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hp-DGFEM FOR SECOND-ORDER MIXED ELLIPTIC PROBLEMS IN

POLYHEDRA

DOMINIK SCHÖTZAU, CHRISTOPH SCHWAB, AND THOMAS P. WIHLER

Abstract. We prove exponential rates of convergence of hp-dG interior penalty (IP) methods
for second-order elliptic problems with mixed boundary conditions in polyhedra which are based
on axiparallel, σ-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial

degree distributions of µ-bounded variation. Compared to homogeneous Dirichlet boundary
conditions in [10, 11], for problems with mixed Dirichlet-Neumann boundary conditions, we
establish exponential convergence for a nonconforming dG interpolant consisting of elementwise
L2 projections onto elemental polynomial spaces with possibly anisotropic polynomial degrees,
and for solutions which belong to a larger analytic class than the solutions considered in [11].
New arguments are introduced for exponential convergence of the dG consistency errors in
elements abutting on Neumann edges due to the appearance of non-homogeneous, weighted

norms in the analytic regularity at corners and edges. The nonhomogeneous norms entail a
reformulation of dG flux terms near Neumann edges, and modification of the stability and quasi-

optimality proofs, and the definition of the anisotropic interpolation operators. The exponential
convergence results for the piecewise L2 projection generalizes [10, 11] also in the Dirichlet case.

1. Introduction

Consider an open, bounded polyhedron Ω ⊂ R3 with Lipschitz boundary Γ = ∂Ω that consists
of a finite union of plane faces Γι indexed by ι ∈ J . The sets Γι are assumed to be bounded,
plane polygons whose sides form the (open) edges of Ω. The set {Γι}ι∈J is partitioned into two

sets JD and JN of Dirichlet and of Neumann faces, respectively, i.e., J = JD

.∪ JN , with disjoint
union. Then we consider the diffusion equation

−∆u = f in Ω, (1.1)

γ0(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JD, (1.2)

γ1(u) = 0 on Γι ⊂ ∂Ω, ι ∈ JN , (1.3)

where the operators γ0 and γ1 denote the trace and (co)normal derivative operators, respectively.
With the Sobolev space V := H1

D(Ω) := {v ∈ H1(Ω) : v|Γι
= 0, ι ∈ JD} and the continuous

bilinear form a(u, v) :=
∫
Ω
∇u · ∇v dx, the variational form of problem (1.1)–(1.3) is to find

u ∈ H1
D(Ω) such that

a(u, v) =

∫

Ω

fv dx ∀v ∈ H1
D(Ω) . (1.4)

For every f ∈ V ⋆ = H1
D(Ω)⋆, the dual space of V , problem (1.4) admits a weak solution u ∈ H1

D(Ω).
The solution is unique if JD 6= ∅, and unique up to constants if JD = ∅ (in which case we also
require the compatibility condition 〈f, 1〉V×V ⋆ = 0).

This paper is a continuation of our work [10, 11] on hp-version discontinuous Galerkin (dG)
finite element methods (FEM) for second-order elliptic boundary-value problems in polyhedral
domains Ω ⊂ R3. In [10], we showed the well-posedness, stability and quasi-optimality of hp-
version interior penalty (IP) discontinuous Galerkin discretizations of (1.1) in the pure Dirichlet
case when J = JD, JN = ∅, and the homogeneous essential boundary conditions (1.2) are posed
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2 D. SCHÖTZAU, C. SCHWAB, AND T. P. WIHLER

on all of ∂Ω. In [11], we then used these results to prove exponential rates of convergence in
the number of degrees of freedom, on appropriate combinations of σ-geometric meshes and s-
linearly increasing anisotropic elemental polynomial degrees; see also [14] for related work on
linear elasticity.

In this work, we consider the case JN 6= ∅. The case JN = ∅ is the pure Dirichlet case where
exponential convergence was established in [10, 11]. The hp-error analysis in the present paper
is along the lines of [10, 11], however, there are some significant differences: as shown in [3],
the solutions of mixed Dirichlet-Neumann or pure Neumann problems for second order, elliptic
boundary value problems in polyhedral domains with piecewise analytic data belong to analytic
classes specified in terms of countably normed Sobolev spaces. In elements in the vicinity of Γι, for
ι ∈ JD, the analytic classes coincide with those for the Dirichlet case, and accordingly, exponential
convergence would follow as in [11]. In the present paper, we provide an alternative proof also in the
Dirichlet case, constructing an hp-interpolant from elementwise L2-projections. The exponential
convergence proofs in this work will focus on stability and exponential convergence bounds in
elements in the vicinity of Γι, ι ∈ JN . Here, new technical difficulties (as compared to [11])
arise, due to the solutions belonging to countably normed Sobolev spaces with nonhomogeneous
weights Nm

β (Ω) introduced in [3]. In the case of homogeneous Dirichlet conditions (i.e., when

JN = ∅), these spaces coincide with the (smaller) spaces Mm
β (Ω) for which we proved exponential

convergence in [10, 11]. When JN 6= ∅, however, we have the strict inclusion Nm
β (Ω) ) Mm

β (Ω),
due to the different structure of the weights near Neumann edges, i.e., edges at the intersection of
two faces Γι, ι ∈ JN . Compared to [10, 11], the different structure of the weights entails essential
modifications in the definition of the anisotropic hp-interpolation operators, as well as in the error
bounds in elements containing Neumann faces. Compared to the results of [10, 11], we present
here an hp-dG discretization for (1.1)–(1.3) with JN 6= ∅. On axiparallel hexahedral meshes
and for linear anisotropic polynomial degree distributions, and for isotropic diffusion coefficients,
we establish exponential convergence. Specifically, we show that the hp-dG approximations are
well-defined, satisfy the Galerkin orthogonality property and, hence, the dG energy error can be
bounded with respect to a suitable discontinuous elemental polynomial interpolation operator. We
generalize the result in [11] (for the case JN = ∅), and prove that hp-dGFEM achieve exponential

convergence, i.e., asymptotic convergence rate bounds of the form C exp(−b 5
√
N), where N is the

number of degrees of freedom, and where b, C > 0 are independent of N .
The outline of the article is as follows: In Section 2, we recapitulate regularity results in count-

ably normed weighted Sobolev spaces for the solution of (1.1) – (1.3) from [3], extending the
pioneering work [2] in two dimensions to the three-dimensional case. In Section 3, we define
hp-dG finite element spaces on σ-geometric meshes of mapped hexahedral elements with possi-
bly anisotropic polynomial degree distributions. In Section 4, we extend the stability and quasi-
optimality results of [10] to the mixed boundary conditions considered here. Particular attention
is being paid to the analysis of consistency errors in elements abutting at “Neumann-edges”, being
edges where two faces with homogeneous Neumann boundary conditions meet. In Section 5, we
present exponential convergence bounds for the consistency terms arising in the dG-stability anal-
ysis, and state our exponential convergence result (Theorem 5.6). Sections 6–7.6 are devoted to
the proof of this result. Although we use ideas and notation from [10, 11], the proof of exponential
convergence in the present paper is self-contained, and the results in several respects stronger than
the analysis in [11]: exponential convergence is shown for larger classes of solutions, and for an
(quasi)interpolant which requires merely L2-regularity of the solution, thereby generalizing the
analysis in [11]. This is purchased at the expense of additional powers of the maximal polynomial
degree (as compared to [11]) appearing in the consistency error bounds; these are subsequently
absorbed into the exponentially small terms.

The notation employed throughout this paper is consistent with [10, 11]. In particular, we shall
frequently use the function

Ψq,r =
Γ(q + 1− r)

Γ(q + 1 + r)
, 0 ≤ r ≤ q, q, r ∈ N, (1.5)
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where Γ is the Gamma function satisfying Γ(m + 1) = m!, for any m ∈ N. Moreover, we shall
use the notations ”.” or ”≃” to mean an inequality or an equivalence containing generic positive
multiplicative constants which are independent of the local mesh sizes, polynomial degrees, and
regularity parameters, as well as of the geometric refinement level, but which may depend on the
geometric refinement ratio σ and on the linear polynomial degree slope s.

2. Regularity

To establish exponential convergence of hp-dG methods, it is necessary to specify the precise
regularity of solutions of (1.1)–(1.3) in countably normed weighted Sobolev spaces. To do so, we
follow [3], based on the notations already introduced in [10, 11].

2.1. Subdomains and Weights. We denote by C the set of corners c, and by E the set of open
edges e of Ω. The singular set of Ω is then given by

S =

(⋃

c∈C

c

)
∪
(⋃

e∈E

e

)
⊂ Γ. (2.1)

For c ∈ C, e ∈ E , and x ∈ Ω, we define the following distance functions:

rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) = re(x)/rc(x). (2.2)

We assume the vertices of Ω to be separated:

∃ ε(Ω) > 0 :
⋂

c∈C

Bε(c) = ∅, (2.3)

where Bε(c) denotes the open ball in R3 with center c and radius ε. For each corner c ∈ C,
Ec = { e ∈ E : c ∩ e 6= ∅ } denotes the set of all edges of Ω which meet at c. Similarly, for any
e ∈ E , the set of corners of e is given by Ce ≡ ∂e = { c ∈ C : c ∩ e 6= ∅ }. Then, for c ∈ C, e ∈ E
and ec ∈ Ec, we define the neighborhoods

ωc = {x ∈ Ω : rc(x) < ε ∧ ρce(x) > ε ∀ e ∈ Ec },
ωe = {x ∈ Ω : re(x) < ε ∧ rc(x) > ε ∀ c ∈ Ce },

ωcec
= {x ∈ Ω : rc(x) < ε ∧ ρcec

(x) < ε }.
(2.4)

Possibly by reducing ε in (2.3), we may partition the domain Ω into four disjoint parts,

Ω = Ω0

.∪ ΩC

.∪ ΩE

.∪ ΩCE , (2.5)

where

ΩC =
⋃

c∈C

ωc, ΩE =
⋃

e∈E

ωe, ΩCE =
⋃

c∈C

⋃

e∈Ec

ωce. (2.6)

We shall refer to the subdomains ΩC , ΩE and ΩCE as corner, edge and corner-edge neighborhoods
of Ω, respectively, and the remaining interior part of the domain Ω is defined by Ω0 := Ω \
ΩC ∪ ΩE ∪ ΩCE .

In the sequel, it will be useful to refine the partition in (2.6) by introducing the following subsets
of C and E , respectively:

CD :=
{
c ∈ C : ∃s ∈ JD with c ∩ Γs 6= ∅

}
,

ED :=
{
e ∈ E : ∃s ∈ JD with e ∩ Γs 6= ∅

}
,

EN := E \ ED .

(2.7)

Corners in CD and edges in ED abut at at least one Dirichlet face Γι for ι ∈ JD. Note that we
possibly have EN = ∅. Hence, the edge neighborhoods in (2.6) can be further partitioned into:

ΩE = ΩED

.∪ ΩEN
, (2.8)

where, as in (2.6), we let ΩED
=
⋃

e∈ED
ωe, and ΩEN

=
⋃

e∈EN
ωe.
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2.2. Weighted Sobolev Spaces. To each c ∈ C and e ∈ E we associate a corner and an edge
exponent βc, βe ∈ R, respectively. We collect these quantities in the multi-exponent

β = {βc : c ∈ C} ∪ {βe : e ∈ E} ∈ R|C|+|E|. (2.9)

Inequalities of the form β < 1 and expressions like β ± s, where s ∈ R, are to be understood
componentwise. For example, β+ s = {βc + s : c ∈ C} ∪ {βe + s : e ∈ E}. We shall often use the
notation

bc = −1− βc, c ∈ C , be = −1− βe e ∈ E . (2.10)

At the heart of the exponential convergence analysis of hp-approximations in three dimensions
is the analytic regularity of the solution u of (1.1)–(1.2) near the set of edges E of Ω. In order
to describe it, we recall from [10], for corners c ∈ C and edges e ∈ E , the local coordinate
systems in ωe and ωce which are chosen such that e corresponds to the direction (0, 0, 1). Then,
we denote quantities that are transversal to e by (·)⊥, and quantities parallel to e by (·)‖. In
particular, if α = (α⊥, α‖) with α⊥ = (α1, α2) and α‖ = α3 is a multi-index corresponding to
the three local coordinate directions in a subdomain ωe or ωce, then the operator D

α denotes
the partial derivative in these local coordinate directions. Likewise notation shall be employed
below in anisotropic quantities related to a face. Furthermore, we will write |α⊥| = α1 + α2,
and |α| = |α⊥|+ α3

The solution u of (1.1)–(1.3) belongs to a scale Nm
β (Ω) of countably normed spaces which are,

in the case JN 6= ∅ under consideration here, strictly larger than the scale Mm
β (Ω) of spaces

considered in [10, 11] for the pure Dirichlet case, i.e., for J = JD, so that the exponential
convergence results proved in this paper generalize those in [10, 11]. We define the semi-norm

|u|2Nk
β
(Ω;CD,ED) :=

∑

α∈N30
|α|=k

{
‖Dαu‖2L2(Ω0)

+
∑

e∈ED

∥∥rβe+|α⊥|
e D

αu
∥∥2
L2(ωe)

+
∑

e∈EN

∥∥rmax{βe+|α⊥|,0}
e D

αu
∥∥2
L2(ωe)

+
∑

c∈CD

(∥∥rβc+|α|
c D

αu
∥∥2
L2(ωc)

+
∑

e∈Ec∩ED

∥∥rβc+|α|
c ρ

βe+|α⊥|
ce D

αu
∥∥2
L2(ωce)

+
∑

e∈Ec∩EN

∥∥rβc+|α|
c ρ

max{βe+|α⊥|,0}
ce D

αu
∥∥2
L2(ωce)

)

+
∑

c∈C\CD

(∥∥rmax{βc+|α|,0}
c D

αu
∥∥2
L2(ωc)

+
∑

e∈Ec∩ED

∥∥rmax{βc+|α|,0}
c ρ

βe+|α⊥|
ce D

αu
∥∥2
L2(ωce)

+
∑

e∈Ec∩EN

∥∥rmax{βc+|α|,0}
c ρ

max{βe+|α⊥|,0}
ce D

αu
∥∥2
L2(ωce)

)}
.

(2.11)

For m > kβ, with

kβ := −min{min
c∈C

βc,min
e∈E

βe}, (2.12)

we denote by Nm
β (Ω; CD, ED) the space of functions u such that ‖u‖Nm

β
(Ω;CD,ED) < ∞, with the

norm ‖u‖2Nm
β

(Ω;CD,ED) :=
∑m

k=0 |u|
2
Nk

β
(Ω;CD,ED).

It follows from the definition of the norm ‖u‖Nm
β

(Ω;CD,ED) that the spaces Nm
β (Ω; CD, ED) are

monotonic with respect to the sets CD, ED: for ∅ ⊆ CD ⊆ C and ∅ ⊆ ED ⊆ E , we have

Mm
β (Ω) := Nm

β (Ω; C, E) ⊆ Nm
β (Ω; CD, ED) ⊆ Nm

β (Ω; ∅, ∅) =: Nm
β (Ω), (2.13)

where Mm
β (Ω) is the weighted Sobolev space obtained as the closure of C∞

0 (Ω) with respect to the

norm ‖◦‖Mm
β

(Ω) = ‖◦‖Nm
β

(Ω;C,E). For subdomains K ⊆ Ω we shall denote by | ◦ |Nk
β
(K;CD,ED) the

semi-norm (2.11) with all domains of integration replaced by their intersections with K ⊂ Ω, and
likewise we shall use the norm ‖ ◦ ‖Nm

β
(K;CD,ED).
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2.3. Analytic regularity of variational solutions. We adopt the following classes of analytic
functions from [3].

