Lp and almost sure convergence of a Milstein scheme for stochastic partial differential equations

Author(s): Barth, Andrea; Lang, Annika

Publication Date: 2012

Permanent Link: https://doi.org/10.3929/ethz-a-010403232

Rights / License: In Copyright - Non-Commercial Use Permitted
L^p and almost sure convergence of a Milstein scheme for stochastic partial differential equations

A. Barth and A. Lang

Revised: July 2012

Research Report No. 2011-15
March 2011

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland
L^p AND ALMOST SURE CONVERGENCE OF A MILSTEIN SCHEME FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

ANDREA BARTH AND ANNIKA LANG

Abstract. In this paper, L^p convergence and almost sure convergence of the Milstein approximation of a partial differential equation of advection-diffusion type driven by a multiplicative continuous martingale is proven. The (semidiscrete) approximation in space is a projection onto a finite dimensional function space. The considered space approximation has to have an order of convergence fitting to the order of convergence of the Milstein approximation and the regularity of the solution. The approximation of the driving noise process is realized by the truncation of the Karhunen–Loève expansion of the driving noise according to the overall order of convergence. Convergence results in L^p and almost sure convergence bounds for the semidiscrete approximation as well as for the fully discrete approximation are provided.

1. Introduction

The numerical study of stochastic partial differential equations is a relatively recent topic. This is in contrast with the abundance of research (see e.g. [24]) that has been conducted for real-valued stochastic differential equations or partial differential equations (e.g. [5, 13, 36]). In contrast to partial differential equations, for stochastic partial differential equations we have different notions of convergence. Pathwise convergence plays a central role in filtering theory and other phenomena in physics. For instance, the strong convergence of the second moment gives a bound for the expected error. The strong convergence of higher moments, and not only of the variance, is for pathwise approximations essential.

For a numerical treatment of stochastic partial differential equations, approximation has to be done in space, in time, and possibly of the driving noise process. In this paper, we study a Milstein scheme for the time approximation of the solution of a stochastic partial differential equation of the form

\begin{equation}
\frac{dX(t)}{dt} = (A + B)X(t) \, dt + G(X(t)) \, dM(t), \quad X(0) = X_0.
\end{equation}

Here, M is a continuous, square integrable martingale with values in a separable Hilbert space U. Probably the most popular example of such stochastic processes are Wiener processes. The linear operators A and B act on a dense subset of a separable Hilbert space H and the linear operator G is a mapping from H into the linear operators from U to H (detailed definitions and properties of A, B, and G are given in the next section).

Date: July 2, 2012.

Key words and phrases. Stochastic partial differential equation, L^p convergence, almost sure convergence, Milstein scheme, Galerkin method, Finite Element method, backward Euler scheme, advection-diffusion equation.

This research was supported in part by the European Research Council under grant ERC AdG 247277. The authors wish to express many thanks to Pao-Liu Chow, Arnulf Jentzen, Jürgen Potthoff, Markus Riedle, and Florian Werner for fruitful discussions and helpful comments.
Approximation schemes, like the Euler–Maruyama or Milstein scheme, are approximations of the stochastic integral of a stochastic differential equation which are derived from the Itô–Taylor expansion (see [24]). The Euler–Maruyama scheme has strong convergence of order \(O(\sqrt{k_n})\), where \(k_n\) denotes the time discretization step size, while the corresponding Milstein scheme converges with order \(O(k_n)\). In [28, 29], a Milstein scheme was derived for a stochastic partial differential equation as introduced here, but driven by a \(Q\)–Wiener process \(W\). The authors showed that the approximation, which was obtained by recursive insertion of the mild form of the stochastic partial differential equation, converges in \(L^2\) and almost surely of order \(O(k_n)\). They derive a Milstein scheme which has two more terms than the Euler–Maruyama scheme. Here, we show that only one additional term is needed to derive the Milstein scheme from the Euler–Maruyama scheme. The same estimates apply to the calculations in [28, 29] as remarked in [20]. Like in the case of a real-valued stochastic differential equation, a term treating the iterated stochastic integrals has to be added. In this paper, we use a similar scheme for the time discretization, where the driving noise is a continuous, square integrable martingale.

For the approximation in space, we project the solution on a finite dimensional subspace of the infinite dimensional solution space \(H\). This approach can be numerically realized by a Galerkin projection. These approximations are typically implemented as Finite Element methods. So far Galerkin methods are mainly used for partial differential equations (cf. [36, 13, 35]) but first applications to stochastic partial differential equations have been done e.g. in [2, 6, 8, 9, 26] and references therein. The approximation of mild solutions with colored noise has been treated e.g. in [2, 14, 17, 18, 25, 27, 28, 30, 38] and references therein. First approaches to higher order approximation schemes using Taylor expansions were done e.g. in [19] with additive space-time white noise. Galerkin methods lead to pathwise approximations, also called strong approximations. Here, we combine this type of discretization with a higher order time discretization. Those approximations exhibit high order of convergence of the fully discrete Milstein approximation, while the regularity assumptions are minimal.

In most of these references, parabolic equations with (possibly) nonlinear terms are studied. Here we study an advection-diffusion type equation. An additive nonlinearity would not give rise to any additional difficulty in the approximation, as long as certain linear growth and Lipschitz conditions are fulfilled and the driving noise process is a continuous martingale.

The main result in this paper is: Assume that Equation (1.1) is approximated by a scheme which converges for the corresponding homogeneous, parabolic, deterministic problem with accuracy \(O((h + k_n^{1/2})^\alpha)\), for \(\alpha \in \mathbb{N}\), to the solution of the homogeneous problem. Here, \(h\) denotes the space discretization step size and \(\alpha\) is a regularity parameter. Then, the approximated stochastic partial differential equation converges with order \(O(h^\alpha + k_n^{\min(\alpha/2, 1)})\) in \(L^p\). Further, it converges almost surely to the mild solution of Equation (1.1) with order \(O((h^2 + k_n)^{1-\epsilon})\) for any \(\epsilon > 0\) and the optimal choice \(\alpha = 2\). Namely, we prove convergence results with minimal regularity assumptions on the initial condition. Higher regularity leads to higher order of convergence up to a convergence of order \(O(k_n)\) in time, which is the maximal convergence of a Milstein approximation.

The advection-diffusion type of the equation studied in this paper appears, among various phenomena in physics, in the study of Zakai’s equation (cf. [39]). The stochastic partial differential equation of Zakai type, which was introduced by Zakai for a nonlinear filtering problem, reads, extended to continuous square integrable martingales,

\[
du_t(x) = L^* u_t(x) \, dt + G(u_t(x)) \, dM_t(x).
\]
In the framework of this paper, the equation is considered on a bounded domain $D \subset \mathbb{R}^d$, with zero Dirichlet boundary conditions on the Lipschitz boundary ∂D and initial condition $u_0(x) = v(x)$. L^* is a second order elliptic differential operator of the form

$$L^* u = \frac{1}{2} \sum_{i,j=1}^d \partial_i \partial_j a_{ij} u - \sum_{i=1}^d \partial_i f_i u,$$

for $u \in C^2_c(D)$ and it can be split into the operators A and B in Equation (1.1) for convenience of possible simulations. Originally, the operator G in Equation (1.2) denotes a pointwise multiplication with a suitable function $g \in H$. This setting is included in the more general assumptions on G in Equation (1.1), which we introduce in detail in the next section.

This work is organized as follows: Section 2 sets up the framework of this paper and contains a detailed analysis of Equation (1.1). The introduction of the used discretization schemes for the space, time, and noise approximation is given in Section 3. In Section 4, a proof that the semidiscrete approximation (discretized in space) converges in L^p of order $O(h^\alpha)$ and almost surely of order $O(h^{\alpha-\epsilon})$ is provided. To have a more general result, we derive convergence rates in dependence of a regularity parameter α. Finally, L^p convergence of order $O(h^\alpha+k_n^{\min(\alpha/2,1)})$ of the fully discrete Milstein type scheme including the noise approximation is proven in Section 5, as well as almost sure convergence of order $O((h^2 + k_n)^{1-\epsilon})$.

