Doctoral Thesis

The role of PKB isoforms in the regulation of pancreatic β-cell mass and function

Author(s):
Dietrich, Maren Gil

Publication Date:
2014

Permanent Link:
https://doi.org/10.3929/ethz-a-010350906

Rights / License:
In Copyright - Non-Commercial Use Permitted
The role of PKB isoforms in the regulation of pancreatic β-cell mass and function

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES OF ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

MAREN GIL DIETRICH
Master of Science ETH Zurich in Pharmaceutical Sciences
born on 19.09.1983
citizen of Rafz (ZH)

accepted on the recommendation of

Prof. Dr. Matthias Peter, examiner
Prof. Dr. Ernst Hafen, co-examiner
Prof. Dr. med. Daniel Konrad, PhD, co-examiner
Dr. Markus Niessen, co-examiner

2014
Table of contents

Table of contents .. i
Summary ... iii
Zusammenfassung ... v
1. Introduction .. 1
 1.1 Pancreatic islets of Langerhans ... 1
 1.2 The regulation of glucose homeostasis ... 1
 1.2.1 Insulin and glucagon maintain glucose homeostasis 2
 1.2.1.1 Insulin ... 2
 1.2.1.2 Glucagon .. 3
 1.2.2 β-cell mass can adapt to meet the demand for insulin production 4
 1.3 Insulin signalling ... 5
 1.3.1 Crosstalk between insulin-like growth factor- (IGFR) and insulin receptor (IR) signalling ... 5
 1.3.2 The role of insulin signalling in β-cells .. 7
 1.3.3 Insulin Receptor Substrate (IRS) adapter proteins .. 8
 1.3.4 The PI3K-PKB signalling pathway ... 9
 1.3.4.1 PKB regulates various cellular processes ... 9
 1.3.4.2 PKB isoforms have specific but also redundant functions in rodents 11
 1.4 T2D is the most common diabetes form ... 13
 1.4.1 Causes and underlying mechanisms of insulin resistance 14
 1.4.2 The role of β-cells in T2D and insulin resistance ... 15
 1.4.2.1 Compensatory increase of β-cell mass can prevent the onset of T2D 15
 1.4.2.2 Mechanisms of β-cell failure ... 16
 1.5 Aim of my thesis .. 17
2. Results .. 19
 2.1 Specific and redundant roles of PKBα/AKT1 and PKBβ/AKT2 in human pancreatic islets 19
 2.1.1 Introduction .. 21
 2.1.2 Materials and methods .. 23
 2.1.2.1 Human islets .. 23
 2.1.2.2 Rat islets .. 23
 2.1.2.3 Adenoviral transfection ... 23
 2.1.2.4 Western blotting ... 23
 2.1.2.5 Glucose-stimulated insulin secretion and determination of total insulin content ... 24
 2.1.2.6 Analysis of apoptosis and proliferation .. 24
 2.1.2.7 Assessment of β-cell size, ratio of β-cells to non-β-cells 25
 2.1.2.8 Microscopic analysis ... 25
 2.1.2.9 Statistical analysis. .. 25
 2.1.3 Results .. 26
 2.1.3.1 Overexpression of PKBα, PKBβ or GFP in human islets 26
 2.1.3.2 Overexpression of PKBα or PKBβ does not affect β-cell function 26
 2.1.3.3 Overexpression of PKBα increases proliferation but PKBα and PKBβ can increase β-cell size ... 26
 2.1.3.4 Overexpression of PKBα protects from apoptosis and increases the ratio of β-cells to non-β-cells ... 27
 2.1.4 Discussion ... 37
2.2 The role of PKBa in the compensatory expansion of pancreatic β-cell mass under insulin resistance

2.2.1 Introduction .. 41
2.2.2 Materials and Methods .. 43
 2.2.2.1 Mice .. 43
 2.2.2.2 Determination of glucose and insulin in blood samples 43
 2.2.2.3 Intraperitoneal glucose and insulin tolerance tests (ipGTT, ipITT) 43
 2.2.2.4 Tissue dissections and assessment of fat depots .. 44
 2.2.2.5 Immunohistochemistry and morphometric analysis of pancreas 44
 2.2.2.6 Islet isolation and culture ... 44
 2.2.2.7 Western blotting .. 44
 2.2.2.8 Statistical analysis .. 45
 2.2.3 Results ... 45
 2.2.3.1 Validation of the new mouse model .. 45
 2.2.3.2 βpkbaKO mice show impaired glucose tolerance at 26 weeks of age 45
 2.2.3.3 HFD accelerates the onset of impaired glucose tolerance in βpkbaKO mice 46
 2.2.3.4 HFD-induced increase of plasma insulin is absent in βpkbaKO mice 46
 2.2.3.5 βpkbaKO mice are partially protected from HFD-induced weight gain 46
 2.2.3.6 Morphometric analysis of pancreas showed decreased β-cell area in βpkbaKO mice 47
 2.2.4 Discussion ... 58
 2.2.4.1 Is Pkba required for maintenance and/or adaptive expansion of islet mass? 58
 2.2.4.2 The use of RIP to drive CRE expression in pancreatic β-cells 59
 2.2.4.3 Gender-specific differences .. 59
 2.2.4.4 Differences in fat distribution .. 60

2.3 Regulation of PKB isoforms in β-cells by growth factors .. 61
 2.3.1 Introduction ... 61
 2.3.2 Materials and Methods .. 62
 2.3.2.1 Cell culture and stimulation with growth factors .. 62
 2.3.2.2 Immunoprecipitation of PKB isoforms ... 62
 2.3.2.3 Western blotting .. 62
 2.3.2.4 Statistical analysis ... 63
 2.3.3 Results .. 64
 2.3.3.1 Stimulation with growth factors and immunoprecipitation 64
 2.3.3.2 Phosphorylation at Ser473 .. 64
 2.3.3.3 Phosphorylation at Thr308 ... 65
 2.3.4. Discussion .. 68

3. Conclusions and general discussion .. 71
4. Future directions ... 75
5. Abbreviations .. 77
6. References ... 81
7. Acknowledgements ... 103
8. Curriculum vitae ... 105
9. Appendix ... 109
 9.1 Reduced hepatic lipid content in Pten-haplodeficient mice because of enhanced AKT2/PKBβ activation in skeletal muscle .. 109
Summary

Type 2 diabetes is characterised by chronic hyperglycaemia due to insulin resistance combined with insufficient production of insulin. Capacity of insulin production can increase by expansion of functional pancreatic β-cell mass. Under conditions of overt type 2 diabetes, adaptation of functional β-cell mass is impaired caused by increased rate of apoptosis and decreased proliferation of β-cells. The adapter protein insulin receptor substrate 2 (IRS2) plays a major role in the regulation of maintenance as well as in compensatory expansion of functional β-cell mass. Mice deficient for Irs2 are insulin resistant in liver and suffer from diabetes at young age because of β-cell failure. Downstream of IRS2 the protein kinase B (PKB/AKT) is indicated to regulate functional β-cell mass. Three isoforms of PKB are expressed in rodents and in humans: PKBα/AKT1, PKBβ/AKT2, and PKBγ/AKT3. PKBα and PKBβ are required for normal peripheral insulin action but their role in pancreatic β-cells remains enigmatic as indicated by the relatively mild islet phenotype of mice with deficiency for either one of these two isoforms. However, reduced activity of PKB in mouse β-cells results merely in insulin secretion defects with very little β-cell loss. This could be due to redundancy of isoforms but also an alternative explanation has been proposed: Only β-cell compensation could be depending on PKB but not maintenance of islet mass. Furthermore, previously published results indicated that PKBα is the only isoform required for compensation. The overall goal of my PhD thesis was to clarify the role(s) of PKB isoforms in the regulation of β-cell mass and function. Three specific questions were addressed:

1. Is the function of PKBα and PKBβ conserved in rodent and human islets? In this part proliferation, apoptosis, cell size, and insulin production/secretion were analysed in isolated human islets overexpressing PKBα or PKBβ.

2. Is PKBα required for β-cell compensation under insulin resistance? This was tested in a newly generated mouse model with specific deficiency for Pkba in pancreatic β-cells. Mice were fed a high-fat diet (HFD) to induce insulin resistance.

3. How are PKB isoforms regulated in β-cells by different growth factors? In this part activation of PKB isoforms at the two regulated phosphorylation sites was studied in β-cells after stimulation with insulin and/or IGF1.

Results obtained show that functions of PKBα and PKBβ are conserved between human and rodent islets. Both isoforms have specific but also redundant functions. Only PKBα increased significantly β-cell proliferation and protected from apoptosis. β-cell size was regulated by PKBα and PKBβ. Insulin secretion and production were not affected after overexpression of PKBα or PKBβ. Furthermore, results strongly indicate that Pkba is required for β-cell compensation as mice deficient for Pkba (bpkbaKO) developed age-dependent glucose intolerance and HFD accelerated the onset of deteriorated glucose tolerance. Plasma insulin levels from HFD-fed βpkbaKO mice were decreased compared to control littermates, indicating failure of β-cell compensation. A first preliminary analysis of pancreas morphology revealed decreased β-cell area relative to total pancreas area in βpkbaKO mice compared to control littermates.
Regulation of PKB isoforms by insulin and IGF1 was found to be complex. Differences were observed with respect to the overall extent of activation but also with respect to which isoform and which phosphorylation site.

PKB isoforms are not equivalent in pancreatic islets as they show differential regulation and function. PKBα appears to be the most important isoform with the greatest potential to regulate islet mass. This finding should be taken into account in therapeutic approaches to improve islet function in diabetes, as isoform-specific intervention might minimise unwanted systemic side effects. Furthermore, current standard methods to detect activation of PKB in β-cells do not allow to distinguish between isoforms. Their validity should therefore be reconsidered.
Zusammenfassung

Das Hauptziel meiner Arbeit war die Funktionen der einzelnen PKB Isoformen in der Regulation der β-Zellmasse zu entschlüsseln. Dazu wurden 3 Fragestellungen definiert:

Unsere Daten zeigen, dass die Funktionen der Isoformen evolutionär konserviert sind in Inseln von Nager und Menschen. Sie haben sowohl spezifische aber auch redundante Funktionen. Nur PKBα induziert die
ZUSAMMENFASSUNG

Die Regulation der PKB Isoformen nach Stimulation mit Insulin und IGF1 zeigt sich in unseren Experimenten als komplex. Es wurden sowohl Unterschiede im Ausmass der Aktivierung der totalen PKB gefunden als auch Unterschiede in der Isoform-spezifischen Aktivierung jeweils an beiden Phosphorylierungseiten (Ser473 und Thr308).

1. Introduction

1.1 Pancreatic islets of Langerhans

The pancreatic islets of Langerhans represent the endocrine part of the pancreas. In humans, they have a typical diameter between 30 - 300 µm, and are dispersed through the exocrine part of the pancreas. The endocrine compartment comprises about 2-3% of the pancreas, whereas the exocrine compartment, responsible for the production and release of enzymes into the duodenum that are important for the digestion, represents the main part [171]. Islets are highly-vascularized “mini-organs” [29, 151] composed of various endocrine cell types: β (insulin-producing), α (glucagon-producing), δ (somatostatin-producing), PP (pancreatic peptide-producing), and ε (ghrelin-producing) cells [252]. The main function of pancreatic islets is to control blood glucose homeostasis [252]. Rodent and human islets comprise the same endocrine cell types but display structural variations. Islets from rodents show a central core of β-cells within a layer of other endocrine cells, mostly α-cells. 60-80% of all endocrine cells in rodents are β-cells and 15-20% are α-cells. The size can vary between 10 and 10’000 cells per individual islet. The constitution of human islets can vary significantly. The number of β-cells in human islets is typically in a range between 28-75%, the number of α-cells varies between 10-65%, and the number of δ-cells varies between 1-22%. Smaller islets typically contain greater numbers of β-cells and fewer α-cells compared to bigger islets [140].

Blood vessels and other non-endocrine cells (nerve fibers, macrophages, dendritic cells, and pericytes) are embedded in the connective tissue between the islet cell trabeculae [56]. The density of vascularization is around 5 times higher in islets than in the exocrine part of the pancreas [17, 307]. Blood vessels play a pivotal role in the regulation of glucose homeostasis, because of high O₂ consumption of β-cells and the necessity to efficiently distribute released islet hormones via the blood stream. The pancreatic veins enter into the portal venous system. The parasympathetic system stimulates and sympathetic intervention inhibits insulin secretion in islets, respectively [9].

1.2 The regulation of glucose homeostasis

D-Glucose (in the remainder called glucose) is beside of free fatty acids (FFAs) a crucial energy source for the cells of our body. Throughout the day, plasma glucose is maintained between 4 and 9 mM. Fluctuations arise due to variations in uptake (food-intake) and usage (physical exercise or prolonged fasting) of glucose [91], and only tight control through the antagonistic hormones insulin and glucagon produced in pancreatic islets that lower or increase blood glucose, respectively, avoids hyper- or hypoglycaemia [91, 162]. Hyperglycaemia causes micro and macro vascular damages and accelerates the onset and progress of diabetes mellitus [1, 2], while hypoglycaemia can result in brain injuries, diabetic coma or death [91].
INTRODUCTION

1.2.1 Insulin and glucagon maintain glucose homeostasis

1.2.1.1 Insulin

Insulin is a peptide hormone. Human insulin contains 51 amino acids and is produced and secreted from β-cells. It has strong hypoglycaemic action [20, 27]. Biosynthesis of insulin starts in the endoplasmic reticulum (ER). Insulin mRNA is translated into the precursor prepro-insulin, that is biologically inactive and composed of three linked domains/peptides: A, B and C. Cleavage of the C peptide (31 amino acids) in the Golgi apparatus activates insulin [203, 221, 250, 251, 258]. Insulin is stored complexed to zinc in 9-13’000 secretory vesicles in the cytoplasm [57, 201]. Besides FFAs, keto acids and amino acids, the main stimulus of insulin secretion is glucose. Glucose enters constitutively into β-cells via glucose-transporter (GLUT2) [202].

The phosphorylation of glucose to glucose-6-phosphate by glucokinase is the initial step of glycolysis, which in turn generates nicotinamidadenindinukleotid (NADH), adenosine triphosphate (ATP) and pyruvate. Further break down of pyruvate within the mitochondria of β-cells generates more ATP and an increase of ATP/ ADP (adenosine diphosphate) ratio results in the closure of ATP-dependent-“K”-channels (K_{ATP} channels) leading to membrane depolarization of β-cells. Subsequently, L-type voltage-dependent Ca^{2+-}channels (VDCC) open and Ca^{2+} influx increases cytosolic Ca^{2+} concentration. Ca^{2+}-induced fusion of vesicles to the plasma membrane releases insulin. Insulin secretion is biphasic when extracellular glucose concentration rises fast from 3mmol/L to 16.7-22.2 mmol/L and is kept constant [98]. The first phase of insulin secretion depends on secretion from a readily releasable pool (RRP) of vesicles, mostly docked already to the plasma membrane, whereas for the second phase of insulin secretion a reserve pool (RP) is mobilised and de novo synthesis of insulin is involved [10, 34, 221]. The first phase of insulin secretion lasts 5-6 minutes, whereas the second phase of insulin lasts up to 60 minutes in which the insulin release increases gradually [98].

1.2.1.1.1 Insulin decreases blood glucose levels and restocks fuel reserves

Insulin is the main regulator of blood glucose homeostasis in mammals [31]. Important insulin-sensitive targets with regard to its metabolic action are liver, muscle, and adipose tissue. These tissues form a finely tuned system, crucial for the regulation of blood glucose homeostasis. Insulin increases glucose uptake into muscle and adipose cells, stops glucose production in liver, mediates the storage of glucose as glycogen, induces the synthesis of proteins and fatty acids and also mediates the conversion of glucose to fatty acids. Furthermore, insulin inhibits breakdown of proteins into amino acids and it suppresses the breakdown of triglycerides (TGs) into fatty acids in adipose tissue. In addition, insulin regulates many different targets involved in proliferation and growth, and targets responsible for numerous enzymatic and structural processes.

The liver responds first to fluctuations in plasma insulin levels because blood from pancreas exits into the portal venous system that disembogues firstly into liver. Before the portal venous blood discharges in the liver, the concentration of insulin is 5 fold higher compared to the concentration after passage through the liver. Insulin mediates the breakdown of glucose and promotes the synthesis of glycogen. The conversion
of glucose to glycogen, mostly in liver and muscle, in postprandial periods allows mammals to store carbohydrates for later use. Insulin diminishes also gluconeogenesis in liver. In addition, insulin promotes lipid synthesis and inhibits the oxidation of fatty acids in the liver. TGs are stored in lipid droplets in the liver or are exported as very-low-density lipoprotein (VLDL) particles to muscle and adipocytes, which take them up for storage or to oxidize them for fuel. In addition, insulin stimulates protein synthesis and simultaneously inhibits proteolysis [31]. Insulin decreases circulating glucose levels mainly by regulating a glucose transporter 4 (GLUT4) that is specifically expressed in muscle and adipose tissue. It induces the translocation of GLUT4-containing vesicles to the plasma membrane thereby allowing more glucose to enter [116, 139]. The insulin-stimulated GLUT4 translocation is regulated via activation of three pathways. Firstly, insulin-dependent activation of protein kinase B (PKB) inhibits its downstream target AKT substrate 160 (AS160) that facilitates docking of vesicles to plasma membrane. Second, insulin promotes GLUT4 translocation via activation of protein kinase C (PKC) and third, directly via promoting the CAP-Cbl-Tc10 pathway [83].

Most from adipocytes absorbed glucose is converted to TGs. Insulin also promotes the incorporation of fatty acids from chylomicrons and VLDLs into adipocytes [31]. Chylomicrons are lipoprotein particles consisting of TGs, cholesterol, proteins and phospholipids. For that, insulin stimulates the synthesis of lipoprotein lipase (LPL) that is exported out from adipocytes to the surface of endothelial cells where it cleaves TGs from chylomicrons and VLDLs into glycerol and fatty acids. The absorbed fatty acids are converted into TGs and stored in adipocytes [31]. Insulin regulates appetite and peripheral glucose utilisation via the brain [100, 211].

1.2.1.2 Glucagon

Glucagon increases blood glucose. It is formed from pro-glucagon (160 amino acids) and contains 29 amino acids in its mature form. Pro-glucagon mRNA is found in pancreatic α-cells, in hindbrain neurons and in L-cells of the intestinal mucosa [31, 99]. Cleavage of pro-glucagon to glucagon by convertase 2, releases in addition to glucagon also glicentin and the incretins glucagon-like peptides 1/2 (GLP1/2) [22, 274]. Incretins are gastrointestinal hormones, released after a meal. They promote insulin secretion and production. Additionally, they improve insulin sensitivity in periphery. Glucagon secretion is inhibited and gastric motility is decreased. FFAs and glucose stimulate GLP1 and GLP2 secretion from L-cells, whereas proteins have no effect. [160, 184]. GLP2 is additionally known to induce and reduce intestinal proliferation and apoptosis, respectively [67, 268]. Effects of GLP2 on glucose transport and gastric emptying are not fully understood yet [31, 65].

In α-cells, glucagon is stored in secretory granules [21]. The main stimulus for glucagon secretion is hypoglycaemia, but amino acids or the autonomic nervous system can stimulate the secretion as well. Sympathetic and parasympathetic interventions increase Ca²⁺ concentration in α-cells and thus stimulate glucagon secretion. Other islet cells (mainly β-cells) are thought to inhibit glucagon secretion via paracrine and endocrine signalling. Insulin and γ-aminobutyric acid (GABA) inhibit glucagon secretion via hyperpolarisation of the α-cell membrane [19, 99, 194].
1.2.1.2. Glucagon promotes hepatic glucose production

The secretion of glucagon is tightly regulated by plasma glucose concentration and is low under normal conditions in healthy individuals. Under conditions where blood glucose levels are low, the glucagon concentration rises quickly and vice versa glucagon concentration in circulation declines rapidly when blood glucose level rises [31, 51]. The primary target of glucagon action is the liver. First, glucagon stimulates hepatic glucose production and inhibits glycogen synthesis. Second, it promotes the glycogen breakdown and activates gluconeogenesis. Further, glycolysis and carbohydrate oxidation are suppressed. Third, oxidation of fat is enhanced after glucagon secretion. All glucagon actions ensure sufficient plasma glucose levels for covering the requirements of glucose-consuming organs during fasting periods or phases of high-energy consumption (physical activity). Extrahepatic effects have also been described: These include the promotion of proteolysis in muscle and lipolysis in adipose tissue. However, these effects only occur under high glucagon concentrations and might play a minor role in the acute regulation of glucose homeostasis under physiological conditions [31, 50].

Glucagon acts via activation of its G-protein coupled transmembrane receptor and regulates two pathways: First, activation of adenyllyl cyclase increases intracellular 3',5'-cyclic adenosine monophosphate (cAMP) concentrations. Rising cAMP concentration in cytosol activates PKA. PKA phosphorylates the transcription factor cAMP response element (CREB) at serine residue, which in turn binds to his coactivator CREB binding protein (CBP). This leads to transcription of genes required for various pathways involved in the regulation of hyperglycaemic actions of glucagon, e.g., conversion of glycogen to glucose in muscle or secretion of glucagon from α-cells [11, 304]. Glucagon regulates various other processes independent from regulation of glucose homeostasis often via activation of phospholipase C (PLC). PLC mediates among others cellular processes in hepatocytes such as growth and proliferation [279]. Receptors activated by glucagon are expressed in various tissues. High expressions are found of course in liver, but also in kidney and α- and β-cells [15]. The role of α-cells and glucagon in the pathogenesis of diabetes type 2 (T2D) is not fully elucidated yet. Hyperglucagonaemia can be found in patients with T2D stimulating hepatic glucose production and contributing therefore to chronic hyperglycaemia. Additionally, decline of β-cell mass lead to increased glucagon levels relative to insulin and therefore to impaired paracrine and endocrine signalling, which in turn might contribute to pathogenesis of T2D. However, detailed underlying mechanisms are still unclear [94].

1.2.2 β-cell mass can adapt to meet the demand for insulin production

Although once believed, an organism is not born with all of the β-cells it will ever have. After birth and during adult life the mass of pancreatic β-cells is not static but can increase or decrease [6]. Existing β-cells contribute to the slowly renewing population with a constant but low rate of proliferation and apoptosis. Islet mass expansion over the lifespan of an organism prevents diabetes in the face of age-related increase in body mass and insulin resistance [191]. Pancreatic β-cell mass can adapt in accordance to demand for insulin [45, 217]. During obesity, functional β-cell mass can increase via enhanced proliferation, β-cell growth, neogenesis,
transdifferentiation and reduced apoptosis and thus preventing the development of T2D [217, 220]. Transdifferentiation of α-cells leads to newly formed β-cells, whereas during neogenesis β-cells arise from ductal cell precursors [92]. Many positive regulators of β-cell mass are known. Important factors are insulin, insulin-like growth factor 1 (IGF1), FFAs, glucose, and GLP1 [66, 248, 249, 275]. During pregnancy, pancreatic β-cell mass can increase extensively via stimulation by placental lactogens (PLs), prolactin (Prl) and growth hormones (GHs) and thus preventing gestational diabetes [36, 37, 135, 205]. Such compensatory changes are reversible. Within 10 days after birth, β-cell mass in the mother decreases via enhanced β-cell apoptosis, decreased proliferation and β-cell atrophy [233].

1.3 Insulin signalling

1.3.1 Crosstalk between insulin-like growth factor- (IGFR) and insulin receptor (IR) signalling

Insulin is responsible for the fine-tuning of various biological processes, such as cellular growth, proliferation, glucose metabolism, apoptosis and cell differentiation [72]. Nearly every cell in vertebrates expresses IRs but classic insulin-responsive cells with high expression of IRs are hepatocytes, adipocytes and muscle cells with up to 200'000 IRs [283, 293]. Defective insulin signalling pathway leads to metabolic disorders like glucose intolerance, hypertension, dyslipidaemia and T2D [284]. Insulin and IGF1/2, key regulators of embryonic growth and cell differentiation, share the highly conserved insulin signalling pathway [70]. Insulin and IGF1/2 share about 40-80% sequence homology. The IGFR and IR share 85% amino acid identity in the intracellular kinase domain and 100% conservation in the ATP pocket [143, 282]. However, each ligand shows significantly higher affinity to his affiliated receptor [246, 282, 284]. Two different splice variants of IR exist: IRa and IRb [285]. IRb is known to mediate metabolic signalling pathways, whereas IRa activates mitogenic signalling pathways [246]. Insulin binds with affinity to IRa, IRb, and IGF1R, but interacts also with the hybrid receptors IGF1R/IRa and IGF1R/IRb. IGF1 activates IGF1R and the hybrid receptors IGF1R/IRa or IGF1R/IRb. IGF2 binds to IRa, IGF1R, or to IGF1R/IRa. IR and IGFR consist of two extracellular α-subunits linked to each other and to two transmembrane β-subunits via disulfide bridges [73]. Upon ligand binding to the α-subunits, activation of an intrinsic tyrosine kinase activity on the β-subunit results in autophosphorylation on several tyrosines of the receptor. These phosphotyrosines act as docking sites for downstream substrates of the IR/IGFR. Important substrates are the so-called insulin receptor substrate (IRS) and Src homology domain-containing (SHC) proteins. These adapter proteins are phosphorylated themselves upon binding to the activated receptor and this initiates various cascades of complex cellular signalling responses [83] (Figure 1). IRS and SHC proteins do not have enzymatic activity but they provide docking sites for proteins containing Src homology 2 (SH2) domains like the regulatory subunit (p85) of phosphatidyl inositol 3-kinase (PI3K) or other adapter proteins like growth factor receptor-bound protein 2 (Grb2) [283]. At least three main pathways can be distinguished downstream of IR/IGFR: the PI3K - PKB pathway, regulating metabolic actions and cellular growth and the Ras-mitogen-activated protein kinase (MAPK) pathway, mainly responsible for mitogenic actions in cells [261]. The third pathway called (CAP)-Cbl-Tc10 is
activated via Cbl-associated protein (CAP) and contributes to the regulation of GLUT4 translocation (not shown) [210].

