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MULTILEVEL MONTE CARLO METHOD
FOR
PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

ANDREA BARTH, ANNIKA LANG, AND CHRISTOPH SCHWAB

ABSTRACT. We analyze the convergence and complexity of multilevel Monte Carlo discretiza-
tions of a class of abstract stochastic, parabolic equations driven by square integrable martin-
gales. We show under low regularity assumptions on the solution that the judicious combi-
nation of low order Galerkin discretizations in space and an Euler—-Maruyama discretization
in time yields mean square convergence of order one in space and of order 1/2 in time to
the expected value of the mild solution. The complexity of the multilevel estimator is shown
to scale log-linearly with respect to the corresponding work to generate a single path of the
solution on the finest mesh, resp. of the corresponding deterministic parabolic problem on
the finest mesh.

1. INTRODUCTION

Stochastic partial differential equations (SPDEs for short) are increasingly used as models
in engineering and the sciences. We mention only the pricing of energy derivative contracts,
porous media flows, filtering, and interest rate models. Accordingly, their efficient numerical
solution has received more and more attention in recent years. Most of the numerical analysis
of solution methods for stochastic partial differential equations has been devoted to identifying
sufficient smoothness conditions on the data (among other parameters, covariance spectrum
and smoothness of initial data) for certain discretization schemes to achieve a certain order of
strong resp. weak or even pathwise convergence. See, e.g. the survey [15] and the references
therein, and also [11],[20],[2], [3], [4] for recent results.

Except for results on pathwise convergence as, e.g., in [7], [3], [4], motivated by applica-
tions in numerical stochastic optimal control, commonly, moments of the solution such as
first and second moments of the random solution are of main interest in applications. In
numerical solution schemes for stochastic partial differential equations, such moments are
approximated by Monte Carlo simulation, i.e., by averaging possibly large ensembles of ap-
proximated (in physical space and time) solution paths. We thus distinguish three principal
sources of discretization errors in such moment approximations: spatial discretization, e.g. by
Finite Elements or Finite Differences, time stepping errors due to e.g. Euler-Maruyama or
Milstein time stepping and, finally, the sampling error incurred by replacing the mathematical
expectations with finite ensemble averages. The convergence rate 1/2 in mean square of Monte
Carlo estimates (which is not improvable as can be seen in the proof of Lemma 4.1) com-
bined with the high cost of approximating sample paths (which is due to the low spatial and
temporal regularity of partial differential equations driven by noise) renders the approximate
solution of stochastic partial differential equations costly.

Key words and phrases. Multilevel Monte Carlo, stochastic partial differential equations, stochastic Finite
Element methods, stochastic parabolic equation, multilevel approximations.
This research was supported in part by the European Research Council under grant ERC AdG 247277.
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2 BARTH, LANG, AND SCHWAB

This effect is, to a lesser extent, already present in the context of Itd stochastic (ordinary)
differential equations. Recently, it was observed in [12], [13] that substantial efficiency gains
in numerical simulation can be achieved by the use of so-called multilevel path simulation
techniques in connection with Monte Carlo sampling. However, in [14] the authors show that
multilevel Monte Carlo does not converge for equations with superlinearly growing coefficients
if an inappropriate building block is used.

Analogous multilevel ideas have been proven successfully in the context of partial differ-
ential equations with random input data. We mention only [6] for elliptic partial differential
equations with random coefficients, and [23] for Finite Volume solvers of scalar hyperbolic
conservation laws with random initial data.

The analysis of a multilevel Monte Carlo (MLMC) discretization technique for parabolic
stochastic partial differential equations driven by square integrable martingales is the purpose
of the present paper. The multilevel Monte Carlo approach uses hierarchic meshes for the
space and time approximation. A combination of a low number of Monte Carlo samples on
very fine grids and increasing sample sizes on coarser meshes guarantees an optimal balance
between the computational effort for sampling on one hand and solving the corresponding
partial differential equation on the other. Using low-order Euler—-Maruyama time stepping
and space discretizations of low regularity, we give a-priori estimates on the mentioned three
error contributions. We bound the strong error in mean square in Theorem 4.3 for the
singlelevel discretization, i.e., the difference of the mild and the approximate solution for
a fixed discretization mesh. This bound is the basis of the multilevel Monte Carlo error
bound in Theorem 4.5 which explicitly contains error bounds in terms of the discretization
parameters time step, space step, and the Monte Carlo sample size. Importantly, in the error
analysis close to minimal assumptions on the spectrum of the covariance operator () of the
driving noise and on the initial data X are imposed. The resulting multilevel Monte Carlo
error bound in Theorem 4.5 is used to minimize the number of Monte Carlo samples at each
discretization level in order to balance the statistical sampling with the spatial and temporal
discretization errors. In Theorem 4.6, the resulting sampling numbers and a corresponding
estimate of the asymptotic total work are given. The work estimate is shown to be superior
to the corresponding work estimate for the singlelevel Monte Carlo method.

In the concluding remarks, we state, based on [4], multilevel Monte Carlo results for the
Milstein scheme, in connection with a low order spatial Finite Element discretization. This
discretization is shown to yield twice the (strong) convergence rate of the method based
on the Euler—-Maruyama time stepping scheme, however under stronger assumptions on the
smoothness of the initial data and on the decay of the spectrum of the covariance operator.
The approach towards the analysis of discretization schemes can be generalized to higher
order discretizations. Since more sophisticated spatial and temporal discretizations exhibit
higher convergence rates only under stronger regularity assumptions on the data, and since
multilevel Monte Carlo variants of such discretizations are dominated by the sampling, the
overall computational work for such higher order schemes is dominated once more by the
work for sample path generation.