2. Framework

Let H denote the Hilbert space $L^2(D)$, where $D \subset \mathbb{R}^d$, $d \in \mathbb{N}$, is a bounded domain with piecewise smooth boundary ∂D and let the subspaces H^α be the corresponding Sobolev spaces for $\alpha \in \mathbb{N}$ and H^0_α those with elements that satisfy zero Dirichlet boundary conditions, respectively. To simplify the notation we set for $\alpha = 0$, $H^0 = H$. We are interested in developing a numerical algorithm to estimate the solution of the stochastic partial differential equation

$$dX(t) = (A + B)X(t) \, dt + G(X(t)) \, dM(t)$$

on the time interval $\tau := [0,T]$, where $T < +\infty$, with initial condition $X(0) = X_0$ and zero Dirichlet boundary conditions on ∂D. M is a continuous, square integrable martingale on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$, which satisfies the “usual conditions”, with values in a separable Hilbert space $(U, \langle \cdot, \cdot \rangle_U)$. The space of all continuous, square integrable martingales on U with respect to $(\mathcal{F}_t)_{t \geq 0}$ is denoted by $\mathcal{M}^2(U)$. We restrict ourselves to the following class of square integrable martingales

$$\mathcal{M}^2_{0,c} := \{ M \in \mathcal{M}^2(U) : \exists Q \in L^1_+(U) \text{ s.t. } \forall t \geq s \geq 0, \; \langle (M, M) \rangle_t - \langle (M, M) \rangle_s \leq (t-s)Q \},$$

where $L^1_+(U)$ denotes the space of all linear, nuclear, symmetric, nonnegative-definite operators acting on U. The operator angle bracket process $\langle (M, M) \rangle_t$ is defined as

$$\langle (M, M) \rangle_t := \int_0^t Q_s \, d(M, M)_s,$$

where $(M, M)_t$ denotes the unique angle bracket process from the Doob–Meyer decomposition. The process $(Q_s, s \geq 0)$ is called the martingale covariance.

Since $Q \in L^1_+(U)$, there exists an orthonormal basis $(e_n, n \in \mathbb{N})$ of U consisting of eigenvectors of Q. Therefore we have the representation $Qe_n = \gamma_n e_n$, where $\gamma_n \geq 0$ is the eigenvalue
corresponding to e_n. The square root of Q is defined as
\[Q^{1/2} \psi := \sum_n (\psi, e_n)_U \gamma_n^{1/2} e_n, \]
for $\psi \in U$, and $Q^{-1/2}$ is the pseudo inverse of $Q^{1/2}$. Let us denote by $(\mathcal{H}, (\cdot, \cdot)_\mathcal{H})$ the Hilbert space defined by $\mathcal{H} := Q^{1/2}(U)$ endowed with the inner product $(\psi, \phi)_\mathcal{H} = (Q^{-1/2} \psi, Q^{-1/2} \phi)_U$, for $\psi, \phi \in \mathcal{H}$. Let $L_{HS}(\mathcal{H}, H)$ refer to the space of all Hilbert–Schmidt operators from \mathcal{H} to H and $\| \cdot \|_{L_{HS}(\mathcal{H}, H)}$ denote the corresponding norm. The canonical example of a process that belongs to $M_{b,c}^2$ is a Q-Wiener process, but, in general, a stochastic covariance process would be possible.

In what follows, we introduce a Burkholder–Davis–Gundy type inequality as a generalization of the Itô isometry for square integrable martingales of class $\mathcal{M}_{b,c}^2$. Let $L_{H, \tau}^2(\mathcal{H}) := L^2(\Omega \times \tau; L_{HS}(\mathcal{H}, H))$ be the space of integrands, defined over the probability space $(\Omega \times \tau, \mathcal{P}_\tau, \mathbb{P} \otimes d\lambda)$, where \mathcal{P}_τ denotes the σ-field of predictable sets in $\Omega \times \tau$ and $d\lambda$ is the Lebesgue measure. Then, by Equation (1.6) in [16], we have as a generalization of Proposition 8.16 in [33], for $p > 0$ and for every $\Psi \in L_{H, \tau}^2(\mathcal{H})$, a Burkholder–Davis–Gundy type inequality
\[\mathbb{E}\left(\sup_{t \in \tau} \int_0^t \Psi(s) dM(s) \right)^p \leq C_p \mathbb{E}\left(\int_0^T \|\Psi(s)\|^2_{L_{HS}(\mathcal{H}, H)} ds \right)^{p/2}. \]
For a full introduction to Hilbert-space-valued stochastic differential equations, we refer the reader to [33, 11, 7, 34].

The operators A and B in Equation (2.1) are defined as follows. We assume that the functions a_{ij}, for $i, j = 1, \ldots, d$, are twice continuously differentiable on D with continuous extension to the closure \bar{D}. The operator A is the unique self-adjoint extension of the differential operator
\[\frac{1}{2} \sum_{i,j=1}^d \partial_i (a_{ij} \partial_j u), \quad u \in C_c^2(D). \]
B is a first order differential operator given by
\[Bu := \sum_{i=1}^d \partial_i (b_i u), \quad u \in C_c^1(D), \]
with elements b_i that are defined as
\[b_i := \frac{1}{2} \sum_{j=1}^d \partial_j a_{ij} - f_i, \]
where the functions f_i, $i = 1, \ldots, d$, are continuously differentiable on D with continuous extension to \bar{D}. Defined this way, we also include the differential operator L^* in Equation (1.2).

With the following assumptions, the right hand side of Equation (2.1) is well defined and its solution has certain regularity properties which are shown later. From here on, let the smoothness parameter $\alpha \in \mathbb{N}$ be fixed.

Assumption 2.1. The coefficients of A and B, the operator G, and the initial condition X_0 satisfy the following conditions:

(a) For $i, j = 1, \ldots, d$, the elements a_{ij} belong to $C_b^{\alpha+1}(D)$ and f_i to $C_b^\alpha(D)$ with continuous extensions to \bar{D},
(b) there exists $\delta > 0$ such that for all $x \in D$ and $\xi \in \mathbb{R}^d$

$$\sum_{i,j=1}^{d} a_{ij}(x)\xi_i\xi_j \geq \delta \|\xi\|^2_{\mathbb{R}^d},$$

(c) X_0 is \mathcal{F}_0-measurable and $\mathbb{E}(\|X_0\|_{H^\alpha}^p) < +\infty$ for chosen $p > 0$,

(d) G is a linear mapping from H into $L(U, H)$ that satisfies for $C > 0$ that for $0 \leq \beta \leq \alpha$ and $\phi \in H^\beta$

$$\|G(\phi)\|_{L^p(H, H^\beta)} \leq C \|\phi\|_{H^\beta}.$$

Assumption 2.1(b) implies that the operator A is dissipative, see e.g. [23]. Then, by the Lumer–Phillips theorem, e.g. [12], A generates a strongly continuous contraction semigroup on H which we denote by $S = (S(t), t \geq 0)$. Furthermore, by Corollary 2 in [22], S is analytic in the right half-plane. Therefore, fractional powers of $-A$ are well defined, cf. [12], and we denote for simplicity $A_{-\beta} = (-A)^{-\beta}$ and $A_\beta = A_{-\beta}^{-1}$ for $\beta > 0$.

In this context we shall make use of the following lemma — whose statement is also known as Kato’s conjecture — which was proven in [1].

Lemma 2.2. The domain of $A_{1/2}$ is $D(A_{1/2}) = H^1_0$ and the norm $\|A_{1/2}\cdot\|_H$ is equivalent to $\|\cdot\|_{H^1}$, i.e., there exists $C > 0$ such that

$$\|A_{1/2}\phi\|_H \leq C \|\phi\|_{H^1} \quad \text{and} \quad \|\phi\|_{H^1} \leq C \|A_{1/2}\phi\|_H,$$

for all $\phi \in H^1$.

To simplify the notation in the preceding, we introduce the following norm for an H-valued random variable Φ with finite p-th moment

$$\|\Phi\|_{H,L^p} := \left(\mathbb{E}(\|\Phi\|_H^p)^{1/p}\right).$$

Furthermore, we abbreviate for $p > 0$ the norm in $C(\tau; L^p(\Omega; H))$ with

$$\|\Psi\|_{H,L^p,\infty,\tau} := \sup_{t \in \tau} \|\Psi(t)\|_{H,L^p}$$

and the one in $L^p(\Omega; C(\tau; H))$ with

$$\|\Psi\|_{H,\infty,\tau,L^p} := \mathbb{E}(\sup_{t \in \tau} \|\Psi(t)\|_H^p)^{1/p},$$

for a stochastic process $\Psi = (\Psi(t), t \in \tau)$ with finite p-th moment for all $t \in \tau$. For $\phi : \tau \to H$, we set

$$\|\phi\|_{H,\infty,\tau} := \sup_{t \in \tau} \|\phi(t)\|_H,$$

accordingly. We refer to subintervals of τ by $\tau_s := [0, s]$ for $s \leq T$.