Figure 1. Simplified scheme of canonical insulin/IGF signalling.

Insulin activates the insulin receptor (IR) by inducing autophosphorylation on several tyrosine residues via the intrinsic tyrosine kinases (TK) located on the receptors β subunits. The activated receptor recruits insulin receptor substrate (IRS) and/or Src homology domain-containing (SHC) proteins. These bind to asparagine-proline glutamic acid phosphotyrosine (NPEY) in the β-subunit of the IR/IGFR via phosphotyrosine-binding (PTB) domains. The binding of IRS proteins to activated receptors also depends on substrate binding to membrane lipids via pleckstrin homology (PH) domain. Recruitment of substrates results in their own phosphorylation on tyrosines, which in turn are docking sites for proteins with Src homology 2 (SH2) such as p85 and growth factor receptor-bound protein 2 (Grb2). Grb2 and p85 link the activated receptor to signalling modules like Ras/MAPK and PI3K/PKB, which in turn regulate gene expression, mitogenesis or glucose metabolism. Both pathways regulate cellular growth and differentiation. For a detailed description of adapter protein-dependent activation/regulation of PI3K/PKB and Ras/MAPK see text section 1.3.3. Image and figure legend adapted from [245]
1.3.2 The role of insulin signalling in β-cells

Since a long time, a possible autocrine effect of insulin on β-cells is a matter of controversial debate. Pancreatic β-cells express the IR [90, 106, 136, 276, 278] and stimulation of β-cells with insulin activates the insulin signalling cascade [161]. A number of studies indicate that insulin signalling indeed plays a critical role in various cellular processes in β-cells such as proliferation and survival [95, 146, 161, 285]. Mice deficient for IRS2 show β-cell loss already at birth and are not able to compensate for insulin resistance via increased β-cell mass [145, 288, 289]. It was therefore assumed, that the IRS2-PI3K/PKB signalling pathway must be essential for the regulation of β-cell mass, growth and survival.

Mice with a specific deficiency of insulin receptors in β-cells (βIRKO) have increased fasting insulin levels, are moderately glucose intolerant, and show impaired first-phase insulin secretion but have normal islet mass [147]. Mice specific deficient for IGF receptors in β-cells (BIGF1R) have a similar phenotype [148]. If both genes are deleted in β-cells (βDKO), mice show a more severe phenotype with loss of β-cell function and increased random fed blood glucose levels. β-Cell mass is decreased and the number of apoptotic cells is increased [272]. However, for generating these β-cell-specific knockout (KO) mice, the *rat insulin promoter (RIP)* was used to drive Cre-expression. This promoter is known to have a significant Cre-expression in the brain, including hypothalamus. It is well known that the central nervous system (CNS) has a high impact on metabolic homeostasis. Hence non-autonomous effects cannot be excluded [247, 286]. Additionally, there is no evidence for a positive effect on pro-insulin production and no evidence for autocrine regulation of insulin secretion in β-cells [222, 271]. Together these findings suggest that other ligands in addition to insulin/IGF can regulate β-cell proliferation and survival via IRS2 und downstream PI3K-PKB signalling to control the regulation of β-cell mass [222].

A possible candidate is the epidermal growth factor receptor (EGFR) signalling pathway. Deficiency in the EGFR leads to markedly reduced β-cell mass and severe diabetes in mouse models. Reduced activation of the signalling pathways of PKB and MAPK were detected in these models [103, 188, 189]. Additionally, mice with a deficiency in EGFR were not able to expand β-cell mass via proliferation during pregnancy or after high-fat diet (HFD) [153]. It can be assumed that the EGFR pathway is essential for β-cell proliferation in the insulin resistant state [103, 117, 163, 188, 189, 199, 263]. Additionally, mitogenic effect of GLP1 was absent after stimulation of defective EGFR [144]. GLP1 mediates β-cell survival and proliferation not only via PI3K-PKB pathway but also via activation of adenylyl cyclase, which in turn phosphorylates and activates CREB and that activates IRS2. Activation of IRS2 mediates β-cell proliferation and survival [125]. Glucose and other growth factors can activate IRS2 as well [12], whereas cytokines such as interleukin 1β (IL1β) and tumor necrosis factor α (TNFα) inhibit IRS2 via serine phosphorylation [220].
INTRODUCTION

1.3.3 Insulin Receptor Substrate (IRS) adapter proteins

These evolutionary conserved proteins do not contain catalytic activity but act as adapters between activated membrane receptors and intracellular signalling pathways. They are crucial for many biological processes relating to proliferation, cellular growth, survival, cell differentiation and regulation of fuel metabolism [28, 93, 196, 255]. Six isoforms of IRS are known in rodents (IRS1-IRS6) [44, 154, 155, 256, 257]. The human genome does not encode IRS3. IRS proteins share a common structure: An NH₂-terminal pleckstrin homology (PH) domain that interacts with phospholipids or acidic motifs of proteins located in the plasma membrane and a phosphotyrosine-binding (PTB) domain that binds to asparagine-proline glutamic acid phosphotyrosine (NPEY) as present in the β-subunit of the IR. IRS proteins contain many tyrosines that when phosphorylated provide dockings sites for proteins with Src homology 2 (SH2) domains, such as p85, tyrosine protein phosphatase (SHP2) and Grb2 [283]. However, phosphorylation can also occur at serine/threonine sites, which in turn has inhibitory effects on IRS molecules. For example, stimulation with TNFα phosphorylates IRS1 at Ser307, inhibiting insulin-mediated tyrosine phosphorylation and causing IRS ubiquitination and finally its breakdown [134, 226].

Downstream components of insulin signalling like PKB, MAPK, glycogen synthase kinase 3β (GSK3β), mammalian target of rapamycin complex 1 (mTORC1), and ribosomal protein S6 kinase (S6K) are known inhibitors of IRS via feed-back phosphorylation on serine residues [26, 35, 313]. The function of IRS proteins in metabolic control has been studied in various mouse models. IRS1 and IRS2 are both widely expressed and mediate both, metabolic and mitogenic actions [243, 284]. IRS1 is the best-characterised IRS protein, contains 18 potential tyrosine phosphorylation docking sites for proteins containing SH2 domains and is widely expressed [256, 283]. Mice with a KO for Irs1 show defects in embryonic and postnatal growth but are fertile and viable. They show resistance against insulin and IGF, but they avoid hyperglycaemia via compensatory increase of β-cell mass associated with hyperinsulinaemia [13, 259]. Additionally, Irs1 deficient islets show dysregulated insulin production and secretion [149]. All this together indicates that IRS1 is involved in the regulation of metabolic and mitogenic functions in peripheral tissue [121, 260]. In islets, the function of IRS1 is confined to insulin secretion. It seems that IRS1 is not required in compensatory expansion of β-cell mass in the face of insulin resistance [196].

IRS2 shows 43% sequence identity relative to IRS1, but it contains 100 amino acids more than IRS1 and at least 20 confirmed tyrosine phosphorylation motifs. Like IRS1 it is widely expressed in various tissues. The region containing the PTB and PH domains is around 65% identical compared to IRS1 [232]. Irs2 KO mice are insulin resistant and glucose intolerant starting from birth, but they show a constant increase of fasting blood glucose levels during their lifespan as a consequence of decreased β-cell mass [289]. However, isolated skeletal muscle from Irs2 KO mice, showed normal insulin stimulated glucose uptake. Importantly, and in contrast to Irs1 KO mice with impaired insulin sensitivity in skeletal muscle and compensatory increase in β-cell mass, Irs2 deficient mice suffer from hepatic insulin resistance and β-cell failure. These observations indicate that IRS2 plays a pivotal role in liver insulin action and in insulin production in pancreatic islets, whereas IRS1 might be solely required for insulin action in skeletal muscle [13, 40, 112, 259, 295].

IRS3 was first found in adipocytes in rats. It is shorter than IRS1 and IRS2 and the PH and PTB domains
are around 50% identical to IRS1 and IRS2, respectively [294]. Mice with a deficiency in \textit{Irs3} show normal glucose transport, glucose homeostasis and growth in adipocytes. [312]. However, overexpression of IRS3 in isolated adipocytes leads to enhanced recruitment of GLUT4 to the plasma membrane [130, 312]. IRS4 has 12 potential tyrosine phosphorylation residues and undergoes fast phosphorylation after insulin stimulation. It shows high expression in brain, thymus and pituitary. IRS4 plays no role in glucose metabolism and growth. Mice deficient for \textit{Irs4} have minimally reduced weight, minimally reduced blood glucose levels, normal insulin plasma levels and show impaired glucose tolerance, but normal insulin tolerance [79]. Analysis of IRS5 and IRS6 show more structural identity (74%) to each other than to other IRS proteins in PTB domain. In mice, IRS5 is mainly expressed in lung, heart and kidney, whereas IRS6 is highly expressed in brain [44]. Up to date, no metabolically relevant functions have been described for IRS5 and IRS6.

It seems that only IRS2 plays an important role in the regulation of proliferation, survival and glucose-induced insulin secretion in β-cells from rat and human islets. Overexpression of IRS2 but not of IRS1 increases proliferation in isolated rat islets and protects isolated human islets from glucotoxicity. Additionally, only IRS2 increases glucose-stimulated insulin secretion after overexpression (GSIS) [190]. β-cell-specific up-regulation of IRS2 protects from the onset of diabetes due to a decreased rate of apoptosis and a compensatory increase of β-cell mass [109].

1.3.4 The PI3K/PKB signalling pathway

1.3.4.1 PKB regulates various cellular processes

PKB is part of the AGC family of protein kinases, with other members being protein kinase A, G and C. Members of the AGC family have evolutionary conserved catalytic domains and show similarities in the mechanism of regulation [209]. Functions of the PI3K/PKB axis are highly context-specific and might depend on recruitment of different isoforms of PI3K (p85α, p110α-δ, PI3K-C2α-γ, vps34) and PKB (PKBα/AKT1, PKBβ/AKT2, and PKBγ/AKT3), respectively [178, 236, 237, 277]. PI3K-dependent conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) in the plasma membrane recruits PKB and results in its phosphorylation at Thr308 through the upstream kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) [83]. Phosphorylation at this site only partially activates PKB. For full kinase activation three other kinases can phosphorylate PKB at Ser473. DNA-dependent protein kinase (DNA-PK) phosphorylates PKB triggered through DNA damages and the predominant kinase mTORC2 phosphorylates at Ser473 after stimulation with growth factors like insulin or IGF1. A further possible kinase is the ataxia telangiectasia mutated kinase (ATM) [33, 81, 236]. After its activation, PKB moves away from the plasma membrane and translocates to other cell compartments like the mitochondria, cytoplasm, or the nucleus where it regulates various downstream targets via phosphorylation. PKB promotes different cellular processes via regulation of various intracellular targets (shown in Figure 2). Inhibiting of AS160 (Rab-GTPase activating protein) allows GLUT4 translocation. PKB has an anti-apoptotic effect via inhibition of the Bcl-2-associated death
INTRODUCTION

promoter (BAD), and mediates cellular growth via activation of mTORC [83, 236]. Additionally, PKB activates S6K and eIF4E-binding protein 1 (4EBP1), which in turn stimulates protein synthesis. PKB-dependent phosphorylation/inhibition of GSK3β promotes among numerous other effects glycogen deposition [222].

Various phosphatases can inhibit insulin-dependent activation of the PI3K-PKB axis (shown in Figure 2). Phosphatases (protein tyrosine nonreceptor type 1 (PTPN1, PTP1B)), lipid phosphatase and tensin homologue (PTEN), and protein phosphatase 2a (PP2A) inhibit IR, IRS1/2, PIP3 or PKB via dephosphorylation. Thioesterase superfamily members 4 (THEM4, CTMP) are binding partners of PKB that can also have inhibitory effects. Their functions in the regulation of glucose homeostasis remain unknown [68, 175, 236]. Additionally, insulin signalling can be downregulated by negative feed-back loops. Targets, such as GSK3β and mTORC1 inhibit IRS proteins via phosphorylation at serine residues, which in turn lead to ubiquitination and finally to its proteolytic breakdown [236].
INTRODUCTION

PKB is required for many insulin-dependent functions. PKB mediates insulin action via inhibition or activation of various downstream targets. Inhibition of AS160 (AKT substrate 160) allows GLUT4 translocation and increases glucose transport. Inhibition of glycogen synthase kinase 3β (GSK3β) promotes glycogen synthesis. Downregulation of forkhead-O transcription factor 1 (FOXO1) stimulates activation of phosphoenolpyruvate carboxykinase 1 (PEPCK1) and the glucose-6-phosphatase (G6Pase) and promotes therefore gluconeogenesis. Up-regulation of lipogenic genes like peroxisome proliferator-activated receptor γ (Pparγ) and sterol regulatory element binding transcription factor 1 (Srebp1c) increases lipogenesis. Additionally, PKB activates mTORC1-dependent signalling via inhibition of tuberous sclerosis complex 1/2 (TSC1/2). This promotes protein synthesis via regulation of ribosomal protein S6 kinase (S6K) and eIF4E-binding protein 1 (4EBP1). mTORC1-dependent inhibition of unc-51-like kinase 1 (ULK1) blocks autophagy and activation of peroxisome proliferator-activated receptor γ coactivator α (PGC1α) induces mitochondrial biogenesis.

For detailed description of direct PKB inhibition or inhibition via IRS1/2 see text. Image and adapted figure legend are from [236].

1.3.4.2 PKB isoforms have specific but also redundant functions in rodents

PKB isoforms show up to 80% identity in their amino acid sequence but are encoded by distinct genes that are located on different chromosomes. They are highly conserved in their catalytic PH domain and in the C-terminal regulatory subunit [105]. PKB isoforms vary in their expression pattern and their function, despite similar substrate specificity and similar protein structure. PKBα and PKBβ show high expression in most tissues, whereas PKBγ is mainly found in brain and testes [105]. All three isoforms are expressed in islets from humans and rodents [115, 193, 236]. The physiological functions and the tissue-specific effects of PKB isoforms have been intensively studied in vivo in mouse models with isoform-specific deficiencies or constitutive activation of individual isoforms. A selection of published mouse models and their phenotypes is shown in Table 1.
INTRODUCTION

<table>
<thead>
<tr>
<th>PKB isoform</th>
<th>Tissue</th>
<th>Phenotype</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutive activation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Heart</td>
<td>Hyperplasia and hypertrophy of cardiomyocytes, improved myocardial contractility, enhanced glucose uptake</td>
<td>[52, 53, 142, 179, 180, 244]</td>
</tr>
<tr>
<td></td>
<td>Prostate</td>
<td>Prostatic intraepithelial neoplasia (PIN) which further leads to bladder obstruction</td>
<td>[176]</td>
</tr>
<tr>
<td></td>
<td>Thymus</td>
<td>Hyperplasia of thymocytes and development of lymphoma</td>
<td>[177]</td>
</tr>
<tr>
<td></td>
<td>T-cells</td>
<td>Decreased apoptosis, hypertrophy, lymphoma, improved T-cell response and autoreactivity</td>
<td>[128, 196, 206, 219]</td>
</tr>
<tr>
<td>β</td>
<td>Mammary gland</td>
<td>Erbβ2 mediated mammary tumour formation is accelerated, metastatic progression is suppressed, enhanced fat content in milk</td>
<td>[7, 118, 119, 240, 243]</td>
</tr>
<tr>
<td></td>
<td>Pancreatic β-cells</td>
<td>β-cell hyperplasia and hypertrophy, improved glucose tolerance</td>
<td>[25, 270]</td>
</tr>
<tr>
<td>dominant-negative (kinase-dead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Pancreatic β-cells</td>
<td>Impaired insulin secretion, decreased glucose tolerance, hyperglycaemia</td>
<td>[23]</td>
</tr>
<tr>
<td>α</td>
<td>Whole body</td>
<td>Reduced body weight, increased perinatal mortality, reduced placental development, protected from HFD-induced obesity and insulin resistance, improved glucose tolerance and insulin sensitivity</td>
<td>[43, 47, 49, 207, 297]</td>
</tr>
<tr>
<td></td>
<td>Brain</td>
<td>Not protected from HFD-induced obesity (only in whole body knock out mice)</td>
<td>[280]</td>
</tr>
<tr>
<td></td>
<td>Skeletal muscle</td>
<td>No protection from HFD-induced obesity (only in whole body knock out mice)</td>
<td>[280]</td>
</tr>
<tr>
<td>β</td>
<td>Whole body</td>
<td>Glucose intolerance, insulin resistance, hyperglycaemia, age-dependent loss of adipose tissue, most strains show increased β-cell mass, protected from HFD-induced hepatic steatosis</td>
<td>[43, 48, 89, 108, 158]</td>
</tr>
<tr>
<td>γ</td>
<td>Hepatocytes</td>
<td>Protected from HFD-induced hepatic steatosis</td>
<td>[158]</td>
</tr>
<tr>
<td>αβ</td>
<td>Whole body</td>
<td>No metabolic phenotype, impaired brain development</td>
<td>[43, 75, 269]</td>
</tr>
<tr>
<td>αγ</td>
<td>Whole body</td>
<td>High perinatal mortality, defects in growth, skin, bone and muscle development, impaired adipogenesis</td>
<td>[207]</td>
</tr>
<tr>
<td>βγ</td>
<td>Whole body</td>
<td>High embryonic lethality, defects in growth, impaired development of nervous and cardiovascular systems</td>
<td>[207]</td>
</tr>
<tr>
<td></td>
<td>Whole body</td>
<td>Impaired brain and testes development, decreased growth, reduced glucose and insulin tolerance</td>
<td>[71]</td>
</tr>
</tbody>
</table>

Table 1. Phenotypes of mice carrying mutations in PKB isoform.

Mice deficient for Pkba show impaired placental development and weigh 15-30% less at birth than their wild type (wt) littermates. Additionally, they show higher perinatal mortality. Pkba deficient mice are more insulin sensitive and glucose tolerant, show increased plasma glucagon levels and are protected from HFD-induced obesity. Ectopic expression of myristylated PKBa in β-cells increases islet mass via β-cell hypertrophy and hyperplasia. These mice show improved glucose tolerance and are protected from streptozotocin-induced diabetes [25, 43, 47, 49, 75, 269, 270, 280, 298].

Pkbb deficient mice are glucose intolerant and insulin resistant with fasting hyperglycaemia and increased plasma insulin levels. Additionally, they undergo age-dependent reduction of adipose tissue [43]. Dependent on age, gender and strain, this metabolic impairment can culminate in β-cell failure and later in diabetes [89] but in most cases overt diabetes does not manifest due to sufficient compensatory expansion of β-cell mass and function [43, 48, 89].

Pkby deficient mice display defects in foetal growth and brain development. However, glucose
homeostasis is not affected in this model [43, 75, 269]. All these observations together indicate that only PKBα and PKBβ play a role in the regulation of glucose homeostasis, whereas PKBγ has no effect. Furthermore, the differences in phenotypes of mice deficient for individual isoforms of PKB point to non-redundant functions of PKB isoforms in vivo. In addition, studies in other tissues showed isoform-specific functions of PKB. In embryonic fibroblasts from mice only PKBα and not PKBβ promotes proliferation and cell migration [306, 311]. In skeletal muscle, siRNA-mediated silencing of PKBβ decreased glucose uptake and glycogen synthesis, whereas downregulation of PKBα had no effect. Furthermore, only silencing of PKBβ reduced lipid oxidation, while PKBα had an opposite effect [32]. There are also studies indicating redundancy: In adipocytes, gene silencing via siRNA of both, PKBα and PKBβ resulted in impaired insulin-stimulated glucose transport [126]. Indeed, the mild metabolic phenotype of Pkb deficient mouse models could also in part be due to redundant function of isoforms. In conclusion, depending on the respective context PKB isoforms can have specific and/or redundant functions [236, 237].

1.4 T2D is the most common diabetes form

Diabetes mellitus includes a group of metabolic diseases defined by chronic high blood glucose levels resulting from insufficient insulin production and/or impaired insulin action. Untreated chronic hyperglycaemia has severe long-term complications such as retinopathy, nephropathy, neuropathy and cardio- and cerebrovascular complications [31]. The American Diabetes Association (ADA) classifies diabetes in type 1 and type 2, other specific types of diabetes, and gestational diabetes. The highest prevalence with 90% of all diabetes forms has T2D. This diabetes form is characterised by chronic hyperglycaemia (fasting plasma glucose concentration ≥ 7mmol/L) due to a combination of insulin resistance and insufficient compensatory insulin secretion [3]. Genetic alterations as well as environmental factors are causes for T2D. Over 50 genes associated with T2D have been identified, but how they influence the pathogenesis of T2D remains still unclear. Most of them can be linked to β-cell function [131]. Risk factors for T2D are obesity (BMI ≥ 30), reduced physical activity, over-nutrition, urbanisation and aging. In early stages of the pathogenesis of T2D, dietary changes or increased exercise can avoid the progression of the disease. Chronic hyperglycaemia must be treated with oral antidiabetics (e.g. metformin or incretin analogues) or by insulin substitution [131]. In 2011, 366 million adults suffered from T2D and it is estimated that the number will increase to 7.7% of adult population in 2030 (552 million people) [172]. T2D is currently the 8th leading cause of death [4, 80]. The epidemic spread of T2D will be an enormous economic burden across the globe in the future. 5% of all diabetes patients are suffering from the insulin-dependent form of diabetes (T1D) [3]. The cause of this diabetes form is the autoimmune destruction of the pancreatic islets and β-cells, mediated by T-cells. Antibodies against insulin, glutamic acid decarboxylases, and protein tyrosine phosphatase trigger inflammation in the endocrine cells of the pancreas [59]. T1D is associated with inappropriate expression of genes regulating β-cell inflammation and apoptosis in pancreatic islets [231]. Humans with mutations in the histocompatibility leukocyte antigen (HLA) show higher risk for developing T1D. Additionally beside genetic predisposition, environmental triggers (viral pathogens, prenatal exposition to organochlorine
INTRODUCTION

pollutants or vitamin D deficits) are postulated to stimulate the immune system to trigger islet destruction [55, 82, 253, 262]. Patients with T1D have to compensate for β-cell destruction for their entire life with exogenous insulin supplementation.

1.4.1 Causes and underlying mechanisms of insulin resistance

Under conditions of insulin resistance, insulin-induced glucose uptake in adipose and muscle tissue is reduced, gluconeogenesis in liver is enhanced whereas glycogen storage is suppressed. [234]. Insulin resistance is the primary cause of T2D and it occurs often long before T2D is diagnosed. Obesity and advanced age are major risk factors of insulin resistance [302].

Insulin resistance and T2D are associated with low-grade chronic inflammation, which includes macrophage infiltration and increased cytokine expression in adipose tissue, muscle and liver [104, 137]. In the obese state, adipocytes display morphological and functional changes. Their size is increased and they secrete an imbalanced mix of cytokines and adipokines [266]. Pro-inflammatory cytokines, such as TNFα, IL6 and leptin are increased whereas adiponectin is decreased. Leptin regulates satiety and energy intake. Obese subjects are often leptin resistant, as indicated by unsuppressed appetite despite high plasma leptin levels [120, 152]. Adiponectin has anti-inflammatory effects and in addition positively affects lipid and glucose metabolism, improves insulin sensitivity, and regulates appetite and body weight [166].

Obesity is also associated with macrophage infiltration and ER stress in adipose tissue with concomitant death of adipocytes (tissue inflammation). Chronically elevated glucose concentration, hypoxia and FFAs can induce ER stress and lead to activation of the unfolded protein response (UPR) and c-Jun N-terminal kinase 1 (JNK), a direct inhibitor of IRS proteins and known inducer of insulin resistance [204, 235]. Chronic low-level inflammation is believed to inhibit insulin signalling in adipocytes, myocytes and in hepatocytes [284, 299, 300, 303]. Cytokines, FFAs, reactive oxygen species (ROS) and hypoxia activate so-called stress kinases like e.g. IkBa kinase β (IKKβ) and JNK1 [114, 208, 301, 305]. These stress kinases can phosphorylate IRS proteins on Ser/Thr residues thereby inhibiting IRS-dependent signal transmission [8, 87, 208, 305, 309]. The principle mechanism underlying insulin resistance caused by chronic inflammation is exemplified by the effect of TNFα: TNFα binds to its p55 receptor and mediates phosphorylation of IRS at Ser307 [208]. This inhibits insulin-mediated tyrosine phosphorylation and causes IRS ubiquitination and finally its breakdown [134, 226]. Down regulation of IRS leads to decreased insulin-induced activity of PI3K/PKB and deterioration of insulin sensitivity. It can also led to sustained activity of MAPK in liver and heart. Prolonged activation of MAPKs (ERK1/2, p38 and JNK) mediates mitogenesis and overgrowth, which in turn results in progression of obesity and also to cardiovascular dysfunction [64, 102, 218]. Mice with disrupted Erk1 (Mapk3) fed a HFD show decreased adipocyte size and showed better insulin tolerance [30]. Down regulation of PKB increases the activity of forkhead-O transcription factor 1 (FOXO1) causing chronic hyperglycaemia and insulin resistance in liver [170, 310]. Furthermore, TNFα can also reduce the activity of peroxisome proliferator-activated receptor γ (PPARγ) and thus leads to reduced lipid synthesis and decreased storage of TGs [300, 303]. Thirdly, TNFα directly enhances lipolysis, which in turn leads to increased FFAs in plasma and decreased storage of TGs in adipocytes and liver [299].
INTRODUCTION

Many other states like dysfunction of mitochondria, oxidative stress, hypoxia (affects cytokine expression), pregnancy, dyslipidaemia, fatty liver, genetic background and hyperinsulinaemia are also associated with insulin resistance [302]. During persistent insulin resistance, mitochondria are over activated because of increased energy disposal caused by glucose and FFAs overload. High levels of ATP inactivate AMP (adenosine monophosphate)-activated protein kinase (AMPK), which in turn leads to decreased glucose uptake. AMPK might also inhibit mTORC1-S6K induced inhibitory phosphorylation of IRS proteins and thus inactivation of AMPK could also reduce insulin sensitivity [236]. Enhanced levels of FFAs and glucose increase ATP production associated with the production of ROS [78, 84, 97, 164, 169, 223]. Saturated FFAs (linoleic acids, palmitate) can cause inflammation trough activation of IKK/NFκ pathway dependent on Toll-like receptor 4 (TLR4), a receptor for endotoxin (LPS) in adipocytes and macrophages. Furthermore, FFAs can be converted to diacyl glycerol (DAG) and ceramide. DAG is known to activate PKC isoforms. PKC activate JNK and IKKs known inhibitors of IRS1 activation [18, 38, 88, 159, 281].