2. PRELIMINARIES

We consider stochastic processes with values in a separable Hilbert space (U, (-, )y) defined
on a filtered probability space (€2, A, (Ft)t>0, P) satisfying the “usual conditions”. The space
of all cadlag square integrable martingales taking values in U with respect to (F)i>o is



MLMC METHOD FOR PARABOLIC SPDES 3

denoted by M?2(U). We restrict ourselves to the following class of martingales
MUY = {M € M2(U), 3Q € LT (U) s.t. ¥t > 5> 0, (M, M), — (M, M), < (t — $)Q} ,

where LT(U) denotes the space of all nuclear, symmetric, nonnegative definite operators. The
operator angle bracket process (((M, M)):,t > 0) is defined as

<<M7M>>t :/0 Qsd<M’M>s

for t > 0, where ((M, M);,t > 0) is the unique angle bracket process from the Doob—Meyer
decomposition. The process (Qs,s > 0) is often referred to as the martingale covariance of
the process M. Examples of such processes are (Q-Wiener processes and square integrable
Lévy martingales, i.e., those Lévy martingales with Lévy measure v that satisfies

/U loll? #(dg) < +oo .

Since Q € L (U), there exists an orthonormal basis (e,,n € IN) of U consisting of eigen-
vectors of Q. Therefore, for n € IN, we have the representation Qe,, = yne,, where v, > 0 is
the eigenvalue corresponding to e,. Then, the square root of () is defined as

Ql/%/] = Z (1/)7 en)U ’771/2 €n

nelN

for 1 € U, and Q'/2 denotes the pseudo inverse of QY/2. Let us denote by (H, (-, )n)
the Hilbert space defined by H = QY2(U) endowed with the inner product (¥, ¢)y =
(Qfl/Qw,Qfl/QmU for ¢, € H. We refer to the space of all Hilbert—Schmidt operators
from H to a separable Hilbert space (H, (-,-)u) as Lys(H; H), and by || - |1 ,,s(2;m) We denote
the corresponding norm. By Proposition 8.16 in [25] we have

(2.1) E[| /0 (s) dM(s)|%] < E /0 1 ()2 g1, 5]

fort € [0,7], M € MZ(U), and a locally bounded, predictable process ¥ : [0,T] — Lys(H, H)
with

T
E[ /0 12,y ds] < +00 .

For a separable Hilbert space (H, (-, -)g) with induced norm || - ||z, we denote the set of
strongly measurable, square summable mappings v : @ — H by
L*(; H)={Y : Q — H, Y strongly measurable, 1Y 20y < 400}
where
Y |2y = ENYIF)Y? -
On H we consider the stochastic partial differential equation
(2.2) dX(t) = (AX(t) + F(X(t))) dt + G(X(t)) dM(t)

for t € T = [0,T], T < +oc, subject to the initial condition X (0) = Xo € L?(£; H), which
is Fo-measurable. The operator A with densely defined domain D(A) C H is assumed to be
the generator of an analytic semigroup S on H and zero is in the resolvent set of —A. We
further assume that A is boundedly invertible on D(A), and that (—A)~! : H — D(A) is a
bounded linear operator. Then, for 0 < a < 1, the interpolation operators A, = (—A)% of
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index « between the linear operator —A and the identity operator I on H are well-defined
(see e.g. Theorem 6.13 in [24]). We set V' = D(A; /). Let us define the continuous bilinear
form B :V xV — R by

Ba(p,¥) = (A1)20, A1)2¥)
for ¢, € V. We set
lellv = 1412 el

for ¢ € V and define the norm on L?(Q;V) accordingly. Furthermore, by Theorem 6.13
in [24], there exists a constant C' > 0 such that for all t € T and p € V

(2.3) 1(S(t) = Dellar < CH 2| Ay japllr = CE2 ol
and since S is strongly continuous, there exists a constant C' > 1 such that
(2.4) 1S@®)ella < Cllella

for all t € T and ¢ € H. This implies that for 0 < s <t<T and p € V
(2.5) 1(S(t) = S(s)ella < CvE—s|ellv .

Following up on the properties of Equation (2.2), we consider the operator F' as a mapping
from H to H and G as a mapping from H to the linear operators from U into H. We assume
that the stochastic process M is in MZ(U).

Next, we introduce a diffusion problem on a bounded domain of R?, d € IN, as an example
of our abstract framework.

Example 2.1. Let D C R? for d € IN be a convex polygon and H = L?(D). The operator A
with domain D(A) C L?(D) is the unique self-adjoint extension of the differential operator

d
> 0i(ai;0ju)
ij=1
for u € C2(D) such that u satisfies Dirichlet boundary conditions, i.e., u(z) = 0, for z € T on
the boundary I' = 9D. Here, C?(D) denotes the twice continuously differentiable functions
on D with compact support. The functions a;; are supposed to be continuously differentiable
on D with continuous extension to the closure D. We assume that there exists § > 0 such
that for all z € D and ¢ € R¢
d
D aij(@)6s = 3lI€ R
ij=1
This implies that the operator A is dissipative, see e.g. [18]. Then by the Lumer—Phillips
theorem, see e.g. [10], A generates a strongly continuous contraction semigroup S on H.
Furthermore, by Corollary 2 in [17], S is analytic in the right half-plane. Therefore, fractional
powers of (—A) are well defined, cf. [10] and Equation (2.3) holds. By results in [1], V =
H{(D) and the norm || Ay 5+ || 12(py is equivalent to ||| ;1 which is known as Kato’s conjecture.
The bilinear form corresponding to A is given by
d
Balp, ) = Y (ai;05,010) 1
ij=1
for g, € V.
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An example of a nonlinear F' is

T 3
Flple) = 120

for ¢ € V and x € D. This example also satisfies the conditions specified in Assumption 2.2.
To give an explicit choice for G, we first fix U and (. Therefore, let U = H and (e,,n € IN) be
an eigenbasis of () with corresponding eigenvalues (v, n € IN) such that > Vn||en\|12/vlm( p) <

C for some finite constant C, where W1°°(D) denotes the Sobolev space of order 1 with (weak)
derivatives in L°°(D). Then one possible choice of the operator G is

G)p(x) = g(2)(1 + ¥ (x))p(x)
for some boundedly differentiable function g € C}(D) and ¢, € H.

