0
0

4
6
2

1
6

0
.7

0
0

0
T
o
t
a
l

1
7
8
4
1

1
0
3
3

4
2
.5

1
5

1
2

4
8

7
1
9
4
0
0

1
1
6
4

4
4
.4

1
1
0
3

6
2

L
O
C
:
L
in
es

o
f
co
d
e,
P
R
:
P
u
b
li
c
ro
u
ti
n
es
,
T
C
:
T
es
t
ca
se
s
d
ra
w
n
(m

il
li
o
n
)

S
p
e
c
:
S
p
ec
i�
ca
ti
o
n
er
ro
rs
fo
u
n
d
,
In
c
:
In
co
n
si
st
en
cy

er
ro
rs
fo
u
n
d
,
R
e
a
l
:
R
ea
l
fa
u
lt
s
fo
u
n
d
,
N
e
w
:
F
a
u
lt
s
fo
u
n
d
o
n
ly
in
th
is
ex
p
er
im

en
t

60 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

invariants, 46% internal representation constraints), as well as 278 modify, 4
depend and 7 unwrap clauses. Tab. 4.1 shows the size (in LOC and PR) of
Ei�elBase+, which also includes model de�nitions and implementations of
the model queries.

Preconditions. In all but two Ei�elBase+ classes, we kept the same
preconditions as in Ei�elBase. Within the speci�c setup of our experiments,
where we compare traditional contracts and strong contracts, it is impor-
tant to have the same preconditions in the two artifacts under compari-
son. Preconditions de�ne the valid calling contexts of routines (in particular,
contract-based testing tools use them to select valid test cases). Changing
preconditions would change the semantics of classes in a way similar to chang-
ing implementation: strengthening a precondition may reduce the number
of faults detectable for the routine, since it would move obligations from
the routine to its clients; weakening a precondition may increase the num-
ber of faults, since it would impose a heavier burden on its implementation.
We treat preconditions as developers' design decisions, which we normally
take at face value. This policy makes the experiments with Ei�elBase and
Ei�elBase+ fully comparable.

The only exception occurred with four routines of class BINARY_TREE and
eight routines of class TWO_WAY_TREE that insert new nodes into a tree. In these
twelve cases, we strengthened the preconditions to disallow creating cycles
among nodes in the tree. Without the strengthening, tree instances can be
driven into inconsistent states with cycles where the whole speci�cation of
trees would be inapplicable. These changes in preconditions are conserva-
tive: the Ei�elBase+ experiments using these stronger preconditions miss
a few faults that are detected in Ei�elBase, because the new preconditions
rule out some previously valid failing test cases. Since these changes a�ect
only a small fraction of all the experiments, the results with Ei�elBase and
Ei�elBase+ remain comparable.

Speci�cation correctness. To create strong speci�cations, we analyzed
the original implementation, contracts, and comments in Ei�elBase, and re-
lied on our informal knowledge of the semantics of data structures and their
implementation. To increase our con�dence in the correctness of the new
speci�cation, we ran a series of short preliminary testing sessions with the
goal of detecting inconsistencies and inaccuracies. All our changes were con-
servative, in that whenever a new contract forbade a behavior that was not
clearly forbidden by the comments, standard contracts, or informal knowl-
edge, we weakened the speci�cation to allow the behavior. In all, we reached a
high con�dence that Ei�elBase+'s speci�cation is correct and strong enough.
The results of the main testing sessions (Sect. 4.5) corroborate this informal

4.4. EXPERIMENTS 61

Table 4.2: C# classes under test and results.

DSA DSA+ Testing
Class LOC PR LOC PR T F

AvlTree 345 6 391 7 23 1
BinarySearchTree 205 5 213 5 21 1
CommonBinaryTree 419 13 536 18 83 0
Deque 201 14 231 15 145 0
DoublyLinkedList 408 17 458 19 171 3
Heap 371 11 390 12 61 1
OrderedSet 136 9 158 11 10 0
PriorityQueue 186 13 216 14 65 0
SinglyLinkedList 439 20 492 22 148 3
Total 3043 133 3486 149 727 9

LOC: Lines of code, PR: Public routines
T: Testing time (minutes), F: Faults found

assessment.
Testing experiments. We ran a large number of random testing ses-

sions with the AutoTest framework [86] on a computing cluster of the Swiss
National Supercomputing Centre, con�gured to allocate a standard 1.6 GHz
core and 4 GB memory to each parallel AutoTest session. The experiments
totalled 1680 hours of testing time that generated nearly 87 million test cases;
the TC columns in Tab. 4.1 list the million of test cases drawn when test-
ing each class in Ei�elBase and in Ei�elBase+. The testing of every class
was split into 30 sessions of 80 minutes, each with a new seed for the ran-
dom number generator, such that corresponding sessions in Ei�elBase and
Ei�elBase+ use the same seeds. This thorough testing protocol guaranteed
statistically signi�cant results [4].

4.4.3 C# Experiment

A smaller set of experiments targets 9 classes from DSA (v. 0.6)�an open-
source data structure and algorithm library written in C# [36]. Support
for contracts in C# appeared only recently, through the Code Contracts
framework [28]; therefore, most C# projects (including DSA) do not have
any formal speci�cation. This was a chance to extend the validation of
the model-based contracts methodology to other languages and to projects
without pre-existing speci�cation.

We instructed one of our bachelor's students to follow the methodology of
Chapter 3 and create DSA+: a variant of DSA with the same implementa-
tion but equipped with strong model-based contracts. DSA+'s speci�cation
includes 6 precondition clauses, 143 postcondition clauses and 23 class in-

62 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

variant clauses. For each of the 9 classes, Tab. 4.2 shows the size (in LOC
and PR) of both DSA and DSA+, inclusive of all speci�cation elements and
model query implementations. As in Tab. 4.1, the count also includes (possi-
bly shared) helper classes. Flattening was not necessary in this case because
the inheritance hierarchy is shallow.

Speci�cation correctness. We manually inspected the DSA+ speci�-
cation written by our student, and assessed its quality to be comparable to
that of Ei�elBase+ in terms of correctness and completeness. Since DSA was
not designed with contracts in mind, it makes recurrent usage of defensive
programming, throwing exceptions to signal invalid arguments. The exper-
iment setup is consistent with this programming style: we do not consider
such exceptions to be faults.

Testing experiments. We performed automatic testing with the Pex
concolic testing framework [124] running on a Windows box equipped with
a 2.16 GHz Intel Core2 processor and 3 GB of memory. In order to achieve
better test coverage we provided Pex with factory classes, which construct
nontrivial instances of classes under test, and tweaked the exploration pa-
rameters. The experiments ran for about 12 hours; column T in Tab. 4.2
reports the breakdown per class in minutes. The testing time is di�erent
from class to class because Pex testing sessions by default are limited by
coverage criteria rather than duration. We only tested DSA+ since DSA has
no formal speci�cation elements usable as automated testing oracles.

The C# experiment is less extensive than the Ei�el experiment and in-
tended as a control mechanism to identify any potential dependency of the
results on the Ei�el language, libraries (Ei�elBase) or tools.

4.4.4 Ei�elBase2 Experiment

In an independent preliminary study we targeted Ei�elBase2 (Chapter 2)�a
new container library for Ei�el, developed from scratch using the model-based
contracts methodology. We have grouped all e�ective classes of Ei�elBase2
available at the time of the study into 10 groups, each including a data
structure implementation together with its iterators and helper classes. For
each of the 10 data structures, Tab. 4.3 lists the total size of the group in its
�attened form (in LOC) and the number of public routines (PR). We did
not alter the existing speci�cations in Ei�elBase2, since the library already
comes with strong model-based contracts.

Testing experiments. We performed random testing using the Au-
toTest framework, on a Windows box equipped with a 2.6 GHz Intel Core2
processor and 6 GB of memory. For every data structure, we ran 30 testing

4.5. RESULTS 63

Table 4.3: Ei�elBase2 classes under test and results.

Class LOC PR Spec Real

ARRAY 1254 65 2 1
ARRAYED_LIST 1594 78 0 1
BINARY_TREE 3197 173 1 2
HASH_SET 1101 53 0 2
HASH_TABLE 1376 25 0 0
LINKED_LIST 1812 82 1 2
LINKED_QUEUE 618 42 1 0
LINKED_STACK 618 42 1 0
SORTED_SET 1012 55 0 3
SORTED_TABLE 1348 27 0 0
Total 8508 642 2 5

LOC: Lines of code, PR: Public routines
Spec: Speci�cation errors found
Real: Implementation errors found

sessions, 60 minutes each. Even though the setup di�ers slightly from the
Ei�elBase experiments (in particular, with respect to the testing time and
the version of AutoTest used), it still enables a qualitative comparison of the
two libraries in terms of the total number of faults found, especially since
most faults are revealed at the beginning of a testing session.

4.5 Results

This section discusses the result of the experiments, focusing on the larger
Ei�elBase experiments, with Sect. 4.5.1 through Sect. 4.5.5 targeting the
research questions 1�5 of Sect. 4.4.1. Then, Sect. 4.5.6 and 4.5.7 brie�y dis-
cuss the experiments with C# and Ei�elBase2, respectively, and Sect. 4.5.8
presents possible threats to validity of the results.

4.5.1 Faults Found

AutoTest found 75 faults in Ei�elBase and 104 in Ei�elBase+; these are
unique, that is they identify distinct and independent errors. We classi�ed
them in three categories.

Speci�cation faults correspond to violations of wrong contracts (meaning
that in our judgement they specify the expected behavior of the program
incorrectly). We found 15 speci�cation faults in Ei�elBase (column Spec
in Tab. 4.1) and none in Ei�elBase+, which increased our con�dence that
the preliminary testing sessions mentioned in Sect. 4.4.2 were su�cient to
achieve correct speci�cations. We consider speci�cation faults spurious in

64 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

our study, because we are not comparing the correctness of the speci�cation
in Ei�elBase and Ei�elBase+ but rather their e�ectiveness at �nding real
errors in the implementation.

Inconsistency faults correspond to failures triggered by calls on objects in
inconsistent states, which are not captured by a partial class invariant. For
example, LINKED_SET may be driven into a state where the container stores du-
plicate elements; calling remove (x) in such a state triggers a failure (only one
occurrence of x is removed), but remove is not to blame for it, since it is due
to previous erroneous behavior that went undetected. While inconsistency
faults are genuine errors, we classify them separately because understanding
and locating the ultimate source of an inconsistency is normally harder. Ad-
ditionally, a single inconsistency fault often results in many failing test cases
(potentially in all routines of the class that rely on the broken invariant),
requiring additional e�ort from the developer when analyzing the testing
results.

We found 12 inconsistency faults in Ei�elBase and a single one in Eif-
felBase+ (columns Inc in Tab. 4.1); the ultimate source of the latter fault
is a class invariant not including all internal representation constraints (see
Sect. 4.3.1), which would have required exposing implementation details in
the model. The other inconsistency faults of Ei�elBase are not detected in
Ei�elBase+, because, due to stronger class invariants, their real source is de-
tected instead. In the LINKED_SET example above, instead of the inconsistency
fault in remove, model-based contracts report a fault in routine replace, which
does not check if the new value is already present in the set, thereby introduc-
ing duplicates. The results in this category indicate that strong speci�cations
report faults in a way that is easier to understand and debug.

All other errors are real faults which correspond to genuine errors directly
traceable to the code. We found 48 real faults in Ei�elBase and 103 in Eif-
felBase+ (columns Real in Tab. 4.1); 41 of them are found in both sets of
experiments, 7 only in Ei�elBase, and 62 only in Ei�elBase+. We submit-
ted bug reports for all the 110 faults found in our experiments. The Ei�el
Software developers in charge con�rmed 107 (97%) of them as real bugs to
be �xed. This is evidence that we are dealing with genuine faults in our
evaluation. The remaining three faults not taken on by the developers also
arguably highlight real problems in the implementation, but they are prob-
ably not so likely to occur during �normal� runs. The rest of the discussion
focuses on real faults unless stated otherwise.

Only seven faults are found in Ei�elBase but not in Ei�elBase+ (columns
New in Tab. 4.1). Four of them are prevented by the strengthened precon-
ditions in the tree classes (Sect. 4.4.2); two are shadowed by new failures
occurring earlier; and one disappears due to an unintentional side-e�ect of a

4.5. RESULTS 65

40 50 60 70 80 90

Total number of faults found

40 50 60 70 80 9040 50 60 70 80 90

EiffelBase EiffelBase+

Figure 4.3: Unique real faults found in all classes over 80-minute testing
sessions.

model query that amends an invariant violation. None of these faults found
only in Ei�elBase show inherent de�ciencies of strong speci�cations or of the
RunMBC method. In contrast, the 62 faults found only in Ei�elBase+ are
undetectable in Ei�elBase.

Except for the two ITERATOR classes (no faults in both cases) and the two
QUEUE classes (the same two faults in both cases), the number of faults found is
consistently higher in Ei�elBase+ in each class. As evident from the boxplot
in Fig. 4.3, the di�erence is highly signi�cant: the Mann-Whitney U test gives
U = 0 (testing Ei�elBase+ outperforms testing Ei�elBase in all sessions),
and p = 2 · 10−11 overall and p ≤ 2.1 · 10−11 for every class (except the
ITERATORs and QUEUEs). The di�erence remains highly statistically signi�cant
even if we aggregate the experiments in sessions of di�erent length.

To sum up, testing with strong speci�cations detected 55 more�twice

as many�unique real faults than testing with standard, partial contracts.
62 (56%) of the faults are detected only with strong speci�cations.

4.5.2 Fault Complexity

Although it is to some extent subjective whether a fault is �deep� or �subtle�,
faults violating postconditions or class invariants are arguably more complex
because so are the violated properties. While there is no signi�cant di�er-
ence in the percentage of class invariant violations between Ei�elBase and
Ei�elBase+ (33% in both cases), postconditions trigger 42% of violations in
Ei�elBase+ but only 11% in Ei�elBase: the Wilcoxon signed-rank test among
all classes gives W = 0 and p = 6 · 10−3 both for postconditions alone and
for postconditions and class invariants counted together, which demonstrates
that strong speci�cations systematically detect more complex errors. 76% of

66 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

faults in Ei�elBase+ are detected thanks to postconditions or invariants�a
direct consequence of the e�ectiveness of the model-based methodology for
writing them.

One example of a fault detected by a model-based postcondition was al-
ready discussed in Sect. 4.2. Here we give two other examples to demonstrate
that they are indeed subtle yet understandable:

� Routine ARRAY.force(v, i) inserts value v at position i into an array, ex-
tending its bounds if necessary. All elements in between the old bound
and i are supposed to be initialized with default values, however force

contains an o�-by-one error, and in a particular scenario fails to initial-
ize one element. This is missed by the original postcondition item(i)= v,
which only takes care of the newly inserted element, but detected by
the complete model-based postcondition, which, following the method-
ology, speci�es array elements at all positions.

� Both ARRAYED_SET and LINKED_SET inherit most of their implementation
from the corresponding list classes, including the implementation of
is_equal: the object equality function. As a result, two sets with the
same elements in a di�erent order are considered di�erent. The original
postcondition only states that equal sets must have the same size and
that equality is symmetric, which does not capture the speci�cs of set
equality.

It is revealing that 11 faults in Ei�elBase+ are detected due to viola-
tions of contracts generated automatically by the RunMBC tool, including 5
observable side e�ects in functions (classi�ed as errors, since in Ei�el all func-
tions are supposed to be pure). These faults are practically out of the scope
of regular contracts, as specifying the corresponding properties explicitly is
extremely onerous.

Another interesting observation is that almost 40% of faults can be clas-
si�ed as inheritance-related, that is, caused by incorrect reuse or rede�nition
of inherited features. This con�rms our intuition that Ei�el's advanced mul-
tiple inheritance mechanisms, together with the size of the Ei�elBase class
hierarchy, systematically leads to software errors, in the absence of strong
contracts acting as safeguards against inconsistencies.

Throughout the whole experiment, we encountered one violation of an
invariant that could be later restored before the enclosing public routine call
terminates. Strictly speaking, such violation is spurious, and to eliminate it
we would have to extend the notation for unwrap clauses, in order to support
opening arbitrary expressions rather than just routine arguments. However,
in reality, this particular invariant was not restored, so the violation pointed

4.5. RESULTS 67

0 20 40 60 80

0
20

40
60

80

Time (min)

U
ni

qu
e

fa
ul

ts
 fo

un
d

●

●

EiffelBase
EiffelBase+

Figure 4.4: Median number of faults, aggregated from all classes, in time.
Dotted lines show minimum and maximum for each case.

to a real fault. This example suggests that if an object is too �far away�
in the object structure from the call target to be mentioned in the unwrap

or depend clause, it is likely that a developer forgets to restore its invariant
anyway, because the object is not in the area of immediate interest for the
routine.

4.5.3 Usage of Testing Time

Fig. 4.4 plots the number of faults detected in Ei�elBase and Ei�elBase+
over a median 80-minute session; it is clear that the behavior with strong
speci�cations dominates over standard contracts after only a few minutes.
Dominance is observed consistently in all classes (with the usual exception
of ITERATORs and QUEUEs): a median session with strong contracts �nds more
faults than a median session with standard contracts after a time between
two seconds and �ve minutes depending on the class under test; after a time
between 13 seconds and 20 minutes, testing with strong contracts �nds more
faults than testing with standard contracts will �nd in the whole session.

Testing with standard contracts also seems to exhaust earlier its fault-
�nding potential: given any time from 20 minutes on, there are more Ei�el-

68 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

Base sessions than Ei�elBase+ sessions that have found all the faults they
ever will by this time. This may indicate that standard contracts are good
to �nd �quick to detect� faults, but they also soon run out of steam.

We considered other di�erences between experiments with Ei�elBase and
with Ei�elBase+ in the usage of testing time: repeatability of testing session
history, and the presence of rare faults triggered only in a small number of
cases. Our experiments with strong speci�cations are slightly less repeatable
and include a few more rare faults, but the di�erences with standard contracts
are not statistically signi�cant.

4.5.4 Runtime Performance Overhead

Runtime checking of strong speci�cations based on models often requires
traversing the whole data structure to construct an object of a model class,
whenever a contract element is exercised. As a rule, this demands more
computational resources than executing the simple checks involved in stan-
dard contracts. To measure the runtime overhead of checking model-based
speci�cations in automated testing, we compared the number of test cases
generated by AutoTest in the same amount of time when testing Ei�elBase
and Ei�elBase+. Contrary to our expectations, the overhead is small in many
cases and not signi�cant overall (see column TC of Tab. 4.1). A possible in-
terpretation of this data is that the overhead of strong speci�cations grows
as larger data structures are instantiated; because random testing most of
the time only exercises small data structures, this overhead does not show.

We did not �nd a signi�cant correlation between the variation of overhead
for di�erent classes and any source code metrics we considered. On the other
hand, some AutoTest heuristics that decide to discard previously created
objects are activated more often for classes where strong speci�cations are
faster to check.

4.5.5 Speci�cation Writing Overhead

Creating Ei�elBase+ required roughly one person-month, plus one person-
week of preliminary testing for �ne-tuning the speci�cation, which puts the
overall ratio bene�t/e�ort at about four defects detected per person-day.
Tab. 4.4 measures the amount of work produced in this time: for each speci-
�cation item, including preconditions, postconditions, class invariants, frame
properties (modify clauses), and model query implementations, we compare
the number of tokens in Ei�elBase+ against those in Ei�elBase (when ap-
plicable) and give the Overhead of strong speci�cations as the ratio of the
two values. The last line also shows the overall speci�cation to code ratios.

4.5. RESULTS 69

Table 4.4: Speci�cation overhead

tokens EiffelBase EiffelBase+ Overhead

Preconditions 1514 1696 1.12
Postconditions 5410 11837 2.19
Invariants 1508 1587 1.05
Frames 1893
Model queries 2268
Total 8432 19281 2.29

Spec/code 0.20 0.46

Re�ecting the importance our methodology gives to strong postconditions
and the more restricted role of class invariants, 67% of all new speci�cation in
Ei�elBase+ are postconditions, whereas only 9% are class invariants. Frame
properties total 11%; they are however straightforward to write and more
concise than corresponding semantically equivalent postconditions. Model
query implementations account for the remaining 13%.

These numbers suggest that the speci�cation overhead of model-based
contracts is moderate and abundantly paid o� by the advantages in terms of
errors found and quality of documentation. The speci�cation to code ratio
also compares favorably to other approaches to improving software qual-
ity. Detailed quantitative data about industrial experiences with test-driven
development is scarce, but few references indicate [12, 94, 82] that it is com-
mon to have between 0.4 and 1.0 lines of tests per line of application code for
projects of size comparable to Ei�elBase. Correctness proofs are normally
much more demanding, as they require between 1.5 and 20 speci�cation ele-
ments per implementation element [62, 38, 42, 63].

4.5.6 C# Experiments

Pex found 9 unique faults in DSA+ violating the model-based speci�cation
(column F in Tab. 4.2). Unfortunately, we could not get an evaluation of
these faults by the original code developers. We have con�dence, however,
that the faults uncover some obvious errors and, even in the most benign
interpretation, some instances of bad object-oriented design.

The fault rates (faults per line of executable code) are comparable in the
Ei�el and C# experiments, being respectively 6 ·10−3 and 3 ·10−3. The fault
complexity is also qualitatively similar for the two languages. The testing
time (column T in Tab. 4.2) is instead incomparable, as Pex and AutoTest
implement very di�erent testing algorithms.

Writing speci�cations to create DSA+ required roughly 50 person-hours,
plus another 8 person-hours used by the student to learn the speci�cation

70 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

methodology on small examples. The speci�cation/code ratio is perceptibly
higher in DSA+ compared to Ei�elBase+ (0.9); this is largely due to the
verbose syntax of Code Contracts which are a library, as opposed to Ei�el's
native language support for contracts.

4.5.7 Ei�elBase2 Experiments

AutoTest found 7 unique faults in Ei�elBase2: 2 of them in speci�cation and
5 in the implementation. A comparison with the Ei�elBase+ experiments,
which revealed 110 unique faults, supports a qualitative claim that the new
library contains signi�cantly fewer errors. This is true even after accounting
for the size di�erence: the fault rate of Ei�elBase2 is roughly 10−3 faults per
line of executable code, against 6 · 10−3 for Ei�elBase+.

These results tentatively con�rm the e�ectiveness of model-based con-
tracts as a design methodology. In particular, low number of speci�cation
errors shows that getting strong speci�cations right is not harder than for tra-
ditional contracts. Also, only one of the 7 errors is inheritance-related, which
suggests that strong speci�cations in general succeed in �taming� inheritance.

4.5.8 Threats to Validity

Threats to internal validity of our �ndings come from the usage of randomized
testing tools, whose behavior may change in di�erent sessions. We designed
the experimental protocol [4] to reduce this threat to a minimum: we ran
a large number of repeated experiments and we performed suitable non-
parametric statistical tests of signi�cance for all di�erences we observed.

Threats to external validity refer to the generalizability of our �ndings.
While RunMBC leads to very good results in our experiments, applying
it to programs in application domain other than data structures might be
more di�cult or require an extension of the technique. Our results remain
signi�cant, however, if compared to the state of the art in deploying strong
speci�cations. The generalizability to other languages and analysis tools is
partially addressed by our experiments targeting two languages (Ei�el and
C#) and two automatic testing technologies (random and concolic). Future
work will experiment with even more approaches and notations.

4.6 Related Work

This section discusses the most signi�cant related work in three areas: us-
ing formal speci�cations for testing, using inferred speci�cations to improve
testing, and runtime checking of model-based speci�cations.

4.6. RELATED WORK 71

4.6.1 Formal speci�cations for testing.

The idea of using formal speci�cations for testing has a history that stretches
back more than three decades; see [51] for a comprehensive survey. Vari-
ous proposals targeted di�erent speci�cation formalisms including algebraic
datatypes [45, 22], logic-based notations [119], UML Statecharts [97] and
other state machines, and contracts and similar forms of embedded asser-
tions [81, 25, 16, 86]. In these applications, formal speci�cations provide
reliable�often automated�testing oracles [118] and can also guide test plan-
ning and test case generation.

This extensive experience is evidence that formal speci�cations can im-
prove the testing process. From a software engineering viewpoint, however,
an outstanding open issue is �nding optimal trade-o�s between the e�ort
required to provide formal speci�cations and the improvements (in e�ciency
and e�ectiveness) they bring to the testing of real software. The evidence�
empirical [90] or anecdotal [104]�is scarce in this area: most successful ex-
periences do not explicitly take into account the e�ort required to produce
reliable speci�cations against the bene�ts gained for testing (e.g., [37]); or
they only target partial speci�cations, which have the advantage of being
easy to write (e.g., [16, 86]). In contrast, the present work targets the high-
hanging fruit of deploying strong speci�cations, explicitly addressing the dif-
�culties of writing and using such speci�cations for existing software. Our
results that strong speci�cations reveal complex (design) errors corroborate
Hoare's view that the real value of tests is that �they detect inadequacy in
the [development] methods� [53].

4.6.2 Inferred speci�cations for testing.

When speci�cations can be inferred automatically from the code, the deploy-
ment e�ort is negligible compared to the bene�ts they bring. Therefore, a
number of recent works (e.g., [101, 135, 137, 131]) developed sophisticated
techniques for inferring speci�cations from program executions with the in-
tent of using them to improve testing. The experiments reported in these
papers show that inferred speci�cations can boost automated testing [32]; on
the other hand, even the most accurate inferred speci�cations only express
the code from a di�erent angle, and hence cannot take the developer's intent
fully into account and are necessarily limited to detecting certain types of
inconsistencies. Combining inferred and manually written speci�cations is
an interesting endeavor that belongs to future work (see [106, 130] for some
preliminary studies).

72 CHAPTER 4. TESTING AGAINST STRONG SPECIFICATIONS

4.6.3 Model-based speci�cations at runtime.

Java Modeling Language (JML) [69] contains a wide variety of speci�cation
constructs beyond traditional assertions [21], some of them non-executable;
to handle this variety, the JML compiler is equipped with multiple advanced
runtime checking features. One example is the support for model vari-
ables [24], which involves generating implementations for model variables
de�ned through constraints, and attaching such implementations to Java in-
terfaces. Neither of those problems arises in RunMBC, since it de�nes model
queries as regular Ei�el functions, and thus can rely on built-in assertion
checking mechanisms.