Hyperinsulinaemia also leads to progressive insulin resistance especially in presence of FFAs. The insulin signalling pathway is controlled trough a negative feedback loop to avoid activation of insulin-induced stress responses. Insulin itself activates this pathway, which is responsible for the down regulation of IRS1 and IRS2 [54, 242, 299].

1.4.2 The role of β-cells in T2D and insulin resistance

1.4.2.1 Compensatory increase of β-cell mass can prevent the onset of T2D

Pancreatic β-cell compensation via expansion of β-cell mass and function can maintain normoglycaemia despite persistent insulin resistance [46, 124, 167, 249]. Obese patients display around 50% increase of β-cell mass compared to lean and healthy individuals [42]. Nutrients like glucose or FFAs, incretins (GLP1), insulin and other growth factors are known to stimulate β-cell growth and proliferation [66, 248, 249, 275]. There is strong evidence for a role of growth factor signalling pathways in compensatory islet response. As mentioned above, the IRS2-PIK3/PKB axis is believed to be an important contributor. PKB represses FOXO1 in β-cells leading to enhanced expression of pancreatic and duodenal homeobox 1 (Pdx1). Pdx1 mediates β-cell proliferation and survival and increases insulin transcription [74, 124, 182, 200, 248]. In addition, PKB is a known inhibitor of proapoptotic proteins like BAD and thus activation of PKB can protect β-cells from apoptosis [124]. GLP1 can stimulate β-cell proliferation and survival via PKA/CREB-dependent activation of IRS2. Additionally, GLP1 activates PKB and PKCζ via transactivation of EGFR [41]. FFAs might stimulate β-cell proliferation via G-protein coupled receptor 40 (GPR40) that is highly expressed in β-cells [41, 122, 125].

Also β-cell function can be increased to compensate higher demand for insulin production. Four underlying mechanisms have been proposed: enhancement of β-cell glucose metabolism, FFA signalling, increased sensitivity for incretins and enhanced parasympathetic interventions in β-cells. Rats with leptin receptor defects (Zucker fatty rats) [314] show strong weight gain via enlarged and increased number of adipocytes, are insulin resistant but not hyperglycaemic. They showed up to 2 fold increase of total glucose utilisation via enhanced glucose oxidation as well as increased glucose flux via pyruvate.
carboxylase (PC) [167]. FFAs increase β-cell function via FFAR1/GPR40-dependent increase in intracellular Ca2+ concentration, which in turn facilitates insulin release [122, 254]. How GLP1 increases β-cell function is not yet fully elucidated, but it is known that GLP1 supports FFA-dependent increase of GSIS in Zucker fatty rats [197]. Furthermore, GLP1 and glucose enhance transcription of the insulin gene via increasing cAMP, which in turn leads to increased transcription of the insulin gene mediated by CREB activation. High glucose concentrations increase also insulin levels via up-regulation of Pdx1 [182, 183].

1.4.2.2 Mechanisms of β-cell failure

Pancreatic β-cell mass is often reduced in later stages of the pathogenesis of T2D. Post-mortem analysis of pancreata showed a decrease of 63% in β-cell mass in obese subjects with T2D compared to weight-matched non-diabetic controls [58]. However, detailed analysis of pancreatic sections showed no changes in rate of proliferation but increased rate of β-cell apoptosis in these subjects [42]. Increased glucose metabolism and increased levels of FFAs enhance oxidation reactions in mitochondria thus resulting in augmented levels of ROS [39, 69, 168]. Detoxification of ROS requires ATP and reduced levels of ATP decrease insulin secretion in β-cells. Furthermore, ROS increases β-cells apoptosis if not adequately detoxified [214, 224].

Chronically elevated circulating glucose increases insulin production to levels exceeding the capacity of the ER and can thereby induce ER stress in β-cells [133, 212]. That ER stress in β-cells can lead to β-cell failure is manifest in the Akita mouse model. Mice with a mutation in the Insulin 2 gene (Ins2) show severe insulin deficiency and β-cell failure due to ER stress caused by misfolding of Proinsulin 2 [123]. In addition, hyperglycaemia can induce IL1β production/Fas-receptor expression in β-cells leading to β-cell death [62, 174]. Furthermore, impaired detoxification of lipids leads to accumulation of complex lipids and thus has cytotoxic effects on β-cells and increases apoptosis [215, 216].

Insulin is secreted together with islet amyloid polypeptide (IAPP). In patients with T2D, this polypeptide aggregates to intracellular amyloid micro fibrils, which in turn are believed to have toxic effects on β-cells, although the underlying mechanism remains unclear [198].
1.5 Aim of my thesis

Pancreatic β-cell mass adapts to the demand for insulin production and this can prevent the onset of T2D. IRS2 is indispensable for the maintenance but also for the compensatory expansion of functional β-cell mass. Downstream of IRS2 acts PKB, a global regulator of proliferation, apoptosis and cellular growth and is implicated to play a major role in the regulation of β-cell mass. Three isoforms of PKB exist: PKBα/AKT1, PKBβ/AKT2 and PKBγ/AKT3. While loss of individual isoforms leads only to mild islet phenotypes, overexpression of PKBα can increase β-cell proliferation in mice.

The aim of my thesis was to clarify the roles of PKB isoforms in the regulation of pancreatic β-cell mass and function.

My project consisted of three parts:

In a first part I studied if the functions of PKBα and PKBβ are evolutionary conserved in rodents and humans. To this end PKBα or PKBβ were overexpressed in isolated human islets. This part of the project is described in section 2.1 (adapted from manuscript submitted to Archives of Physiology and Biochemistry).

In a second part of my thesis I tested in mice with specific deletion of Pkba in β-cells if Pkba is required for the compensatory expansion of functional pancreatic β-cell mass under insulin resistance. This part is presented in section 2.2.

In a third part, I studied if PKB isoforms are differentially regulated by growth factors in β-cells. To this end I assessed the activation of PKB isoforms at Ser473 and Thr308 after stimulation with insulin, IGF or a combination of both. This last part is described in section 2.3.
2. Results

2.1 Specific and redundant roles of PKBα/AKT1 and PKBβ/AKT2 in human pancreatic islets

Maren G. Dietrich¹², Richard A. Zuellig¹, Brian A. Hemmings³, Giatgen A. Spinas¹², Roger Lehmann¹, Oliver Tschopp¹², and Markus Niessen¹²

¹ Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital of Zurich, Switzerland
² Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
³ Friedrich Miescher Institute (FMI) for Biomedical Research, Basel, Switzerland

Address correspondence and reprint requests to: Markus Niessen, PhD, Division of Endocrinology, Diabetes and Clinical Nutrition, Raemistrasse 100, 8091 Zurich Fax: +41-44-255’97’41; E-mail: markus.niessen@bluewin.ch
RESULTS

Abstract

Protein kinase Bα (PKBα)/AKT1 and PKBβ/AKT2 are required for normal peripheral insulin action but their role in pancreatic β-cells remains enigmatic as indicated by the relatively mild islet phenotype of mice with deficiency for either one of these two isoforms. In this study we have analysed proliferation, apoptosis, β-cell size and glucose-stimulated insulin secretion in human islets overexpressing either PKBα or PKBβ. Our results reveal redundant and specific functions. Overexpression of either isoform resulted in increased β-cell size but none of them affected insulin production and secretion. Proliferation and apoptosis of β-cells were only significantly stimulated and inhibited, respectively, by PKBα/AKT1. Importantly, overexpression of PKBα/AKT1 in dissociated islets increased the ratio of β-cells to non-β-cells. These results confirm our previous findings with rodent islets and strongly indicate that PKBα/AKT1 can regulate functional β-cell mass also in human islets.
2.1.1 Introduction

Mammals can adapt their capacity for insulin production to changes in demand [217]. Type 2 diabetes (T2D) manifests as this ability is lost [42]. How much insulin can be produced depends on total mass of β-cells located within the pancreatic islets of Langerhans and on how well they function (functional β-cell mass) [217]. Pancreatic β-cells compensate for increased demand via proliferation, cellular growth and reduced cell death [45]. However, the capacity for compensation is often limited by chronically elevated concentrations of D-glucose, high concentrations of saturated free fatty acids (FFAs), and low-grade inflammation that can induce apoptosis in β-cells. As a consequence, β-cell mass progressively decreases in later stages of the disease [131].

The proper regulation of maintenance and expansion of functional islet mass depends on insulin receptor substrate (IRS) 2 [196]. IRS proteins are components of canonical insulin/insulin-like growth factor (IGF) signalling and IRS1 and IRS2 are required for metabolic insulin action in muscle, liver, and adipose tissue, via activation of phosphoinositide 3-kinase (PI3K). It was shown that IRS2, but not IRS1, is required in β cells for proper regulation of survival, proliferation and function of islets [145, 289]. Indeed, IRS2 deficient mice are unable to compensate for peripheral insulin resistance and develop severe diabetes [145]. Furthermore, overexpression of IRS2 in islets can autonomously increase proliferation in β-cells and reduces high-glucose-induced β-cell apoptosis [109, 190]. These observations indicate that IRS2 is necessary and sufficient for the maintenance and compensatory increase of pancreatic β-cell mass.

Protein kinase B (PKB)/AKT is required for peripheral insulin action and functions as a global regulator of metabolism, differentiation, growth, proliferation, and survival in mammals. PKB is evolutionary highly conserved and an important component of IRS/PI3K signalling [236, 237]. Three isoforms of PKB exist in mammals; PKBa/AKT1, PKBβ/AKT2 and PKBγ/AKT3. The isoforms are encoded by separate genes, but share 80-85% sequence identity and the same structural organisation. They show distinct but overlapping expression patterns and differ in their function, despite their structural similarities [236].

Functions of PKB isoforms have been studied in mice deficient for individual isoforms [43, 48, 49, 75, 89, 107, 157, 269, 297, 298]. Mice with whole body knockout (KO) for Pkba or Pkbβ show complementary respective phenotypes as for the regulation of glucose homeostasis: Pkbβ+/– mice are glucose intolerant and insulin resistant while Pkba–/– mice show improved glucose tolerance and are more insulin sensitive. Pkba–/– mice show impaired brain development but normal metabolic control.

Although all three isoforms are expressed in human pancreatic β-cells [43], it is not clear if the regulation of functional β-cell mass is isoform-specific. Transgenic mice expressing constitutively active PKBα showed a two-fold increase in β-cell proliferation [25] and overexpression of PKBα in rat insulinoma cells (INS1) protects from FFA-induced apoptosis [291]. Furthermore, insulin secretion was found to be impaired after downregulation of PKB activity in pancreatic β-cells, suggesting PKB is required for normal β-cell function [23]. When overexpressed in isolated islets in vitro, only overexpression of PKBα but not PKBβ increased β-cell proliferation [43]. In contrast to gain of function (GOF), Pkb deficient mice show no or only mild islet phenotypes. Whole body deficiency for Pkbβ even results in β-cell compensation and hyperinsulinaemia. The activation/phosphorylation of PKB isoforms was studied in β-cells overexpressing IRS2 [43]. Only PKBα but not β or γ was activated by IRS2 and IRS2-dependent enhancement of β-cell
RESULTS

proliferation was impaired in islets lacking *Pkbα* but normal in the case of deficiency for *Pkbβ* or γ indicating that *Pkbα* is regulated and required downstream of IRS2 in islets.

The aim of this present study was to clarify in human islets if GOF for the metabolically relevant isoforms (*PKBα* and *PKBβ*) exerts differential effects in β-cell function, proliferation, apoptosis, and size, respectively. To induce GOF, *PKBα* and *PKBβ* were overexpressed from adenoviral vectors in intact human islets cultured on extra-cellular matrix-coated dishes. In order to facilitate the identification of β-cells, islets were also dispersed prior to transfection and analysis. Function was studied in intact islets by assessing glucose-stimulated insulin secretion (GSIS) and insulin production. In both intact and dispersed islets only *PKBα* increased significantly β-cell proliferation, respectively. Neither ectopic expression of *PKBα* nor of *PKBβ* affected insulin production or secretion. However, both isoforms increased β-cell size, but only *PKBα* protected β-cells from apoptosis and increased the percentage of β-cells to non-β-cells.
RESULTS

2.1.2 Materials and methods

2.1.2.1 Human islets

Human islets were obtained from the Juvenile Diabetes Research Fund (JDRF) and the European Consortium for Islet Transplantation's (ECIT) "Islets for Research Distribution Program".

Islets were cultured in CMRL medium (Invitrogen, Carlsbad, USA) containing 5 mM D-glucose (Invitrogen, Carlsbad, USA), 10% FCS (HyClone Laboratories Inc., Logan, USA), 100 U/mL penicillin and 100 U/mL streptomycin (Invitrogen, Carlsbad, USA).

Around 50 islets were plated on dishes coated with extracellular matrix (ECM) derived from bovine corneal cells (Novamed, Jerusalem, Israel) and allowed to attach and flatten out for three days prior to the start of experiments \[132\]. Each condition was carried out in triplicate.

β-cells cannot be unambiguously distinguished from non-β-cells in intact human islets cultured on ECM-coated dishes. To this end islets were dispersed by collagenase digestion as described by Linetsky et al. \[165\]. Around 40'000 cells were plated on ECM-coated dishes in triplicate and allowed to attach for 24 hours.

2.1.2.2 Rat islets

Islets from Sprague-Dawley rats (200-250g) were isolated according to Gotoh et al. \[96\]. In brief, the pancreatic duct was perfused with and digested at 37°C in 10 mL cold Hank’s Balanced Salt Solution (HBSS) (Sigma-Aldrich, Saint Louis, MO) containing collagenase (10 units) (VitaCyte, Indiana, USA), rat protease (1 unit) (Serva GmbH, Heidelberg, Germany), 1.5 mg DNAse (Boehringer Mannheim, Mannheim, Germany), and 0.02 M HEPES (Invitrogen, Carlsbad, USA). Islets were purified from digested tissue via a density gradient (Histopaque-1119; Sigma-Aldrich, Saint Louis, MO) and subsequent hand picking.

Isolated islets were cultured on ECM-coated dishes (Novamed, Jerusalem, Israel) in RPMI 1640 medium containing 11.1 mM D-glucose (Invitrogen, Carlsbad, USA), 10% FCS (HyClone Laboratories Inc., Logan, USA), 100 units/mL penicillin, 100 units/mL streptomycin, and 40 g/mL gentamicin (Invitrogen, Carlsbad, USA). Islets were cultured from three days prior to transfection with adenoviral constructs.

2.1.2.3 Adenoviral transfection

Transfections and adenoviral constructs were described previously \[43\]. In brief, adenoviral constructs for expression of Hemmagglutinin (HA)-tagged PKBα, PKBβ, or GFP were supplied by Vector BioLabs (Philadelphia, USA). Intact or dispersed islets on ECM plates were exposed to viral particles at multiplicities of infection (MOI) of 500 to 1000 or 100 to 200, respectively, for two days. Afterwards islets or cells were washed twice with PBS to remove residual viral particles.

2.1.2.4 Western blotting

Cells were lysed in a buffer containing 50 mM HEPES, 140 mM NaCl, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 3 μg/mL aprotinin, 3 μg/mL 10 mM sodium fluoride, 1 mM disodium
RESULTS

pyrophosphate, and 1 mM sodium orthovanadate. Protein concentration was determined using the Bicinchoninic Acid Assay (BCA Protein Assay Kit, Thermo Scientific, Rockford, USA). SDS-PAGE and Western blotting was performed with the NuPAGE system from Invitrogen (Carlsbad, USA) according to the manufacturers instructions. Equal amounts of protein were loaded on NuPAGE Novex 4 to 12% gradient Bis-Tris Gels and afterwards transferred onto nitrocellulose membranes (GE Healthcare, Buckinghamshire, England). The membranes were incubated with 1° antibodies overnight at 4 °C and incubated with 2° antibody for 2h at RT. Lumi-Light Western blotting substrate (Roche, Basel, Switzerland) was used for visualisation of signals in a Fuji LAS-3000 ChemImager (Fujifilm, Tokyo, Japan). Bands were quantified using AIDA software (Raytest, Germany). Antibody against HA was derived from a hybridoma cell line (12CA5). An antibody against PKβ was purchased from Cell Signalling Technology (Beverly, MA, cat no. 2964). PKβ was detected using an antibody from BD Bioscience (Franklin Lakes, USA cat no. 610860). Phosphorylated-PKB was detected using antibodies against p-Ser473 and p-Thr308 (both from Cell Signalling Technology, Beverly, USA cat no. 9271 and 5106, respectively). An antibody against actin was purchased from MilliporeChemicon International (Billerica, USA). Secondary HRP-linked antibodies were used (anti-mouse from Santa Cruz Biotechnology, Santa Cruz, USA cat no. 2005, and anti-rabbit from Bio-Rad, Hercules, USA, cat no. 172-1019).

2.1.2.5 Glucose-stimulated insulin secretion and determination of total insulin content

Around 50 islets per dish in triplicate were incubated in Krebs-Ringer bicarbonate (KRB) buffer with 0.5% BSA and 2.8 mM D-glucose for 1 h at 37°C, stimulated with 16.7 mM D-glucose for 1 h at 37°C and thereafter incubated for 1h at 37°C at 2.8 mM D-glucose. This last step allows assessment of how fast islets can re-adjust to lower concentration of D-glucose after stimulation with high concentration of D-glucose. To determine total insulin content insulin was extracted from islets by incubating overnight in acid-alcohol (0.18M HCl in 70% ethanol). Insulin in supernatants and acid-alcohol extracts was measured by radioimmunoassay (RIA, CIS Bio international, Gif-Sur-Yvette, France) and normalised to protein content as measured by the Pierce Protein BCA assay kit (Thermo Scientific, Rockford, USA). For rat islets, identical procedure was performed as described for human islets. Insulin concentration was measured by ELISA (Rat Insulin ELISA, Mercodia, Uppsala, Sweden).

2.1.2.6 Analysis of apoptosis and proliferation

Apoptosis was assessed using the In Situ cell death detection kit from Roche (Basel, Switzerland). Intact or dispersed islets were cultured for four days in the presence or absence of 2ng/mL interleukin 1β (IL1β) (Prospec, Ness-Ziona, Israel, cat no. cyt-394). Cells were fixed in 4% formalin for 30 minutes. Islets or β-cells were visualised by co-staining for insulin (mouse anti-insulin; Sigma-Aldrich, Saint Louis, USA, cat no. I2018, clone K36AC10). To assess proliferation, the BrdU Labeling and Detection Kit II (Roche, Basel, Switzerland) was used. Intact or dispersed islets on ECM plates were cultured for 4 days in the presence of 5-Bromo-2'-deoxyuridine (BrdU) (10 μM) and were fixed in 4% formalin for 30 minutes at room temperature. Co-staining for insulin (mouse anti-insulin; Sigma-Aldrich, Saint Louis, USA, cat. I2018,
clone K36AC10) and DAPI allowed detecting of islets or β-cells. Intact islets: The number of islets as well as mean islet- and β-cell size was determined and used to calculate the total number of islet cells per dish. Apoptotic/proliferating islet cells were counted, expressed in percent of total number of cells and normalised to GFP control. For assessment of β-cell proliferation and apoptosis in dispersed islets at least 2000 cells were analysed.

2.1.2.7 Assessment of β-cell size, ratio of β-cells to non-β-cells

β-cell size was determined morphometrically in dispersed islets by co-staining for insulin and DAPI by measuring the area of 60 cells. The ratio of β-cells to non-β-cells was determined by counting insulin-positive and non-insulin-positive cells at five random positions on the plate (at least 600 cells were counted).

2.1.2.8 Microscopic analysis

An Axioplan 2 from Zeiss with Axio Vision software (Zeiss, Göttingen, Germany) were used for microscopic analysis. β-cell size and ratio of β-cells to non-β-cells was assessed using Image J software (National Institutes of Health, Bethesda, Maryland). Microscopy pictures in this publication were obtained on an epifluorescence microscop (Eclipse Ti, Nikon instruments with μManger, [76]).

2.1.2.9 Statistical analysis.

Data are shown as mean ± standard error of mean (SEM) unless indicated otherwise. For comparison of two groups, unpaired Student’s t-tests were performed. Analysis of variance (ANOVA) with Bonferroni’s post hoc test was used for multiple-comparisons. Results were considered to be statistically significant when P value was ≤ 0.05 *; $P \leq 0.001$ **; $P \leq 0.001$ ***.
RESULTS

2.1.3 Results

2.1.3.1 Overexpression of PKB\(\alpha\), PKB\(\beta\) or GFP in human islets

Intact islets and dispersed islet cells from seven human donors were used in this study. Age, gender, body mass index (BMI), cold ischemia time, and cause of death are listed for each donor in Table 1. In all except two cases cause of death was cerebral bleeding. The mean donor age was 50.7 (ranging from 21-61) and mean BMI [kg/m\(^2\)] was 24.07 ± 3.0. Mean purity of the used isolations was 76% (at least 60%) and islets of all preparations were glucose responsive. Cold ischemia time (time of suppressed blood supply until start of isolation) was in a similar range for each donor. Only preparations that showed such high purity and were glucose-responsive were used in this study.

A reliable transfection scheme was established for every batch of viral preparations obtained, to ensure expression of transgenes to similar levels. Representative Western blots and immunostainings are shown in Figure 1. Similar expression levels of PKBa and PKBβ in intact islets and also after dispersion of islets were achieved (Figure 1A). Figure 1B visualises ectopic expression relative to endogenous PKBa and PKBβ. Importantly, overexpression of PKB isoforms resulted in increased levels of p-PKB(Ser473) and p-PKB(Thr308) (Figure 1C). Fluorescent-microscopic analysis of AdV-GFP transfected islets revealed that transfection efficiency was typically around 80% in dissociated islets and 60% in intact islets (Figure 1D).

2.1.3.2 Overexpression of PKB\(\alpha\) or PKB\(\beta\) does not affect \(\beta\)-cell function

\(\beta\)-cell function was assessed with intact islets cultured on ECM plates, by measuring accumulated insulin in supernatants of islets shifted from low to high glucose concentrations and in acid/alcohol extracts of lysed islets.

Without transfection insulin secretion was increased 4.0 ± 2.4 fold (n=7, Table 1 and Figure 2A) in high glucose concentration. Transfection with AdV-GFP, AdV-PKB\(\alpha\) or AdV-PKB\(\beta\) did neither change insulin secretion nor insulin content (Figure 2A and B, respectively).

In rat islets, GSIS was affected neither after AdV-PKB\(\alpha\) nor after AdV-PKB\(\beta\) transfection. AdV-PKB\(\beta\) transfection showed only a tendency toward increase of total insulin content (Supplementary figure 1).

2.1.3.3 Overexpression of PKB\(\alpha\) increases proliferation but PKB\(\alpha\) and PKB\(\beta\) can increase \(\beta\)-cell size

In intact islets (Table 2) overall basal proliferation was 0.2% ± 0.13% (n=5). Proliferation was unchanged after transfection with AdV-GFP, indicating that transfection per se did not significantly influence proliferation (Figure 3A). Islets also did not show any change in proliferation after transfection with AdV-PKB\(\beta\) but proliferation was increased 3.64 ± 0.55 fold (\(P \leq 0.001\)) in islets transfected with AdV-PKB\(\alpha\). In dispersed islets basal rates of proliferation for \(\beta\)-cells and non-\(\beta\)-cells of were 0.16% ± 0.11% and 0.7% ± 0.7%, respectively (Table 2). \(\beta\)-cell proliferation varied significantly between donors (range between 0.018% ± 0.018% and 0.27% ± 0.064%). Proliferation of non-\(\beta\)-cells and of \(\beta\)-cells remained unchanged after transfection with AdV-GFP (Figure 3B). There was no significant change in proliferation of non-\(\beta\)-
cells after transfection with AdV-PKBα or AdV-PKBβ (not shown). β-cell proliferation was significantly increased 3.53 ± 0.4 fold \((P \leq 0.01)\) only after transfection with AdV-PKBα. Transfection with AdV-PKBβ merely resulted in a trend towards increased proliferation of β-cells (2.17 ± 0.59 fold, n.s.). β-Cell size was determined microscopically with dispersed islets (Table 2). Mean β-cell size was 119.65 ± 31.3 μm² (n=6) with significant variation between donors (range between 89.9 μm² ± 5.7 μm² and 159.3 μm² ± 8.24 μm²). Overexpression (Figure 4) of GFP did not result in any change whereas overexpression of PKBα or PKBβ increased β-cell size by around 50% (1.55 ± 0.12 fold and 1.45 ± 0.05 fold, respectively; \(P \leq 0.001; P \leq 0.01\), respectively).