Assumption 2.1 also implies by results in Chapter 9 in [33], that Equation (2.1) has a unique mild solution in H^α, i.e.,

$$\|X(t)\|_{H^\alpha,L^2,\infty,\tau_{[0,T]}} < +\infty,$$

for all $T \in (0, +\infty)$, and the stochastic partial differential equation can be rewritten for all $t > 0$ in mild form

$$X(t) = S(t)X_0 + \int_0^t S(t-s)B X(s) \, ds + \int_0^t S(t-s)G(X(s)) \, dM(s).$$
Those assumptions even ensure that Equation (2.1) has a unique strong solution in H^2 by Theorem 2.3 in [31]. Furthermore, we have similarly to [15, 37, 16] that Equation (2.2) implies for all $\Psi \in L^2_{H,\tau}(H)$

$$\| \int_0^t S(t-s)\Psi(s) \, dM(s) \|_{H,\infty,L^p}^p \leq C_p \mathbb{E}(\int_0^T \| \Psi(s) \|_H^p \, ds)^{p/2}).$$

(2.4)

Before we introduce the approximation schemes, we provide two lemmas on the properties of the solution of Equation (2.1) that are needed in later proofs. The first gives some insight on the space regularity of the mild solution. Under certain regularity assumptions on the initial condition of the stochastic partial differential equation, we have regularity of the mild solution. The second lemma gives a regularity result for the mild solution in time, i.e., Hölder continuity of order 1/2 is shown. This result is necessary for the convergence proof of the approximation schemes.

Lemma 2.3. Under Assumptions 2.1, the mild solution satisfies for $p > 0$ and $\beta \leq \alpha$

$$\| X \|_{H^{\beta},L^p,\infty} \leq \| X \|_{H^{\beta},\infty,L^p} < +\infty.$$

Proof. From here on, C denotes varying constants depending on p and T. We consider $p > 2$, for $p \leq 2$ the result follows by Hölder’s inequality. We estimate

$$\| X \|_{H^{\beta},\infty,L^p}^p = \| S(t)X_0 + \int_0^t S(t-s)BX(s) \, ds + \int_0^t S(t-s)G(X(s)) \, dM(s) \|_{H^{\beta},\infty,L^p}^p$$

$$\leq C (\| X_0 \|_{H^{\beta},L^p}^p + \| \int_0^t S(t-s)BX(s) \, ds \|_{H^{\beta},\infty,L^p}^p$$

$$+ \| A^{\beta/2} \int_0^t S(t-s)G(X(s)) \, dM(s) \|_{H^{\beta},\infty,L^p}^p)$$

$$\leq C (\| X_0 \|_{H^{\beta},L^p}^p + \mathbb{E}(\sup_{t \in \tau} \| \int_0^t S(t-s)BX(s) \|_{H^{\beta}} \, ds)^p$$

$$\leq C (\| X_0 \|_{H^{\beta},L^p}^p + \mathbb{E}(\sup_{t \in \tau} \| \int_0^t (t-s)^{-1/2} \| X(s) \|_{H^{\beta}} \, ds)^p$$

$$\leq C (\| X_0 \|_{H^{\beta},L^p}^p + 2 \int_0^T \| X \|_{H^{\beta},\infty,L^p}^p \, ds),$$

where we used the boundedness of the contraction semigroup in the first and Equation (2.4) in the second step, Lemma 2.2, Theorem 6.13 in [32], and the definition of the Bochner integral in the third one, and Hölder’s inequality in the fourth. Finally, we apply Gronwall’s inequality which yields

$$\| X \|_{H^{\beta},\infty,L^p} \leq C \| X_0 \|_{H^{\beta},L^p} \exp(2CT) < +\infty,$$

since $\| X_0 \|_{H^{\beta},L^p}$ is finite by Assumption 2.1(c).
Lemma 2.4. If X is the mild solution of Equation (2.1), then for $p > 2$ and $0 \leq r \leq R \leq T$
\[\|X(R) - X(r)\|_{H, L^p}^p \leq C \|X\|_{H^1, L^p, \infty_r}^p (R - r)^{p/2}. \]

Proof. We employ Assumption 2.1, Theorem 6.13 in [32], Equation (2.4), and Lemma 2.2 to estimate
\[\|X(R) - X(r)\|_{H, L^p}^p \leq 3^{p-1} \left(\|S(R - r)X(r)\|_{H, L^p}^p + \int_r^R \|S(s)BX(s)\|_{H, L^p}^p ds \right) \]
\[\leq C \left(\|A_{1/2}X(r)\|_{H, L^p}^p + 2 \cdot \|X\|_{H, L^p, \infty_r}^p \right) (R - r)^{p/2} \]
\[\leq C \|X\|_{H^1, L^p, \infty_r}^p (R - r)^{p/2}. \]

3. Approximation schemes

In this section, we derive a semidiscrete and a fully discrete approximation scheme for Equation (2.1). The convergence properties of these schemes are proven in Section 4 and 5.

To derive a semidiscrete form of Equation (2.1) first, we project H onto a finite dimensional subspace V_h of H, for instance a Finite Element space. This can for example be done by first discretizing D by a triangulation defined over a finite number of points. Then, let $(S_h, h > 0)$ denote a family of Finite Element spaces, consisting of piecewise linear, continuous polynomials with respect to the family of triangulations $(T_h, h > 0)$ of D, with mesh width h, such that $S_h \to H$ for $h \to 0$ and furthermore $S_h \subset H^1_0(D)$ for $h > 0$. In the general framework, let $V := (V_h, h > 0)$ be a family of finite dimensional subspaces of H^1_0 with refinement sizes h, H-orthogonal projection P_h and norm derived from H. For $h \to 0$ the sequence V is supposed to be dense in H in the following sense: For all $\phi \in H$ it holds that
\[\lim_{h \to 0} \|P_h \phi - \phi\|_H = 0. \]

The semidiscrete problem is to find $X_h(t) \in V_h$ such that for $t \in \tau$
\[dX_h(t) = (A_h + P_h B)X_h(t) dt + P_h G(X_h(t)) dM(t), \quad X_h(0) = P_h X_0. \]

Here, we define the approximate operator $A_h : V_h \to V_h$ through the bilinear form
\[(A_h \varphi, \psi)_H = B_A (\varphi, \psi)_H := \sum_{i,j=1}^d (a_{ij} \partial_j \varphi, \partial_i \psi)_H, \]

for all $\varphi, \psi \in V_h$. The operator A_h is the generator of an analytic semigroup $S_h = (S_h(t), t \geq 0)$ defined formally by $S_h(t) = \exp(tA_h)$, for $t \geq 0$. The semidiscrete mild solution is then given by
\[X_h(t) = S_h(t)P_h X_0 + \int_0^t S_h(t-s)P_h BX_h(s) ds + \int_0^t S_h(t-s)P_h G(X_h(s)) dM(s). \]

By Assumption 2.1, S_h is self-adjoint, positive-semidefinite on H and positive-definite on V_h. We prove in Section 4 that Equation (3.1) converges in L^p and almost surely to the mild solution of Equation (2.3) with order $O(h^{\alpha})$ resp. $O(h^{\alpha-\epsilon})$, for any $\epsilon > 0$.

