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MILSTEIN APPROXIMATION FOR ADVECTION-DIFFUSION
EQUATIONS DRIVEN BY MULTIPLICATIVE NONCONTINUOUS

MARTINGALE NOISES

ANDREA BARTH AND ANNIKA LANG

Abstract. In this paper, the strong approximation of a stochastic partial differential equa-
tion, whose differential operator is of advection-diffusion type and which is driven by a
multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A
finite dimensional projection of the infinite dimensional equation, for example a Galerkin
projection, with nonequidistant time stepping is used. Error estimates for the discretized
equation are derived in L2 and almost sure senses. Besides space and time discretizations,
noise approximations are also provided, where the Milstein double stochastic integral is
approximated in such a way that the overall complexity is not increased compared to an
Euler–Maruyama approximation. Finally, simulations complete the paper.

1. Introduction

The numerical study and simulation of stochastic partial differential equations has been an
active field of research for the last fifteen years. Within the last decades, the extension of par-
tial differential equations to stochastic partial differential equations has become increasingly
more important in applications, especially in engineering (image analysis, surface analysis,
and filtering, etc. [26, 32, 38, 40, 45]). On the other hand, in finance, finite dimensional
systems of stochastic differential equations have been extended to infinite dimensional ones,
i.e., to stochastic partial differential equations (see e.g., [17, 5]). In most cases, it is not pos-
sible to obtain explicit solutions to these problems. It is therefore natural to study numerical
solutions of these stochastic partial differential equations.

We aim at approximating (mild) solutions of the stochastic partial differential equation
given by

(1.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t), X(0) = X0.

Here M is a càdlàg, square integrable martingale taking values in a separable Hilbert space U .
Probably the most popular examples of such stochastic processes are Wiener processes and
jump processes which are square integrable martingales. The operators A and B are second
and first order differential operators on the Hilbert space H = L2(D) for a bounded domain
D ⊂ Rd, d ∈ N. The operator G is a mapping from H into the linear operators from U to H.
The initial condition X0 is an H-valued random variable that is independent of the driving
noise process and we consider the solution on a finite time interval τ = [0, T ], T < +∞.

Key words and phrases. Finite Element method, stochastic partial differential equation, martingale,
Galerkin method, Zakai equation, advection-diffusion PDE, Milstein scheme, Karhunen–Loève expansion,
nonequidistant time stepping.
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2 BARTH AND LANG

The type of equation studied in this paper appears, besides geophysical models, in the
study of Zakai’s equation (cf. [47]). The stochastic partial differential equation of Zakai type,
which was introduced by Zakai for a nonlinear filtering problem, reads, extended to square
integrable martingales,

(1.2) dut(x) = L∗ut(x) dt+G(ut(x)) dMt(x).

In the framework of this paper, the equation is considered on a bounded domain D ⊂ Rd,
with zero Dirichlet boundary conditions on the Lipschitz boundary ∂D and initial condition
u0(x) = v(x), for x ∈ D. In the original filtering problem, L∗ is a second order elliptic
differential operator of the form

L∗u =
1

2

d∑

i,j=1

∂i∂jaiju−
d∑

i=1

∂ifiu,

for u ∈ C2
c (D), and it is explicitly split into the operators A and B in Equation (1.1) in

Section 2. In the original filtering problem, the operator G in Equation (1.2) denotes a
pointwise multiplication with a suitable function g ∈ H. This setting is included in the more
general assumptions on G in Equation (1.1) which are discussed in detail in Section 2.

When it comes to strong approximations of Hilbert-space-valued stochastic differential
equations, approximation has to be performed in space and time; moreover, it is likely that
the noise must also be approximated. In this paper, we study for the space approximation a
projection of the original problem onto a finite dimensional subspace of H, which could be
done, for example, by use of a Galerkin method. Further, we employ a Milstein approach
with nonequidistant time stepping for the time approximation of the solution of the stochastic
partial differential equation (1.1). We derive mean square and almost sure convergence results
for our approximation scheme which are of special interest for all path dependent problems,
e.g., in our case (among others) in filtering problems.

So far, Galerkin methods have been mainly used for partial differential equations (cf. [46,
20, 19, 44]), but some recent applications to stochastic partial differential equations have
been performed e.g., in [4, 8, 10, 12, 13, 29, 30, 31]. One can find the approximation of mild
solutions with colored noise e.g., in [3, 22, 31, 32] and references therein. First approaches
to higher order approximation schemes using Taylor expansions were treated e.g., in [39],
[23], and [24] with additive, space-time white noise and with multiplicative, colored Wiener
noise in [25] and colored, continuous martingale noise in [6]. In [25], a Milstein scheme for
stochastic partial differential equations driven by Wiener noise is derived and L2 convergence
of order 1 − ε, for ε > 0, in the time discretization is shown. In most of these references,
parabolic equations with (possibly) nonlinear terms are studied. Here, we treat a larger
class of (possibly) noncontinuous noises and study an advection-diffusion type equation. For
Wiener noise, fully discrete approximations of the solution of Equation (1.1) were already
studied in [13], while higher order schemes were presented in [35, 36] for a time approximation.
Furthermore, in [6] a (semidiscrete) space approximation and a fully discrete approximation
using a Galerkin method in space and a backward Euler approach in time were introduced.
A space approximation for an equation driven by a – not necessarily continuous – square
integrable martingale was done in [34].

Here, we combine and extend results from [35, 36], [6], [33], and [34] and derive L2 and
almost sure convergence for an approximation scheme with a not necessarily equidistant
time discretization. The increased convergence of order one in the time discretization is
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derived by adding an extra term to the well-known Euler–Maruyama scheme, which itself
just leads to convergence of order O(k1/2). In [6], Lp convergence of order O(h2 + k) for
a space discretization of width h and a time step of size k was shown and used to prove
almost sure convergence of order O((h2 + k)1−ε). For a noncontinuous, square integrable
martingale, problems arise in the proof of almost sure convergence, as presented in [6] due
to the missing time regularity of the solution of the stochastic partial differential equation.
Namely, X(t) − X(s) converges with order (t − s)1/p in Lp for t → s and this cannot be
improved (see [34]). Therefore, the optimal order of almost sure convergence cannot be
achieved with an argumentation based on the Borel–Cantelli lemma, which was used in the
proof of almost sure convergence in [6]. Since the proof in [6] was done for p > 2, and then
transferred to L2 by Hölder’s inequality, even the order of convergence in L2 would not be
optimal with this strategy. Here, we combine the proof given in [6] with the arguments in [33]
in order to preserve L2 convergence of order O(h2 + k), even for noncontinuous martingale
noises, given that the equation fulfills sufficient smoothness assumptions. Further, we derive
almost sure convergence of the approximation scheme.

Besides space and time discretization, we also address the problem of the approximation of
the (noncontinuous) noise. As shown in [7], the appropriate truncation of the Karhunen-Loève
expansion of the noise preserves the overall order of convergence for the Euler–Maruyama
term. The corresponding result for the Milstein term (with its iterated stochastic integrals)
exhibits further difficulties. Fast simulation of Wiener noise can be done, for example, with
Fourier techniques in O(N logN), where N is the number of space discretization points, as
shown in [37]. This is essentially the same computational cost as an optimal Finite Element
solver needs for a discretized homogeneous (elliptic) problem. In this paper, we prove that for
a given complexity of the Euler–Maruyama term, the overall order of computational work does
not increase when a Milstein term is added, although multi dimensional iterated stochastic
integrals have to be calculated. The order of computational work remains the same, due to
the fact that the number of terms of the Karhunen–Loève expansion, which is needed to keep
the overall order of convergence, is the square root of terms needed for the Euler–Maruyama
term.