2.1.3.4 Overexpression of PKBα protects from apoptosis and increases the ratio of β-cells to non-β-cells

Basal and IL1β-induced apoptosis were assessed in intact and dispersed islets by staining for TUNEL (Table 2 and Figure 5). In intact islets (Table 2) the rate of apoptosis was 0.14% ± 0.09% (n=5). Transfection with AdV-GFP did not increase apoptosis significantly relative to non-transfected controls (Figure 5A). Without IL1β transfection with AdV-PKBα or AdV-PKBβ did not change apoptosis compared to GFP control. Culturing the islets in the presence of IL1β increased apoptosis significantly 2.41 ± 0.2 fold in untransfected islets and 1.5 ± 0.13 fold \((P \leq 0.01)\) in islets transfected with AdV-GFP. Only transfection with AdV-PKBα resulted in inhibition of IL1β-induced apoptosis (Figure 5A).

After dispersion, basal apoptosis was 0.36% ± 0.32% (n=4) for non-β-cells and 0.9% ± 0.62% (n=4) for β-cells (Table 2). IL1β did not increase apoptosis significantly in dispersed islets (not shown). Transfection with AdV-GFP increased apoptosis of non-β-cells and β-cells (2.56 ± 0.64 and 1.55 ± 0.25 fold, respectively) relative to non-transfected controls (Figure 5C and E). Transfection with AdV-PKBβ only reduced apoptosis of non-β-cells significantly (0.6 ± 0.054 fold). Transfection with AdV-PKBα reduced apoptosis of non-β-cells (0.4 ± 0.05 fold, \(P \leq 0.001\)) and β-cells (0.47 ± 0.05 fold, \(P \leq 0.001\)).

We determined the ratio of β-cells to non-β-cells after dispersion of islets and culturing them for 4 days by staining for DAPI and insulin to detect all nuclei and to identify β-cells, respectively (Figure 5F). The mean percentage of β-cells in dissociated islets was 46.14% ± 17.13% (n=6). Variations between donors were found (range between 18.3% ± 0.8% and 59.1% ± 1.1%). Transfection with AdV-PKBα increased the percentage of β-cells by 10.4% ± 2.4% \((P \leq 0.01)\). Transfection with AdV-GFP or AdV-PKBβ had no effect. In rat islets, apoptosis was only assessed in intact islets. Only transfection with AdV-PKBα protected from IL1β-induced apoptosis (Supplementary figure 2).
<table>
<thead>
<tr>
<th>Donor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [y]</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>41</td>
<td>61</td>
<td>60</td>
<td>21</td>
<td>51 ± 14.8</td>
</tr>
<tr>
<td>Gender</td>
<td>♀</td>
<td>♀</td>
<td>♂</td>
<td>♂</td>
<td>♂</td>
<td>♂</td>
<td>♀</td>
<td>n.a.</td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>25.4</td>
<td>19.2</td>
<td>24.5</td>
<td>21.6</td>
<td>24.5</td>
<td>24.5</td>
<td>28.8</td>
<td>24 ± 3</td>
</tr>
<tr>
<td>Cause of death</td>
<td>cerebral bleeding</td>
<td>cerebral bleeding</td>
<td>cerebral bleeding</td>
<td>anoxia</td>
<td>cerebral bleeding</td>
<td>cerebral bleeding</td>
<td>anoxia</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cold ischemia [h]</td>
<td>7</td>
<td>6</td>
<td>7.5</td>
<td>6</td>
<td>7.5</td>
<td>5</td>
<td>7</td>
<td>6.6 ± 0.9</td>
</tr>
<tr>
<td>Purity [%]</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>60</td>
<td>76 ± 9.9</td>
</tr>
<tr>
<td>Stimulation index</td>
<td>5.7 ± 1.21</td>
<td>8.4 ± 1.4</td>
<td>2.4 ± 0.07</td>
<td>2.04 ± 0.13</td>
<td>2.0 ± 0.14</td>
<td>5.0 ± 0.43</td>
<td>2.8 ± 0.6</td>
<td>4.0 ± 2.4</td>
</tr>
<tr>
<td>β-cells [%]</td>
<td>41.3 ± 4.1</td>
<td>59.1 ± 1.1</td>
<td>53.5 ± 2.3</td>
<td>58.5 ± 3.5</td>
<td>18.3 ± 0.8</td>
<td>46.1 ± 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islet size [µm²]</td>
<td>46'922 ± 5600</td>
<td>24'220 ± 1944</td>
<td>46'081 ± 4698</td>
<td>54'731 ± 493</td>
<td>45'423 ± 623</td>
<td>33'286 ± 3029</td>
<td>64'351 ± 6492</td>
<td>45'002 ± 13'186</td>
</tr>
</tbody>
</table>

Table 1. Donor information.
Age [y], gender, BMI [kg/m²], cause of death, cold ischemia time [h], and purity of the islets [%] are listed as transmitted by the islet isolation facility that provided the islets. Stimulation index (fold increase of insulin secretion at high glucose (16.7 mM) compared to low glucose (2.8 mM), relative numbers of β-cells per islet [%], and islet size (average area of islets [µm²]) were determined in the course of this study. n.d.: not determined, n.a.: not applicable. Where applicable a mean and SD/SEM were calculated.
Table 2. Rate of proliferation, apoptosis, and β-cell size for non-transfected islets.

Numbers of proliferating and dying cells were determined by BrdU-incorporation or TUNEL, respectively, for intact or dispersed islets cultured on ECM-coated dishes for 4 days. Data are shown as mean percentage ± SD (n ≥ 4). β-cell size was determined microscopically in dispersed islets by measuring the area of at least 60 cells on 3 different plates.

Data are shown as mean ± SD (n ≥ 4).

<table>
<thead>
<tr>
<th></th>
<th>intact</th>
<th>dispersed</th>
<th>non-β-cells</th>
<th>β-cells</th>
<th>non-β-cells</th>
<th>β-cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dispersed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-cell size [µm²]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dispersed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoptosis [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dispersed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are shown as mean ± SD (n ≥ 4).
RESULTS

Figure 1. Ectopic expression of PKBα, PKBβ or GFP in human islets.

(A-C) Western analysis of lysates obtained from intact or dispersed islets cultured on ECM-coated dishes and transfected with adenoviral constructs to express HA-tagged fusion proteins. Membranes were incubated with (A) anti-HA antibody to verify that PKBα and PKBβ were expressed to similar levels and with (B) anti-PKBα or anti-PKBβ to visualise ectopic expression relative to endogenous expression and with (C) anti-phospho-PKB(Ser473) and phospho-PKB(Thr308) to assess activation. Actin was detected as a control. (D) Islets were dispersed and cultured on ECM-coated dishes. Fixed cells were stained with DAPI and inspected under a fluorescence microscope to count the number of cells expressing GFP. Scale bars, 50 μm.
Figure 2. Overexpression of PKBα or PKBβ does not affect β-cell function.

Intact islets on ECM plates were transfected with Adv-PKBα, Adv-PKBβ, or Adv-GFP. (A) Accumulated insulin in supernatants of islets shifted from low to high to low glucose concentrations (GSIS) and (B) total insulin extracted from islets were determined by RIA. Data are shown as (A) mean or as (B) mean in fold of GFP control ± SEM (n=6).
RESULTS

Figure 3. Overexpression of PKBα increases proliferation in islets and in β-cells.

Intact (A) or dispersed islets (B) on ECM-coated dishes were transfected with Adv-PKBα, Adv-PKBβ, or Adv-GFP. Proliferation was assessed by BrdU-incorporation over 4 days of culture. Representative microscopic images from intact and dispersed islets are shown below the bar graphs. BrdU-positive cells are stained brown, co-staining for insulin (red) allowed detection of islets or β-cells. DAPI was used to visualise nuclei (blue). Scale bars, 25 μm. Data are shown as mean in fold of GFP control ± SEM (n=4). *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
Figure 4. Overexpression of PKBa or PKBβ increases β-cell size.

Dispersed islets on ECM-coated dishes were transfected with Adv-PKBa, Adv-PKBβ, or Adv-GFP, fixed and immunostained for insulin (red) and DAPI (blue). β-cell size was determined microscopically by measuring the area of at least 60 cells on 3 different plates per condition. Data are shown as mean in fold of GFP control ± SEM (n=4). **, P ≤ 0.01; ***, P ≤ 0.001.
RESULTS

Figure 5. Overexpression of PKBα protects from apoptosis and increases the ratio of β-cells to non-β-cells.

Intact (A and B) or dispersed islets (C-F) on ECM-coated dishes were transfected with Adv-PKBα, Adv-PKBβ, or Adv-GFP. Apoptosis was assessed by TUNEL-staining after 4 days of culture in the presence or absence of IL1β (2ng/mL). Representative microscopic images from intact and dispersed islets are shown below the bar graphs. TUNEL-positive cells are stained brown, co-staining for insulin (red) allowed detection of islets or β-cells. DAPI was used to visualise nuclei (blue). Scale bars, 25 μm. Data are shown as mean in fold of GFP control ± SEM (n=4). (A) IL1β induced apoptosis only in intact islets. (F) Percent of β-cells relative to total number of counted cells presented as mean ± SEM (n=4). *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.
Supplementary figure 1. β-cell function remains unaffected in rat islets overexpressing PKBα or PKBβ.

Intact rat islets on ECM plates were transfected with Adv-PKBα, Adv-PKBβ, or Adv-GFP. (A) Accumulated insulin in supernatants of islets shifted from low to high to low glucose concentrations and (B) total insulin extracted from islets were determined by ELISA.

Data are shown as (A) mean or as (B) mean in fold of GFP control ± SEM (n=3).
Supplementary figure 2. Only overexpression of PKBα protects rat islets from IL1β-induced apoptosis.

Intact rat islets on ECM-coated dishes were transfected with Adv-PKBα, Adv-PKBβ, or Adv-GFP. Apoptosis was assessed by TUNEL-staining after 4 days of culture in the presence or absence of IL1β (2ng/mL). TUNEL-positive cells are stained brown, co-staining for insulin (red) allowed detection of islets. DAPI was used to visualise nuclei (blue). Only overexpression of PKBα protects islets from IL1β-induced apoptosis. Data are shown as mean in fold of GFP control ± SEM (n=3), *, P ≤ 0.05
2.1.4 Discussion

The molecular genetic analysis of PKBα and PKBβ in mice had revealed that these two structurally very similar isoforms exert opposing effects on peripheral insulin sensitivity: Deficiency for Pkbα results in improved but deficiency for Pkbβ in reduced insulin sensitivity [43, 280]. Furthermore, analysis of pancreatic islets from Pkb deficient mice in vitro and in vivo had suggested that the regulation of functional islet mass is mainly regulated by Pkbα. With this study we wanted to assess if PKBα or PKBβ can regulate functional β-cell mass also in human islets.

The activation of PKB isoforms is regulated via two phosphorylation sites, Ser473 and Thr308 dependent on mTORC2 and PI3K, respectively. Overexpression of PKBα or PKBβ resulted in increased intracellular levels of PKB phosphorylated at Ser473 as compared to AdV-GFP-transfected controls. This increased phosphorylation points to increased activation of PKB and is in line with the notion that overexpression does indeed result in GOF for PKB. Furthermore, our Western blot analysis suggests that PKB phosphorylation at Thr308 was more increased by overexpression of PKBα. If this was true, isoform-specific functions might be associated with differential phosphorylation of the two regulated phosphorylation sites also in human pancreatic islets, as was previously observed in skeletal muscle of mice [32]. Unfortunately, we were unable to perform a more thorough analysis of the phosphorylation of PKB at Thr308 as availability of islets limited our Western blot analysis.

Overexpression experiments as performed in this study are bound to technical limitations that are worth pointing out. For example the potency of isoforms can only be compared if similar ectopic expression levels are achieved. To this end we adjusted the respective MOIs in our experiments to obtain similar expression levels. Furthermore, ectopic expression was set to levels well below saturation where increase or decrease of the MOI would result in increase or decrease of ectopic expression, respectively. To account for possible adenoviral effects we analysed islets transfected at different MOIs and with different respective expression levels (not shown). Proliferation, apoptosis and function were clearly regulated dependent on the respective isoform that was overexpressed and not dependent on MOI or viral preparation.

Additionally, to use human islets is associated with further limitations. There is a high degree of variation due to donors with different age, BMI, sex, death causes, and health status at the time of death. Only limited numbers of donors are available. Indeed, rate of proliferation and apoptosis as well as β-cell size varied significantly between donors. Despite all of this, data reached high statistical significance in many of our experiments, which further indicates that there are indeed functional differences between PKB isoforms in pancreatic islets.

Our findings with human pancreatic islets are in good agreement with previously published observations with mouse islets: Both experimental settings indicate that GOF for PKBα, but not for PKBβ, is sufficient to increase functional islet mass. In human islets overexpression of PKBα increased β-cell proliferation and protected from cytokine-induced apoptosis more than overexpression of PKBβ, importantly only overexpression of PKBα significantly increased the ratio of β-cells to non-β-cells. Interestingly, IL1β did not induce apoptosis after dispersion of islets. IL1β is known to stimulate intra-islet immunoreaction mediated by macrophages and other islet-resident immune cells [61]. We can only assume, that after...
RESULTS

collagenase digestion these cells were absent or spatially separated in our cultures, resulting in failure of IL1β to induce apoptosis. Alternatively, different concentrations of IL1β might be more effective in inducing β-cell apoptosis.

However, as islet mass is normal or even increased in Pkba and Pkbβ deficient mouse models, both isoforms might only be required for β-cell compensation but dispensable for maintenance of islet mass [43, 196]. To determine if PKBa (and/or PKBβ) are required in human islets, loss of functions (LOF) experiments e.g. with siRNA will have to be performed. As human islets are difficult to obtain, such experiments to inhibit expression of PKB isoforms were beyond the scope of this study.

In contrast to β-cell apoptosis and proliferation, β-cell size was increased by PKBa and PKBβ to the same extend indicating that PKB isoforms can have specific and redundant functions within a single cell type. As the currently available antibodies to detect activation/phosphorylation of PKB are not isoform-specific it is not possible to correlate activation with function by Western blotting or immunostaining. This should also be taken into account in the analysis of PKB activation in peripheral tissues such as muscle and adipose tissue where PKBa and PKBβ might even perform opposite roles with respect to the regulation of insulin sensitivity. Future experiments should include a detailed analysis of the function of PKBa in the regulation of pancreatic β-cell mass in LOF models with specific deficiency for PKBa in β-cells. Such a model would allow to study the role of PKBa in functional β-cell mass in a metabolic context dependent of nutrition status, age and gender of mice.
2.2 The role of PKBα in the compensatory expansion of pancreatic β-cell mass under insulin resistance

M G. Dietrich 1,2; R A. Zuellig1; B A. Hemmings3; G A. Spinas1,2; O. Tschopp1,2; M. Niessen1,2,

1 Division of Endocrinology, Diabetes & Clinical Nutrition, University Hospital of Zurich, Switzerland
2 Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
3 Friedrich Miescher Institute (FMI) for Biomedical Research, Basel, Switzerland
RESULTS

Abstract

The protein kinase B (PKB)/AKT is indicated to play a major role in the regulation of pancreatic β-cell mass. Whereas loss of Irs2 results in β-cell failure, loss of Pkb isoforms results merely in insulin secretion defects with very little β-cell loss. Based on previous studies it was suggested that IRS2 can specifically regulate PKBa, but not PKBβ or γ, to induce compensatory expansion of islet mass. According to this view, maintenance of islet mass does not require IRS2-dependent regulation of PKB. The goal of this study was to test this hypothesis. To this end a new mouse model was generated with specific deletion of Pkba in β-cells (βpkbaKO). Mice were made insulin resistant by feeding a high-fat diet. Under normal chow diet βpkbaKO mice developed glucose intolerance only later in adult life at the age of 26 weeks. Under HFD βpkbaKO showed deteriorated glucose tolerance at earlier age in live. Plasma insulin levels from HFD-fed βpkbaKO mice were decreased compared to control littermates, indicating failure of β-cell compensation. First analysis of pancreas morphology revealed decreased β-cell area relative to total pancreas area in βpkbaKO mice compared to control littermates. Our data are in line with the hypothesis that PKBa plays a pivotal role in β-cell compensation under insulin resistance but is dispensable for maintenance of islet mass under normal conditions.
2.2.1 Introduction

Insulin resistance is believed to be the first step in the pathogenesis of type 2 diabetes (T2D) and in many cases it is diagnosed long before the manifestation of overt diabetes. Insulin resistance without diabetes can occur as the capacity of insulin production can increase by expansion of functional pancreatic β-cell mass. Such compensatory increase of islet mass ensues mainly via hypertrophy, enhanced proliferation and decreased cell death of β-cells [45]. Under conditions of overt T2D, β-cell mass is often decreased by about 60% [156]. An increased rate of apoptosis is thought to be the main cause of decreased β-cell mass. The causes for β-cell failure are complex and not fully understood yet, but glucotoxicity, lipotoxicity, proinflammatory cytokines, endoplasmatic reticulum (ER) and oxidative stress are known contributors [63], possibly via serine phosphorylation of the adapter protein insulin receptor substrate 2 (IRS2) [220]. Serine phosphorylation of IRS2 leads to its ubiquitination and proteolytic breakdown. IRS2 is pivotal for the proper regulation of functional β-cell mass [12, 190, 196] and its downregulation leads to inhibition of various downstream targets, responsible for β-cell survival [220]. Mice deficient for lrs2 are insulin resistant and show severe β-cell failure followed by development of hyperglycaemia and finally diabetes [145, 289]. However, mice deficient for lrs1 are insulin resistant but they are able to compensate the higher demand for insulin via compensatory increase of β-cell mass [13, 259]. This indicates, that IRS2 and not IRS1 is required for the maintenance and the compensatory increase of β-cell mass. In addition, only overexpression of IRS2 and not IRS1 in isolated rat islets leads to increased β-cell proliferation and protects from high glucose-induced β-cell death [190].

Protein kinase B (PKB/Akt) is a global regulator of growth, proliferation and apoptosis in various cell types and is implicated to play a major role also in the regulation of β-cell mass [45, 46, 124, 167, 249]. Insulin and other β-cell growth factors are known to be potent activators of PKB. The serine/threonine kinase PKB belongs to the AGC family including protein kinase A, C and G. Three isoforms of PKB are expressed in mammals: PkBa/AKT1, PKBβ/AKT2, and PkBy/AKT3. PKB isoforms show similarities in their protein sequences (80-85%) and in their structural organisation but are encoded by distinct genes on different chromosomes [290]. They differ in their tissue-specific expression. High expression of PKBa is found in most tissues, PKBβ is prominent in insulin-targeted tissues, whereas PKBy is highly expressed in brain and testes [89]. The relative importance of individual PKB isoforms for specific biological functions remains unclear, but evidence for non-redundant roles of PKB isoforms in insulin-targeted tissues is accumulating [237]. In skeletal muscle, only PKBa promotes lipid metabolism. In skeletal muscle and adipocytes, only PKBβ promotes glucose uptake and glucose metabolism [16, 32]. Metabolic roles of PKB isoforms were analysed in mice with isoform-specific deletion. Pkba−/− mice show lower blood glucose levels, improved glucose tolerance during glucose-and insulin tolerance tests, and significantly increased insulin-dependent glucose incorporation in adipocytes [43, 280]. Mice without Pkba are protected against high-fat diet (HFD)-induced obesity and insulin resistance [280]. Analysis of pancreas morphology showed no change in β-cell but slightly increased α-cell area. Pkbb−/− mice are glucose-and insulin intolerant and show age-related loss of adipose tissue, but analysis of pancreas showed a compensatory increase of islet mass and increased proliferation of β-cells [43, 48, 89]. Pkby−/− mice show no metabolic phenotype [43, 75, 269]. All these previous findings indicate that of the three PKB isoforms
only PKBα and PKBβ are required for glucose homeostasis. Analysis of islet morphology suggests, however, that PKB isoforms are largely dispensable in the regulation of maintenance of β-cell mass [43]. In contrast, IRS2 is required for maintenance and compensatory increase of β-cell mass, because mice deficient for Irs2 are born with reduced β-cell mass and develop diabetes as they are insulin resistant in liver but fail to compensate the higher demand for insulin via increased β-cell mass [145]. Based on this striking discrepancy in severity of islet phenotype in Irs2 versus Pkb deficient mice it was postulated that at least two separate downstream pathways must be controlled by IRS2 [196]: One for the regulation of maintenance and the second for the regulation of compensation. As maintenance of islet mass remains unaffected in Pkb deficient mice it was predicted that PKB is only necessary for the compensatory increase of islet mass downstream of IRS2. Previous findings indicate that PKBα is the major isoform required downstream of IRS2 for β-cell compensation [43]. IRS2-induced proliferation was decreased in Pkba deficient islets compared to wild type (wt) islets and Pkbβ deficient islets indicating that PKBα but not PKBβ is required downstream of IRS2. Furthermore, it was found that only PKBα was phosphorylated at Ser473 after overexpression of IRS2 in rat insulinoma cells (INS1).

The aim of this study was to test in mice if PKBα is required for the compensatory expansion of functional pancreatic β-cell mass under insulin resistance. To this end, a new β-cell-specific conditional knock out (KO) model was generated. To induce β-cell compensation mice were made insulin resistant by feeding a HFD. We assessed the metabolic phenotype of such mice under chow and HFD at different time points. Islet morphology was studied in pancreatic sections. Mice deficient for Pkba in β-cells showed age- and obesity-dependent reduction of glucose tolerance caused due to insufficient compensation of functional β-cell mass.
2.2.2.1 Mice

The mouse strain with the Pkba gene flanked by LoxP sites (Akt1^{floxed}) (kindly provided by Zai Chang, Nanjing University, China) will be published elsewhere. To specifically delete Pkba in β-cells Akt1^{floxed} mice were crossed to mice that carried a construct for expression of Cre under the control of the rat ins2 gene promoter (RIP): (B6; D2-Tg(Ins2-cre)1Herr, termed RIP-Cre [111], kindly provided by Pedro Herrera, University of Geneva, Switzerland). Akt1^{floxed} females were crossed to RIP-Cre; Akt1^{floxed}+ males to generate RIP-Cre; Akt1^{floxed} (βpkbaKO) and Akt1^{floxed} offspring (control), respectively. 6 weeks old mice βpkbaKO mice and control littermates were fed a standard chow diet (Provimi Kliba SA, Kaiseraugst, Switzerland) or a high-fat high-sucrose diet (HFD, Surwit Research Diets, New Brunswick, NJ, with 58% of calories from fat, 26% from carbohydrates, and 26% from protein; D12331) for 22 weeks. At the age of 28 weeks, mice were killed and pancreas, fat, muscle, liver and brain were dissected for further analysis. Both, females and males were analysed. Mice were housed in groups of up to 5 littermates with 12h dark-light cycle at 21°C and were allowed free access to food and water. Breeding of mice and all conducted procedures were carried out in agreement with Swiss Animal Protection laws and were approved by the appropriate authorities. All experiments with the exception of the analysis of pancreas morphology were performed for males and females. HFD feeding did not lead to significant weight gain in females. No significant differences between female βpkbaKO mice and controls were found (data not shown).

2.2.2.2 Determination of glucose and insulin in blood samples

D-glucose was measured in blood drawn from the tail vein of mice by using a glucose meter (Accu-chek Aviva, Roche, Switzerland). Blood samples for determination of insulin were collected from the tail vein or by cardiac puncture of euthanized animals, supplemented with aprotinin (Sigma-Aldrich, Saint Louis, Missouri, USA), centrifuged and plasma was immediately frozen. Insulin was measured with an ELISA Kit (Ultra Sensitive Mouse Insulin ELISA Kit, Crystal Chem, Downers Grove IL, USA).

2.2.2.3 Intraperitoneal glucose and insulin tolerance tests (ipGTT, ipITT)

For ipGTT, mice were fasted overnight (18h). 2g of glucose per kg bodyweight (20% solution, Bichsel, Switzerland) was injected into the peritoneum. For ipITT, mice were fasted for 3h and insulin was injected at 0.75 U/kg BW for females and 1U/kg BW for males (Actrapid, Novo Nordisk, Sweden). Mice at the age of 6 weeks, 12 weeks, 18 weeks or 26 weeks were tested. D-glucose levels were measured at time points 0, 15, 30, 45, 60, 90 and 120 min. For measuring insulin release during a glucose challenge, mice were fasted overnight and glucose was injected (2g/ kg bodyweight). Furthermore, area under the curve (AUC) was calculated to assess differences in ipGTT and ipITT.
RESULTS

2.2.2.4 Tissue dissections and assessment of fat depots

Sacrificed animals were weighed and blood was collected after cardiac puncture. Pancreas, liver, muscle, and fat were dissected, weighed and snap-frozen in liquid nitrogen or fixed in 4% formalin for 12h prior to embedding in paraffin. Fat from four different depots: epididymal-, peritoneal-, inguinal- and mesenteric fat was analysed.

2.2.2.5 Immunohistochemistry and morphometric analysis of pancreas

Pancreatic sections were deparaffinised, rehydrated, blocked and incubated overnight at 4°C with antibodies against insulin (mouse monoclonal, DAKO, Glostrup, Denmark) or glucagon (rabbit polyclonal, DAKO, Glostrup, Denmark). Secondary antibodies conjugated with FITC-or Cy3 (Jackson ImmunoResearch Laboratories, West Grove, Pennsylvania, USA) respectively, were used. Nuclei were visualised by DAPI staining (Sigma-Aldrich, Saint Louis, Missouri, USA).

Stained sections were analysed using a Zeiss Axioplan 2 microscope and Axio Vision software (Zeiss, Göttingen, Germany). Islet size and the number of islets per area of tissue, β- and α-cell area, and β- and α-cell size were determined.