Next, we make assumptions such that Equation (2.2) has a mild solution. Therefore, we
impose linear growth and Lipschitz conditions on the operators F': H — H and G : H —
L(U;H):

Assumption 2.2. Let B = H,V. Assume that there exist constants C1,Cy > 0 such that
for all ¢ € B, 1,92 € H it holds that

1F(d)lls < Cr(1+ [|9]lB)
1E (1) = Fp2)lla < Cillpr — @2lla

and

1G(O) LysersB) < C2(1+ |9]B),
|G (e1) — G(@2)| sz ) < Callpr — w2l m -

We note that under Assumption 2.2, if we look at the special case of a stochastic partial
differential equation with additive Wiener noise, i.e., the last part of the equation reads
G dW (t), we can assume without loss of generality that U = H since GW defines a Wiener
process with covariance operator GQG*.

Assumption 2.2 implies that Equation (2.2) has a unique mild solution in H by results in
Chapter 9 in [25] and that the predictable process X : T x Q — H is given by

(2.6) X(t) = S(t)Xo + /0 S(t — $)F(X(s))ds + /0 S(t — $)G(X (s)) dM(s)

for t € T. For further discussions on stochastic differential equations in infinite dimensions,
the reader is referred to [9] and [25] and the references therein.

A certain regularity on the initial condition causes the regularity of the mild solution
X = (X(t),t € T), which is specified in the following lemma.

Lemma 2.3. If Assumption 2.2 holds and || Xol|2(q.vy < +00, then the solution X defined
in Equation (2.6) is in L*(Q; V). In particular, for all t € T it holds

X @)l L2v) < CT) (A + [ XollL20sv)) -
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Proof. With Assumption 2.2, Equation (2.1), Equation (2.4), Holder’s inequality, and Gron-
wall’s inequality, we have for Equation (2.6)

HX(t)H%Q(Q;V)
— [15(6)Xo + / S(t — s)P(X(s)) ds + / S(t = $)G(X (5)AM (3)] 2
< 3(C)1 X0l + C(T) / 1St — $)F(X ()| g ds
T / 1S(t = )GX (DI, rayds)

t
< Ol Xollr20) +2- C(D)(1 +/0 IX ()220 d)

< C(T)(1 + [ Xoll720v)
< 400,

where C(T') denotes a varying constant that depends on T'. ([l

For later proofs we need a lemma on the regularity of the mild solution X in time. It is
mainly based on Equation (2.5). Related results can be found in [2] and [22]. We include the
proof for completeness of exposition.

Lemma 2.4. If Assumption 2.2 holds and || Xol|r2(q,v) < +oo, then there exists a con-
stant C(T) such that the mild solution X in Equation (2.6) satisfies

IX(t) = X (5)| 2.y < C(T) VE— s (1+ || Xoll L20;v))
for0<s<t<T.

Proof. The regularity is provided by

X () =X ()| £2(0:m)
< [1(S(t) = S(s)) Xoll L2 (o)

+1 [ (8= )= 8= P W) drl o
1 [ (S =) — S(s — )G ) dM ) | g2
1 [ 80— PG drll gz + | / S(t — G(X () dM () g2z -

Equation (2.5) implies for the first term that

1(5(t) = 5(s) Xoll2(sm) < CVE = s [ Xoll L2y -
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To bound the second term, we use Equation (2.5), Assumption 2.2, and Lemma 2.3:
I /0 (St —r) = S(s =) F(X(r)) dr| r2(0;m)
<OVi=s [ IOl dr

S
<OVi=s 1+ [ IX0) gz )
< CIOWE=5 (1+ | Xoll p2gauy) -
Similarly, we have for the third term using Equation (2.1) additionally

| /OS(S(L‘ —r) = S(s = r)G(X(r) dM(r)|| L2 (o)

5 2
< OVI—SE| /0 IGXNIZ, o rerydr]”

< CTWE=5 (1+ X0 201) -
For the fourth term, it holds with Equation (2.4), Assumption 2.2, and Lemma 2.3 that

t t
I [ 8= nFCCE) o <€ [ IFCC iz dr
<C(T)(t = s) (L + [ Xoll L2 (:m)) -
The last term is bounded by

t t
|| / S(t — 1) G(X (1) dM ()| g2y < E / 1S(t = IGX NI, ]
< CTWT—5 (1 + | Xol 2o

with similar calculations as in the fourth term and the application of Equation (2.1). This
concludes the proof, since

1X(t) = X ()|l 2.y < C(T)VE— s | Xollr2v) +2- CVE— 5 (1+ | Xoll 12(0.v))
+C(T) (t = 5) (1 + | Xoll£2(0;m))
+C(T) Vit — s (1+ || Xoll 20 m))
< C(T)VE—s (14 [ Xollr2@.v)) - O

In the next section, we introduce an approximation scheme for Equation (2.6). We present a
discretization in time and space, which we combine in the subsequent section with a multilevel
Monte Carlo estimator.

1/2

3. APPROXIMATION SCHEME

Let V = (Vy, £ € INg) be a nested family of finite dimensional subspaces of V' with refinement
level ¢ > 0, refinement sizes (hy, ¢ € INp), associated H-orthogonal projections (P, ¢ € INy),
and norm induced by H. The sequence V is supposed to be dense in H in the sense that for
all p € H,

lim ¢ — Pdllg =0.
{—+00
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We define the approximate operator Ay : V; — V; through the bilinear form

(—Awpe, Vo) u = Bal(pe, Ye)

for all ¢y, 1y € V;. The operator Ay is the generator of an analytic semigroup Sy = (Sy(t),t >
0) defined formally by Sy(t) = exp(tAy) for t > 0. Then the semidiscrete problem is given by

dXo(t) = (AeXo(t) + PF(Xo(t))) dt + PiG(X,(t)) dM (t)

for t € T with initial condition X ¢(0) = PyXy. The semidiscrete problem has a mild solution
which reads

(1) = Su(t)X,(0) + /0 "6yt — ) PF(Xy(s)) ds + /0 Syt — PG (Xy(s)) dM(s)

for t € T. We shall remark here that we do not approximate the noise. For a stochastic partial
differential equation with additive noise M with covariance Q € L{ (U), where G(¢) = I for
all ¢ € H and U = H, the noise is automatically finite dimensional if V; contains a finite
subset of the eigenbasis of @ since P; cuts off the Karhunen—Loeve expansion of M (see

g. [19]). Otherwise, this approximation might not be suitable for simulations. In this case
it is possible to truncate — if existent — the series representation of M depending on the
level ¢. For example for Lévy processes it is shown in [3] which properties especially of the
eigenvalues of M and the chosen number of eigenbasis elements imply that the overall order
of convergence is preserved.