There are several tools targeting automated testing of Java code against
JML speci�cations, e.g. Jartege [100] and JmlUnit [139]; we are not aware
of any large-scale empirical studies of these testing techniques, in particular,
exploring the bene�ts of strong speci�cations involving model classes.

4.7 Summary

This chapter presented an extension of the model-based contracts methodol-
ogy, which supports more accurate checking of such contracts at runtime. We
carried out an extensive empirical evaluation, using software written in Ei�el
and C#, to determine the bene�ts of using strong speci�cations in testing
with automatic tools. We found twice as many bugs in the software with
strong speci�cations as in the same software speci�ed with standard partial
contracts. At the same time, the e�ort required to write strong speci�ca-
tions for testing is moderate, since they are limited to interface properties
and do not include extensive auxiliary annotations used by static techniques.
We have also provided evidence that software developed with strong spec-
i�cations from the start exhibits considerably fewer defects than software
developed in a traditional way.

Another contribution of this chapter is the RunMBC tool, which trans-
lates advanced model-based speci�cations into regular Ei�el contracts, ame-
nable to runtime checking. To our knowledge, this is the �rst tool that uses
ideas from the Spec# veri�cation methodology [9] to enable runtime checking
of class invariants in the presence of callbacks and inter-object dependencies.

Chapter 5

Flexible Invariants for

Complex Object Structures

The previous chapter focused on quality assurance by means of automated
testing. Although testing against strong speci�cations can reveal many soft-
ware faults, it can never guarantee their absence. In this and the next chap-
ter, we target correctness proofs: a veri�cation technique that is more de-
manding but ensures software correctness with mathematical certainty. The
current chapter, in particular, addresses one the central issues in the area of
correctness proofs of object-oriented programs: reasoning about class invari-
ants.

5.1 Introduction

Class invariants are here to stay [121]�even with their tricky semantics in the
presence of callbacks and inter-object dependencies, which make reasoning so
challenging [102]. The main reason behind their widespread adoption is that
they formalize the notion of a consistent class instance, which is inherent
in object-oriented programming, and thus naturally present when reasoning,
even informally, about program behavior.

The distinguishing characteristic of invariant-based reasoning is stability :
it should be impossible for an operation r to violate the invariant of an
object o without modifying o itself. Stability promotes information hiding
and simpli�es client reasoning about preservation of consistency: without
invariants, a client would need to know which other objects o's consistency
depends on, while with invariants it is su�cient that it check whether r
modi�es o�a piece of information normally available as part of r's frame
speci�cation. The goal of an invariant methodology (also called protocol) is

74 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

thus to achieve stability even in the presence of inter-object dependencies�
where the consistency of o depends on the state of other objects, possibly
recursively or in a circular fashion (see Sect. 5.2 for concrete examples).

The numerous methodologies introduced over the last decade, which we
review in Sect. 5.3, successfully relieve several di�culties involved in rea-
soning with invariants; but there is still room for improvement in terms of
�exibility, usability, and automated tool support. In this chapter, we present
semantic collaboration (SC): a new methodology for specifying and reasoning
about invariants in the presence of inter-object dependencies that combines
�exibility and usability, and is implemented in a program veri�er.

A standard approach to inter-object invariants is based on the notion of
ownership, which has been deployed successfully in several invariant method-
ologies [9, 77, 92] and is available in tools such as Spec# [10] and VCC [29].
Under this model, the invariant of an object o only depends on the state
of the objects explicitly owned by o. Ownership is congenial to object-
orientation because it supports a strong notion of encapsulation; however,
not all inter-object relationships are hierarchical and hence reducible to own-
ership. Multiple objects may also collaborate as equals, mindful of each
other's consistency; a prototypical example is the Observer pattern [44] (see
Sect. 5.2).

Semantic collaboration naturally complements ownership to accommo-
date invariant patterns involving collaborating objects. Most existing me-
thodologies support collaboration through dedicated speci�cation constructs
and syntactic restrictions on invariants [77, 11, 88, 120]; such disciplines tend
to work only for certain classes of problems. In contrast, SC relies on stan-
dard speci�cation constructs�ghost state and invariants�to keep track of
inter-object dependencies, and imposes semantic conditions on class invariant
representations. It builds upon the philosophy of locally-checked invariants
(LCI) [30]: a low-level veri�cation method based on two-state invariants. LCI
has served as a basis for other specialized, user- and automation-friendly
methodologies for ownership and shared-memory concurrency. SC can be
viewed as an improved specialization of LCI for object collaboration in a se-
quential setting. To further improve usability, SC comprises useful �defaults�,
which characterize typical speci�cation patterns. As we argue in Sect. 5.5
based on several challenge problems, the defaults signi�cantly reduce the
annotation burden without sacri�cing �exibility in the general case.

We implemented SC as part of AutoProof [5], an automated veri�er for
Ei�el. The implementation provides more concrete evidence of the advan-
tages of SC compared to other methodologies to specify collaborating objects
(e.g., [11, 80, 120, 88] all of which currently lack tool support).

The presentation of this chapter is based on examples of non-hierarchical

5.2. MOTIVATING EXAMPLES 75

object structures, customarily used in the literature. Sect. 5.2 presents the
examples and the challenges they embody; and Sect. 5.3 discusses the ap-
proaches taken by main existing invariant methodologies. Sect. 5.4 intro-
duces SC, demonstrates its application to the running examples, and out-
lines a soundness proof. Sect. 5.5 evaluates both SC and existing proto-
cols on an extended set of examples, including challenge problems from the
SAVCBS workshop series [109]. The evaluation demonstrates that SC is the
only methodology that supports (a) collaboration with unknown classes,
while preserving stability, and (b) invariants depending on unbounded sets
of objects, possibly unreachable in the heap. The collection of problems of
Sect. 5.5�available at [110] together with our solutions�could serve as a
benchmark to evaluate invariant methodologies for non-hierarchical object
structures. The website [110] also gives access to AutoProof through a web
interface.

5.2 Motivating Examples

The Observer and Iterator design patterns are widely used programming id-
ioms [44], where multiple objects depend on one another and need to maintain
a global invariant. Their interaction schemes epitomize cases of inter-object
dependencies that ownership cannot easily describe; therefore, we use them
as illustrative examples throughout the chapter, following in the footsteps of
much related work [80, 102, 88].

5.2.1 Observer pattern

Fig. 5.1 shows the essential parts of an implementation of the Observer de-
sign pattern in Ei�el. An arbitrary number of OBSERVER objects (called �sub-
scribers�) monitor the public state of a single instance of class SUBJECT. Each
subscriber maintains a copy of the subject's relevant state (integer attribute
value) into one of its local variables (attribute cache). The subscribers' copies
are cached values that must be consistent with the state of the subject, for-
malized as the invariant clause cache = subject.value of class OBSERVER, which
depends on another object's state. This dependency is not adequately cap-
tured by ownership schemes, since no one subscriber can have exclusive con-
trol over the subject.

In the Observer pattern, consistency is maintained by means of explicit
collaboration: the subject has a list of subscribers, updated whenever a new
subscriber registers itself by calling register (Current) on the subject. Upon
every change to its state (routine update), the subject takes care of explic-

76 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

class SUBJECT

value: INTEGER
subscribers: LIST [OBSERVER]

make (v: INTEGER) -- Constructor

do

value := v

create subscribers

ensure

subscribers.is_empty
end

update (v: INTEGER)
do

value := v

across subscribers as o do

o.notify
end

ensure

value = v

end

feature {OBSERVER}
register (o: OBSERVER)
require

not subscribers.has (o)
do

subscribers.add (o)
ensure

subscribers.has (o)
end

end

class OBSERVER

subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor

do

subject := s

s.register (Current)
cache := s.value

ensure

subject = s

end

feature {SUBJECT}
notify

do

cache := subject.value
ensure

subject = old subject

cache = subject.value
end

invariant

subject.subscribers.has (Current)
cache = subject.value

end

Figure 5.1: The Observer pattern: an observer's invariant depends on the
state of the SUBJECT, which reports its state changes to all its subscribers. The
clients of the subscribers must be able to rely on their cache always being
consistent, while oblivious of the update/notify mechanisms that preserve
invariants.

itly notifying all registered subscribers (using an across loop that calls notify

on every o in subscribers). This explicit collaboration scheme�called �con-
siderate programming� in [120]�ensures that the subscribers' state remains
consistent (i.e., the class invariant holds) between calls to the public routines

5.2. MOTIVATING EXAMPLES 77

of the object structure.
Fig. 5.1 uses Ei�el's selective exports1 to separate the public interface of

the classes from the features internal to the object structure: feature {OBSERVER}

denotes that routine register is only available to instances of class OBSERVER,
and feature {SUBJECT} similarly limits the visibility of notify to the subject.
While selective exports help emphasize collaboration patterns, they are not
crucial for the proposed methodology, which is applicable to any object-
oriented language regardless of the available visibility speci�ers.

A methodology to verify the Observer pattern must ensure invariant sta-
bility; namely, that clients of OBSERVER can rely on its invariant without knowl-
edge of the register/notify mechanism. Another challenge is dealing with the
fact that the number of subscribers attached to the subject is not �xed a
priori, and hence we cannot produce explicit syntactic enumerations of the
subscribers' cache attributes. We must also be able to verify update and notify

without relying on the class invariant as precondition�in fact, those routines
are called on inconsistent objects precisely to restore consistency.

5.2.2 Iterator Pattern

In the Iterator pattern, an arbitrary number of iterator objects traverse a col-
lection of elements. Fig. 5.2 sketches an implementation where the COLLECTION

uses an ARRAY of elements as underlying representation. The ITERATOR's main
capability is to return the item at the current position index in the target

collection2. item's precondition speci�es that this is possible only when the
iterator points to a valid element of target, that is index is between 1 and
target.count (included); otherwise, if index is 0 the iterator is before the list,
and if it equals target.count + 1 it is after the list. The invariant of class
ITERATOR de�nes the public state components before and after in terms of the
internal state component index, as well as the acceptable variability range for
index.

Since the iterator's invariant depends on the state of the target collec-
tion, modifying the collection (for example, by calling remove_last) may dis-
able the iterator (make it inconsistent). This is aligned with the intended
usage of iterators, which should be discarded after traversing a collection
without changing it. A veri�cation methodology should ensure that clients
of ITERATOR only access iterators in a consistent state, without knowledge of
the iterator's internal state index or of its relation to the target collection.
In fact, the selective exports used in Fig. 5.2 hide the details of ITERATOR's

1Similar to friend classes in C++.
2We omit the description of other necessary operations, such as advancing the iterator,

since they are irrelevant for our discussion about invariants.

78 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

class COLLECTION [G]

count: INTEGER

make (capacity: INTEGER)
-- Constructor

require

capacity ≥ 0
do

create elements(1, capacity)
ensure

elements.count = capacity

count = 0
end

remove_last

require

count >0
do

count := count − 1
ensure

count = old count − 1
end

feature {ITERATOR}
elements: ARRAY [G]

invariant

0≤ count≤ elements.count
end

class ITERATOR [G]

target: COLLECTION [G]
before, after: BOOLEAN

make (t: COLLECTION)
-- Constructor

do

target := t

before := True

ensure

target = t

before and not after

end

item: G
require

not (before or after)
do

Result := target.elements [index]
end

feature {NONE}
index: INTEGER

invariant

0≤ index≤ target.count + 1
before = index <1
after = index >target.count

end

Figure 5.2: The Iterator pattern: an iterator's invariant depends on the state
of the collection it traverses, which is oblivious of the iterators. Veri�cation
must prove that clients do not access disabled iterators, without knowing
collection's and iterator's internal states.

invariant from its clients (the visibility of an invariant clause is determined
by its least visible subexpression, and feature {NONE} denotes purely private
members). An additional obstacle to veri�cation comes from the fact that
considerate programming would be at odds with the ephemeral nature of
iterators compared to observers: collections are normally implemented un-
aware of the iterators operating on them; a �exible invariant methodology
should allow such implementations.

5.3. EXISTING APPROACHES 79

5.3 Existing Approaches

This section reviews the main existing methodologies for specifying and rea-
soning about class invariants; based on their most important features and
limitations. Sect. 5.4 will present our own methodology. Since we are inter-
ested in verifying reusable components, we only discuss methodologies that
support modular reasoning (where local checks on individual classes or small
groups of classes subsume global program correctness).

A crucial issue is deciding when (at which program points) class invari-
ants should hold: state-changing operations normally consist of sequences of
elementary updates, which individually may break the class invariant tem-
porarily. For example, in Fig. 5.1 the invariants of subscribers might be
broken after the �rst instruction of update. To deal with this problem, some
methodologies restrict the program points where class invariants are expected
to hold; others interpret the invariants in a weakened form, which holds vac-
uously at intermediate steps during updates (and fully at crucial points).

Methodologies based on visible-state semantics only require invari-
ants to hold when no operation is being executed on their objects, that is in
states visible to clients. This idea was introduced for Ei�el [84], and later
also adopted by JML [67]. Without additional mechanisms, visible-state
semantics can't achieve modularity in the presence of callbacks (the client
making the callback is unaware of ongoing operations that may a�ect the
invariant) and of inter-object dependencies (if o1's invariant depends on o2,
the former is also a�ected by operations on o2 invisible to clients of o1). Ex-
isting solutions adopt aliasing control measures [92] to deal with hierarchical
object structures described by ownership. Other solutions [85, 87, 88, 120],
for collaborative invariants, either infer through static analysis or require the
developer to explicitly indicate which objects might be inconsistent at rou-
tine call boundaries; for example, routine register (o: OBSERVER) of class SUBJECT

in Fig. 5.1 would be annotated with broken o to specify that argument o's
invariant may not hold when executing register.

These two families of solutions�for hierarchical and for collaborative ob-
ject structures�based on visible-state semantics are not easily combined;
this is a practical limitation, since many object-oriented systems consist of
an interplay between both types of structure. For example, continuing with
Fig. 5.1, objects of class SUBJECT collaborate with OBSERVER objects but also own
a subscribers list as part of their representation. Thus, when reasoning about
routine register, we should be able to deal with the call subscribers.add (o)

whose argument o is inconsistent (and hence add cannot assume o's invari-
ant); however, annotating LIST's add by declaring its argument broken goes
against modularity, as class LIST should not need to know how and where it

80 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

is used. The di�culty of integrating hierarchical and collaborative models is
the main limitation of visible-state methodologies, and likely a reason why,
to our knowledge, they have not been implemented in any program veri�er.

Another family of methodologies, collectively known as Spec# method-

ologies after the program veri�er where they have originally been imple-
mented, follow the approach of weakening the default semantics of invariants
so that they can be evaluated only when appropriate. In a nutshell, all classes
include a ghost Boolean attribute closed,3 which denotes whether an object
is in a consistent state; an invariant inv is then interpreted as the weaker
closed⇒inv, which vacuously holds for open (i.e., not closed) objects. Rou-
tines explicitly indicate whether they expect relevant objects to be closed or
open; this approach is more conducive to modularity than visible-state se-
mantics: it does not impose consistency by default at routine call boundaries
and thus does not require routines to list all possibly inconsistent objects in
the entire program.

The original methodologies from this family, as implemented in the Spec#
system [10], are mainly based on syntactic mechanisms to express ownership
relations. For example, following [9], we would annotate attribute elements of
class COLLECTION in Fig. 5.2 with rep, to denote that it belongs to COLLECTION's in-
ternal representation; thus, modifying elements is only possible if its COLLECTION
owner has been opened�a situation where closed⇒count≤ elements.count vac-
uously holds. This solution only supports representations based on bounded
sets of objects directly accessible through attributes. Follow-up work [77]
partially relaxes this restriction introducing a form of quanti�cation predi-
cating over an owner ghost attribute (which goes up the ownership hierarchy),
and a mechanism to transfer ownership. The additional expressiveness comes
with a price to pay mainly in terms of complex invariant admissibility con-
ditions (hence, it may be hard to understand what is expressible and how)
and complicated soundness proofs of the methodology.

In contrast, the VCC veri�er [29] implements a Spec#-style methodology
where ownership is encoded on top of LCI's semantic approach [30]. Objects
include an additional ghost attribute, owns, storing the set of all owned ob-
jects; ghost code modi�es this set explicitly when the owner object is open.
In the example of Fig. 5.2, instead of annotating attribute elements with rep,
we would introduce a �rst-order formula, such as owns = {elements}, in the
invariant of COLLECTION to express that elements is part of the representation.
The advantage of this approach becomes apparent with linked structures,
where owned elements are accessible only by following chains of references

3We follow VCC's terminology [29] whenever applicable; other works use di�erent
names.

5.3. EXISTING APPROACHES 81

(e.g., a linked list owns all reachable cells). In fact, semantic approaches to
ownership provide the �exibility necessary to specify an unbounded number
of owned objects, which may even be not directly attached to the owner,
as well as to implement ownership transfers without need for ad hoc mech-
anisms. They also simplify the rules of reasoning; for example, invariant
admissibility becomes a simple proof obligation that all objects whose state
is mentioned in the invariant are bound, by the same invariant, to belong
to owns. These features have contributed to making VCC applicable to real-
world systems [71].

In addition to ownership, some Spec# methodologies also deal with col-
laborating objects. [77] introduces the notion of visibility-based invariants,
which requires that a class be aware of the types and invariants of all ob-
jects concerned with its state4. For example, in Fig. 5.1 SUBJECT must declare
its value attribute with a modi�er dependent OBSERVER. Whenever the subject
changes its value, it has to check that all potentially a�ected OBSERVERs are
open. If aware of the OBSERVER's invariant, it can show that the only a�ected
observers are {o: OBSERVER | o.subject = Current}. Such indirect representations
of the concerned objects complicate discharging the corresponding proof obli-
gations; and relying on knowing the concerned objects' invariants introduces
tight coupling between the collaborating classes.

To lift these complications, [11] suggests instead to introduce a ghost at-
tribute deps storing the set of all concerned objects. It also introduces update
guards, allowing a concerned object to state conditions under which its in-
variant is preserved without revealing the invariant itself. Both approaches
[77, 11] have shortcomings that derive from their reliance on syntactic mecha-
nisms and conditions: collaboration invariants can only depend on a bounded
number of objects known a priori and accessible through attributes (called
�pivot �elds� in [11]); the types of the concerned objects must be known ex-
plicitly; and the numerous ad hoc annotations (e.g., friend and keeping) and
operations (e.g., to modify deps) make the methodologies harder to present
and use. One of the main goals of our methodology (Sect. 5.4) is to lift these
shortcomings by dealing with collaborative invariants by semantic rather
than syntactic means�similarly to what VCC did to the classic syntactic
treatment of ownership. The semantic approach makes SC very �exible, ca-
pable of accommodating disparate object-oriented design patterns without
requiring ad hoc mechanisms.

Somewhat orthogonally to other Spec#-family approaches, the history
invariants methodology [80] provides for more loose coupling between the

4We say that an object o is concerned with an attribute a of another object s if
updating s.a might a�ect o's invariant.

82 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

collaborating classes, but gives up stability of invariants.

5.4 Semantic Collaboration

Our new invariant methodology belongs to the Spec# family; as we illus-
trated in Sect. 5.3, this entails that objects can be open or closed, and class
invariants have to hold only for closed objects. On top of semantic mech-
anisms for ownership, similar to those developed for VCC (see Sect. 5.3),
our methodology also provides a semantic treatment of dependencies among
collaborating objects; hence its name semantic collaboration. The keywords
and constructs speci�c to SC are underlined in the following.

Overview of semantic collaboration. To specify collaboration pat-
terns, we equip every object o with ghost �elds subjects and observers. As
their names suggest,5 o.subjects stores the set of objects on which o's invari-
ant might depend; conversely, o.observers (analogous to deps in [11]) stores
the set of objects whose invariant might depend on o, in other words, objects
potentially concerned with o.

The methodology achieves modularity by reducing global validity (all
closed objects satisfy their invariants) to local checks of two kinds: (i) all
concerned objects are stored in observers; and (ii) updates to the attributes
of an object o maintain the validity of o and its observers. Check (i) becomes
an admissibility condition that every declared class invariant must satisfy.
Check (ii) holds vacuously for open observers, thus one way to satisfy it is
to �notify� all observers of a potentially destructive update by opening them.
For more �exibility, the methodology also allows subjects to skip �notifying�
observers whenever the attribute update satis�es its guard (a notion also
inspired by [11]). This option is supported by another admissibility condition:
an invariant must remain valid after updates to subjects that comply with
their update guards.

5.4.1 Preliminaries and De�nitions

As it is customary, the following presentation targets fundamental program-
ming constructs, while ignoring those that do not a�ect reasoning about
invariants (e.g., control structures). We also largely ignore issues related to
inheritance, but we brie�y come back to them in Sect. 5.6.

5While the names are inspired by the Observer pattern, they are also applicable to
other collaboration patterns, as we demonstrate in Sect. 5.4.4. The underlining in the
formatting avoids confusion.

5.4. SEMANTIC COLLABORATION 83

Our methodology assumes a generic object-oriented programming lan-
guage, where a program is a collection of classes, and a class is a collection of
attributes, routines, and side-e�ect free logic functions.6 Any of those con-
structs can be declared ghost if it is meant to be used only in speci�cations.

A pair x �a of an object identi�er x and an attribute a is called a location.
A set of locations is called a frame.

Built-in attributes. Every class is implicitly equipped with ghost at-
tributes: closed (to encode consistency); owns and owner (to encode the own-
ership hierarchy); and subjects and observers (to encode collaboration). We
also de�ne the shorthands: o.open for ¬o.closed; o.free for o.owner = Void; and
o.wrapped for o.closed∧ o.free. The ownership domain of an object o is {o} if o
is open, and the re�exive transitive closure of o.owns if o is closed. Attributes
closed and owner are only changed indirectly through the implicitly de�ned
ghost routines wrap and unwrap, whose semantics is de�ned below.

Speci�cations. The speci�cation of a logic function f consists of a de�-
nition�a side-e�ect free expression de�ning the function value�and zero or
more read clauses of the form read [a1, . . . , an] x1, . . . , xm, where each xi is an
expression that denotes either a set of objects or an individual object (inter-
preted as a singleton set), and each aj is an attribute name. Such a clause
denotes a frame

{
x � a | a ∈ {a1, . . . , an}, x ∈

⋃
i∈1...m xi

}
(if the attribute list

is omitted, all attributes of the listed objects are included in the frame);
the union of frames for all read clauses gives the read frame of f: the set of
locations that f may depend on.

The speci�cation of a routine r consists of a require clause (a precon-
dition), an ensure clause (a postcondition), and zero or more modify clauses
of the form modify [a1, . . . , an] x1, . . . , xm. Such a clause denotes a frame,
de�ned analogously to the read clause, except it also includes the union of
the ownership domains of all listed objects; the union of frames for all modify
clauses gives the write frame of r: the set of locations that r may modify.

The speci�cation of an attribute a consists of an update guard�a Boolean
expression over the Current object, new attribute value y, and generic observer
object o, written guard(Current.a := y, o).

The speci�cation of a class includes its invariant inv.
The choice to implicitly include ownership domains into the write frame

of a routine is a key abstraction mechanism in ownership-based veri�cation
methodologies: clients of a routine r should not be able to distinguish be-
tween r modifying x and modifying an object in the internal representation of

6Inspired by the function construct of Dafny [74], and def construct of VCC. Logic
functions need not be a dedicated language construct, and can instead be expressed with
pure routines; these details are irrelevant for the present discussion.

84 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

x, since that would break information hiding. This speci�cation convention
can also be used to avoid explicit usage of sets in frame speci�cations�an ap-
proach promoted by the dynamic frames family of techniques [60, 117, 74]�
and restrict the syntax of modify clauses to (�nite) lists of objects. The fram-
ing notation we adopted as the basis of SC allows arbitrary set expressions,
and thus fully supports the dynamic frames style, at the same time, making
use of information hiding mechanisms o�ered by ownership. Sect. 5.4.7 dis-
cusses implications of adopting a similar convention for read clauses of logic
functions.

Expressions. We consider standard programming language expressions,
extended with bounded quanti�cation, exempli�ed by Ei�el's loop expres-
sions all x ∈ s : B(x) and some x ∈ s : B(x) (see Chapter 3). We treat Void as an
object that is always allocated and open.

Expressions are evaluated in a heap, which maps locations to values. The
current heap H is normally clear from the context and left implicit. Other-
wise, eh denotes the value of expression e in heap h; and h[x.a 7→ e] denotes
the heap that agrees with h everywhere except possibly about the value of
x.a, which is e. Since we ignore deallocation, our heaps have no dangling
references: only allocated objects are reachable from allocated objects.

The read frame reads(e) of a primitive expression is de�ned as follows:
for an access x.a to attribute a, reads(x.a) = {x � a}; for an application x.f (y)

of logic function f, reads(x.f (y)) is given by f's read frame after argument
substitution. The read frame of a compound expression e is the union of the
read frames of e's subexpressions.

Instructions. For the present discussion, we only have to consider rou-
tine calls x.r (y), as well as heap update instructions : create x (allocate an
object and attach it to x); x.a := y (update attribute a); and x.wrap and x.unwrap

(opening and closing an object).
The write frame writes(s) of a primitive instruction s is de�ned as follows:

for an update x.a := y of attribute a, writes(x.a := y) = {x � a}; for opening
or closing an object x, writes(x.unwrap) = writes(x.wrap) = {x � closed} ∪ {o �
owner | o ∈ x.owns}; for a call x.r (y) to routine r, writes(x.r (y)) is given by r's
write frame after argument substitution. The write frame of a compound
instruction is the union of write frames of its sub-instructions.

5.4.2 Semantic Collaboration: Goals and Proof Obligations

The goal of any invariant methodology is to provide modular proof obli-
gations to establish global validity: the property that every object in the
program is valid at every program point. Following SC's approach, an ob-

5.4. SEMANTIC COLLABORATION 85

ject is valid if it satis�es its invariant when closed; thus global validity is
de�ned as:

∀o : o.closed⇒ o.inv (G1)

Additionally, maintaining ownership-based invariants requires strength-
ening global validity with the property that whenever a parent object p is
closed, all its owned objects are closed (and their owner attributes point back
to p):

∀o, p : p.closed ∧ o ∈ p.owns⇒ o.closed ∧ o.owner = p (G2)

Proof obligations. The proof obligations speci�c to SC consist of two
types of checks: (i) every class invariant is admissible according to De�-
nition 5.1; and (ii) every heap update instruction satis�es its precondition.
These proof obligations are modular in that they only mention the state of
the current object, its observers and owned objects. Sect. 5.4.3 describes
how establishing the local proof obligations entails global validity, that is,
subsumes checking (G1) and (G2).