2.2.2.6 Islet isolation and culture

Islets were isolated by collagenase (Worthington Biochemical Corporation, Lakewood, USA) digestion of pancreas from mice [227]. For further purification, islets were handpicked and dissociated into single cells by another collagenase digestion step. For culturing in vitro, dissociated islets were plated on extracellular matrix-coated (ECM)-dishes (Novamed, Jerusalem, Israel) and allowed to attach overnight. Islets or β-cells were cultured in RPMI 1640 medium containing 11.1 mmol/L D-glucose (Invitrogen, Carlsbad, California), 10% FCS (Hyclone Laboratories Inc., Logan, Utah, USA), 100 units/mL penicillin, 100 μg/mL streptomycin and 40 g/mL gentamycin (Invitrogen, Carlsbad, California, USA).

2.2.2.7 Western blotting

Tissues or cells were lysed in 50 mM HEPES, 140 mM NaCl, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 3 μg/mL leupeptin, 3 μg/mL aprotinin, 10 mM sodium fluoride, 1 mM disodium pyrophosphate and 1 mM sodium orthovanadate. Protein concentration of lysates was determined by the Bicinchoninic Acid Assay (BCA Protein Assay Kit, Thermo Scientific, Rockford, USA). Western blotting was performed using the NuPAGE system from Invitrogen (Invitrogen, Carlsbad, California, USA) according to the manufacturer’s recommendations. Equal amounts of protein were diluted in NuPAGE LDS Sample Buffer and Sample Reducing Agent and loaded onto NuPAGE Novex 4-12% Bis-Tris Gels. After electrophoresis was complete, separated protein bands were transferred onto nitrocellulose membranes (Amersham, GE Healthcare, Buckinghamshire, England). The membranes were incubated overnight at 4°C with primary antibody and afterwards for 2h with secondary antibody at room temperature.
Lumi-Light Western Blotting Substrate (Roche, Basel, Switzerland) was used to visualise signals. Signals were detected and quantified with a LAS-3000 ChemImager (Fujifilm, Tokyo, Japan) and AIDA software (Raytest, Germany). Antibodies against PKBβ, PKBγ and total-PKB were purchased from Cell Signalling Technology (Beverly, Massachusetts, USA). An antibody against PKBα was from BD Biosciences (Franklin Lakes, New Jersey, USA). As a loading control actin was visualised (Millipore-Chemicon International, Billerica, Massachusetts, USA). Secondary antibodies against mouse were purchased from Santa Cruz Biotechnology (Santa Cruz, California, USA) and against rabbit from BioRad (Hercules, California, USA).

2.2.2.8 Statistical analysis

Data are shown as mean ± SEM. To test significance, unpaired Student’s t-tests (two-tailed) were performed. $P \leq 0.05^{*}$; $P \leq 0.01^{**}$; $P \leq 0.001^{***}$.

2.2.3 Results

2.2.3.1 Validation of the new mouse model

A schematic overview of the strategy to generate our model is shown in Figure 1A. β-cell-specific deletion of Pkba is induced by Cre expression under control of the RIP promoter. No change in body weight and random-fed plasma glucose were observed between Pkb^{floxflox} and wt mice at the age of 22 weeks (data not shown), indicating that the function of Pkba is intact without Cre expression. Western blot analysis was performed to confirm that PKBα was normally expressed in Pkb^{floxflox} (controls) mice but absent or strongly reduced in β-cells of βpkbaKO mice. Liver from whole body knock out mice ($Pkb^{\text{−/−}}$) and from wt littermates ($Pkb^{+/+}$) was used as negative and positive control, respectively. Indeed, PKBα was normally expressed in all examined tissues of Pkba$^{\text{floxflox}}$. In contrast PKBα was absent in lysates from β-cells of βpkbaKO but its expression was unchanged in liver, muscle, fat and brain. Expression of PKBβ and PKBγ was not affected (Figure 1B).

2.2.3.2 βpkbaKO mice show impaired glucose tolerance at 26 weeks of age

Body weight, blood glucose (random-fed and after fasting), ipGTT and ipITT were assessed at 6, 12, 18, and 26 weeks of age. Results are presented in figures grouped according to age (Supplementary figure 1-3; Figure 2). No differences in body weight, random fed and fasting (18h) blood glucose levels were found between βpkbaKO mice and controls (Supplementary figures 1A-3A; Figure 2A). In ipGTT, blood glucose levels were unchanged at 6, 12 and 18 weeks of age (Supplementary figures 1B-3B). However, 26 weeks old βpkbaKO mice showed significantly higher blood glucose levels with significantly increased AUC (+ 24.2% ± 5.7%, $P \leq 0.05$) during ipGTT (Figure 2B). IpITT revealed no changes in blood glucose levels between βpkbaKO mice and controls at all time points (Supplementary figures 1C-3C; Figure 2C). Furthermore, a tendency towards increased blood glucose in βpkbaKO mice after 3h of fasting at age 18 and 26 weeks was observed (Supplementary figures 3A; Figure 2A).
2.2.3.3 HFD accelerates the onset of impaired glucose tolerance in βpkbaKO mice

To induce insulin resistance, mice were fed a HFD starting from the age of 6 weeks up to the age of 28 weeks. Mice under HFD were analysed at the age of 12, 18 and 26 weeks corresponding to 6, 12 and 20 weeks of HFD, respectively. Data are presented as for animals under chow diet in Figures 3-5. Animals under high-fat diet had significantly increased body weight and reduced glucose tolerance compared to mice under chow diet (Figures 3BC-5BC). Random-fed and fasted blood glucose levels remained unchanged up to 20 weeks of HFD between controls and βpkbaKO mice (Figures 3A-5A). Glucose tolerance of βpkbaKO mice deteriorated significant compared to controls throughout the entire course of the HFD period (Figures 3D-5D). Already after 6 weeks of HFD glucose tolerance was significant reduced in βpkbaKO mice compared to controls (Figure 3D).

In ipITT, glucose levels were not changed after 6 weeks of high-fat diet (Figure 3E). After 12 weeks of HFD, significantly lower blood glucose levels were found in βpkbaKO mice compared to controls at 90 min and 120 min after insulin administration (Figure 4E). Significantly lower AUC (-27.25% ± 5.17%, P ≤ 0.05) was observed in βpkbaKO mice after 20 weeks of HFD (Figure 5E).

2.2.3.4 HFD-induced increase of plasma insulin is absent in βpkbaKO mice

Insulin levels were determined in chow- and HFD-fed mice at the age of 28 weeks (Figure 5F). No significant difference in plasma insulin was detected between βpkbaKO mice and controls under chow diet. Control mice fed a HFD showed significantly increased plasma insulin levels compared to chow-fed mice (7.54 ng/mL ± 2.5 ng/mL vs. 2.18 ng/mL ± 0.39 ng/mL, P ≤ 0.05). βpkbaKO mice under HFD showed significantly lower plasma insulin levels (2.5 ng/mL ± 0.58 ng/mL, P ≤ 0.05) compared to controls (7.54 ng/mL ± 2.5 ng/mL).

2.2.3.5 βpkbaKO mice are partially protected from HFD-induced weight gain

Weight gain under HFD was similar in βpkbaKO mice and controls up to 15 weeks of HFD (21 weeks of age). At later time points βpkbaKO mice were significantly lighter (Figure 6A). At the age of 28 weeks (22 weeks of HFD), mice were sacrificed and the weights of various fat depots, pancreas and liver were assessed. Under chow diet no significant difference in total fat weight was observed between βpkbaKO mice and controls. Analysis of adipose tissue showed significantly increased total fat mass in percent of bodyweight after HFD in βpkbaKO mice (+6.05% ± 0.019%, P ≤ 0.001) and controls (+9.4% ± 0.84%, P ≤ 0.001). This significant increase affected all analysed fat depots (epididymal-, inguinal-, mesenteric-, and peritoneal fat).

However, βpkbaKO mice had significantly lower total fat weight in percent of bodyweight (12.5% ± 0.61%; P ≤ 0.05) compared to controls (15.3% ± 0.84%) (Figure 6B). Peritoneal fat was significantly reduced in βpkbaKO mice (-0.46% ± 0.08%, P ≤ 0.05) compared to controls while in mesenteric fat (-0.5% ± 0.124%), inguinal fat (-1.5% ± 0.42%) reduction did not reach significance (Figures 6D-6F). Epididymal fat depots were similar between both groups (Figure 6C).

Liver and pancreas weight in percent of bodyweight were similar between both groups under chow diet.
and under HFD, respectively. Significant differences between liver and pancreas weight could be detected between chow- and HFD-fed mice. Pancreas and liver weight in percent of body weight is decreased in HFD-fed βpkbaKO mice (pancreas: -0.17% ± 0.088%; P ≤ 0.001; liver: -1.13% ± 0.08%; P ≤ 0.001) and controls (pancreas: -0.27% ± 0.039%; P ≤ 0.05; liver: 0.6% ± 1.25%; P ≤ 0.05) compared to aged matched mice under chow diet (Figures 6G-6H).

2.2.3.6 Morphometric analysis of pancreas showed decreased β-cell area in βpkbaKO mice

Islet morphology was assessed in 28 weeks old mice under chow diet. Pancreatic sections were stained for insulin, glucagon, and DAPI. Islet number per mm² of pancreas area was decreased (-40% ± 10.7%; n.s) in βpkbaKO mice (Figure 7A). In addition, β-cell and α-cell area were reduced in βpkbaKO mice (β-cell area: -46.1% ± 12.9%; n.s; α-cell area: -46.9% ± 13.8%; n.s) (Figures 7B-7C), whereas islet size proportion, β-cell and α-cell size remained unchanged (Figures 7D-7F). Preliminary analysis of pancreatic sections from HFD-fed animals indicates strongly reduced islet size and number in βpkbaKO compared to controls (not shown).
Figure 1. PKBα is lost exclusively in β-cells.
(A) Strategy for β-cell-specific deletion of Pkba. LoxP sites were inserted into the Pkba locus between exons 2/3 and 11/12. The catalytic domain including the regulated Thr308, are included between the LoxP sites. LoxP sites flanking exons 3-12 and containing a neomycin cassette were inserted by homologous recombination into the Pkba locus. The Neo cassette was removed by FLP-mediated excision resulting in a functional Pkba locus. Dependent on conditional Cre expression exons 3-11 can be deleted resulting in a null mutation in Pkba.
(B) Western blot analysis to assess expression of PKBα, PKBβ, PKBγ and total levels of PKB in β-cells, fat, brain, liver, and muscle from βpkbaKO mice and controls. Lysates from liver of whole body knock out mice (Pkbα−/−) and wt littermates (Pkbα+/+) were used as negative and positive control, respectively. PKBα is missing in β-cells, while expression in fat, brain, liver, and muscle is similar in βpkbaKO mice and controls. Expression of PKBβ and PKBγ remained unchanged, whereas total PKB expression in β-cells was reduced, but normal in fat, brain, liver, and muscle in βpkbaKO mice compared to controls. Actin was detected as loading control.
Figure 2. **βpkbaKO** mice show deteriorated glucose tolerance at the age of 26 weeks.

(A) Body weight, random-fed, and fasting blood glucose levels. Time course up to 120 min of blood glucose concentrations during (B) ipGTT and (C) ipITT in **βpkbaKO** mice (grey open squares) and controls (c) (black open circles). The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from, n ≥ 9 mice. *, P ≤ 0.05.
RESULTS

Figure 3. βpkbαKO mice show deteriorated glucose tolerance after 6 weeks of HFD.
(A) Body weight, random-fed and fasting blood glucose levels. (B) Weight gain after 6 weeks of HFD. (C) AUC of ipGTT of βpkbαKO mice and controls (c) under chow diet (grey open bars and black open bars, respectively) and HFD (grey filled bars and black filled bars, respectively). Time course up to 120 min of blood glucose concentrations in βpkbαKO mice (grey filled squares) and controls (c) (black filled circles) during (D) ipGTT and (E) ipITT. The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from, n=10 mice. *, P ≤ 0.05.

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>βpkbαKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight [g]</td>
<td>31.38 ± 0.59</td>
<td>31.2 ± 0.8</td>
</tr>
<tr>
<td>Blood glucose [mmol/L]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>random-fed</td>
<td>8.95 ± 0.21</td>
<td>8.59 ± 0.34</td>
</tr>
<tr>
<td>3h fasting</td>
<td>9.17 ± 0.33</td>
<td>9.52 ± 0.31</td>
</tr>
<tr>
<td>18h fasting</td>
<td>5.28 ± 0.4</td>
<td>5.99 ± 0.56</td>
</tr>
</tbody>
</table>
Figure 4. \(\beta pkbaKO \) mice show deteriorated glucose tolerance after 12 weeks of HFD.

Body weight, random–fed, and fasting blood glucose levels. (B) Weight gain after 12 weeks of HFD. (C) AUC of ipGTT of \(\beta pkbaKO \) mice and controls \((c) \) under chow diet (grey open bars and black open bars, respectively) and HFD (grey filled bars and black filled bars, respectively). Time course up to 120 min of blood glucose concentrations in \(\beta pkbaKO \) mice (grey filled squares) and controls \((c) \) (black filled circles) during (D) ipGTT and (E) ipITT. The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from, \(n=10 \) mice. *, \(P \leq 0.05 \).
RESULTS

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>βpkbaKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight [g]</td>
<td>41.64 ± 2.7</td>
<td>36.9 ± 1.9</td>
</tr>
<tr>
<td>Blood glucose [mmol.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0h fasting</td>
<td>9.0 ± 0.4</td>
<td>8.9 ± 0.17</td>
</tr>
<tr>
<td>3h fasting</td>
<td>8.47 ± 0.56</td>
<td>8.06 ± 0.4</td>
</tr>
<tr>
<td>18h fasting</td>
<td>6.22 ± 0.42</td>
<td>6.65 ± 0.28</td>
</tr>
</tbody>
</table>

Figure 5. Deteriorated glucose tolerance but improved insulin sensitivity in βpkbaKO mice after 20 weeks of HFD.

Body weight, random-fed, and fasting blood glucose levels. (B) Weight gain after 20 weeks of HFD. (C) AUC of ipGTT of βpkbaKO mice and controls (c) under chow diet (grey open bars and black open bars, respectively) and HFD (grey filled bars and black filled bars, respectively). Time course up to 120 min of blood glucose concentrations in βpkbaKO mice (grey filled squares) and controls (c) (black filled circles) during (D) ipGTT and (E) ipITT. The respective AUCs are shown as bar graphs on the right side. (F) Random-fed plasma insulin levels in chow fed βpkbaKO mice and controls (c) (grey open bars and black open bars, respectively) and after HFD (grey filled bars and black filled bars, respectively). The data are presented as mean ± SEM, from n ≥ 6 mice. *, P ≤ 0.05, **, P ≤ 0.01
RESULTS

Figure 6. \(\beta \)pkb\(\alpha \)KO mice show reduced adipose tissue compared to controls.

(A) Weight gain of \(\beta \)pkb\(\alpha \)KO mice (grey filled squares) and of controls (c) (black filled circles) up to 22 weeks of HFD. Animals were 28 weeks old at the end of the HFD experiment (22 weeks of HFD). They were sacrificed and organs as well as fat from different depots were dissected. Weight of the dissected tissues in % of body weight (BW) for: (B) total fat, (C) epididymal fat, (D) inguinal fat, (E) mesenteric fat, (F) peritoneal fat, (G) liver and (H) pancreas. \(\beta \)pkb\(\alpha \)KO mice: chow-fed (grey open bars) and HFD-fed (grey filled bars); controls (c): chow-fed (black open bars) and HFD-fed (black filled bars). Data are presented as mean ± SEM, from \(n \geq 5 \) mice.

*, \(P \leq 0.05 \), **, \(P \leq 0.01 \).
RESULTS

Figure 7. βpkbaKO mice show decreased islet area relative to controls.

Animals (28 weeks old) under chow diet were sacrificed, pancreas was dissected and embedded in paraffin. Pancreatic sections were stained for insulin, glucagon, and DAPI to determine (A) islet area, (B) β-cell area, (C) α-cell area, (D) β-cell size, (E) α-cell size and (F) islet size in βpkbaKO (grey open bars) and controls (c) (black open bars). Representative microscopic images of (G) controls and (H) βpkbaKO stained to visualise insulin (green), glucagon (red) and nuclei (blue). Scale bars, 100 μm. Data are presented as mean ± SEM with n=4 from 28 weeks old chow-fed mice.
Supplementary figure 1. **Metabolic parameters of 6 weeks old chow-fed mice.**

(A) Body weight, random fed and fasting blood glucose levels. Time course up to 120 min of blood glucose concentrations in \(\beta^{\text{pkb}}\alpha\text{KO}\) mice (grey open squares) and controls (c) (black open circles) during (B) ipGTT and (C) ipITT. The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from, \(n \geq 10\).
Supplementary figure 2. **Metabolic parameters of 12 weeks old chow-fed mice.**

(A) Body weight, random fed and fasting blood glucose levels. Time course up to 120 min of blood glucose concentrations in βpkbaKO mice (grey open squares) and controls (c) (black open circles) during (B) ipGTT and (C) ipITT. The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from n ≥10.
Supplementary figure 3. **Metabolic parameters of 18 weeks old chow-fed mice.**

(A) Body weight, random fed and fasting blood glucose levels. Time course up to 120 min of blood glucose concentrations in \(\beta \text{p} \text{k} \beta \alpha \text{KO} \) mice (grey open squares) and controls (c) (black open circles) during (B) ipGTT and (C) ipITT. The respective AUCs are shown as bar graphs on the right side. Data are presented as mean ± SEM from, \(n \geq 10 \).
2.2.4 Discussion

IRS2 is an essential survival factor for β-cells as indicated by the severe islet phenotype of mice lacking *Lrs2* only in β-cells or in all cells of their body [196]. In contrast, deficiency for *Pkb* isoforms induces relatively mild effects in pancreatic islets [43]. This discrepancy in phenotypes could be due to redundancy in islet functions of PKB isoforms or due to the existence of PKB-independent pathways required downstream for IRS2-dependent regulation of islet mass and function. Previously published work had indicated that PKB isoforms are not only differentially regulated in β-cells, but also perform specific functions [43]. Regulation of compensatory expansion of functional β-cell mass might be isoform-specific. Only overexpression of PKBα in isolated mouse islets increases β-cell proliferation and only PKBα is phosphorylated after overexpression of IRS2 [43].

The aim of this study was to test the role of PKBα in adaptive expansion of functional β-cell mass under HFD-induced insulin resistance.

2.2.4.1 Is *Pkba* required for maintenance and/or adaptive expansion of islet mass?

Male mice lacking *Pkb*α only in β-cells show normal blood glucose and normal glucose tolerance up to the age of 26 weeks. This phenotype suggests that *Pkbα* is not required in β-cells under conditions of normal insulin sensitivity. Older β*pkbα*KO animals with supposedly age-related reduction of insulin sensitivity showed reduced glucose tolerance. Furthermore, under HFD-feeding reduced glucose tolerance compared to littermate controls was observed at a younger age. These observations are in line with the notion that *Pkbα* is required for β-cell compensation under reduced insulin sensitivity but not for maintenance when insulin sensitivity is normal. That β*pkbα*KO animals fail to compensate was also evident from reduced circulating insulin levels in our HFD experiment.

Decreased β-cell area with normal islet size relative to total pancreas area in β*pkbα*KO mice suggests that age-dependent failure to compensate is caused by a reduction in islet number. However, it remains unclear if this is the result of islet loss in adulthood, failure to form new islets or even caused by impaired embryonic development. Furthermore, it remains unclear if β-cell failure is only caused by reduced β-cell mass or also the consequence of impaired β-cell function. These open questions will be addressed in further approaches.

Under HFD feeding β*pkbα*KO mice displayed an increase in insulin sensitivity compared to controls from the age of 18 weeks (12 weeks HFD) on and throughout the rest of the experiment. After 26 weeks (20 weeks HFD), AUC was significant decreased in β*pkbα*KO mice compared to controls. Increased insulin sensitivity in β*pkbα*KO mice might result because of persistently reduced insulin levels. Rodents under HFD show increased phosphorylation of IRS1 at Ser632 and Ser302 [138, 273]. It was suggested that high levels of circulating insulin could be responsible for inhibition of IRS proteins leading to progressive insulin resistance [138, 230, 234, 273]. β*pkbα*KO mice with lower levels of circulating insulin might avoid this negative feed-back regulation.

In a previous study authors expressed a kinase-dead mutant form of PKBα (estimated to reduce PKB activity by 80%) specifically in β-cells. Similar to our findings, mice developed glucose intolerance and
RESULTS

failure to increase plasma insulin levels after HFD-feeding. However, analysis of pancreas morphology showed no alterations in islet composition between mice expressing the kinase-dead variant and wt littermates, neither under chow nor HFD. Nevertheless, a strong insulin secretion defect was observed in these mice [23], possibly due to reduced activation of PKBβ. In contrast, our βpκbaKO mice are only deficient for PKBα but showed no change in the expression of PKBβ or PKBγ.

2.2.4.2 The use of RIP to drive CRE expression in pancreatic β-cells

We chose RIP-CreHerr for specific deletion of Pkba in pancreatic β-cells. Other studies have used the promoter pancreatic and duodenal homeobox 1 (Pdx1) to drive Cre expression [85, 287], but we suspected that its use might delete Pkba very early in pancreas development possibly resulting in embryonic defects. The Pdx1 promoter was used to study pancreas respective endocrine cell development [101, 111, 113, 287, 308]. There are different variants of RIP promoters available to drive Cre expression. They differ in length of the fragment used and in the genomic insertion site [286]. Other RIP promoters (e.g. in RIP-CreHerr) [213] show robust Cre-mediated recombination in β-cells but also during ventral brain development [86]. Ectopic activation of this RIP promoter was found in most brain areas, especially in mid-brain and ventral regions [286]. We chose the strain RIP-CreHerr as it was shown to show minimal ectopic activation making it most suitable for specific β-cell deletion of Pkba. However, it is known that RIP-CreHerr can also be activated in brain, especially in hypothalamus [286]. Activation in these cells was described only as punctual [239], however, the central nervous system (CNS) can control glucose homeostasis also by affecting β-cells. Insulin secretion is also regulated by hypothalamus and insulin can regulate energy homeostasis via the hypothalamus [238]. Formally, it can therefore not be excluded, that the focus of the observed phenotype is not in β-cells. [222, 239, 286].

2.2.4.3 Gender-specific differences

Our study reveals gender-specific differences. First, male mice readily became obese under HFD feeding while females did not. The HFD-induced weight gain in females was insufficient in βpκbaKO and in controls. Significantly increased bodyweight and impaired glucose tolerance and insulin sensitivity was only observed after 26 weeks of HFD. Furthermore, no significant increase in total fat was found in HFD-fed females compared to chow-fed females in both groups. All these together indicate that HFD feeding was not efficient in females. Our results fit well to previous observations [264, 265, 296]. To extend the period of HFD in females as proposed by others [264, 265] but also alternative ways to induce insulin resistance should be considered. For example β-cell-specific deficiency for Pkba could be tested in an ob/ob (impaired leptin production) or db/db (leptin receptor defects) background. Second, only βpκbaKO males but not the females developed glucose intolerance. Gender-specific expressivity is not uncommon [173]. Females gained less weight throughout the course of our experiments and might hence retain high insulin sensitivity longer into their adult live. This could postpone the onset of glucose intolerance in βpκbaKO females beyond 26 weeks of age.
2.2.4.4 Differences in fat distribution

One can distinguish between intraabdominal (IA) and subcutaneous (SC) white adipose tissue (WAT) in mice. High levels of intraabdominal fat increase the risk for metabolic disorders, whereas the correlation is inverted for subcutaneous fat \[141\]. Epididymal-, mesenteric-, and peritoneal fat contribute to IA WAT, whereas inguinal fat is associated to SC WAT \[229\]. The particular fat depots show proteome and morphological differences e.g. size of adipocytes is highest in epididymal fat and lowest in mesenteric- and inguinal fat. Increased adipocyte size is associated with poor metabolic performance in obese individuals \[127\]. Inguinal fat is in general associated with lower oxidative stress mediated by triglycerides turnover than mesenteric- and epididymal fat \[229\].

Analysis of fat depots showed significantly decreased total fat relative to bodyweight in \(\beta\)pkbaKO mice compared to controls. Mesenteric, inguinal, and peritoneal fat was reduced, whereas epididymal fat was unchanged compared to controls. It is well known that feeding a HFD induces obesity and insulin resistance in rodents. The magnitude of insulin resistance correlates with weight gain and fat accumulation \[267, 273\]. Increased insulin sensitivity in \(\beta\)pkbaKO mice could result from decreased fat mass compared to controls. However, inguinal fat was found to be reduced in \(\beta\)pkbaKO mice. Increased inguinal fat mass relative to IA fat is usually associated with improved glucose tolerance in mice \[141\].

Hence, decreased inguinal fat mass in \(\beta\)pkbaKO mice compared to controls might contribute to reduced glucose tolerance in those mice.

\(\beta\)pkbaKO mice were less prone to HFD-induced weight gain at the later time points of HFD. This was associated with a lack of hyperinsulinaemia and increased insulin sensitivity. At this point we can only speculate that the increase in insulin sensitivity does not balance the reduction in insulin and that insufficient insulin activity is the result. Reduced weight gain and fat mass in \(\beta\)pkbaKO mice could therefore be the result of reduced plasma insulin levels compared to control mice \[181\].