Next, we introduce a fully discrete approximation. Therefore, let (©",n € INp) be a
sequence of equidistant time discretizations with step sizes §t" = T'27", i.e., for n € IN

"= ) =T2 "k = 6t"k, k=0,...,2"}.

For t% € O, we approximate the semigroup S;(t%) by a rational approximation r(5t"A,)*
that satisfies the following assumption, which can for example be realized by a backward
Euler scheme.

Assumption 3.1. The rational approximation of the semigroup r is stable and there exists
a constant C' > 0 such that r satisfies for ¢,n,k € Ng, £ < 2™ and ¢ € V the error bound

I(S(t}) = (6" A)* Po)g |l ir < Clhe + V5t [y -
We consider the fully discrete approximation of Euler—-Maruyama type

Xon(ty) = r(0t" A) Xon(ti_y) + (5" Ag) PoF (X g (th_,)) 62"
+7(0t" A PG (Xon(ti-1)) (M (t) — M(t-1))

for £,n € INg, 0 < k < 2", which may be rewritten as

Xy (t0) = r(6t"Ay) PEX0+Z / r(8t" A I PR (X (t7_1)) ds
(3.1)
+Z / r(5t" Ap) I PG (X (7_1)) dM(s) -

In the following, we give an approximation for Example 2.1 that meets Assumption 3.1.
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Example 3.2 (Diffusion problem on a bounded domain D C R?). Here, we introduce an
approximation of Example 2.1 according to [26]. In the physical domain D ¢ R with d € IN,
we approximate the mild solution X, given in Equation (2.6), with a Finite Element dis-
cretization in D. The Finite Element method which we consider is based on nested sequences
of simplicial triangulations {7;}72, of the polygonal domain D. For any ¢ > 0, we denote the
mesh width of 7; by

he = ?g%{diam(K)} .

The uniform refinement of the mesh is achieved by regular subdivision of the initial mesh 7g
with maximal diameter hg. This results in the mesh width hy = 2 ¢hg for ¢ € IN, since
her1 = 2" hy. On Ty, we define the Finite Element spaces

Ve =8y(D, Te) = {v € Hy(D), vl € P1, K € Te}

where P; = span{z®, |a| < 1} denotes the space of polynomials of total degree not exceed-
ing 1. In this framework, P, denotes the L?(D) projection onto V;. The bilinear form on V;
and the corresponding approximate operator A, read

d
(—Aer, o) = Balwe, o) = Y (ai0500, Ooe)

ij=1

for @p, 1y € V. Assumption 3.1 is fulfilled by a rational approximation of the semigroup
which is stable and accurate at least of order ¢ = 1/2, see for example Theorem 7.1 in [26].
This means

r(A\) = exp(—=A) + O(ATT1)

for [\ = 0 and supyeq(sma,) [7(A)| < 1 for £ € Ny, where o(6t"A;) denotes the spectrum
of §t™ Ay. The approximation of the semigroup by a backward Euler type time stepping is of
order 1 (cf. [26]) and therefore meets the assumption.

4. RATE OF STRONG CONVERGENCE OF A MULTILEVEL MONTE CARLO APPROXIMATION

In this section, we derive a strong convergence result of a multilevel Monte Carlo approxi-
mation of the expectation of Equation (3.1), i.e., a convergence result for the difference

(4.1) IELX ()] = BY XL ()] 2 (6:m1)

where E is a multilevel estimator for the expectation which is introduced in the following.
Therefore, let (Yp, £ € INg) be sequence of V-valued random variables such that Y, € V; for all
¢ € Ng. Then, for L € Ny, Y7, can be written as

L

Y, = Z(Yk - va—l) )
/=0

where Y_; = 0. By linearity of the expectation, it holds that

L

> (YY)

=0

L
= ZE[Ye -Y, 4.
=0

E[Y,] =E
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To derive a multilevel estimator for the expectation from this expression, we approximate
E[Y; — Y;_1] by a Monte Carlo method with a level dependent number Ny of samples, which
implies that we may estimate IE[Y7] by

L
E*Yi] =) En[Ye—Yid].
/=0

The terms in the sum on the right hand side are Monte Carlo estimators for the expectation
of the difference of Yy and Y;_1, defined by

1L
(4.2) EN[Y]:NE yi
=1

for N € IN, where (Y’,z = 1,...,N) is a sequence of independent, identically distributed
copies of a random variable Y.

We give a detailed analysis of the (singlelevel) Monte Carlo estimator next, before we prove
a multilevel Monte Carlo error bound for Equation (4.1). The strong error bound that we
derive in the next section is needed for both estimates. Further, this enables us to compare
the singlelevel Monte Carlo method to the multilevel approach.

4.1. Singlelevel Monte Carlo approximation. In this section, we derive a result on the
convergence of Monte Carlo estimators of random variables. Further, we prove a mean square
convergence rate of the approximation in space and time of the stochastic partial differential
equation (2.6). We combine both results to an error bound for the singlelevel Monte Carlo
method. First, we consider the convergence of the Monte Carlo estimator (4.2), which cannot
be improved for a given random variable with fixed variance.