Definition 2.1. For subdomains K ⊆ Ω and any subsets C′ ⊂ C, E ′ ⊂ E , the space Bβ(K; C′, E ′)
consists of all functions u such that u ∈ Nm

β (K; C′, E ′) for m > kβ, with kβ as in (2.12), and such
that there exists a constant Cu > 0 with the property that

|u|Nk
β
(K;C′,E′) ≤ Ck+1

u k! ∀k > kβ . (2.14)

Remark 2.2. The analytic class Bβ(Ω) = Bβ(Ω; ∅, ∅) is closely related to the countably normed
spaces Bℓ

β(Ω) introduced by Babuška and Guo in [2, 7, 8]: if the edge and corner exponents

βij ∈ (0, 1) and βm ∈ (0, 1/2) introduced in [2, 7, 8] satisfy βij = βe + ℓ and βm = βc + ℓ for every
c ∈ C and e ∈ E , then Bℓ

β(Ω) = Bβ(Ω). By (2.13), we also have Aβ(Ω) = Bβ(Ω; C, E), where
Aβ(Ω) is the analytic class considered in [11].

We have the following regularity result (see [3, Theorem 7.3]).

Proposition 2.3. There are bounds bE , bC > 0 (depending on Ω and on the space V ) such that,
for b satisfying

0 < bc < bC , 0 < be < bE , e ∈ E , c ∈ C, (2.15)

any weak solution u ∈ V defined in (1.4) of problem (1.1)–(1.3) satisfies:

f ∈ B1−b(Ω; C, ED) =⇒ u ∈ B−1−b(Ω; C, ED) . (2.16)

Remark 2.4. We may and will assume in the following without loss of generality that in (2.15)
there holds 0 < bC , bE < 1. Then βc, βe ∈ (−2,−1) in (2.10). Consequently, we have κβ ∈ (1, 2)
in (2.12), and (2.14) holds for all k > 1. Moreover, for |α⊥| ≥ 2, there holds, max{βe+ |α⊥|, 0} =
βe + |α⊥|.

Remark 2.5. Under the assumptions of Proposition 2.3, there holds

B−1−b(Ω; C, ED) ⊂ C0(Ω) . (2.17)

This inclusion is a consequence of Remark 2.2 above on the equivalence of weighted analytic
spaces defined via (2.11), (2.14), with the spaces of Babuška and Guo introduced in [7, 8], under
our assumption that 0 < bC , bE ≤ 1 (cp. Remark 2.4); see [8, Theorem 5.10]. The assertions
(2.16) and (2.17) imply in particular that point values of the solution u ∈ B−1−b(Ω; C, ED) are
well-defined at E and C.

Remark 2.6. Note that the regularity (2.16) implies the a-priori estimates (2.14) in the weighted
spaces with weights at all c ∈ C, even if c is a “Neumann corner”, i.e. if only Neumann faces meet
at corner c. In the case of corners c of polyhedra in R3, corner weights do not imply homogeneous
Dirichlet boundary conditions since by Hardy’s inequality

{
u ∈ H1(Ω) : r−1

c u ∈ L2(Ω) ∀c ∈ C
}
=

H1(Ω) for bounded Lipschitz domains Ω ⊂ R3. This implies that the Dirichlet corner weights do
not contribute to the characterization of integrability of the weak solution u ∈ V near the singular
set S which is, by (2.11), completely characterized by the edge weight functions for all edges e ∈ Ec
which meet at corner c ∈ C. The regularity (2.16) in the analytic class B−1−b(Ω; C, ED) implies
CD = C in (2.11) so that only six out of the nine terms in the weighted semi-norms | · |Nk

β
(Ω;CD,ED)

suffice to characterize the analytic regularity of u. In particular, the corner weights have the same
structure as in the pure Dirichlet case, albeit with in general a larger range of the exponents
βc, whereas for each edge e ∈ E , the two cases e ∈ ED and e 6∈ ED must be distinguished.
The positivity of the indices be, bc in (2.15) implies with (2.10) that −1 − βE < βe < −1,
−1 − βC < βc < −1, and 1 < kβ < 1 + min{βC , βE}. Inspection of (2.11) reveals that this
forces the solution to zero weakly at Dirichlet edges e ∈ ED; however, the structure of the weights

r
max{βe+|α⊥|,0}
e associated with Neumann edges e 6∈ ED in the third and sixth terms in (2.11)
allows for nonzero traces of u ∈ V at such edges.
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3. hp-Subspaces in Ω

In [10], we constructed a class of hp-dG spaces on families Mσ = {M(ℓ)
σ }ℓ≥1 of nested, σ-

geometric meshes of hexahedral elements with ℓ layers of refinement, polynomial degree distri-
butions which are nonuniform, anisotropic within elements and s-linearly increasing between el-
ements. Here, we recapitulate the construction in the particular case of axiparallel domains and
meshes, and refer to [10, Section 3] for details and proofs.

3.1. Geometric hp-Meshes in Ω. We start from any coarse regular quasiuniform partition
M0 = {Qj}Jj=1 of Ω into J convex axiparallel hexahedra. Each of these hexahedral elements Qj ∈
M0 is the image under an affine mapping Gj of the reference patch Q̃ = (−1, 1)3, i.e. Qj = Gj(Q̃)
for j = 1, . . . , J . In fact, since the hexahedra {Qj}j are assumed axiparallel, the mappings Gj are
compositions of (isotropic) dilations and translations. Due to our assumption that the faces of Ω
are plane, it is geometrically exact.

In [10], canonical geometric mesh patches on the reference patch Q̃ have been constructed; see
Figure 1. Geometric meshes towards corners and edges in Ω can then be obtained by again applying
the patch mappings Gj to transform these canonical geometric mesh patches on the reference

patch Q̃ to the patches Qj ∈ M0. It is important to note that the geometric refinements in the
canonical patches have to be suitably selected and oriented in order to achieve a proper geometric
refinement towards corners and edges of Ω. In addition, we allow for simultaneous geometric
refinement towards several edges. In [10, Section 3.3], a specific construction of geometric meshes
has been introduced in terms of four different hp-extensions (Ex1)–(Ex4) as displayed in Figure 1.
They also apply to our exponential convergence analysis below. Moreover, the patches Qj with

Qj ∩ S = ∅ away from the singular support S are left unrefined, i.e., no refinement is considered

on Q̃.
Consider now the hexahedral patch Qj ∈ M0. We denote the elements in the canonical geo-

metric mesh patch associated with Qj by M̃j = {K̃}, where we allow M̃j = {Q̃} in the case of

unrefined patches. The elements in M̃j are then transported to the physical domain Ω via the

(finitely many) affine patch maps Gj . Moreover, for each K̃ ∈ M̃j , we can write K̃ = Hj,K̃(K̂),

where Hj,K̃ : K̂ → K̃ is a possibly anisotropic dilation combined with a translation of the refer-

ence cube K̂ = (−1, 1)3 (to be distinguished from the reference patch Q̃). Thus, the elements in

the patch Qj ⊂ Ω will be given by Mj =
{
K : K = (Gj ◦Hj,K̃)(K̂), K̃ ∈ M̃j

}
, j = 1, . . . , J . A

geometric mesh in Ω is now given by

M :=
J⋃

j=1

Mj . (3.1)

Throughout, we shall assume that the initial mesh M0 is sufficiently fine so that an element
K ∈ M has non-trivial intersection with at most one corner c ∈ C and at most one edge e ∈ E .
By construction, each hexahedral element K ∈ M is the image of the reference cube K̂ under an

element mapping ΦK K = ΦK(K̂), which is a possibly anisotropic dilation with a translation from

K̂ to K. We collect all element mappings ΦK in the mapping vector Φ(M) := {ΦK : K ∈ M}.
With each (axiparallel) element K ∈ M in the geometric mesh, let us associate a polynomial

degree vector pK = (pK,1, pK,2, pK,3) ∈ N3
0. Its components correspond to the coordinate directions

in K̂ = Φ−1
K (K). The polynomial degree is called isotropic if pK,1 = pK,2 = pK,3 = pK . We set

|pK | := max3i=1 pK,i.
In the hp-error estimates, we shall often write K in the form

K := K⊥ ×K‖, (3.2)

where K⊥ is an axiparallel rectangle of diameter h⊥
K in the first two coordinates x⊥ = (x1, x2)

perpendicular to the nearest edge e, and K‖ is an interval of length h
‖
K in the third coordinate

direction x‖ = x3 parallel to e. Analogously, we then choose pK,1 = pK,2 =: p⊥K , and write

pK = (p⊥K , p
‖
K).
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Figure 1. Examples of three basic geometric mesh subdivisions in the reference

patch Q̃ with subdivision ratio σ = 1/2: isotropic refinement towards the corner
c (left), anisotropic refinement towards the edge e (center), and anisotropic re-
finement towards the edge-corner pair ce (right). The sets c, e, ce are shown in
boldface.

Given a mesh M of hexahedral elements in Ω, we combine the elemental polynomial degrees pK

into the polynomial degree vector p(M) := {pK : K ∈ M}, and define pmax := maxK∈M |pK |.
We remark that, in addition to the mesh refinements, the extensions (Ex1)–(Ex4) introduced
in [10] also provide appropriate polynomial degree distributions that increase s-linearly away from
the singular set S.

In the sequel, we shall be working with sequences of σ-geometrically refined meshes denoted by

M(0)
σ ,M(1)

σ ,M(2)
σ , . . . ,M(ℓ)

σ , . . ., where M(0)
σ := M0. Here, σ ∈ (0, 1) is a fixed parameter defining

the ratio of subdivision in the canonical geometric refinements in Figure 1. We shall refer to the

index ℓ as refinement level, and to the sequence Mσ = {M(ℓ)
σ }ℓ≥1 as a σ-geometric mesh family;

see [10, Definition 3.4].

3.2. Mesh Layers. As in [10, Section 3], we shall use the concept of mesh layers: these are

partitions of Mσ = {M(ℓ)
σ }ℓ≥1 into certain subsets of elements with identical scaling properties in

terms of their relative distance to the sets C and E . The following result holds.

Proposition 3.1. Any σ-geometric mesh family Mσ obtained by iterating the basic hp-extensions
(Ex1)–(Ex4) in [10] can be partitioned into a countable sequence of disjoint mesh layers {Lj

σ}ℓ−1
j=0,

and a corresponding nested sequence of terminal layers Tℓ
σ, such that each M(ℓ)

σ ∈ Mσ, ℓ ≥ 1, can
be written as

M(ℓ)
σ = L0

σ

.∪ L1
σ

.∪ . . .
.∪ Lℓ−1

σ

.∪ Tℓ
σ. (3.3)

Elements in the submesh

Oℓ
σ := L0

σ

.∪ L1
σ

.∪ . . .
.∪ Lℓ−1

σ ⊂ M(ℓ)
σ ∈ Mσ, ℓ ≥ 1, (3.4)

are bounded away from C ∪ E, while all elements in the terminal layer Tℓ
σ have a nontrivial inter-

section with C ∪ E. Evidently, M(ℓ)
σ = Oℓ

σ

.∪ Tℓ
σ for ℓ ≥ 1.

We partition Oℓ
σ into discrete corner, edge and corner-edge neighborhoods as Oℓ

σ = Oℓ
C

.∪ Oℓ
E

.∪
Oℓ

CE

.∪ Oℓ
int, where for ℓ ≥ 1,

Oℓ
int :=

{
K ∈ Oℓ

σ : K ∩ Ω0 6= ∅
}
,

Oℓ
C :=

{
K ∈ Oℓ

σ : K ∩ ΩC 6= ∅
}
\Oℓ

int,

Oℓ
E :=

{
K ∈ Oℓ

σ : K ∩ ΩE 6= ∅
}
\ (Oℓ

int ∪Oℓ
C),

Oℓ
CE :=

{
K ∈ Oℓ

σ : K ∩ ΩCE 6= ∅
}
\
(
Oℓ

int ∪Oℓ
C ∪Oℓ

E

)
.

(3.5)

Note that there exists ℓ0 ≥ 1 (depending on ε from (2.3) and on σ) such that Oℓ
int = Oℓ0

int for ℓ ≥ ℓ0.
Without loss of generality, we shall assume that the initial mesh is sufficiently fine so that we can
choose ℓ0 = 2. Consequently, in what follows we shall simply write Oint instead of Oℓ0

int. In
addition, we may assume without loss of generality that L0

σ ⊂ Oℓ
int for ℓ ≥ ℓ0 = 2.
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For an element K ∈ M, we set hK := diam(K), and denote by h⊥
K and h

‖
K the elemental

diameters of K transversal respectively parallel to the singular edge e ∈ E nearest to K; cp. [10].

For isotropic elements, we have h
‖
K ≃ h⊥

K ≃ hK . In a sequence Mσ = {M(ℓ)
σ }ℓ≥1 of σ-geometric

meshes, we define for any K ∈ M(ℓ)
σ , c ∈ C and e ∈ E the quantities:

deK := dist(K, e) = inf
x∈K

re(x), dcK := dist(K, c) = inf
x∈K

rc(x). (3.6)

These quantities are closely related to the elemental diameters h⊥
K and h

‖
K ; cp. [11, Prop. 3.2 &

3.4]. In particular, if K = K⊥ ×K‖ ∈ Oℓ
σ as in (3.2), then dcK ≃ h

‖
K , and deK ≃ h⊥

K .

Similarly, we partition the terminal layer Tℓ
σ into Tℓ

σ := Tℓ
C

.∪ Tℓ
E , where

Tℓ
C :=

⋃

c∈C

Tℓ
c, Tℓ

c := {K ∈ Tℓ
σ : K ∩ c 6= ∅ }, c ∈ C, (3.7)

Tℓ
E :=

⋃

e∈E

Tℓ
e, Tℓ

e := {K ∈ Tℓ
σ \ Tℓ

C : (K ∩ e)◦ is an entire edge of K }, e ∈ E . (3.8)

For M0 sufficiently fine, we may assume that Tℓ
c consists of at most a finite number (independent

of c ∈ C, σ, and ℓ) of elements K ∈ Tℓ
σ. According to [11, Proposition 3.2], these corner elements

K ∈ Tℓ
c are isotropic with hK ≃ h⊥

K ≃ h
‖
K ≃ σℓ, while elements in K ∈ Tℓ

e may be anisotropic

with deK . h⊥
K ≃ σℓ, and dcK ≃ h

‖
K ≃ σℓ+1−j for an exponent 2 ≤ j ≤ ℓ+ 1.

3.3. Finite Element Spaces. Let M = M(ℓ)
σ , for some ℓ, be a geometric mesh of a σ-geometric

mesh family Mσ in Ω. Furthermore, let Φ(M) and p(M) be the associated element mapping and
elemental polynomial degree vectors, as introduced above. We then introduce the discontinuous
hp finite element space

V (M,Φ,p) =
{
u ∈ L2(Ω) : u|K ∈ QpK

(K), K ∈ M
}
. (3.9)

Here, we define the local polynomial approximation spaceQpK
(K) as follows: first, on the reference

element K̂ and for a polynomial degree vector p = (p1, p2, p3) ∈ N3
0, we introduce the anisotropic

polynomial space: Qp(K̂) = Pp1(Î) ⊗ Pp2(Î) ⊗ Pp3(Î) = span { x̂α : αi ≤ pi, 1 ≤ i ≤ 3 }. Here,

for p ∈ N0, we denote by Pp(Î) the space of all polynomials of degree at most p on the ref-

erence interval Î = (−1, 1). Then, if K is a hexahedral element of M with associated ele-

mental mapping ΦK : K̂ → K and polynomial degree vector pK = (pK,1, pK,2, pK,3), we de-

fine QpK
(K) :=

{
u ∈ L2(K) : (u|K ◦ ΦK) ∈ QpK

(K̂)
}
. In the case where the polynomial de-

gree vector pK associated with K is isotropic, i.e., pK,1 = pK,2 = pK,3 = pK , we simply write
QpK

(K) = QpK
(K). For technical reasons that will become clear in the analysis, we will assume

throughout the paper that all polynomial degrees on elements K ∈ Oℓ
σ are greater than or equal

to 3.
We now introduce two families of hp-finite element spaces for the discontinuous Galerkin meth-

ods; both yield exponentially convergent approximations and are based on the σ-geometric mesh

families Mσ = {M(ℓ)
σ }ℓ≥1. The first family of hp-dG subspaces is defined by

V ℓ
σ := V (M(ℓ)

σ ,Φ(M(ℓ)
σ ),p1(M(ℓ)

σ )), ℓ ≥ 1, (3.10)

where the elemental polynomial degree vectors pK in p1(M(ℓ)
σ ) are isotropic and uniform, given

on each element K ∈ M
(ℓ)
σ as pK = max{3, ℓ}. The second family of hp-dG subspaces is chosen as

V ℓ
σ,s := V (M(ℓ)

σ ,Φ(M(ℓ)
σ ),p2(M(ℓ)

σ )), ℓ ≥ 1, (3.11)

for an increment parameter s > 0. Here the polynomial degree vectors p2(M(ℓ)
σ ) are linearly

increasing with slope s away from S, i.e., specifically, the polynomial degrees p⊥
K and p

‖
K within

each element K ∈ M(ℓ)
σ increase linearly with the number of mesh layers between that element and

the closest edge e ∈ E respectively the closed corner c ∈ C of Ω, with the factor of proportionality
(“slope” in the terminology of [6]) being s > 0; see [10, Section 3]. In the pure Neumann case (JD =

∅) we consider the factor space Ṽ ℓ
σ,s = V ℓ

σ,s/R.
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Remark 3.2. By construction, increasing the index j in the mesh layers Lj
σ corresponds to moving

from inside the domain towards the singular set S, with L0
σ being the most inner layer, and the

terminal layer Tℓ
σ being the most outer layer abutting at S; see (3.3). While this numbering takes

into account the scaling properties of Lj
σ, it is in contrast to the notion of s-linearly increasing

polynomial degrees where the polynomial degree increases s-linearly away from the singular set
into the interior of the domain; see also [10].