Our data suggest that mice with deficiency for Pkba in pancreatic \(\beta\)-cells develop \(\beta\)-cell failure under conditions of insulin resistance. Our data are in line with the previously published model, that predicted PKBa to be only required for adaptation of functional \(\beta\)-cell mass under a challenge but dispensable for its maintenance \[196\]. In further experiments it should be examined if \(\beta\)-cell failure is the result of islet loss or the result of failure to form new islets in adulthood or even caused by impaired embryonic development. Additionally, \(\beta\)-cell function \textit{in vivo} as well as \textit{in vitro} must be examined. This project is still on going, and further approaches are described in section 4 (Future directions).
2.3 Regulation of PKB isoforms in β-cells by growth factors

2.3.1 Introduction

It was an aim of this thesis to study the role of PKB isoforms in the regulation of β-cell growth, proliferation and survival. A number of studies have indicated that the IRS2-PKB axis indeed plays a critical role in β-cells for proliferation, survival, growth, and insulin production [95, 146, 161, 285]. In this part we wanted to test how known β-cell growth factors regulate/activate the different PKB isoforms.

Insulin and insulin-like growth factor 1 (IGF1) are known inducers of proliferation and activators of PKB in β-cells [60]. Prolactin and glucagon-like peptide (GLP1) are also known to mediate β-cell proliferation, whereas cytokines like interleukin 1β (IL1β) induces β-cell apoptosis via inhibition and ubiquitination of IRS2, which in turn inhibits PKB activation [24, 135, 220].

IGF1 can stimulate β-cell proliferation via activation of the PI3K/PKB axis and inhibition of PKB activity mediated through ectopic expression of a kinase-dead form of PKB decreases IGF1-induced proliferation [60]. Deficiency of IGFR in β-cells (βIGFRKO) leads to increased fasting insulin levels, moderate glucose intolerance, and to impaired first-phase insulin secretion. Islet mass was normal in these mice [148]. Mice with deficiency in ir are slightly retarded in embryonic growth, develop hyperglycaemia and hyperinsulinaemia and die shortly after birth [5, 129]. Mice with a specific deficiency of IR in β-cells (βIRKO) show similar phenotype like mice with β-cell specific deletion of IGFR [147].

As described above, all three isoforms of PKB (PKBα, β and γ) are regulated at two phosphorylation sites, respectively: 3-phosphoinositide-dependent protein kinase-1 (PDPK1, PDK1) phosphorylates PKB at Thr308 (α: Thr308, β: Thr309, γ: Thr305) accounting for around 10% of kinase activity. Phosphorylation at Ser473 (α: Ser473, β: Ser474, γ: Ser472) via mammalian target of rapamycin complex 2 (mTORC2), DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia mutated kinase (ATM) leads to full PKB activation. However, it remains unknown if there is isoform-specific regulation by growth factors/inhibitors in β-cells [236, 292].

Specific antibodies are available to detect PKBα, β or γ, but there are no phospho-specific antibodies available to distinguish activation of individual isoforms. The amino acid sequences surrounding the regulated phosphorylation sites are nearly identical. We therefore decided to start our study of isoform-specific activation by Western blotting in combination with isoform-specific immunoprecipitation (IP) in rat insulinoma cells (INS1) as PKB activation had previously been successfully studied in this model [43, 60]. Later we wanted to extend our analysis to isolated rat islets.

It was our goal to first study how PKB isoforms are regulated by insulin and IGF1, two well-defined growth factors, and to later include others, like e.g. D-glucose, the incretin GLP1 and eventually also known β-cell inhibitors (e.g. cytokines or free fatty acids (FFAs)). In the course of this part of the project to many technical limitations became apparent and therefore our analysis of the regulation of PKB isoforms in β-cells was stopped at an early point. Results were nevertheless compiled and are presented in a short form below.
RESULTS

2.3.2 Materials and Methods

2.3.2.1 Cell culture and stimulation with growth factors

Rat insulinoma cells (INS1) [14] from clone E110 [187] were cultured on 10 cm plates (TPP Techno Plastic Products, Trasadingen, Switzerland) up to 80% confluence in RPMI medium containing 10.6 mmol/L glucose (Invitrogen, Carlsbad, California, USA), 10% FCS (Hyclone Laboratories Inc., Logan, Utah, USA), 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM glutamax, 1 mM sodium pyruvate, 10 mM HEPES, and freshly added 50 μM β-mercaptoethanol (Invitrogen, Carlsbad, California, USA). Cells were starved for 5 hours prior to stimulation with growth factors in medium containing 1.6 mmol/L glucose, 0% FCS, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM glutamax, 1 mM sodium pyruvate, 10 mM HEPES, and freshly added 50 μM β-mercaptoethanol (Invitrogen, Carlsbad, California, USA). Bovine insulin and or IGF1 were obtained from Sigma-Aldrich, Saint Louis, Missouri, USA.

2.3.2.2 Immunoprecipitation of PKB isoforms

Cells were washed two times with ice cold PBS and afterwards lysed in lysis buffer containing 50 mM HEPES, 140 mM NaCl, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 3 μg/mL leupeptin, 3 μg/mL aprotinin, 10 mM sodium fluoride, 1 mM disodium pyrophosphate and 1 mM sodium orthovanadate. To measure protein concentration in lysates, the Bicinchoninic Acid Assay (BCA Protein Assay Kit, Thermo Scientific, Rockford, USA) was used. Lysates containing 500 μg protein in 300 μl lysis buffer were incubated in the presence of Protein A beads (rpm Protein A Sepharose Fast Flow, GE Healthcare, Buckinghamshire, England) with specific antibodies against PKBα, PKBβ or PKBγ overnight at 4 °C. Antibodies produced in rabbits immunised with isoform-specific peptides [43, 71, 269, 298] were kindly provided by Prof. Brian Hemmings (FMI Basel). After several washing steps, proteins bound to beads were dissociated by two washes (5 minutes per step) at 70°C in NuPAGE LDS Sample Buffer with Sample Reducing Agent (Invitrogen, Carlsbad, California, USA). Eluates were frozen at -20°C for later analysis.

2.3.2.3 Western blotting

The NuPAGE system from Invitrogen was used for Western blotting. In brief, samples were diluted to equal concentrations with NuPAGE LDS Sample Buffer and Sample Reducing Agent (Invitrogen, Carlsbad, California, USA). Equal volumes were loaded onto NuPAGE Novex 4-12% Bis-Tris gradient Gels (Invitrogen, Carlsbad, California, USA). In some experiments and as indicated 9% Tris-glycine SDS-Polyacrylamide gels [150] were used. After electrophoresis, separated proteins were electro-transferred to nitrocellulose membranes (Amersham, GE Healthcare, Buckinghamshire, England). For detection, membranes were incubated overnight at 4°C with first Antibody and for 2h with secondary antibody at room temperature. Between incubations with primary and secondary antibodies, membranes were washed at least five times with TBS-T at room temperature. Lumi-Light Western Blotting Substrate (Roche, Basel, Switzerland) was used to visualise signals. Signals
were detected and quantified with a LAS-3000 Chemlmager (Fuji, Tokyo, Japan) and AIDA software (Raytest, Germany), respectively. Antibodies used for Western blotting are listed in Table 1 (primary antibodies) and Table 2 (secondary antibodies).

<table>
<thead>
<tr>
<th>Target</th>
<th>Species</th>
<th>Dilution</th>
<th>Catalog N°</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>phospho-PKB(Ser473)</td>
<td>Mouse</td>
<td>1:1000</td>
<td>4051</td>
<td>Cell Signalling Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Beverly, Massachusetts, USA)</td>
</tr>
<tr>
<td>phospho-PKB(Thr308)</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>9275</td>
<td>Cell Signalling Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Beverly, Massachusetts, USA)</td>
</tr>
<tr>
<td>PKBa</td>
<td>Mouse</td>
<td>1:1000</td>
<td>610860</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Franklin Lakes, New Jersey, USA)</td>
</tr>
<tr>
<td>PKBβ</td>
<td>Mouse</td>
<td>1:1000</td>
<td>5239</td>
<td>Cell Signalling Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Beverly, Massachusetts, USA)</td>
</tr>
<tr>
<td>PKBy</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>4059</td>
<td>Cell Signalling Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Beverly, Massachusetts, USA)</td>
</tr>
</tbody>
</table>

Table1. Primary antibodies used for Western blotting

<table>
<thead>
<tr>
<th>Target</th>
<th>Species</th>
<th>Dilution</th>
<th>Catalog N°</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Goat</td>
<td>1:3000</td>
<td>sc-2005</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Santa Cruz, California, USA)</td>
</tr>
<tr>
<td>Rabbit</td>
<td>Goat</td>
<td>1:3000</td>
<td>172-1019</td>
<td>BioRad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Hercules, California, USA)</td>
</tr>
</tbody>
</table>

Table 2. Secondary antibodies used for Western blotting.

2.3.2.4 Statistical analysis

Data are shown as mean ± standard error of the mean (SEM) unless indicated otherwise. To test significance of activation after stimulation, unpaired Student’s t-tests (two-tailed) were performed. For multiple-comparison analysis, normal distribution of data (when n > 3) and equality of variances were tested. If variances were not equal, log-transformation was performed. To test significance, balanced one-way ANOVA with Bonferroni’s post hoc test was performed. Results were considered to be statistically significant for P values < 0.05 *; P < 0.001 **; P< 0.001 ***
2.3.3 Results

2.3.3.1 Stimulation with growth factors and immunoprecipitation

In a first approach we assessed the optimal starvation time, concentrations, and duration of stimulation for insulin, IGF1 and for the combined stimulation with insulin and IGF1. Insulin and/or IGF1 were dissolved in 0.1 M C\textsubscript{2}H\textsubscript{4}O\textsubscript{2} and diluted into starvation medium and added to the cells. As control starvation medium containing the same amount like the stimulation medium of 0.1 M C\textsubscript{2}H\textsubscript{4}O\textsubscript{2} was used. Various concentrations and incubation times/conditions for insulin and IGF1 were tested. Strongest induction was observed for insulin and IGF1 when cells had been starved for 5 h and were stimulated at a concentration of 10 nM for 5 minutes at 37°C (data not shown). Hence all experiments were performed under these conditions. Immunoprecipitations were performed according to Buzzi et al., [43].

2.3.3.2 Phosphorylation at Ser473

2.3.3.2.1 IGF1 is a strong activator of PKB\textalpha and PKB\textbeta

Stimulation with IGF1 resulted in readily detectable phosphorylation of PKB at Ser473 (Figure 1A, lysates). Immunoprecipitation showed that all isoforms were significant activated by IGF1. PKB\textbeta showed the strongest activation of all isoforms (32.3 ± 2.68 fold, $P \leq 0.001$), followed by PKB\textalpha (22.86 ± 4.24 fold, $P \leq 0.01$) and PKB\textgamma (4.22 ± 0.44 fold, $P \leq 0.001$) (Figure 1A, IP eluates).

2.3.3.2.2 Insulin does not activate PKB\textgamma

Stimulation with insulin resulted in far weaker phosphorylation of PKB as compared to IGF1 and no increase in overall PKB phosphorylation without IP was detectable (Figure 1B, lysates). However, differences were detectable after IP: In contrast to IGF1, stimulation with insulin only increased phosphorylation of PKB\textalpha (1.98 ± 0.4 fold, n.s) and PKB\textbeta (4.29 ± 0.7 fold, $P \leq 0.01$) but not of PKB\textgamma (0.97 ± 0.098 fold) (Figure 1B, IP eluates).

2.3.3.2.3 Combined stimulation with insulin and IGF1 does not result in additive effects

Combined stimulation with insulin and IGF1 resulted in intermediated overall PKB activation (Figure 1C, lysate) and in altered isoform-specific regulation. Phosphorylation of PKB\textalpha was intermediately increased 9.63 ± 4.25 fold, n.s (1.98 ± 0.4 fold and 22.86 ± 4.24 fold for insulin and IGF1 alone, respectively). Stimulation of PKB\textbeta phosphorylation was 29.14 ± 4.8 fold ($P \leq 0.01$) not significantly different from stimulation with IGF1 alone. Phosphorylation of PKB\textgamma was increased 16.47 ± 5.4 fold ($P \leq 0.05$) (Figure 1C, IP eluates), significantly higher compared to stimulation with IGF1 (4.22 ± 0.44 fold) or insulin (0.97 ± 0.098 fold) alone.
2.3.3.3 Phosphorylation at Thr308

2.3.3.3.1 PKBα is not activated at Thr308 after stimulation with IGF1

Stimulation with IGF1 resulted in barely detectable overall PKB activation at Thr308 (not shown). However, weak but analysable signals/differences were obtained after IP. PKBβ was the most and only significant activated isoform after stimulation with IGF1 (3.49 ± 0.06 fold, P ≤ 0.001) followed by PKBγ (1.7 ± 0.29 fold, n.s). PKBα was not activated (Figure 2). No signal could be detected after stimulation with insulin and combination of insulin and IGF-1, respectively, neither in lysates nor after IP (not shown).
Figure 1. Isoform-specific activation of PKB at Ser473.
INS1 cells were stimulated as indicated for 5 minutes with IGF1, insulin or with a mix of both (A, B, and C, respectively). Total PKB phosphorylation at Ser473 was assessed in lysates (top row of immunoblots). Immunoprecipitation of PKB isoforms allowed detection of isoform-specific phosphorylation at Ser473 (lower row of immunoblots). Representative immunoblots are shown. After quantification of signals, fold induction relative to unstimulated condition was calculated for each isoform and mean values are shown in bar graphs. Data are presented as mean ± SEM (n ≥ 3). * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.
RESULTS

Figure 2. Isoform-specific activation of PKB at Thr308 after IGF1 stimulation.
INS1 cells were stimulated for 5 minutes with IGF1. Immunoprecipitation of PKB isoforms allowed detection of isoform-specific phosphorylation at Thr308. A representative immunoblot is shown (n=3). After quantification of signals, fold induction relative to unstimulated condition was calculated for each isoform and mean values are shown in bar graphs. Data are presented as mean ± SEM (n=3). *** P \leq 0.001.
RESULTS

2.3.4. Discussion

In β-cells, insulin, IGF1 and other growth factors/inhibitors are considered to control β-cell mass and function via regulation of PKB. However, three isoforms of PKB exist and it remains unknown, which isoform(s) are/is activated/inhibited after stimulation with stimulators and inhibitors. Our study was an attempt to evaluate isoform-specific phosphorylation at Ser473 and Thr308, respectively, after stimulation with insulin, IGF1 or after combined stimulation with insulin and IGF1. Obtained results suggest that regulation of PKB isoforms is highly complex even with insulin and IGF1, two ligands supposedly activating very similar intra-cellular signal transduction pathways. Quantitative differences in activation of PKB isoforms at Ser473 and Thr308 after stimulation with IGF1, insulin or after combined stimulation with both were observed. Overall, IGF1 stimulated phosphorylation of PKB more compared to insulin. This difference in potency might depend on different expression levels of the IR and the IGFR in INS1. Under all conditions tested, PKBβ showed the highest increase in phosphorylation at Ser473 and Thr308 compared to the other two isoforms, but the extent of activation was still variable depending on the respective stimulation condition. IGF1 stimulated phosphorylation of PKBβ at Ser473 more than seven times stronger compared to insulin. Deficiency for IGFR, IR or PKBβ results in insulin secretion defects [23, 147, 148] and hence regulation of PKBβ by IGF and insulin might be required to regulate this important β-cell function.

PKBα was regulated by insulin and IGF1 at Ser473 but not at Thr308. Interestingly, combined stimulation with insulin and IGF1 was not synergistic but resulted in intermediate levels of phosphorylation. To the best of our knowledge such an effect has not been described previously. It could be caused by competition of receptors for different substrates, but there is no evidence available to confirm or dismiss this possibility.

In line with previously published results [43] we found significant basal phosphorylation of PKBγ at Ser473 (Figure 2B, IP eluates). Phosphorylation of PKBγ at Ser473 and Thr308 was slightly induced by IGF1 but not by insulin. However, combined stimulation with insulin and IGF1 potentiated the increase in phosphorylation at Ser473, but not at Thr308.

Such complex patterns with synergistic and antagonistic activation are difficult to interpret. Possibly, not the regulation of a single isoform determines activation of downstream targets but their relative activation. If this was true, isoform-specific activation of PKB, including differential regulation of the two phosphorylation sites, could integrate over different signals; in such a case correlation of PKB activation and downstream function(s) would be difficult to assess.

Analysis of phosphorylation at Thr308 proved to be difficult as only small increases could be detected after stimulation with IGF1. Possible explanations for this observation are: There is no significant regulation of Thr308 in INS1 cells under the chosen conditions and/or the affinity of the antibody is to low. Unfortunately, a better antibody to detect phospho-PKB(Thr308) could not be obtained. Also due to this technical difficulty and in light of the high degree of complexity of the regulation of PKB isoforms it was decided to stop this part of the project.
Further approaches should include detailed analysis on all levels: assessment of the activation of PKB isoforms, analysis of the activation of downstream targets of PKB and studies of the biological effects such as proliferation, apoptosis and β-cell growth. To apply mass spectrometry possibly in combination with immunoprecipitations might help to increase sensitivity and validity of quantifications.
3. Conclusions and general discussion

The starting point of this thesis was the striking discrepancy in severity of islet phenotypes between Irs2 deficient mice and mice deficient for isoforms of Pkb. The broader aim of this thesis was to define the underlying mechanisms and to test if previous findings regarding the functions of PKBα and PKBβ in rodents are transferrable to humans. PKB isoforms in β-cells were studied in three different approaches: In a first approach (section 2.1) we induced GOF for PKBα and PKBβ in human islets by transfection with adenoviral expression constructs (results shown in Table 2). Results strongly suggest that PKBα is the isoform that can increase human β-cell mass via the induction of proliferation and survival. Overexpression of PKBα but not of PKBβ increased the number of β-cells relative to non-β-cells significantly. Overexpression of neither PKBα nor PKBβ affected β-cell function. Our new data are well in line with findings in rodent β-cells and this suggests a high degree of evolutionary conservation of the functions of the IRS2-PKB axis in the regulation of islet mass.

<table>
<thead>
<tr>
<th></th>
<th>Proliferation</th>
<th>Apoptosis</th>
<th>β-cell size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>IL1β-induced</td>
<td></td>
</tr>
<tr>
<td>Intact islets</td>
<td>α</td>
<td>α</td>
<td>α & β</td>
</tr>
<tr>
<td>Dispersed islets</td>
<td>Non-β-cells</td>
<td>α</td>
<td>α & β</td>
</tr>
<tr>
<td></td>
<td>β-cells</td>
<td>α</td>
<td>α & β</td>
</tr>
</tbody>
</table>

Table 2. Summary of GOF effects for PKBα and PKBβ in human islets.

In the second approach (sections 2.2), the role of PKBα was studied in a newly generated insulin resistant conditional LOF model with specific deficiency for Pkba in β-cells (βpkbaKO). The goal of this approach was to test if PKBα is required only for compensatory expansion of β-cell mass but not for maintenance, as was previously proposed (model shown in Figure 3) [196]. This question could not be addressed in existing mouse models with whole body deficiency for Pkba because they show increased peripheral insulin sensitivity. The new model was successfully generated and results obtained are in line with the notion that PKBα is only required for compensatory expansion of β-cell mass but dispensable for maintenance. Younger animals showed normal glucose tolerance but aged and insulin resistant animals showed reduced glucose tolerance. However, we cannot exclude at this point that functions of PKB isoforms are redundant in young but non-redundant in older animals. Furthermore, islet mass should be studied in young (new born) animals lacking Pkba in β-cells to test for possible developmental defects. These open questions are currently under investigation.
Figure 3. Hypothetical model describing the regulation of plasticity of islet mass [196].

In the third part of my project I studied the regulation/activation of PKB isoforms by insulin and IGF1, both well-defined growth factors for β-cells. The aim was to link biological functions in β-cells such as GSIS, proliferation, cellular growth and survival to individual isoforms. Unfortunately, it soon became clear that the taken experimental approach was inappropriate to reach the aim and it was decided to discontinue this part of the project. Nevertheless, obtained results indicate that PKB isoforms can be differentially activated, not only in an isoform-specific manner but also at the two regulated phosphorylation sites (Ser473 and Thr308), in line with the notion that isoforms can have specific roles in β-cells. To the best of our knowledge there is no conclusive published information available at this point regarding a possible underlying molecular mechanism.

During the last decade, research on the pathogenesis of β-cell failure in type 2 diabetes has become a major focus. Currently available therapeutic drugs improve glucose homeostasis via increasing insulin sensitivity (e.g. glitazone), enhancing insulin secretion (e.g. sulfonylurea antidiabetics), reducing absorption (e.g. α-glucosidase inhibitors) or increasing excretion of glucose (SGIT2 inhibitors), respectively. GLP1 receptor agonists improve insulin release and inhibit food uptake via regulation of appetite in the CNS via bromocriptine a dopamine agonist (reviewed in [131]). Recently, a study tested the effect of the IL1β inhibitors Anakinra and Canakinumab in T1D patients. IL1β is increased in patients with T1D as well as in patients with T2D. Both inhibitors did not slow β-cell decline in progressive T1D [192]. However, another study tested the outcome of Canakinumab in metformin-treated patients with T2D. A decrease of HbA1c was observed after such combined treatment possibly due to increased β-cell function [110]. GLP1 agonists might stimulate β-cell proliferation via the IRS2-PKB axis and the EGFR-pathway [125, 144]. However, no effect of liraglutide on human β-cell proliferation in vitro could be found [228]. Results presented in this thesis together with previously published observations [25, 43], strongly suggest that PKBα can regulate β-cell proliferation, survival, and size and that it can induce the compensatory expansion of β-cell mass in vivo under obesity- and age-dependent decrease of insulin sensitivity. In contrast, high insulin sensitivity in liver, muscle and adipose tissue might require low activation of PKBβ [43, 280] but high activation of PKBβ. Future diabetes therapies targeting PKB should take such
tissue/isoform-specific functions into account, also in light of a possible role of PKB activation in cancer development [236].

As PKB isoforms are expressed in most tissues and can regulate many cellular processes any global therapeutic modulation of PKB activation could be associated with severe side effects. Indeed, side effects caused by drugs targeting PKB in cancer treatment support this view. The PI3KT/PKB axis is hyperactivated in various cancers probably ensuring cellular growth and increased survival [77]. Various inhibitors that influence the PI3K/PKB-mTor pathway are already used or are been tested. The substances Everolimus and Tensirolimus, both are inhibitors of the mTOR pathway, support renal cell carcinoma therapy but patients suffer from strong metabolic side effects, such as hyperglycaemia, hypercholesterolaemia, and hyperlipidaemia [77, 186, 236]. Isoform-specific interventions in metabolic diseases as well as in cancer could be a possibility for optimising therapies and to avoid side effects. Prospective success will depend on detailed knowledge of how individual isoforms of PKB function in different tissues. Further investigation focused on tissue specific functions of PKB isoforms and their regulation must be performed. Increased activation of PKBα restricted to β-cells could be achieved by targeting viral expression constructs exclusively to β-cells, development of trans-membrane carriers for β-cell-specific drug uptake, or by antibody-mediated drug delivery [236].

PKB is regulated and appears to function in a complex tissue-/isoform-specific manner. Currently available phospho-specific antibodies to detect activation of PKB do not distinguish between different isoforms. They are hence not suitable to study “quality” (isoform-specificity) in activation of PKB. Their wide-spread use in the study of PKB-dependent signal transduction by Western blotting without prior immunoprecipitation of isoforms should therefore be reconsidered. For example, analysis of phosphorylation of PKB at Ser473 is widely performed to assess insulin sensitivity, however, given that PKB isoforms can perform different functions in insulin sensitive tissues such an analysis has clear limitations. New isoform-specific antibodies to detect PKB activation (or alternative methods such as optimised MassSpec protocols) are required.
A current focus is to finalise the characterisation of the newly generated mouse model described in results section 2.2. In order to distinguish defects in compensatory increase or impaired maintenance of functional β-cell mass, pancreas morphology will be studied in mice at different age and nutritional status. In addition to islet-, β-cell, α-cell area and size, also β-cell apoptosis and proliferation will be analysed. Dependent on the cause of β-cell decline, markers for different stages of postnatal pancreas development can be included in the analysis. The transcription factor Ngn3 e.g. could be studied to assess differentiation of pancreatic progenitors into endocrine cells. β-cell-specific maturation could be evaluated by studying the three transcription factors NeuroD/Beta2, MafA and Pdx1 [225].