Lemma 4.1. For any N € N and for Y € L*(Q; H), it holds that

1
IEY] = Ex[Y]llL2(0,m) = \/—NVar[ M2 < \/i 1Y 220 1) -

Proof. With the independence of the identically distributed samples it follows that

N
B~ En (Y113 = E[[BY] - | = 2 D BIIELY] - 73]
=1
= S EIEY]- Y1) = 5 (BlIYI3] - IEXIE)
%HYHLQ(Q H) 5
where Var[Y] = E[||E[Y] - Y[%]. O

Remark 4.2. Lemma 4.1 is formulated for an arbitrary random variable Y € L?(Q; H). In
the subsequent proofs for £,n € INy and for ¢t € ©", we estimate the Monte Carlo error of the
discrete mild solution, which is bounded with Lemma 4.1 by

1
|E[Xen ()] — En[Xen(®)]ll L2 < ﬁuXé,n(t)Hm(Q;H) -
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Furthermore, for ¢ = ¢, it holds that
HXf,n(tZ)”%%Q;H) < 3(Hr(dtnAé)kPZXOH%Z(Q;H)

k
+HZ / L (6t A PR (Xe,n(t?—l))ds‘Q

L2(;H)

n Hz/’ (5{54[)k*jHPgG(Xe,n(t;Ll))dM(S)‘

;(Q;H))

C<||XO||L2(Q-H)

Z/t (L4 X () 22y )
j—1

+Z/ (141X () 2o ds)
1

J

where we used the stability of the rational approximation of the semigroup, Equation (2.1),
and Assumption 2.2. Holder’s inequality and a discrete Gronwall inequality (see [8]) lead to

k
1Xen (2 20y < C(T)<||X0||%2(Q;H) + 146" || Xl ?—1)”%2(9;}1))
=1

< C(T) (1 + 1Xol1 22 (um)) -

This estimate implies

1
E[X0, ()] — En[Xea(t 1) < ——= C(T)(1+ || X 1)) -
Sup [E[Xen®)] = En[Xen®ll2um < 2 OO + [ Xoll2osm)

The error bound in Lemma 4.1 is of limited practical value, since any implementation
of the estimator En[X(t)] for ¢ € T of the mild solution X of Equation (2.6) requires an
approximation of the ‘samples’ X(t (t)!, incurring an additional error. We therefore now derive
an a-priori error bound which includes the additional discretization error stemming from the
space discretization and from time stepping along sample paths. The considered discretization
scheme is introduced in Equation (3.1) for some level £ € INy.

A strong error bound, i.e., an error bound in L?(Q; H) for the approximation is given in
the following theorem.

Theorem 4.3. If X is the mild solution of (2.6) and (Xypn, {,n € INg) is the sequence of
discrete mild solutions introduced in Equation (3.1), then there exists a constant C(T') such

that for all £,n € Ny,

tS%p X (1) = Xew®) L2y < C(T)(he + V™) (1 + || Xoll z2(ov)) -
e n
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Proof. For £,n € Ny and ;! € ©", the error is bounded by

< 3(1I(S(8) — (6t A0 P) Xo 32

k
+ HZ / TSty — 5)F(X(s)) — (68" A I PR (X (10

+[32 [ st - 9)GX(s) = r(68 ARG (X (8-

=3I+ I+ III) .
Assumption 3.1 implies for the first term
1< Clhe + Vot Xoll 22 ) -

The second term is decomposed into

<4 HZ/ SR — 5) — S(ET — " ) F(X(s)) ‘2
t;b 1 LQ(Q,H)
a t? n n n k—7+1
+—Z/ (St —t7_y) — (6" Ay) J&WM@M4
j=17%"1
k tn

:qm+m+m+my

Similarly, we get for term 11

11 < 4 HZ / St} — £1)C(X(5)) dM(s)||

= 4(III, + HIb + 1. + III) .

+§:ZJ(M%NjHHw@@»—ﬂX@¢mm%

¥ z / PG AP (F(X (1)) = F(Xgn (1)) ds|

L2(;H)

o Z / (S0 — 51) — (62" A0 I P)GOX(5) dM ()
+ Z/t (6™ Ay) k— ]+1Pg(G(X(S)) - G(X( ?—1))) dM(s)’

+ Z /t (S Ag) TP (G(X(12,)) —G(Xe,n(t;zl)))dM(s)‘

D) ds||

L2(QH)

2
)) dM (s)|

L2(Q;H)

2

L2(;H)

2

L2(Q;H)

2L2(Q;H))

2

L2(QH)

2

L2(;H)

2
L2(Q;H))

)
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Next, we give estimates for these eight terms. Equation (2.5), Assumption 2.2, as well as
Lemma 2.3 imply

t/VL 2
11, <C§t” Z/ IF(X ()] 22000 ds)

2
< C(St” Z/ (14X (s ||L2(Q;V))ds)

< C(T)ot"™ (1 + ||X0HL2(Q;V)) -
Similarly, with an application of Equation (2.1) in addition, we have
I, < C(T) 6t™ (1 + || Xol72(001)) -

The next terms are bounded with the use of Equation (2.1), Assumption 3.1, Assumption 2.2,
and Lemma 2.3 by

Iy + Il < C(T) (he + Vt")? (1 + (| Xo 72 (0.1y) -

For the terms labeled with ¢, besides Equation (2.1), the stability of the rational approx-
imation of the semigroup, the Lipschitz continuity of F' and G (see Assumption 2.2), and
Lemma 2.4 are used to obtain

I + 1. < C(T) 6t" (1 + ||X0||%2(Q;V)) .