More precisely, the main result of this paper is the following: Assume that Equation (1.1) is
approximated by the projected stochastic partial differential equation onto a finite dimensional
subspace of H, and discretized in time with an adapted Milstein scheme. Furthermore,
suppose that the approximation of the corresponding homogeneous, parabolic, deterministic
problem

∂

∂t
u = Au

converges with order O(hα + kα/2), for α ∈ N, to the solution of the homogeneous problem.
Then, the approximated stochastic partial differential equation converges with order O(hα +
kmin(α/2,1)) in L2. It also converges almost surely to the mild solution of Equation (1.1) with
at least order O(k(1−ε)/2) for any ε > 0 and for h2 = O(k). Furthermore, conditions are given
such that the approximation of the noise preserves this order of convergence.

This work is organized as follows: In Section 2, the framework and the properties of the sto-
chastic partial differential equation and its solution are given. Section 3 introduces the space
and time approximation and its L2 and almost sure convergences. The noise is approximated
in Section 4, and conditions are given so that the overall order of convergence that was proven
in Section 3 is preserved. Finally, Section 5 provides an example of a compensated Poisson
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process, which illustrates the limit of the order of convergence in the time domain. Further,
this section contains simulations of the mean square convergence of the Euler–Maruyama and
Milstein term.

2. Framework

Let H denote the Hilbert space L2(D) with Lebesgue measure, where D ⊂ Rd, d ∈ N, is
a bounded domain with Lipschitz boundary ∂D, and let the subspaces Hα be the Sobolev
spaces for a smoothness parameter α ∈ N, and Hα

0 the closure of C∞
c (D) in Hα. Here, C∞

c (D)
is the space of all infinitely often differentiable functions with compact support. Consequently,
H1

0 denotes the space of all weakly differentiable functions that vanish at the boundary. We
are interested in the development of a numerical approximation scheme to generate paths of
the solution of the stochastic partial differential equation

(2.1) dX(t) = (A+B)X(t) dt+G(X(t)) dM(t)

on the finite time interval [0, T ] with initial condition X(0) = X0 and zero Dirichlet boundary
conditions on ∂D. M is a càdlàg, square integrable martingale on a filtered probability space
(Ω,F , (Ft)t≥0,P), satisfying the “usual conditions”, with values in a separable Hilbert space
(U, (·, ·)U ). The space of all càdlàg, square integrable martingales taking values in U with
respect to (Ft)t≥0 is denoted by M2(U). We restrict ourselves to the following subset of
square integrable martingales taking values in U :

M2
b(U) = {M ∈ M2(U), ∃Q ∈ L+

1 (U) s.t. ∀t ≥ s ≥ 0, 〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q},

where L+
1 (U) denotes the space of all linear, nuclear, symmetric, nonnegative-definite opera-

tors acting on U . The operator angle bracket process 〈〈M,M〉〉t is defined as

〈〈M,M〉〉t =
∫ t

0
Qs d〈M,M〉s,

where 〈M,M〉t is the unique angle bracket process from the Doob–Meyer decomposition. The
process (Qs, s ≥ 0) is called the martingale covariance. Examples of such processes are square
integrable Lévy martingales, i.e., those Lévy martingales with Lévy measure ν that satisfies,
for ϕ ∈ U , ∫

U
‖ϕ‖2U ν(dϕ) < +∞.

Since Q ∈ L+
1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting of eigen-

vectors of Q. Therefore, we have the spectral representation Qen = γnen, where γn ≥ 0 is the
eigenvalue corresponding to en. The square root of Q is defined as

Q1/2ψ =
∑

n

(ψ, en)U γ1/2n en,

for ψ ∈ U , and Q−1/2 denotes the pseudo inverse of Q1/2. Let (H, (·, ·)H) be the Hilbert space
defined by H = Q1/2(U) and endowed with the inner product (ψ,φ)H = (Q−1/2ψ, Q−1/2φ)U
for ψ,φ ∈ H. Let LHS(H, H) refer to the space of all Hilbert–Schmidt operators from H to
H and ‖ · ‖LHS(H,H) denote the corresponding norm.

By Proposition 8.16 in [42] we have

(2.2) E(‖
∫ t

0
Ψ(s) dM(s)‖2H) ≤ E

( ∫ t

0
‖Ψ(s)‖2LHS(H,H) ds

)
,
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for t ∈ τ = [0, T ] with T < +∞, M ∈ M2
b(U), and a locally bounded, predictable process

Ψ : τ → LHS(H, H) with

E(
∫ T

0
‖Ψ(s)‖2LHS(H,H) ds) < +∞.

For an introduction to Hilbert-space-valued stochastic differential equations we refer the
reader to [42, 16, 11, 43].

The operators A and B in Equation (2.1) are defined as follows: We assume that the
functions aij , for i, j = 1, . . . , d, are twice continuously differentiable on D with continu-
ous extension to the closure D̄. The operator A is the unique self-adjoint extension of the
differential operator

1

2

d∑

i,j=1

∂i(aij ∂ju), u ∈ C2
c (D).

B is a first order differential operator given by

Bu =
d∑

i=1

∂i(biu), u ∈ C1
c (D),

with elements bi that are defined as

bi =
1

2

d∑

j=1

∂jaij − fi,

where the functions fi, i = 1, . . . , d, are continuously differentiable on D with continuous
extension to D̄. Defined this way, we also include the differential operator L∗ in Equation (1.2).

With the following assumptions, the right hand side of Equation (2.1) is well defined and its
solution has certain regularity properties to be shown later. From here on, let the smoothness
parameter α ∈ N be fixed.

Assumption 2.1. The coefficients of A and B, the operator G, and the initial condition X0

satisfy the following conditions:

(a) For i, j = 1, . . . , d, the elements aij belong to C
α+1
b (D) and fi to Cα

b (D) with continuous
extensions to D̄,

(b) there exists δ > 0 such that for all x ∈ D and ξ ∈ Rd

d∑

i,j=1

aij(x)ξiξj ≥ δ‖ξ‖2Rd ,

(c) X0 is F0–measurable and E(‖X0‖2Hα) < +∞,
(d) G is a linear mapping from H into L(U,H) that satisfies for C > 0 that for 0 ≤ β ≤ α

and φ ∈ Hβ

‖G(φ)‖LHS(H,Hβ) ≤ C ‖φ‖Hβ .

Assumption 2.1(b) implies that the operator A is dissipative, see e.g., [28]. Then, by the
Lumer–Phillips theorem, e.g., [18], A generates a strongly continuous contraction semigroup
on H which we denote by S = (S(t), t ≥ 0). Furthermore, by Corollary 2 in [27], S is analytic
in the right half-plane. Therefore, fractional powers of −A are well-defined, cf. [18], and we
denote for simplicity A−β = (−A)−β and Aβ = A−1

−β for β > 0.
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In this context we shall make use of the following lemma — whose statement is also known
as Kato’s conjecture — which was proven in [2].

Lemma 2.2. The domain of A1/2 is D(A1/2) = H1
0 and the norm ‖A1/2 · ‖H is equivalent to

‖ · ‖H1, i.e., there exists C > 0 such that

‖A1/2 φ‖H ≤ C ‖φ‖H1 and ‖φ‖H1 ≤ C ‖A1/2 φ‖H ,

for all φ ∈ H1
0 .