3.4. Properties of bounded variation. The spaces V ℓ
σ and V ℓ

σ,s defined in (3.10) and (3.11),
respectively, satisfy bounded variation properties with respect to the local mesh sizes and polyno-
mial degrees. These properties will be implicitly used in our analysis. To describe them, let Mσ

be the underlying σ-geometric mesh family. For any M ∈ Mσ, we define the set of all interior
faces in M by

FI(M) := { f = (∂K♭ ∩ ∂K♯)◦ 6= ∅ : K♭,K♯ ∈ M}.
The set of all Dirichlet boundary faces is given by FD(M) := { f = (∂K ∩ ∂Γι)

◦ 6= ∅ : ι ∈ JD },
and similarly, we denote by FN (M) the set of all Neumann faces. In addition, let F(M) =
FI(M) ∪ FD(M) ∪ FN (M) denote the set of all (smallest) faces of M. Furthermore, for an
element K ∈ M, we denote the set of its faces by FK = { f ∈ F(M) : f ⊂ ∂K }. For K ∈ M
and f ∈ FK , we denote by h⊥

K,f the height of K over the face f , i.e., the diameter of element K

in the direction transversal to f . Similarly, we denote by p⊥K,f the polynomial degree of pK

transversal to f (defined as the corresponding component of Φ−1
K (K)).

The geometric mesh family now satisfies the following property with respect to the local mesh
sizes: there is a constant µ1 ∈ (0, 1) only depending on σ and M0 such that

µ1 ≤ h⊥
K♯,f /h

⊥
K♭,f ≤ µ−1

1 , (3.12)

for all interior faces f ∈ FI(M), and M ∈ Mσ. Further, the family of degree vectors p2(M(ℓ)
σ )ℓ≥1

introduced in (3.11) satisfies a similar property with respect to the polynomial degree: there is a
constant µ2 ∈ (0, 1) (depending on s) such that µ2 ≤ p⊥K♯,f /p

⊥
K♭,f

≤ µ−1
2 , for all interior faces

f = FI(M(ℓ)
σ ), and ℓ ≥ 1. Note that for the family p1(M(ℓ)

σ )ℓ≥1 in (3.10) this property is trivially
satisfied.

4. Discontinuous Galerkin Discretization

In this section we present the hp-dG discretizations of (1.1)–(1.2) for which we shall prove
exponential convergence. In addition, we shall adapt the stability and approximation results
from [10, Section 4] to mixed boundary conditions. Throughout, M ∈ Mσ denotes a generic
σ-geometric mesh.

4.1. Trace operators and trace discretization parameters. We shall first recall the jump
and average operators over faces; cp. [10, 11]. For this purpose, consider an interior face f ∈ FI(M)
shared by two elements K♯,K♭ ∈ M. Furthermore, let v respectively w be a scalar respectively
vector-valued function that is sufficiently smooth inside the elements K♯,K♭. Then we define the
following jumps and averages of v and w along f :

[[v]] = v|K♯nK♯ + v|K♭nK♭ 〈〈v〉〉 = 1/2 (v|K♯ + v|K♭)

[[w]] = w|K♯ · nK♯ +w|K♭ · nK♭ 〈〈w〉〉 = 1/2 (w|K♯ +w|K♭) .

Here, for an element K ∈ M, we denote by nK the outward unit normal vector on ∂K. For a
Dirichlet boundary face f ∈ FD(M) belonging to K ∈ M, we let [[v]] = v|KnΩ, [[w]] = w|K · nΩ,
and 〈〈v〉〉 = v|K , 〈〈w〉〉 = w|K , where nΩ is the outward unit normal vector on ∂Ω.

Moreover, we define the trace discretization parameters h, p ∈ L∞(FI(M) ∪ FD(M)) by

hf := h|f := min
{
h⊥
K♯,f , h

⊥
K♭,f

}
, pf := p|f := max

{
p⊥K♯,f , p

⊥
K♭,f

}
, (4.1)

for any interior face f ∈ FI(M) shared by ∂K♯ and ∂K♭. For a Dirichlet boundary face f ∈
FD(M) shared by ∂K and Γι, ι ∈ JD, we set accordingly hf := h|f = h⊥

K,f , pf := p|f = p⊥K,f .
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4.2. hp-IP dGFEM. The problem (1.1)–(1.3) will be discretized using an interior penalty (IP)
discontinuous Galerkin finite element method. Let V (M,Φ,p) be an hp-dG finite element space
on a σ-geometric mesh M ∈ Mσ, with a degree vector p(M). For a fixed parameter θ ∈ R, we
define the hp-discontinuous Galerkin solution uDG by

uDG ∈ V (M,Φ,p) : aDG(uDG, v) =

∫

Ω

fv dx ∀ v ∈ V (M,Φ,p), (4.2)

where the bilinear form aDG(u, v) is given by

aDG(u, v) :=

∫

Ω

∇hu · ∇hv dx−
∫

FI(M)∪FD(M)

〈〈∇hw〉〉 · [[v]] ds

+ θ

∫

FI(M)∪FD(M)

〈〈∇hv〉〉 · [[w]] ds+ γ

∫

FI(M)∪FD(M)

j [[v]] · [[w]] ds.

Here, ∇h is the elementwise gradient operator, and γ > 0 is a stabilization parameter that will be
chosen sufficiently large. Furthermore, j is facewise defined as

j |f = p2fh
−1
f , f ∈ FI(M) ∩ FD(M). (4.3)

Finally, the parameter θ allows us to describe a whole range of interior penalty methods: for
θ = −1 we obtain the standard symmetric interior penalty (SIP) method while for θ = 1 the
non-symmetric (NIP) version is obtained; cp. [1] and the references therein.

To address the well-posedness of the hp-dGFEM, we use the standard dG norm defined by

|||v|||2DG =

∫

Ω

|∇hv|2 dx+ γ

∫

FI(M)∪FD(M)

j |[[v]]|2 ds, (4.4)

for any v ∈ V (M,Φ,p) +H1(Ω). In the pure Neumann case (FD(M) = ∅), ||| · |||DG is a norm on
the subspace (V (M,Φ,p) +H1(Ω))/R.

4.3. Galerkin orthogonality and stability properties. In order to show the well-posedness
of the dG formulation (4.2), we recall first the anisotropic trace inequality from [10, Lemma 4.2]:

Lemma 4.1. Let M ∈ Mσ, 0 < σ < 1, K ∈ M, f ∈ FK . For 1 ≤ q < ∞ there exists Cq > 0
such that for any v ∈ W 1,q(K) holds

‖v‖qLq(f) ≤ Cq

(
h⊥
K,f

)−1
(
‖v‖qLq(K) +

(
h⊥
K,f

)q ‖∂K,f,⊥v‖qLq(K)

)
. (4.5)

The constant Cq > 0 is independent of the element size and of the element aspect ratio, and ∂K,f,⊥

signifies the partial derivative with respect to the (local coordinate) direction transversal to f ∈ FK .

Secondly, the following Galerkin orthogonality is crucial in the subsequent dG error analysis.

Proposition 4.2. Suppose that the solution u of (1.1)–(1.3) belongs to N2
−1−b(Ω; C, ED), where b

is the weight vector from (2.15). Then, the dG approximation uDG ∈ V (M,Φ,p) from (4.2)
satisfies aDG(u− uDG, v) = 0 for any v ∈ V (M,Φ,p).

Proof. The proof is similar to the one of [10, Theorem 4.9], and follows from the fact that the
solution u satisfies aDG(u, v) =

∫
Ω
fv dx, for any v ∈ V (M,Φ,p). To prove this identity, we first

note that, for any u ∈ N2
−1−β(Ω; C, ED) and v ∈ V (M,Φ,p), there holds the Green’s formula

∫

K

v∆u dx =

∫

K

∇u · ∇v dx−
∫

∂K

(∇u · nK)v ds, ∀K ∈ M, (4.6)

where in the case ∂K∩∂Ω 6= ∅, the boundary term has to be understood as a pairing in L1(∂K)×
L∞(∂K). The formula (4.6) is proved along the lines of [10, Lemma 4.8] with the aid of Lemma 4.1
with q = 1. Employing (4.6), the term

∫
Ω
A∇u · ∇hv dx can be integrated by parts on each

element, thereby revealing that −
∫
Ω
v∆u dx =

∫
Ω
fv dx. Here, the remaining boundary and

inter-element flux terms vanish since [[u]]|f = 0 along all f ∈ FD(M)∪FI(M), and that [[∇u]]|f = 0
on all interior faces f ∈ FI(M). The proof of the latter identity is similar to the proof of [10,
Lemma 4.7]. �
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Finally, the following proposition results from minor modifications of the proofs of the corre-
sponding stability results presented in [10, Theorem 4.4].

Proposition 4.3. For any σ-geometric mesh M and degree vector p(M), the bilinear form aDG

is continuous and coercive on V (M,Φ,p): there exist constants 0 < C2 ≤ C1 < ∞ independent
of the refinement level ℓ, the local mesh sizes and the local polynomial degree vectors such that
|aDG(v, w)| ≤ C1|||v|||DG|||w|||DG for all v, w ∈ V (M,Φ,p), and such that, for γ > 0 sufficiently
large independent of the refinement level ℓ, the local mesh sizes and the local polynomial degree
vectors we have aDG(v, v) ≥ C2|||v|||2DG for all v ∈ V (M,Φ,p). In particular, there exists a unique
solution uDG of (4.2) (unique up to constants in the pure Neumann case).

5. Error analysis and exponential convergence

We begin the error analysis by choosing the approximation operators for elements Oℓ
σ and Tℓ

σ,
respectively, and by establishing some of their properties. Then we derive generic errror estimates
along the lines of those presented in [11]. Finally, we state our main result: an exponential
convergence bound in the dG-norm ||| · |||DG for solutions u ∈ B−1−b(Ω; C, ED) as in Proposition 2.3.

5.1. The elemental approximation operators. Let u be the solution of (1.1)–(1.3). In this
section, we specify a polynomial approximation operator Πu ∈ V (M,Φ,p). Since functions in
V (M,Φ,p) are discontinuous, we choose Πu elementwise as (Πu)|K = ΠKu|K for any K ∈ M.

5.1.1. L2-projection in one dimension. For a generic, bounded interval I = (a, b), we write πp

for the L2-projection into the space Pp(I) of degree at most p ≥ 0 on I (for simplicity we do
not explicitly indicate the dependence of πp on I; this dependence will always be clear from the
context). For the purpose of scaling arguments, we further denote by π̂p the L2-projection on the

reference interval Î = (−1, 1). The following (p-dependent) stability properties with respect to
Sobolev semi-norms will play a crucial role in our analysis.

Lemma 5.1. Let I = (a, b) be an interval of size h = b − a, p ≥ 0, and v ∈ Hj(I) for j ∈ N0.
Then, for every p ≥ j, there holds the bound

‖(πpu)
(j)‖L2(I) ≤ Cp2j‖u(j)‖L2(I) , (5.1)

where C > 0 is a constant depending only on j.

Proof. The L2-stability of πp on I, that is the case j = 0, is clear and the inequality holds with
constant C = 1. Next, consider the case j ≥ 1. Upon scaling it is sufficient to consider the

interval Î = (−1, 1). For p ≥ j, it holds that (π̂p(u))
(j) ∈ Pp−j(Î), and, for the L2-projections

π̂j−1(u) ∈ Pj−1(Î), j = 1, 2, . . ., we have that

‖(π̂p(u))
(j)‖L2(Î) = ‖(π̂p(u)− π̂j−1(u))

(j)‖L2(Î) = ‖(π̂p(u− π̂j−1(u)))
(j)‖L2(Î) .

Hence, applying the inverse inequality from [12, Theorem 3.91], yields

‖(π̂p(u))
(j)‖L2(Î) ≤ Cinv,jp

2j‖u− π̂j−1(u)‖L2(Î),

and employing a Poincaré-type inequality in Hj(Î)/Pj−1(Î), results in

‖(π̂p(u))
(j)‖L2(Î) ≤ Cinv,jp

2jCPoinc,j‖u(j)‖L2(Î) .

This is the desired estimate. �

5.1.2. Approximation on K ∈ Oℓ
σ. For an interior element K ∈ Oℓ

σ, we now construct the tensor-
product L2-projection ΠpK

u as follows. In the setting of (3.2), we write K = K⊥ ×K‖, and let

pK = (p⊥K , p
‖
K). Then we define

ΠpK
u|K :=

(
Π̂pK

(u ◦ ΦK)
)
◦ Φ−1

K

=

(
π̂
(1)

p⊥
K

⊗ π̂
(2)

p⊥
K

⊗ π̂
(3)

p
‖
K

)
(u ◦ ΦK) ◦ Φ−1

K ∈ Qp⊥
K
(K⊥)⊗Q

p
‖
K

(K‖),
(5.2)

where the one-dimensional L2-projections act in directions x1, x2, and x3, respectively.
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It will be further necessary to distinguish between the perpendicular and parallel projections.
To that end, we write

ΠpK
u = (Π⊥

p⊥
K
⊗Π

‖

p
‖
K

)u, K ∈ Oℓ
σ, (5.3)

where (Π⊥
p⊥
K
u)|K =

(
π̂
(1)

p⊥
K

⊗ π̂
(2)

p⊥
K

)
(u ◦ ΦK) ◦ Φ−1

K , and Π
‖

p
‖
K

u = π̂
(3)

p
‖
K

(u ◦ ΦK) ◦ Φ−1
K .

5.1.3. A low-order P1-approximation operator. We require the following P1-quasi-interpolation
operator considered in [5]. Let K ⊂ Rd be a bounded, convex polygonal (d = 2) or convex
polyhedral (d = 3) domain which is shape-regular, with diameter hK, and whose barycenter is

xK =
1

|K|

∫

K

x dx ∈ K, (5.4)

where |K| denotes the volume of K. Then, by definition of xK,∫

K

(x− xK) dx = 0 . (5.5)

Define the quasi-interpolation operator I1 : W 1,1(K) → P1(K) by

I1v := Π0v + (x− xK) ·Π0(∇v), (5.6)

where P1(K) denotes the polynomials of total degree at most 1 on K, and where Π0 and Π0 denote
element averages, i.e., the projections onto P0(K) and on P0(K)

d, d = 2, 3, respectively.

Lemma 5.2. For the quasi-interpolation operator I1 defined in (5.6), there holds:

(1) ∇(I1v) ≡ Π0(∇v) on K for all v ∈ W 1,1(K).
(2)

∫
K
(v − I1v) dx = 0 and

∫
K
∇(v − I1v) dx = 0 for all v ∈ W 1,1(K).