Admissibility captures the requirements that class invariants respect own-
ership and collaboration relations, as well as update guards.

De�nition 5.1. An invariant inv is admissible i�:

1. inv only depends on attributes of Current, its owned objects, and its
subjects (except built-in attributes closed and owner):

inv ⇒ reads(inv) ⊆{
x � a | x ∈ {Current} ∪ owns ∪ subjects ∧ a 6= closed, owner

}
(A1)

2. All subjects of Current are aware of it as an observer:

inv ⇒ ∀s : s ∈ subjects⇒ Current ∈ s.observers (A2)

3. inv is preserved by any update s.a := y that conforms to its guard:

∀s, a, y : s ∈ subjects∧ inv∧ guard(s.a := y, Current)⇒ invH[s.a7→y] (A3)

The speci�cations of the heap update instructions are given below; the
instructions only modify objects and attributes mentioned in the postcondi-
tions.

Allocation creates a free open object, with no observers:
create x require ensure

True x.open

x.owner = Void

x.observers = {}

86 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

Unwrapping opens a wrapped object and frees all objects in its owns set:
x.unwrap require ensure

x.wrapped x.open

all o ∈ x.owns : o.wrapped

Attribute update operates on an open object and preserves validity of its
observers:
x.a := y require ensure

a 6= closed x.a = y

x.open

all o ∈ x.observers : o.open or

guard(x.a := y, o)

Wrapping closes an open object, whose invariant holds, and gives it own-
ership over all objects in its owns set:
x.wrap require ensure

x.open x.wrapped

x.inv all o ∈ x.owns : o.owner = x

all o ∈ x.owns : o.wrapped

Other proof obligations. Proof obligations unrelated to invariants are
the usual ones of axiomatic reasoning: every call to a routine r occurs in
a state that satis�es r's precondition; executing a routine r in a state that
satis�es its precondition leads to a state that satis�es r's postcondition; the
read clause of every logic function f is consistent (i.e., the read frame of f's
de�nition is a subset of f's read clause); the modify clause of every routine r

is consistent (i.e., the write frame of r's body is a subset of r's modify clause,
closed under ownership domains); and the de�nitions of logic functions are
terminating.

5.4.3 Soundness of the Methodology

To establish soundness of the proposed invariant methodology we have to
show that every program satisfying the proof obligations of SC is always
globally valid, that is satis�es (G1) and (G2). We outline a proof of this fact
in three parts, of which only the third is speci�c to SC, while the �rst two
can be reused for other invariant protocols.

The �rst part concerns ownership: every methodology that, like SC, im-
poses a suitable discipline of wrapping and unwrapping to manage ownership
domains reduces (G2) to local checks.

Lemma 5.1. Consider a methodology M whose proof obligations verify the
following:

5.4. SEMANTIC COLLABORATION 87

a. freshly allocated objects are open;

b. whenever x.owner is updated or x.closed is set to False, x.owner is open;

c. whenever x.closed is set to True, every object o in x.owns is closed and satis�es
o.owner = x;

d. whenever an attribute x.a (with a /∈ {closed, owner}) is updated, object x is
open.

Then every program that satis�es M 's proof obligations also satis�es (G2)
everywhere.

Proof. The proof is by induction on the length of program traces.
The base case is the trace only consisting of the initial heap where no

object is allocated but for an open object Void; thus (G2) holds initially. For
the inductive step, let h be the �nal heap of a trace where (G2) invariably
holds. Consider a heap update instruction s that yields heap h′ if executed
on h, and assume that h′ does not satisfy (G2):

∃o, p ∈ alloc(h′) : p.closedh′ ∧ o ∈ p.ownsh′ ∧ (¬o.closedh′ ∨ o.ownerh′ 6= p)

(where alloc denotes the set of objects allocated in a heap). Since h′ di�ers
from h in exactly one location, or in allocation status of exactly one object,
s must be one of the following:

� create o: in this case o /∈ alloc(h)∧o ∈ p.ownsh which is a contradiction,
since there are no dangling references.

� create p: here p /∈ alloc(h) ∧ p.closedh′ , which contradicts rule a.

� p.owns := . . .: in this case p.closedh ∧ o /∈ p.ownsh ∧ o ∈ p.ownsh′ , which
contradicts the requirement that of rule d that p be open.

� o.owner := . . .: here p.closedh ∧ o.ownerh = p ∧ o.ownerh′ 6= p, which
contradicts the requirement that of rule b that o.ownerh be open.

� x.closed := . . . (for some x) could validate the �rst or the third conjunct
in the above formula, or even both if p = o. The latter is impossible
since that implies ¬p.closedh∧o.closedh. If the �rst disjunct is validated,
then ¬p.closedh ∧ p.closedh′ ∧ o ∈ p.ownsh ∧ (¬o.closedh ∨ o.ownerh 6= p),
which contradicts rule c. Finally, if the third disjunct is validated, then
p.closedh ∧ o.closedh ∧ o.ownerh = p ∧ ¬o.closedh′ , which contradicts the
requirement that of rule b that o.ownerh be open.

88 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

The second part applies to any kind of inter-object invariants and assumes
a methodology that, like SC, checks that attribute updates preserve validity
of all concerned objects; we show that such checks subsume (G1). How a
methodology identi�es concerned objects is left unspeci�ed as yet.

Lemma 5.2. Consider a methodology M whose proof obligations verify the
following:

a. freshly allocated objects are open;

b. whenever x.closed is updated to True, x.inv holds;

c. whenever an attribute x.a (with a 6= closed) is updated to some y, every
concerned object satis�es (o.closed ∧ o.inv)⇒ o.invH[x.a 7→y];

d. class invariants depend neither on attribute closed nor on the allocation
status of objects.

Then every program that satis�es M 's proof obligations also satis�es (G1)
everywhere.

Proof. The proof is by induction on the length of program traces.
The base case is the trace only consisting of the initial heap where no

object is allocated but for an open object Void; thus (G1) holds initially. For
the inductive step, let h be the �nal heap of a trace where (G1) invariably
holds. Consider an instruction s that yields heap h′ if executed on h. Without
loss of generality, let h′ 6= h; therefore, s is either an allocation of a new object
or an attribute update. If s allocates a new object x, (G1) still holds in h′:
x is open (rule a) and no other object's invariants depends on it, since x has
just been created and class invariant do not know about allocation status
(rule d). If s sets to False some o.closed in (G1)'s antecedent, then (G1)
vacuously hold. If s sets to True some o.closed in (G1)'s antecedent, then o.inv
holds (rule b); thus (G1) holds too. Also, updates to some o.closed cannot
concern the invariants of objects other than o (rule d). If s updates some
x.a, with a 6= closed, let o be any object concerned with the update; either o
is open, or it is closed and o.inv holds in h by the induction hypothesis, so
rule c applies. Either way, (G1) holds in h′ for o.

The third part of the soundness proof argues that SC satis�es the hy-
potheses of Lemmas 5.1 and 5.2, and hence ensures global validity.

Theorem 5.1. Every program that satis�es the proof obligations of SC also
satis�es (G2) and (G1) everywhere.

5.4. SEMANTIC COLLABORATION 89

Proof. SC satis�es the hypotheses of Lemma 5.1: allocation satis�es rule a;
unwrapping satis�es rule b and wrapping satis�es rules b and c (we assume
that unwrap x �rst updates x.closed, and then sets the owner attribute of every
object in x.owns; wrap performs the updates in the reverse order). Remember
that closed and owner are only changed by wrap and unwrap. Attribute update
satis�es rule d.

It also satis�es the hypotheses of Lemma 5.2: allocation satis�es rule a;
wrapping satis�es rule b; invariant admissibility and the rules of language
syntax satisfy rule d. Rule c requires more details. First note that invari-
ant admissibility requires that no invariant mention owner; thus no object is
concerned with wrapping or unwrapping, which therefore vacuously satisfy
rule c. Now, consider an update x.a := y with a 6= owner and a 6= closed, and
let o be any concerned object. Assuming o.closed and o.inv hold for a generic
heap h, we have to show that o.inv also holds of the heap h′ = h[x.a 7→ y]. By
de�nition of read frame, x ∈ reads(o.inv); o.inv is also admissible and hence it
satis�es (A1); therefore x ∈ {o}∪ o.owns∪ o.subjects. However, the second pre-
condition of the attribute update rule says that x is open; thus x 6= o because
o is closed. We already proved that h satis�es (G2); for p = o this entails that
all objects in o.owns are closed; therefore, x 6∈ o.owns as well. We conclude that
x ∈ o.subjects which, combined with condition (A2) for o.inv's admissibility,
implies that o ∈ x.observers holds in h. Finally, the third precondition of the
attribute update rule establishes guard(x.a := y, o), and thus by admissibility
condition (A3), o.inv still holds in in the heap h′.

A variant of the soundness proof above has been mechanized in Dafny [74]
is available online [110].

As a closing remark, we note that another way to show soundness of SC is
via reduction to LCI. To encode collaboration in LCI on top of the ownership
encoding detailed in [30], we add the following clauses to the invariant of
each class: one stating that all subjects know Current for an observer (the
consequent of (A2)), and for each attribute of Current, another one stating
that all observers approve of the changes to this attribute.

5.4.4 Examples

We illustrate SC on the two examples of Sect. 5.2: Fig. 5.3 and 5.4 show
the Observer and Iterator patterns fully annotated according to the rules of
Sect. 5.4.2. We use the shorthands wrap_all (s) and unwrap_all (s) to denote
calls to wrap and unwrap on all objects in a set s. As we discuss in Sect. 5.5,
several annotations of Fig. 5.3 and 5.4 are subsumed by the defaults men-
tioned in Sect. 5.4.5. We postpone to Sect. 5.4.6 dealing with update guards

90 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

class SUBJECT

value: INTEGER
subscribers: LIST [OBSERVER]

make (v: INTEGER) -- Constructor

require open

modify Current

do

value := v

create subscribers

owns := { subscribers }
wrap

ensure

subscribers.is_empty
wrapped

end

update (v: INTEGER)
require

wrapped

all o ∈ observers : o.wrapped

modify Current, observers

do

unwrap ; unwrap_all (observers)

value := v

across subscribers as o do o.notify end

wrap_all (observers) ; wrap

ensure

value = v

wrapped

all o ∈ observers : o.wrapped

observers = old observers

end

feature {OBSERVER}
register (o: OBSERVER)
require

not subscribers.has (o)
wrapped

o.open

modify Current

do

unwrap

subscribers.add (o)
observers := observers + { o }
wrap

ensure

subscribers.has (o)
wrapped

end

invariant

observers = subscribers.range
owns = { subscribers }
subjects = {}

end

class OBSERVER

subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor

require

open

s.wrapped

modify Current, s

do

subject := s

s.register (Current)
cache := s.value
subjects := { s }

wrap

ensure

subject = s

wrapped

s.wrapped

end

feature {SUBJECT}
notify

require

open

subjects = {subject}

subject.observers.has (Current)
observers = {}
onws = {}

modify Current

do

cache := subject.value
ensure

inv

end

invariant

cache = subject.value
subjects = { subject }

subject.observers.has (Current)
observers = {}
owns = {}

end

Figure 5.3: The Observer pattern using SC annotations (underlined).

5.4. SEMANTIC COLLABORATION 91

and the corresponding admissibility condition (A3).

Observer pattern. The OBSERVER's invariant is admissible (De�nition 5.1)
because it ensures that subject is in subjects (A1) and that Current is in the
subject's observers (A2). Constructors normally wrap freshly allocated ob-
jects after setting up their state. Public routine update must be called when
the whole object structure is wrapped and makes sure that it is wrapped
again when the routine terminates. This speci�cation style is convenient for
public routines, as it allows clients to interact with the class while main-
taining objects in a consistent state, without having to explicitly discharge
any condition. Routines such as register and notify, with restricted visibility,
work instead with open objects and restore their invariants so that they can
be wrapped upon return. Since notify explicitly ensures inv, update does not
need the precise de�nition of the observer's invariant in order to wrap it (it
only needs to know enough to establish the precondition of notify). Thus the
same style of speci�cation would work if OBSERVER were an abstract class and
its subclasses maintained di�erent views of subject's value.

Let us illustrate the intuitive reason why an instance of SUBJECT cannot
invalidate any object observing its state. On the one hand, by the attribute
update rule, any change to a subject's state (such as assignment to value in
update) must be reconciled with its observers. On the other hand, any closed
concerned OBSERVER object must be contained in its subject's observers set: a
subject cannot surreptitiously remove anything from this set, since such a
change would require an attribute update, and thus, again, would have to be
reconciled with all current members of observers.

Note that we had to restate the �rst invariant clause of OBSERVER from
Fig. 5.1 in terms of observers instead of subscribers. In general, collaboration
invariants have to be expressed directly in terms of attributes of subjects and
cannot refer to their ownership domains. This is not a syntactic restriction
but follows from the fact that it is rarely possible to establish a subject/ob-
server relation with the whole domain (in this example, we would have to
require LIST to allow OBSERVER objects in its observers set). Sect. 5.4.7 discusses
an extension to SC that would allow such dependencies in invariants; note,
however, that this limitation can always be easily circumvented by introduc-
ing a ghost attribute in the subject that mirrors the requires state.

Iterator pattern. The main di�erences in the annotations of the It-
erator pattern occur in the COLLECTION class whose non-ghost state is, unlike
SUBJECT above, unaware of its observers. Routine remove_last has to unwrap its
observers according to the update rule. However, it has no way of restoring
their invariants (in fact, a collection is in general unaware even of the types
of the iterators operating on it). Therefore, it can only leave them in an

92 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

class COLLECTION [G]

count: INTEGER

make (capacity: INTEGER) --

Constructor

require

open

capacity ≥ 0
modify Current

do

create elements(1, capacity)
owns := { elements } ; wrap

ensure

elements.count = capacity

count = 0
observers = {}

end

remove_last

require

count >0
wrapped

all o ∈ observers : o.wrapped

modify Current, observers

do

unwrap ; unwrap_all (observers)

observers := {}
count := count − 1
wrap

ensure

count = old count − 1
wrapped

observers = {}
all o ∈ old observers : o.open

end

feature {ITERATOR}
elements: ARRAY [G]

invariant

0≤ count and count≤ elements.count
owns = { elements }
subjects = {}

end

class ITERATOR [G]

target: COLLECTION [G]
before, after: BOOLEAN

make (t: COLLECTION) -- Constructor

require

open and t.wrapped

modify Current, t

do

target := t

before := True

t.unwrap

t.observers := t.observers +
{ Current }

t.wrap

subjects := { t }

wrap

ensure

target = t

before and not after

wrapped

end

item: G
require

not (before or after)
wrapped and t.wrapped

do

Result := target.elements [index]
end

feature {NONE}
index: INTEGER

invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count
subjects = { target }

target.observers.has (Current)
observers = {} and owns = {}

end

Figure 5.4: The Iterator pattern using SC annotations (underlined).

5.4. SEMANTIC COLLABORATION 93

inconsistent state and remove them from the observers set. Public routines
of ITERATOR, such as item, normally operate on wrapped objects, and hence in
general cannot be called after some operations on the collection has disabled
its iterators. The only way out of this is if the client of collection and it-
erators can prove that a certain iterator object i_x was not in the modi�ed
collection's observers; this is possible if, for example, the client directly cre-
ated i_x. The fact that now clients are directly responsible for keeping track
of the observers set is germane to the iterator domain: iterators are meant to
be used locally by clients.

5.4.5 Default Annotations

The annotation patterns shown in Sect. 5.4.4 occur frequently in object-
oriented programs. To reduce the annotation burden in those cases, we
suggest the following defaults.

Pre- and postconditions: public procedures require and ensure that the
Current object, its observers, and routine arguments be wrapped.

Frames: procedures modify Current; functions modify nothing.

Invariants: Built-in ghost set attributes (such as owns) are invariably empty
if they are not mentioned in the programmer-written invariant.

Wrapping: public procedures start by unwrapping Current and terminate
after wrapping it back.

Built-in set manipulation: if a built-in ghost set attribute s is only men-
tioned in an invariant clause of the form s = expr, then s is considered
implicit ; correspondingly, every wrap of objects enclosing s will implic-
itly perform an assignment s:= expr.7

These defaults encourage considerate programming: unless explicitly spec-
i�ed otherwise, an object is always required to restore the consistency of its
observers at the end of a public routine. This is a useful property, since
the considerate paradigm promotes encapsulation and is convenient for the
clients. Nevertheless, the defaults are only optional suggestions that can be
overridden by providing explicit annotations; this ensures that they do not
tarnish the �exibility and semantic nature of our methodology.

7This is inspired by the default �static� treatment of owns sets in VCC.

94 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

5.4.6 Update guards

Update guards are used to distribute the burden of reasoning about attribute
updates between subjects and observers, depending on the intended collab-
oration scheme. At one extreme, if a guard(x.a := y, o) is identically False, the
burden is entirely on the subject, which must check that all observers are
open whenever a is updated; in contrast, the admissibility condition (A3)
holds vacuously for the observer o. At the other extreme, if a guard is iden-
tically True, the burden is entirely on the observer, which deals with (A3) as
a proof obligation that its invariant does not depend on a; in contrast, the
subject x can update a without particular constraints.

Another recurring choice for a guard is inv(o) ⇒ inv(o)H[x.a 7→y]. For its
�exibility, we chose this as the default guard of SC. Just like False, this
guard also does not burden the observer, but is more �exible at the other
end: upon updating, the subject can establish that each observer is either
open or its invariant is preserved. The subject can rely on the latter condition
if the observer's invariants are known, and ignore it otherwise.

When it comes to built-in ghost attributes, owns and subjects are guarded
with True, since other objects are not supposed to depend on them, while
observers has a more interesting guard, namely guard(x.observers := y, o) =
o ∈ y. This guard re�ects the way this attribute is commonly used in col-
laboration invariants, while leaving the subject with reasonable freedom to
manipulate it; for example, adding new observers to the set observers with-
out �notifying� the existing ones (this is used, in particular, in the register

routine of Fig. 5.3).

5.4.7 Extensions

Dependency on ownership domains. In the core SC methodology pre-
sented so far, an invariant of x can only depend on x and objects directly
contained in x.owns and x.subjects. Extending this dependency to the owner-
ship domain of x (that is, taking transitive closure of owns) does not present
any di�culty; but what about invariants that rely on the domain of a subject
s ∈ x.subjects? Allowing such invariants is desirable, since ownership-based
methodologies strive to make an object and its ownership domain indistin-
guishable for clients. Unfortunately, current rules of SC are unsound for such
invariants: it is easy to set up an example where an object o from the domain
of s is being modi�ed and is unaware of x, which is closed, thus threatening
to invalidate it.

One way to address this problem is to modify the built-in operations and
proof obligations of SC as follows. The main idea is to decouple the updates

5.4. SEMANTIC COLLABORATION 95

to closed from the updates owner, both of which are currently performed by
the wrap and unwrap operations. The new semantics of wrap and unwrap
is to only set the closed attribute, while owner manipulation is performed by
two new dedicated operation:

Freeing: frees all owned objects of x after its observers have been opened:

x.free_owns require ensure

x.open all o ∈ x.owns : o.wrapped

all y ∈ x.observers : y.open

all o ∈ x.owns : o.owner = x

Reclaiming: gives x the ownership over wrapped objects in x.owns:

x.reclaim_owns require ensure

x.open all o ∈ x.owns : o.owner = x

all o ∈ x.owns : o.wrapped

Wrapping additionally requires that owned objects of all subjects are re-
claimed:
x.wrap require ensure

x.open x.wrapped

x.inv

all y ∈ x.subjects + {x} :

all o ∈ y.owns : o.owner = y

In order to operate on an object o owned by s, one now ought to �rst
unwrap s, then unwrap all observers of s, and �nally call s.free_onws, which
makes o wrapped, and hence ready to be opened and modi�ed. Since closing
an observer of s would require o to be reclaimed (and thus not open or
wrapped), this approach maintains a global invariant that all observers of s
are open while o is open.

This �avor of SC is more congenial to ownership and has an additional
bene�t that the semantics of read clauses of logic functions can be made con-
sistent with the semantics of modify clauses of routines (in core SC, including
ownership domains into read frames of functions would e�ectively ban them
from invariants). Unfortunately, the proof obligations of this extension are
more complex, and hard to establish in practice: in particular, wrapping any
object requires reasoning about the ownership domains of its subjects. As a
result of the experimental evaluation of Sect. 5.5 we decided to stick to the
core SC and leave this extension to future work.

Inheritance. Inheritance poses additional challenges for invariant pro-
tocols, since the dynamic type of an object, and thus the precise de�nition of

96 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

its invariant, is rarely known. In SC, this issue arises when reasoning about
calls to wrap. Rather than imposing severe restrictions on how invariants can
be strengthened in descendants, we prefer to re-verify those inherited routines
that wrap the Current object to make sure they still properly re-establish the
invariant. We maintain that this approach achieves a reasonable trade-o�.

As a way to abstract from the invariant de�nition, routines may use the
built-in predicate inv explicitly in their contracts (see Fig. 5.3), which enables
wrapping objects without knowing their dynamic type. This observation gen-
eralizes to other logic functions, which can be rede�ned in descendants, sup-
porting speci�cations that are �exible yet strong enough. This approach to
inheritance is similar in spirit to abstract predicates in separation logic [103],
and has been used before in auto-active veri�ers (e.g. [117]).

Concurrency. When it comes to reasoning about invariants, sequential
and concurrent programs each have their distinctive challenges. In a sequen-
tial setting, one typically performs state updates in a series of steps that
temporarily break object consistency; this is acceptable since intermediate
states are not visible to other objects. A sequential invariant protocol must
adequately support such update schemes, while making sure that invariants
hold at �crucial� points. Concurrent invariant protocols deal with di�erent
schemes, and hence have di�erent goals. For this reason, we do not rec-
ommend extending SC to deal with concurrent programs; rather, it could
be combined with an invariant protocol for concurrent programs, as done in
VCC [29].

5.5 Experimental Evaluation

We arranged a collection of representative challenge problems involving inter-
object collaboration, and we speci�ed and veri�ed them using our SC method-
ology. This section presents the challenge problems (Sect. 5.5.1), and dis-
cusses their solutions using SC (Sect. 5.5.2), as well as other methodologies
(Sect. 5.5.3). See [110] for full versions of problem descriptions, together with
our solutions, and a web interface to the AutoProof veri�er.

5.5.1 Challenge Problems

Beside using it directly to evaluate SC, the collection of challenge problems
described in this section can be a benchmark for other invariant methodolo-
gies. The benchmark consists of six examples of varying degree of di�culty,
which capture the essence of various collaboration patterns often found in
object-oriented software. The emphasis is on non-hierarchical structures that

5.5. EXPERIMENTAL EVALUATION 97

maintain a global invariant.
We brie�y present the six problems in roughly increasing order of di�culty

in terms of the shape of references in the heap, state update patterns, and
challenges posed to preserving encapsulation.

subject

observer

observer

Observer [80, 102, 88] (see also SAVCBS '07 [109], and
Sect. 5.2). The invariants of the observer objects depend on
the state of the subject. Veri�cation must ensure that the
subject reports all its state changes to all observers, so that
their clients can always rely on a globally consistent state.
Additional challenge: combination with ownership (the sub-
ject keeps references to its observers in a collection, which is

a part of its representation).
Variants : a simpli�ed version where the number of observers is �xed

(thus collections of observers are not needed); a more complex version with
multiple observer classes related by inheritance, each class rede�ning the class
invariant and the implementation of notify.

collection

iterator

iterator

Iterator [80] (see also SAVCBS '06, and Sect. 5.2). Un-
like observers in the Observer pattern, the implementation of
a collection is not aware of the iterators operating on it. Spec-
i�cation must still be able to refer to the iterators attached
to the collection while avoiding global reasoning. Additional
challenge: we cannot rely on the implementation following
considerate programming (where objects must be in consis-

tent states at public call boundaries).
Variants : a more complex version where iterators modify the collection.

master

slave

slave

Master clock [11, 80]. The time stored by a master clock
can increase (public routine tick) or be set to zero (public
routine reset). The time stored locally by each slave clock
must never exceed the master's but need not be perfectly syn-
chronized. Therefore, when the master is reset, its slaves are
disabled until they synchronize (similar to iterators); when
the master increments the time, its slaves remain in a con-

sistent state without requiring synchronization. Additional challenges : tick's
frame does not include slaves; perform reasoning local to the master with
only partial knowledge of the slaves' invariants.

Variants : a version without reset (slaves cannot become inconsistent).

node rightleft

Doubly-linked list [77, 87]. The speci�cation ex-
presses the consistency of the left and right neighbors di-
rectly attached to each node. Veri�cation establishes that
updates local to a node (such as inserting or removing a
node next to it) preserve consistency. Unlike in the pre-

98 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

vious examples, the heap structure is recursive; the main challenge is thus
avoiding considering the list as a whole (such as to propagate the e�ects of
local changes).

Composite [121, 120, 70, 108], (see also
SAVCBS '08). A tree structure maintains consistency
between the values stored by parent and children nodes
(for example, the value of every node is the maximum
of its children's). Clients can add children anywhere
in the tree; therefore, ownership is unsuitable to model

this example. Two new challenges are that the node invariant depends on
an unbounded number of children; and that the e�ects of updates local to
a node (such as adding a child) may propagate up the whole tree involving
an unbounded number of nodes. Speci�cation deals with these unbounded-
size footprints; and veri�cation must also ensure that the propagation to
restore global consistency terminates. Clients of a tree can rely on a globally
consistent state while ignoring the tree structure.

Variations : a simpli�ed version with n-ary trees for �xed n (the number
of children is bounded); more complex versions where one can also remove
nodes or add whole subtrees.

PIP [121, 120, 108]. The Priority Inheritance Pro-
tocol [113] describes a compound whose nodes are more
loosely related than in the Composite pattern: each
node has a reference to at most one parent node, and
cycles are possible. Unlike in the Composite pattern,
the invariant of a node depends on the state of objects

not directly accessible in the heap (parents do not have references to their
children). New challenges derive from the possible presence of cycles, and
the need to add children that might already be connected to whole graphs;
specifying footprints and reasoning about termination of update operations
are trickier.