Islet function will also be studied. Impaired insulin secretion could also be the reason for β-cell failure in aged or obese βpkbαKO mice. β-cell function can be tested in vivo by injecting glucose and in vitro with isolated islets on ECM-coated dishes (GSIS). We already started to test β-cell function in vivo, but data are not complete yet. A more exact analysis of insulin secretion can be achieved with perifusion of islets as this method can also reveal the individual phases of insulin secretion. HFD-fed βpkbαKO mice show increased insulin sensitivity after 20 weeks of HFD. Tissue specific analysis of insulin sensitivity will be performed with different experimental approaches. Insulin-stimulated glucose uptake will be assessed in isolated adipocytes. Furthermore, hyperinsulinemic-euglycemic clamps will be performed to analyse insulin sensitivity in muscle as well as in liver. Also the underlying signalling pathways of β-cell failure must be elucidated. To this end, expression levels and regulation of downstream targets such as S6K, BAD and AS160 could be studied in β-cells isolated from βpkbαKO mice.
5. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4EBP</td>
<td>eIF4E-binding protein</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>AS160</td>
<td>AKT substrate 160kD</td>
</tr>
<tr>
<td>ATM</td>
<td>ataxia telangiectasia mutated kinase</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchoninic acid assay</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BrdU</td>
<td>5-bromo-2'-deoxyuridine</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CBP</td>
<td>CREB-binding protein</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding protein</td>
</tr>
<tr>
<td>DAG</td>
<td>diacyl glycerol</td>
</tr>
<tr>
<td>DAPI</td>
<td>4', 6-diamidino-2-phenylindol</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>DNA-dependent protein kinase</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmatic reticulum</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FFA</td>
<td>free fatty acids</td>
</tr>
<tr>
<td>FOXO</td>
<td>forkhead-O transcriptions factor</td>
</tr>
<tr>
<td>G6Pase</td>
<td>glucose-6-phosphatase</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormon</td>
</tr>
<tr>
<td>GLP</td>
<td>glucagon-like-peptide</td>
</tr>
<tr>
<td>GLUT</td>
<td>glucose transporter</td>
</tr>
<tr>
<td>GOF</td>
<td>gain of function</td>
</tr>
<tr>
<td>GPR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>Grb2</td>
<td>growth factor receptor-bound protein 2</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

GSIS glucose-stimulated insulin secretion
GSK glycogen synthase kinase
GTT glucose tolerance test
HA hemmagglutinin
Hb1AC glycated hemoglobin
HBSS Hank's balanced salt solution
HFD high-fat diet
HLA histocompatibility leukocyte antigen
HA intraabdominal
IA amyloid polypeptide
IGF insulin-like growth factor
IGFR insulin-like-growth factor receptor
IKKβ IκB kinase β
IL1β interleukin 1β
INS rat insulinoma cells
IP immunoprecipitation
ip intraperitoneal
IR insulin receptors
IRS insulin receptor substrate
ITT insulin tolerance test
JNK c-Jun N-terminal kinase
KATP channels ATP-dependent-K⁺-channels
KO knock out
KRB Krebs-Ringer bicarbonate buffer
LOF loss of function
LPL lipoprotein lipase
LPS receptor for endotoxin
MAPK Ras-mitogen-activated protein kinase
MOI multiplicities of infection
mTORC rapamycin complex
NADH Nicotinamidadenindinukleotid
NFκB nuclear factor κ-light-chain-enhancer of activated B-cells
NPEY asparagine-proline glutamic acid phosphotyrosine
PBS phosphate-buffered saline
PC pyruvate carboxylase
PDK kinase 3-phosphoinositide-dependent protein kinase
Pdx pancreatic and duodenal homeobox
PEPCK phosphoenolpyruvate carboxykinase 1
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>NH₂ - terminal pleckstrin homology</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>PIP2</td>
<td>phosphatidylinositol-4,5-bisphosphate</td>
</tr>
<tr>
<td>PIP3</td>
<td>phosphatidylinositol-3,4,5-triphosphate</td>
</tr>
<tr>
<td>PKB</td>
<td>protein kinase B /Akt</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PL</td>
<td>placental lactogen</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PP2A</td>
<td>protein phosphatase 2a</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor γ</td>
</tr>
<tr>
<td>Prl</td>
<td>prolactin</td>
</tr>
<tr>
<td>PTB</td>
<td>phosphotyrosine-binding</td>
</tr>
<tr>
<td>PTEN</td>
<td>tensin homologue</td>
</tr>
<tr>
<td>PTPN1, PTP1B</td>
<td>protein tyrosine non-receptor type 1B</td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
</tr>
<tr>
<td>RIP</td>
<td>rat insulin promoter</td>
</tr>
<tr>
<td>ROS</td>
<td>radical oxygen species</td>
</tr>
<tr>
<td>RP</td>
<td>reserve pools</td>
</tr>
<tr>
<td>RRP</td>
<td>readily releasable pool</td>
</tr>
<tr>
<td>S6K</td>
<td>ribosomal protein S6</td>
</tr>
<tr>
<td>SC</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SH2</td>
<td>Src homology 2</td>
</tr>
<tr>
<td>SHC</td>
<td>Src homology domain containing</td>
</tr>
<tr>
<td>SHPTP</td>
<td>tyrosine protein phosphatase</td>
</tr>
<tr>
<td>T2D</td>
<td>type 2 diabetes</td>
</tr>
<tr>
<td>TBS-(T)</td>
<td>tis-buffered saline (tween 20)</td>
</tr>
<tr>
<td>TG</td>
<td>triglyceride</td>
</tr>
<tr>
<td>THEM, CTMP</td>
<td>thioesterase superfamily members</td>
</tr>
<tr>
<td>TK</td>
<td>tyrosine kinase</td>
</tr>
<tr>
<td>TLR</td>
<td>toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TSC</td>
<td>tuberous sclerosis complex</td>
</tr>
<tr>
<td>TUNEL</td>
<td>terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>ULK</td>
<td>unc-51-like kinase</td>
</tr>
<tr>
<td>UPR</td>
<td>unfolded protein response</td>
</tr>
<tr>
<td>VDCC</td>
<td>L-type voltage-dependent Ca²⁺-channels</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>VLDL</td>
<td>very-low-density lipoprotein</td>
</tr>
<tr>
<td>WAT</td>
<td>white adipose tissue</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
</tbody>
</table>
6. References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

191. Montanya E, Nacher V, Biarnes M, Soler J: **Linear Correlation between Beta-Cell Mass and Body Weight Throughout the Lifespan in Lewis Rats: Role of Beta-Cell Hyperplasia and Hypertrophy.** *Diabetes* 2000, **49**(8):1341-1346.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

7. Acknowledgements

I would like to thank:

My supervisor Markus Niessen for giving me the opportunity to work on this project and for his valuable support and the numerous scientific discussions.

Giatgen Spinas for his continuous interest in my work, his suggestions and input, and for encouraging and supporting me to present my project at several conferences.

My thesis committee members, Matthias Peter, Ernst Hafen, and Daniel Konrad for valuable guidance and scientific comments.

Oliver Tschopp for kindly providing transgenic mice, for fruitful collaborations and scientific contributions.

Richard Züllig for all his help and expertise, his constant support in designing and performing my experiments, for reading and correcting the thesis and for constantly lifting my mood. Thank you for making my PhD so much more enjoyable.

Heidi Seiler and Dora Schmid for technical support, helpfulness and entertaining conversations.

Present and past members from the C-floor for discussions, scientific advice and the nice work environment. Thank you very much Stefan for the helpful inputs in planning and performing animal experiments and your scientific comments. Thank you Christoph for your various scientific inputs and explanations. Thank you Stefan, Flurin, Fabrizio, Diri, Fausto Heidi and Claudia for amusing and interesting discussion at lunch times.

My friends for the nice times we spent during my studies and my PhD. Your humour always cheers me up and makes everything easier. Special thanks go to Benjamin for your support and amusing times during all of my studies. Thank you for your loyal and enduring friendship.

My parents Monika and Michael, my sisters Jeannine and Christiane, and her family Malu and Renato. Thank you for your confidence, love and support and for encouraging me during all of my studies. Thank you Mama for your constant help and for always cheering me up. Thank you Papa for teaching me to be curious, interested, and open to new things.

Michael for your confidence and love, and for being with me at all times. It’s nice to have you to go trough good and bad times.
8. Curriculum vitae

General information

Name: Maren Gil Dietrich
Date of birth: September 19th, 1983
Citizenship: Swiss
Address: In der Ey 80, CH-8047 Zurich
Phone: +41 79 447 87 74
E-Mail: maren.dietrich@usz.ch

Education

since 2011: PhD Studies at University Hospital Zurich, Zurich, Switzerland
Division of Endocrinology, Diabetes and Clinical Nutrition, Dr. Markus Niessen
Member of the PhD program "Systems Biology of Complex Diseases" from Life Science Zurich Graduate School
Supervisors: Dr. Markus Niessen, Prof. Dr. Matthias Peter (ETH Zurich)

08/2010: Eidg. dipl. Apothekerin ETH, ETH Zurich, Zurich, Switzerland

2008 - 2010: Master of pharmaceutical sciences, ETH Zurich, Zurich, Switzerland
Master Thesis: Regulation of neurogenesis in the mouse olfactory epithelium: First insight in the turnover rate of microvillar cells.
Supervisor: Prof. Dr. Jean-Marc Fritschy, Neuroscience Center Zurich, Zurich, Switzerland

2003 - 2008: Bachelor of pharmaceutical sciences, ETH Zurich, Zurich, Switzerland
Project work: Characterisation of translationally regulated mRNAs by phenotypic analysis of deletion strains.
Supervisor: Prof. Dr. Michael Detmar, Institute of pharmaceutical sciences, ETH Zurich, Zurich, Switzerland

2002 - 2003: Biochemistry, ETH Zurich, Zurich, Switzerland

1998 - 2002: Institute Montana, Zugerberg, Switzerland
Matura typus E

Oral & poster presentations

06/2014: 74th Scientific Sessions of ADA (American Diabetes Association), San Francisco, USA
(Oral presentation)

11/2013: Annual Congress of SGED (Schweizerische Gesellschaft für Endokrinologie und Diabetologie), Bern, Switzerland (Poster presentation)
10/2013: 49th Annual Meeting of EASD (European Association for the Study of Diabetes), Barcelona, Spain (Poster presentation)

11/2012: 7th Annual Retreat, Competence Center for Systems Physiology and Metabolic Diseases, Ittingen, Switzerland (Oral presentation)

11/2012: Annual Congress of SGED (Schweizerische Gesellschaft für Endokrinologie und Diabetologie), Bern, Switzerland (Poster presentation)

11/2012: 48th Annual Meeting of EASD (European Association for the Study of Diabetes), Berlin, Germany (Poster presentation)

Grants

2014-2016 Amelie Waring Stiftung, Zurich

2014-2015 Forschungskredit der Universität Zürich (UZH), Zurich

Advanced training

since 2011: Member of the human islet transplantation team, University Hospital Zurich, Zurich, Switzerland
Division of Endocrinology, Diabetes and Clinical Nutrition
Supervisor: Prof. Dr. Roger Lehmann

03/2013: Training for persons responsible for directing animal experiments
LTK Module 2, Institut für Labortierkunde, University of Zurich, Zurich, Switzerland

07/2011: Introductory course in laboratory animal science
LTK Module 1, Institut für Labortierkunde, University of Zurich, Zurich, Switzerland

Professional activities

Since 2011: Pharmacy “Adler-Apotheke”, Winterthur, Switzerland
Working as pharmacist (10%)

2009 - 2010: Pharmacy “Helvetiaplatz Apotheke”, Zurich, Switzerland
Clinical traineeship

2007: Carmen Rico, Zurich, Switzerland
Domestic aid

07/2003: Hugo Mendel Stiftung, Zurich, Switzerland
Care of woman suffering from cancer
Additional information

Language Skills: German (mother tongue), English (fluent), French (intermediate), Portuguese (basic knowledge)

Personal Interests: German literature, Theatre

Publications

Schultze SM, Dietrich MG, Hynx D, Geier A, Niessen M, Spinas GA, Hemmings BA and Tschopp O. Reduced hepatic lipid content in Pten-haplodeficient mice due to enhanced Akt2/PKBβ activation in skeletal muscle. Liv Int. 2013, 2014

*Authors contributed equally to the work

Dietrich MG, Zuellig RA, Spinas GA, Lehmann R, Tschopp O and Niessen M. Specific and redundant roles of PKBα/AKT1 and PKBβ/AKT2 in human pancreatic islets, 2014, manuscript submitted to Archives of Physiology and Biochemistry

Published abstracts

9. Appendix

9.1 Reduced hepatic lipid content in *Pten*-haplo deficient mice because of enhanced AKT2/PKBβ activation in skeletal muscle

Simon M. Schultze1,2; Maren G. Dietrich1,5; Debby Hynx2; Andreas Geier3,4; Markus Niessen1,5; Giatgen A. Spinas1,5; Brian A. Hemmings2; Oliver Tschopp1,5,

1 Department of Endocrinology, Diabetes & Clinical Nutrition, University Hospital of Zurich, Switzerland
2 Friedrich Miescher Institute (FMI) for Biomedical Research, Basel, Switzerland
3 Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
4 Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
5 Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
Non-alcoholic fatty liver disease (NAFLD) is a major health problem and occurs frequently in the context of metabolic syndrome and type 2 diabetes mellitus. Hepatocyte-specific Pten-deficiency in mice was shown previously to result in hepatic steatosis due to hyperactivated AKT2. However, the role of peripheral insulin-sensitive tissues on PTEN- and AKT2-dependent accumulation of hepatic lipids has not been addressed. Methods: Effects of systemically perturbed PTEN/AKT2 signalling on hepatic lipid content were studied in Pten-haplodeficient (Pten+/−/Akt2+/−) mice and Pten-haplodeficient mice lacking Akt2 (Pten+/−/Akt2−/−). The liver and skeletal muscle were characterized by histology and/or analysis of insulin signalling. To assess the effects of AKT2 activity in skeletal muscle on hepatic lipid content, AKT2 mutants were expressed in skeletal muscle of et al. Results: Pten+/−/Akt2+/− mice were found to have a more than 2-fold reduction in hepatic lipid content, at a level similar to that observed in Pten+/−/Akt2−/− mice. Insulin signalling in the livers of Pten+/−/Akt2−/− mice was enhanced, indicating that extrahepatic factors prevent lipid accumulation. The skeletal muscle of Pten+/−/Akt2−/− mice also showed enhanced insulin signalling. Skeletal muscle-specific expression of constitutively active AKT2 reduced hepatic lipid content in Pten+/−/Akt2−/− mice, and dominant negative AKT2 led to an increase in accumulation of hepatic lipids in both Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice. Conclusion: Our results demonstrate that AKT2 activity in skeletal muscle critically affects lipid accumulation in the livers of Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice, and emphasize the role of skeletal muscle in the pathology of NAFLD.
PTEN antagonizes activation of AKT and, among diverse other growth factors, negatively regulates insulin action (9). While homozygous deletion of Pten in mice causes embryonic lethality, Pten-haploinsufficient (Pten+/-) mice are viable (14). Such mice show improved glucose tolerance and insulin sensitivity, but with age Pten+/- mice frequently develop tumours in liver, colon and thyroid glands (14, 15). Similarly, loss of function mutations of Pten in patients are associated with Cowden’s disease, a rare cancer-predisposition syndrome (16). In addition to the development of tumours in various organs, such patients show enhanced insulin sensitivity of the liver and skeletal muscle (17).

Recently, reduced expression of PTEN and concomitant hyperactivation of AKT were found in liver biopsies from patients with NAFLD (18). Indeed, mice with hepatocyte-specific deletion of Pten show spontaneous accumulation of hepatic lipids starting at 10 weeks of age and severe hepatic steatosis and hepatocellular carcinoma develop in an age-dependent manner (19, 20). Overall, the reported phenotype is similar to the pathology of human NAFLD and its forms of progression. It was shown that accumulation of hepatic lipids in these mice is driven by hyperactivated AKT2 that upregulates lipogenic genes such as FAS and ACC, most likely in a hepatocyte-autonomous manner (19–21). In addition, mice with hepatocyte-specific deletion of Pten show improved glucose tolerance, which is likely a result of AKT2-mediated downregulation of G6Pase and PEPCK inhibition and hepatic gluconeogenesis (19–21). It was suggested that hepatic steatosis in insulin-resistant patients is promoted by the selective failure of insulin to inhibit hepatic gluconeogenesis, but not de novo lipogenesis (6). Although it was shown that hepatic insulin signalling diverge downstream of AKT, the molecular mechanism and its significance in insulin resistant patients is not fully understood (22).

However, the metabolic state of the liver also depends on systemic metabolism, which is regulated by multiple insulin-sensitive tissues. Donelly and colleagues showed that in obese patients approximately 60% of lipids in the liver are derived from a serum pool of non-esterified fatty acids (NEFA), 25% originate from de novo lipogenesis in the liver and 15% are derived directly from dietary intake (23). Furthermore, it was shown that hepatic de novo lipogenesis is inversely correlated to skeletal muscle insulin sensitivity in different subsets of patients (7, 24, 25). The role of peripheral insulin-sensitive tissues on Pten/AKT2-dependent accumulation of hepatic lipids has not yet been addressed. In the present study, we analysed mice with whole-body Pten-haploinsufficiency (Pten+/-/Akt2+/-) and found that PTEN expression in extrahepatic tissues affects accumulation of lipids in Pten-deficient livers. Pten-haploinsufficient mice lacking Akt2 (Pten+/-/Akt2-/-) were used to dissect the role of AKT2 in this mouse model.

In contrast to hepatic steatosis reported in mice with hepatocyte-specific deletion of Pten, we show here that hepatic lipid content of Pten+/-/Akt2+/- mice is reduced by 60% compared to control mice and at a level similar to that observed in Pten+/-/Akt2-/- mice. In contrast to the reduced lipid content, Pten+/-/Akt2+/- mice showed enhanced insulin signalling in the liver, consistent with the notion that extrahepatic factors prevent lipid accumulation in the livers of these mice. As hepatic lipid content in humans correlates with insulin action in skeletal muscle, we examined if and how regulation and function of AKT2 in skeletal muscle contribute to reduced hepatic lipid content in Pten+/-/Akt2+/- mice (7, 24, 25). Indeed, insulin response of skeletal muscle in Pten+/-/Akt2+/- mice was enhanced as evidenced by increased glycogen content and activation of AKT2. Significantly, skeletal muscle-specific expression of constitutively active AKT2 reduced hepatic lipid accumulation in Pten+/-/Akt2+/- mice and dominant negative AKT2 increased hepatic lipid content in both Pten+/-/Akt2+/- and Pten+/-/Akt2+/- mice.

Material and methods

Mice

All animal experiments were performed in accordance with Swiss Federal Animal Regulations and approved by the Veterinary Offices of Zurich and Basel, Switzerland. Mice with whole-body targeted deletion of Pten and Akt2 were described previously and were in a C57BL/6 background after at least six backcrosses (13, 14). Pten+/-/Akt2+/-, Pten+/-/Akt2+/- and Pten+/-/Akt2-/- mice were obtained by crossing Pten+/-/Akt2+/- mice. Akt2+/- and Akt2-/- mice were obtained by crossing Akt2+/- mice. The experimental mice were 20–22-week-old males. Mice were fasted by removing food for 8 h during the dark cycle. Fasted-refed mice were refed for 2 h after 8 h of fasting. Insulin stimulation was performed in fasted mice by injection of human recombinant insulin at 1 U/kg of body weight (Novo Nordisk, Kuesnacht, Switzerland) via the inferior vena cava; samples were collected after 20 min. Mice are alive but terminally anesthetized during insulin stimulation. Mice were housed in groups with a 12-h dark-light cycle and free access to food and water, unless otherwise indicated.

Vector production and administration

Adeno-associated virus 8 (AAV8) vectors were generated by triple plasmid transfection of HEK293T cells using jetPEI (Polyplus, Illkirch, France). AAV transplasmid (serotype 8) and helper plasmid were obtained from Penn Vector Core, Philadelphia, PA. myr-AKT2 and AKT2kina were cloned as described previously and cloned into AAV expression vector containing a CMV promoter and a 2A-GFP reporter gene (26, 27). Viral particles were purified using a discontinuous iodixanol gradient as previously described (28). Titer
were determined by quantitative real-time PCR. 2 × 10⁷ genome copies of AAV8 viral particles were administered to 4-day-old mice by intraperitoneal injection to achieve skeletal muscle-specific transgene expression as previously described (29). Mice used for subsequent metabolic analyses were 18- to 20-week old.

Analysis of metabolic parameters in blood and tissues
Glucose levels were measured in tail vein blood using a glucose meter Freestyle (Disetronic, Burgdorf, Switzerland). Glucose tolerance tests were performed with fasted mice by intraperitoneal injection of 2 g D(-)-glucose anhydrous/kg of body weight (Fluka, Buchs, Switzerland) and glucose levels measured at indicated time points. Triglyceride contents of skeletal muscle and liver and glycogen contents of skeletal muscle were determined as described previously (30).

Histology and quantitative analysis
Haematoxylin and eosin (H&E) and Oil Red O (Sigma-Aldrich, Saint Louis, MO, USA) staining were performed according to standard protocols on paraffin and frozen sections respectively. For fluorescent staining of lipids, frozen sections were fixed in 10% formaldehyde, incubated with 1 µg/ml BODIPY493/503 (Invitrogen, Carlsbad, CA, USA) in 150 mM NaCl for 20 min at room temperature, and counterstained with 4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich). BODIPY493/503-stained areas relative to total tissue areas were quantitated using Imaris software (Bitplane, Zurich, Switzerland); GFP staining was performed using Ventana Discovery XT (Roche Diagnostics, Mannheim, Germany) with a customized procedure for fluorescent staining. Slides were pretreated with mild CC1, incubated with anti-GFP antibody (Invitrogen) for 1 h at 37°C, incubated with goat antirabbit conjugated with Alexa fluor 647 (Invitrogen) for 32 min at 37°C and counterstained manually with DAPI.

Western blot analysis
Western blot analysis was performed using standard protocols (GE Healthcare, Buckinghamshire, UK). Images were captured on film or by BioSpectrum Imaging System (UVP, Cambridge, UK). Signal intensities were quantified by photodensitometry after background subtraction relative to β-Actin and normalized to fasted Pten+/−/Akt2+/− mice. Antibodies against the following proteins were used: PTEN (Nicholas K. Tonks, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA), PTEN, pan-AKT, AKT1, AKT2, p-AKT S473, p-AKT T308, GSK3α/β, p-GSK3β, FoxO1, p-FoxO1 (Cell Signaling, Beverly, MA, USA) and β-Actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

Quantitative real-time PCR
Total RNA was isolated from tissues using TRIZOL (Invitrogen) following the manufacturer’s instructions. cDNA synthesis was performed with M-MuLV reverse transcriptase (New England BioLabs, Ipswich, MA, USA) according to the manufacturer’s instructions. Quantitative real-time PCR reactions were performed using SYBR Green (Invitrogen) on ABI Prism 7000 or StepOnePlus Real-Time PCR System (Applied Biosystems, Rotkreuz, Switzerland). Primer sequences were obtained from PrimerBank (31). The primers used and the corresponding PrimerBank ID were Acc (ID: 14211284a1), Fas (ID: 30911099a2), G6Pase (ID: 31982353a1), Gck (ID: 31982798a1), Pepck (ID: 7110683a1), Pgc1a (ID: 238018130b1), Pparg (ID: 31543500a1), Ppard (ID: 6755138a2) and Sreb1c (ID: 14161491a1).

Statistical analysis
All data are presented as means ± standard deviation (SD). Data were subjected to Student’s t-test for statistical significance (*P < 0.05; **P < 0.01). The numbers of independent biological samples per group used for each analysis are indicated accordingly.

Results
Improved glucose homeostasis in Pten+/−/Akt2+/− mice depends on AKT2
In order to validate our mouse model we performed Western blot analysis to determine levels of PTEN, AKT2 and AKT1 in liver, skeletal muscle and adipose tissue of Pten+/−/Akt2+/−, Pten+/−/Akt2−/− and Pten+/+/Akt2+/− mice (Fig. 1A, B, C). As expected, Pten−/− mutants showed significantly reduced PTEN protein level. AKT2 was undetectable in mice deficient for Akt2 and AKT1 expression was unchanged. The level of total AKT as determined by pan-AKT antibody is reduced by 67% in liver, 65% in skeletal muscle and 60% in adipose tissue of Pten+/−/Akt2+/−, compared to Pten+/−/Akt2+/− mice indicating that AKT2 is the major isofrom in these tissues (Fig. 1A, B, C). This observation is in line with previous studies analysing the tissue-specific expression pattern of AKT1 isoforms and the notion that AKT2 is the major isofrom in context of metabolic control (9, 10, 13, 32).

As described previously, aged Pten+/− mice frequently develop tumours in liver, colon and thyroid glands (14, 15). To exclude disturbance of metabolic control by tumour burden we analysed 20- to 22-week-old male mice in this study. No substantial tumour development was observed in these mice. Histological analysis did not reveal pancreatic tumours in Pten+/−/Akt2+/− and Pten−/−/Akt2−/− mice. There were no changes in the islet morphology of Pten+/−/Akt2+/− mice, but islet area was

Liver International (2014)
increased in Pten+/−/Akt2−/− mice (data not shown). Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice had body weights similar to controls and perigonadal fat pad weights did not show significant changes (Fig. 2A and data not shown).

Pten−/− mice were previously described as slightly hypoglycaemic with improved glucose tolerance, whereas Akt2−/− mice show hyperglycaemic and glucose intolerant (12, 13, 15, 33). Fasting blood glucose concentrations of Pten−/−/Akt2−/− and Pten−/−/Akt2−/− mice were similar to controls (Fig. 2B, right). However, when randomly fed or re-fed after fasting, Pten−/−/Akt2−/− mice showed a reduction and Pten−/−/Akt2−/− mice an increase in blood glucose concentrations (Fig. 2C, D). We performed glucose tolerance tests by intraperitoneal injection of glucose to further assess glycemic control. The glucose tolerance of Pten−/−/Akt2−/− mice was improved significantly compared to Pten−/−/Akt2−/− control mice (area under the curve –22.2% ± 18.8%; P < 0.05 (Fig. 2E). Interestingly, glucose tolerance of Pten+/−/Akt2−/− mice was similar to control mice, indicating compensation of acute glucose challenges (Fig. 2E). In line with previous studies, we found that Akt2−/− mice have reduced body weights, increased random fed, but not fasting, blood glucose concentration and significantly impaired glucose tolerance (Fig. 2A, B, C, E) (12, 13).

These data verify the efficacy of gene targeting in Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice and also suggest that the reduced blood glucose concentration and improved glucose tolerance of Pten+/−/Akt2−/− mice partially depend on AKT2.

Hepatic lipid content is reduced in both Pten−/−/Akt2−/− and Pten−/−/Akt2−/− mice

It was previously reported that mice with a hepatocyte-specific Pten-deficiency spontaneously develop hepatic steatosis (19, 20, 34). We analysed the livers of Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice to examine the effects of systemically perturbed Pten/Akt2 signalling on hepatic lipid content.

