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Abstract. Metamodelling is an important tool for modern applications in structural
reliability, especially in the presence of high �delity computational models. A review of
several state-of-the-art metamodel-based applications in structural reliability is given.

1 Introduction

Structural reliability analysis aims at assessing the safety of a system in the presence of
uncertainty in its components. Given a random vector that represents the input uncer-
tainty X (e.g. a joint probability density function PDF fX), the safety level is de�ned
through a probability of failure Pf . By de�ning a performance function g(X) that is
negative in case of system failure, Pf can be de�ned as follows (e.g. [3]):

Pf = P ({g(X) ≤ 0}) =

∫
Df={x∈RM :g(X)≤0}

fX(x)dx (1)

where Df is the failure domain de�ned by g(x) ≤ 0. Introducing the failure indicator
function 1Df

as the characteristic function of g(x) ≤ 0, Pf can be recast as:

Pf =

∫
RM

1Df
(x) fX(x) dx ≡ E

[
1Df

(X)
]

(2)

with associated Monte-Carlo (MC) estimator:

P̂f =
1

N

N∑
k=1

1Df

(
X(k)

)
=
Nf

N
. (3)

Due to the slow convergence rate of MC methods, the accurate computation of the ex-
pectation value estimator in Eq. (3) can rapidly become prohibitive with high �delity
computational models commonly used today in industrial applications. More e�cient
strategies for the computation of probability of failures are then needed.

A number of improvements on Monte-Carlo based simulation have been proposed in the
literature to e�ectively precondition the estimation in Eq. (3) and reduce the associated
computational costs (e.g. Importance Sampling, Subset Simulation, etc.), but their overall
cost (typically N = 103−4) may remain prohibitive.

Recent developments in surrogate modelling, however, have proven that metamodels can
be ideal candidates for the accurate estimation of Pf while keeping computational costs
manageable.
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2 Surrogate models

Surrogate models are functional approximations to the full complex computational models
that can be built from a comparatively small set of full model evaluations (the experi-
mental design), typically comprising tens to hundreds of samples. Such approximations
are much cheaper to evaluate than their full counterpart and in some cases they can even
provide additional useful information. Several metamodelling techniques have been suc-
cessfully applied for the solution of structural reliability problems (e.g. Polynomial Chaos
Expansions (PCE) and Kriging, see [6]). This contribution will focus on Kriging.

2.1 Kriging

Kriging, or Gaussian process metamodelling, is based on the representation of the random
output Y =M(X) as the superimposition of a deterministic trend and a realization of a
zero-mean stationary Gaussian process (see, e.g. [4]):

Y (x, ω) = f (x)T a+ Z (x, ω) (4)

where f (x)T a represents the deterministic trend and Z (x, ω) represents the Gaussian
process with variance σ2 and covariance function:

CY Y (x, x′) = σ2R (x− x′ , θ) (5)

The autocorrelation function family R is a parameter of the metamodel. The hyperpa-
rameters θ of the Gaussian process can be calculated from a learning set of full model
evaluations by maximum likelihood estimation.

Two properties of Kriging are especially useful in the context of structural reliability: it
is an interpolant and it provides a built-in estimation of the local epistemic error of the
surrogate model, known as the Kriging variance σ2

Ŷ
(x).

3 Surrogate models in structural reliability

3.1 As surrogates of g(x)

The most straightforward application of surrogate models in structural reliability is that
of providing an inexpensive surrogate of the performance function, hence o�setting the
costs of a direct application of the MC estimator in Eq. (3). However, the accuracy of
the metamodel, especially in low probability regions of the model space, can be di�cult
to assess.

3.2 Adaptive experimental design

Leveraging on the local error estimate σ2
Ŷ

(x) provided by the Kriging metamodel, it is
possible to devise experimental design enrichment strategies aimed at minimizing the
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Figure 1: Example of experimental design enrichment based on the learning function in
Eq. (6) at three di�erent iterations for the Four Branch Function from [5]. The
black line represents the true limit state surface, while the blue and red lines
represents the 95% quantiles of the currently estimated failure regions.

metamodelling error near the limit state surface. This allows one to initialize the meta-
model with a small experimental design, followed by its iterative re�nement in the regions
of interest. This can be achieved by de�ning enrichment criteria that identify the re-
gions where the maximum improvement in the classi�cation power of the metamodel are
expected. One example is the learning function from [2]:

U(x) =
|µŶ (x) |
σŶ (x)

(6)

This indicator can be interpreted as the reliability index of the classi�cation of each meta-
modelled sample as being in the safe or failure domain. Lower values of U(x) indicate
high misclassi�cation probability and closeness of x to the limit state surface. Thus they
are ideal candidates for the addition of experimental design points. An example applica-
tion of adaptive re�nement of the failure domain can be found in Figure 1 for a test-case
(Four Branch benchmark, see e.g. [5]).

3.3 Metamodel-based importance sampling

Further improvements can be attained with a metamodel-based extension of the Impor-
tance Sampling (IS) Monte-Carlo simulation method. Importance Sampling consists in
de�ning an instrumental probability density function h(X) which allows one to recast Eq.
(1) as:

Pf =

∫
RM

1Df
(x)

fX(x)

h(x)
h(x) dx = Eh

[
1Df

(X)
fX(X)

h(X)

]
(7)

The choice of h(X) signi�cantly a�ects the accuracy of the Monte-Carlo estimation of
Pf . An approximation to the optimal instrumental PDF can be built from the Kriging
metamodel (see, e.g. , [1]), with which Eq. (7) can be rewritten as:

Pf = Pfε · Eh̃
[
1Df

(x)

π(x)

]
= Pfε · αcorr (8)
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where Pfε is the probability of failure calculated with the inexpensive Kriging surrogate,
while αcorr is a correction factor calculated from an additional validation set of full model
evaluations sampled from the approximated optimal instrumental PDF h̃(x). Based on
the Kriging predictor µŶ and variance σ2

Ŷ
, the terms in Eq. (8) read:

π(x) = Φ
(
−µŶ (x)/σŶ (x)

)
, h̃(x) =

π(x)fX(x)

Pfε
, Pfε = E [π(x)] . (9)

Several application examples of this method show that it can signi�cantly help improving
the stability and e�ciency existing approaches based on metamodelling or adaptive design
alone ([1, 6]).

4 Conclusions

Metamodelling has become an established tool in structural reliability applications in
the presence of expensive computational models. The research community is actively
developing new and more sophisticated approaches than the straightforward surrogation of
the limit state function, e.g. by exploiting the stochastic properties of Kriging surrogates
to create quasi-optimal instrumental densities in Importance Sampling algorithms.
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