5.5.2 Results and Discussion

We speci�ed the six challenge problems using SC, and veri�ed the annotated
Ei�el programs with AutoProof. Tab. 5.1 shows various metrics about our
solutions: the size of each annotated program; the number of tokens of
executable code, requirements speci�cation (the given functional speci�ca-
tion to be veri�ed), and auxiliary annotations (speci�c to our methodology,
both with and without default annotations); the spec/exec overhead, i.e.,
(req + aux)/exec; and the veri�cation time in AutoProof. The overhead
is roughly between 1.5 (for Observer) and 6 (for PIP), which is comparable

5.5. EXPERIMENTAL EVALUATION 99

Table 5.1: The challenge problems speci�ed and veri�ed using SC.

size tokens (no defaults) tokens (defaults) time
problem (loc) exec req aux spec

exec
aux spec

exec
(sec.)

Observer 129 156 52 296 2.2 185 1.5 7
Iterator 177 168 176 315 2.9 247 2.5 7
Master clock 130 85 69 267 4.0 190 3.1 5
DLL 147 136 83 435 3.8 320 3.0 8
Composite 188 124 270 543 6.6 427 5.6 12
PIP 152 116 310 445 6.5 402 6.1 12
Total 923 785 960 2301 4.2 1771 3.5 50

with that of other veri�cation methodologies applied to similar problems (see
e.g. [57]). The default annotations of Sect. 5.4.5 reduce the overhead by a
factor of 1.3 on average.

The PIP example is perfectly possible using ghost code, contrary to what
is claimed elsewhere [121]. In our solution, every node includes a ghost
set children with all the child nodes (inaccessible in the non-ghost heap);
it is de�ned by the invariant clause parent 6= Void ⇒ Current ∈ parent.children,
which ensures that children contains every closed node n such that n.parent =
Current. Based on this, the fundamental consistency property is that the value

of each node is the maximum of the values of nodes in children (or a default
value for nodes without children), assuming maximum is the required relation
between parents and children.

The main challenge in Composite and PIP is reasoning about framing and
termination of the state updates that propagate along the graph structure.
For framing speci�cations, we use a ghost set ancestors with all the nodes
reachable following parent references. Proving termination in PIP requires
keeping track of all visited nodes and showing that the set of ancestors that
haven't yet been visited is strictly shrinking.

5.5.3 Comparison with Existing Approaches

We outline a comparison with existing approaches (focusing on those dis-
cussed in Sect. 5.3) on our six challenge problems. Tab. 5.2 reports how each
methodology fares on each challenge problem: − for �methodology not ap-
plicable�, + for �applicable�, and ⊕ for �applicable and used to demonstrate
the methodology when introduced�.

Only SC is applicable to all the challenges, and other methodologies of-
ten have other limitations (notes in Tab. 5.2). Most approaches cannot deal

100 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

Table 5.2: Comparison of invariant protocols on the challenge problems.

visible-state Spec# methodologies
Coopera-
tion [88]

Conside-
rate [120]

Visibility-
based [77]

Friends [11] History [80] SC

Observer ⊕ + + ⊕ ⊕d ⊕
Iterator −a −a + + ⊕d ⊕
Master clock −a −a + ⊕ ⊕d ⊕
DLL + + ⊕ + +d ⊕
Composite −b ⊕c −b −b −b ⊕
PIP −b ⊕c −b −b −b ⊕
aOnly considerate programming bOnly bounded set of reachable subjects
cNo framing speci�cation dNo invariant stability

with unbounded sets of subjects, and hence are inapplicable to Composite
and PIP. The methodology of [120] is an exception as it allows set compre-
hensions in invariants; however, it lacks an implementation and does not
discuss framing, which constitutes a major challenge in Composite and PIP.
Both methodologies [88, 120] based on visible-state semantics are inapplica-
ble to implementations which do not follow considerate programming; they
also lack support for hierarchical object dependencies, and thus cannot verify
implementations that rely on library data structures (e.g., Fig. 5.1 and 5.2).

Another important point of comparison is the level of coupling between
collaborating classes, which we can illustrate using the Master clock example.
In [77], class MASTER requires complete knowledge of the invariant of class CLOCK,
which breaks information hiding (in particular, MASTER has to be re-veri�ed
when the invariant of CLOCK changes). The update guards of [11] can be
used to declare that slaves need not be noti�ed as long their master's time
is increased; this provides abstraction over the slave clock's invariant, but
class MASTER still depends on class CLOCK�where the update guard is de�ned.
In general, the syntactic rules of [11] require that subject classes declare all
potential observer classes as �friends�. In SC, update guards are de�ned in
subject classes; thus we can prove that tick maintains the invariants of all
observers without knowing their type. Among the other approaches, only
history invariants [80] support the same level of decoupling, but they cannot
preserve stability with the reset routine.

Reasoning without invariants. Other, more fundamental veri�cation
methodologies not based on invariants, such as dynamic frames [60] and
separation logic [107], can fully handle all the six benchmark problems. The
generality they achieve is, however, not without costs, as one loses stability of

5.6. SUMMARY 101

consistency properties (e.g., SUBJECT is not required to notify all its observers).
The �rst automatic veri�cation of the PIP example was described in [108]:
the solution relies on reusable speci�cation elements called stereotypes to
achieve low annotation overhead, however the reported veri�cation times are
signi�cantly higher than in our experiments.

SAVCBS workshops solutions. SC also fares favorably compared
against the solutions submitted to the SAVCBS workshops [109] challenges
(Iterator, Observer, and Composite). Considering only solutions for general-
purpose languages and targeting complete requirement speci�cations, there
are two solutions to the Iterator problem and two to the Composite problem.
One solution to the Iterator uses JML and ESC/Java2; the collaborating
parts of the invariants are, however, described by pre- and postconditions.
One solution to the Composite also uses JML; it is hard to compare it to our
solution as it is based on model programs and proves invariant preservation
only for routines that re�ne the model program used as speci�cation. The
other solution to the Composite [57] uses separation logic and VeriFast; the
speci�cation overhead for clients is higher than in our solution, but there
is no ghost state in the nodes (which otherwise would have had to be up-
dated during global modi�cations), thus it has advantages and disadvantages
compared to our solution. The second solution to the Iterator problem [65]
uses higher-order separation logic, and thus is not amenable to automated
reasoning.

5.6 Summary

This chapter presented semantic collaboration: a new methodology for spec-
ifying and verifying invariants of arbitrary object structures. Compared to
existing invariant protocols, it o�ers considerable �exibility and conceptual
simplicity, as it does not syntactically restrict the form of invariants. We
implemented semantic collaboration as part of the AutoProof Ei�el program
veri�er. Our experiments with six challenge problems demonstrate the wide
applicability of the methodology.

102 CHAPTER 5. FLEXIBLE INVARIANTS FOR COMPLEX OBJECT STRUCTURES

Chapter 6

Verifying Reusable

Components

In the previous chapter we presented a general veri�cation methodology for
object-oriented programs, which can support a variety of speci�cation styles.
This chapter extends the methodology with support for model-based con-
tracts: a particular speci�cation method introduced in Chapter 3.

6.1 Introduction

Data abstraction is crucial for making reusable components truly reusable:
abstract speci�cations provide clients with a simpler, more useful interface,
and shield them from the evolution of the component's implementation.

Techniques presented in the previous chapter provide the basis of our
veri�cation methodology, but for the most part ignore data abstraction; this
chapter extends the methodology with support for abstraction mechanisms,
based on models. The ultimate goal is being able to verify interface speci�-
cations in the form of model-based contracts, proposed in Chapter 3.

Supporting model-based speci�cations in a program veri�er involves three
major challenges. First, such speci�cations rely on model classes and their
operations to describe component's behavior at an abstract level; those op-
erations need to be assigned meaning in the underlying logic of the veri�er.
Second, model-based contracts use model queries to map concrete program
states to abstract values; a veri�cation methodology has to encode this map-
ping, called the abstraction function, in a sound and modular way, and �nd
the right trade-o� between ease of automated reasoning and annotation over-
head. Third, frame speci�cations utilize models to express that only some

104 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

part of an object's state is modi�ed, without revealing its internal represen-
tation; such frame speci�cations need an interpretation is terms of concrete
heap locations.

Once again, Ei�elBase2 (see Chapter 2) serves as a testbed for the tech-
niques proposed in this chapter. Verifying a realistic library comes with its
own set of challenges, such as, for example, a nontrivial inheritance hierarchy,
where models can be reused, replaced, and combined.

We integrated the support for model-based contracts into AutoProof, an
auto-active [76] veri�er for functional properties of programs written in Eif-
fel. AutoProof checks that a program adheres to a speci�cation in the form
of inline assertions, routine contracts (pre- and post-conditions, and frame
speci�cations), and class invariants; is also proves termination of loops and
recursion using variant functions. Advanced speci�cation constructs of Au-
toProof include pure routines and logic functions, which can be used in spec-
i�cations, ghost variables and code, and frame speci�cations for loops. Au-
toProof works by generating veri�cation conditions from the program and its
speci�cation, via the Boogie intermediate language [8, 73]; these conditions
are discharged by a reasoning engine of choice, usually Z3 [35]. For more
information on AutoProof we refer the reader to the project website [5] and
previous work [128, 129, 126].

After having enhanced AutoProof with support for models, we used it
to verify the core of the Ei�elBase2 library, which constitutes the main con-
tribution of this part of the work. Other contributions include a practical
approach to adding mathematical types to a program veri�er by means of
model classes, and a �exible encoding of model-based frame speci�cations
with support for model adaptation due to inheritance.

The rest of the chapter is structured as follows. Sect. 6.2 gives an ex-
ample of model-based speci�cations that we aim to verify; the example is
used to illustrate the methodology throughout the chapter. Sect. 6.3 details
our solutions to the three major challenges outlined above. The experimen-
tal evaluation of the techniques on the Ei�elBase2 library is presented in
Sect. 6.4, while Sect. 6.5 reviews related work and Sect. 6.6 concludes.

6.2 A Motivating Example

Fig. 6.1 illustrates the kind of model-based speci�cations we aim to verify,
using a simpli�ed example from Ei�elBase2. In the example, a deferred class
CONTAINER declares a bag of elements as its model; the container's interface
consists of two queries: count (for the number of elements) and is_empty, and
one command: wipe_out, which empties the container. Class STACK inherits

6.2. A MOTIVATING EXAMPLE 105

deferred class CONTAINER [G]
model bag

bag: ghost MML_BAG [G]

count: INTEGER
deferred

ensure

Result = bag.count
end

is_empty: BOOLEAN
do

Result := count = 0
ensure

Result = bag.is_empty
end

wipe_out

modify model [bag] Current

deferred

ensure

bag.is_empty
end

end

class MML_SEQUENCE [G]
count: INTEGER
. . .

last: G
require count >0
. . .

extended (x: G): MML_SEQUENCE [G]
alias "&"
. . .

to_bag: MML_BAG [G]
. . .

end

class STACK

inherit CONTAINER

model sequence

list: LIST [G]
sequence: ghost MML_SEQUENCE [G]

item: G
require

not is_empty

do

Result := list.item (count)
ensure

Result = sequence.last
end

count: INTEGER
do

Result := list.count
end

push (v: G)
modify model [sequence] Current

do

list.extend_back (v)
ensure

sequence = old sequence & v

end

. . .

wipe_out

do . . .
end

invariant

bag = sequence.to_bag
list 6= Void

owns = {list}
sequence = list.sequence

end

Figure 6.1: Excerpt from class STACK, which inherits from CONTAINER and uses a
LIST as its internal representation. The speci�cation of STACK uses the model
class MML_SEQUENCE, also shown in the listing, to refer to the mathematical
sequence of stack elements.

106 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

from CONTAINER and replaces its model with a sequence of elements (hence the
linking invariant bag = sequence.to_bag); it relies on an instance of class LIST

as the concrete internal representation; its interface additionally includes
a query item (which returns the top element) and a command push (which
pushes a given value on top).

Although small, this example showcases various features of model-based
contracts that a veri�cation methodology has to support. First, the veri�er
needs to know how to interpret instances of MML_BAG and MML_SEQUENCE, and
operations over those instances. Second, the routines of class STACK are spec-
i�ed in terms of the abstract state (the sequence), and implemented in terms
of the concrete state (the list); veri�cation of such routines has to rely on
the abstraction function, expressed in the last class invariant clause. Finally,
frame speci�cations in the example are expressed in terms of the abstract
state (denoted by modify model). We would like to let push modify the list,
without having to mention it in the frame. Also, the frame speci�cation of
wipe_out in class CONTAINER is expressed in terms of the model query bag, which
is replaced in the child class. We would like to allow the implementation of
wipe_out in STACK to modify sequence, even though it was not declared as part
of the frame in the original version.

6.3 Veri�cation Methodology for Model-Based

Contracts

This section presents our solutions to the challenges posed by model-based
contracts, and illustrates them using the STACK example from Fig. 6.1.

6.3.1 Encoding of Model Classes

Runtime checking of model-based contract requires expressing the semantics
of model classes in a language understood by the compiler, that is, giving
them implementations. On the other hand, using model classes in deductive
proofs requires explaining their semantics to the proof engine (in our case,
Boogie). An e�ective way to achieve this [70, 33] is to map model classes
directly to theories in the underlying logic of the veri�er. In Boogie, a theory
is a collection of types and uninterpreted functions operating on those types,
which are axiomatized in �rst order logic.

State-of-the-art auto-active veri�ers, such as Dafny [74], often include a
small, prede�ned set of mathematical types and operations. This approach
is easy to implement, since the syntax and semantics of all mathematical
operations can be hard-coded. The goal of AutoProof is to support the

6.3. VERIFICATION METHODOLOGY FOR MODEL-BASED CONTRACTS 107

class MML_SEQUENCE [G]
inherit ITERABLE [G]
maps_to Seq

theory "sequence.bpl"

typed_sets Seq#Range

count: INTEGER
maps_to: Seq#Length

last: G
require count >0
. . .

range: MML_SET [G]
. . .

extended (x: G): MML_SEQUENCE [G]
alias "&"
. . .

to_bag: MML_BAG [G]
. . .

shorter_equal (s: MML_SEQUENCE [G]): BOOLEAN
alias "≤ "
. . .

new_cursor: CURSOR [G]
maps_to Seq#Range

end

Figure 6.2: Model class MML_SEQUENCE equipped with AutoProof logic class
annotations. Features with no maps_to clause use the default naming scheme:
for example, last maps to Seq#Last.

whole Mathematical Model Library (MML, see Chapter 2), which is more
diverse than a typical set of built-in mathematical types: after all, the design
of MML was driven by the Ei�elBase2 speci�cation e�ort. In addition, we
would like to be able to add new types and operations relatively easily.

To address those concerns we extended AutoProof with logic classes,
whose instances and operations are translated into Boogie in a special way.
To declare a logic class, it is enough to add a maps_to clause to the class de�ni-
tion,1 specifying the Boogie type, to which instances of this class will belong.
Each constructor and function of the class can be mapped to a particular
Boogie function in a similar way, using a maps_to clause; in the absence of
such a clause, the Boogie function name is derived from the Ei�el feature
name. AutoProof's maps_to clauses are inspired by the work of Darvas and
Müller [33], who proposed a similar construct for JML. Fig. 6.2 gives an
examples of using maps_to clauses to de�ne the semantics of MML_SEQUENCE.

Boogie types and functions used in a logic class are encoded manually in
one or more separate �les. The theory clause (see an example in Fig. 6.2) al-
lows one to specify Boogie �les to be included into the translation generated
by AutoProof whenever the corresponding logic class is used in an Ei�el pro-

1Recall that in the actual code we use Ei�el's note meta-annotation to introduce new
speci�cation constructs.

108 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

// Sequence type

type Seq T;

// Sequence length

function Seq#Length<T>(Seq T) : int;

// Element at a given index

function Seq#Item<T>(Seq T, int) : T;

// Last element

function Seq#Last<T>(q : Seq T) : T

{ Seq#Item(q, Seq#Length(q)) }

// Set of values

function Seq#Range<T>(Seq T) : Set T;
axiom (∀<T> q : Seq T, o : T • Seq#Has(q, o) ⇐⇒Seq#Range(q)[o]);

// Sequence extended with x at the end

function Seq#Extended<T>(s : Seq T, val : T) : Seq T;
axiom (∀<T> s : Seq T, v : T •
Seq#Length(Seq#Extended(s,v)) =1 + Seq#Length(s));

axiom (∀<T> s : Seq T, i : int, v : T •
(i =Seq#Length(s) + 1 =⇒Seq#Item(Seq#Extended(s,v), i) =v) ∧
(i ≤Seq#Length(s) =⇒Seq#Item(Seq#Extended(s,v), i) =Seq#Item(s, i)));

// Sequence converted to a bag

function Seq#ToBag<T>(Seq T) : Bag T;
axiom (∀<T> • Seq#ToBag(Seq#Empty() : Seq T) =Bag#Empty() : Bag T);
axiom (∀<T> s : Seq T, v : T •
Seq#ToBag(Seq#Extended(s, v)) =Bag#Extended(Seq#ToBag(s), v));

// Is |q0| ≤|q1|?
function Seq#LessEqual<T>(q0 : Seq T, q1 : Seq T) : bool

{ Seq#Length(q0) ≤Seq#Length(q1) }

Figure 6.3: An excerpt from sequence.bpl, which contains a manual Boogie
encoding of MML_SEQUENCE.

gram. Fig. 6.3 shows an extract from a Boogie sequence theory sequence.bpl,
which contains custom translations of MML_SEQUENCE operations.

AutoProof also implements a number of advanced features, which aim at
making custom logic classes as expressive and convenient as built-in mathe-
matical types:

� Quanti�ers. Ei�el's iteration mechanism makes it possible to use an
arbitrary object s in a loop expression, such as all x ∈ s : B(x), as long as

6.3. VERIFICATION METHODOLOGY FOR MODEL-BASED CONTRACTS 109

the class of s inherits from ITERABLE and implements a feature new_cursor.
AutoProof can translate such loop expressions into quanti�cation if the
class of s is logical and its new_cursor feature is mapped to a set-valued
function (whose result is then taken as the quanti�cation domain).
For example, the declaration in Fig. 6.2 enables quanti�cation over
sequences, translated into quanti�cation over the elements of a sequence
(its range).

� Ordering. By convention, a feature with a ≤ alias (such as shorter_equal
in Fig. 6.2) de�nes a well-founded order on the values of a logic class,
which makes it possible to use them as variants in termination proofs.

� Element types. It is a common technique [73] to map all reference
types of a source language to a single Boogie type, while encoding
more precise type information in automatically generated predicates.
Since many logic classes represent mathematical �collections� of ele-
ments, it is often necessary to encode the fact that all elements of such
collection belong to a certain type. For example, an Ei�el declaration
s: MML_SEQUENCE [PERSON] should give rise to an axiom stating that all ele-
ments of s are of type PERSON (or its descendants). The typed_sets clause
achieves exactly that: for every generic parameter G of a logic class,
it de�nes a set-valued function that returns the set of all objects of
type G �stored� in an instance of the class. Fig. 6.2 de�nes the required
property for sequences; as another example, class MML_MAP [K, V], with
two generic parameters, declares two typed sets: corresponding to the
domain and the range of a map.

� Constraints. Sometimes a logic class imposes constraints on its val-
ues, which are guaranteed to hold whenever a value of the class is cho-
sen nondeterministically. AutoProof supports such constraints through
where clauses. For example, class MML_BAG is equipped with a where clause
stating that the number of occurrences of each element is positive.

� Boogie maps. Map types are built-in Boogie types, useful in encoding
various mathematical constructs. It is often desirable to map a logic
class to a map type, rather than to an uninterpreted, user-de�ned type.
If one of the features of a logic class is mapped to brackets (maps_to "[]"),
AutoProof associates this feature with map access in Boogie, and infers
the map type from its signature. For example, in MML_SET [G] function
has (x: G): BOOLEAN is mapped to brackets; thus the logic class is translated
as a Boogie map from G to Booleans.

110 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

To our knowledge, AutoProof is the only auto-active veri�er with sup-
port for extensible mathematical types that enjoy the same level of language
integration as built-in types in other veri�ers.

6.3.2 Encoding of Model Queries

The interface speci�cation methodology of Chapter 3 does not detail how the
abstract state of a class is related to its concrete state. For testing purposes
(Chapter 4), we had to decide between attribute-based and function-based
encoding of speci�cation-only model queries, based on the speci�cation over-
head and runtime performance of the two approaches. For deductive veri�-
cation, however, the choice of encoding has di�erent implications.

One approach to representing abstract state in veri�cation is based on
model variables (also called model �elds) [24, 68, 72, 91]. Programs cannot
assign directly to model variables; instead their semantics is de�ned by an
abstraction function, i.e. a mapping from the concrete state. In fact, the tra-
ditional treatment of model variables is much closer to that of argument-less
functions, rather than attributes, with the only di�erence that model vari-
ables need not have a functional de�nition and can be speci�ed relationally.

This traditional approach is known to have soundness and modularity
issues [78]. First, relational speci�cations of model variables can be unsatis-
�able; even if an abstraction function is well-de�ned whenever the concrete
state is consistent, it may be unde�ned in intermediate states, where the ob-
ject invariant is temporarily violated. Second, translating frames expressed
in terms of model variables into sets of heap locations is far from straightfor-
ward (for example, in JML they are interpreted using data groups [24]). The
reasoning is complicated by the fact that any update to the concrete state
can have an instant e�ect on the values of model variables elsewhere in the
system, which is detrimental to modularity.

One �nal concern involves verifying postconditions expressed in terms
of model variables. Veri�cation of nontrivial routines (for example, those
involving loops) often requires introducing auxiliary ghost variables to rep-
resent local or intermediate abstract state; thus, the main bene�t of model
variables compared to ordinary ghost variables�no bookkeeping�does not
make a di�erence for such routines.

To preserve simplicity and avoid issues discussed above, AutoProof en-
codes model queries as regular (possibly, ghost) attributes. The relation
between the abstract and concrete states of a class is given in the class
invariant�see the last invariant clause of Fig. 6.1 for an example. Since our
methodology only requires invariants to hold for closed objects (see Chap-
ter 5), this treatment automatically supports partial abstraction functions,

6.3. VERIFICATION METHODOLOGY FOR MODEL-BASED CONTRACTS 111

while giving routines freedom to modify the abstract and the concrete states
of an object independently when the object is open. Unsatis�able constraints
on abstract state are easily detected, since they would prevent wrapping the
object. The meaning of model queries in frame speci�cations also becomes
straightforward: we discuss it in detail in Sect. 6.3.3.

In order to reduce the bookkeeping overhead, particularly noticeable for
unused inherited model queries, we propose to reuse the implicit attribute
mechanism, which is already implemented in AutoProof for built-in ghost
sets owns, subjects and observers, and was described in Sect. 5.4.5. The idea is
very simple and inspired by VCC's �static owns�: if a model query m is men-
tioned in an invariant clause of the form m = expr, then every wrap of objects
enclosing m will implicitly perform an assignment m:= expr2. The order of
assignments to model queries within the same class is usually irrelevant, since
they are supposed to express independent dimensions of the abstract state;
unused inherited model queries are updated at the end, re�ecting the typical
structure of linking invariants. For example, routines push and wipe_out of
class STACK in Fig. 6.1 need not explicitly update the model queries sequence

and bag; instead, the following instructions are implicitly executed at the end
of their bodies:

sequence := list.sequence
bag := sequence.to_bag
wrap

Note that, like all AutoProof defaults, this behavior can be easily overridden
when inapplicable.

This new mechanism is a conservative extension of its original version,
since the built-in ghost attributes of semantic collaboration (closed, owns,
owner, subjects, and observers) are automatically added to the list of model
queries of every class.

We believe that implicit attributes successfully address the excess anno-
tation overhead of ghost state in simple cases, while retaining conceptual
simplicity and �exibility required in more sophisticated scenarios.

6.3.3 Abstract Framing

The modify and read clauses of semantic collaboration (Sect. 5.4.1) support
frame de�nitions in terms of whole objects or individual (concrete) locations.
At the whole-object level, they provide su�cient abstraction mechanisms,
such as set expressions and ownership domains; at the same time, they lack
the means to describe a part of the object state without revealing its concrete

2Guarded by the condition that m is writable.

112 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

representation.
In model-based speci�cations, it is natural to restrict a frame to particular

model queries. To this end, we introduce a new kind of write and read frames,
called abstract frames and speci�ed through the keywords modify model and
read model, respectively (see, for example, modify clauses of wipe_out and push

in Fig. 6.1).
A clause modify model [m1, . . . ,mn] s in the speci�cation of a routine r gives

r permission to modify a location o �a only in one of two cases: (1) o ∈ s and
either a is one of m1, . . . ,mn, or a is not among the model queries declared in
the static type of o, or (2) o /∈ s but o belongs to the ownership domain of one
of o′ ∈ s. Case 1 is speci�c for abstract frames, while case 2 expresses closure
under ownership domains and is common for both standard and abstract
modify clauses. The semantics of read model is de�ned in a similar way, except
case 2 does not apply (for a discussion see Sect. 5.4.7). As before, in place
of a set expression s we allow individual objects, as well as lists containing
objects and sets.

The modify model construct achieves the desired data abstraction: routines
are allowed to update the concrete state without revealing it in speci�cations,
while clients do not get any guarantees regarding the concrete state, which
enforces information hiding. Note that abstract frames constitute an incre-
mental change to the existing framing methodology: they rely on the same
encoding of frames (as sets of locations), and the same proof obligations and
frame axioms; the only di�erence is in the way modify (read) clauses are
translated into write (read) sets.

Since abstract state only makes sense for closed objects, and it is im-
possible to modify an object without unwrapping it, every useful modify model

clause has to include the model query closed. To reduce annotation overhead,
AutoProof implicitly adds this attribute to all abstract write frames. For ex-
ample, routine push in Fig. 6.1 is allowed to unwrap Current�which happens
implicitly at the beginning of its body�because its frame speci�cation is
automatically expanded into modify model [sequence, closed] Current. (It is also
allowed to modify any attribute of the list object, since it is contained in
the ownership domain of Current at the entry to the routine.)