To simplify the notation in the preceding, we introduce the following norm for an H-valued
random variable Φ with finite second moment

‖Φ‖H,L2 =
(
E
(
‖Φ‖2H

))1/2
.

Furthermore, we abbreviate the norm in C(τ ;L2(Ω;H)) with

‖Ψ‖H,L2,∞τ
= sup

t∈τ
‖Ψ(t)‖H,L2 ,

for a stochastic process Ψ = (Ψ(t), t ∈ τ) with finite second moment for all t ∈ τ .
With these notations, Assumption 2.1 also implies, by results in Chapter 9 in [42], that

Equation (2.1) has a unique mild solution X in Hα, i.e.,

‖X‖Hα,L2,∞τ
< +∞,

and X admits for t ∈ (0, T ] the (mild) form

(2.3) X(t) = S(t)X0 +

∫ t

0
S(t− s)BX(s) ds+

∫ t

0
S(t− s)G(X(s)) dM(s).

Furthermore, it is clear that the solution is in Hβ , for all 0 ≤ β ≤ α.
We remark that we could have added a nonlinearity F (X(t)) dt as done in [25]. With

some smoothness assumptions, the results in the subsequent sections would still hold for
continuous martingales, where F has to be treated as in [25]. If the additional smoothness
assumptions are fulfilled, the additive nonlinearity does not affect the choice of approximation.
For example, Galerkin methods could be used for nonlinear, parabolic equations.

3. Approximation scheme and order of convergence

In this section we derive a fully discrete approximation scheme for Equation (2.1) and prove
the convergence properties of this scheme.

To derive a semidiscrete form of Equation (2.1) first, we project H onto a finite dimensional
subspace Vh of H, for instance a Finite Element space. This can for example be done by
first discretizing D by a triangulation defined over a finite number of points. Then, let
(Sh, h > 0) denote a family of Finite Element spaces, consisting of piecewise linear, continuous
polynomials with respect to the family of triangulations (Th, h > 0) ofD such that Sh → H for
h → 0 and furthermore Sh ⊂ H1

0 (D) for h > 0. In the general framework let V = (Vh, h > 0)
be a family of finite dimensional subspaces of H1

0 with H-orthogonal projection Ph and norm
derived from H. For h → 0 the sequence V is supposed to be dense in H in the following
sense: For all φ ∈ H, it holds that

lim
h→0

‖Phφ− φ‖H = 0.

Furthermore, we assume that the speed of convergence is specified by

(3.1) ‖(Ph − 1)φ‖H ≤ Chα‖φ‖Hα ,
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for φ ∈ Hα. The Finite Element spaces (Sh, h > 0) satisfy this inequality for α ≤ 2. Moreover,
Equation (3.1) is satisfied for the space of piecewise polynomials of degree at most α − 1 on
a quasi-uniform triangulation (c.f. Theorem 4.28 in [20] and Satz 6.4 in [9]).

The semidiscrete problem is to find Xh(t) ∈ Vh such that for t ∈ τ

dXh(t) = (Ah + PhB)Xh(t) dt+ PhG(Xh(t)) dM(t), Xh(0) = PhX0.

Here, we define the approximate operator Ah : Vh → Vh through the bilinear form

(−Ahϕh,ψh)H = BA(ϕh,ψh) =
d∑

i,j=1

(aij∂jϕh, ∂iψh)H ,

for all ϕh,ψh ∈ Vh. The operator Ah is the generator of an analytic semigroup Sh = (Sh(t), t ≥
0) defined formally by Sh(t) = exp(tAh), for t ≥ 0. The càdlàg, semidiscrete mild solution is
then given by

(3.2) Xh(t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)PhBXh(s) ds+

∫ t

0
Sh(t− s)PhG(Xh(s)) dM(s).

By Assumption 2.1, Sh is self-adjoint, positive-semidefinite on H and positive-definite on Vh.
We assume that for α ≥ β ≥ 0 with φ ∈ Hβ and t ∈ τ , we have that

(3.3) ‖(S(t)− Sh(t)Ph)φ‖H ≤ C hαt−(α−β)/2‖φ‖Hβ .

This is for example satisfied by the Finite Element spaces (Sh, h > 0) as introduced before for
α = 2 (see Theorem 3.5 in [46]). In the more general setting of piecewise polynomials of degree
at most α− 1, Theorem 5.7 in [20] as well as Proposition 11.2.2 in [44] imply Equation (3.3).

The proposed space-discretized equation converges uniformly, almost surely with order
O(hα−ε) and with order O(hα) in Lp for p > 0 to the mild solution of Equation (2.1), which
was shown in [34].

For the time discretization, we propose a similar scheme to [35, 36] and a simplified version
of [7], which is a combination of a linearized nonequidistant time discretization, i.e., a linear-
implicit backward Euler approach, and a Milstein scheme but with one approximation term
less than in [35, 36]. We introduce the following framework:

We shall always consider a finite time interval τ = [0, T ] with T < +∞. Let T = (Tn, n ∈
N) be a sequence of partitions Tn, n ∈ N, of the interval τ whose mesh width tends to zero
as n tends to +∞. We set Tn = {tn0 , tn1 , . . . , tnln} with ln ∈ N, 0 = tn0 < tn1 < · · · < tnln = T ,
step size kn(i) = tni+1 − tni , and maximal step size kn in Tn given by

kn = max{kn(i), i = 0, . . . , ln − 1}.

For n ∈ N, we define the map πn : τ → {tni , i = 0, . . . , ln} by πn(s) = tni , if t
n
i ≤ s < tni+1.

Furthermore, we set ιn(j) = tnj for j = 0, . . . , n. Then, ιn is a bijective map and κn = ι−1
n ◦πn

is well-defined and gives for t ∈ τ the index of the next smaller grid point in Tn.
In [7], the rational approximation of the semigroup was done by r(kn(j)Ah) with r(λ) =

(1 + λ/2)/(1 − λ/2), λ ∈ R\{2}, which resembles a Crank–Nicolson method. Here, we
simplify this scheme to a backward Euler scheme, i.e., r(λ) = (1 − λ)−1 for λ ∈ R\{1} and
generalized in the standard way to compact operators. For an equidistant time discretization,
this approximation is the same for all j = 0, . . . , ln − 1. In our approach with a variable step
size, the approximations are not necessarily the same at all discretization times. To simplify
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the notation, we set

Rn,h
j = r(kn(j)Ah).

Furthermore, for 0 ≤ i < j ≤ ln we denote

Rn,h
(j−1:i) = Rn,h

j−1R
n,h
j−2 · · ·R

n,h
i+1R

n,h
i .

In case of an equidistant partition we have Rn,h
(j−1:i) = r(knAh)j−i+1. The recursive approxi-

mation scheme, which was derived in [6], reads then

Xn
j =Rn,h

j−1X
n
j−1 +

∫ tnj

tnj−1

Rn,h
j−1PhBXn

j−1 ds

+

∫ tnj

tnj−1

Rn,h
j−1PhG(Xn

j−1) dM(s)

+

∫ tnj

tnj−1

(
Rn,h

j−1PhG
(∫ s

tnj−1

G(Xn
j−1) dM(r)

))
dM(s)

(3.4)

and can be rewritten as

Xn
j = Rn,h

(j−1:0)PhX0 +

∫ tnj

0
Rn,h

(j−1:κn(s))
PhBXn

κn(s) ds

+

∫ tnj

0
Rn,h

(j−1:κn(s))
PhG(Xn

κn(s)) dM(s)

+

∫ tnj

0

(
Rn,h

(j−1:κn(s))
PhG

(∫ s

πn(s)
G(Xn

κn(s)) dM(r)
))

dM(s).