(3) For 1 ≤ q ≤ ∞, the quasi-interpolant I1 is W 1,q(K)-stable in the following sense:

∀v ∈ W 1,q(K) : ‖∇(I1v)‖Lq(K) ≤ ‖∇v‖Lq(K) . (5.7)

(4) For v ∈ H1(K) hold the approximation properties:

‖v − I1v‖L2(K) . hK‖∇v‖L2(K), ‖v − I1v‖L2(∂K) . h
1/2
K

‖∇v‖L2(K) . (5.8)

(5) If v ∈ H2(K), there holds

‖v − I1v‖L2(K) + hK‖∇(v − I1v)‖L2(K) . h2
K|v|H2(K) .

(6) Let d = 2, and c a corner of K, and denote r = r(x) = dist(x, c). If
∥∥rβD|α|v

∥∥
L2(K)

< ∞,

for any |α| = 2 and some 0 < β < 1, then, with an implied constant depending on the
shape-regularity of K, we have

‖v − I1v‖L2(K) + hK‖∇(v − I1v)‖L2(K) . h2−β
K

∑

|α|=2

‖rβDαv‖L2(K) . (5.9)

Proof. We prove this lemma item per item.

(1) The first item follows immediately from the definition of I1 in (5.6).
(2) Moreover, note that

v − I1v = (v −Π0v)− (x− xK) ·Π0(∇v) . (5.10)

Integrating this identity over K, the second item follows from property (5.5) and from∫
K
(v −Π0v) dx = 0.

(3) For 1 ≤ q < ∞, theW 1,q(K)-stability property results by noticing thatΠ0(∇v) is constant,
and from Hölder’s inequality:

‖∇(I1v)‖Lq(K) = ‖Π0(∇v)‖Lq(K) = |K|1/q
∣∣∣∣
1

|K|

∫

K

∇v dx

∣∣∣∣

≤ |K|1/q−1‖∇v‖Lq(K)‖1‖Lq/(q−1)(K) ≤ ‖∇v‖Lq(K) .

For q = ∞ the proof is similar.
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(4) To prove the L2(K)-bound in (5.8), we use (5.6) and (5.7):

‖v − I1v‖L2(K) ≤ ‖v −Π0v‖L2(K) + ‖Π0v − I1v‖L2(K)

= ‖v −Π0v‖L2(K) + ‖(x− xK) ·Π0(∇v)‖L2(K)

. ‖v −Π0v‖L2(K) + hK‖∇v‖L2(K) .

Furthermore, applying the Poincaré inequality on H1(K)/R, there holds ‖v−Π0v‖L2(K) .

hK‖∇v‖L2(K), and thus, the first assertion in (5.8) follows.
In order to prove the second assertion in (5.8), we apply the trace inequality from

Lemma 4.1 to the isotropic element K, with q = 2:

‖v − I1v‖L2(∂K) . h
−1/2
K

‖v − I1v‖L2(K) + h
1/2
K

‖∇(v − I1v)‖L2(K) .

Taking the gradient of (5.10), we find ∇(v−I1v) = ∇v−Π0(∇v). We apply the first asser-

tion of (5.8), the triangle inequality, and (5.7) to arrive at ‖v−I1v‖L2(∂K) . h
1/2
K

‖∇v‖L2(K).
(5) By item 2 we can employ the Poincaré inequality twice, together with scaling, to obtain

‖v − I1v‖L2(K) + hK‖∇(v − I1v)‖L2(K)

. hK‖∇(v − I1v)‖L2(K) . h2
K|v − I1v|H2(K) = h2

K|v|H2(K).

(6) In order to show (5.9), we proceed as in the proof of the previous item and note that

‖v − I1v‖L2(K) . hK‖∇(v − I1v)‖L2(K) .

Thus, it remains to bound ‖∇(v − I1v)‖L2(K). To this end, we apply the first item with
the Poincaré inequalities of [9, Proposition 27] or [13, Corollary A.2.11] to find that

‖∇(v − I1v)‖L2(K) = ‖∇v −Π0(∇v)‖L2(K) . h1−β
K

∑

|α|=2

∥∥∥rβD|α|v
∥∥∥
L2(K)

.

This completes the proof. �

5.1.4. Approximation on Tℓ
σ. Let e ∈ E and consider an element K = K⊥ × K‖ in Tℓ

e in (3.8).
Then we set

(Πu)|K = I⊥
1 ⊗Π

‖

p
‖
K

u|K , K ∈ Tℓ
e, (5.11)

where I⊥
1 is the two-dimensional P1-projector defined in (5.6) and applied in perpendicular direc-

tion to e with K = K⊥, and Π
‖

p
‖
K

is the L2-projection onto polynomials of degree p
‖
K in parallel

direction to e as in (5.3). Finally, for a corner element K ∈ Tℓ
c as in (3.7), we set

(Πu)|K := I1(u|K) (5.12)

5.1.5. Tensor-product structure of Π on Oℓ
σ and Tℓ

E . On elements K = K⊥ ×K‖ in Oℓ
σ and Tℓ

E ,
the approximation operator Πu chosen in (5.2), (5.3), and (5.11) has tensor-product structure. In
what follows, we shall now simply write

(Πu)K = ΠKu|K = Π⊥
K ⊗Π

‖
Ku|K = (Π⊥ ⊗Π‖u)|K , K ∈ Oℓ

σ ∪ Tℓ
E . (5.13)

Lemma 5.3. Let K ∈ Oℓ
σ ∪ Tℓ

E . Then Π in (5.13) satisfies:

(1) The operator Π
‖
K is the L2-projection in edge-parallel direction into polynomials in P

p
‖
K

(K‖),

and Π⊥
K is an approximation operator from H1(K⊥) into Qp⊥

K
(K⊥) (respectively Pp⊥

K
(K⊥)

in elements K in the terminal layers).
(2) The operator Π⊥

K reproduces polynomials in Qp⊥
K
(K⊥) (respectively Pp⊥

K
(K⊥) in elements

K in the terminal layers).
(3) The operator Π⊥

K satisfies the approximation property:

‖v −Π⊥
K⊥v‖2L2(∂K⊥) . hK⊥‖D⊥v‖2L2(K⊥), v ∈ H1(K⊥), (5.14)

Proof. The first two properties follow by construction. The trace approximation bound (5.14) is a
standard result for the two-dimensional L2-projection Π⊥

K = Π⊥
p⊥
K

in (5.3). For Π⊥
K = I⊥

1 in (5.11)

this follows from (5.8) in Lemma 5.2. �



14 D. SCHÖTZAU, C. SCHWAB, AND T. P. WIHLER

If now u is the solution of (1.1)–(1.3), and Π the tensor product projection introduced in (5.13),
we shall always denote by η the approximation error

η|K := u|K − (Πu)|K , K ∈ M. (5.15)

In accordance with (5.13), we also set

η⊥|K := u|K − (Π⊥u)|K , η‖|K := u|K − (Π‖u)|K , K ∈ Oℓ
σ ∪ Tℓ

E . (5.16)

For K ∈ Oℓ
σ ∪ Tℓ

E , we shall further split η|K into

η|K = (u|K − (Π‖u)|K) + Π
‖
K(u|K − (Π⊥u)|K) = η‖|K +Π

‖
Kη⊥|K . (5.17)

The stability of the L2-projection in (5.1), and the commutativity of the L2-projectors in perpen-
dicular and parallel direction yields

‖Dα⊥

⊥ D
α‖

‖ η‖2L2(K) . (p
‖
K)4α

‖
(
‖Dα⊥

⊥ D
α‖

‖ η‖‖2L2(K) + ‖Dα⊥

⊥ D
α‖

‖ η⊥‖2L2(K)

)
, (5.18)

for any α⊥ ∈ N2
0, and 0 ≤ α‖ ≤ 2, with “.” uniform in the aspect ratio of K.

5.2. An anisotropic jump estimate. The following bound is crucial for controlling the consis-
tency error in anisotropic elements in the terminal layers near Neumann edges.

Proposition 5.4. Consider an interior face f = (∂K1 ∩ ∂K2)
◦ that is parallel to the closest

edge e ∈ E, and which is shared by two axiparallel elements K1 = K⊥
1 ×K‖ and K2 = K⊥

2 ×K‖ of

possibly high aspect ratios (b‖−a‖)/h
K⊥

i
, where K‖ = (a‖, b‖), and h

‖
K = b‖−a‖ denotes the element

size in edge-parallel direction, and K⊥
1 and K⊥

2 are two neighboring (but possibly non-matching)
rectangles in edge-perpendicular direction such that the bounded variation property (3.12) holds.

Moreover, for u ∈ H1((K1∪K2)
◦), we let ΠKi

= Π⊥
Ki

⊗Π
‖
Ki

be a tensor-product quasi-interpolation

operator as in (5.13) satisfying properties (1)–(3) in Lemma 5.3 for i = 1, 2. Then for η, η⊥ and
η‖ as in (5.15), (5.16), there holds

h−1
f ‖[[η]]‖2L2(f) . ‖D⊥η

⊥‖2L2(K1)
+ ‖D⊥η

⊥‖2L2(K2)
. (5.19)

Proof. Since Π⊥
Ki

reproduces polynomials in perpendicular direction, we see that

η⊥ −Π⊥
Ki

η⊥ = (u−Π⊥
Ki

u)−Π⊥
Ki

(u−Π⊥
Ki

u) = u−Π⊥
Ki

u = η⊥,

on Ki, i = 1, 2. Since [[η]] = [[Πu]] and Π‖|K1
u|K1

= Π
‖
K2

u|K2
on f , we obtain

‖[[η]]‖2L2(f) =

∫

f

(
Π⊥

K1
⊗Π

‖
K1

u|K1
−Π⊥

K2
⊗Π

‖
K2

u|K2

)2
ds

=

∫

f

(
(Π⊥

K1
⊗Π

‖
K1

u|K1 −Π
‖
K1

u|K1
)− (Π⊥

K2
⊗Π

‖
K2

u|K2
−Π

‖
K2

u|K2
)
)2

ds

.

∫

f

(
Π

‖
K1

η⊥|K1

)2
ds+

∫

f

(
Π

‖
K2

η⊥|K2

)2
ds.

Applying (5.14) in perpendicular direction and the L2-stability of the L2-projection Π
‖
Ki

yields

‖[[η]]‖2L2(f) . hK⊥
1
‖Π‖

D⊥η
⊥‖2L2(K1)

+ hK⊥
2
‖Π‖

D⊥η
⊥‖2L2(K2)

. hK⊥
1
‖D⊥η

⊥‖2L2(K1)
+ hK⊥

2
‖D⊥η

⊥‖2L2(K2)
.

By the definition of hf , the bounded variation property (3.12) and the equivalence of hK1
≃ hK2

,
we remark that hf ≃ h⊥

K1,f
≃ h⊥

K2,f
≃ hK⊥

1
≃ hK⊥

2
, which implies (5.19). �
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5.3. Error estimates. To derive error estimates, we proceed in a standard way and split the
discretization error eDG = u− uDG into two parts η and ξ, eDG = η + ξ, with

η|K = (u−Πu)|K ξ|K = (Πu− uDG)|K , K ∈ M(ℓ)
σ . (5.20)

Here, Πu ∈ V (M,Φ,p) is a polynomial approximation operator as in Section 5.1.

In acccordance with the partition of M(ℓ)
σ in (3.3), (3.7), and (3.8), we define the error terms

ΥOℓ
σ
[η] :=

∑

K∈Oℓ
σ

TK
O [η], ΥTℓ

e,i
[η] :=

∑

K∈Tℓ
e

TK
e,i[η], ΥTℓ

c
[η] :=

∑

K∈Tℓ
c

TK
c [η], (5.21)

for i = 1, 2, where

TK
O [η] := (h

‖
K)−2‖η‖2L2(K) + ‖∇η‖2L2(K) + (h⊥

K)2‖D2
⊥η‖2L2(K) + (h

‖
K)2‖D2

‖η‖2L2(K), (5.22)

TK
e,1[η] := (h

‖
K)−2‖η‖2L2(K) + ‖∇η‖2L2(K) + (h

‖
K)2‖D2

‖η‖2L2(K), (5.23)

TK
e,2[η] := |K|−1(h⊥

K)2‖D2
⊥η‖2L1(K), (5.24)

TK
c [η] := h−2

K ‖η‖2L2(K) + ‖∇η‖2L2(K) + h−1
K |η|2W 2,1(K) . (5.25)

In addition, for a Dirichlet edge e ∈ ED, we set

ΥTℓ
e,D

[η] :=
∑

K∈Tℓ
e

TK
e,D[η], TK

e,D[η] = (h⊥
K)−2‖η‖2L2(K). (5.26)

By property (5.18) there holds:

ΥOℓ
σ
[η] . p8

max

(
ΥOℓ

σ
[η⊥] + ΥOℓ

σ
[η‖]
)
, ΥTℓ

e,1
[η] . p8

max

(
ΥTℓ

e,1
[η⊥] + ΥTℓ

e,1
[η‖]
)
,

ΥTℓ
e,D

[η] . ΥTℓ
e,D

[η⊥] + ΥTℓ
e,D

[η‖].
(5.27)

Theorem 5.5. Let u ∈ N2
−1−b(Ω, C, ED) be the solution of (1.1)–(1.3), and let uDG be the DG

approximation obtained from (4.2) with a sufficiently large penalty parameter γ > 0 in the dG
space V ℓ

σ in (3.10), respectively in V ℓ
σ,s in (3.11), for a σ-geometric axiparallel mesh M. Let

η = u − Πu with Π chosen in Section 5.1. Then for the approximation errors in (5.15), (5.16)
there holds the error bound

|||u− uDG|||2DG ≤ Cp12
max

(
ΥOℓ

σ
[η⊥] + ΥOℓ

σ
[η‖] +

∑

e∈E

(
ΥTℓ

e,1
[η⊥] + ΥTℓ

e,1
[η‖]
)

+
∑

e∈E

ΥTℓ
e,2

[η] +
∑

c∈C

ΥTℓ
c
[η] +

∑

e∈ED

(
ΥTℓ

e,D
[η⊥] + ΥTℓ

e,D
[η‖]
)
)
.

(5.28)

The constant C > 0 is independent of the refinement level ℓ, the local mesh sizes and the local
polynomial degree vectors.

Proof. Starting from (5.20), the Galerkin orthogonality in Proposition 4.2, implies that aDG(ξ, ξ) =
−aDG(η, ξ). Hence, by the coercivity of aDG in Proposition 4.3, we arrive at

|||ξ|||2DG . −aDG(η, ξ) =: T1 + T2, (5.29)

where

T1 =
∑

K∈M

∫

K

∇hη · ∇h ξ dx+ θ

∫

FI(M)∪FD(M)

〈〈∇hξ〉〉 · [[η]] ds+ γ

∫

FI(M)∪FD(M)

j [[η]] · [[ξ]] ds,

and

T2 = −
∫

FI(M)∪FD(M)

〈〈∇hη〉〉 · [[ξ]] ds .
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The first term is bounded using the Cauchy-Schwarz inequality:

|T1| . pmax

(
‖∇hη‖2L2(Ω) +

∥∥∥h−1/2[[η]]
∥∥∥
2

L2(FI(M)∪FD(M))

)1/2

×
(
‖∇hξ‖2L2(Ω) +

∥∥∥j−1/2〈〈∇hξ〉〉
∥∥∥
2

L2(FI(M)∪FD(M))
+
∥∥∥j 1/2[[ξ]]

∥∥∥
2

L2(FI(M)∪FD(M))

)1/2

.