For the time approximation, we introduce a combination of a first order time stepping method, e.g., a backward Euler approximation, and a Milstein scheme. To this end, we consider, for $n \in \mathbb{N}$, equidistant partitions $0 = t_0 < \ldots < t_n = T$ of the interval τ with step
size \(k_n := T/n \). We set \(T^n = \{ t_j^n, j = 0, \ldots, n \} \) and refer to the norm \(C(T^n; H) \) with the subscript \(\infty \). For \(i < n \), the subset \(\{ t_j^n, j = 0, \ldots, i \} \) of \(T^n \) is denoted by \(T_i^n \). For \(n \in \mathbb{N} \), we define the map \(\pi_n : \tau \to \{ t_j^n, j = 0, \ldots, n \} \) by \(\pi_n(s) = t_j^n \), if \(t_j^n \leq s < t_{j+1}^n \). Furthermore, we set \(\tau_n(j) = t_j^n \) for \(j = 0, \ldots, n \). Then, \(\tau_n \) is a bijective map and \(\kappa_n = \tau_n^{-1} \circ \pi_n \) is well defined and gives for \(t \in \tau \) the index of the next smaller grid point in \(T^n \). The approximations introduced in the following and its convergence results also apply to nonequidistant partitions as used in [3], but for the sake of simplicity, we present here an equidistant time stepping. Inserting Equation (2.3) recursively into itself yields

\[
X(t_{j+1}^n) = S(t_{j+1}^n - t_j^n)X(t_j^n) + \int_{t_j^n}^{t_{j+1}^n} S(t_{j+1}^n - s)B\left(S(s - t_j^n)X(t_j^n)\right) ds
\]

\[
+ \int_{t_j^n}^{t_{j+1}^n} S(s - r)BX(r) dr + \int_{t_j^n}^{t_{j+1}^n} S(s - r)G(X(r)) dM(r) \right) ds \]

\[
+ \int_{t_j^n}^{t_{j+1}^n} S(s - r)BX(r) dr + \int_{t_j^n}^{t_{j+1}^n} S(s - r)G(X(r)) dM(r) \right) dM(s).
\]

To provide some intuition regarding the structure of the approximation, we analyze the following deterministic partial differential equation with source term following [3]. We demonstrate the method for a backward Euler time stepping scheme. We remark that we are not restricted to this time stepping scheme; any scheme fulfilling certain approximation properties, as specified in Equations (4.1), resp. (5.1) could be used. For simplicity, we omit details on the boundary or initial conditions, since the following are just heuristics. Consider

\[
\frac{dX(t)}{dt} = AX(t) + f(X(t)).
\]

The time derivative is approximated by

\[
\frac{dX(t)}{dt} \approx \frac{X_{j+1}^n - X_j^n}{k_n}
\]

and \(AX(t) \) on the right hand side by

\[
AX(t) \approx AX_{j+1}^n,
\]

where \(X_j^n := X(t_j^n) \), for \(j = 0, \ldots, n \). The source term is approximated by

\[
f(X(t)) \approx f(X_j^n),
\]

which is called linearization. Overall the scheme takes the following form:

\[
\frac{X_{j+1}^n - X_j^n}{k_n} = AX_{j+1}^n + f(X_j^n),
\]

which can be transformed into

\[
X_{j+1}^n = r(k_nA)X_j^n + k_n r(k_nA) f(X_j^n).
\]
Here, \(r \) denotes the rational approximation of the semigroup which is given by \(r(\lambda) := (1 - \lambda)^{-1} \), for \(\lambda \neq 1 \). If we apply this approximation scheme in projected form to Equation (3.2), we may write

\[
X^n_{j+1} = r(k_n A_h) X^n_j + \int_{t^n_j}^{t^n_{j+1}} r(k_n A_h) P^h BX^n_j \, ds
\]

(3.3)

\[
+ \int_{t^n_j}^{t^n_{j+1}} r(k_n A_h) P^h G(X^n_j) \, dM(s)
\]

\[
+ \int_{t^n_j}^{t^n_{j+1}} \left(r(k_n A_h) P^h G(\int_{t^n_j}^{t^n_s} G(X^n_s) \, dM(r)) \right) \, dM(s).
\]

The three terms from Equation (3.2)

\[
\int_{t^n_j}^{t^n_{j+1}} S(t^n_{j+1} - s) B \int_{t^n_j}^{s} S(s - r) G(X(r)) \, dM(r) \, ds,
\]

\[
\int_{t^n_j}^{t^n_{j+1}} S(t^n_{j+1} - s) B \int_{t^n_j}^{s} S(s - r) BX(r) \, dr \, ds,
\]

\[
\int_{t^n_j}^{t^n_{j+1}} S(t^n_{j+1} - s) G(\int_{t^n_j}^{s} S(s - r) BX(r) \, dr) \, dM(s)
\]

have been omitted since they for themselves converge as fast as the overall achieved convergence rate of the approximation scheme, which is shown in Section 5. There, we prove that this approximation converges in \(L^p \) and almost surely to the mild solution of Equation (2.1) with order \(O(h^\alpha + k_n^{\min\{\alpha/2,1\}}) \) resp. \(O((h^2 + k_n^{1-\epsilon}) , for all \(\epsilon > 0 \) and the optimal choice \(\alpha = 2 \). Equation (3.3) can be rewritten with respect to the functions \(\pi_n \) and \(\kappa_n \), which were introduced with the time discretization, by

\[
X^n_{\kappa_n(t)} = r(k_n A_h) X^n_{\kappa_n(t) - 1} + \int_{\pi_n(t) - k_n}^{\pi_n(t)} r(k_n A_h) P^h BX^n_{\kappa_n(t) - 1} \, ds
\]

\[
+ \int_{\pi_n(t) - k_n}^{\pi_n(t)} r(k_n A_h) P^h G(X^n_{\kappa_n(t) - 1}) \, dM(s)
\]

\[
+ \int_{\pi_n(t) - k_n}^{\pi_n(t)} \left(r(k_n A_h) P^h G(\int_{\pi_n(t) - k_n}^{\pi_n(t)} G(X^n_{\kappa_n(s) - 1}) \, dM(r)) \right) \, dM(s)
\]

\[
r(k_n A_h)\kappa_n(t) P^h X_0 + \int_{0}^{\pi_n(t)} r(k_n A_h)\kappa_n(t) - \kappa_n(s) P^h BX^n_{\kappa_n(s)} \, ds
\]

\[
+ \int_{0}^{\pi_n(t)} r(k_n A_h)\kappa_n(t) - \kappa_n(s) P^h G(X^n_{\kappa_n(s)}) \, dM(s)
\]

\[
+ \int_{0}^{\pi_n(t)} \left(r(k_n A_h)\kappa_n(t) - \kappa_n(s) P^h G(\int_{\kappa_n(s)}^{\kappa_n(t)} G(X^n_{\kappa_n(s)}) \, dM(r)) \right) \, dM(s)
\]

for all \(t \in [k_n, T] \).

Note that all random variables involved in Equation (3.3) can be simulated in the following way. If \(U = H \) and \(V_h \) contains a finite subset of the eigenbasis of \(M \), the noise is automatically finite dimensional. Otherwise this approximation might not be suitable for simulations. In [4],
it is shown for a class of Lévy processes which choices of noise approximations imply that the overall order of convergence is preserved. We follow this approach here. Therefore, let

\[\langle M, M \rangle_t - \langle M, M \rangle_s = (t - s)Q, \]

i.e., \(M \) is a \(Q \)-Wiener process (see [33, 21]). Let us denote the Itô integral to be simulated by

\[\int_a^b P_h \Psi(s) \, dM(s) \]

with \(a < b \), \(a, b \in \tau \) and \(\Psi \in L^2_{\mathcal{H},\tau}(H) \). This expression can be rewritten using the Karhunen–Loève representation of \(M \) to

\[\sum_{i=1}^{\infty} \sqrt{\gamma_i} \int_a^b P_h \Psi(s) e_i \, dM_i(s). \]

Here, the elements \(\gamma_i \) denote the eigenvalues of the covariance operator \(Q \) and \(e_i \) the corresponding eigenfunctions. To evaluate this expression, we might have to simulate an infinite number of continuous one-dimensional martingales \(M_i \). One possibility to overcome this problem is to approximate the infinite dimensional process by a truncation of the series expansion, i.e., set

\[M^{\kappa}(t) := \sum_{i=1}^{\kappa} \sqrt{\gamma_i} M_i(t) e_i. \]

Let \((M^{\kappa}, \kappa \in \mathbb{N}) \) be the sequence of truncated series expansions with covariance \(Q^{\kappa} \) that converges almost surely to the martingale \(M \) with covariance \(Q \). We set

\[M^{\kappa}(t) := M(t) - M^{\kappa}(t) = \sum_{i=\kappa + 1}^{\infty} \sqrt{\gamma_i} M_i(t) e_i \]

with covariance \(Q^{\kappa} := Q - Q^{\kappa} \), which converges almost surely to zero. This implies for the Itô integral of \(\Psi \in L^2_{\mathcal{H},\tau}(H) \) that

\[\int_a^b \Psi(s) \, dM(s) - \int_a^b \Psi(s) \, dM^{\kappa}(s) = \int_a^b \Psi(s) \, dM^a(s). \]

This difference converges to zero depending on the decay of the eigenvalues \(\gamma_i, i \in \mathbb{N} \), which is shown in the following lemma. We omit the proof, since it is equivalent to Lemma 3.1 in [4].