Abstract Framing and Inheritance

As we have seen in Chapter 3, and again in the motivating example of
Sect. 6.2, models can change with inheritance. When a class B inherits
from A, it de�nes its set of model queries mq(B) from scratch, which can
lead to reusing A's model queries, adding new model queries (to express new
dimensions of the abstract state), replacing A's model queries (to express ex-

6.3. VERIFICATION METHODOLOGY FOR MODEL-BASED CONTRACTS 113

isting dimensions in a di�erent way), or even abandoning some of A's model
queries, when a dimension becomes redundant. For an abstract frame of a
routine r declared in class A, this raises a question: in which context should
it be interpreted when reasoning about class B? An interpretation in the
context of A would express the e�ect of r in terms of A's model rather than
B's model, which is not very useful for clients of B. On the other hand, if
we choose to translate the abstract frame speci�cation into a set of locations
di�erently in A and B, according to the substitutability principle, we have
to make sure that B's interpretation is a subset of A's: otherwise the frame
axiom A's clients rely on is unsound. To sum up, the challenge is to come up
with an interpretation of inherited abstract frames that is sound yet useful,
and does not incur a high annotation overhead in common cases.

Coming back to the motivating example of Fig. 6.1, class STACK reuses
the built-in model queries of CONTAINER (closed, owns, etc.), and replaces its
remaining model query bag with sequence (so far, the fact that bag is replaced
rather than abandoned is not re�ected in the speci�cation). Interpreting the
modify clause of wipe_out in the context of CONTAINER gives it permission to
modify all attributes of Current that are not among CONTAINER's model queries,
and thus it does not give the clients of STACK any guarantees about its new
model queries.

To support the desired semantics of abstract frames, we introduce the
notion of �at model queries of a class C, fmq(C), which include model queries
declared in C and all its ancestors: fmq(C) = mq(C)∪

⋃
P∈parents(C) fmq(P).

By de�nition, the set of �at model queries can only grow with inheritance:
fmq(A) ⊆ fmq(B) whenever B inherits from A.

Next, we re�ne case 1 in the above de�nition of modify model [m1, . . . ,mn] s
as follows: o � a can be modi�ed if o ∈ s and either a is one of m1, . . . ,mn, or
a is not among the �at model queries declared in the static type of o. Now,
instead of interpreting the frame speci�cation in the context of a parent class
A, where it is written, we can interpret it in the child class B, where it is
used; in particular, if o is Current, its static type inside B is B, and thus
the interpretation of the abstract frame automatically shrinks, excluding all
newly introduced model queries of B. This semantics of abstract frames is
consistent with subtyping, and works well when a child class introduces in-
dependent model queries; unfortunately, it is overly restrictive when parent's
model queries are replaced. For example, this semantics would prevent the
version of wipe_out in STACK from modifying sequence.

To address this problem, AutoProof allows additional modify model clauses
in routine rede�nitions, with the e�ect of adding new locations to the inher-
ited frame. The soundness requirement gives rise to a proof obligation that
the new set of locations be a subset of the original frame, as seen by the

114 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

parent. E�ectively, this allows the child class to prevent the inherited frame
from shrinking �too much�, while still abiding by the promise given to the
clients of the parent. In line with the the rest of the methodology, the check
is semantic, which o�ers maximum �exibility.

As an illustration of this mechanism, we can extend the inherited frame of
wipe_out in class STACK by adding a clause modify model [sequence] Current. This
will allow the implementation of wipe_out to modify sequence, while generat-
ing a proof obligation that Current � sequence is contained in the write set of
CONTAINER's wipe_out (which is true, since sequence /∈ fmq(CONTAINER)).

To further reduce the annotation overhead in a common case of replacing
parent's model query, AutoProof provides the following shortcut: annotating
a child's model query m with replace m′ will automatically add m to all
inherited abstract frames that mention m′ (even if the enclosing routine is
not rede�ned). The soundness proof obligation in this case is reduced to a
simple static check that m /∈ fmq(P), for any parent class P , which implies
thatm could not be excluded by any inherited abstract frame. In terms of our
motivating example, it is enough to equip sequence with a clause replace bag

to achieve the desired framing for routine wipe_out.
As a side-e�ect of abstract framing, it is not su�cient anymore to re-verify

an inherited routine r only if it wraps the Current object, since r might call
another routine s, which has been rede�ned and given a larger frame. This
issue can be avoided by abandoning arbitrary frame rede�nitions in favor of
the replace mechanism; this, however, goes against the semantic nature of the
rest of the veri�cation methodology. At the moment, AutoProof re-veri�es
all inherited routines, which seems to work reasonably well in practice.

6.4 Experimental Evaluation

We added the support for models�most notably, abstract framing�to Au-
toProof, and used it to verify the core of the Ei�elBase2 container library
(see Chapter 2). For each veri�ed class of Ei�elBase2, in addition to the in-
terface speci�cations written earlier, we had to provide auxiliary annotations
connecting the class model to its concrete state, and describing object struc-
tures according to the semantic collaboration methodology. The annotated
source code is available from the verified directory in the repository [40].

The library veri�cation e�ort is still ongoing. To date, 17 out of the 61
container library classes (28%) have been veri�ed. These numbers include
widely used data structures, such as LINKED_LIST, together with their iterators,
as well as various deferred classes at top levels of abstraction.

For each of the veri�ed classes, Tab. 6.1 lists its total size; the num-

6.4. EXPERIMENTAL EVALUATION 115

Table 6.1: Ei�elBase2 veri�cation results.

Size Tokens Routines Time
Class LOC Exec Spec spec

exec
Exec Spec (sec)

CONTAINER 136 140 294 2.1 3 1 4.6
INPUT_STREAM 74 49 157 3.2 1 0 3.8
OUTPUT_STREAM 102 111 397 3.6 2 0 4.4
ITERATOR 286 212 723 3.4 5 0 5.6
MAP 74 72 168 2.3 3 1 5.0
MAP_ITERATOR 57 54 157 2.9 5 0 5.9
SEQUENCE 241 224 905 4.0 11 2 8.5
SEQUENCE_ITERATOR 54 95 47 0.5 7 0 6.9
MUTABLE_SEQUENCE 239 352 1'169 3.3 19 0 19.8
IO_ITERATOR 67 54 169 3.1 9 0 8.9
MUTABLE_SEQUENCE_ITERATOR 44 54 47 0.9 9 2 11.8
LIST 418 347 1'719 5.0 22 5 57.6
LIST_ITERATOR 133 80 745 9.3 10 0 13.7
CELL 27 32 16 0.5 1 0 4.6
LINKABLE 35 46 28 0.6 2 0 5.5
LINKED_LIST 734 970 2'890 3.0 38 11 210.1
LINKED_LIST_ITERATOR 574 558 1'507 2.7 34 1 114.5
Total 3'295 3'450 11'138 3.2 181 23 491.2

ber of tokens in executable code and speci�cations, and the annotation
overhead as their ratio; the number of executable and speci�cation rou-
tines veri�ed; and the veri�cation time in AutoProof. Speci�cation routines
are logic functions, lemma procedures, and procedures added speci�cally for
modifying ghost state. Since AutoProof re-veri�es inherited features, the
routine count and the veri�cations times correspond to ��attened� versions
of classes.

The average annotation overhead is 3.2, which is consistent with our pre-
vious experience with AutoProof (see Chapter 5). The highest overhead
corresponds to deferred classes with complex speci�cations and little or no
executable code (such as LIST and LIST_ITERATOR). This, however, pays o� in
their descendants (such as LINKED_LIST and LINKED_LIST_ITERATOR), which pro-
vide the routine implementations, while reusing the inherited speci�cation
to a large extent; the payo� is particularly signi�cant if a deferred class
has multiple implementations. Our speci�cations make extensive use of the
ownership features of the invariant methodology, and rely on its collabora-
tion features to implement iterators. Verifying all 17 classes with AutoProof
takes under 9 minutes.

The main limitation of the e�ort at the moment is due to insu�cient
support for agents in AutoProof, which hinders the veri�cation of higher-
order routines, as well as classes that rely on agents to encode equivalence

116 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

and order relations on their elements (instead, we verify simpli�ed versions
of such classes without agents). Integrating complete support for agents
into AutoProof and verifying the corresponding parts of Ei�elBase2 are both
parts of future work.

6.5 Related Work

This section reviews previous work in three areas, corresponding to the three
challenges addressed in this chapter: encoding of model classes, encoding of
model queries, and abstraction techniques for framing.

Model classes. The technique of mapping model classes directly to
theories of the underlying reasoning engine was pioneered in JML [23, 69,
70]. Darvas and Müller [33] propose a �exible notation for specifying such
mappings inside model classes. Their notation inspired AutoProof's maps_to

clauses, but, to our knowledge, it was not implemented in an auto-active veri-
�er and did not target tight integration of model classes into the speci�cation
language, which is a contribution of the present work.

De�ning semantics of model classes is listed among the speci�cation chal-
lenges in [70]. One direction of previous work explores the relation between
the representation of model classes in the source language and their encod-
ing in the reasoning engine. For example, the technique by Darvas and
Müller [33, 34] allows one to prove that the encoding of a model class is
consistent with its contracts. The present work is not concerned with con-
tracts of model classes, and considers it acceptable to relay their semantics to
programmers informally. A more pressing issue is verifying that the imple-
mentation of a model class, used for runtime checking, is consistent with its
Boogie encoding. Apart from ensuring that static and dynamic veri�cation
techniques always produce the same results, this might uncover unsound ax-
ioms in our Boogie theories (in contrast, Darvas and Müller assume that the
background theories are consistent). We leave veri�cation of model classes
to future work.

Model queries. A lot of related work studies the semantics of model
variables (or model �elds)�a speci�cation construct present in JML [21, 24]
and other notations [72, 91]. A model variable has the appearance of a
variable to clients, but its value is de�ned by a constraint (for example,
using JML's represents clause), and need not be explicitly updated.

Early veri�cation techniques for model variables [72, 17] su�ered from
a number of soundness and modularity issues, mentioned in Sect. 6.3.2.
Leino and Müller [78] propose an approach that addresses those issues in
the context of the Boogie methodology (see Sect. 5.3) by encoding model

6.5. RELATED WORK 117

variables as attributes and automatically updating them whenever the en-
closing object is being wrapped, to avoid bookkeeping. In order to detect
unsatis�able constraints, they require the reasoning engine to come up with
a concrete solution, which unfortunately is not practical for nontrivial con-
straints. The present work encodes model queries as regular attributes, and
uses a simple heuristic to reduce the bookkeeping overhead in simple cases,
without jeopardizing automated reasoning in general. As an additional ben-
e�t, our straightforward encoding does not require any special syntax (such
as represents clauses) or admissibility rules; in particular, the de�nition of a
valid model variable constraint proposed in [78] is subsumed by our invariant
admissibility.

Abstract Framing. Abstraction techniques for specifying heap topolo-
gies and frames are the focus of a whole area of veri�cation research; they
appear as a speci�cations challenge in [70], while the most prominent exist-
ing solutions are surveyed in detail in [50]. One family of solutions, which
includes dynamic frames [60, 74] and region logic [6], represents frames ex-
plicitly, using speci�cation expressions of type �set of objects� or �set of loca-
tions�; in this case, regular abstraction mechanisms, such as, logic functions,
pure methods, or ghost variables maybe be used to make frame represen-
tations abstract. Another family of solutions, represented by separation
logic [107, 99] and implicit dynamic frames [116, 79], uses specialized log-
ics, where each speci�cation expression is implicitly associated with a set of
locations; abstraction is achieved through logic functions (in particular, pred-
icates). Finally, ownership-based techniques o�er a specialized abstraction
mechanism for frames: closure under ownership domains (see Sect. 5.4.1).

The goal of any framing methodology is to provide a concise notation for
describing unbounded sets of locations (normally made up by a �xed set of
attributes of an unbounded set of objects). Some notations (e.g. Dafny [74])
only support the level of granularity of a whole object, which already goes
a long way, since the intra-object structure is �nite and can be speci�ed by
other means. At the same time, most approaches to framing can incorporate
partial objects seamlessly: for example, in dynamic frames, sets of locations
can be treated as �rst-class objects [117, 115], while separation logic and
implicit dynamic frames use individual locations in the interpretation of their
predicates.

The present work follows a di�erent path, of separating frame descriptions
into the object dimension (expressed using a combination of dynamic frames
and ownership), and the attribute dimension (represented via �xed lists).
To achieve abstraction for the latter dimension, we propose listing model
queries instead of concrete attributes, which integrates well with the rest

118 CHAPTER 6. VERIFYING REUSABLE COMPONENTS

of the model-based speci�cation methodology. A similar technique is used
in JML [24], which allows model variables in assignable clauses. Each such
model variables is associated with a data group, inferred from its represents

clause. Thus JML's abstract frames are more restrictive than ours: they
only allow changing concrete locations that are part of the representation of
listed model variables, while AutoProof does not restrict updates to concrete
locations. In our experimental evaluation we did not encounter examples
that would bene�t from the more restrictive semantics; thus we opted for the
simpler interpretation.

6.6 Summary and Future Work

This chapter presented an extension of our basic veri�cation methodology
with support for models. The extension combines a �exible mechanism for
seamless integration of new mathematical constructs into the speci�cation
language, a simple yet relatively concise encoding of model queries, and a
data abstraction technique for frame speci�cations, which is natural to use
in model-based contracts. We implemented all three features as part of the
AutoProof veri�er, and used it to prove correctness of a signi�cant subset
of the Ei�elBase2 library, which serves as evidence of the feasibility and
usefulness of the proposed techniques.

One direction of future work is �nishing the veri�cation of Ei�elBase2,
which, as discussed above, requires further extending AutoProof with support
for agents. Another direction is verifying model classes, that is, checking con-
sistency of their implementations and their Boogie encoding. A possible ap-
proach is to associate with each model class M a single model query (of type M),
and use it to express postconditions of M's routines, which can then be veri�ed
in the usual way. For example, the class MML_SET [G] can be implicitly equipped
with a model query set: MML_SET [G], and every routine r of the class can be
automatically supplied with a postcondition Result.set = JrK(Current.set),
where JrK is the Boogie function prescribed by r's maps_to clause. MML_SET

is implemented using Ei�elBase2 arrays, which in turn are equipped with
model-based contracts, expressed in terms of a model query map; after adding
set = array.map.range to the class invariant, we can proceed with veri�cation of
MML_SET as if it were a regular container class.

Chapter 7

Debugging Failed Verification

Attempts

Practical methodologies, like the one proposed in Chapters 5 and 6, are
necessary but insu�cient to make deductive veri�cation usable. This chapter
tackles another crucial aspect of the veri�cation process: understanding and
debugging failed proof attempts.

7.1 Introduction

One of the biggest remaining obstacles to usable program veri�cation is un-
derstanding failed proof attempts [76]. Deductive veri�cation techniques�
such as those discussed in Chapters 5 and 6�are necessarily incomplete,
since they target undecidable problems. Incompleteness implies that pro-
gram veri�ers are �best e�ort�: when they fail, it is no conclusive evidence
of error. It may as well be that the speci�cation is sound but insu�cient to
prove the implementation correct; for example, a loop invariant may be too
weak to establish the postcondition. Even leaving the issue of incomplete
speci�cations aside, the feedback provided by failed veri�cation attempts is
often of little use to understand the ultimate source of failure. A typical
error message states that some executions might violate a certain assertion
but, without concrete input values that trigger the violation, it is di�cult
to understand which parts of the programs should be adjusted. And even
when veri�cation is successful, it would still be useful to have �sanity checks�
in the form of concrete executions, to increase con�dence that the written
speci�cation is not only consistent but su�ciently detailed to capture the
intended program behavior.

120 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

Dynamic veri�cation techniques are natural candidates to address these
shortcomings of static program proving, since they can provide concrete exe-
cutions that conclusively show errors and help narrow down probable causes.
For example, a concrete execution of a loop that violates its invariant but sat-
is�es its postcondition shows that the invariant must be �xed, while increas-
ing our con�dence that the implementation is correct. Traditional dynamic
techniques based on testing are, however, poor matches to the capabilities of
static provers. Testing, at best, targets lightweight executable speci�cations,
such as contracts. Program provers, in contrast, work with very expres-
sive speci�cation and implementation languages supporting features such as
nondeterminism, unbounded quanti�cation, in�nitary structures (sets, se-
quences, etc.), and complex �rst- or even higher-order axioms; none of these
is executable in the traditional sense. As we argue in Sect. 7.2, however, even
relatively simple programs may require such complex speci�cations. Pro-
gram provers also support modular veri�cation, where su�ciently detailed
speci�cations of modules or routines are used in lieu of missing or incom-
plete implementations; this is another scenario where runtime techniques fall
short because they require complete implementations.

In this chapter, we propose a technique to generate executions of programs
annotated with complex speci�cations using features commonly supported
by program provers: nondeterminism, unbounded quanti�cation, partial im-
plementations, etc. The technique combines symbolic execution with SMT
constraint solving to generate small and readable test cases that expose errors
(failing executions) or validate speci�cations (passing executions).

The proposed approach supports executing both imperative and declara-
tive program elements, which accommodates the implementation semantics
of loops and procedure calls, de�ned by their bodies, as well as their speci�ca-
tion semantics, used in modular veri�cation, where the e�ect of a procedure
call is de�ned solely by the procedure's pre- and postcondition and the ef-
fect of a loop by its invariant. The implementation semantics is useful to
discriminate between inconsistent and incomplete speci�cations; while the
speci�cation semantics makes it possible to generate executions in the pres-
ence of partial implementations, as well as to expose spurious executions
permitted by incomplete speci�cations.

Existing static and dynamic symbolic execution techniques are not di-
rectly applicable to programs we target, since path constraints in such pro-
grams include unbounded quanti�cation and other complex speci�cation con-
structs, listed above. An attempt to solve such constraints directly, without
additional guidance in the form of quanti�er instantiation heuristics, often
leads to the solver getting bogged down. Our technique simpli�es the con-
straints passed to the SMT solver, instantiating quanti�ers and unrolling

7.2. A MOTIVATING EXAMPLE 121

recursive de�nitions, targeting the values required for a particular symbolic
execution. The simpli�cation greatly improves the predictability of test
case generation. Combined with model minimization techniques, it produces
short�often minimal-length�executions that are quite easy to read. While
constraint simpli�cation might also produce false positives (infeasible execu-
tions), the evaluation of Sect. 7.5 shows that this rarely happens in practice:
the small risk amply pays o� by producing easy-to-understand executions,
symptomatic of the rough patches in the implementation or speci�cation
that require further attention. We also identify a subset of the annotation
language for which no infeasible executions are generated.

We implemented our technique for the Boogie intermediate veri�cation
language, used as back-end of AutoProof, introduced in previous chapters,
as well as numerous other program veri�ers [29, 74, 75]. Working atop an
intermediate language opens up the possibility of reusing the tool with mul-
tiple high-level languages and veri�ers that already translate to Boogie. It
also ensures that our technique is su�ciently general: Boogie is a small yet
very expressive language (including both speci�cation and imperative con-
structs), designed to support translations of disparate notations with their
own supporting methodologies. Our implementation is available as a tool
called Boogaloo, available for download [15] and through a web interface [31].
For simplicity, hereafter we will use �Boogaloo� to denote the execution gen-
eration technique as well as its implementation, and will employ the self-
explanatory Boogie syntax in the examples.

7.2 A Motivating Example

We give a concise overview of the capabilities of Boogaloo using a simple veri-
�cation example: �nding the maximum element in an integer array.1 Fig. 7.1
shows a Boogie procedure Max, which inputs an integer N, denoting the array
size, and a map2 a that represents the array elements a[0], . . ., a[N−1]; it returns
an integer max for a's maximum. The procedure includes speci�cation in the
form of two postconditions (ensures), formalizing the de�nition of maximum:
max should be no smaller than any element of a (line 2); and it should be an
element of a (line 3).

What happens if we try to verify procedure Max, as shown in Fig. 7.1,
using Boogie? Veri�cation fails with a vague error message (�Postconditions
on lines 2 and 3 might not hold.�) which is inconclusive and of little help to

1The tool output messages in this section are abridged without sacri�cing the gist of
the original.

2In general, maps have an in�nite domain in Boogie.

122 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

1 procedure Max(N : int, a : [int] int) returns (max : int)
2 ensures (∀ j : int • 0 ≤j ∧j < N =⇒a[j] ≤max);
3 ensures (∃ j : int • 0 ≤j ∧j < N ∧a[j] =max);
4 {
5 var i : int;
6 i :=0;
7 max :=0;
8 while (i < N) {
9 if (a[i] > max) { max :=a[i]; }

10 i :=i + 1;
11 }
12 }

Figure 7.1: Boogie procedure Max that �nds the maximum element in an
array. Both the speci�cation and the implementation contain errors, and no
loop invariant is provided.

understand the source of failure. Rather, running Boogaloo on the same input
generates concrete inputs that make the program fail; we get the message
�Postcondition on line 3 violated with N -> 0, a -> [], max -> 0�, which clearly
singles out a problem with Max: the maximum of an empty array is unde�ned.

We can formalize the intuition that Max is unde�ned for empty arrays as
the precondition requires N > 0. Boogie's output, however, does not change if
we add this precondition: it still cannot establish either postcondition since
it would need a loop invariant to reason about loops�no matter how simple
they are. Instead, running Boogaloo on Max annotated with the precondition
shows another input that triggers a failure: �Postcondition on line 3 violated

with N -> 1, a -> [0 -> -1], max -> 0�. This time the problem is with the im-
plementation rather than the speci�cation: when a contains a single negative
value, initializing max to 0 (line 7) does not work. With this concise con-
crete counterexample, it is easy to understand that the same problem occurs
with any array containing only negative elements. Designing a correction
is also routine: we change the initialization on line 7 to max :=a[0], which is
well-de�ned thanks to the precondition N > 0.

We can see that the modi�ed program�including precondition and new
initialization of max�is �nally correct. However, Boogie's behavior on it
does not change at all: without a loop invariant, it still fails to prove either
postcondition. Boogaloo, in contrast, can generate a number of test cases
(1024 by default, which takes just a few seconds with the running example
on standard desktop hardware) and successfully check all of them against
the speci�cation. While this still falls short of a formal correctness proof, it
provides evidence that the program is indeed correct, and that all we have

7.2. A MOTIVATING EXAMPLE 123

to do is strengthen the speci�cation by adding a suitable loop invariant.
While we selected a simple example which can be brie�y presented, we

were able to demonstrate, in a nutshell, several fundamental issues of work-
ing with static program veri�ers such as Boogie, and how Boogaloo can
complement their weaknesses. Speci�cally, Boogaloo's capabilities to pro-
vide concrete inputs that show errors or amass evidence for correctness; and
to work with the same programs used for veri�cation including elements such
as �rst-order quanti�cation (lines 2 and 3), but without requiring speci�ca-
tions at all costs (a loop invariant). Another distinguishing, and practically
crucial, feature of Boogaloo is that it produces small (often minimal) tests:
in the example, the smallest arrays and the smallest integer values exposing
faults and discrepancies.

7.2.1 Comparison with other approaches

To further demonstrate the unique features of Boogaloo, let us consider the
behavior of other approaches to complementing static program veri�cation
on the same example of procedure Max.

Assuming Max were a Boogie encoding produced from some high-level
programming language, we could use standard testing tools on the source
program to generate concrete inputs and discover failures. One problem is
that �rst-order quanti�cations (and other features used by Boogie) are in-
expressible using the simple Boolean expressions of standard programming
languages. While the quanti�cations used in Max are bounded, and hence
expressible using executable constructs such as �nite iterations over arrays
or list comprehensions, getting rid of quanti�ers and other non-executable
constructs is neither possible nor desirable in general. As soon as we look
at examples more complex than Max, we need to express abstract properties
potentially involving in�nitely many elements, such as for framing and for
reasoning about unbounded sequences of pointers to heap-allocated data.
Even in an example as simple as sorting, if a sorting procedure takes a
function pointer as argument to denote the comparison function, we need
to express that it encodes a total order�something involving quanti�cation
over a potentially unbounded domain. More generally, we designed Booga-
loo to work with the same proof-oriented annotated programs used by static
veri�ers, which involve features di�cult to execute and normally not found
in high-level programming languages.

Another option to debug Max is using the Boogie Veri�cation Debugger
(BVD [46]), which extracts concrete counterexamples from failed veri�cation
attempts. The relevance of such counterexamples is, however, limited in the
presence of loops and procedure calls with incomplete speci�cations. On

124 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

Max as in Fig. 7.1, BVD returns the assignment �N = 1, a = [], max = -900�;
after adding N > 0 as precondition, it returns �N = 797, a = [], max = -900�; af-
ter �xing the implementation, it returns �N = 797, a = [0 -> -901], max = -901�.
These examples fail to point out the two errors in Max, because according
to modular reasoning [73] and in the absence of an invariant, any loop is
equivalent to assigning arbitrary values to program variables. While BVD's
modular semantics helps debug incompleteness in speci�cations, it also en-
forces an �all-or-nothing� development style, where developers �rst have to
get right the most complicated part (the invariants), before they can proceed
with debugging the rest of the program. This lack of incrementality is what
makes modular veri�cation so hard in the �rst place.

It is possible to make Boogie use loop and procedure bodies instead of
their speci�cation by unrolling loops and inlining procedures U times, for
a given U ≥ 0. With unrolling, BVD �nds counterexamples for executions
where N ≤ U , and in particular the same counterexamples constructed by
Boogaloo. The approach, however, has its limitations. First, unrolling and
inlining require users to guess a suitable U ; since all longer executions are
ignored, veri�cation vacuously succeeds when the shortest counterexample
requires > U iterations or nested calls, without providing any concrete feed-
back. Second, unrolling of complex loops and inlining of recursive procedures
scale poorly, as they consist of literally rewriting the code U times; Boogaloo,
in contrast, uses symbolic execution techniques, which are less likely to incur
blow up. Building a debugger on top of the Boogie veri�er also means that it
cannot generate passing executions (Boogie does not produce a model in case
veri�cation succeeds) and cannot help when the theorem prover gets bogged
down. In contrast, Boogaloo uses simpler veri�cation conditions, designed
for predictable generation and readability of counter examples as opposed to
sound proofs.