Estimating the term involving 〈〈∇hξ〉〉 as in the proof of [10, Theorem 4.10], with the aid of [10,
Lemma 4.3a)], we obtain

|T1| . pmax

(
‖∇hη‖2L2(Ω) +

∥∥∥h−1/2[[η]]
∥∥∥
2

L2(FI(M)∪FD(M))

)1/2

|||ξ|||DG . (5.30)

Next, we bound T2: There holds

|T2| =
∑

f∈FI(M)∪FD(M)

∫

f

|〈〈∇hη〉〉 · nf ||[[ξ]]| ds

.
∑

f∈FI(M)∪FD(M)

‖j−1/2〈〈∇hη〉〉 · nf‖L1(f)‖j 1/2[[ξ]]‖L∞(f),

where nf is an orthonormal vector on f pointing in a preset direction. Therefore, using [10,
Lemma 4.3b)], it follows that

|T2| . p2
max

∑

f∈FI(M)∪FD(M)

|f |−1/2‖j−1/2〈〈∇hη〉〉 · nf‖L1(f)‖j 1/2[[ξ]]‖L2(f)

. p2
max|||ξ|||DG


 ∑

f∈FI(M)∪FD(M)

|f |−1‖j−1/2〈〈∇hη〉〉 · nf‖2L1(f)




1/2

. p2
max|||ξ|||DG


 ∑

K∈M

∑

f∈(FI(M)∪FD(M))∩FK

|f |−1h⊥
K,f‖∇hη · nK‖2L1(f)




1/2

.

Since |∇η · nK | = |∂K,f,⊥η| on f ∈ FK , and |K| ≃ |f |h⊥
K,f , applying the anisotropic trace

inequality (4.5) with q = 1 yields

|T2| . p2
max|||ξ|||DG


 ∑

K∈M

∑

f∈(FI(M)∪FD(M))∩FK

|K|−1
(
‖∇η‖2L1(K) + (h⊥

K,f )
2‖∂2

K,f,⊥η‖2L1(K)

)



1/2

.

Using that ‖∇η‖L1(K) ≤ |K|1/2‖∇η‖L2(K) by Hölder’s inequality, we conclude that

|K|−1‖∇η‖2L1(K) ≤ ‖∇η‖2L2(K).

Since all elements K are axiparallel hexahedra, there are only two cases, f ‖ e and f ⊥ e, where
e is the edge nearest to f ∈ FK . In the former case, there holds (h⊥

K,f )
2‖∂2

K,f,⊥η‖2L1(K) =

(h⊥
K)2‖D2

⊥η‖2L1(K), and in the latter (h⊥
K,f )

2‖∂2
K,f,⊥η‖2L1(K) = (h

‖
K)2‖D2

‖η‖2L1(K). Therefore,

|T2| . p2
max|||ξ|||DG

( ∑

K∈M

(
‖∇η‖2L2(K) + |K|−1(h⊥

K)2‖D2
⊥η‖2L1(K) + |K|−1(h

‖
K)2‖D2

‖η‖2L1(K)

))1/2

.



hp-DGFEM FOR MIXED ELLIPITIC PROBLEMS IN 3D 17

Combining this estimate with (5.29) and (5.30), dividing the resulting inequality by |||ξ|||DG and
squaring results in

|||ξ|||2DG . p4
max


‖∇hη‖2L2(Ω) +

∑

f∈FI∪FD

h
−1
f ‖[[η]]‖2L2(f)

+
∑

K∈M

|K|−1
(
(h⊥

K)2‖D2
⊥η‖2L1(K) + (h

‖
K)2‖D2

‖η‖2L1(K)

))
.

Noticing that |||u− uDG|||2DG ≤ 2|||η|||2DG + 2|||ξ|||2DG, leads to

|||u− uDG|||2DG . p4
max


‖∇hη‖2L2(Ω) +

∑

f∈FI∪FD

h
−1
f ‖[[η]]‖2L2(f)

+
∑

K∈M

|K|−1
(
(h⊥

K)2‖D2
⊥η‖2L1(K) + (h

‖
K)2‖D2

‖η‖2L1(K)

))
.

(5.31)

It remains to bound the jump of η. To this end, we distinguish several cases:

• If f ⊥ e is an interior face perpendicular to the closest edge e ∈ E , shared by two elements

K1 and K2, with hf ≃ h⊥
K1,f

≃ h⊥
K2,f

≃ h
‖
K1

≃ h
‖
K2

, we use the trace estimate (4.5)
with q = 2 to obtain

h
−1
f ‖[[η]]‖2L2(f) .

2∑

i=1

(
h
‖
Ki

)−2‖η‖2L2(Ki)
+ ‖∇η‖2L2(Ki)

)
.

• For the jumps over interior anisotropic faces f‖e which are parallel to e ∈ E (and which are
shared by two neighboring elements K1 and K2), we apply the anisotropic jump estimate
in Proposition 5.4, and see that

h
−1
f ‖[[η]]‖2L2(f) . ‖D⊥η

⊥‖2L2(K1)
+ ‖D⊥η

⊥‖2L2(K2)

. ‖∇η⊥‖2L2(K1)
+ ‖∇η⊥‖2L2(K2)

.

• Finally, for jumps which abut at a Dirichlet boundary face, we apply the trace esti-
mate (4.5) with q = 2 to obtain, for any f ∈ FD(M) ∩ FK ,

h
−1
f ‖[[η]]‖2L2(f) ≃ (h⊥

K)−1‖η‖2L2(f) . (h⊥
K)−2‖η‖2L2(K) + ‖D⊥η‖2L2(K)

. (h⊥
K)−2‖η‖2L2(K) + ‖∇η‖2L2(K) .

Inserting these bounds into (5.31) results in

|||u− uDG|||2DG . p4
max

∑

K∈M

(
(h

‖
K)−2‖η‖2L2(K) + ‖∇η‖2L2(K)

+|K|−1(h⊥
K)2‖D2

⊥η‖2L1(K) + |K|−1(h
‖
K)2‖D2

‖η‖2L1(K)

)

+ p4
max

∑

K∈M\Tℓ
C

‖∇η⊥‖2L2(K) + p4
max

∑

e∈ED

ΥTℓ
e,D

[η] .

For K ∈ Oℓ
σ and for K ∈ Tℓ

e, e ∈ E , we estimate the L1(K)-norms of D2
⊥η and D

2
‖η (the latter

only for K ∈ Oℓ
σ) by their L2(K)-norms using Hölder’s inequality. Moreover, noting that elements

in Tℓ
C are isotropic with hK ≃ h⊥

K ≃ h
‖
K and |K| ≃ h3

K , yields

|||u− uDG|||2DG . p4
maxΥOℓ

σ
[η] + p4

max

∑

e∈E

(
ΥTℓ

e,1
[η] + ΥTℓ

e,2
[η]
)

+ p4
max

∑

c∈C

ΥTℓ
c
[η] + p4

max

∑

K∈M\Tℓ
C

‖∇η⊥‖2L2(K) + p4
max

∑

e∈ED

ΥTℓ
e,D

[η] .

Employing the splittings (5.27) and recalling that M = Oℓ
σ ∪ Tℓ

E ∪ Tℓ
C implies the assertion. �
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5.4. Exponential convergence. We are now ready to state the main result of this paper.

Theorem 5.6. Assume that the right-hand side f of the boundary-value problem (1.1)–(1.3) in the
axiparallel polyhedron Ω ⊂ R3 belongs to the analytic space B1−b(Ω; C, ED), with a weight vector b

satisfying (2.15) with 0 < bC , bE < 1 as in Remark 2.4. Then the solution u is in B−1−b(Ω; C, ED)
according to Proposition 2.3.

Furthermore, let Mσ = {M(ℓ)
σ }ℓ≥0 be a family of axiparallel σ-geometric meshes as introduced in

Section 3.1, and consider the hp-dG discretizations in (4.2) based on the sequences of approximat-

ing subspaces V ℓ
σ and V ℓ

σ,s defined in (3.10) respectively (3.11), with the vector p1(M(ℓ)
σ ) in (3.10)

of constant, isotropic and uniform polynomial degrees equal to ℓ for the space V ℓ
σ , respectively the

s-linear, anisotropic degree distribution p2(M(ℓ)
σ ) for V ℓ

σ,s. All polynomial degrees are assumed
greater than or equal to 3 in elements not abutting at edges e or corners c.

Then for each ℓ ≥ 0, the hp-dG approximation uDG is well-defined, and as ℓ → ∞, the approx-
imate solutions uDG satisfy the error estimate

|||u− uDG|||DG ≤ C exp
(
−b

5
√
N
)
, (5.32)

where N = dim(V (M(ℓ)
σ ,Φ(M(ℓ)

σ ),p(M(ℓ)
σ ))) denotes the number of degrees of freedom of the

discretization for any of the two spaces V ℓ
σ or V ℓ

σ,s.

The constants b > 0 and C > 0 are independent of N , but depend on σ, M0, θ, γ, min b > 0,

and on which of the polynomial degree vectors p1(M(ℓ)
σ ) or p2(M(ℓ)

σ ) are used.

Remark 5.7. In particular, the hp-dG interpolant constructed to prove Theorem 5.6 yields an
exponential approximation bound of the discretization error in the dG norm as in (5.32) for any
u ∈ B−1−b(Ω).

The remainder of the paper is devoted to the proof of Theorem 5.6. To this end, we will construct
appropriate hp-interpolants in Section 6 on interior, edge and corner elements. Furthermore, in
Section 7 we show that the individual terms on the right-hand side of (5.28) all converge at an
exponential rate. Finally, the proof of Theorem 5.6 will be completed in Section 7.6.

6. Approximation properties of L2-projections

In this section, we establish some approximation results for L2-projections as in (5.2), (5.3), for
elements K ∈ Oℓ

σ.

6.1. One-dimensional projectors and hp-approximation results. As in, e.g., [7, 9, 12], the
ensuing exponential convergence proofs are based on projectors π̂p onto polynomials of degree
p ≥ 1, with error bounds which are explicit in the polynomial degree and the regularity order s

on Î = (−1, 1).

Lemma 6.1. For any 3 ≤ s ≤ p and u ∈ Hs+1(Î), we have

‖u− π̂pu‖2H2(Î)
. p8Ψp−1,s−1‖u(s+1)‖2

L2(Î)
. (6.1)

Proof. From [4, Section 8], it follows that for every p ≥ 3 there exists a projector π̂p,2 : H2(Î) →
Pp(Î) that satisfies (π̂p,2u)

(2) = π̂p−2u
(2) and (π̂p,2)

(j)u(±1) = u(j)(±1) for j = 0, 1. The pro-

jector π̂p,2 is stable in H2(Î). Moreover, for any 3 ≤ s ≤ p and u ∈ Hs+1(Î), there holds the
approximation bound

‖u− π̂p,2u‖2H2(Î)
. Ψp−1,s−1‖u(s+1)‖2

L2(Î)
. (6.2)

By the triangle inequality, the fact that π̂p reproduces polynomials, and by the stability esti-
mate (5.1), we see that

‖u− π̂pu‖H2(Î) ≤ ‖u− π̂p,2u‖H2(Î) + ‖π̂p(u− π̂p,2u)‖H2(Î) . p4‖u− π̂p,2u‖H2(Î), (6.3)

Referring to (6.2) yields the assertion for any u ∈ Hs+1(Î). �
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In the remainder of this subsection, we establish exponential convergence results for a broken
hp-interpolant on geometric meshes which will be used later, but which are also of independent
interest. To that end, on ω = (0, 1), we consider a sequence {T ℓ

σ }∞ℓ=1 of geometric meshes T ℓ
σ =

{Kj}ℓ+1
j=1 with ℓ+1 elements which are geometrically graded towards the origin with grading factor

0 < σ < 1. The elements are given by K1 = (0, σℓ) and Kj = (σℓ+2−j , σℓ+1−j) for 2 ≤ j ≤ ℓ+ 1.
The size of element Kj is given by

hKj
= σℓ+1−j(1− σ), 2 ≤ j ≤ ℓ+ 1, (6.4)

which implies that there is a constant κ solely depending on σ such that

κ−1hKj ≤ |x| ≤ κhKj , x ∈ Kj , 2 ≤ j ≤ ℓ+ 1 . (6.5)

For a slope parameter s > 0, we define on T ℓ
σ a s-linear polynomial degree vector p of length

ℓ+1 given by p = (p1, ..., pℓ+1), with pj = max{3, ⌈sj⌉}, j = 1, 2, ..., ℓ+1, and set |p| = maxℓ+1
j=1 pj .

We then consider the one-dimensional hp-version discontinuous finite element space

Sp,0(ω; T ℓ
σ ) =

{
u ∈ L2(ω) : u|Kj

∈ Ppj (Kj), j = 1, 2, ..., ℓ+ 1
}
. (6.6)

Then, we denote by πp the L2-projection onto the space Sp,0(ω; T ℓ
σ ), defined on each element

Kj as (πp,0u)|Kj
= πpj ,0(u|Kj

), with the elemental L2-projection πpj
on Kj as introduced in

Section 5.1.1. For a function u : ω → R, we define the approximation error by η := u− πpu, and
introduce the local error norm:

Tj [η] := h−2
Kj

‖η‖2L2(Kj)
+ ‖η′‖2L2(Kj)

+ h2
Kj

‖η′′‖2L2(Kj)
. (6.7)

Proposition 6.2. For a weight β > 0, let u : ω → R be such that

‖|x|−1−β+su(s)‖L2(ω) ≤ Cs+1
u Γ(s+ 1), s ≥ 2. (6.8)

Then for ℓ sufficiently large, we have
∑ℓ+1

j=2 Tj [η] ≤ C exp(−2bℓ), with constants b, C > 0 which
are independent of ℓ.

Proof. Fix an element Kj ∈ T ℓ
σ for 2 ≤ j ≤ ℓ+ 1. A straightforward scaling argument yields

Tj [η] ≃
(
hKj

2

)−1

‖η̂‖2
H2(K̂)

,

where as usual we denote by η̂ the pullback of η|Kj to the reference interval Î = (−1, 1). Therefore
the approximation bound (6.1) implies that

Tj [η] . |p|8
(
hKj

2

)−1

Ψpj−1,sj−1‖û(sj+1)‖2
L2(K̂)

,

for any 3 ≤ sj ≤ pj . Scaling the right-hand side above back to element Kj results in

Tj [η] . |p|8
(
hKj

2

)2sj

Ψpj−1,sj−1‖u(sj+1)‖2L2(Kj)
. (6.9)

Moreover, by the equivalence (6.5),

‖u(sj+1)‖2L2(Kj)
≃ h

2+2β−2(sj+1)
Kj

‖|x|−1−β+(sj+1)u(sj+1)‖2L2(Kj)
. (6.10)

By combining (6.9), (6.10) with (6.8), we find that

Tj [η] . |p|8h2β
Kj

2−2sjΨpj−1,sj−1‖|x|−1−β+(sj+1)u(sj+1)‖2L2(Kj)

. |p|8h2β
Kj

(
Cu

2

)2sj

Ψpj−1,sj−1Γ(sj + 2)2 ,
(6.11)

for any integer index 3 ≤ sj ≤ pj . An interpolation argument as in [11, Lemma 5.8] shows that
the bound (6.11) holds for any real sj ∈ [3, pj ].
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Next, we sum the bound (6.11) over all layers 2 ≤ j ≤ ℓ+ 1. In view of (6.4), we obtain

ℓ+1∑

j=2

Tj [η] . |p|8



ℓ+1∑

j=2

σ2(ℓ+1−j)β min
sj∈[3,pj ]

[
C2sjΨpj−1,sj−1Γ(sj + 2)2

]

 .

In [11, Lemma 5.12], it has been shown that terms of the form as in the bracket on the right-hand
side above can be bounded by C exp(−2b(ℓ + 1)). By possibly increasing the constant C > 0
and by reducing the value of b, the algebraic factor |p|8 can be absorbed into the exponential
convergence bound. �

Similarly, we obtain the following result.

Proposition 6.3. For a weight exponent β > 0, let u : ω → R be such that there exists a constant
Cu > 0 with

‖|x|−β+su(s)‖L2(ω) ≤ Cs+2
u Γ(s+ 2) ∀ s ≥ 2 . (6.12)

Then there exist constants b, C > 0 such that, for every ℓ ≥ 2, we have
∑ℓ+1

j=2 ‖η‖2L2(Kj)
≤

C exp(−2bℓ), with constants b, C > 0 which are independent of ℓ.