Lemma 3.1. If \(\| \Psi \|_{L^1(u, H), \infty; [a, b], L^p} < +\infty \) and there exist constants \(C_\nu, C, \mu > 0 \) and \(\nu > 1 \) such that the eigenvalues satisfy \(\gamma_i \leq C_\nu i^{-\nu} \) and \(\kappa \geq C h^{-\mu} \), then

\[\mathbb{E} \left(\sup_{t \in [a, b]} \| \int_a^t \Psi(s) \, dM(s) - \int_a^t \Psi(s) \, dM^{\kappa}(s) \|^p_H \right) \leq C_p h^{\frac{\mu(\nu - 1)n}{2}}, \]

for a constant \(C_p \).

We use Lemma 3.1 to derive an error bound for the approximation of the Milstein term in Equation (3.3)

\[\int_{t_j}^{t_{j+1}} \left(r(k_n A_k) P_h G \left(\int_{t_j}^s P_h G(X^n_r) \, dM(r) \right) \right) \, dM(s). \]
To simplify the notation we introduce the separable Hilbert spaces H and U. The Hilbert space H is for example $L^2(D)$ or some approximation space V_h. Further, we consider a linear map $\Gamma : H \to L(U, H)$ satisfying Assumption 2.1(d) for $\beta = 0$ and the norm in $L(U, H)$. In addition, we have a bounded map $\sigma : \tau \to L(H, H)$. For $0 \leq a < b \leq T$ and an H-valued adapted stochastic process $\psi = (\psi(t), t \in \tau)$, we rewrite Equation (3.5) more generally as

$$\int_a^b \sigma(a)\Gamma(\int_a^s \Gamma(\psi(a)) \, dM(r)) \, dM(s).$$

The following error bound is proven similarly to Lemma 4.2 in [3].

Lemma 3.2. For $n \in \mathbb{N}$, let $\sigma : T^n \to L(H, H)$, $\Gamma : H \to LHS(H, H)$ be linear and satisfy Assumption 2.1(d) for $\beta = 0$ and the norm in $L(U, H)$ as well as

$$\Gamma(\psi e_i) e_j = \Gamma(\psi e_j)e_i,$$

for $i, j \in \mathbb{N}$. Further, let $\psi = (\psi(t), t \in T^n)$ be an adapted H-valued stochastic process. If

$$\mathbb{E}(\int_0^T ||\psi(\pi_n(s))||_H^p \, ds) < +\infty$$

and there exist constants $C_\nu, C > 0$ such that the eigenvalues of the covariance operator Q of M satisfy $\gamma_i \leq C_\nu r^{-\nu}$, for some $\nu > 1$ and all $i \in \mathbb{N}$, and $\kappa \geq Ch^{-\mu}$, for some $\mu > 0$, then there exists a constant C_p such that

$$\mathbb{E}(\sup_{t \in \tau} ||\int_0^t \sigma(\pi_n(s)) \Gamma(\int_{\pi_n(s)}^s \Gamma(\psi(\pi_n(s))) \, dM(r)) \, dM(s))$$

$$- \int_0^t \sigma(\pi_n(s)) \Gamma(\int_{\pi_n(s)}^s \Gamma(\psi(\pi_n(s))) \, dM^\kappa(r)) \, dM^\kappa(s)||_H^p \leq C_p (k_n h^{\mu(\nu-1)\beta/2}).$$

To get optimal convergence rates, the noise approximation should have the same order of convergence as the spacial and temporal approximations. We couple all error contributions in Section 5. In the next section, we derive error bounds for the semidiscrete approximation.

4. Convergence of the semidiscrete approximation

In this section, we present an L^p and an almost sure convergence result for the semidiscrete approximation. We assume that for $\alpha \geq \beta \geq 0$ with $\phi \in H^\alpha$ and $t \in \tau$, we have that

$$\|S(t) - S_h(t)P_h\phi\|_H \leq C h^{\alpha}t^{-\beta/2} \|\phi\|_{H^{\alpha-\beta}}. \tag{4.1}$$

This is for example satisfied by the Finite Element spaces $(S_h, h > 0)$ as introduced before for $\alpha = 2$ (see Theorem 3.5 in [36]). In the more general setting of piecewise polynomials of degree at most $\alpha - 1$, Theorem 5.7 in [13] as well as Proposition 11.2.2 in [35] imply Equation (4.1).

We note that in the proofs of Theorem 4.1 and Theorem 4.2, Equation (4.1) just has to be satisfied for $\beta = 0$ and $\beta = 1$. If it only holds for $\beta = 0$, the theorems stay true when the mild solution satisfies $\|X\|_{H^{\alpha+1}, L^p, \infty} < +\infty$.

The proposed space discretized equation converges uniformly, almost surely with order $O(h^{\alpha-\epsilon})$ and with order $O(h^\alpha)$ in L^p to the mild solution of Equation (2.1), which is stated in the following two theorems.
Theorem 4.1. The sequence of semidiscrete mild solutions \((X_h, h > 0)\) defined in Equation (3.1) converges in \(L^p\) to the mild solution \(X\) of Equation (2.1) of order \(O(h^\alpha)\), i.e., for all \(p > 0\)

\[
||X - X_h||_{H,\infty, L^p} \leq C_p h^\alpha ||X||_{H^\alpha, \infty, L^p}.
\]

Proof. We first assume that \(p > 2\). It holds that

\[
||X - X_h||_{H,\infty, L^p}^p \\
\leq 3^{p-1}(||S - S_h P_h||_{H,\infty, L^p})^p \leq 3^{p-1} \left(\left(\sum_{t \in \tau} \int_0^t S(t-s)BX(s)ds \right)^p \right)
\]

(4.2)

\[
+ E(\sup_{t \in \tau} || \int_0^t S(t-s)P_hBX_h(s)ds||_{H,\infty, L^p}^p)
\]

+ \(E(\sup_{t \in \tau} || \int_0^t S(t-s)G(X(s))dM(s) - \int_0^t S_h(t-s)P_hG(X_h(s))dM(s)||_{H,\infty, L^p}^p) \),

where we applied Hölder’s inequality. The first term satisfies for \(\beta = 0\) by Equation (4.1)

\[
||S - S_h P_h||_{H,\infty, L^p}^p \leq C h^{p\alpha} ||X_0||_{H^\alpha, L^p}^p.
\]

The second one is split into

\[
\int_0^t S(t-s)BX(s)ds - \int_0^t S_h(t-s)P_hBX_h(s)ds||_{H,\infty, L^p}^p
\]

\[
\leq 2^{p-1} \left(\left(\sum_{t \in \tau} \int_0^t S(t-s) - S_h(t-s)P_hBX(s)ds \right)^p \right)
\]

\[
+ \| \int_0^t S_h(t-s)P_hB(X(s) - X_h(s))ds ||_{H,\infty, L^p}^p.
\]

The first of these expressions is bounded by the properties of the Bochner integral, Equation (4.1) for \(\beta = 1\), Hölder’s inequality, Fubini’s theorem, and Lemma 2.2 by

\[
\int_0^t (S(t-s) - S_h(t-s)P_h)BX(s)ds||_{H,\infty, L^p}^p
\]

\[
\leq C h^{p\alpha} \sup_{t \in \tau} (\int_0^t (t-s)^{-p/2(p-1)}ds)^{p-1} ||BX||_{H^{\alpha-1, L^p, \infty}}^p \leq C h^{p\alpha} ||X||_{H^\alpha, L^p, \infty}^p.
\]

Furthermore, the second term satisfies

\[
\int_0^t S_h(t-s)P_hB(X(s) - X_h(s))ds||_{H,\infty, L^p}^p
\]

\[
\leq C E(\sup_{t \in \tau} (\int_0^t (t-s)^{-1/2}||X(s) - X_h(s)||_H ds)^p)
\]

by the properties of the Bochner integral and Theorem 6.13 in [32]. Hölder’s inequality for \(p > 2\) leads to

\[
\int_0^t S_h(t-s)P_hB(X(s) - X_h(s))ds||_{H,\infty, L^p}^p \leq C \int_0^T ||X - X_h||_{H,\infty, L^p}^p ds.
\]
So overall, we have for the second term on the right hand side in Equation (4.2)

\[
\| \int_0^t S(t-s)B X(s) \, ds - \int_0^t S_h(t-s)P_h B X_h(s) \, ds \|_{H^{\alpha \tau_r}, L^p}^p \leq C(h^{p \alpha}) \|X\|_{H^{\alpha \tau_r}, L^p}^p + \int_0^t \|X - X_h\|_{H^{\alpha \tau_r}, L^p}^p \, ds.
\]