Applying again Equation (2.1) to IIl; and Hélder’s inequality to I, the stability of the
rational approximation of the semigroup, and the Lipschitz continuity of F' and G (see As-
sumption 2.2), we get

Iy + Il < C(T 6t”2||X (t5) = Xea() 72 0.m) -

Overall this leads to

X (67) =X () 1 22 (0.0)
k—1
C(T)(he +V5t7)* (1 + || Xol[72(uvy) + C(T) " D I X(#) = XewE) 7200
=0
k—1
C(T)(he + V6t")* (1 + || Xo| 720 [ (1 + C(T) 687)
=0
C(T)(he + Vtm)? (1 + [ Xol 72 (0.0 exp(T - C(T))

where we applied a discrete version of Gronwall’s inequality (see [8]) in the second step. This
proves the theorem. O

We establish a first error estimate for an approximation in space and time in combination
with the Monte Carlo method, i.e., E[X(¢)] is approximated by En[X,,(t)] for t € O™ as
introduced in Equation (4.2).
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Theorem 4.4. Let X be the mild solution of (2.6) and let (X¢p, £,n € Ng) be the sequence
of discrete mild solutions introduced in Equation (3.1). Then, there exists a constant C(T')
such that for all {,n € Ny and N € IN,

sup [ E[X (6)] = Ex[Xen(O)]ll 2@ty < CT) (R + Vat" +

)@+ 1 Xolz2aury) -
tecen

1
VN
Proof. For £,n € Ny and t € ©", we split the left hand side of the equation above as follows

IEX(®)] — EN[Xen®]llz2(0;m)
< EX®)] — EXen®Ollz2m) + 1EXen ()] — EN[Xen O]l 2200
<X () = Xew®) 2y + 1E[Xen ()] — En[Xew ()]l 220050 -

The first term on the right hand side is bounded by Theorem 4.3. The assertion follows with
Lemma 4.1 and Remark 4.2 for the second term. g

Theorem 4.4 raises the question of the optimal time discretization level n € INy and Monte
Carlo sampling size N; = N for any given space discretization level ¢ € INg. Let hy ~ 27¢,
The space and time errors are equilibrated if §t" ~ h? and therefore, n = 2¢. With the
convergence rate shown in Theorem 4.4, it can easily be seen that we equilibrate discretization
and sampling error for £ € INg by the choices

(Ng)_l/Q ~ hy, resp. Ny ~ he_2 )

Let us assume that in each (implicit) time step the linear system associated to the discretized
version of the operator A can be solved numerically in linear complexity, i.e., in Wl;H ~ h;d
work and memory, where d € IN and e.g. d = dim D in the framework of Example 2.1. Then,
the overall work W, is given by

Here, W;TZ denotes the work in time with respect to the time discretization ©2¢. The error
bound in Theorem 4.4 in terms of the overall computational work Wy reads

(4.3) sup [E[X (8)] = Eg2e[Xe20()]| L2 (02:1r) < C(T) e Wg—l/(d+4) .
te®

4.2. Multilevel Monte Carlo approximation. After we have established error bounds
for the singlelevel Monte Carlo method, we are in position to state and prove error versus
complexity bounds for the multilevel Monte Carlo discretization.

The previous results on the convergence of the singlelevel Monte Carlo method and equi-
libration of the various error contributions suggest the use of sets of equidistant partitions
(0, £ € INy) of the time interval T = [0, 7] defined by

0" = {thp) = T27k(€) = 6t°k(0), k(£) = 0,...,2%}

i.e., with the notation of the previous section we have n = 2¢. Here and in what follows,
we denote the (constant) time steps in ©° by 6t! = T/2% for £ € Nyg. We set hy ~ 27,
¢ € Ny, and relate in the error analysis of the multilevel Monte Carlo discretization the
spatial discretization level to the temporal discretization level by n = 2¢, which explains the
redefinition of the time grids. We abbreviate X, ,, by Xj.
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For L,k(L) € WNo, k(L) < 22F we recollect the multilevel Monte Carlo estimator for
E[X (tﬁ( L))] introduced in the beginning of the section

B X1 (tf ) ZENz [Xe(t5iny) = Xea (b)) -
=0
For each summand on the right hand side, we choose a level dependent number of samples Ny,
for £ =0,...,L, and we subtract the simulated solutions on two consecutive discretization
levels (V;,©%) and (Vy_1, 0 ') generated with the same random samples of Xo and M.
For a given time in ©%, ¢ € {0,...,L}, we linearly interpolate the solution on the next
coarser grid to that time and define it as follows:
(4.4) Xoa(tp) = ae Xea(ty, hi1y) b X Lt Re1)41) -
where
a=1- (kf)—k(z—n) and b= "0 _pe—1y,
further, k(¢ — 1) is recursively defined by
k(¢
o= |40

Here, for any number A\ > 0, |A| denotes the next smaller integer below A. Iterating Equa-
tion (4.4), we may write for £ <L

(4.5) Xo(tyry) = aes Xe(tip) + ber Xe(thp 1)
with
L 1 L 1
g = ari1 — %: ooy 0 and bep =bea + Z Wb
1=0+2 =4
We remark for further use that ag. + bp.p = 1 for all £ € {0,... L —1}.

With this linear interpolation, we have the following theorem on the convergence of the
multilevel Monte Carlo estimator.

Theorem 4.5. Let X be the mild solution of (2.6) and let (Xy, £ € INg) be the sequence of
discrete mild solutions introduced in Equation (3.1). Then, there exists a constant C(T) such
that for all L € Ny,

L
sup (X (1)) — BY[X1 ()] 2y < C(T) (hL Yot T Nz
/=0

he) (1 + 1 Xoll 2 -
teol

VNo
Proof. For fixed L € INg, we choose any tﬁ( L) € ©L. Similarly to the proof of Theorem 4.4,
we split the error into
IELX (t5y)]) = B X)) 2 )
L

< IX () — Xe(tro) 2 + Y I = En)[Xe(th ) — Xe (b)) 22
=0
=1+1I.
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With Theorem 4.3 and the assumption that §t¢ ~ h?, I is bounded by

X (trey) = Xo(troy) 2y < C(T) (he + Votk) (1 + (| Xo| L2 )
<C(T)hr (1 4+ | Xoll 2 5vy) -

Applying Lemma 4.1, we get for all summands in I
[(E — ENz)[XZ(té( V) = Xea(ti ) 2

1Xe(thny) = Xe-1 (i) 2o

\/ ¢
1
< 7F(“X€(tk ) = X () 2 + 1X () — Xeo1 (o) lz2m))
1
< —(I1, + I
< \/W( + IIy) .