Proof. Wemay assume that ℓ is sufficiently large. Fix an elementKj ∈ T ℓ
σ for 2 ≤ j ≤ ℓ+1. Scaling

gives ‖η‖2L2(Kj)
= hKj/2‖η̂‖2

L2(K̂)
. Then, the approximation bound (6.1), a scaling argument, the

equivalence (6.5), and the regularity assumption (6.12) yield, for 3 ≤ sj ≤ pj ,

‖η‖2L2(Kj)
. |p|8

(hKj

2

)
Ψpj−1,sj−1‖û(sj+1)‖2

L2(K̂)

. |p|8Ψpj−1,sj−1

(
hKj

2

)2sj+2

‖u(sj+1)‖2L2(Kj)

. |p|8Ψpj−1,sj−1

(
hKj

2

)2sj+2

h
2β−2sj−2
Kj

‖|x|−β+sj+1u(sj+1)‖2L2(Kj)

. |p|8Ψpj−1,sj−1

(Cu

2

)2sj
h2β
Kj

Γ(sj + 3)2 .

From here, the desired estimate follows as in the proof of Proposition 6.2. �

6.2. Approximation properties of L2-projection on axiparallel hexahedra. Now we pro-
vide approximation properties of the element-average projection (5.2), (5.3). In the setting (5.15),
(5.16), we first show the following estimate for η‖.

Lemma 6.4. Let K be an axiparallel hexahedron. For 0 ≤ |α⊥|, 0 ≤ α‖ ≤ 2, and 3 ≤ s
‖
K ≤ p

‖
K ,

there holds

‖D̂α⊥

⊥ D̂
α‖

‖ η̂‖‖2
L2(K̂)

. (p
‖
K)8 Ψ

p
‖
K−1,s

‖
K−1

(h⊥
K)2|α

⊥|−2(h
‖
K)2s

‖
K+1‖Dα⊥

⊥ D
s
‖
K+1

‖ u‖2L2(K). (6.13)

Proof. Note that D̂
α⊥

⊥ D̂
α‖

‖ η̂‖ = D̂
α‖

‖

(
(D̂α⊥

⊥ û)− Π̂
‖

p
‖
K

(D̂α⊥

⊥ û)

)
. Applying Lemma 6.1 in edge-

parallel direction, we obtain ‖D̂α⊥

⊥ D̂
α‖

‖ η̂‖‖2
L2(K̂)

. (p
‖
K)4Ψ

p
‖
K−1,s

‖
K−1

‖D̂α⊥

⊥ D̂
s
‖
K+1

‖ û‖2
L2(K̂)

. A scaling

argument as in [11, Section 5.1.4] implies the bound (6.13). �

Second, we derive the following bound for η⊥. To that end, we introduce the tensor-product

space H2
mix(K̂) := H2(Î)⊗H2(Î)⊗H2(Î), and endow it with the standard tensor-product norm.

Lemma 6.5. For an axiparallel element K and 3 ≤ s⊥K ≤ p⊥K , there holds

‖η̂⊥‖2
H2

mix(K̂)
. (p⊥K)16 E⊥

p⊥
K ,s⊥K

(K), (6.14)

with

E⊥
p⊥
K ,s⊥K

(K) = Ψp⊥
K−1,s⊥K−1

∑

s⊥+1≤|α⊥|≤s⊥+3

0≤α‖≤2

(h⊥
K)2|α

⊥|−2(h
‖
K)2α

‖−1‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K). (6.15)
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Proof. In view of (5.2), (5.3), we may write

η̂⊥ = û− π̂
(1)

p⊥
K

⊗ π̂
(2)

p⊥
K

û = (û− π̂
(1)

p⊥
K

û) + π̂
(1)

p⊥
K

(
û− π̂

(2)

p⊥
K

û
)

.

Hence, by the triangle inequality and the stability properties in (5.1), we readily find that

‖η̂⊥‖2
H2

mix(K̂)
. (p⊥K)8

(
2∑

i=1

‖û− π̂
(i)

p⊥
K

û‖2
H2

mix(K̂)

)
.

Lemma 6.1 (used in directions x1 and x2) now implies

‖η̂⊥‖2
H2

mix(K̂)

. (p⊥K)16Ψp⊥
K−1,s⊥K−1

( ∑

0≤α⊥
2 ,α‖≤2

‖D̂(s⊥K+1,α⊥
2 ,α‖)û‖2

L2(K̂)
+

∑

0≤α⊥
1 ,α‖≤2

‖D̂(α⊥
1 ,s⊥K+1,α‖)û‖2

L2(K̂)

)
.

This bound and a scaling argument as in [11, Section 5.1.4] yield the desired bound. �

Remark 6.6. It is worth pointing out that a tensor-product argument similar to that in the proof
of Lemma 6.5 (see also [11, Section 5.2.1]) applied to the tensor-product projector ΠpK

in (5.2)
implies the following bound: for any axiparallel element K and for η = u−ΠpK

u, there holds

‖η̂‖2
H2

mix(K̂)
. |pK |16

(
E

‖

p
‖
K ,s

‖
K

(K) + E⊥
p⊥
K ,s⊥K

(K)

)
, (6.16)

for any 3 ≤ s⊥K ≤ p⊥K and 3 ≤ s
‖
K ≤ p

‖
K , with

E
‖

p
‖
K ,s

‖
K

(K) = Ψ
p
‖
K−1,s

‖
K−1

∑

0≤α⊥
1 ,α⊥

2 ≤2

(h⊥
K)2|α

⊥|−2(h
‖
K)2s

‖
K+1‖Dα⊥

⊥ D
s
‖
K+1

‖ u‖2L2(K), (6.17)

and E⊥
p⊥
K ,s⊥K

(K) defined in (6.15). Up to the algebraic loss in |pK |, the estimate (6.16) is the same

as that in [11, Lemma 5.6] used in the analysis of the pure Dirichlet case. However, in the case of
a corner-edge patch involving a Neumann edge, we shall invoke the finer bound in Lemma 6.4.

7. Reference corner-edge patch

According to the construction of the hp-dG spaces provided in Section 3, the geometric edge

mesh Mℓ consists of a finite number of physical patches {Mℓ
j}J

ℓ

j=1. This makes it possible to

bound the right-hand side of (5.28) separately on eachMℓ
j by means of a suitable hp-approximation

analysis. In addition, noting that each patch Mℓ
j is equivalent (up to isotropic dilation, translation

and/or rotation) to one of the reference patches displayed in Figure 1, it is sufficient to limit the
proof of the exponential convergence bounds to the reference situations from Figure 1. Indeed,
due to the simple structure of the patch mappings, the weighted Sobolev space Nk

β(Mℓ
j ; C, ED), as

restricted to a physical patch Mℓ
j , can be identified with an equivalent space, which features the

same regularity and is equipped with equivalent norms, on one of the reference patches.

7.1. The setting. We consider a reference corner-edge patch in (0, 1)3 consisting of a single
corner c ∈ C and a single edge e ∈ Ec originating from it; see Figure 1 (right) for an illustration.

We may assume that c = (0, 0), and e = {0} × ω
‖
c with ω

‖
c = (0, 1).

Similarly to [11], we now introduce a reference geometric corner-edge mesh M̂ℓ
ce. As in [11],

M̂ℓ
ce is built from mesh layers via

M̂ℓ
ce =

ℓ+1⋃

j=1

j⋃

i=1

L̂ij
ce, (7.1)

where the sets L̂ij
ce stand for layers of elements with identical scaling properties. The decomposition

in (7.1) is not a partition, in general: elements may be contained in several layers whose number,
however, is uniformly bounded with respect to ℓ.
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In (7.1), the index j indicates the number of the geometric mesh layers in edge-parallel direction

along the edge ω
‖
c , whereas the index i indicates the number of mesh layers in direction perpen-

dicular to ω
‖
c . In agreement with (3.3), (3.7), (3.8), we split M̂ℓ

ce into interior elements away from
c and e, boundary layer elements along e (but away from c), and the corner element by setting

M̂ℓ
ce = Ôℓ

ce

.∪ T̂ℓ
e

.∪ T̂ℓ
c, (7.2)

where

Ôℓ
ce :=

ℓ+1⋃

j=2

j⋃

i=2

L̂ij
ce, T̂ℓ

e :=
ℓ+1⋃

j=2

L̂1j
ce, T̂ℓ

c := L̂11
ce. (7.3)

In particular, an interior element K ∈ Ôℓ
ce belongs to L̂ij

ce if it satisfies

re|K ≃ deK ≃ h⊥
K ≃ σℓ+1−i, rc|K ≃ dcK ≃ h

‖
K ≃ σℓ+1−j , 2 ≤ i ≤ j ≤ ℓ+ 1 . (7.4)

Moreover, the terminal layers L̂1j
ce at e ∈ E consist of elements K ∈ Tℓ

e with

re|K ≃ deK . h⊥
K ≃ σℓ, rc|K ≃ dcK ≃ h

‖
K ≃ σℓ+1−j , 2 ≤ j ≤ ℓ+ 1, (7.5)

Finally, any element in the layer T̂ℓ
c = L̂11

ce is isotropic with

re|K ≃ deK . hK ≃ σℓ, rc|K ≃ dcK . hK ≃ σℓ . (7.6)

The cardinality of the layers Lij
ce depends on the implied equivalence constants in (7.4)–(7.6).

We emphasize that the ensuing analysis is valid for any choice of these constants (independent
of i, j, ℓ). For the reference patch as shown in Figure 1 (right) the sets Lij

ce are in fact singletons,
and any K ∈ L1j

ce can be written in the form

Kj = K⊥ ×K
‖
j , 2 ≤ j ≤ ℓ+ 1, (7.7)

where K⊥ = (0, σℓ)2, and the sequence {K‖
j }ℓ+1

j=2 forms a one-dimensional geometric mesh T ℓ
σ

along the edge ω
‖
c = (0, 1) as in Section 6.1; moreover, there is a single corner element K ∈ Tℓ

c

that is given by K = (0, σℓ)3.
In agreement with the hp-extensions (Ex1)–(Ex4) in [10], we consider s-linear polynomial degree

distributions on M̂ℓ
ce that satisfy

∀K ∈ L̂ij
ce : pK = (p⊥i , p

‖
j ) ≃ (max{⌈si⌉, 3},max{⌈sj⌉, 3}), 1 ≤ i ≤ j ≤ ℓ+ 1 . (7.8)

We note that our hp-approximation analysis below allows for maxpK < 3 in corner elements K ∈
Tℓ
C .

Let now Ω̂ℓ
ce denote the domain formed by all elements in M̂ℓ

ce:

Ω̂ℓ
ce =

( ⋃

K∈M̂ℓ
ce

K
)◦

. (7.9)

Analogous to the reference corner-edge patch Ω̂ℓ
ce, corresponding to the rightmost display in Fig. 1,

we introduce the reference corner patch Ω̂ℓ
c and the reference edge patch Ω̂ℓ

e, which correspond to
the leftmost and the middle panel, respectively, in Fig. 1. For the purpose of deriving the ensuing
exponential convergence estimates it is important that the corresponding geometric mesh patches

can be characterized as collections of certain elements K ∈ M̂ℓ
ce: for ℓ ≥ 2, we define with L̂ij

ce as
in (7.1)

∀c ∈ C : M̂ℓ
c = Ôℓ

c ∪ T̂ℓ
c Ôℓ

c :=

ℓ+1⋃

j=2

L̂jj
ce , T̂ℓ

c := L̂11
ce , (7.10)

∀e ∈ E : M̂ℓ
e = Ôℓ

e ∪ T̂ℓ
e Ôℓ

e :=

ℓ+1⋃

i=2

L̂i,ℓ+1
ce , T̂ℓ

e := L̂1,ℓ+1
ce . (7.11)

We establish exponential convergence of the hp-dGFEM by proving exponential convergence es-
timates for the consistency bound (5.28) for each of the three canonical geometric mesh patches
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shown in Fig. 1. We remark that we abuse notation slightly in that the definition of T̂ℓ
c and T̂ℓ

e

in (7.10) and (7.11) differs from (7.3); it will be clear from the case discussed which definition is
applicable. Due to (7.10) and (7.11), the required exponential convergence bounds for each of the
three basic geometric mesh patches depicted in Fig. 1 will follow from consistency error estimates

in patch Ω̂ℓ
ce which we therefore now consider next.

For a function u : Ω̂ℓ
ce → R (whose regularity will be specified below) and for K ∈ M̂ℓ

ce, we
define the elemental approximation operators (Πu)K = ΠKu|K in accordance with the choices

in Section 5.1. That is, for interior elements K ∈ L̂ij
ce we select ΠK to be the L2-projection as

in (5.2), (5.3), with the elemental polynomial degrees taken as p⊥K = p⊥i , p
⊥
K = p

‖
j ; cp. (7.8). For

Kj ∈ Tℓ
e of the form (7.7), we select ΠKj

as in (5.11) with p
‖
Kj

= p
‖
j . Finally, for the corner element

K ∈ Tℓ
c, we select ΠK in agreement with (5.12). For functions u : Ω̂ℓ

c → R and u : Ω̂ℓ
e → R, we

will obtain exponential convergence estimates as direct consequences from the elementwise bounds

established in the analysis on Ω̂ℓ
ce → R.

For the dG approximation errors η, η⊥, η‖ as in (5.15), (5.16), and in view of the error estimates
in Theorem 5.5, we will now bound the contributions Υ

Ôℓ
ce
, Υ

T̂ℓ
e,1

, Υ
T̂ℓ

e,2
, and Υ

T̂ℓ
c
, where these

terms are defined exactly as in (5.21)–(5.25). If e is a Dirichlet edge, we shall also estimate Υ
T̂ℓ

e,D

given as in (5.26).

7.2. Exponential Convergence at Neumann edges. We shall first consider the case where
e ∈ Ec is a Neumann edge, i.e., e ∈ EN . By the regularity property (2.16), the definition of the
weighted seminorm (2.11) in the neighbourhood of Neumann edges, and for exponents bc, be ∈
(0, 1) as in (2.15) and Remark 2.4, the solution u localized in Ω̂ℓ

ce has finite corner-edge seminorm

(obtained by localization of (2.11) to Ω̂ℓ
ce)

|u|2N̂k
−1−b

(Ω̂ℓ
ce)

=
∑

|α|=k

∥∥∥r−1−bc+|α|
c ρmax{−1−be+|α⊥|,0}

ce D
αu
∥∥∥
2

L2(Ω̂ℓ
ce)

, k > kβ, (7.12)

with kβ in (2.12). Under the assumptions on the weights bc, be in Remark 2.4, we note that, for

α‖ ≥ 0, the seminorms on the right-hand side of (7.12) take the following forms:




‖r−1−bc+α‖

c D
α‖

‖ u‖2
L2(Ω̂ℓ

ce)
|α⊥| = 0,

‖r−bc+α‖

c D⊥D
α‖

‖ u‖2
L2(Ω̂ℓ

ce)
|α⊥| = 1,

∑
|α⊥|=k ‖rbe−bc+α‖

c r
−1−be+|α⊥|
e D

α⊥

⊥ D
α‖

‖ u‖2
L2(Ω̂ℓ

ce)
k = |α⊥| ≥ 2 .

(7.13)

The corresponding norms ‖ ◦ ‖N̂m
−1−b

(Ω̂ℓ
ce)

and the weighted spaces N̂m
−1−b(Ω̂

ℓ
ce) are then defined

as in Section 2.2, for m > kβ. For elements K ∈ Ω̂ℓ
ce we denote by | · |N̂k

−1−b
(K) the restriction of

the norm in (7.12) to K, and similarly for the full norm. We say a function u ∈ H1(Ω̂ℓ
ce) belongs

to B−1−b(Ω̂
ℓ
ce) if u ∈ N̂k

−1−b(Ω̂
ℓ
ce) for k > kβ and there is a constant du > 0 such that

‖u‖N̂k
−1−b

(Ω̂ℓ
ce)

≤ dk+1
u k! , k > kβ . (7.14)

In the corner patch Ω̂ℓ
c and the reference edge patch Ω̂ℓ

e defined in (7.10) and (7.11), respectively,
expressions analogous (but simpler) to (7.12) for the respective seminorms result: since ρce|Ω̂ℓ

c
=

O(1),

|u|2N̂k
−1−b

(Ω̂ℓ
c)

=
∑

|α|=k

∥∥∥r−1−bc+|α|
c D

αu
∥∥∥
2

L2(Ω̂ℓ
c)

(7.15)

(note that in Ω̂ℓ
c the weights are homogeneous as in the Dirichlet case considered in [11]), and in

the reference Neumann edge-patch Ω̂ℓ
e, we have

|u|2N̂k
−1−b

(Ω̂ℓ
e)

=
∑

|α|=k

∥∥∥rmax{−1−be+|α⊥|,0}
e D

αu
∥∥∥
2

L2(Ω̂ℓ
e)
, (7.16)
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for k > kβ.