7.3 A Runtime Semantics of Boogie Programs

This section describes the syntax of Boogaloo programs (Sect. 7.3.1) and
their operational semantics (Sect. 7.3.2). We use the following notation:
Z is the set of mathematical integers; and B is the set {>,⊥} of Boolean
values. A map m is a mathematical function from a domain D1 × · · · ×Dn,
for n > 0, to a codomain D0; square brackets denote map applications.
Whenever convenient, we see m as a set of (n + 1)-tuples: m ⊂ D1 × · · · ×
Dn × D0 such that (d1, . . . , dn, d0) ∈ m i� m[d1, . . . , dn] = d0. dom(m)
and rng(m) denote the domain and range of m; m is total if dom(m) =
D1 × · · · × Dn, and �nite if |dom(m)| ∈ Z; m[d1, . . . , dn 7→ d] denotes a

7.3. A RUNTIME SEMANTICS OF BOOGIE PROGRAMS 125

map m′ identical to m except that m′[d1, . . . , dn] = d. We overload this
notation to denote variable substitution: if e, y1, . . . , yn are expressions, and
x1, . . . , xn, are distinct variable names, e[x1, . . . , xn 7→ y1, . . . yn] denotes e
with all occurrences of xk replaced by yk, for k = 1, . . . , n.

7.3.1 Input Language

Boogaloo desugars generic Boogie programs [73] into the simpler language
described in Fig. 7.2. Programs P are lists of declarations D, whose or-
der is immaterial. Declarations include uninterpreted types, global variables,
and procedures with input parameters, output parameters (returns), global
variables the procedure may modify (modifies clause), and body (between
braces). Procedure bodies consist of local variable declarations followed by a
list of labeled statements S. The latter include sequential composition, reg-
ular and nondeterministic assignment (:= and havoc, possibly in parallel to
multiple variables), procedure call, assume, nondeterministic goto a set of la-
bel identi�ers, and abrupt return to the caller procedure, as well as directives
R described shortly. Expressions must be properly typed as booleans, int

egers, maps [T1, . . . , Tn]T0 from arbitrary domain (T1, . . . , Tn) and codomain
T0 types, and user-de�ned uninterpreted types3. Expressions E include lit-
eral constants C, variables V , map applications m[t1, . . . , tn], map updates
m[t1, . . . , tn := t], old expressions which refer to the value of an expression
when the procedure was entered, plus the usual applications of unary op-
erators UOp, binary operators BOp, a ternary if/then/else operator, and
quanti�cations and lambda expressions QOp.

The directives halt, abort, and pick are Boogaloo-speci�c and character-
ize symbolic executions: halt terminates the current execution with success
(marking passing executions); abort also terminates the current execution
but with error (marking failing executions); pick forces the interpreter to re-
solve nondeterminism by trying to build a concrete state out of the current
symbolic constraints. Boogaloo automatically inserts a halt at the end of
every control path in the input program; and uses abort to desugar assert

statements as follows. A Boogie statement assert B, where B is a Boolean ex-
pression, indicates that B must hold in every correct execution reaching the
statement; assume B, on the other hand, indicates that only executions where
B holds upon reaching the assume are feasible. Therefore, Boogaloo expresses
the semantics of assert B using assume, abort, and nondeterministic choice as
follows:

3While Boogaloo supports Boogie's type constructors with arguments, as well as type
parameters in procedures and maps, we do not include them in the discussion for simplicity.

126 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

P ::= D∗

D ::= type tid | var V : T
| procedure pid (〈V : T 〉∗) returns (〈V : T 〉∗) modifies (V ∗)
〈{ 〈V : T 〉∗ 〈lid : S〉∗ }〉?

S ::= S ; S | havoc V + | V + := E+ | call V ∗ := pid (E+)
| assume E | goto lid+ | return | R

R ::= halt | abort | pick
T ::= bool | int | [T+]T | tid
E ::= C | V | E [E+] | E [E+ :=E] | old E

| UOp E | E BOp E | if E then E else E | QOp 〈V : T 〉+ • E
V ::= vid
C ::= false | true | 0 | 1 | 2 | · · ·

UOp ::= − | ¬
BOp ::= + | − | · · · | < | ≤ |=| · · · | ∧ | ∨ | · · ·
QOp ::= ∃ | ∀ | λ

Figure 7.2: Desugared language supported by Boogaloo, consisting of pro-
grams P , declarations D, statements S, types T , and expressions E. Angular
brackets 〈 〉 are part of the grammar metalanguage, used to mark optional
(?) or repeated (∗, +) expressions.

goto T, F;
F : assume ¬B; abort;
T : assume B;

Boogaloo also injects a pick statement right before every halt and abort, so
that every terminating execution gets a concrete state. Boogaloo automati-
cally instruments programs with the directives R, based on di�erent strate-
gies (see Sect. 7.5) so that one can use Boogie programs without additional
annotations.

The rest of the desugaring of Boogie into the language of Fig. 7.2 is fairly
standard. We rewrite function declarations function f(T1, . . . , Tn) returns(T0)
into constants const f : [T1, . . . , Tn]T0 of map type, and express the corre-
sponding function de�nitions as axioms. In turn, we express axioms and
other speci�cation constructs�where clauses (used to constrain the values of
uninitialized variables), pre- and post-conditions, and loop invariants�using
assume and assert re�ecting the standard semantics. We replace constants
with variables. Finally, we transform procedure bodies into sets of basic
blocks (labeled sequential blocks of code that end with a return or goto) us-
ing standard techniques [73]. For example, the Boogie loop at lines 8�11 in

7.3. A RUNTIME SEMANTICS OF BOOGIE PROGRAMS 127

Fig. 7.1 roughly becomes:

goto done, body;

body : assume i < N; goto thn, els;

thn : assume a[i] > max; max :=a[i]; goto inc;

els : assume ¬(a[i] > max); goto inc;

inc : i :=i + 1; goto done, body;

done : assume ¬(i < N);

7.3.2 Runtime Operational Semantics

We now describe an operational semantics for the language in Fig. 7.2. The
presentation focuses on the most interesting aspects while omitting standard
details.

Let us start with an informal overview of the basic concepts. The op-
erational semantics describes the e�ect, on the symbolic state, of executing
statements. The symbolic state associates symbolic values to program vari-
ables in scope. Executing some statements may involve enforcing constraints
between symbolic values; the most obvious example is that of assume P: the
symbolic values associated with variables mentioned in P must satisfy P in
every computation that continues after the statement. Therefore, the sym-
bolic state includes constraints which are updated as execution progresses.
Finally, pick directives select concrete values that satisfy the current con-
straints; executions continue after pick with the selected concrete state com-
ponents replacing the corresponding symbolic state components (but subse-
quent statements will be executed symbolically until the next pick). In this
sense, symbolic executions are speculative, in that the constraints may not
have a solution (infeasible executions), and nondeterministic, in that the con-
straints may have more than one solution (multiple feasible executions); pick
forces the interpreter to resolve nondeterministic choice before continuing.
Another source of nondeterminism comes from executing gotos with multi-
ple labels; such choices are resolved immediately, resulting in explicit path
enumeration. Since Boogaloo injects pick statements at every terminating
location, it can provide concrete input and output values for every feasible
execution, while still availing of symbolic representation to limit the combi-
natorial explosion introduced by the inherently nondeterministic nature of
speci�cations.

The main source of complexity in executing Boogie programs lies in solv-
ing constraints, in particular when they involve universal quanti�ers and un-

128 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

interpreted maps with in�nite domains. Even though state-of-the-art SMT
solvers can decide satis�ability of quanti�ed formulas in many practical cases,
they can hardly generate readable �natural� in�nite models. In light of these
di�culties, we drop Boogie's standard interpretation�where all maps are
total�and replace it with a �nitary interpretation where maps have �nite
domains. Finite, small instances are su�cient to expose errors and inconsis-
tencies in most programs; Alloy's techniques are based on a similar �small
scope� hypothesis [55]. We also treat universally quanti�ed constraints in a
special way: the pick directive �nitizes them, that is turns them into simpler
quanti�er-free constraints. Finitization is in general unsound, but Sect. 7.5
demonstrates that the precision loss is normally acceptable, especially if the
goal is �nding inconsistencies and errors.

Concrete values. Each Boogie type corresponds to a set of concrete
values: bool corresponds to B, int corresponds to Z; each user-de�ned type U

corresponds to a countable uninterpreted set U ; each map type [T1, . . . , Tn] T0

corresponds to the set of all �nite maps from T1×· · ·×Tn to T0, where Tk is
the set of concrete values of type Tk, for k = 0, . . . , n. K denotes the union
of all concrete value sets.

Symbolic values. The set of symbolic values Σ is de�ned as:

Σ ::= K | L | UOp Σ | Σ BOp Σ | if Σ then Σ else Σ ,

where K is the set of concrete values de�ned above; unary UOp and binary
BOp operators are de�ned in Fig. 7.2, and L denotes a set of logical variables
of the same types as the concrete values. A logical variable ` of type T corre-
sponds to a symbolic placeholder (a �promise�) for a concrete value of type T .
To represent quanti�ers in constraints, we also introduce a set of universal
symbolic values Σ∀ ::= ∀〈V : T 〉+ • ΣV , where ΣV is a symbolic value, except
it can also include bound variables V . Given a set X of expressions, LV(X)
is the set of all logical variables appearing in X.

Symbolic states. A symbolic state (environment) is a tuple

E = 〈σ, λ, µ, κ, υ, τ〉,

where the store σ : V → Σ maps variables to symbolic values; the logical
store λ : L → K maps scalar logical variables to concrete values; the map
store µ : L → (Σ∗ → Σ) maps map logical variables to symbolic maps;
κ ⊂ Σ is a �nite set of simple state constraints ; υ ⊂ Σ∀ is a �nite set of
universal state constraints ; and τ is one of G,3,7, denoting an intermediate
state (G), or the �nal state of a passing (3) or failing (7) execution. The
map store associates logical variables of map type to symbolic maps : �nite

7.3. A RUNTIME SEMANTICS OF BOOGIE PROGRAMS 129

log-in
` ∈ dom(λ)

J`K E=Eλ[`]
log-out

` 6∈ dom(λ)

J`K E=E`

var-in
v ∈ dom(σ) Jσ[v]K E=Ee

JvK E=Ee
var-out

v 6∈ dom(σ) ` is fresh σ′ = σ[v 7→ `]

JvK E=E′
`

sel-in
J(m,~a)K E=E′

(`m,~a′) ~a′ ∈ dom(µ′[`m]) Jµ′[`m][~a′]K E′
=E′

e

Jm[~a]K E=E′
e

sel-out
` is fresh J(m,~a)K E=E1 (`m,~a1) ~a1 /∈ dom(µ1[`m]) m′ = [µ1[`m][~a1] 7→ `]

Jm[~a]K E=E′
` E ′ = 〈σ1, µ1[`m 7→ m′], υ1〉

upd
` is fresh J(m,~a, e)K E=E1 (`m,~a1, e1) m′ = [µ1[`m][~a1] 7→ e1]

Jm[~a := e]K E=E′
` E ′ = 〈σ1, µ1[` 7→ m′], υ1 ∪ {∀~x• ~x 6= ~a1 ⇒ `[~x] = `m[~x]}〉

lambda
` is fresh JeK E=E1e1 σ1(~x) = ~̀

1

Jλ ~x• eK E=E′
` E ′ = 〈σ1 \ {(~x, ~̀1)}, µ1, υ1 ∪ {∀~x• `[~x] = e1[~̀1 7→ ~x]}〉

quant-T
Skolem[Q1x1 · · ·Qnxn• q] E=E1 ∀ ~y• q1 Jq1K E1=E2q2 σ2(~y) = ~̀

JQ1x1 · · ·Qnxn• qK E=E′> E ′ = 〈σ2 \ {(~y, ~̀)}, µ2, υ2 ∪ {∀~y• q2[~̀ 7→ ~y]}〉

quant-F
JQ̃1x1 · · · Q̃nxn• ¬ qK E=E′>

JQ1x1 · · ·Qnxn• qK E=E′⊥

Figure 7.3: Symbolic evaluation (signi�cant cases).

maps whose domain and range are in Σ; symbolic maps extend their �nite
domains as execution progresses; pick concretizes their domain and range,
turning symbolic maps into concrete ones.

Expression evaluation. Let E denote the set of all expressions de�ned
by E in Fig. 7.2 but whose atoms range over C∪V ∪L (i.e., including logical
variables L). The evaluation of an expression e ∈ E in an environment E is
a symbolic value in Σ. We use the notation: JeK E=E ′e′ to denote that e ∈ E
evaluates in E to e′ ∈ Σ. As we detail shortly, evaluating an expression may
change the environment; correspondingly, E ′ denotes the updated environ-
ment, whose components are written 〈σ′, λ′, µ′, κ′, υ′, τ ′〉. When convenient,
we extend this notation to sequences ~e = e1, . . . , en of expressions, evalu-
ated one after another as follows: J~eK E=E ′~e′ i� JekK Ek=E

′
ke′k for k = 1, . . . , n,

E ′k = Ek+1 for k = 1, . . . , n − 1, and ~e′ = e′1, . . . , e
′
n. Fig. 7.3 shows the eval-

uation rules for the most interesting expression kinds. Since evaluation does
not change the λ, κ, and τ environment components, Fig. 7.3 omits them.
Also notice that evaluating a symbolic value never changes the environment,
and every concrete value evaluates to itself.

Rules log-in and log-out describe the simple cases of evaluating a
logical variable `: if λ[`] is de�ned, it yields `'s evaluation; otherwise, `

130 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

evaluates to itself.
Rules var-in and var-out describe the evaluation of a (program) vari-

able v. If it has already been initialized, the evaluation of σ[v] gives its
symbolic value. Otherwise (var-out), such as when v enters the scope or
after executing havoc v, σ[v] gets initialized to a fresh logical variable `.

The rules for map selection are similar to those for variables but target
the map store µ: if a map selection has already been evaluated, its symbolic
value is returned (sel-in); otherwise, a fresh logical variable is generated and
stored in µ (sel-out).

Rules upd and lambda deal with evaluating expressions of map type for
updates and lambda abstractions. Both rules introduce a fresh map logical
variable and add to υ a universally quanti�ed constraint that de�nes the map.
Thus, map expressions (variables, updates, and lambdas) always evaluate to
a logical variable; this justi�es using the evaluation `m of m as an index in µ
in the premises of sel-in, sel-out, and upd.

The rules for quanti�ed expressions are non-deterministic. Consider an
expression Q = Q1x1 · · ·Qnxn• q in prenex normal form, where n > 0, Qk

is one of ∀ and ∃ for each k, and q is quanti�er-free. Rule quant-T evalu-
ates Q to true and adds it to the universal constraints υ after the following
transformation. First, Q is Skolemized as ∀~y• q1, where ~y is the subsequence
of x1, . . . , xn including only those xk's for which Qk is ∀; E1 is the envi-
ronment after Skolemization, which contains fresh logical variables for the
Skolem functions introduced by the process. Evaluating q1 in E1 yields some
q2 where the bound variables ~y map to fresh logical variables ~̀; after per-
forming the substitution q′ = q2[~̀ 7→ ~y], ∀~y• q′ is added to υ. In the special
case where Q is purely existential, Skolemization yields a quanti�er-free for-
mula, and the corresponding q2 is directly added to κ. Rule quant-F, which
evaluates Q to false, follows by duality (∀̃ denotes ∃, and ∃̃ denotes ∀).

Procedure call semantics. The precise semantics of procedure calls
involves several details to support recursion�mainly, maintaining a stack of
environments and correspondingly keeping track of scope. We overlook these
tedious aspects and focus on the gist of the semantics of a call to a generic
procedure P (before desugaring):

procedure P (~a)returns (~o)requires p ensures q modifies(~m) 〈{B}〉?

with formal input ~a and output ~o parameters, modi�ed global variables ~m,
body B, and pre- and postcondition p and q. The desugaring of Sect. 7.3.1
turns pre- and postcondition into checks at the call site:

assert p[~a 7→ ~u]; call ~v :=P(~u); assume q[~a, ~o 7→ ~u,~v];

7.3. A RUNTIME SEMANTICS OF BOOGIE PROGRAMS 131

seq
τ = G E −I E1 E1 −J E ′

E −I;J E ′
goto

τ = G k ∈ {1, . . . , n} E −@xk E ′

E −goto x1, . . . ,xn E ′

return τ = G E −@caller E ′

E −return E ′
assume

τ = G JPK E=E′
p

E −assume P 〈σ′, λ′, µ′, κ′ ∪ {p}, υ′, τ ′〉

havoc τ = G

E −havoc v 〈σ \ {(v, σ[v])}, λ, µ, κ, υ, τ〉

assign
τ = G JeK E=E′

e′

E −v :=e 〈σ[v 7→ e′], λ′, µ′, κ′, υ′, τ ′〉

halt τ = G

E −halt 〈σ, λ, µ, κ, υ,3〉
abort τ = G

E −abort 〈σ, λ, µ, κ, υ, 7〉

pick

τ = G κ′ = κ ∪ κµ ∪ Φ(υ) dom(Λ) = {` ∈ LV(κ′) | ` is scalar}
E ′ = 〈σ, λ ∪ Λ, µ, ∅, υ, τ〉 J

∧
κ′K E′

=E′>
E −pick E ′

Figure 7.4: Symbolic execution: operational semantics. All rules describe
transformations of a generic symbolic state E = 〈σ, λ, µ, κ, υ, τ〉.

(For brevity, we do not discuss the handling of old expressions in postcondi-
tions.) It also generates a modi�ed procedure body B′ to re�ect the imple-
mentation or speci�cation semantics, according to whether P has a body or
not: if B is de�ned, B′ adds an assertq before each return statement in B; if B
is not de�ned, B′ consists of the single statement havoc~o, ~m (which, combined
with assuming the postcondition at the call site, renders the speci�cation se-
mantics). The e�ect of the call statement is then given by B′[~a 7→ ~u]@entry
where B′[~a 7→ ~u] is a shorthand for B′ with actual arguments replaced for
formals and @entry denotes the basic block of statements at procedure P's
entry. Even though Boogaloo defaults to implementation semantics when-
ever a body is available, one can always switch to the speci�cation semantics
for a particular procedure by commenting out its body.

Operational semantics. Fig. 7.4 describes the operational semantics
of statements other than procedure calls, using the notation E −S E ′ to
denote that executing statement S changes the environment E into E ′. Rules
are applicable only if τ = G, that is if the computation has not terminated
yet; after rules halt or abort have changed τ to passing 3 or failing 7 no
rule is applicable and hence the computation terminates.

Rules seq for sequential composition, goto for branch, and return for
abrupt termination are standard, using the notation @caller to denote the
basic block beginning after the current call in the caller procedure. Rule
goto is clearly nondeterministic.

Rule assume adds the assumed Boolean formula to the set κ of state

132 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

constraints. Rule havoc �forgets� the symbolic value of the variable v, as if
uninitialized. Rule assign updates the symbolic value in σ associated to the
assigned variable v.

The most interesting rule is pick, which details how pick concretizes
symbolic states. It extends κ into κ′, adding map instance constraints
κµ = {m[~x] = y | (m,~x, y) ∈ µ}, which express the information in µ about
symbolic maps; as well as �nitized universal constraints Φ(υ).s It then picks
a solution Λ : L→ K of κ′: an assignment of concrete values to scalar logical
variables for which the conjunction of constraints in κ′ evaluates to true. It
�nally adds the picked solution to λ and drops the solved constraints. The
rule is nondeterministic, as κ′ might have multiple solutions. When κ′ has
no solutions, the rule cannot apply and executions gets stuck at pick: we call
such executions infeasible. The rule is also agnostic with respect to the exact
method of solving simple constraints, as well as to the �nitization mapping
Φ. To solve constraints, one can leverage an external constraint solver or
even a brute force enumeration; even if the solving process is unsound, one
can always evaluate κ′ in E ′ and discard solutions that do not simplify to >.
The only requirement on Φ : Σ∀

∗ → Σ is that it is an over-approximation:
any valid solution of υ is also a solution of Φ(υ). In practice, Φ performs
quanti�er instantiation: it replaces a quanti�ed formula ∀~x• q with a �nite
set of quanti�er-free formulas {q[~x 7→ ~e] | e ∈ R}, for some �nite set R of
�relevant� symbolic values. The challenge is to choose an R that is large
enough to describe all relevant values in the current environment, yet small
enough to produce constraints that can be solved e�ciently. Sect. 7.4 gives
more details about Boogaloo's �nitization procedure.

Boogaloo vs. Boogie semantics. How does the operational semantics
discussed in this section compare with the original Boogie semantics? For
this discussion, a semantics of a program P is a set of sequences of concrete
states, corresponding to its feasible terminating executions; a (concrete) state
C = 〈σ, τ〉 consists of a store σ (involving �nitely many variables) and a
termination �ag τ ∈ {G,3,7}. A state C is �nitary if it involves only �nite
maps: for all m ∈ dom(σ), |dom(σ[m])| is �nite; otherwise, it is in�nitary. A
state CF �nitizes another state C (written CF vF C) i� CF is �nitary, τF = τ ,
dom(σF) = dom(σ) and, for all map variables m ∈ dom(σ), σF [m] ⊆ σ[m].
A sequence e of states is �nitary (in�nitary) if all its elements are �nitary
(in�nitary); e �nitizes another sequence e′ if every state of e �nitizes the
corresponding state of e′.

For a program P , I[P] denotes the Boogie semantics de�ned in [73], which
is in�nitary since all maps are total (I is for �in�nitary�); and F [P] denotes

7.4. BOOGALOO: IMPLEMENTATION DETAILS 133

the �nitary semantics of this chapter, where all maps have �nite domains.4

Assuming perfect constraint-solving capabilities, the only aspect where F
may drop information w.r.t. I is in the rule pick, and more precisely in the
�nitization mapping Φ. The requirement that Φ be an over-approximation
implies that every Boogie execution is �nitized by some Boogaloo execution.
The converse does not hold in general: in particular, for some programs S,
I[S] = ∅ but F [S] 6= ∅ contains executions (which we regard as spurious).
For example, the following program:
var a : [int] int;
assume (∀ i, j : int • i < j =⇒a[i] < a[j]);
assume a[0] =0 ∧a[1000] =1;

has no feasible executions in I, while the current implementation of Boogaloo
produces a passing execution where the quanti�ed constraint is only instan-
tiated for i = 0 and j = 1000. Sect. 7.5 demonstrates that such unsound ex-
ecutions are infrequent in practice, and, even when they occur, workarounds
are possible, for example forcing the evaluation on more points by accessing
them in a loop. Also, Boogaloo's implementation of Φ does not produces
spurious executions for programs where all quanti�ed constraints are derived
from terminating recursive function de�nition (see Sect. 7.4).

There is an additional source of discrepancies between I and F , due to
the fact that Boogie always uses the speci�cation semantics for loops and
procedure calls, while Boogaloo defaults to the implementation semantics,
which might contain fewer executions. This discrepancy between the two
semantics is a useful feature, which makes it possible to debug programs in
the presence of incomplete speci�cations. The speci�cation semantics is still
available on demand in Boogaloo: it is su�cient to replace an imperative
construct with its speci�cation.

7.4 Boogaloo: Implementation Details

This section presents some details of the Boogaloo tool�our prototype im-
plementation of the approach described in the previous sections. The tool
takes as input a Boogie source �le and a procedure name as entry point, and
produces a set of feasible executions, characterized by their concrete initial
and �nal states. Boogaloo is implemented in Haskell, and uses the SMT
solver Z3 [35] in the back-end.

Finitizing universal constraints. The choice of the �nitization map-
ping Φ plays an important role. Our experiments suggest that the powerful

4The soundness of desugaring implies that all feasible executions both in the Boogie
and in the Boogaloo semantics agree on being passing or failing.

134 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

quanti�er instantiation strategies available in SMT solvers such as Z3 have
some downsides when applied to solve constraints generated by executing
Boogie programs, as their performance is unpredictable unless additional
user input (in the form of �triggers�) is provided. Instead, Boogaloo pre-
processes constraints using a simple strategy, based on the observation that
universally quanti�ed formulas are typically used to axiomatize uninterpreted
maps; since we are only interested in �nitely many points (those stored in
µ), we just instantiate the bound variables at those points. Quanti�ed con-
straints that do not contain map applications are simply ignored; the exam-
ples in Sect. 7.5 suggests that this �nitization strategy is not too restrictive
on typical veri�cation examples.

This is how Boogaloo implements Φ for a formula ∀~x• P (~x). For each
term m[~y] in P such that ~y includes some bound variable (i.e., ~y ∩ ~x 6= ∅),
Boogaloo extracts a parametrized map constraint of the form (m,Q(~y,m[~y])),
where Q is a subformula of P including the term, and ~y are the parameters
free in Q; if ~x 6⊆ ~y, then Q is itself quanti�ed. For example, ∀i• a[i] >
i∧ b[i, 0] = 1 generates two parametrized constraints: (a, a[i] > i) and (b, j =
0 =⇒ b[i, j] = 1); whereas ∀i, j• i < j =⇒ c[i] < c[j] generates a single
parametrized constraint with a quanti�er: (c,∀j• i < j =⇒ c[i] < c[j]).

Boogaloo evaluates parametrized constraints for a given map store µ it-
eratively: pick an element p = (m,~e, s) of µ, instantiate all parametrized
constraints for m with ~e and evaluate them, and mark p; repeat until all
elements of µ are marked. If a Q in a parametrized constraint (m,Q) con-
tains quanti�ers, instantiatingm triggers the generation of new parametrized
constraints from Q.

Since evaluating a parametrized constraint may add new points to µ,
termination of the evaluation procedure is not guaranteed in the presence
of recursive formulas, which generate constraints (m,Q(~y,m[~y])) where Q
also contains applications of m to elements other than ~y. For example, an
axiomatization of the factorial function f as

f [0] = 1

∀i• i > 0 =⇒ f [i] = i · f [i− 1]

generates the constraint

q ≡ (f, i > 0 =⇒ f [i] = i · f [i− 1]).

If initially µ[f] = {(`0, `1)}, evaluating q for i = `0 introduces a new map
application at `0− 1, which then leads to an application at `0− 2, and so on.