Equation (4.5), together with Theorem 4.3 and Lemma 2.4 gives the approximation bound
I, < |Jaer Xe(thpy) + ber Xe(th 1) = (aer X (t51) + e X t) |2 0.,
< ||aer (Xﬁ(ti(z)) - X(ti(e)) + X(tk(e)) X(té(L)))
+ be:L(Xz(ti(g)H) - X(ti(é)-i-l) + X(tk(e)+1) - X (i )HL2 O H)
< app|(Xe(thp) — X (tho) L2 + ael X (tr) — X(tL W 2.
+ b | (Xe(thpy 1) — X (trgys )2 + benl| X (1) — X o) 2
< (agp + be.p)C(T)(he + VOth) (1 + | Xo|l r2(0;))
+ap.C(T) tﬁ(L) - ti(z (1 + [ Xoll 2(;v))
+bp., C(T) tf;(f)ﬂ k(L ) (14 1 Xollz20)
< C(T) (he + Vo) (1 + | Xoll 20
Similarly, we get for Il with £ =1,...,L
1y < O(T) (hes + Vo) (1 + | Xol 201 -
We use the fact, that hy = 27 hy_; and 6t = 2726t to get overall
IXe(triny) = Xea (o) 2y < C(T) (he + hey + Vot! + Vot =1) (1 + || Xol 2 ()
< C(T) 3 (hg + Vv 5te)(1 + HXOHLQ(Q;V)) .
For £ = 0, we have with the properties of the mild solution that
Iy = | X (t ) | 2y < C(T)A + 1 X0l 2 -

With these results we get for II, after employing that §t¢ ~ h? for{=0,...,L,

1 &1
= 3 he) (4 Xl 2aw)

L

1
> = IXelth) = Xea(thp)lliz@um) < C(
=0 o VIV

S
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The claim follows by
IELX (t )] =B XL () 22 s

L
1
=+ 3 = he) (1 [ Xoll )

< O 1+ 1 Xol2@) + ) (-
= VN

ﬁ\

L
1 1

<C()(h hy ) (1 X . . O

< O( )( L+ ﬁNO+;:O N, ﬁ)( + [ Xoll z2(;vy)

We may now relate the work in space W[I , the number of time steps Wgr , and the number
of Monte Carlo samples N, at level ¢ = 0,..., L such that the errors in Theorem 4.5 are
equilibrated.

Theorem 4.6. Assume that for £ € Ny, the computation of the linear system associated to
the discretized version of the operator A can be solved numerically in Wf ~ hzd ~ 29 work
and memory, for some d € IN. Then, the error contributions in Theorem 4.5 are equilibrated
when the number of time steps is set to W;T ~ h;z ~ 22t and the number of Monte Carlo
samples is

(4.6) No~22L and Ny~ 22570 2049

for £ = 1,...,L and any ¢ > 0, L € Ny. Therefore, the multilevel Monte Carlo method
converges with rate

(4.7) sup IBLX ()] — EX X1 (0)] 1200y < O(T,€) (1 + [ Xoll z20))
te

The total number of operations Wy, for the computation of the multilevel Monte Carlo estimate
(BX[X (1)), t € OF) is bounded by

Wy < C20+2+9L o h;(d+2+s) _

In particular, in the multilevel Monte Carlo discretization, the error (4.7) is related to the
overall work Wy, by

sup [[ELX(8)] - ELX )]l 2 < C(Tse) (14 [ Xollpz () Wy /@29
te

Proof. For the error to be equilibrated, we choose the number Ny, of Monte Carlo samples on
discretization level £ such that

I L
SN e < NP1+ ho) + 30N, e < O
=0 =1

Setting N, according to Equation (4.6) and hy ~ 27¢, we derive
Ny (14 ho) ~ by and N, V2~ 20=0) g~ (1)

and therefore,

L L L

SON P Y 27t D149 o N0 < (1t e) By

=1 =1 =1
where ¢ denotes the Riemann zeta function. When we insert this estimate into the error
bound in Theorem 4.5, we get immediately Equation (4.7).
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The work Wy, to obtain the multilevel Monte Carlo approximation is bounded by

L L
Wi = W W, - Ny~ 2020928 N gdtg2t2(L=0) 2(1+)
=0 =1
< 092 L 2(14e) ~ yold+2+e)L
~ hf(d+2+e)
~h; :

where C' > 0 is a constant varying from line to line that is independent of L. Inserting this
estimate into the error bound (4.7) and noting that hy, ~ 27%, we receive the last assertion. [

5. CONCLUSIONS

In this paper we gave an a-priori error and complexity analysis of a Galerkin Euler—
Maruyama discretization combined with multilevel Monte Carlo sampling for the numerical
estimation of expectations of solutions of a class of parabolic partial differential equations
driven by square integrable martingales. We proved that the multilevel Monte Carlo Euler—
Maruyama approach lowers the computational complexity to calculate the expectation of the
solution of a parabolic stochastic partial differential equation compared to a standard Monte
Carlo method. The combination of different sample sizes on various subsequent discretiza-
tion levels lowers the overall complexity to the complexity of one solve of the deterministic
partial differential equation, namely, from O(2(¢+9L) to O(2(@+2+)L) for a given refinement
level L. Expressed in degrees of freedom of the numerical method, we obtain a bound for the
computational complexity of the singlelevel Monte Carlo method of OWH . (WH)4/) and
for the multilevel Monte Carlo method of O(WH - (W#H)2/4). Tn other words, for d = 1 the
work of multilevel Monte Carlo is dominated by the number of samples on the coarsest level.
For higher space dimensions it is dominated by the effort to solve the corresponding partial
differential equation. The low order of the convergence rate stems from the low regularity
requirements that we assumed for the equation.