7.3. Exponential Convergence in Ôℓ
ce, Ôℓ

e and T̂ℓ
e. For Neumann edges e ∈ EN we obtain

exponential convergence of all contributions from Ôℓ
ce in the dGFEM consistency error bound

(5.28) by an analysis of the corresponding terms in one reference corner-edge patch Ω̂ℓ
ce. The

general result will then follow upon noting that Ôℓ
ce is obtained by a finite superposition of

(scaled and translated versions of) this reference corner-edge patch.

Theorem 7.1. Let e ∈ EN be a Neumann edge. Let u ∈ B−1−b(Ω̂
ℓ
ce) as in (7.12), (7.14), and let

ΠK denote the elemental approximation operators chosen as in Section 5.1. Then for η, η⊥, η| as
in (5.15), (5.16), there exist constants b, C > 0 such that, for ℓ sufficiently large, there holds the
exponential convergence estimate

Υ
Ôℓ

ce
[η⊥] + Υ

Ôℓ
ce
[η‖] + Υ

T̂ℓ
e,1

[η⊥] + Υ
T̂ℓ

e,1
[η‖] + Υ

T̂ℓ
e,2

[η] ≤ C exp(−2bℓ) . (7.17)

Analogous exponential convergence bounds hold for the consistency terms from Ôℓ
c, Ô

ℓ
e.

The proof of the exponential convergence bound (7.17) in Theorem 7.1 will be presented in

several steps. The proofs for the bounds on the terms Ôℓ
c, Ô

ℓ
e are analogous (by choosing h

‖
K =

O(1) in the proofs which follow) and will not be detailed.

7.3.1. Exponential convergence of Υ
Ôℓ

ce
. For e ∈ EN and for u ∈ B−1−b(Ω̂

ℓ
ce), we prove expo-

nential convergence of Υ
Ôℓ

ce
[η⊥] and Υ

Ôℓ
ce
[η‖] in (7.17). We begin by recording scalings to the

reference cube K̂ = (−1, 1)3 of the terms contained in TK
O
[v] in (5.22).

Lemma 7.2. For K ∈ Ôℓ
ce and for v ∈ H2(K), there holds:

(h
‖
K)−2‖v‖2L2(K)+‖D‖v‖2L2(K)+(h

‖
K)2‖D2

‖v‖2L2(K) . (h⊥
K)2(h

‖
K)−1

( ∑

0≤α‖≤2

‖D̂α‖

‖ v̂‖2
L2(K̂)

)
, (7.18)

as well as
(h⊥

K)2(|α
⊥|−1)‖Dα⊥

⊥ v‖2L2(K) . h
‖
K‖D̂α⊥

⊥ v̂‖2
L2(K̂)

, |α⊥| = 1, 2 . (7.19)

Proof. These inequalities are an immediate consequence of the scalings in [11, Section 5.1.4]. �

Next, we bound the error term Υ
Ôℓ

ce
[η⊥] in direction perpendicular to edge e.

Proposition 7.3. Let u ∈ B−1−b(Ω̂
ℓ
ce) as in (7.12), (7.14). Then there exist constants b, C > 0

such that for ℓ ≥ 2 holds Υ
Ôℓ

ce
[η⊥] ≤ C exp(−2bℓ).

Proof. According to (7.3), we consider K ∈ L̂ij
ce with 2 ≤ j ≤ ℓ + 1 and 2 ≤ i ≤ j. The scalings

in (7.18), (7.19) and the fact that in Ω̂ℓ
ce holds h⊥

K . h
‖
K allow us to conclude that

TK
O [η⊥] .

(
(h⊥

K)2(h
‖
K)−1 + h

‖
K

)
‖η̂⊥‖2

H2
mix(K̂)

= h
‖
K

(
1 + (h⊥

K)2(h
‖
K)−2

)
‖η̂⊥‖2

H2
mix(K̂)

. h
‖
K‖η̂⊥‖2

H2
mix(K̂)

.

With Lemma 6.5 and (7.8), we obtain

TK
O [η⊥] . |pK |16 h‖

KΨp⊥
i −1,s⊥i −1

∑

s⊥+1≤|α⊥|≤s⊥+3

0≤α‖≤2

(h⊥
K)2|α

⊥|−2(h
‖
K)2α

‖−1‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K).

Since K ∈ L̂ij
ce with 2 ≤ j ≤ ℓ+ 1 and 2 ≤ i ≤ j, there hold the equivalences (7.5) on K, and we

may insert the appropriate weights according to (7.13) to obtain

‖Dα⊥

⊥ D
α‖

‖ u‖2L2(K) ≃ (dcK)2bc−2be−2α‖

(deK)2+2be−2|α⊥|‖rbe−bc+α‖

c r−1−be+|α⊥|
e D

α⊥

⊥ D
α‖

‖ u‖2L2(K) .

Then we invoke this equivalence and the analytic regularity (7.14) to obtain that there exists a
constant C > 0 such that for all pK , p⊥i and s⊥i holds

TK
O [η⊥] . |pK |16 Ψp⊥

i −1,s⊥i −1(d
c
K)2bc−2be(deK)2beC2s⊥i Γ(s⊥i + 6)2 . (7.20)
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Summing (7.20) over all layers in Ôℓ
ce in (7.3) with the use of (7.5) results in

Υ
Ôℓ

ce
[η⊥] . p16

max

ℓ+1∑

j=2

σ2(bc−be)(ℓ+1−j)

j∑

i=2

σ2be(ℓ+1−i)Ψp⊥
i −1,s⊥i −1C

2s⊥i Γ(s⊥i + 6)2 .

By interpolating to real parameters s⊥i ∈ [3, p⊥i ] as in [11, Lemma 5.8], this sum is of exactly
the same form as S⊥ in the proof of [11, Proposition 5.17], and the assertion now follows from
the arguments there and after possibly adjusting the constants to absorb the algebraic loss in
pmax. �

To establish the analog of Proposition 7.3 in edge-parallel direction, we make use of the following
estimates.

Lemma 7.4. Let K ∈ Ôℓ
ce, and 3 ≤ s

‖
K ≤ p

‖
K . Then there holds

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) + (h
‖
K)2‖D2

‖η
‖‖2L2(K) . (p

‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(dcK)2bc |u|2
N

s
‖
K

+1

−1−b
(K)

,

(7.21)

‖D⊥η
‖‖2L2(K) . (p

‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(dcK)2bc |u|2
N

s
‖
K

+2

−1−b
(K)

,

(7.22)

as well as

(h⊥
K)2‖D2

⊥η
‖‖2L2(K) . (p

‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(deK)2be(dcK)2bc−2be |u|2
N

s
‖
K

+3

−1−b
(K)

. (7.23)

Proof. We prove (7.21) by bounding the right-hand side in (7.18) with the aid of the approximation
property (6.13) (with |α⊥| = 0):

(h
‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) + (h
‖
K)2‖D2

‖η
‖‖2L2(K)

. (h⊥
K)2(h

‖
K)−1

( ∑

0≤α‖≤2

‖D̂α‖

‖ η̂‖2
L2(K̂)

)
. (p

‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(h
‖
K)2s

‖
K‖Ds

‖
K+1

‖ u‖2L2(K) .

Then, we insert the weight rc by the use of (7.13), (7.4). We find that

‖Ds
‖
K+1u‖2L2(K) ≃ (dcK)2+2bc−2s

‖
K−2‖r−1−bc+s

‖
K+1

c D
s
‖
K+1

‖ u‖2L2(K) . (dcK)2bc−2s
‖
K |u|2

N
s
‖
K

+1

−1−b
(K)

.

Combining the two estimates above shows (7.21).
To establish (7.22), we start from the the right-hand side of (7.19), apply (6.13) (with |α⊥| = 1

and α‖ = 0), and insert the appropriate weights employing (7.4). This results in

‖D⊥η
‖‖2L2(K) . h

‖
K‖D̂⊥η̂

‖‖2
L2(K̂)

. (p
‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(h
‖
K)2s

‖
K+2‖D⊥D

s
‖
K+1

‖ u‖2L2(K)

. (p
‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(dcK)2s
‖
K+2(dcK)2bc−2s

‖
K−2‖r−bc+s

‖
K+1

c D⊥D
s
‖
K+1

‖ u‖2L2(K)

. (p
‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(dcK)2bc |u|2
N

s
‖
K

+2

−1−b
(K)

,

which yields (7.22).
For (7.23), we proceed along the same lines and apply (7.19), (6.13) (with |α⊥| = 2 and α‖ = 0),

and (7.4). We find that

(h⊥
K)2‖D2

⊥η
‖‖2L2(K) . h

‖
K‖D̂2

⊥η̂
‖‖2

L2(K̂)

. (p
‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(h⊥
K)2(h

‖
K)2s

‖
K+2‖D2

⊥D
s
‖
K+1

‖ u‖2L2(K)

. (p
‖
K)8Ψ

p
‖
K−1,s

‖
K−1

(deK)2be(dcK)2bc−2be‖rbe−bc+s
‖
K+1

c r1−be
e D

2
⊥D

s
‖
K+1

‖ u‖2L2(K),
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which finishes the proof. �

We are now ready to bound Υ
Ôℓ

ce
[η‖].

Proposition 7.5. Let u ∈ B−1−b(Ω̂
ℓ
ce) as in (7.12), (7.14). Then, there exist b, C > 0 such that,

for ℓ sufficiently large, there holds Υ
Ôℓ

ce
[η‖] ≤ C exp(−2bℓ).

Proof. In view of Lemma 7.4, and using the definition of Ôℓ
ce, the inequalities in (7.4), the degree

distributions in (7.8), and the analytic regularity (7.14), we conclude that Υ
Ôℓ

ce
[η‖] . p8

max

(
S1 +

S2

)
, where the sums S1 and S2 are given by

S1 =

ℓ+1∑

j=2

j∑

i=2

Ψ
p
‖
j−1,s

‖
j−1

σ2(ℓ+1−j)bcC2s
‖
jΓ(s

‖
j + 3)2,

S2 =

j∑

j=2

j∑

i=2

Ψ
p
‖
j−1,s

‖
j−1

σ2(ℓ+1−i)beσ2(ℓ+1−j)(bc−be)C2s
‖
jΓ(s

‖
j + 4)2.

The terms in the first sum S1 are independent of the inner index i. Hence, by interpolation to real

parameters s
‖
j ∈ [3, p

‖
j ] as in [11, Lemma 5.8], by applying [11, Lemma 5.12], and after possibly

adjusting constants, we conclude S1 . ℓ exp(−2b1(ℓ+ 1)) . exp(−2b2ℓ) . The second sum S2 can
be estimated in exactly the same manner as the sum S‖ in the proof of [11, Proposition 5.17], and
we obtain S2 . exp(−2b3ℓ). Adjusting the constants to absorb the algebraic factor p8

max yields
the assertion. �

7.3.2. Exponential convergence of Υ
T̂ℓ

e,i
. In this subsection, we bound the terms Υ

T̂ℓ
e,i

in (7.17),

and first establish the following bounds for η⊥, by using the properties (5.9) of the quasi-inter-
polation operator I⊥

1 for K = K⊥.

Lemma 7.6. Let K = K⊥×K
‖
j , j ≥ 2, be an element in the terminal layer T̂ℓ

e of the form (7.7).
For s = 0, 1, there holds

(h
‖
K)2(s−1)‖Dα⊥

⊥ η⊥‖2L2(K) . σ2min{bc,bc}ℓ|u|2
N̂2

−1−b
(K)

, |α⊥| = s, (7.24)

and

(h
‖
K)2(s−1)‖Ds

‖η
⊥‖2L2(K) . σ2min{bc,bc}ℓ|u|2

N̂s+2
−1−b

(K)
. (7.25)

Proof. To show (7.24), we apply (5.9), to get

(h
‖
K)2(s−1)‖Dα⊥

⊥ η⊥‖2L2(K) . (h
‖
K)2s−2(h⊥

K)4−2s−2(1−be)
∑

|α⊥|=2

‖r1−be
e D

α⊥

⊥ u‖2L2(K), |α⊥| = s .

The application of the equivalences (7.4) implies that

∑

|α⊥|=2

‖r1−be
e D

α⊥

⊥ u‖2L2(K) . (h
‖
K)−2(be−bc)‖rbe−bc

c r1−be
e D

α⊥

⊥ u‖2L2(K) . (h
‖
K)−2be+2bc |u|2

N̂2
−1−b

(K)
.

Thus, combining these estimates and expressing the mesh sizes in terms of σ, cp. (7.5), (7.7), we
see that, for |α⊥| = s,

(hK
‖)2(s−1)‖Dα⊥

⊥ η⊥‖2L2(K)

. (h
‖
K)2s−2−2be+2bc(h⊥

K)2−2s+2be |u|2
N̂2

−1−b
(K)

≃ σ(ℓ+1−j)(2s−2−2be+2bc)σℓ(2−2s+2be)|u|2
N̂2

−1−b
(K)

≃ σ2bc(ℓ+1−j)+2be(j−1)σ2j(1−s)+2(s−1)|u|2
N̂2

−1−b
(K)

|u|2 . σ2min{bc,bc}ℓ|u|2
N̂2

−1−b
(K)

.
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To prove (7.25), we proceed similarly and obtain

(h
‖
K)2(s−1)‖Ds

‖η
⊥‖2L2(K) . (h

‖
K)2s−2(h⊥

K)4−2(1−be)
∑

|α⊥|=2

‖r1−be
e D

α⊥

⊥ D
s
‖u‖2L2(K)

. (h
‖
K)−2−2(be−bc)(h⊥

K)2+2be
∑

|α⊥|=2

‖rbe−bc+s
c r1−be

e D
α⊥

⊥ D
s
‖u‖2L2(K)

. σ(ℓ+1−j)(−2−2be+2bc)σ2ℓ(1+be)|u|2
N̂s+2

−1−b
(K)

. σ2bc(ℓ+1−j)+2be(j−1)σ2(j−1)|u|2
N̂s+2

−1−b
(K)

. σ2min{bc,be}ℓ|u|2
N̂s+2

−1−b
(K)

.

This completes the proof. �

As a consequence of the preceding lemma, we have the following approximation bound in
perpendicular direction.

Proposition 7.7. Let u ∈ N̂4
−1−b(Ω̂

ℓ
ce) as defined in (7.12). Then there holds ΥTℓ

e,1
[η⊥] ≤

C exp(−2bℓ), for constants C, b > 0 independent of ℓ.

Proof. From Lemma 7.6 we find that, for K ∈ T̂ℓ
e,

(h
‖
K)−2‖η⊥‖2L2(K) + ‖D⊥η

⊥‖2L2(K) + ‖D‖η
⊥‖2L2(K) + (h

‖
K)2‖D2

‖η
⊥‖2L2(K)

. σ2min{bc,be}ℓ‖u‖2
N̂4

−1−b
(K)

.

The assertion now follows by summing this estimate over all elements K ∈ T̂ℓ
e, and by suitably

adjusting constants. �

Moreover, for the approximation error η‖ in parallel direction to edge e, a similar estimate
holds.

Proposition 7.8. Let u ∈ B−1−b(Ω̂
ℓ
ce) as in (7.12), (7.14). Then, for ℓ sufficiently large, there

holds ΥTℓ
e,1

[η‖] ≤ C exp(−2bℓ), for constants b, C > 0 which are independent of ℓ ≥ 1.