Boogaloo evaluates such recursive constraints using fair unrolling sim-
ilarly to [122], based on the notion of guard: a parametrized constraint is

7.4. BOOGALOO: IMPLEMENTATION DETAILS 135

guarded if has the form (m,G(~y) =⇒ B(~y)). When Boogaloo's iterative eval-
uation picks an element p = (m,~e, s), it nondeterministically chooses a subset
D of all guarded constraints for m and �disables� them in the evaluation de-
termined by p: for a parametrized constraint q = (m,G =⇒ B), it evaluates
the constraint ¬G if q ∈ D, and G∧B otherwise. For the �right� selection of
D, recursive de�nitions are disabled, so that they do not add new points to
µ and evaluation terminates. In the factorial example, there are two choices
for f [`0]: disabling or enabling the single guarded constraint. Disabling it
terminates the �nitization process, producing an execution with `0 = 0; en-
abling the guarded constraints produces one iteration (for f [`0 − 1]), which
in turn recursively leads to the same two choices, and so on. Unlike [122],
which works only with function de�nitions and thus assumes that guards are
mutually exclusive and cover all cases, Boogaloo's fair enumeration applies
to guards of any form and constraints other than equality; it also provides an
option to limit the number of unrollings, because recursive constraints may
be not well-founded (a su�cient condition for termination).

Nondeterminism. There are four sources of nondeterminism in Booga-
loo semantics: evaluation of quanti�ed expressions (rules quant-T and
quant-F), gotos, and pick�involving the disabling of guarded constraints in
Φ and constraint solving to select a solution Λ. Boogaloo enumerates nonde-
terministic choices using backtracking monads (e.g. [61]). The command-line
interface currently o�ers depth-�rst and fair exploration strategies, but the
implementation can easily accommodate others parametrically.

When executing goto statements, the order in which labels are tried may
a�ect progress: if the �rst chosen label leads back to the same statement,
execution gets stuck in an in�nite loop. To avoid this situation, Boogaloo
keeps track of how often each label was taken along the current execution
path, and always tries labels in ascending order of their frequencies (least
frequent �rst). This strategy also has the nice e�ect of enumerating shorter
executions before longer ones in the long run. A similar strategy applies to
disabling parametrized constraints.

Since symbolic computation is speculative, it introduces the risk that
long computations are constructed only to realize, when solving the symbolic
constraints, that they are infeasible. This risk is mitigated by the enumer-
ation technique, which produces short execution �rst. Moreover, whenever
a constraint evaluates to the concrete value ⊥, the current execution path
is immediately aborted. This mitigates the overhead incurred by nondeter-
ministic evaluation of quanti�ed expressions: such expressions are likely to
occur inside assume statements, thus branches where they evaluate to false are
immediately abandoned.

136 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

Additionally, Boogaloo transparently tests the satis�ability of the current
constraints κ at various points during an execution, and proceeds only if
the constraints are satis�able; unlike pick which may enumerate multiple
solutions, a satis�ability check does not cause additional nondeterminism.
One can still explore the trade-o� between few expensive symbolic executions
and many cheap concrete executions by adding pick directives at arbitrary
points.

Minimization. In addition to producing short executions �rst, Boogaloo
also uses a minimization technique based on binary search (similar to the one
in [64]) in order to favor small integers for concrete values. In our experience,
this signi�cantly improves readability: for example, a constraint �x is positive
and divisible by 5� with minimization produces the most natural solution
x = 5 as �rst witness.

7.5 Experimental Evaluation

We evaluated Boogaloo on a choice of 15 examples from various sources5.
Tab. 7.1 lists the programs and some data about them. The bulk of the
evaluation targets the veri�cation of algorithms of various kinds, listed in the
top part of the table. For each of these problems, we constructed a correct
version equipped with consistent but generally incomplete speci�cations, and
a buggy one, obtained by injecting implementation or speci�cation errors.
We ran Boogaloo on both versions, with the goal of generating executions:
passing executions for the correct programs, and failing executions exposing
the bug for the buggy programs. The rest of the programs, in the bottom
part of Tab. 7.1, are examples of declarative programming, which exercise
Boogaloo's constraint solving capabilities to generate outputs satisfying given
properties, in the absence of imperative implementations. We now brie�y
mention the most interesting features of our examples, and summarize the
experimental results.

Veri�cation. The majority of the programs in the top part of Tab. 7.1
are slightly adapted examples from the Boogie project repository6, veri�ca-
tion competitions [62], or previous work [43, 46]; they contain features that
exercise various aspects of the test-case generation process. Strong precondi-
tions (such as an array being sorted in BinarySearch or being a permutation
in Invert) make generating valid executions challenging using standard test-
ing enumeration techniques. Inlining (available in Boogie) scales poorly with

5Available online at http://se.inf.ethz.ch/people/polikarpova/boogaloo/
6http://boogie.codeplex.com/

http://se.inf.ethz.ch/people/polikarpova/boogaloo/
http://boogie.codeplex.com/

7.5. EXPERIMENTAL EVALUATION 137

Table 7.1: Programs tested with Boogaloo

program features loc fun annotations time bug

A S U R E I N tΣ tC N tΣ tC
ArrayMax see Sect. 7.2 33 0 0 0 1 1 2 1 46 0.5 0.4 0 0.0 0.0
ArraySum recursive de�nition 34 1 0 0 1 1 1 2 46 0.3 0.4 1 0.0 0.0
BinarySearch complex precondition 49 1 0 0 2 2 3 2 46 0.1 0.0 0 0.1 0.2
BubbleSort complex postcond. and

invariants
74 1 0 0 2 1 4 5 11 9.3 113.9 2 0.1 0.3

DutchFlag user-de�ned types [43] 96 3 0 0 2 2 8 6 20 3.8 7.6 1 0.0 0.0
Fibonacci recursive procedure 40 1 3 1 0 2 0 0 19 93.9 3.7 0 0.0 0.0
Invert complex pre- and post-

conditions
37 0 0 0 3 3 2 1 10 48.1 1.4 2 0.0 0.1

ListTraversal heap model 49 3 2 0 0 1 1 1 20 61.8 2.5 2 0.0 0.0
ListInsert see [46] 52 1 0 0 2 1 1 0 4 2.4 4.1 1 0.0 0.0
QuickSort helper and recursive

procedures
89 3 0 0 2 1 6 0 15 8.4 177.9 2 ∞ 0.1

QuickSort PI partial implementation 79 3 0 0 2 2 9 0 4 0.2 42.1 2 0.1 ∞
TuringFactorial unstructured control

�ow
37 1 2 5 0 1 1 0 21 0.2 0.2 3 0.0 0.0

Split linear arithmetic [66] 22 0 0 0 0 1 3 0 � 0.0 0.0
SendMoreMoney �xed-size array con-

straints [64]
36 1 0 0 15 0 0 0 � 0.3 0.3

Primes recursive de�nition [64] 31 2 0 0 0 0 2 0 8 0.2 0.9
NQueens variable-size array con-

straints
37 2 1 0 3 0 0 0 15 1.2 31.8

loc: lines of code, fun: number of speci�cation functions,
annotations: number of annotations (axioms A, asserts S, assumes U , preconditions R, postcondi-
tions E, loop invariants I)
time: time to generate passing executions
bug: time to generate failing executions for the buggy version
(Times in seconds, rounded to the nearest integer: for a given input size N , time tΣ with fully
symbolic execution and tC with concretization. ∞ denotes a timeout of 180 seconds).

the recursive procedure calls of Fibonacci and QuickSort. The speci�cations
of BinarySearch, BubbleSort, QuickSort, and Invert use nested universal
quanti�ers with bound variables mentioned in di�erent predicates. QuickSort
PI (partial implementation) is a variant of QuickSort whose partitioning pro-
cedure has a complete pre- and postcondition but no implementation. This
may represent an intermediate development step where we want to validate
the overall logic of QuickSort before proceeding with implementing the par-
titioning procedure. Boogaloo simulates array partitioning based only on its
speci�cation�something unachievable with traditional testing techniques.

The injected bugs are mostly o�-by-one errors and missing preconditions,
both of which frequently occur in practice; the bugs in BinarySearch are
among those found in textbooks [105].

Declarative programming. The other four examples come from pre-
vious work on constraint programming and code synthesis [66, 64], and in-
volve linear arithmetic, recursively de�ned functions, and quanti�cation over
variable-sized arrays. Constraints are declared using assume statements or
procedures without implementation; Boogaloo generates program outputs

138 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

satisfying the constraints.
Experimental results. All problems in Tab. 7.1 but two include a

parameter N that de�nes the input size (the input array or list for most
problems). Column time displays the value of N used in the experiments;
and the time required to generate a passing execution with di�erent con-
cretization strategies: tΣ corresponds to fully symbolic executions where the
state is concretized only once after terminating; tC , instead, corresponds to
executions where the state is concretized before every jump statement. Col-
umn buggy displays the same time measures for the buggy programs; for
these, the value of N corresponds to the input size exposing the bug found
by Boogaloo (which is the smallest possible for all programs). In all exper-
iments we imposed a timeout of 180 seconds, to re�ect the expectation to
use Boogaloo with good responsiveness; the value of N for passing execu-
tions was then chosen as the largest (among those tried) where neither the
symbolic (tΣ) nor the concrete (tC) strategy timed out.

Concretizing before jumping makes executions order-of-magnitude faster
for some problems, and order-of-magnitude slower for others. This strategy
may cause heavy backtracking when the constraints on a given logical vari-
able are imposed incrementally, with one or more concretization points in
between, producing potentially lengthy combinatorial enumerations. When
constraints are �local�, on the other hand, it can speed things up by operating
on concrete values (for example, path exploration in a loop becomes deter-
ministic if the number of loop iterations is �xed in advanced). Even though
the current implementation has a big potential for improving performance,
the experimental results are encouraging: in particular, exposing bugs�the
primary purpose of Boogaloo�is fast, even in the presence of partial imple-
mentations.

7.6 Related Work

Debugging failed veri�cation attempts. While still an incipient research
area, a few techniques have recently been proposed to help understand and
debug failed attempts of program veri�ers. Sect. 7.2 already mentioned the
Boogie Veri�cation Debugger (BVD, [46]); the Spec# debugger [93] imple-
ments similar functionalities which construct concrete counterexamples from
failed Boogie runs. Two-step veri�cation [129] compares veri�cation with
di�erent semantics (based on unrolling and inlining) to attribute veri�cation
failures to either inconsistent or incomplete speci�cations.

The fact that all these approaches are built around the output provided
by a program veri�er determines their main limitations compared to Booga-

7.6. RELATED WORK 139

loo. As we demonstrated in Sect. 7.2.1, when veri�cation fails because of
insu�cient speci�cation, the counterexamples generated by BVD or similar
tools are typically uninformative or even misleading, because they ignore the
implementation even when it is correct (e.g., a loop), unless it is comes with
an accurate speci�cation (e.g., a loop invariant). Boogaloo supports a more
incremental approach, where users can concentrate on �xing major bugs �rst.
Sect. 7.2.1 also discussed how inlining and unrolling (available in Boogie and
automatically used in two-step veri�cation) ameliorate these problems, but
they are also not directly comparable to Boogaloo, since they scale poorly
and require to know explicit unrolling bounds. Of course, the �nitary se-
mantics implemented by Boogaloo comes with its own shortcomings: if the
shortest counterexamples are very long, it may be infeasible to generate them
by enumeration, whereas a static veri�er's modular reasoning is insensitive
to the length of concrete execution paths since it is entirely symbolic; tools
such as BVD can directly work on any failed veri�er attempts.

Another approach to produce readable counterexamples is restricting
the input language (e.g., [122]), trading o� expressiveness for decidability.
Bounded model-checking techniques (e.g., [27]) also target standard program-
ming languages and the veri�cation of properties that do not include features
such as in�nite mappings and unbounded quanti�cation. Boogaloo follows a
di�erent course: it supports the entire Boogie language as used in practice,
which does not restrict expressiveness a priori, but may produce spurious
counterexamples.

Testing. Testing is the process of executing programs to make them fail.
Since it is based on execution, it is typically limited to violations of simple
properties that can be e�ciently evaluated at runtime and are implicit in the
programming language semantics (e.g., null dereferencing). Languages such
as Ei�el (used in the present work), JML [69], and Jahob [136] incorporate
a richer language for annotations that is still executable, so as to extend the
applicability of standard testing techniques. Another line of research in test-
ing is the combination with static techniques, with the goal of complementing
each other's strengths to search the input state space more e�ciently. For
example, [127] combines testing with program proving at a high level. A dif-
ferent array of techniques integrates testing with symbolic execution; see the
recent survey [19]. Boogaloo is also based on symbolic execution, but with a
di�erent overall goal; as future work, we will leverage other techniques from
symbolic execution to improve the enumeration of executions.

Constraint programming. This programming style supports program
de�nitions based on declarative constraints, describing properties of the so-
lution, rather than on traditional imperative constructs. Logic programming

140 CHAPTER 7. DEBUGGING FAILED VERIFICATION ATTEMPTS

extends functional programming languages [3]; more recent approaches com-
bine declarative constraints with imperative languages [89, 64]. All these
approaches restrict the expressiveness of the constraint language to have pre-
dictable performance and some guarantees about soundness, completeness,
or both. As brie�y demonstrated in Sect. 7.5, Boogaloo can also be used as a
Boogie-based constraint programming language. Unless we also restrict the
language of assertions, we cannot o�er strong guarantees about properties of
the executions generated by Boogaloo (see the end of Sect. 7.3.2 for a dis-
cussion). However, the usage as a constraint programming language brings
much �exibility to Boogaloo as a testing environment for Boogie programs,
since users can achieve di�erent trade-o�s between modularity and scalability
opting for the implementation or the speci�cation semantics.

7.7 Summary and Future Work

We presented a technique and a prototype implementation to execute pro-
grams with complex speci�cations and nondeterministic constructs, written
in the Boogie intermediate veri�cation language. We also evaluated the main
applications of the technique�understanding and debugging failed veri�ca-
tion attempts by producing concrete simple counterexamples, and executing
partial implementations�on several benchmark examples.

The main direction for future work is improving the performance of the
tool up to the point where it is applicable to Boogie programs generated
automatically by source language veri�ers, such as AutoProof. Those pro-
grams tend to be bigger and more complex than the code written by hand,
since they always include the encoding of the heap and various veri�cation
methodologies (e.g. for framing and class invariants), even if the source pro-
gram does not make use of them. In its present capacity Boogaloo is mainly
useful in teaching veri�cation; in fact, in 2013 is was successfully applied in
the Software Veri�cation course at ETH Zurich.

Chapter 8

Conclusions

This thesis presented a comprehensive approach to improving the quality of
reusable software components, in the context of sequential object-oriented
systems.

For early stages of the software development process, the thesis advo-
cates using an abstraction mechanism based on models as a design tool to
de�ne coherent interfaces and organize components into consistent hierar-
chies. Specifying the behavior of a component using model-based contracts
provides precise documentation for its clients and enables automated ver-
i�cation at later stages of development, through both static and dynamic
techniques. To assess the quality of such speci�cations the thesis proposes
formally de�ned criteria of completeness, observability, closure, and control-
lability, which together guarantee that the contracts are strong yet abstract.

The present work shows that deploying strong�mostly complete�beha-
vioral interface speci�cations in the form of model-based contracts is feasible
for realistic component libraries. The overhead of such speci�cations is mod-
erate: less than half a line of speci�cation per line of executable code; but the
bene�ts they can bring are signi�cant: used as oracles in automated testing,
strong speci�cations reveal twice as many faults as traditional Ei�el con-
tracts. Additionally, using strong speci�cations as part of the development
process seems to produce software with fewer faults �by construction�.

For static veri�cation, the present work gives particular importance to
class invariants, which describe consistency of individual objects and ob-
ject structures, and relate objects to their models. The thesis proposes a
new veri�cation methodology with support for invariants of complex object
structures, dubbed semantic collaboration. Experimental evaluation on a set
of benchmarks shows that the new methodology compares favorably to exist-
ing approaches in terms of �exibility and modularity: it supports invariants

142 CHAPTER 8. CONCLUSIONS

that depend on an unbounded number of objects, possibly unreachable in
the heap, and invariants that depend on unknown classes, without sacri�c-
ing guarantees given to clients. Semantic collaboration is implemented in
AutoProof: an auto-active program veri�er for Ei�el.

Next, the thesis extends semantic collaboration with support for models.
The support includes logic classes, which allow one to easily extend Auto-
Proof with new mathematical types, and still enjoy several features normally
available only for built-in types. The second extension is a simple heuris-
tic for reducing bookkeeping overhead of ghost state, which complements
AutoProof's straightforward encoding of model queries. Finally, the new
methodology includes a model-based abstraction mechanism for frame spec-
i�cations, with an intuitive semantics in the presence of inheritance. The
thesis demonstrates practical applicability of the overall veri�cation method-
ology using Ei�elBase2: a realistic container library, used in practice.

The present work also proposes an approach to generating concrete test
cases for programs equipped with complex speci�cations, normally used in
static veri�cation. The approach is based on the combination of symbolic
execution and SMT solving, and is implemented in a tool called Boogaloo.
The evaluation on several program veri�cation examples demonstrates that
the proposed test case generation technique can help understand failed ver-
i�cation attempts in conditions where traditional testing is not applicable,
thus making formal veri�cation techniques easier to use in practice.

Despite recent advances in software speci�cation and veri�cation, to which
this thesis makes a useful addition, the battle for �correctness as a matter
of course� is far from being won. Among various directions for future re-
search, a particularly important one is creating more versatile and robust
veri�cation tools. In the design phase, such tools could evaluate consistency
and expressive power of interface speci�cations, pointing to incorrect or miss-
ing speci�cation elements. Later during development, the tools would employ
a whole range of static and dynamic veri�cation techniques to present the
developer with the most accurate and useful information about the correct-
ness of the system, including minimal failing test cases, hints about missing
auxiliary annotations, and speci�cation elements that lead to performance
problems in deductive veri�cation.

Bibliography

[1] Jean-Raymond Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, New York, NY, USA, 1996.

[2] Andrei Alexandrescu. The D Programming Language. Pearson Educa-
tion, 2010.

[3] Sergio Antoy and Michael Hanus. Functional logic programming. Com-
mun. ACM, 53(4):74�85, 2010.

[4] Andrea Arcuri and Lionel Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In ICSE,
pages 1�10. ACM, 2011.

[5] AutoProof project. http://se.inf.ethz.ch/research/autoproof/.

[6] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional
logic for local reasoning about global invariants. In ECOOP, pages
387�411, 2008.

[7] J. Barnes. High integrity Ada: the SPARK approach. Addison-Wesley,
1997.

[8] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable veri�er for object-
oriented programs. In FMCO, pages 364�387, 2005.

[9] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Veri�cation of object-oriented programs with
invariants. Journal of Object Technology, 3, 2004.

[10] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller,
Wolfram Schulte, and Herman Venter. Speci�cation and veri�cation:
the Spec# experience. Commun. ACM, 54(6):81�91, 2011.

http://se.inf.ethz.ch/research/autoproof/

144 BIBLIOGRAPHY

[11] Mike Barnett and David A. Naumann. Friends need a bit more: Main-
taining invariants over shared state. In MPC, pages 54�84, 2004.

[12] Kent Beck. Test-Driven Development. Addison-Wesley, 2002.

[13] Gilles Bernot, Michel Bidoit, and Teodor Knapik. Observational spec-
i�cations and the indistinguishability assumption. Theoretical Com-
puter Science, 139:275�314, 1995.

[14] Joshua Bloch. How to design a good API and why it matters. In Com-
panion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA '06, pages
506�507, New York, NY, USA, 2006. ACM.

[15] Boogaloo project. https://bitbucket.org/nadiapolikarpova/

boogaloo/.

[16] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Ko-
rat: automated testing based on Java predicates. In ISSTA, pages
123�133, 2002.

[17] Cees-Bart Breunesse and Erik Poll. Verifying JML speci�cations with
model �elds. Technical report, ETH Zurich, 2003.

[18] S. Burris and H.P. Sankappanavar. A course in universal algebra. Grad-
uate texts in mathematics. Springer-Verlag, 1981.

[19] Cristian Cadar and Koushik Sen. Symbolic execution for software test-
ing: three decades later. Commun. ACM, 56(2):82�90, 2013.

[20] Patrice Chalin. Are practitioners writing contracts? In Rigorous De-
velopment of Complex Fault-Tolerant Systems, pages 100�113, 2006.

[21] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced speci�cation and veri�cation with JML
and ESC/Java2. In FMCO, pages 342�363, 2005.

[22] Juei Chang and Debra J. Richardson. Structural speci�cation-based
testing: Automated support and experimental evaluation. In ES-
EC/FSE, pages 285�302, 1999.

[23] Julien Charles. Adding native speci�cations to JML. In Workshop on
Formal Techniques for Java-like Programs (FTfJP), 2006.

https://bitbucket.org/nadiapolikarpova/boogaloo/
https://bitbucket.org/nadiapolikarpova/boogaloo/

BIBLIOGRAPHY 145

[24] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Ed-
wards. Model variables: cleanly supporting abstraction in design by
contract. Softw. Pract. Exper., 35(6):583�599, 2005.

[25] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In ECOOP, pages 231�255,
2002.

[26] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, and Alexander
Pretschner. Finding faults: Manual testing vs. random+ testing vs.
user reports. In Proceedings of ISSRE (International Symposium on
Software Reliability) 2008, 2008.

[27] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen
Yorav. SATABS: SAT-based predicate abstraction for ANSI-C. In
TACAS, volume 3440 of LNCS, pages 570�574, 2005.

[28] Code Contracts. http://research.microsoft.com/en-us/projects/

contracts/.

[29] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michaª Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In TPHOLs, vol-
ume 5674 of LNCS, pages 23�42. Springer, 2009.

[30] Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies.
Local veri�cation of global invariants in concurrent programs. In CAV,
pages 480�494, 2010.

[31] Boogaloo web interface. http://cloudstudio.ethz.ch/comcom/

#Boogaloo.

[32] Marcelo d'Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and
Michael D. Ernst. An empirical comparison of automated generation
and classi�cation techniques for object-oriented unit testing. In ASE,
pages 59�68, 2006.

[33] Ádám Darvas and Peter Müller. Faithful mapping of model classes to
mathematical structures. IET Software, 2(6):477�499, 2008.

[34] Ádám Darvas and Peter Müller. Proving consistency and completeness
of model classes using theory interpretation. In FASE, pages 218�232,
2010.

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://cloudstudio.ethz.ch/comcom/#Boogaloo
http://cloudstudio.ethz.ch/comcom/#Boogaloo

146 BIBLIOGRAPHY

[35] Leonardo de Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver.
In TACAS, pages 337�340, 2008.

[36] DSA library. http://dsa.codeplex.com/.

[37] Lydie du Bousquet, Yves Ledru, Olivier Maury, Catherine Oriat, and
Jean-Louis Lanet. Reusing a JML speci�cation dedicated to veri�ca-
tion for testing, and vice-versa: Case studies. J. Autom. Reasoning,
45(4):415�435, 2010.

[38] François Dupressoir, Andrew D. Gordon, Jan Jürjens, and David A.
Naumann. Guiding a general-purpose C veri�er to prove cryptographic
protocols. In IEEE Computer Security Foundations Symposium, 2011.

[39] Ei�elBase library. http://freeelks.svn.sourceforge.net.

[40] Ei�elBase2 library. https://bitbucket.org/nadiapolikarpova/

eiffelbase2/.

[41] H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni,
and Bertrand Meyer. Contracts in practice. In Proceedings, 19th In-
ternational Symposium on Formal Methods (FM 2014), May 2014.

[42] Jean-Christophe Filliâtre. Verifying two lines of C with Why3: an
exercise in program veri�cation. In VSTTE, LNCS, pages 83�97, 2012.

[43] Carlo A. Furia, Bertrand Meyer, and Sergey Velder. Loop invariants:
Analysis, classi�cation, and examples. http://arxiv.org/abs/1211.

4470, 2012.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison-Wesley, 1994.

[45] John D. Gannon, Paul R. McMullin, and Richard G. Hamlet. Data-
abstraction implementation, speci�cation, and testing. ACM Trans.
Program. Lang. Syst., 3(3):211�223, 1981.

[46] Claire Le Goues, K. Rustan M. Leino, and Michaª Moskal. The Boogie
veri�cation debugger (tool paper). In SEFM, volume 7041 of LNCS,
pages 407�414. Springer, 2011.

[47] Joseph A. Gougen, James W. Thatcher, and Eric G. Wagner. An initial
algebra approach to the speci�cation, correctness, and implementation
of abstract data types. In R. Yeh, editor, Current Trends in Program-
ming Methodology, volume IV, pages 80�149. Prentice Hall, 1978.

http://dsa.codeplex.com/
http://freeelks.svn.sourceforge.net
https://bitbucket.org/nadiapolikarpova/eiffelbase2/
https://bitbucket.org/nadiapolikarpova/eiffelbase2/
http://arxiv.org/abs/1211.4470
http://arxiv.org/abs/1211.4470

BIBLIOGRAPHY 147

[48] John V. Guttag and James J. Horning. The algebraic speci�cation of
abstract data types. Acta Inf., 10:27�52, 1978.

[49] John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones,
A. Modet, and J. M. Wing. Larch: Languages and tools for formal
speci�cation. In Texts and monographs in computer science. Springer-
Verlag, 1993.

[50] John Hatcli�, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and
Matthew J. Parkinson. Behavioral interface speci�cation languages.
ACM Comput. Surv., 44(3):16, 2012.

[51] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance
Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Har-
man, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H.
Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein Zedan.
Using formal speci�cations to support testing. ACM Comput. Surv.,
41(2), 2009.

[52] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576�580, 1969.

[53] C. A. R. Hoare. How did software get so reliable without proof? In
FME, pages 1�17, 1996.

[54] C. A. R. Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan
Shankar. The veri�ed software initiative: A manifesto. ACM Com-
put. Surv., 41(4), 2009.

[55] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[56] Bart Jacobs, Joseph Kiniry, and Martijn Warnier. Java program veri�-
cation challenges. Formal Methods for Components and Objects, pages
202�219, 2003.

[57] Bart Jacobs, Jan Smans, and Frank Piessens. Verifying the composite
pattern using separation logic. In Proceedings of the Speci�cation and
Veri�cation of Component-Based Systemsâ��Challenge Track, 2008.

[58] Cli� B. Jones. Systematic software development using VDM. Prentice-
Hall, 2nd edition, 1990.

148 BIBLIOGRAPHY

[59] Deepak Kapur and Srivas Mandayam. Expressiveness of the operation
set of a data abstraction. In Proceedings of the 7th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
'80, pages 139�153, New York, NY, USA, 1980. ACM.

[60] Ioannis T. Kassios. Dynamic frames: Support for framing, dependen-
cies and sharing without restrictions. In FM, pages 268�283, 2006.