The results in the present paper could be extended in two directions. First, in [21] it is
shown that under stronger assumptions on A, the requirement that the mild solution belongs
to L?(2; V) can be relaxed, while still maintaining the same order of convergence of the
approximation. More precisely, if A is densely defined, self-adjoint, positive definite, and not
necessarily bounded but with compact inverse, the Euler—-Maruyama scheme still converges
in mean square of order 1/2 in time and 1 in space for less regular choices of F' and G. A
second extension of the present analysis of the multilevel Monte Carlo method is to couple it
with a Milstein type method as introduced in [4]. There, the authors give an approximation
scheme for a more general but linear advection-diffusion problem

dX(t) = (A + B)X(t) dt + G(X(t)) dM (t)

on a bounded domain D C R?, d € IN, with H = L?(D), where A is the diffusion and B the
advection operator. Similar results can be achieved when a nonlinearity F': H — H is added
and sufficient assumptions on the regularity of the coefficients and the solution are made,
such that the stochastic partial differential equation reads

dX(t) = (A+ B)X(t) + F(X (1)) dt + G(X(2)) dW (t) ,
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where we set M = W although the following also holds for any continuous martingale
in M2(U). The increment in the Milstein scheme is then given by

tn
Xon(t8) = 1(5t"A) Xon (1) + /t " (58" Ag) P BX (871 ds
j—1

tn
n / " (3" A PR (X (t)y)) ds
t

n
j—1

tn
+ / D (5t A PG (X n(£2)) AW (s)
t;L_l

+ / i (r(5t”Ae)PeG( G(Xg,n(tgzl))dW(r)))dw(s),

n n
tn_ tn_y

where r(0t"Ay) denotes the rational approximation of the semigroup generated by A that
depends on the time approximation (with parameter 0t™) and space approximation level
(with parameter £). A combination of the proof in [4] and [16] leads to the following bound,
dependent on the regularity parameter o € IN

sup || X(8) = Xea (Ol 2y < Cr(hg + (66")*2) sup | X (8)]] 12(0; 1)
+ Co 08" sup [|X (#)l|2(urry
€

where C and Cy are constants. For o = 1, which meets the prerequisites on the regularity
of this paper, we would not get better convergence than for the Euler—-Maruyama scheme
introduced in this paper. However, for more regular data, i.e., « = 2 and Xo € L?(€2; H2(D)N
HZ (D)), we obtain in particular

sup | X (t) = Xen(t) 22y = O(hG + 6t™) .

teen
Still we have the (severe) consistency constraint §t" ~ h2?. To compare this error bound to
the result for the Euler-Maruyama scheme proven in Theorem 4.4, we employ Lemma 4.1,
which results in a convergence rate of O(hZ + 0t" + N —1/2) for the singlelevel Monte Carlo
method. To prove the result for the multilevel Monte Carlo approach, we need to change the
linear interpolation of the solution given in Equation (4.4) to

t
Xu(t) = r((t = DA XD + [ r((t - DANPBX,(0)ds
(4.47) ¢

- (= DAY PE (X)) ds + / (= DAY PG(X(i)) dW (s)

where t = [t]ge, i.e., t is the largest time discretization point on level ¢, which is smaller
than ¢. This is the extension to all ¢ € T of the fully discrete mild solution. With this
approach a convergence of Xy in (4.4’) to the mild solution X in mean square of order
O(6t* + h2) is achieved which is needed in the proof of Theorem 4.5. Using this interpolation
we achieve an error bound of the multilevel Monte Carlo approximation for the Milstein
scheme of C(T)(h% + No_l/2 + Zﬁ:o N[l/zh%) if we set 0t ~ hZ. This reduces the overall
complexity of O(24+6L) for the singlelevel Monte Carlo approximation to O(2*F) for d = 1
and O(2(@2+9L) for ¢ > 1. Here, we choose for the optimal numbers of samples on each
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level £ = 1,...,L in the multilevel Monte Carlo method N, = 240204 for ¢ > 0 and
Ny = 2*%. As in the case of an Euler-Maruyama approach, the work is dominated by
the number of samples on the coarsest level in the multilevel Monte Carlo approach in low
dimensions, whereas for d > 1 the work is dominated again by the Finite Element method.
This leads to asymptotically the same work for the multilevel Monte Carlo approach for
an Euler—-Maruyama and a Milstein type scheme. The faster convergence of the Milstein
method, leading to a higher sampling effort only comes into play in low dimensions where
the overall work is dominated by the Monte Carlo method. Expressed in degrees of freedom,
the difference between the computational complexity of the singlelevel Monte Carlo and the
multilevel Monte Carlo method for a Milstein scheme becomes even more apparent: For
d > 1 we have for the multilevel Monte Carlo method O(WH . (WH)2/4) the same as for
the multilevel Monte Carlo coupled with an Euler-Maruyama method, whereas for d = 1 we
have O((WH)4); for the singlelevel Monte Carlo method we get O(W} - (WH)0/4). Here, we
assumed that generating the source term in the case of the Milstein method can be done with
the same computational effort as for the Euler-Maruyama scheme, i.e., the Karhunen—Loeve
expansion of the driving noise is truncated according to Lemma 4.1 and Lemma 4.2 in [4].
Note, that in Equation (5.1) the convergence rate depends on the regularity parameter «.. In
other words, for a solution with less regularity more sampling is necessary to balance Monte
Carlo and (time and space) discretization errors.

Equation (5.1) indicates that the ratio between spatial and temporal discretization error
is the same for the Milstein method as for the Euler-Maruyama method (provided, however,
that additional regularity of the data in the case of the Milstein scheme is used). Nevertheless,
Equation (5.1) also reveals that a lower regularity in space does not imply a different ratio
of space and time step for the Milstein scheme. The optimal relationship of space and time
stepping remains 0t" ~ hz to ensure equilibration of the consistency errors. Other choices

like 6t™ ~ hf for 8 € (0, 2] do not improve the relationship of work versus accuracy under the
considered regularity assumptions. Moreover, this relationship is optimal for g = 2.

In this paper we do not approximate the noise. However, in [5] the authors show how to
truncate the Karhunen—Loeve expansion dependent on the number of discretization points,
e.g. the discretization level. In [4], an extended result for the case of a Milstein scheme is
presented.
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