Proof. We note that, by (7.14), (7.13), the functions u and D⊥u satisfy, respectively,

‖r−1−bc+α‖

c D
α‖

‖ u‖L2(Ω̂ℓ
ce)

≤ Cα‖+1Γ(α‖ + 1), α‖ ≥ 2,

‖r−bc+α‖

c D
α‖

‖ D⊥u‖L2(Ω̂ℓ
ce)

≤ Cα‖+2Γ(α‖ + 2), α‖ ≥ 2 .

In view of (7.5), (7.7), these properties correspond to the one-dimensional analytic regularity

assumptions (6.8) and (6.12), respectively. Moreover, due to (7.8), the polynomial degrees p
‖
K are

s-linearly increasing away from the corner c. Hence, Proposition 6.2 respectively Proposition 6.3,
and the tensor product structure of the elements yield

∑

K∈T̂ℓ
e

(
(h

‖
K)−2‖η‖‖2L2(K) + ‖D‖η

‖‖2L2(K) + (h
‖
K)2‖D2

‖η
‖‖2L2(K)

)
. exp(−2bℓ),

respectively,
∑

K∈T̂ℓ
e
‖D⊥η

‖‖2L2(K) . exp(−2bℓ). This completes the proof. �

Finally, we bound the term in Υ
T̂ℓ

e,2
[η].

Proposition 7.9. Let u be in N̂2
−1−b(Ω̂

ℓ
ce) as defined in (7.12).

(1) For K ∈ T̂ℓ
e, there holds:

TK
e,2[η] . (h⊥

K)2be(h
‖
K)2bc−2be‖rbe−bc

c r1−be
e D

2
⊥u‖2L2(K) . (7.26)

(2) Moreover,
Υ

T̂ℓ
e,2

[η] ≤ C exp(−2bℓ), (7.27)

with constants b, C > 0 independent of ℓ.
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Proof. To show (7.26), we note that, by Hölder’s inequality and due to the fact that bc, be ∈ (0, 1),
∑

|α⊥|=2

‖Dα⊥

⊥ η‖2L1(K) . ‖r−1+bc
c ρ−1+be

ce ‖2L2(K)

∑

|α⊥|=2

‖r1−bc
c ρmax{1−be,0}

ce D
α⊥

⊥ η‖2L2(K)

≤ ‖rbc−be
c r−1+be

e ‖2L2(K)

∑

|α⊥|=2

‖rbe−bc
c r1−be

e D
α⊥

⊥ η‖2L2(K) .

Then, employing (7.5) in direction parallel to e yields that we have ‖rbc−be
c r−1+be

e ‖2L2(K) ≃
(h

‖
K)2bc−2be‖r−1+be

e ‖2L2(K). Since |K| ≃ h
‖
K(h⊥

K)2, we further have ‖r−1+be
e ‖2L2(K) . |K|(h⊥

K)2be−2.

Furthermore, for |α⊥| = 2, noting that D
α⊥

⊥ η = D
α⊥

⊥ u − Π
‖

p
‖
K

(Dα⊥

⊥ I⊥
1 u) = D

α⊥

⊥ u (since I⊥
1 u ∈

P1(K
⊥)) implies (7.26).

To prove the bound (7.27), we refer to (7.26), (7.5), and (7.7). This results in

TK
e,2[η] . σ2ℓbeσ2(bc−be)(ℓ+1−j)|u|2

N̂2
−1−b

(K)
= σ2bc(ℓ+1−j)+2be(j−1)|u|2

N̂2
−1−b

(K)

. σ2min{bc,be}ℓ|u|2
N̂2

−1−b
(K)

.

Summing this last bound over all elements K ∈ T̂ℓ
e yields the assertion. �

7.3.3. Conclusion of proof of (7.17). The proof of the exponential convergence bound (7.17) on

the hp-dG interpolation error η on Ôℓ
ce in Theorem 7.1 follows now straightforwardly by estimating

the terms on the left-hand side of (7.17) using the above results.

The proof of exponential convergence (7.17) on Ôℓ
c and on Ôℓ

c claimed in Theorem 7.1 follows

from the bound in the corner-edge patch Ôℓ
ce upon noticing (7.10), (7.11).

7.4. Exponential convergence estimates in elements at Dirichlet edges. Next, we consider
the case where e ∈ ED is a Dirichlet edge, i.e., e ∈ ED, and establish the analog of Theorem 7.1.
According to (2.11) and [3], the solution regularity is characterized by the homogeneous corner-edge
seminorms

|u|2
M̂

|α|
−1−b

(Ω̂ℓ
ce)

=
∑

|α|=k

∥∥∥r−1−bc+|α|
c ρ−1−be+|α⊥|

ce D
αu
∥∥∥
2

L2(Ω̂ℓ
ce)

, k > kβ. (7.28)

While exponential convergence for solutions with regularity in this family of spaces was already
shown in [11], we present an alternative argument, based on the preceding analysis of the Neumann

case. We say a function u ∈ H1(Ω̂ℓ
ce) belongs to A−1−b(Ω̂

ℓ
ce) if u ∈ M̂k

−1−b(Ω̂
ℓ
ce), for k > kβ, and

there is a constant du > 0 such that

‖u‖
M̂k

−1−b
(Ω̂ℓ

ce)
≤ dk+1

u k! , ∀k > kβ . (7.29)

Corollary 7.10. Let e ∈ ED be a Dirichlet edge. Let u ∈ A−1−b(Ω̂
ℓ
ce) as in (7.28), (7.29), and

let ΠK be the elemental approximation operators chosen in accordance with Section 5.1. Then for
η, η⊥, η‖ as in (5.15), (5.16), and for ℓ sufficiently large, there holds

Υ
Ôℓ

ce
[η⊥] + Υ

Ôℓ
ce
[η‖] + Υ

T̂ℓ
e,1

[η⊥] + Υ
T̂ℓ

e,1
[η‖] + Υ

T̂ℓ
e,2

[η] ≤ C exp(−2bℓ), (7.30)

with constants b, C > 0 independent of ℓ.
In addition, there holds

Υ
T̂ℓ

e,D
[η⊥] + Υ

T̂ℓ
e,D

[η‖] ≤ C exp(−2bℓ), (7.31)

with constants b, C > 0 independent of ℓ.

Proof. For every k ≥ 0, there holds |u|N̂k(Ω̂ℓ
ce)

≤ |u|
M̂k(Ω̂ℓ

ce)
. Hence, u ∈ A−1−b(Ω̂

ℓ
ce) implies

u ∈ B−1−b(Ω̂
ℓ
ce), and the bound (7.30) follows from Theorem 7.1.
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To bound (7.31), let K be in T̂ℓ
e. Then, by (5.9), the definition of the corner-edge semi-

norm (7.28), and the properties (7.5), we find that

(h⊥
K)−2‖η⊥‖2L2(K) . (h⊥

K)2be(h
‖
K)2(bc−be)‖rbe−bc

c r1−be
e D

2
⊥u‖2L2(K)

. (h⊥
K)2be(h

‖
K)2(bc−be)|u|2

M̂2
−1−b

(K)
.

In direction parallel to edge e, we proceed similarly: The stability of the L2-projection and
equations (7.28), (7.5), yield

(h⊥
K)−2‖η‖‖2L2(K) . (h⊥

K)−2‖u‖2L2(K) . (h⊥
K)2be(h

‖
K)2(bc−be)|u|2

M̂0
−1−b

(K)
.

Therefore, expressing the mesh sizes in term of σ, cp. (7.5), implies

(h⊥
K)−2

(
‖η⊥‖2L2(K) + ‖η‖‖2L2(K)

)
. σ2beℓσ2(ℓ+1−j)(bc−be)‖u‖2

M̂2
−1−b

(K)

. σ2(ℓ+1−j)bc+2(j−1)be |u|2
M̂0

−1−b
(K)

. σ2min{bc,be}ℓ|u|2
M̂2

−1−b
(K)

.

Summing the above bound over all elements in T̂ℓ
e implies the asserted exponential convergence

bound. �

7.5. Exponential convergence at corner elements. To conclude the proof of Theorem 5.6 it

remains to show exponential convergence in elements Kc ∈ T̂ℓ
c which abut at a corner c ∈ C of Ω so

that Kc ∩ c 6= ∅. Such elements Kc are shape-regular and axiparallel, with diameter hc = O(σℓ).
We are left to bound the term TKc

c [η] defined in (5.25). On Kc, we use the quasi-interpolant I1
defined in (5.6) for K = Kc. Then

η|Kc
= u|Kc

− I1(u|Kc
) . (7.32)

The quasi-interpolant I1 is well-defined under the (minimal) regularity u ∈ W 1,1(Kc). Fur-
thermore, by (5.8) there holds that ‖η‖L2(Kc) . hc‖∇η‖L2(Kc), and ‖∇η‖L2(Kc) = ‖∇u −
Π0∇u‖L2(Kc). We conclude

TKc
c [η] . ‖∇u−Π0∇u‖2L2(Kc)

+ h−1
c |u|2W 2,1(Kc)

. (7.33)

To bound the first term, applying standard approximations properties for Π0 would imply a
bound of order O(hc) provided u ∈ H2(Kc). The weaker regularity u ∈ N2

β(Kc; {c}, ∅) suffices

to obtain a (slightly weaker, yet still exponentially convergent) bound, due to the embedding
N2

β(Kc; {c}, ∅) ⊂ H1(Kc) being compact. The next two lemmas provide an exponential bound on

the first term in (7.33).

Lemma 7.11. For corner weight parameters bc ∈ (0, 1/2), and edge weight parameters be ∈ (0, 1),
for e ∈ Ec ⊂ EN , c ∈ C, we have the compact embeddings

N1
β(Kc; {c}, ∅) ⊂ L2(Kc), N2

β(Kc; {c}, ∅) ⊂ H1(Kc) . (7.34)

Proof. We note that, in the Nβ-spaces above, all edges e ∈ Ec are Neumann edges (although
all that follows will hold verbatim if only some e ∈ Ec belong to EN ). We write, for simplicity,
N2

β(Kc) in place of N2
β(Kc; {c}, ∅). The key observation of the proof is the equivalence N2

β(Kc) ≃
H

2,2
βm,ij

(Kc) proved in [8, Section 2] for the indicated range of weight exponents βm ∈ (0, 1/2) and

βij ∈ (0, 1) (cp. (2.10) and Remark 2.2).

Then, [8, Theorem 3.8] implies that H1+θ(Kc) ⊃ H
2,2
βm,ij

(Kc) ≃ N2
β(Kc), with continuous

embedding, provided that θ := 1 − max{βm, βij} > ε, for sufficiently small ε > 0. Using that
βij = βe + 2 and βm = βc + 2 (cp. Remark 2.2), we obtain θ ∈ (0, 1) if and only if 0 < be < 1 and
0 < bc < 1/2, cp. (2.10), which is the asserted range of corner and edge weight exponents. The
compactness of the second embedding in (7.34) now follows from the fact that it is a composition
of the continuous embedding N2

β(Kc) ⊂ H1+θ(Kc) and the compact (by Rellich’s Theorem)

injection H1+θ(Kc) ⊂ H1(Kc) for θ > 0. The compactness of the first embedding in (7.34) follows
analogously. �
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Lemma 7.12. Let u ∈ N2
β(Kc; C, ED), with edge weights βe ∈ (−2,−1) and corner weights βc ∈

(−3/2,−1). Then for the quasi-interpolant I1 for K = Kc in (5.6), there exists C > 0 independent
of hc ∈ (0, 1] and of u such that ‖∇(u−I1u)‖L2(Kc) = ‖∇u−Π0∇u‖L2(Kc) ≤ Chbc

c |u|N2
β
(Kc;C,ED).

Proof. We observe that u ∈ N2
β(Kc; C, ED) implies that ∇u ∈ N1

β(Kc; C, ED)3. We denote v =

∇u ∈ N1
β(Kc; C, ED)3. Observe that Π0(v) is the (componentwise) average of v over Kc. From

the compactness of the embedding N1
β(Kc; C, ED)3 ⊂ L2(Kc)

3 in Lemma 7.11, we proceed along

the lines of [13, Section A.2.4] and use appropriate scaling (in particular, recalling that −2 <
βe < −1 implies that, for k = 1 in the sixth term of (2.11), the inhomogeneous weight exponents
βe + |α⊥| < 0) to conclude that there exists a constant C > 0 independent of v such that
‖v −Π0(v)‖L2(Kc) ≤ Ch−1−βc

c |v|N1
β
(Kc). Referring to (2.10) completes the proof. �

It remains to bound the term h−1
c |u|2W 2,1(Kc)

in (7.33).

Lemma 7.13. Let u ∈ N2
β(Kc; C, ED), with some βe ∈ (−2,−1), and with some βc ∈ (−3/2,−1),

and for Kc ∈ T̂ℓ
c with Kc ∩ c 6= ∅, and Kc ∩ e 6= ∅ for c ⊂ e, for some e ∈ EN . Then, for any

0 < hc = diam(Kc) ≤ 1, there holds

|u|W 2,1(Kc) . h
1/2+bc
c |u|N2

β
(Kc;C,ED) . (7.35)

Here, bc = −1− βc ∈ (0, 1/2) is as in (2.10).

Proof. We may assume that Kc ∩ ωe = ∅. There holds

|u|W 2,1(Kc) =
∑

|α|=2

‖Dαη‖L1(Kc) =
∑

|α|=2

‖Dαη‖L1(Kc∩ωc) +
∑

|α|=2

‖Dαη‖L1(Kc∩ωce)

≤
∑

|α|=2

∥∥∥r1+bc−|α|
c

∥∥∥
L2(Kc∩ωc)

∥∥∥r−1−bc+|α|
c D

αη
∥∥∥
L2(Kc∩ωc)

+
∑

|α|=2

∥∥∥r1+bc−|α|
c ρ−max(−1−be+|α⊥|,0)

ce

∥∥∥
L2(Kc∩ωce)

×
∥∥∥r−1−bc+|α|

c ρmax(−1−be+|α⊥|,0)
ce D

αη
∥∥∥
L2(Kc∩ωce)

.

We note that, for 0 ≤ |α| ≤ 2, there holds
∥∥∥r1+bc−|α|

c

∥∥∥
L2(Kc∩ωc)

. h
5/2+bc−|α|
c . h

1/2+bc
c ,

and similarly,
∥∥∥r1+bc−|α|

c ρ
−max(−1−be+|α⊥|,0)
ce

∥∥∥
L2(Kc∩ωce)

. h
5/2+bc−|α|
c . h

1/2+bc
c . We arrive at

∑
|α|=2 ‖Dαη‖L1(Kc) . h

1/2+bc
c |u|N2(Kc;C,ED) which completes the proof. �

Inserting the estimates in the previous lemmas into (7.33), we arrive at the following exponential
convergence result in corner elements.

Proposition 7.14. Let u ∈ N̂2
−1−b(Ω̂

ℓ
ce), with b as in Remark 2.4. Then, there exist con-

stants b, C > 0 such that Υ
T̂ℓ

c
[η] ≤ C exp(−2bℓ)|u|2N2(Ω;C,ED).

7.6. Proof of Theorem 5.6. The exponential convergence of hp-dGFEM, Theorem 5.6, follows
now immediately from the quasi-optimality results, Theorem 5.5, and from the fact that, by
our analysis in Section 7, all terms on the right-hand side of the estimate (5.28) convergence
exponentially with respect to the number of mesh layers ℓ. Furthermore, for the number of
degrees of freedom in either of the hp-dG spaces in (3.10) and (3.11) there holds N ≃ ℓ5 +O(ℓ4),
which yields the desired estimate (5.32).

Remark 7.15. We note that Theorem 5.6 remains true in the pure Neumann case. Indeed, the
hp-approximation analysis on geometric meshes presented in this work as applied to the hp-
dGFEM (4.2) with FD(M) = ∅ and based on the hp-space V (M,Φ,p)/R leads to the bound (5.32)
as well. This simply follows from the fact that all the interpolants in our error analysis reproduce
constant functions.
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