(3.5)

The approximation scheme in Equation (3.5) is not limited to a backward Euler approach,
but any other time stepping scheme which fulfills the following assumption can be used.

Assumption 3.1. Assume that the approximation of the semigroup (Rn,h
(j−1:i), 0 ≤ i < j ≤ ln)

is stable, i.e., there exists a constant C such that for all n ∈ N, h > 0, and 0 ≤ i < j ≤ ln

‖Rn,h
(j−1:i)Ph‖L(H) ≤ C,

and that there exists a constant C such that for all n ∈ N, h > 0, 0 ≤ i < j ≤ ln, fixed α ∈ N,
β ∈ {0, 1}, and φ ∈ Hα−β

(3.6) ‖(S(tnj − tni )−Rn,h
(j−1:i)Ph)φ‖H ≤ C (h+ k1/2n )α(tnj − tni )

−β/2‖φ‖Hα−β .

This is especially met by a backward Euler scheme, which is shown similarly to Theorem 7.7
in [46] with Theorems 7.3 and 3.5 in the same book.

The order of convergence is proven in the following theorem.

Theorem 3.2. Let Assumption 3.1 be satisfied. Then, the approximation Xn = (Xn
j , j =

0, . . . , ln) defined by Equation (3.5) converges in mean square to the mild solution X of the
stochastic partial differential equation (2.1) and satisfies for constants C1 and C2 that depend
on T

sup
0≤j≤ln

‖X(tnj )−Xn
j ‖H,L2 ≤ C1(h

α + kα/2n )‖X‖Hα,L2,∞τ
+ C2 kn‖X‖H1,L2,∞τ

.



MILSTEIN METHOD FOR MULTIPLICATIVE ADVECTION-DIFFUSION SPDES 9

Especially, for α = 2 and X ∈ H2, it holds that

sup
0≤j≤ln

‖X(tnj )−Xn
j ‖H,L2 = O(h2 + kn).

Proof. The proof of the theorem involves numerous estimates, where the same techniques are
used many times. Therefore, we derive the terms to be bounded and choose one of each type
to show the techniques that are employed.

Equation (2.3) can be rewritten for t ∈ τ as

X(t) = S(t)X0 +

∫ t

0
S(t− s)BS(s− πn(s))X(πn(s)) ds

+

∫ t

0

(
S(t− s)B

∫ s

πn(s)
S(s− r)BX(r) dr

)
ds

+

∫ t

0

(
S(t− s)B

∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)
ds

+

∫ t

0
S(t− s)G

(
S(s− πn(s))X(πn(s))

)
dM(s)

+

∫ t

0

(
S(t− s)G

(∫ s

πn(s)
S(s− r)BX(r) dr

))
dM(s)

+

∫ t

0

(
S(t− s)G

(∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

))
dM(s)

similarly to Equation (3.5) as done in [35, 6]. We remark that the third, the fourth, and the
sixth term on the right hand side are not approximated in scheme (3.5) because they (for
themselves) converge as fast as the overall approximation scheme.

For fixed n ∈ N, the difference of the mild solution and the fully discrete approximation (3.5)
is split into the initial condition, the Bochner integral and the Itô integral terms

X(tnj )−Xn
j = (S(tnj )−Rn,h

(j−1:0)Ph)X0 + ξn(j) + ηn(j).

The Bochner integral part ξn is split again into three parts:

ξn = ξn1 + ξn2 + ξn3 ,

with

ξn1 (j) =

∫ tnj

0

(
S(tnj − s)B S(s− πn(s))X(πn(s))−Rn,h

(j−1:κn(s))
PhBXn

κn(s)

)
ds,

ξn2 (j) =

∫ tnj

0

(
S(tnj − s)B

∫ s

πn(s)
S(s− r)BX(r) dr

)
ds,

ξn3 (j) =

∫ tnj

0

(
S(tnj − s)B

∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)
ds.

Similarly, the stochastic integral is decomposed into

ηn = ηn1 + ηn2 + ηn3 ,
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with

ηn1 (j) =

∫ tnj

0

(
S(tnj − s)G

(
S(s− πn(s))X(πn(s))

)
−Rn,h

(j−1:κn(s))
PhG(Xn

κn(s))
)
dM(s),

ηn2 (j) =

∫ tnj

0

(
S(tnj − s)G

(∫ s

πn(s)
S(s− r)BX(r) dr

))
dM(s),

ηn3 (j) =

∫ tnj

0

(
S(tnj − s)G

(∫ s

πn(s)
S(s− r)G(X(r)) dM(r)

)

−Rn,h
(j−1:κn(s))

PhG
(∫ s

πn(s)
G(Xn

κn(s)) dM(r)
))

dM(s).

The estimates for the seven terms are a combination of those presented in [6] and in [34].
Therefore, we further split three of the terms. We may write

ξn1 (j) =

∫ tnj

0
S(tnj − s)B(S(s− πn(s))− 1))X(πn(s)) ds

+

∫ tnj

0
(S(tnj − s)− S(tnj − πn(s)))BX(πn(s)) ds

+

∫ tnj

0
(S(tnj − πn(s))−Rn,h

(j−1:κn(s))
Ph)BX(πn(s)) ds

+

∫ tnj

0
Rn,h

(j−1:κn(s))
PhB(X(πn(s))−Xn

κn(s)) ds,

and we refer to the terms on the right hand side by ξn1,i(j) for i = 1, . . . , 4. Similarly, ηn1 (j) is
split into the following four terms

ηn1 (j) =

∫ tnj

0
S(tnj − s)G

(
(S(s− πn(s))− 1)X(πn(s))

)
dM(s)

+

∫ tnj

0

(
S(tnj − s)− S(tnj − πn(s))

)
G(X(πn(s))) dM(s)

+

∫ tnj

0

(
S(tnj − πn(s))−Rn,h

(j−1:κn(s))
Ph

)
G(X(πn(s))) dM(s)

+

∫ tnj

0
Rn,h

(j−1:κn(s))
PhG(X(πn(s))−Xn

κn(s))) dM(s)

and ηn3 (j) into five terms

ηn3 (j)

=

∫ tnj

0
S(tnj − s)G

(∫ s

πn(s)
(S(s− r)− 1)G(X(r)) dM(r)

)
dM(s)

+

∫ tnj

0
S(tnj − s)G

(∫ s

πn(s)
G(X(r)−X(πn(s))) dM(r)

)
dM(s)

+

∫ tnj

0

(
S(tnj − s)− S(tnj − πn(s))

)
G
(∫ s

πn(s)
G(X(πn(s))) dM(r)

)
dM(s)
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+

∫ tnj

0
(S(tnj − πn(s))−Rn,h

(j−1:κn(s))
Ph)G

(∫ s

πn(s)
G(X(πn(s))) dM(r)

)
dM(s)

+

∫ tnj

0
Rn,h

(j−1:κn(s))
PhG

(∫ s

πn(s)
G(X(πn(s))−Xn

κn(s)) dM(r)
)
dM(s).

The initial condition is bounded by Assumption 3.1 for β = 0 by

‖(S(tnj )−Rn,h
(j−1:0)Ph)X0‖2H,L2 ≤ C(h+ k1/2n )2α‖X0‖2Hα,L2 .