In contrast to the hepatomegaly reported in mice with hepatocyte-specific Pten-deficiency, Pten−/−/Akt2−/− and Pten+/−/Akt2−/− mice displayed only minor changes in liver weights (Fig. 3A) (19, 20). To examine the accumulation of hepatic lipids liver sections were stained with H&E, Oil Red O and BODIPY493/503. Hepatic steatosis was not observed in Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice but rather lower amounts of lipids were found compared to Pten+/−/Akt2−/− controls (Fig. 3B, C, D). Remarkably, quantification of BODIPY493/503-stained area and measurements of hepatic triglycerides confirmed that hepatic lipid content in Pten+/−/Akt2−/− and Pten+/−/Akt2−/− mice is reduced by more than 60% and 57%, respectively (Fig. 3E, F). Akt2−/− mice show a slightly increased liver to body weight ratio and hepatic triglyceride content is reduced by 52% (Fig. 3A, F).

The observation that Pten+/−/Akt2−/− and Akt2−/− mice have reduced hepatic lipid content is in line with previous reports showing that Akt2 in hepatocytes is required for accumulation of hepatic lipids (21, 22). In contrast to hepatic steatosis reported in mice with hepatocyte-specific Pten-deficiency, Pten−/−/Akt2−/− mice display reduced hepatic lipid content.

Enhanced insulin signalling in the liver of Pten+/−/Akt2−/− mice is partially dependent on AKT2

We analysed activation of AKT and AKT-dependent signalling in liver extracts of Pten−/−/Akt2−/− mice to test if this correlates with reduced hepatic lipid content observed in Pten−/−/Akt2−/− and Pten+/−/Akt2−/− mice.

Fasted Pten−/−/Akt2−/− mice displayed a more than 4.5-fold increase in phosphorylation of AKT at S473 (p-AKT S473) and T308 (Fig. 4A, left blots). Fasted Pten−/−/Akt2−/− mice showed no change in p-AKT S473 but p-AKT T308 was elevated 3-fold (Fig. 4A, left blots).

Insulin-stimulated mice were analysed to assess insulin-dependent activation of AKT, p-AKT S473 but p-AKT T308 was 32% higher in Pten+/−/Akt2−/− mice compared to controls after insulin stimulation (Fig. 4A, right blots). The insulin-stimulated increase in p-AKT S473 and T308 in Pten+/−/Akt2−/− mice was reduced by 72% and 41% compared to control mice, respectively (Fig. 4A, right blots). Analysis of the phosphorylation of AKT targets GSK3β and FoxO1 in these mice revealed a
APPENDIX

Schütze et al. Reduced hepatic lipids in Pten^{−/−} mice

To further characterize hepatic insulin signalling, the expression levels of gluconeogenic and lipogenic genes were analysed. While FoxO1 phosphorylation did not change during fasting, expression of Pephc and G6Pase declined by more than 40% in Pten^{−/−}/Akt2^{−/−} mice (Fig. 5A). AKT2 was previously shown to upregulate expression of lipogenic genes in mice with hepatocyte-specific Pten-deficiency and leptin-deficient mice, but not in mice fed with normal chow or a high-fat diet enriched in simple carbohydrates (21, 22). Notably, the lipogenic genes Srebp1-c and its targets Fasn and Acc were upregulated in Pten^{−/−}/Akt2^{−/−} mice (Fig. 5B). In Pten^{−/−}/Akt2^{−/−} mice, expression of Srebp1-c, Fasn and Acc was high but Pyruv was downregulated compared to control mice (Fig. 5B). Ppara and Pgc1a may reduce hepatic lipid content by stimulating gluconeogenesis and β-oxidation (35). There was no difference in the expression of Ppara or Pgc1a in fasted Pten^{−/−}/Akt2^{−/−} and Pten^{−/−}/Akt2^{−/−} compared to control mice (Fig. 5C).

These data show that hepatic lipid content does not correlate with activation of AKT2 in the liver in Pten-deficient mice. Pten^{−/−}/Akt2^{−/−} mice have reduced hepatic lipid content despite upregulated lipogenic genes. This is in line with previous reports showing that AKT2 in hepatocytes is required for accumulation of lipids even if lipogenic genes were upregulated (22). Pten^{−/−}/Akt2^{−/−} mice have, however, reduced hepatic lipid content in the presence of enhanced AKT2 activation. These observations suggest that extrahepatic processes in Pten^{−/−}/Akt2^{−/−} mice can reduce hepatic lipid content in the presence of hyperactivated AKT2 in the liver.
AKT2 is required for increased glycogen and enhanced AKT signalling in skeletal muscle of Pten/+/C0/Akt2+/+ mice upon insulin stimulation

It was previously shown that Pten/−/− mice have increased insulin-induced skeletal muscle glucose uptake (15). Improving skeletal muscle glucose uptake was found to reduce hepatic lipid content in humans (7, 25). Therefore, we examined whether skeletal muscle insulin response contributes to reduced hepatic lipid content in Pten/+/−/Akt2+/+ mice.

Glycogen content in skeletal muscle of fasted Pten/−/−/Akt2+/+ and Pten/−/−/Akt2−/− mice was similar to controls (Fig. 6A). However, glycogen content was increased in skeletal muscle of Pten/−/−/Akt2+/+ mice upon insulin stimulation, but was comparable to controls in Pten/−/−/Akt2−/− mice (Fig. 6B). Although glycogen content of Pten/−/−/Akt2−/− skeletal muscle is not statistical significantly changed compared to Pten/+/−/Akt2+/+ skeletal there is clear trend towards reduced glycogen content. Mice with enhanced skeletal muscle insulin responsive-ness were shown to have increased triglyceride content in

Fig. 3. Reduced hepatic lipid content in Pten+/−/Akt2+/+ mice (A) Liver to body weight ratios. (B, C, D) Representative images of liver sections from fasted mice stained with H&E (B), stained for lipids with Oil Red O (C), and stained for lipids and DNA with BODIPY493/503 (green) and DAPI (blue), respectively (D). Image inlays show part of the depicted area at higher magnification. (E) Relative BODIPY493/503-stained area. (F) Hepatic triglyceride content in fasted mice. TG, triglycerides; scale bar = 200 µm; n = 6–12/group; data are expressed as means ± SD; *P < 0.05.

Reduced hepatic lipids in Pten−/−/ Akt2−/− mice
Schultze et al.
Reduced hepatic lipids in Pten^{+/−} mice

Fig. 5. Expression of gluconeogenic and lipogenic genes in the liver of Pten^{+/−}/Akt2^{+/−} mice partially depends on AKT2 (A, B, C) Relative mRNA levels of gluconeogenic genes (A), lipogenic genes (B) and genes regulating gluconeogenesis and β-oxidation (C) in the liver of fasted mice analysed by quantitative real-time PCR. n = 6/group. Data are expressed as means ± SD; *P < 0.05; **P < 0.01.

Fig. 6. Increased glycogen and triglyceride content in skeletal muscle of Pten^{+/−}/Akt2^{+/−} mice. (A) Glycogen content in skeletal muscle of fasted (A) and insulin-stimulated (B) mice. Fasted n = 6/group; insulin-stimulated n = 3/group. (C) Triglyceride content in skeletal muscle of fasted mice. n = 6–8/group. TG, triglycerides; data are expressed as means ± SD; *P < 0.05

but not p-AKT T308 was increased by 28% and p-GSK3β and p-FoxO1 were increased by 43% and 61% compared to insulin-stimulated control mice, respectively (Fig. 7A, B, right blots). In Pten^{+/−}/Akt2^{+/−} mice, insulin-induced increase in p-AKT S473 and p-AKT T308 was abrogated (Fig. 7A, right blots). Upon insulin stimulation p-GSK3β was increased by 32% and p-FoxO1 was increased by 23% in Pten^{+/−}/Akt2^{+/−} mice compared to insulin-stimulated Pten^{+/−}/Akt2^{+/−} mice, which is not as strong as in Pten^{+/−}/Akt2^{+/−} mice (Fig. 7B, right blots). Fasted Akt2^{−/−} mice have reduced p-AKT S473 level, but p-AKT T308 and p-GSK3β and p-FoxO1 are not changed (Fig. 7C, D).

These data reveal that the vast majority of insulin-induced phosphorylation of AKT at S473 and T308 in skeletal muscle depends on AKT2. The increase in glycogen and triglyceride content observed in Pten^{+/−}/Akt2^{+/−} mice is diminished in Pten^{+/−}/Akt2^{−/−} mice. In addition the insulin-induced phosphorylation of GSK3β and FoxO1 in Pten^{+/−}/Akt2^{−/−} mice is not as strong as in Pten^{+/−}/Akt2^{+/−} mice. These findings in combination with previous reports on the function of AKT2 in skeletal muscle suggest that the changes observed in Pten^{+/−}/Akt2^{−/−} skeletal muscle are mediated by AKT2.
Reduced hepatic lipids in Pten+/– mice

(A)

(B)

(C)

(D)

Fig. 7. AKT activation is enhanced in skeletal muscle of Pten+/– mice. (A) Western blot showing phosphorylation of AKT at S473 and T308 and pan-AKT protein levels in skeletal muscle of fasted and insulin-stimulated mice. Densitometric quantification is shown. n = 3–4/group. (B) Phosphorylation and protein levels of GSK3β and FoxO1 in skeletal muscle of fasted and insulin-stimulated mice. Densitometric quantification is shown. n = 3–4/group. (C) Protein levels of PTEN, AKT2 and pan-AKT and phosphorylation of AKT at S473 and T308 and pan-AKT protein levels in skeletal muscle of fasted mice analysed by Western blotting. Densitometric quantification is shown. n = 4/group. (D) Phosphorylation and protein levels of GSK3β and FoxO1 in skeletal muscle of fasted mice analysed by Western blotting. Densitometric quantification is shown. n = 4/group. Data are expressed as means ± SD; *P < 0.05; **P < 0.01.

Modulation of AKT2 in skeletal muscle affects hepatic lipid content

Skeletal muscle insulin responsiveness is largely mediated by AKT2 and hepatic lipid content was found to be inversely correlated to skeletal muscle insulin sensitivity (7, 10, 12, 24, 25, 37, 38). Since enhanced activation of AKT2 was observed in skeletal muscle of Pten+/–/Akt2+/– mice, we analysed if modulation of AKT2 in skeletal muscle affects hepatic lipid content in both Pten+/–/Akt2+/– and Pten+/–/Akt2–/– mice.

Previously, it was shown that injection of adeno-associated virus 8 (AAV8) into neonatal mice leads to robust transgene expression in skeletal muscle of adult mice with minimal expression in non-muscle tissues because of selective retention of the vector DNA (29). We adopted this method to determine if AKT2 in skeletal muscle can affect the accumulation of hepatic lipids. AAV8 vectors encoding constitutively active AKT2 (myr-AKT2) and dominant negative AKT2 (AKT2K180A) with a GFP reporter were constructed. Neonatal Pten+/–/Akt2+/– and Pten+/–/Akt2–/– mice were injected with our different AAV8 vectors and designated as Pten+/–/Akt2+/–.2A.GFP, Pten+/–/myr-AKT2.2A.GFP, Pten+/–/AKT2K180A.2A.GFP, Pten+/–/2A.GFP and Pten+/–/AKT2K180A.2A.GFP. The specificity of transgene expression was validated by GFP staining of skeletal muscle and liver sections from 18- to 20-week-old mice (Fig. 8).

Western blot analysis shows a prominent increase in p-AKT S473 and p-GSK3β in skeletal muscle of fasted Pten+/–/myr-AKT2.2A.GFP mice (Fig. 9A, B). Fasted Pten+/–/AKT2K180A.2A.GFP showed reduced level of p-GSK3β compared to Pten+/–/2A.GFP control mice (Fig. 9B).

Adult mice expressing AKT2 mutants in skeletal muscle had body weights and fasted blood glucose concentrations similar to GFP-expressing control mice (data not shown). Glucose tolerance tests were performed to further assess glycaemic control. Pten+/–/myr-AKT2.2A.GFP and Pten+/–/AKT2K180A.2A.GFP showed glucose tolerance similar to the respective control mice. However, glucose tolerance of Pten+/–/AKT2K180A.2A.GFP mice was impaired as evidenced by an increase in the area under the glucose curve by 30% (Fig. 9C).

Expression of AKT2 mutants in skeletal muscle did not alter liver weights (Fig. 10A). Histological analysis of H&E-stained liver sections indicated increased lipid accumulation in Pten+/–/AKT2K180A.2A.GFP mice (Fig. 10B). Notably, staining of liver sections with Oil Red O and BODIPY493/593 revealed less hepatic lipids in Pten+/–/myr-AKT2.2A.GFP mice and an increase in Pten+/–/AKT2K180A.2A.GFP mice relative to Pten+/–/2A.GFP controls (Fig. 10C, D). Moreover, Pten+/–/AKT2K180A.2A.GFP mice had higher lipid content than Pten+/–/2A.GFP mice (Fig. 10C, D). Importantly, these observations were confirmed by the quantification of BODIPY493/593-positive stained areas and triglyceride assays (Fig. 10E, F).

Taken together, the present data indicate that enhanced activity of AKT2 in skeletal muscle causes the reduction in hepatic lipid content in Pten+/–/Akt2–/– mice. The significance of AKT2 activity in skeletal muscle on accumulation of hepatic lipids is further underlined by the effects observed in Pten+/–/Akt2–/– mice expressing AKT2 mutants in the skeletal muscle.

Discussion

With the present study, we have characterized the contribution of skeletal muscle to lipid accumulation in liver upon loss of PTEN. Previous reports proposed that lipid accumulation in PTEN-deficient liver is driven by enhanced de novo lipogenesis because of hyperactivated
Indeed, deletion of AKT2 was found to inhibit the development of hepatic steatosis in mouse models with hepatocyte-specific Pten-deficiency, in leptin-deficient mice and in mice fed a high-fat diet (21, 22). However, the accumulation of lipids in the liver might not only depend on hepatic AKT2 activity but also on AKT2 activity in peripheral insulin-sensitive tissues via systemic interactions. Indeed, in this study we found a reduced hepatic lipid content in mice with whole-body Pten-haplodeficiency despite hyperactivation of AKT in the liver. This observation is in contrast to hepatic steatosis reported in mice with hepatocyte-specific Pten-deficiency (19, 21, 34). The purpose of our subsequent analysis was to identify a mechanism that reduces hepatic lipids in Pten+/–/Akt2+/+ mice.

Pten+/–/Akt2+/+ mice were used to determine if changes observed in Pten+/–/Akt2+/+ mice depend on AKT2. Pten+/–/Akt2+/+ mice showed significantly increased activation of AKT and upregulation of lipogenic genes in the liver, similar to mice with hepatocyte-specific Pten deletion (19, 21). This indicates that extrahepatic factors can prevent accumulation of lipids in the livers of Pten+/–/Akt2+/+ mice in the presence of hyperactivated AKT2.

Physical exercise improves insulin sensitivity in skeletal muscle of human subjects and concomitantly leads to a reduction in hepatic lipid content (25). Because skeletal muscle of Pten+/– mice show increased insulin-stimulated glucose uptake we decided to test if enhanced insulin response of skeletal muscle could explain the reduced hepatic lipid content in Pten+/–/Akt2+/+ mice (15). Indeed, Pten+/–/Akt2+/+ mice displayed an enhanced insulin response of skeletal muscle as evidenced by increased content of triglyceride and glycogen in fasted and insulin-stimulated mice respectively. Regulation of glycogen content is known to depend on AKT2 and AKT2 signalling was enhanced upon insulin stimulation. These results indicate that AKT2 in the skeletal muscle of Pten+/–/Akt2+/+ mice reduces hepatic lipid content. Importantly, skeletal muscle-specific expression of dominant negative AKT2 K180A increased hepatic lipid content in Pten+/–/Akt2+/+ mice. Moreover, we found that skeletal muscle-specific expression of constitutively active myr-AKT2 and dominant negative AKT2 K180A in Pten+/–/Akt2+/+ mice reduced and increased hepatic lipid content, respectively. This observation shows that AKT2 activity in skeletal muscle plays a crucial role in regulating hepatic lipid content. In conclusion, these data support the view that an enhanced skeletal muscle insulin response mediated by AKT2 prevents accumulation of lipids in the liver of Pten+/–/Akt2+/+ mice.

Mice with whole-body Pten-haplodeficiency revealed that extrahepatic factors can override the lipogenic effects of hyperactivated AKT2 in the liver and that
AKT2 activity in skeletal muscle plays a key role in the observed phenotype. The mechanistic link between AKT2 activity in skeletal muscle and hepatic metabolism remains to be elucidated and could be addressed by e.g., analysis of hepatic lipid synthesis and uptake, determining glucose disposal during hyperinsulinenic-euglycemic clamp as well as energy intake and expenditure in metabolic cages. Future studies with mice for tissue-specific deletion of PTEN and AKT2 would help to elucidate on how AKT2 in skeletal muscle affects hepatic lipid content.

PTEN and AKT2 activity in skeletal muscle are most likely not the only extrahepatic factor affecting lipid accumulation in the liver of Pten^{−/−}/Akt2^{−/−} mice. This is supported by the observation that Pten^{−/−}/Akt2^{−/−}2A.GFP mice display higher hepatic lipid content compared to Pten^{−/−}/Akt2^{−/−}2A.GFP mice which could be because of additional mechanisms influencing hepatic lipid content. Insulin-, PTEN- and/or AKT2-dependent processes such as adipose tissue lipolysis, energy expenditure in brown adipose tissue, exo- and endocrine function of the pancreas and food intake are likely to also affect hepatic metabolism in Pten^{−/−}/Akt2^{−/−} and Pten^{−/−}/Akt2^{−/−} mice. For instance, adipose tissue lipolysis contributes significantly to hepatic lipid content (23). Disruption of mTORC1 complex, a component of insulin signalling pathway, in adipocytes leads to improved glycaemic control, enhanced energy expenditure in adipose tissue and reduced hepatic lipid content in mice (39). Adipocyte-specific deletion of Pten was shown to result in hyperactivated AKT and improved glycaemic control (40). Pancreas-specific deletion of Pten improves metabolic control and elevates hepatic AKT signalling (41). The improved metabolic control of mice with adipocyte- or pancreas-specific deletion of Pten suggest that hepatic lipid content is also affected in these mice, but the hepatic lipid content has not been addressed in these studies (40, 41). The

Fig. 9. Effects of skeletal muscle-specific expression of myr-AKT2 and Akt2^{K180A} on AKT signalling and glucose tolerance. (A) Western blot showing phosphorylation of AKT at S473 and T308 and AKT1, AKT2 and pan-AKT protein levels in skeletal muscle of fasted mice. Densitometric quantification is shown. Arrows indicate myr-AKT2 and AKT2^{K180A} transgenes, arrowheads indicate endogenous AKT1. n = 4/group. (B) Phosphorylation and protein levels of GSK3β and FoxO1 in skeletal muscle of fasted and insulin-stimulated mice. Densitometric quantification is shown. n = 3–4/group. (C) Blood glucose concentrations in fasted mice after intraperitoneal administration of glucose were measured at the indicated time points. Time course of changes in blood glucose concentration are separated according to genotype for a better overview. Respective AUCs are shown. n = 7–12/group; AUC, area under the curve; data are expressed as means ± SD; *P < 0.05, **P < 0.01.
individual role of PTEN and AKT2 in additional tissues such as pancreas and adipose tissue on hepatic metabolism could be masked and difficult to characterize in mice with whole-body deletion of Pten and Akt2. Hence, mice with specific deletion of Pten and Akt2 in respective tissues are more suitable to study the effects of additional PTEN- and AKT2-dependent processes on hepatic metabolism in the future.

While $\text{Pten}^{+/--}$/Akt2$^{+/--}$ mice showed normal blood glucose at 2 h after a single intraperitoneal injection of glucose during the glucose tolerance test, the blood glucose of refed $\text{Pten}^{+/--}$/Akt2$^{+/--}$ mice was significantly increased after 2 h. Mice were given food $\textit{ad libitum}$ during fasting-refeeding experiment. This extended challenge could be the reason for elevated blood glucose concentration of fasted-refed $\text{Pten}^{+/--}$/Akt2$^{+/--}$ mice.

$\text{Pten}^{+/--}$/Akt2$^{+/--}$ mice showed increased random fed and fasted-refed blood glucose. But fasted blood glucose, glucose tolerance and skeletal muscle glycogen content of $\text{Pten}^{+/--}$/Akt2$^{+/--}$ were similar to wild-type mice, despite abrogated basal and insulin-stimulated AKT phosphorylation in the liver and skeletal muscle. A weak correlation between AKT activation and insulin action has been observed previously (42, 43). The weak correlation of AKT phosphorylation and physiological effects in $\text{Pten}^{+/--}$/Akt2$^{+/--}$ mice might be in part because of redundancy of AKT isoforms (10). The high level of p-AKT T308 in the liver of fasted $\text{Pten}^{+/--}$/Akt2$^{+/--}$ points to a compensation by AKT1. Similar effects were shown previously in mice with liver-specific deletion of Akt2 that are deficient for leptin or fed with a high-fat diet (22). A potential compensation by AKT1 and/or AKT3 upon loss of AKT2 might be more pronounced on the background of Pten-haplodeficiency in our mouse model. For instance, the level of pGSK3β in the liver of fasted $\text{Pten}^{+/--}$/Akt2$^{+/--}$.

![Graph](image.png)

Fig. 10. Skeletal muscle-specific expression of myr-AKT2 and AKT2K180A affects hepatic lipid content. (A) Liver to body weight ratios. (B, C, D) Representative images of liver sections stained with H&E (B), for lipids with Oil Red O (C) and for lipids and DNA with BODIPY493/503 (green) and DAPI (blue), respectively (D). Image inlays show part of the depicted area at higher magnification. (E) Relative BODIPY493/503-stained areas. (F) Hepatic triglyceride content in fasted mice. TG, triglycerides; scale bar = 200 µm; $n = 7–12$/group; data are expressed as means ± SD; *$ P < 0.05$, **$ P < 0.01$.

Liver International (2014)
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
and Pten+/−/Akt2−/− mice is similar. We speculate that this could be a result of increased AKT1 activation.

Loss of AKT2 in a Pten-haploinsufficient background mainly reduces p-AKT S473 and to a lesser extent p-AKT T308. This result indicates that regulation of p-AKT S473 and T308 might be AKT isoform-specific and differentially dependent on PTEN. This is an interesting observation but its significance remains unclear as the tissue-specific function(s) of individual AKT isoforms are not fully understood. Loss of AKT2, however, results in insulin resistance and glucose intolerance. Together with the observed reduction in mainly p-AKT S473 our finding indicates that insulin sensitivity and systemic regulation of glucose homoeostasis may be more dependent on p-AKT S473 than on p-AKT T308.

The expression of lipogenic genes in the liver of Pten+/−/Akt2−/− mice was at similarly high levels as observed in Pten+/−/Pten−/− mice. This is in line with previous findings showing that the regulation of lipogenic genes by AKT2 is context-dependent (19, 21, 22). While the expression of lipogenic genes was found to be dependent on AKT2 in mice with hepatocyte-specific Pten-deficiency and leptin-deficiency, their expression was not altered in Akt2-deficient mice fed a normal chow or a high-fat diet enriched in simple carbohydrates (Surwit diet) (19, 21, 22). It is possible that AKT1 or other PI3K-dependent kinases such as PKC (121) could compensate the loss of AKT2 and induce expression of lipogenic genes in fasted Pten+/−/Akt2−/− mice (44).

Pten+/− homozygous mice show increased random fed and fasted-refed blood glucose level and abrogated activation of AKT in skeletal muscle. Similarly, Akt2−/− mice have increased blood glucose level and reduced AKT activation in skeletal muscle. However, hepatic lipid content of both Pten+/−/Akt2−/− and Akt2−/− mice is reduced as in Pten−/−/Pten−/− mice. This indicates that AKT2 in hepatocytes is required but not sufficient for accumulation of lipids in the liver of Pten-haploinsufficient mice. This observation also supports previous reports showing that AKT2 has a hepatocyte-autonomous role in accumulation of hepatic lipids (21, 22).

Recent studies have suggested that insulin resistance of skeletal muscle is a central factor in the development of NAFLD (7, 24, 25). Lifestyle changes were shown to be effective in NAFLD treatment (45). For instance, 2 weeks of diet and exercise therapy in diabetic patients reduced hepatic lipid content by 27% (45, 46). However, lifestyle changes are often difficult to achieve (47). Our data show that enhanced insulin response in skeletal muscle mediated by AKT2 reduces hepatic lipid content. Thus, pharmacological activation of AKT2 specifically in skeletal muscle might be an effective option for treatment of NAFLD.

Acknowledgements

We are grateful to Pier P. Pandolfi (Beth Israel Deaconess Medical Center, Harvard Medical School, USA) for providing Pten+/− mice and Nicholas K. Tonks (Cold Spring Harbor Laboratory, USA) for providing antibodies against PTEN. We thank Heidi Seiler, Josephine Juettner, Sandrine Bichet, Peter Cron and Arno Doelemeyer for excellent technical support and Patrick King for editing the manuscript.

S.M.S. and O.T. were supported by the Swiss SystemsX.ch initiative LiverX of the Competence Center for Systems Physiology and Metabolic Diseases. S.M.S. was supported by the Olga Mayenfisch Foundation and the Forschungskredit of the University of Zurich. O.T. was supported by the Amelie Waring Foundation.

Conflict of interest: The authors do not have any disclosures to report.

References

APPENDIX

Reduced hepatic lipids in Pten+/− mice

Schultze et al.

Liver International (2014)

© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Liver International (2014) © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

APPENDIX

24. Flannery C, Dufour S, Rabol R, Shulman GI, Petersen KF.
23. Donnelly KL, Smith CI, Schwarzenberg SJ.
21. He L, Hou X, Kanel G.
18. Vinciguerra M, Veyrat-Durebex C, Moukil MA.
17. Pal A, Barber TM, van de Bunt M.
15. Ehses J, Meier D, Wueest S.

Reduced hepatic lipids in Pten-/- mice