[61] Oleg Kiselyov, Chung-Chieh Shan, Daniel P. Friedman, and Amr
Sabry. Backtracking, interleaving, and terminating monad transform-
ers: (functional pearl). In ICFP, pages 192�203. ACM, 2005.

[62] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leav-
ens, Valentin Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish,
Rod Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs, K. Rus-
tan M. Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova,
Tom Ridge, Jan Smans, Stephan Tobies, Thomas Tuerk, Mattias Ul-
brich, and Benjamin Weiÿ. The 1st veri�ed software competition. In
FM, volume 6664 of LNCS, 2011. Extended version at www.vscomp.org.

[63] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal veri�cation of an OS kernel. In SOSP,
pages 207�220. ACM, 2009.

[64] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints as
control. In POPL, pages 151�164, 2012.

[65] Neelakantar R. Krishnaswami. Reasoning about iterators with separa-
tion logic. In 5th International Workshop on Speci�cation and Veri�-
cation of Component-Based Systems, page 83â��86. ACM Press, 2006.

[66] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Complete functional synthesis. In PLDI, pages 316�329. ACM, 2010.

[67] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A nota-
tion for detailed design. In Behavioral Speci�cations of Businesses and
Systems, pages 175�188. 1999.

[68] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary de-
sign of JML: a behavioral interface speci�cation language for Java.
SIGSOFT Softw. Eng. Notes, 31(3):1�38, 2006.

www.vscomp.org

BIBLIOGRAPHY 149

[69] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime as-
sertion checking and formal veri�cation. Sci. Comput. Program., 55(1-
3):185�208, 2005.

[70] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Speci�ca-
tion and veri�cation challenges for sequential object-oriented programs.
Formal Asp. Comput., 19(2):159�189, 2007.

[71] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-
V hypervisor with VCC. In Proceedings of the 2nd World Congress
on Formal Methods, FM'09, pages 806�809, Berlin, Heidelberg, 2009.
Springer-Verlag.

[72] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,
Caltech, 1995.

[73] K. Rustan M. Leino. This is Boogie 2. http://goo.gl/QsH6g, 2008.

[74] K. Rustan M. Leino. Dafny: An automatic program veri�er for func-
tional correctness. In LPAR-16, volume 6355 of LNCS, pages 348�370.
Springer, 2010.

[75] K. Rustan M. Leino. Verifying concurrent programs with Chalice. In
VMCAI, page 2, 2010.

[76] K. Rustan M. Leino and Michaª Moskal. Usable auto-active veri�cation.
In Usable Veri�cation Workshop. http://fm.csl.sri.com/UV10/, 2010.

[77] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic
contexts. In ECOOP, pages 491�516, 2004.

[78] K. Rustan M. Leino and Peter Müller. A veri�cation methodology for
model �elds. In ESOP, pages 115�130, 2006.

[79] K. Rustan M. Leino and Peter Müller. A basis for verifying multi-
threaded programs. In ESOP, pages 378�393, 2009.

[80] K. Rustan M. Leino and Wolfram Schulte. Using history invariants to
verify observers. In ESOP, pages 80�94, 2007.

[81] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for
automated testing of Java programs. In ASE, page 22, 2001.

http://goo.gl/QsH6g
http://fm.csl.sri.com/UV10/

150 BIBLIOGRAPHY

[82] E. Michael Maximilien and Laurie Williams. Assessing test-driven de-
velopment at IBM. In ICSE, pages 564�569, 2003.

[83] Bertrand Meyer. Applying design by contract. Computer, 25(10):40�
51, 1992.

[84] Bertrand Meyer. Object-oriented software construction. Prentice Hall,
2nd edition, 1997.

[85] Bertrand Meyer. The dependent delegate dilemma. In Engineering
Theories of Software Intensive Systems, pages 105�118. Springer, 2005.

[86] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and
Emmanuel Stapf. Programs that test themselves. Computer, 42(9):46�
55, 2009.

[87] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik J. Luit.
Cooperation-based invariants for OO languages. Electr. Notes Theor.
Comput. Sci., 160:225�237, 2006.

[88] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik J. Luit.
Invariants for non-hierarchical object structures. Electr. Notes Theor.
Comput. Sci., 195:211�229, 2008.

[89] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jack-
son. Unifying execution of imperative and declarative code. In ICSE,
pages 511�520. ACM, 2011.

[90] Matthias M. Müller, Rainer Typke, and Oliver Hagner. Two controlled
experiments concerning the usefulness of assertions as a means for pro-
gramming. In ICSM, pages 84�92, 2002.

[91] Peter Müller. Modular Speci�cation and Veri�cation of Object-
Oriented Programs, volume 2262 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[92] Peter Müller, Arnd Poetzsch-He�ter, and Gary T. Leavens. Modu-
lar invariants for layered object structures. Sci. Comput. Program.,
62(3):253�286, 2006.

[93] Peter Müller and Joseph N. Ruskiewicz. Using debuggers to understand
failed veri�cation attempts. In FM, volume 6664 of LNCS, pages 73�87.
Springer, 2011.

BIBLIOGRAPHY 151

[94] Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and
Laurie Williams. Realizing quality improvement through test driven
development: results and experiences of four industrial teams. ESE,
13:289�302, 2008.

[95] Martin Nordio, Cristiano Calcagno, Bertrand Meyer, Peter Müller, and
Julian Tschannen. Reasoning about function objects. In J. Vitek,
editor, TOOLS-EUROPE, Lecture Notes in Computer Science, 2010.

[96] Donald A. Norman. The Design of Everyday Things. Basic Books,
2002.

[97] A. Je�erson O�utt and Aynur Abdurazik. Generating tests from UML
speci�cations. In UML, pages 416�429, 1999.

[98] William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H.
Zweben. The RESOLVE framework and discipline. ACM SIGSOFT
Software Engineering Notes, 19(4):23�28, 1994.

[99] Peter W. O'Hearn, Hongseok Yang, and John C. Reynolds. Separation
and information hiding. ACM Trans. Program. Lang. Syst., 31(3), 2009.

[100] Catherine Oriat. Jartege: A tool for random generation of unit tests
for Java classes. In Proceedings of the First International Conference
on Quality of Software Architectures and Software Quality, and Pro-
ceedings of the Second International Conference on Software Quality,
QoSA'05, pages 242�256, Berlin, Heidelberg, 2005. Springer-Verlag.

[101] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation
and classi�cation of test inputs. In ECOOP, pages 504�527, 2005.

[102] Matthew J. Parkinson. Class invariants: the end of the road? In
IWACO. ACM, 2007.

[103] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, ab-
straction and inheritance. In POPL, pages 75�86, 2008.

[104] David Lorge Parnas. Precise documentation: The key to better soft-
ware. In The Future of Software Engineering, pages 125�148. Springer,
2011.

[105] Richard E. Pattis. Textbook errors in binary searching. In SIGCSE,
pages 190�194. ACM, 1988.

152 BIBLIOGRAPHY

[106] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative
study of programmer-written and automatically inferred contracts. In
ISSTA '09: Proceedings of the eighteenth international symposium on
Software testing and analysis, pages 93�104, New York, NY, USA, 2009.
ACM.

[107] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55�74, 2002.

[108] Arsenii Rudich. Automatic Veri�cation of Heap Structures with Stereo-
types. PhD thesis, ETH Zurich, 2011.

[109] SAVCBS workshop series. http://www.eecs.ucf.edu/~leavens/

SAVCBS/, 2001�2010.

[110] Semantic Collaboration. http://se.inf.ethz.ch/people/

polikarpova/sc/.

[111] Bernd Schoeller. Making classes provable trough contracts, models and
frames. PhD thesis, ETH Zurich, 2007.

[112] Bernd Schoeller, Tobias Widmer, and Bertrand Meyer. Making speci�-
cations complete through models. In Architecting Systems with Trust-
worthy Components, pages 48�70, 2004.

[113] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority in-
heritance protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175�1185, 1990.

[114] Murali Sitaraman, Lonnie R. Welch, and Dounglas E. Harms. On
speci�cation of reusable software components. International Journal
of Software Engineering and Knowledge Engineering, 03(02):207�229,
1993.

[115] Jan Smans, Bart Jacobs, and Frank Piessens. VeriCool: An automatic
veri�er for a concurrent object-oriented language. In FMOODS, pages
220�239, 2008.

[116] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In ECOOP, pages
148�172, 2009.

[117] Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An
automatic veri�er for Java-like programs based on dynamic frames. In
FASE, pages 261�275, 2008.

http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://se.inf.ethz.ch/people/polikarpova/sc/
http://se.inf.ethz.ch/people/polikarpova/sc/

BIBLIOGRAPHY 153

[118] Matt Staats, Michael W. Whalen, and Mats Per Erik Heimdahl. Pro-
grams, tests, and oracles. In ICSE, pages 391�400, 2011.

[119] Phil Stocks and David A. Carrington. Test templates: A speci�cation-
based testing framework. In ICSE, pages 405�414, 1993.

[120] Alexander J. Summers and Sophia Drossopoulou. Considerate reason-
ing and the composite design pattern. In VMCAI, pages 328�344, 2010.

[121] Alexander J. Summers, Sophia Drossopoulou, and Peter Müller. The
need for �exible object invariants. In IWACO, pages 1�9. ACM, 2009.

[122] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satis�ability
modulo recursive programs. In SAS, volume 6887 of LNCS, pages 298�
315. Springer, 2011.

[123] Testing with strong speci�cations. http://se.inf.ethz.ch/people/

polikarpova/mbctesting.

[124] Nikolai Tillmann and Jonathan de Halleux. Pex�white box test gen-
eration for .NET. In TAP, pages 134�153, 2008.

[125] Tra�c repository. https://bitbucket.org/nadiapolikarpova/

traffic/.

[126] Julian Tschannen, Carlo A. Furia, and Martin Nordio. AutoProof meets
some veri�cation challenges. International Journal on Software Tools
for Technology Transfer, 2014.

[127] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Usable veri�cation of object-oriented programs by combining static and
dynamic techniques. In SEFM, volume 7041 of LNCS. Springer, 2011.

[128] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Verifying Ei�el programs with Boogie. In BOOGIE workshop, 2011.
http://arxiv.org/abs/1106.4700.

[129] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
Program checking with less hassle. In VSTTE, pages 149�169, 2013.

[130] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring
better contracts. In ICSE, pages 191�200, 2011.

http://se.inf.ethz.ch/people/polikarpova/mbctesting
http://se.inf.ethz.ch/people/polikarpova/mbctesting
https://bitbucket.org/nadiapolikarpova/traffic/
https://bitbucket.org/nadiapolikarpova/traffic/
http://arxiv.org/abs/1106.4700

154 BIBLIOGRAPHY

[131] Yi Wei, Hannes Roth, Carlo A. Furia, Yu Pei, Alexander Horton,
Michael Steindorfer, Martin Nordio, and Bertrand Meyer. Stateful
testing: Finding more errors in code and contracts. In ASE, pages
440�443, 2011.

[132] Bruce W. Weide, William F. Ogden, and Stuart H. Zweben. Reusable
software components. Advances in Computers, 33:1�65, 1991.

[133] B.W. Weide, S.H. Edwards, Wayne D. Heym, T.J. Long, and W.F. Og-
den. Characterizing observability and controllability of software com-
ponents. In Software Reuse, 1996., Proceedings Fourth International
Conference on, pages 62�71, April 1996.

[134] Jim Woodcock and Jim Davies. Using Z: speci�cation, re�nement, and
proof. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[135] Tao Xie and David Notkin. Tool-assisted unit-test generation and selec-
tion based on operational abstractions. Autom. Softw. Eng., 13(3):345�
371, 2006.

[136] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin C. Rinard.
Runtime checking for program veri�cation. In RV, volume 4839 of
LNCS, pages 202�213. Springer, 2007.

[137] Andreas Zeller. Mining speci�cations: A roadmap. In The Future of
Software Engineering, pages 173�182. Springer, 2010.

[138] Stephen N. Zilles. Introduction to data algebra. In Abstract Software
Speci�cations, pages 248�272, 1979.

[139] Daniel M. Zimmerman and Rinkesh Nagmoti. JMLUnit: The next
generation. In Proceedings of the 2010 International Conference on
Formal Veri�cation of Object-oriented Software, FoVeOOS'10, pages
183�197, Berlin, Heidelberg, 2011. Springer-Verlag.

CURRICULUM VITAE

Nadia Polikarpova
Chair of Software Engineering
Department of Computer Science, ETH Zurich
ETH Zentrum RZ J8, Clausiusstrasse 59, 8092 Zürich, Switzerland
Phone: +41 44 632 4723
Email: nadia.polikarpova@inf.ethz.ch
Homepage: se.ethz.ch/people/polikarpova/

Research positions

PhD Student and Research Assistant 09/2008�present
Chair of Software Engineering, Department of Com-
puter Science, ETH Zurich (Switzerland)

Research Intern 05�08/2011
Microsoft Research (Redmond, USA)
Mentor: Michaª Moskal

Undergraduate Researcher 10/2005�08/2007
Chair of Computer Technologies, Department of In-
formation Technologies and Programming, SPbSU
ITMO (Saint-Petersburg, Russia)

Education

PhD, Computer Science 09/2008�04/2014
ETH Zurich (Switzerland)
Thesis: Speci�ed and Veri�ed Reusable Components
Advisor: Prof. Bertrand Meyer

http://se.inf.ethz.ch
http://www.inf.ethz.ch
http://www.ethz.ch
mailto:nadia.polikarpova@inf.ethz.ch
http://se.inf.ethz.ch/people/polikarpova/

MSc, Applied Mathematics and Informatics 09/2006�05/2008
SPbSU ITMO (Saint-Petersburg, Russia)
Thesis: Dynamic Assertion Inference in a Program-
ming Language with Design by Contract Support
(Ei�el Case Study)
Advisor: Prof. Anatoly Shalyto
Co-advisor: Ilinca Ciupa (ETH Zurich)
Grade: 5 / 5

BEng, Applied Mathematics and Informatics 09/2002�05/2006
SPbSU ITMO (Saint-Petersburg, Russia)
Thesis: Object-oriented approach to modeling and
speci�cation of entities with complex behavior
Advisor: Dr. Danil Shopyrin
Grade: 5 / 5

Research interests

My research interests lie in the area of software correctness. My expertise
covers a range of topics in formal methods and software engineering ; in par-
ticular, my research has contributed to auto-active veri�cation, behavioral
interface speci�cations, automated testing, dynamic invariant inference, and
user interface for veri�cation.

Projects

I have been involved in the development of the following tools and libraries:

AutoProof co-developer, Ei�el
An auto-active program veri�er for Ei�el
http://se.inf.ethz.ch/research/autoproof

Ei�elBase2 main developer, Ei�el
A speci�ed and veri�ed data structure library
for Ei�el
https://bitbucket.org/nadiapolikarpova/

eiffelbase2

http://se.inf.ethz.ch/research/autoproof
https://bitbucket.org/nadiapolikarpova/eiffelbase2
https://bitbucket.org/nadiapolikarpova/eiffelbase2

Boogaloo main developer, Haskell
An interpreter and run-time assertion checker
for Boogie
https://bitbucket.org/nadiapolikarpova/

boogaloo

Dafny contributor, C#
A Language and Program Veri�er for Func-
tional Correctness
http://research.microsoft.com/en-us/

projects/dafny

CITADEL main developer, Ei�el
An Ei�el front-end for the Daikon assertion
detector
http://se.inf.ethz.ch/people/

polikarpova/citadel

Publications1

International conferences and journals

P9. Polikarpova N., Tschannen J., Furia C., Meyer B., Flexible Invariants
Through Semantic Collaboration, Proceedings of FM'14: 19th Interna-
tional Symposium on Formal Methods, (Singapore), To Appear

P8. Polikarpova N., Furia C., West S., To Run What No One Has Run Be-
fore Proceedings of RV'13: Fourth International Conference on Run-
time Veri�cation, (Rennes, France), September 2013

P7. Polikarpova N., Furia C., Pei Y., Wei Y., Meyer B., What Good Are
Strong Speci�cations? Proceedings of ICSE'13: 35th International
Conference on Software Engineering, (San Francisco, California, USA),
May 2013

P6. Leino K. R. M., Polikarpova N., Veri�ed calculations, Proceedings
of VSTTE'13: Veri�ed Software: Theories, Tools and Experiments,
(Atherton, California, USA), May 2013

P5. Polikarpova N., Moskal M., Verifying implementations of security pro-
tocols by re�nement, Proceedings of VSTTE'12: Veri�ed Software:

1Publications are available online at http://se.inf.ethz.ch/people/polikarpova/.

https://bitbucket.org/nadiapolikarpova/boogaloo
https://bitbucket.org/nadiapolikarpova/boogaloo
http://research.microsoft.com/en-us/projects/dafny
http://research.microsoft.com/en-us/projects/dafny
http://se.inf.ethz.ch/people/polikarpova/citadel
http://se.inf.ethz.ch/people/polikarpova/citadel
http://se.inf.ethz.ch/people/polikarpova/

Theories, Tools and Experiments, (Philadelphia, Pennsylvania, USA),
January 2012

P4. Klebanov V. et al., The 1st Veri�ed Software Competition: Experience
Report, Proceedings of FM'11: 17th International Symposium on For-
mal Methods, (Limerick, Ireland), June 2011, best paper award

P3. Polikarpova N., Furia C., Meyer B., Specifying Reusable Components,
Proceedings of VSTTE'10: Veri�ed Software: Theories, Tools and Ex-
periments, (Edinburgh, Scotland), August 2010

P2. Polikarpova N., Tochilin V., Shalyto A., Method of Reduced Tables for
Generation of Automata with a Large Number of Input Variables Based
on Genetic Programming, Journal of Computer and Systems Sciences
International, 49(2):265�283, February 2010

P1. Polikarpova N., Ciupa I., Meyer B., A comparative study of programmer-
written and automatically inferred contracts, Proceedings of ISSTA'09:
International Conference on Software Testing and Analysis, (Chicago,
Illinois, USA), July 2009

National conferences

N5. Polikarpova N., Tochilin V., Shalyto A., A Library for Generating Con-
trol Automata by Means of Genetic Programming (in Russian), Pro-
ceedings of the X International Conference on Soft Computing and
Measurement, (Saint-Petersburg, Russia), June 2007

N4. Polikarpova N., Tochilin V., Shalyto A., Applying Genetic Program-
ming to Implementation of Systems with Complex behavior (in Rus-
sian), Proceedings of the IV International Theoretical and Practical
Conference �Integrated Models and Soft Computing in Arti�cial Intel-
ligence�, (Kolomna, Russia), May 2007

N3. Polikarpova N., Tochilin V., Applying Genetic Algorithms to Generat-
ing Logics in Computational Systems (in Russian), Proceedings of the
4th Inter-University Young Researchers Conference, (Saint-Petersburg,
Russia), April 2007

N2. Polikarpova N., Object-oriented approach to modeling and speci�cation
of entities with complex behavior, Proceedings of SEC(R) 2006: Soft-
ware Engineering Conference in Russia, (Moscow, Russia), November
2006

N1. Polikarpova N., Inheritance Relation for Types with Complex Behav-
ior (in Russian), Proceedings of the 3rd Inter-University Young Re-
searchers Conference, (Saint-Petersburg, Russia), April 2006

Books

B1. Polikarpova N., Shalyto A., Automata-based Programming (in Rus-
sian), Piter, 2009

Teaching activities

Teaching assistant and guest lecturer for Introduction to Programming,
ETH Zürich, Fall 2008�2013, Prof. Bertrand Meyer

Guest lecturer for Software Veri�cation, ETH Zürich, Fall 2009�2013,
Prof. Bertrand Meyer, Dr. Carlo A. Furia, Dr. Sebastian Nanz

Guest lecturer for Software Architecture, ETH Zürich, Spring 2011, Prof.
Bertrand Meyer, Dr. Carlo A. Furia, Dr. Martin Nordio

Teaching assistant for Java and C# in depth, ETH Zürich, Spring 2010,
Prof. Bertrand Meyer, Dr. Carlo A. Furia

Guest lecturer for Ei�el: Analysis, Design and Programming, ETH Zürich,
Fall 2009, Prof. Bertrand Meyer

Teaching assistant and guest lecturer for Software Architecture, ETH
Zürich, Spring 2009, Prof. Bertrand Meyer

Supervised theses

Tobias KieferModel-based contracts for C#, Bachelor Thesis, ETH Zürich,
October 2012

Elena Mokhon Model-based contracts for C# collections, Master Thesis,
ETH Zürich and Tver State University (Russia), April 2011

Flaviu Roman Improving relevancy of dynamically-inferred contracts in
Ei�el, Master Thesis, ETH Zürich and Technical University of Cluj-
Napoca, June 2009

Talks

To Run What No One Has Run Before: Executing an Intermediate Ver-
i�cation Language RV'13, September 26 2013, Rennes, France

What Good Are Strong Speci�cations? ICSE'13, May 22 2013, San Fran-
cisco, California, USA

Veri�ed calculations. VSTTE'13, May 18 2012, Atherton, California,
USA

Verifying implementations of security protocols by re�nement. VSTTE'12,
January 28 2012, Philadelphia, Pennsylvalina, USA

Ei�elBase2: strong contracts for design and veri�cation. Workshop �Ei�el
at 25�, November 24, 2010, Zürich, Switzerland.

Specifying Reusable Components. VSTTE'10, August 17 2010, Edin-
burgh, Scotland.

Specifying reusable components with model-based contracts. IFIP WG
2.3 meeting 50. March 5 2010, Lachen, Switzerland.

A comparative study of programmer-written and automatically inferred
contracts. ISSTA'09, July 21 2009, Chicago, Illinois, USA.

Applying Genetic Programming to Implementation of Systems with Com-
plex behavior. Integrated Models and Soft Computing in Arti�cial Intel-
ligence, May 28 2007, Kolomna, Russia.

Applying Genetic Algorithms to Generating Logics in Computational Sys-
tems. 4th Young Researchers Conference, April 12 2007, Saint-Petersburg,
Russia.

Inheritance Relation for Types with Complex Behavior. 3rd Young Re-
searchers Conference, April 12 2006, Saint-Petersburg, Russia.

Other events attended

Dagstuhl seminar on Evaluating Software Veri�cation Systems: Bench-
marks and Competitions. Schloss Dagstuhl, Germany. April 22�25, 2014.

LASER summer school on Innovative Languages for Software Engineer-
ing. Elba, Italy. September 2�8, 2012.

VSTTE 2012 Software Veri�cation Competition (bronze medal). No-
vember 8�10, 2011.

COST Veri�cation Competition. Turin, Italy. October 4, 2011.

LASER summer school on Tools for Practical Software Veri�cation. Elba,
Italy. September 4�10, 2011.

FOSE The Future of Software Engineering Symposium. Zürich, Switzer-
land. November 22�23, 2010.

LASER summer school on Empirical Software Engineering. Elba, Italy.
September 5�11, 2010.

VSTTE 2010 Software Veri�cation Competition. Edinburgh, Scotland.
August, 2010

SICSA Summer School on Formal Reasoning & Representation of Com-
plex Systems. Edinburgh, Scotland. August 14�15, 2010.

TOOLS-Europe 2009 47th International Conference on Objects, Models,
Components, Patterns. Zürich, Switzerland. June 29 � July 3, 2009.

LASER summer school on Concurrency and Correctness. Elba, Italy.
September 7�13, 2008.

Professional Activities

PC member, Tutorials Chair and Proceedings Chair, 14th Inter-
national Conference on Runtime Veri�cation (RV 2014)

PC member, 11th International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures (FESCA 2014)

Deputy General Chair, 9th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2013)

Publicity Chair, LASER Summer School (2011�2014)

Publicity Chair, 4th International Conference on Software Engineer-
ing Approaches For O�shore and Outsourced Development (SEAFOOD
2010)

Awards

ACM SIGSOFT Recognition of Services Award in appreciation for the
contribution as a Deputy General Chair of ESEC/FSE 2013.

Personal data

Date of birth: 20 May 1985

Place of birth: Leningrad, USSR

Nationality: Russian

Language pro�ciency

Russian: native

English: �uent

German: intermediate

Italian: fair

	Introduction
	Motivation and Goal
	Challenges and Contributions
	Terminology
	Outline

	The EiffelBase2 Library
	Overview
	Design Goals
	The EiffelBase2 Architecture
	Specification and Verification Challenges
	The Mathematical Model Library

	Specifying Reusable Components
	Introduction
	Motivating Examples
	Some limitations of Design by Contract
	Enhancing Design by Contract with models

	Foundations of Model-Based Contracts
	Abstract Data Types
	Abstract equality and abstract state space
	Model-Based Specifications

	Model-Based Contracts in Practice
	From Abstract Data Types to Classes
	Assessing Quality in Practice

	Experimental Evaluation
	Case studies
	Results and discussion

	Related Work
	Summary and Future Work

	Testing against Strong Specifications
	Introduction
	A Motivating Example
	Strong Specifications for Testing
	Representation Constraints
	Avoiding False Positives
	Tool support

	Experiments
	Research Questions
	Eiffel Experiments
	C# Experiment
	EiffelBase2 Experiment

	Results
	Faults Found
	Fault Complexity
	Usage of Testing Time
	Runtime Performance Overhead
	Specification Writing Overhead
	C# Experiments
	EiffelBase2 Experiments
	Threats to Validity

	Related Work
	Formal specifications for testing.
	Inferred specifications for testing.
	Model-based specifications at runtime.

	Summary

	Flexible Invariants for Complex Object Structures
	Introduction
	Motivating Examples
	Observer pattern
	Iterator Pattern

	Existing Approaches
	Semantic Collaboration
	Preliminaries and Definitions
	Semantic Collaboration: Goals and Proof Obligations
	Soundness of the Methodology
	Examples
	Default Annotations
	Update guards
	Extensions

	Experimental Evaluation
	Challenge Problems
	Results and Discussion
	Comparison with Existing Approaches

	Summary

	Verifying Reusable Components
	Introduction
	A Motivating Example
	Verification Methodology for Model-Based Contracts
	Encoding of Model Classes
	Encoding of Model Queries
	Abstract Framing

	Experimental Evaluation
	Related Work
	Summary and Future Work

	Debugging Failed Verification Attempts
	Introduction
	A Motivating Example
	Comparison with other approaches

	A Runtime Semantics of Boogie Programs
	Input Language
	Runtime Operational Semantics

	Boogaloo: Implementation Details
	Experimental Evaluation
	Related Work
	Summary and Future Work

	Conclusions