For ξn and ηn we just give calculations for one term of each type of estimation to demonstrate
the technique. The other terms are treated in a similar way. The first term of ξn1 satisfies by
the properties of the Bochner integral, Lemma 2.2, and Theorem 6.13 in [41] that

‖ξn1,1(j)‖2H,L2 ≤ C E
(
(

∫ tnj

0
(tnj − s)−1/2‖(S(s− πn(s))− 1)X(πn(s))‖H ds)2

)

≤ C E
(
(

∫ tnj

0
(tnj − s)−1/2(s− πn(s))

α/2‖X(πn(s))‖Hα ds)2
)

≤ C kαn E
(
(

∫ tnj

0
(tnj − s)−1/2‖X(πn(s))‖Hα ds)2

)
.

Hölder’s inequality and Fubini’s theorem imply that

‖ξn1,1(j)‖2H,L2 ≤ C kαn

∫ tnj

0
(tnj − s)−1/2 ds

∫ tnj

0
(tnj − s)−1/2 ‖X(πn(s))‖2Hα,L2 ds

≤ C kαn (2
√
T )2‖X‖2Hα,L2,∞τ

.

The property of the semigroup with similar estimates leads to

‖ξn1,2(j)‖2H,L2 + ‖ηn1,1(j)‖2H,L2 + ‖ηn1,2(j)‖2H,L2 + ‖ηn3,1(j)‖2H,L2 + ‖ηn3,3(j)‖2H,L2

≤ C kαn ‖X‖2Hα,L2,∞τ
.

The convergence properties of the approximate semigroup in Assumption 3.1 imply for ξn1,3(j)
for β = 1 with similar estimates as before concerning B

‖ξn1,3(j)‖2H,L2 ≤ C 1
42
√
T (h2 + kn)

α
∫ tnj

0
(tnj − s)−1/2 ‖BX(πn(s))‖2Hα−1,L2 ds

≤ C T (h2 + kn)
α ‖X‖2Hα,L2,∞τ

.

These estimates are also applied to the following two terms and give

‖ηn1,3(j)‖2H,L2 + ‖ηn3,4(j)‖2H,L2 ≤ C(1 + kn)(h
2 + kn)

α ‖X‖2Hα,L2,∞τ
.

In the end, the difference of the solution and the approximation is estimated by their difference
at previous time steps, which stems from the following calculations

‖ξn1,4(j)‖2H,L2 ≤ C E
(
(

∫ tnj

0
(tnj − πn(s))

−1/2‖X(πn(s))−Xn
κn(s)‖H ds)2

)

≤ C 2
√
T

j−1∑

i=0

kn(i) (t
n
j − tni )

−1/2‖X(tni )−Xn
i ‖2H,L2 ,
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where we used Equation (4.2) in [31]. The stability of the semigroup approximation for ηn1,4(j)
and ηn3,5(j) leads to

‖ηn1,4(j)‖2H,L2 + ‖ηn3,5(j)‖2H,L2 ≤ C
j−1∑

i=0

kn(i)(1 + kn(i)) ‖X(tni )−Xn
i ‖2H,L2

≤ C (1 + T )
j−1∑

i=0

kn(i) ‖X(tni )−Xn
i ‖2H,L2 .

The remaining terms cannot be estimated with respect to α. For those, convergence is limited
by the properties of the stochastic integral. We have with the regularity of the solution from
Lemma 2.5 in [33] and Equation (2.2), combined with previous estimates

‖ηn3,2(j)‖2H,L2 ≤ C

∫ tnj

0

∫ s

πn(s)
‖X(r)−X(πn(s))‖2H,L2 dr ds

≤ C k2n ‖X‖2H1,L2,∞τ
.

The convergence for two of the remaining terms that were not approximated in Equation (3.5)
results from the upper and lower limit of the inner integral, i.e., we have

‖ξn2 (j)‖2H,L2 + ‖ηn2 (j)‖2H,L2 ≤ C k2n ‖X‖2H1,L2,∞τ
.

Finally, to give estimates on ξn3 (j), we may write

‖ξn3 (j)‖2H,L2 = ‖
j∑

i=1

∫ tni

tni−1

S(tnj − s)B

∫ s

tni−1

S(s− r)G(X(r)) dM(r) ds‖2H,L2

=
j∑

i,k=1

E
((∫ tni

tni−1

S(tnj − s)B

∫ s

tni−1

S(s− r)G(X(r)) dM(r) ds ,

∫ tnk

tnk−1

S(tnj − s)B

∫ s

tnk−1

S(s− r)G(X(r)) dM(r) ds
)
H

)
.

For i /= k the inner product is zero, since one term is independent and the other measurable
with respect to the filtration at the smaller of the two time points tni , t

n
k . This implies

‖ξn3 (j)‖2H,L2 =
j∑

i=1

‖
∫ tni

tni−1

S(tnj − s)B

∫ s

tni−1

S(s− r)G(X(r)) dM(r) ds‖2H,L2 .

Hölder’s inequality and similar estimates as before lead to

‖ξn3 (j)‖2H,L2 ≤ C kn

∫ tnj

0

∫ s

πn(s)
‖X(r)‖2H1,L2 dr ds ≤ C k2n ‖X‖2H1,L2,∞τ

.

This concludes the estimates of the terms, and overall we have for 0 < j ≤ ln

‖X(tnj )−Xn
j ‖2H,L2 ≤ C1

(
(h2α + kαn)‖X‖2Hα,L2,∞τ

+ k2n‖X‖2H1,L2,∞τ

)

+ C2

j−1∑

i=0

kn(i)(1 + (tnj − tni )
−1/2)‖X(tni )−Xn

i ‖2H,L2 .
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A discrete version of Gronwall’s inequality (cf. [14]) implies

‖X(tnj )−Xn
j ‖2H,L2 ≤ C1

(
(h2α + kαn)‖X‖2Hα,L2,∞τ

+ k2n‖X‖2H1,L2,∞τ

)

·
j−1∏

i=0

(
1 + C2 kn(i) (1 + (tnj − tni )

−1/2)
)

≤ C1

(
(h2α + kαn)‖X‖2Hα,L2,∞τ

+ k2n‖X‖2H1,L2,∞τ

)

· exp(C2(T + 2
√
T )),

which concludes the proof. !
This theorem entails two remarks. The first comments on the choice of α.

Remark 3.3. The result of Theorem 3.2 implies that kn is a sharp bound for the convergence
rate in time due to the properties of the mild solution of Equation (2.1) while the convergence
in space depends on the regularity of the solution. If the mild solution is in Hα, the approxi-
mation converges with hα. Especially, if the solution is in H1, the approximation scheme still

converges with order h+ k1/2n , however in this case an Euler–Maruyama scheme, which leads
to the same error bound, would be simpler and faster to simulate.

Furthermore, we remark on Lp convergence for p > 2 which was proven for continuous
martingales in [6]. This type of convergence can also be proven for noncontinuous martingales
but the order of convergence depends on p. Therefore, a proof of L2 convergence by Lp

convergence for p > 2 as done in [35, 36] and [6] would lead to a rate of O(k2/pn ).

Remark 3.4. The estimates in Theorem 3.2 can also be done in Lp for p > 2 with adjusted
preliminaries, but the order of convergence is then dependent on p. This is due to the fact
that for a stochastic integral of Itô type with respect to a noncontinuous square integrable
martingale a Burkholder–Davis–Gundy type inequality reads

E(‖
∫ t

r
Φ(s) dM(s)‖pH) ≤ C E(

∫ t

r
‖Φ(s)‖pL(U,H) ds),

while we have

E(‖
∫ t

r
Φ(s) dM(s)‖pH) ≤ C E((

∫ t

r
‖Φ(s)‖2L(U,H) ds)

p/2)

for continuous martingales. This implies that, if the convergence results from the limits of
the integral, we obtain t− r for all p ≥ 2 instead of (t− r)p/2. This is illustrated in Section 5,
where we derive error bounds for a compensated Poisson process.