The third expression on the right hand side of Equation (4.2) is split into the two following terms

\[
\| \int_0^t S(t-s)G(X(s)) \, dM(s) - \int_0^t S_h(t-s)P_h G(X_h(s)) \, dM(s) \|_{H^{\alpha \tau_r}, L^p}^p \\
\leq 2^{p-1}(\| \int_0^t (S(t-s) - S_h(t-s)P_h)G(X(s)) \, dM(s) \|_{H^{\alpha \tau_r}, L^p}^p + \| \int_0^t S_h(t-s)P_h(G(X(s)) - G(X_h(s))) \, dM(s) \|_{H^{\alpha \tau_r}, L^p}^p).
\]

The first of these expressions satisfies by Lemma 4.3, which is proven afterwards, and the properties of \(G \)

\[
\| \int_0^t (S(t-s) - S_h(t-s)P_h)G(X(s)) \, dM(s) \|_{H^{\alpha \tau_r}, L^p}^p \leq C h^{p \alpha} \|X\|_{H^{\alpha \tau_r}, L^p}^p.
\]

Equation (2.4) yields with Hölder’s inequality and Fubini’s theorem for the other term

\[
\| \int_0^t S_h(t-s)P_h(G(X(s)) - G(X_h(s))) \, dM(s) \|_{H^{\alpha \tau_r}, L^p}^p \\
\leq C \int_0^T \|G(X) - G(X_h)\|_{L^p(H, H), \alpha \tau_r, L^p}^p \, ds,
\]

and the properties of \(G \) imply that

\[
\|G(X) - G(X_h)\|_{L^p(H, H), \alpha \tau_r, L^p}^p \leq C \|X - X_h\|_{H^{\alpha \tau_r}, L^p}^p.
\]

So overall, we have due to the finiteness of \(\|X\|_{H^{\alpha \tau_r}, L^p} \) with Gronwall’s inequality

\[
\|X - X_h\|_{H^{\alpha \tau_r}, L^p}^p \leq C_1 h^{p \alpha} + C_2 \int_0^T \|X - X_h\|_{H^{\alpha \tau_r}, L^p}^p \, ds \leq C h^{p \alpha},
\]

for constants \(C_1, C_2, \) and \(C \) depending on the regularity of the mild solution, \(T, \) and \(p. \)

Finally, for \(p \leq 2, \) we have for any \(p' > 2 \) by Hölder’s inequality

\[
\|X - X_h\|_{H^{\alpha \tau_r}, L^p} \leq \|X - X_h\|_{H^{\alpha \tau_r}, L^p} = O(h^\alpha).
\]

This theorem implies almost sure convergence as stated in the next theorem.

Theorem 4.2. For every \(\epsilon > 0 \) and for \(h > 0 \) small enough such that \(h \) decays to zero with order \(O(n^{-\lambda}), \) for \(n \in \mathbb{N} \) and fixed \(\lambda > 0, \)

\[
\|X - X_h\|_{H^{\alpha \tau_r}} \leq h^{\alpha - \epsilon}, \quad \text{P.a.s.},
\]

i.e., the family of approximations \((X_h, h > 0)\) introduced in Equation (3.1) converges uniformly, almost surely to \(X \) of order \(O(h^{\alpha - \epsilon}), \) for \(h \to 0. \)
Proof. To show almost sure convergence, we use Theorem 4.2 and Chebyshev’s inequality in the following way:
\[
P(\|X_h - X\|_{H,\infty} \geq h^{\alpha-\epsilon}) \leq h^{-(\alpha-\epsilon)p} \|X_h - X\|^p_{H,\infty,L^p} \leq C_p h^{p\epsilon}.
\]
Since \(h = O(n^{-\lambda}) \), the corresponding series is convergent for any \(p > (\epsilon \lambda)^{-1} \) and therefore, by the Borel–Cantelli lemma, we have asymptotically
\[
\|X - X_h\|_{H,\infty} \leq h^{\alpha-\epsilon}, \quad \text{P–a.s.},
\]
which proves the theorem. \(\square \)

The proof of Theorem 4.1 required a Burkholder–Davis–Gundy type result on the convergence of the approximated semigroup in combination with a stochastic integral. In this case, Equation (2.4) cannot be applied, since this leads to a lower order of convergence.

Lemma 4.3. For \(p > 2 \) and \(\Psi \in L^2_{H,r}(H) \)
\[
\| \int_0^t (Sh(t-s)P_h - S(t-s))\Psi(s) dM(s) \|_{H,\infty,L^p} \leq C h^\alpha \|\Psi\|_{L^p(\mathcal{H}(H^\alpha),\infty,L^p)}.
\]

Proof. We closely follow the proof of Theorem 5.12 in [11]. For \(0 < \nu < 1 \), the following identity holds:
\[
\int_s^t (t-r)^{\nu-1}(r-s)^{-\nu} dr = \frac{\pi}{\sin \nu \pi}.
\]
It follows from Fubini’s theorem and the semigroup property that
\[
\int_0^t S(t-s)\Psi(s) dM(s) = \frac{\sin \nu \pi}{\pi} \int_0^t \left(\int_s^t (t-r)^{\nu-1}(r-s)^{-\nu} dr \right) S(t-s)\Psi(s) dM(s)
\]
\[
= \frac{\sin \nu \pi}{\pi} \int_0^t (t-r)^{\nu-1} S(t-r) \int_0^r (r-s)^{-\nu} S(r-s)\Psi(s) dM(s) dr
\]
\[
= \frac{\sin \nu \pi}{\pi} \int_0^t (t-r)^{\nu-1} S(t-r)\Psi (r) dr,
\]
where \(Y(r) = \int_0^r (r-s)^{-\nu} S(r-s)\Psi(s) dM(s) \). Similar calculations for the semidiscrete version lead to
\[
\int_0^t S_h(t-s)P_h\Psi(s) dM(s) = \frac{\sin \nu \pi}{\pi} \int_0^t (t-r)^{\nu-1} S_h(t-r) P_h Y_h(r) dr.
\]
Note that since \(P_h \) is a projection \(P_h = P_h^2 \). We decompose the equation to be verified in the following way
\[
\| \int_0^t (Sh(t-s)P_h - S(t-s))\Psi(s) dM(s) \|^p_{H,\infty,L^p}
\]
\[
\leq C \left(\frac{\sin \nu \pi}{\pi} \right)^p \left(\| \int_0^t (t-r)^{\nu-1} (Sh(t-r)P_h - S(t-r)) Y(r) dr \|^p_{H,\infty,L^p} + \| \int_0^t (t-r)^{\nu-1} S_h(t-r) P_h(Y_h(r) - Y(r)) dr \|^p_{H,\infty,L^p} \right)
\]
\[
= C \left(\frac{\sin \nu \pi}{\pi} \right)^p (I + II).
\]
For ease of readability, C and $C_{v,p}$ denote varying constants that are independent of h. We approximate the two expressions separately. By the definition of the Bochner integral and Hölder's inequality, we obtain for term I and $\nu > 1/p$

\[
I \leq E\left(\sup_{t \in \mathbb{R}} \int_0^t \|(t - r)^{\nu - 1}(S_h(t - r)P_h - S(t - r))Y(r)\|_{H}^p \, dr\right)^{\frac{1}{p}} \\
\leq C_{v,p} E\left(\sup_{t \in \mathbb{R}} \int_0^t \|(S_h(t - r)P_h - S(t - r))Y(r)\|_{H}^p \, dr\right)^{\frac{1}{p}} \\
\leq C_{v,p} h^{p\alpha} \int_0^T \|Y(t)\|_{H^{\alpha},L^p}^p \, dt,
\]

where we used Equation (4.1) in the third step. Moreover, considering $\nu < 1/2$, Equation (2.4), Assumption 2.1, the closed graph theorem, and the commutativity of the operator and the semigroup yield

\[
\|Y(t)\|_{H^{\alpha},L^p} \leq C E\left(\|A_{\alpha/2} \int_0^t (t - s)^{-\nu}S(t - s)\Psi(s) \, dM(s)\|_{H}^p \right) \\
\leq C E\left(\int_0^t (t - s)^{-\nu}S(t - s)A_{\alpha/2}\Psi(s) \, dM(s)\|_{H}^p \right) \\
\leq C E\left(\int_0^t (t - s)^{-2\nu}\|\Psi(s)\|_{LHS}(H,\alpha)^2 \, ds\right)^{p/2} \leq C_{v,p} \|\Psi\|_{LHS(H,\alpha),\infty,\alpha,L^p}^p.
\]

Altogether, we obtain

\[
I \leq C_{v,p} h^{p\alpha} \|\Psi\|_{LHS(H,\alpha),\infty,\alpha,L^p}^p.
\]