Overall, Theorem 3.2 transforms for p > 2 to

sup
0≤j≤ln

‖X(tnj )−Xn
j ‖H,Lp ≤ C1(h

α + kα/2n )‖X‖Hα,Lp,∞τ + C2 k
2/p
n ‖X‖H1,Lp,∞τ

,

for some positive constants C1 and C2 that depend on α.

Theorem 3.2 implies almost sure convergence as stated in the next theorem. The rate of
convergence in the time domain is at least 1/2− ε. To our knowledge, so far it is not known
how to prove higher almost sure convergence rates for this type of Milstein scheme, which is
e.g., of interest in filtering problems.
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Theorem 3.5. Let C1 and C2 be constants such that for all n ∈ N, kn ≤ C1T/n, and
h2 = C2kn. Then, for α = 2, (Xn, n ∈ N) converges almost surely to X, i.e.,

lim
n→∞

sup
0≤j≤ln

‖X(tnj )−Xn
j ‖H = 0 P–a.s.

Proof. Let ε > 0, then Chebyshev’s inequality implies with Theorem 3.2 for all 0 ≤ j ≤ ln
that

P(‖X(tnj )−Xn
j ‖H ≥ k(1−ε)/2

n ) ≤ k−(1−ε)
n ‖X(tnj )−Xn

j ‖2H,L2 ≤ C k1+ε
n ,

since h2 = C2kn. Furthermore, since kn ≤ C1T/n, the corresponding series is convergent and
therefore by the Borel–Cantelli lemma we get that for all 0 ≤ j ≤ ln asymptotically

‖X(tnj )−Xn
j ‖H ≤ k(1−ε)/2

n , P–a.s.,

i.e., there exists a P-null set Nj such that for all ω in the complement N c
j and n ≥ n0(ω) for

some n0(ω) ∈ N,
‖X(tnj ,ω)−Xn

j (ω)‖H ≤ k(1−ε)/2
n .

Since ln < +∞,
⋃

0≤j≤ln Nj is a P-null set and therefore, for all ω ∈
⋂

0≤j≤ln N
c
j asymptoti-

cally

sup
0≤j≤ln

‖X(tnj ,ω)−Xn
j (ω)‖H ≤ k(1−ε)/2

n ,

which proves the theorem. !

We continue with the approximation of M , since the presented scheme might still not be
suitable for simulations although it is discretized in space and time.

4. Noise approximation

In Section 3 we did not approximate the noise. Here, we derive an approximation of
the driving noise term, in this case of a Lévy process, which preserves the overall order
of convergence presented in Section 3. We assume that we are able to simulate the real-
valued processes exactly, meaning that we do not take the error into account which stems
from the approximation of small jumps by e.g., a Brownian motion. For the simulation and
approximation of one dimensional Lévy processes we refer the reader to [1] and [15].

Let us assume in this section that M ∈ M2
b(U) is a Lévy process L and therefore has a

stationary covariance Q ∈ L+
1 (U). Then, there exists an eigenbasis (ei ∈ U, i ∈ N) and a set

of eigenvalues (γi, i ∈ N) such that Qei = γiei and γi ≥ 0 for all i ∈ N as seen in Section 2.
This implies that L admits the Karhunen–Loève expansion

L(t) =
∞∑

i=1

(L(t), ei)Uei =
∞∑

i=1

√
γi Li(t) ei,(4.1)

where (Li, i ∈ N) is a family of real-valued, orthogonal Lévy processes (see Section 4.8 in [42]).
Let us denote by Lκ the truncated process, i.e., for all t ∈ τ the stochastic process, which is
given by

Lκ(t) =
κ∑

i=1

√
γi Li(t) ei,
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and its covariance is denoted by Qκ. For κ → +∞, this process converges almost surely to L
(see Section 4.8 in [42]). We set

Lcκ(t) = L(t)− Lκ(t) =
∞∑

i=κ+1

√
γi Li(t) ei,

with covariance Qcκ = Q − Qκ, which converges almost surely to zero. Let L2
H,τ (H) =

L2(Ω × τ ; LHS(H, H)) be the space of integrands, defined over the probability space (Ω ×
τ, Pτ , P ⊗ dλ), where Pτ denotes the σ–field of predictable sets in Ω × τ and dλ is the
Lebesgue measure. Then, the Itô integral over Ψ ∈ L2

H,T (H) satisfies that
∫ b

a
Ψ(s) dL(s)−

∫ b

a
Ψ(s) dLκ(s) =

∫ b

a
Ψ(s) dLcκ(s).(4.2)

In [7], it is shown, how the stochastic integral with respect to an Lκ consisting of independent
Lévy processes (Li, i ∈ N) converges to a Hilbert-space-valued Lévy process L for κ → +∞.
This result generalizes to the following lemma.

Lemma 4.1. If for 0 ≤ a < b ≤ T and Ψ ∈ L2
H,T (H)

E(
∫ b

a
‖Ψ(s)‖2L(U,H) ds) < +∞

and there exist constants C1, C2 > 0 such that the eigenvalues of the covariance Q of L satisfy
γi ≤ C1 i−δ for δ > 1, i ∈ N and κ ≥ C2 h−β for some β > 0, then there exists a constant C(δ)
such that

‖
∫ b

a
Ψ(s) dL(s)−

∫ b

a
Ψ(s) dLκ(s)‖H,L2 ≤ C(δ)

(
E(

∫ b

a
‖Ψ(s)‖2L(U,H) ds)

)1/2
h

β(δ−1)
2 .

Proof. We first observe that

‖
∫ b

a
Ψ(s) dL(s)−

∫ b

a
Ψ(s) dLκ(s)‖2H,L2 = ‖

∫ b

a
Ψ(s) dLcκ(s)‖2H,L2

= E(
∫ b

a
‖Ψ(s)‖2LHS((Qcκ)1/2U,H) ds)

by Equations (4.2) and (2.2), where in this case equality holds (see Corollary 8.17 in [42]).
Next, we calculate the Hilbert–Schmidt norm. We have that

E(
∫ b

a
‖Ψ(s)‖2LHS((Qcκ)1/2U,H) ds) = E(

∫ b

a

∞∑

i=κ+1

γi‖Ψ(s)ei‖2H ds).

With the properties of Ψ it holds that

E(
∫ b

a

∞∑

i=κ+1

γi‖Ψ(s)ei‖2H ds) ≤ C E(
∫ b

a
‖Ψ(s)‖2L(U,H) ds)

∞∑

i=κ+1

γi,

and the decay of the eigenvalues and the assumptions on κ imply that
∞∑

i=κ+1

γi ≤ C1

∞∑

i=κ+1

i−δ = C1

∞∑

i=1

(i+ κ)−δ ≤ C1

∫ ∞

0
(x+ κ)−δdx

= C1C
1−δ
2 (δ − 1)−1hβ(δ−1).
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This proves the lemma. !
We remark that the estimates stay true, if Ψ also depends on the upper integration limit,

i.e., the stochastic integral is a convolutional integral with respect to a semigroup, since
Equation (2.2) also holds for this type of integrands (see [21]).

Next, we approximate the double stochastic integral, which is the additional term when
extending an Euler–Maruyama scheme to a Milstein scheme. In Equation (3.4) this term is

∫ tnj

tnj−1

(
Rn,h

j−1PhG
(∫ s

tnj−1

G(Xn
j−1) dM(r)

))
dM(s).(4.3)

We discuss this term for Lévy processes but in the more general setting, where we introduce
separable Hilbert spaces H and U . The Hilbert space H can then be set to L2(D) or some
approximation space Vh to apply the theory to Theorem 3.2. Further, we consider a linear
map Γ : H → L(U,H) satisfying Assumption 2.1(d) for β = 0 and the norm in L(U,H). In
addition, we have a bounded map σ : τ → L(H,H). For 0 ≤ a < b ≤ T and an H-valued,
adapted stochastic process ψ = (ψ(t), t ∈ τ), we rewrite Equation (4.3) more generally as

∫ b

a
σ(a)Γ

(∫ s

a
Γ(ψ(a)) dL(r)

)
dL(s).(4.4)

Using the Karhunen–Loève expansion of L given in Equation (4.1), we have that
∫ b

a
σ(a)Γ

(∫ s

a
Γ(ψ(a)) dL(r)

)
dL(s) =

∞∑

i,j=1

√
γi
√
γj σ(a)Γ(Γ(ψ(a))ei)ej

∫ b

a

∫ s

a
dLi(r) dLj(s).

With Itô’s formula the iterated Itô integral is given, for i = j, by
∫ b

a

∫ s

a
dLi(r) dLi(s) =

1
2

(
(Li(b)− Li(a))

2 − (b− a)−
∑

a<s≤b

(Li(s)− Li(s−))2
)
.

By the same argument, the mixed terms, i.e., for i /= j, satisfy
∫ b

a

∫ s

a
dLi(r) dLj(s) +

∫ b

a

∫ s

a
dLj(r) dLi(s)

= (Li(b)− Li(a)) · (Lj(b)− Lj(a))−
∑

a<s≤b

(Li(s)− Li(s−)) · (Lj(s)− Lj(s−))

= ∆Lij .

If

Γ(Γ(ψ)ei)ej = Γ(Γ(ψ)ej)ei,(4.5)

for i, j ∈ N — this is for example satisfied for multiplicative noise (see Equation (27)
in [25]) and especially in the case where Γ is a pointwise multiplication with a suitable
function g, e.g. g ∈ Cα

b (D), U = L2(D), where the eigenbasis and eigenvalues of Q satisfy
that

∑
i∈N γi‖ei‖2W 2,∞(D) < +∞ — we rewrite Equation (4.4) as

∫ b

a
σ(a)Γ

(∫ s

a
Γ(ψ) dL(r)

)
dL(s) = 1

2

∞∑

i,j=1

√
γi
√
γj σ(a)Γ(Γ(ψ)ei)ej

(
∆Lij − δij(b− a)

)
.

This implies that the stochastic integrals can be simulated, if we assume that we are able
to simulate the real-valued processes exactly as discussed in the beginning of the section.
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Approximation of the small jumps would lead to an additional error contribution. Still, the
number of processes to be simulated might be infinite. To approximate the series by a finite
number of stochastic processes, we truncate the Karhunen–Loève expansion as in Lemma 4.1
and simulate
∫ b

a
σ(a)Γ

(∫ s

a
Γ(ψ) dLκ(r)

)
dLκ(s) = 1

2

κ∑

i,j=1

√
γi
√
γj σ(a)Γ(Γ(ψ)ei)ej

(
∆Lij − δij(b− a)

)
.

The resulting error is given in the following lemma.

Lemma 4.2. For n ∈ N, let σ : Tn → L(H,H), Γ : H → LHS(H, H) be linear and satisfy
Assumption 2.1(d) for β = 0 and the norm in L(U,H) as well as Equation (4.5). Further,
let ψ = (ψ(t), t ∈ Tn) be an adapted, H-valued stochastic process. For t ∈ Tn, if

E(
∫ t

0
‖ψ(πn(s))‖2H ds) < +∞

and there exist constants C1, C2 > 0 such that the eigenvalues of the covariance Q of L satisfy
γi ≤ C1 i−δ for δ > 1, i ∈ N and κ ≥ C2 h−β for some β > 0, then there exists a constant C
such that

‖
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL(r)

)
dL(s)

−
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL

κ(r)
)
dLκ(s)‖H,L2

≤ C sup
t∈Tn

‖σ(t)‖L(H,H)

(∫ t

0
‖ψ(πn(s))‖2H,L2 ds

)1/2
(kn h

β(δ−1))1/2.

Proof. We calculate the error using Equation (2.2), the properties of σ and Γ, and in the last
step the estimate in the proof of Lemma 4.1

‖
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL(r)

)
dL(s)

−
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL

κ(r)
)
dLκ(s)‖2H,L2

≤ 2
(
‖
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL

cκ(r)
)
dL(s)‖2H,L2

+ ‖
∫ t

0
σ(πn(s))Γ

(∫ s

πn(s)
Γ(ψ(πn(s))) dL

κ(r)
)
dLcκ(s)‖2H,L2

)

≤ C sup
t∈Tn

‖σ(t)‖2L(H,H)

(∫ t

0
‖
∫ s

πn(s)
Γ(ψ(πn(s))) dL

cκ(r)‖2H,L2 ds

+
∞∑

i=κ+1

γi

∫ t

0
‖
∫ s

πn(s)
Γ(ψ(πn(s))) dL

κ(r)‖2H,L2 ds
)

≤ C sup
t∈Tn

‖σ(t)‖2L(H,H)

∫ t

0
‖ψ(πn(s))‖2H,L2 ds kn

∞∑

i=κ+1

γi
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≤ C sup
t∈Tn

‖σ(t)‖2L(H,H)

∫ t

0
‖ψ(πn(s))‖2H,L2 ds kn h

β(δ−1). !

Let δ > 1 be given. For a convergence of h2 of the Euler–Maruyama term in Lemma 4.1,
we have to choose β ≥ 4/(δ− 1) and therefore κ1 = κ ≥ C h−4/(δ−1) for some constant C. At
the same time, a convergence of h2 of the Milstein term is achieved if β ≥ 2/(δ − 1), which
implies that κ2 = κ ≥ C h−2/(δ−1) for some constant C. Therefore, the overall convergence
of h2 in Theorem 3.2 is preserved if the noise in the Euler–Maruyama and in the Milstein term
are truncated according to κ1 and κ2. So, to balance the errors, we have to use the first κ1
terms of the Karhunen–Loève expansion for the Euler–Maruyama term and

√
κ1 terms for the

Milstein term. With this observation we conclude that the simulation of the Milstein term is
computationally not more expensive than the Euler–Maruyama term. For the Milstein term
we have to sum over all mixed stochastic processes, i.e., κ22 resp. κ22/2 terms, if we use the
symmetry of Γ. If the simulation of the Euler–Maruyama term needs computational effort
O(κ1) and κ1 = κ22, the overall work for the Milstein term is also O(κ1). Therefore, by adding
the Milstein term, we increase the order of convergence but with the correct truncation of the
Karhunen–Loève expansion, the overall work does not increase. We remark that the efficient
simulation of the Milstein term in [25] is possible in O(N logN), where N is the number of
grid points of the underlying domain, since the special structure of the domain and the chosen
discretization grid allow the use of fast Fourier methods. In the general case, when Finite
Element methods on arbitrary bounded polyhedrons are used, this approach does not apply.