For term II, Hölder’s inequality for $\nu > 1/p$ and the fact that $S_h(t)P_h$ is bounded imply

\[
II \leq E\left(\sup_{0 \leq t \leq T} \left(\int_0^t (t - r)^{\nu - 1}\|S_h(t - r)P_h(Y_h(r) - Y(r))\|_{H}^p \, dr\right)^{\frac{1}{p}}\right) \\
\leq C_{v,p} \int_0^T \|Y_h(r) - Y(r)\|_{H,L^p}^p \, dr.
\]

We further approximate

\[
\|Y_h(r) - Y(r)\|_{H,L^p}^p = E\left(\|\int_0^r (r - s)^{-\nu}(S_h(r - s)P_h - S(r - s))\Psi(s) \, dM(s)\|_{H}^p \right) \\
\leq E\left(\int_0^r (r - s)^{-2\nu}\|\Psi(s)\|_{LHS}(H,\alpha)^2 \, ds\right)^{p/2} \leq C_{v,p} h^{p\alpha} \|\Psi\|_{LHS(H,\alpha),\infty,\alpha,L^p}^p,
\]

where Equation (2.2) and Equation (4.1) are used. Altogether this gives for term II

\[
II \leq C_{v,p} h^{p\alpha} \|\Psi\|_{LHS(H,\alpha),\infty,\alpha,L^p}^p.
\]

Choosing any $1/p < \nu < 1/2$, we finally get

\[
\|\int_0^t (S_h(t - s)P_h - S(t - s))\Psi(s) \, dM(s)\|_{H,\infty,\alpha,L^p} \leq C h^{p\alpha} \|\Psi\|_{LHS(H,\alpha),\infty,\alpha,L^p}^p,
\]

which concludes the proof. \(\square\)
5. Convergence of the Fully Discrete Approximation

In this section, we prove L^p and almost sure convergence of the Milstein scheme introduced in Section 3. With an Euler–Maruyama scheme, in general, only convergence of rate $O(\sqrt{k_n})$ in time can be achieved, whereas a Milstein scheme converges at a rate of order $O(k_n)$.

We define the approximation $X^n = (X^n_j, j = 0, \ldots, n)$ of Equation (2.3) by the Milstein scheme introduced in Equation (3.3). For the convergence of the approximated semigroup $r(k_n A_h)$ we assume that it is stable and there exists a constant C such that for all $0 < j \leq n$ and fixed $\alpha \in \mathbb{N}$ and $\beta \in \{0, 1\}$

$$\| (S(t^n_j) - r(k_n A_h)^j P_h) \phi \|_H \leq C (h + k_n^{1/2})^\alpha (t^n_j)^{-\beta/2} \| \phi \|_{H^{\alpha - \beta}}. \quad (5.1)$$

This is especially met by a backward Euler scheme, which is shown similarly to Theorem 7.7 in [36] with Theorems 7.3 and 3.5 in the same book. Assumption (5.1) implies similarly to Lemma 4.3 the convergence of the rational approximation of the semigroup in combination with a stochastic integral.

Lemma 5.1. For $p > 2$, it holds that

$$\left\| \int_0^t (S(t - \pi_n(s)) - r(k_n A_h)^{\alpha_n(t) - \pi_n(s)} P_h) G(X(s)) \, dM(s) \right\|_{H,\infty,T^n,L^p}^p \leq C (h + k_n^{1/2})^{p\alpha} \| X \|_{H^{\alpha},\infty,T^n,L^p}^p.$$

Proof. Except for the fact that one applies Equation (5.1) instead of Equation (4.1), this proof is identical to that of Lemma 4.3 and therefore we omit it. \hfill \Box

The order of convergence of the fully discrete approximation to the mild solution is proven in the following theorem.

Theorem 5.2. For $p > 0$, the sequence of approximations $(X^n, n \in \mathbb{N})$ defined by Equation (3.3) converges in p-th moment to the mild solution X of Equation (2.1) and satisfies for constants C_1 and C_2 that depend on T

$$\| X - X^n_{\pi_n} \|_{H,\infty,T^n,L^p} \leq C_1 (h + k_n^{1/2})^\alpha \| X \|_{H^{\alpha},\infty,T^n,L^p} + C_2 k_n \| X \|_{H^1,L^p,\infty}.$$

Especially, for $\alpha = 2$ and $X \in H^2$, it holds that

$$\| X - X^n_{\pi_n} \|_{H,\infty,T^n,L^p} = O(h^2 + k_n).$$

Proof. The proof of the theorem involves numerous estimates, where the same techniques are used many times. Therefore, we derive the terms to be estimated and choose one of each type to show the techniques that are employed.
Equation (2.3) can be rewritten for $t \in \tau$ as

\[
X(t) = S(t)X_0 + \int_0^t S(t-s)BS(s-\pi_n(s))X(\pi_n(s)) \, ds \\
+ \int_0^t \left(S(t-s)B \int_{\pi_n(s)}^s S(s-r)BX(r) \, dr \right) \, ds \\
+ \int_0^t \left(S(t-s)B \int_{\pi_n(s)}^s S(s-r)G(X(r)) \, dM(r) \right) \, ds \\
+ \int_0^t S(t-s)G(S(s-\pi_n(s))X(\pi_n(s))) \, dM(s) \\
+ \int_0^t \left(S(t-s)G \left(\int_{\pi_n(s)}^s S(s-r)BX(r) \, dr \right) \right) \, dM(s) \\
+ \int_0^t \left(S(t-s)G \left(\int_{\pi_n(s)}^s S(s-r)G(X(r)) \, dM(r) \right) \right) \, dM(s)
\]

similarly to Equation (3.2) as done in [28, 29]. We remark that the third, the fourth, and the sixth term on the right hand side are not approximated in scheme (3.3) because they (for themselves) converge as fast as the overall approximation scheme.

For fixed $n \in \mathbb{N}$, the difference of the mild solution of Equation (2.1) and the fully discrete approximation (3.3) is split into the initial condition, the Bochner integral, and the Itô integral terms

\[
X(t^n_j) - X^n_j = (S(t^n_j) - r(k_nA_h)^jP_h)X_0 + \xi^n(j) + \eta^n(j).
\]

The Bochner integral part ξ^n is split again into three parts

\[
\xi^n := \xi^n_1 + \xi^n_2 + \xi^n_3
\]

with

\[
\xi^n_1(j) := \int_0^{t^n_j} \left(S(t^n_j-s)B \left(S(s-\pi_n(s))X(\pi_n(s)) - r(k_nA_h)^j\pi_n(s)P_hBX^n_{\pi_n(s)} \right) \right) \, ds,
\]

\[
\xi^n_2(j) := \int_0^{t^n_j} \left(S(t^n_j-s)B \int_{\pi_n(s)}^s S(s-r)BX(r) \, dr \right) \, ds,
\]

\[
\xi^n_3(j) := \int_0^{t^n_j} \left(S(t^n_j-s)B \int_{\pi_n(s)}^s S(s-r)G(X(r)) \, dM(r) \right) \, ds.
\]