Overall, the fully approximation scheme reads

X̃n
j = Rn,h

(j−1:0)PhX0 +

∫ tnj

0
Rn,h

(j−1:κn(s))
PhBX̃n

κn(s) ds

+

∫ tnj

0
Rn,h

(j−1:κn(s))
PhG(X̃n

κn(s)) dL
κ(s)

+

∫ tnj

0

(
Rn,h

(j−1:κn(s))
PhG

(∫ s

πn(s)
G(X̃n

κn(s)) dL
√
κ(r)

))
dL

√
κ(s),

where we included beside a space and time discretization, the (according to Lemma 4.2)
truncated driving noise process. Then, Lemma 4.1 and 4.2 together with Theorem 3.2 imply
the following corollary, where we set σ(t) = Rn,h

(j−1:κn(t))
Ph and Γ = G.

Corollary 4.3. Assume that κ ≥ C2h−2max(α,2)/(δ−1)3 for some constant C, where δ > 1
with γi ≤ C̃ i−δ for i ∈ N and a fixed constant C̃. Then, the fully discrete approximation
X̃n converges in mean square to the mild solution X of the stochastic partial differential
equation (2.1) and satisfies for constants C1 and C2 that depend on T and δ that

sup
0≤j≤ln

‖X(tnj )− X̃n
j ‖H,L2 ≤ C1(h

α + kα/2n )‖X‖Hα,L2,∞τ
+ C2 kn‖X‖H1,L2,∞τ

.

Especially for α = 2 and X ∈ H2, it holds that

sup
0≤j≤ln

‖X(tnj )− X̃n
j ‖H,L2 = O(h2 + kn).

5. Examples and simulation

A compensated Poisson process showcases that a noncontinuous, square integrable mar-
tingale exhibits the order of convergence in time described in Section 3. In general, for a



MILSTEIN METHOD FOR MULTIPLICATIVE ADVECTION-DIFFUSION SPDES 19

noncontinuous martingale convergence of order kn represents a sharp bound in L2. The
example is followed by simulations on the order of convergence for Euler–Maruyama and
Milstein type terms.

Example 5.1. Let L = (L(t), t ≥ 0) be a Poisson process with intensity λ > 0, i.e., L has
distribution

PL(t) = e−λt
∞∑

n=0

(λt)n

n!
εn.

Then, the corresponding compensated Poisson process

M(t) = L(t)− λt

is a square integrable martingale. The quadratic variation [M ] of M = (M(t), t ≥ 0) is again
the Poisson process L, i.e., we have [M ]t = L(t) for all t ≥ 0. The Burkholder–Davis–Gundy
inequality for martingales implies

E(‖
∫ t

0
dM(s)‖p) ≤ C E((

∫ t

0
d[M ]s)

p/2) = C E((
∫ t

0
dL(s))p/2) = C E(L(t)p/2)

and for n ∈ N, the n-th moment of L is given by

E(L(t)n) =
n−1∑

k=0

(
n− 1

k

)
λtE(L(t)k).

This implies for t ↓ 0

E(‖
∫ t

0
dM(s)‖p) = O(t)

and for t ↑ +∞

E(‖
∫ t

0
dM(s)‖p) = O(tp/2).

If we look at the (trivial) stochastic differential equation

dX(t) = dM(t)

with initial condition X(0) = M(0), the regularity of the solution satisfies for t > r

E(‖X(t)−X(r)‖p) = E(‖
∫ t

r
dM(s)‖p) ≤ C

p/2−1∑

k=0

(
p/2− 1

k

)
λ(t− r)E(L(t)k).

So convergence in Lp for r → t is of order (t − r)1/p and this cannot be improved with the
chosen methods. By Hölder’s inequality, Lp convergence implies Lq convergence for p ≥ q,
since for φ ∈ Lp

‖φ‖H,Lq ≤ ‖φ‖H,Lp .

Therefore, using the estimate in Lp instead of a direct calculation in Lq for p > q, we obtain
that

‖X(t)−X(r)‖H,Lq ≤ (t− r)1/p,

i.e., the order of convergence reduces by a factor of q/p.
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In the simulation we compare the convergence of the Euler–Maruyama and the Milstein
term with domain D = (0, 1) on the time interval [0, 1], i.e., we approximate the integrals

∫ 1

0
Γ(ψ(πn(s))) dL(s) and

∫ 1

0
Γ(

∫ s

πn(s)
Γ(ψ(πn(s))) dL(r)) dL(s)

and compare for κ chosen according to Lemma 4.1 and Lemma 4.2 the convergence rates
with those proven in Section 4. Next, we introduce the parameters that were chosen for the
simulation. The constructed Lévy process L = (L(t), t ∈ τ) is given by

L(t) =
∞∑

i=1

√
γi ei Li(t)

and

Li(t) = Wi(t) + Pi(t),

where (Wi(t), i ∈ N) is a family of independent, real-valued Wiener processes and (Pi(t), i ∈ N)
is a family of independent, real-valued compound Poisson processes, where the jump intensity
is λ = 1 and the jump sizes are symmetric Gamma distributed with parameters 2 and 5, i.e.,
the jump size J = Y · Z is given by Y ∼ Γ(2, 5) and Z ∼ U{−1, 1}. We set the kernel of
the covariance operator Cov(x, y) = exp(−10|x − y|), for x, y ∈ D. This implies that the
covariance operator Q has eigenvalues (γk, k ∈ Z) given by

γk =
20

100 + 4π2k2
,

for k ∈ Z, and corresponding eigenfunctions (ek, k ∈ Z) given by

ek(x) = c−1
k

(
cos(2πkx)− 10

2πk
sin(2πkx)

)
,

for k ∈ Z and x ∈ D, where

c2k =
100

8π2k2
+

1

2
.

Therefore, the chosen covariance has the property that δ = 2 in Lemma 4.1 and 4.2. Further-
more, we set

(Γ(ψ)φ)(x) = g(x) · ψ(x) · φ(x),
for x ∈ D, where g(x) = x and ψ ≡ 1. Here, we can choose a constant ψ to simplify the
simulation since otherwise, in both terms the same approximate solution of the stochastic
partial differential equation would be plugged in. We choose β = 1 in Lemma 4.1 and in
Lemma 4.2 and equal step sizes in space and time. The assumption that h2 = O(kn) is in this
simulation superfluous and would just increase the computational costs in both simulations,
since the convergence results in Lemma 4.1 and 4.2 do not depend on the relation of h and
kn. Then, Lemma 4.1 implies for the Euler–Maruyama term that it converges with order
O(h1/2) and for the corresponding Milstein term, Lemma 4.2 leads to convergence of order
O(h). The experimental results are shown in Figure 1 and confirm the theory. For each plot,
we simulated N = 1000 paths. As exact solution we chose the finest grid with 25 grid points
in space and in time. We calculated the error

eN =

√√√√ 1

N

N∑

i=1

max
j=0,...,2n

1
2m

2m∑

k=1

(
Ŷi(tj , xk)− Yi(tj , xk)

)2
,
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Figure 1. Statistical error with 1000 sample paths.

for n,m = 1, . . . , 4. Here, (Yi, i = 1, . . . , N) is the set of simulated paths on a time grid
(tj , j = 0, . . . , 2n) and a space grid (xk, k = 0, . . . , 2m), and (Ŷi, i = 1, . . . , N) the family of
simulated paths of the “exact” solution on the fine grid in time and space.
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