Similarly, the stochastic integral is decomposed into

\[
\eta^n := \eta^n_1 + \eta^n_2 + \eta^n_3
\]
with
\[
\eta_1^n(j) := \int_0^{t_j^n} \left(S(t_j^n - s) G(S(s - \pi_n(s)) X(\pi_n(s))) - r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) \right) dM(s),
\]
\[
\eta_2^n(j) := \int_0^{t_j^n} \left(S(t_j^n - s) G(\int_{\pi_n(s)}^s (S(s - r) B X(r) dr)) \right) dM(s),
\]
\[
\eta_3^n(j) := \int_0^{t_j^n} \left(S(t_j^n - s) G(\int_{\pi_n(s)}^s (S(s - r) G(X(r)) dM(r)) - r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) \right) dM(s).
\]
We further split three of the terms. We may write
\[
\xi_1^n(j) = \int_0^{t_j^n} S(t_j^n - s) B(S(s - \pi_n(s)) - 1) X(\pi_n(s)) ds
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - s) - S(t_j^n - \pi_n(s))) B X(\pi_n(s)) ds
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - \pi_n(s)) - r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s)
\]
\[
+ \int_0^{t_j^n} r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s),
\]
and we refer to the terms on the right hand side by \(\xi_{1,i}^n(j)\) for \(i = 1, \ldots, 4\). Similarly, \(\eta_1^n(j)\) is split into the following four terms
\[
\eta_1^n(j) := \int_0^{t_j^n} S(t_j^n - s) G((S(s - \pi_n(s)) - 1) X(\pi_n(s))) dM(s)
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - s) - S(t_j^n - \pi_n(s))) G(X(\pi_n(s))) dM(s)
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - \pi_n(s)) - r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s)
\]
\[
+ \int_0^{t_j^n} r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s),
\]
and \(\eta_3^n(j)\) into five terms
\[
\eta_3^n(j) := \int_0^{t_j^n} S(t_j^n - s) G(\int_{\pi_n(s)}^s (S(s - r) - 1) G(X(r)) dM(r)) dM(s)
\]
\[
+ \int_0^{t_j^n} S(t_j^n - s) G(\int_{\pi_n(s)}^s G(X(r) - X(\pi_n(s))) dM(r)) dM(s)
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - s) - S(t_j^n - \pi_n(s))) G(\int_{\pi_n(s)}^s G(X(\pi_n(s))) dM(r)) dM(s)
\]
\[
+ \int_0^{t_j^n} (S(t_j^n - \pi_n(s)) - r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s)
\]
\[
+ \int_0^{t_j^n} r(k_n A_h)^j \int_{\pi_n(s)} G(X^n_{\pi_n(s)}) dM(s).\]
\[+ \int_0^{t^j} r(k_n A_h)^j - k_n(s) P_h G \left(\int_{\pi_n(s)}^s G(X(\tau_n(s)) - X_{\kappa_n(s)}) \, dM(r) \right) \, dM(s). \]

For now, let \(p > 2 \). For better readability, we add \(t_j^m \) resp. \(j \) in the terms to be estimated, although it is not necessary in the norm. The initial condition is bounded by Equation (5.1) for \(\beta = 0 \)

\[\|(S(t_j^m) - r(k_n A_h)^j P_h) X_0\|_{H, \infty} \leq C(h + k_n^{1/2})^\alpha \|X_0\|_{H^\alpha, L^p}. \]

For \(\xi^n \) and \(\eta^n \) we just give calculations for one term of each type of estimation to demonstrate the technique. The other terms are treated in a similar way. The first term of \(\xi_1^n \) satisfies by the properties of the Bochner integral, Lemma 2.2, and Theorem 6.13 in [32]

\[\|\xi_{1,1}^n(j)\|_{H, \infty} \leq C \mathbb{E} \left(\sup_{0 \leq j \leq n} \int_0^{t_j^n} (t_j^n - s)^{-1/2} \|(S(s - \tau_n(s)) - I) X(\tau_n(s))\|_{H, \infty} \, ds \right)^p \]

\[\leq C \mathbb{E} \left(\sup_{0 \leq j \leq n} \int_0^{t_j^n} (t_j^n - s)^{-1/2} \|X(\tau_n(s))\|_{H^\alpha, \infty} \, ds \right)^p \]

\[\leq C k_n^{\alpha/2} \mathbb{E} \left(\sup_{0 \leq j \leq n} \int_0^{t_j^n} (t_j^n - s)^{-1/2} \|X(\tau_n(s))\|_{H^\alpha, \infty} \, ds \right)^p. \]

Hölder’s inequality and Fubini’s theorem imply that

\[\|\xi_{1,1}^n(j)\|^p_{H, \infty} \leq C k_n^{\alpha/2} \left(\int_0^T (T - s)^{-p/2} (p - 1)^2 \, ds \right)^{p/2} \int_0^T \|X(\tau_n(s))\|^p_{H^\alpha, \infty} \, ds \]

\[\leq C k_n^{\alpha/2} \|T^{(p-2)/2} X\|^p_{H^\alpha, L^p, \infty}. \]

The property of the semigroup with similar estimates leads to

\[\|\xi_{1,2}^n(j)\|_{H, \infty} \leq \|\xi_{1,1}^n(j)\|_{H, \infty} + \|\eta_{1,1}^n(j)\|_{H, \infty} + \|\eta_{1,2}^n(j)\|_{H, \infty} \]

\[\leq C k_n^{\alpha/2} \|X\|^p_{H^\alpha, L^p, \infty}, \]

where Equation (2.4) is used for the terms labeled with \(\eta \).

The convergence properties of the rational approximation of the semigroup in Equation (5.1) imply for \(\xi_1^n, j \) for \(\beta = 1 \) with similar estimates as before concerning the operator \(B \)

\[\|\xi_{1,3}^n(j)\|_{H, \infty} \leq C T^{(p-2)/2} (h + k_n^{1/2})^\alpha \int_0^T \|B X(\tau_n(s))\|^p_{H^\alpha-1, \infty} \, ds \]

\[\leq C (h + k_n^{1/2})^\alpha \|X\|^p_{H^\alpha, L^p, \infty}. \]

These estimates are also applied to the following terms and give with Lemma 5.1

\[\|\eta_{1,3}^n(j)\|^p_{H, \infty} \leq C (1 + k_n^{1/2}) (h + k_n^{1/2})^\alpha \|X\|^p_{H^\alpha, \infty, L^p}. \]

In the end, the difference of the mild solution and the approximation is estimated by their difference at previous time steps, which stems from the following calculation

\[\|\xi_{1,4}^n(j)\|_{H, \infty} \leq C \mathbb{E} \left(\sup_{0 \leq j \leq n} \int_0^{t_j^n} (t_j^n - \tau_n(s))^{-1/2} \|X(\tau_n(s)) - X_{\kappa_n(s)}\|_{H, \infty} \, ds \right)^p \]

\[\leq C T^{(p-2)/2} \sum_{i=0}^{j-1} k_n \|X(t_i^m) - X_i^n\|^p_{H, \infty} \]
where we used Equation (4.2) in [26]. The stability of the semigroup approximation for \(\eta_{1,4}^n(j) \) and \(\eta_{3,5}^n(j) \) leads to

\[
\| \eta_{1,4}^n(j) \|_{H,\infty,T^n,L^p}^p + \| \eta_{3,5}^n(j) \|_{H,\infty,T^n,L^p}^p \leq C_p \sum_{i=0}^{j-1} k_n(1 + k_n^{p/2}) \| X(t_i^n) - X_i^n \|_{H,\infty,T^n,L^p}^p
\]

\[
\leq C_p (1 + T^{p/2}) \sum_{i=0}^{j-1} k_n \| X(t_i^n) - X_i^n \|_{H,\infty,T^n,L^p}^p.
\]

The remaining of the approximated terms cannot be estimated with respect to \(u_0 \) or those \(\eta_{1,4}^n(j) \) and \(\eta_{3,5}^n(j) \) leads to estimates on results from the upper and lower limit of the inner integral. We have with the regularity of the solution from Lemma 2.4, Equation (2.4), Hölder’s inequality, combined with previous estimates

\[
\| \eta_{1,2}^n(j) \|_{H,\infty,T^n,L^p}^p \leq C_p \int_0^T (s - \pi_n(s))^{(p-2)/2} \int_{\pi_n(s)}^s \| X(r) - X(\pi_n(s)) \|_{H,L^p}^p \ dr \ ds
\]

\[
\leq C k_n \| X \|_{H^1,L^p,\infty}^p.
\]

The convergence for two of the remaining terms that were not approximated in Equation (3.3) results from the upper and lower limit of the inner integral, i.e., we have

\[\| \xi_2^n(j) \|_{H,\infty,T^n,L^p}^p + \| \eta_2^n(j) \|_{H,\infty,T^n,L^p}^p \leq C_p k_n \| X \|_{H^1,L^p,\infty}^p.\]

Finally, to give estimates on \(\xi_3^n(j) \), we set \(\Pi_n(r) = t_i^n \) for \(t_i^n - 1 < r \leq t_i^n \) and write

\[
\| \xi_3^n(j) \|_{H,\infty,T^n,L^p}^p = \int_0^{t_j^n} \int_0^{t_j^n} \mathbb{1}_{\{\pi_n(s) \leq r \leq \pi_n(t_j^n)\}} S(t_j^n - s) BS(s - r) G(X(r)) \ dr \ ds \|_{H,\infty,T^n,L^p}^p
\]

\[
= \int_0^{t_j^n} \int_0^{t_j^n} \mathbb{1}_{\{\pi_n(s) \leq r \leq \pi_n(t_j^n)\}} S(t_j^n - s) BS(s - r) G(X(r)) \ dr \ ds \|_{H,\infty,T^n,L^p}^p
\]

with a stochastic Fubini theorem (see Theorem 8.14 in [33]). Next, we apply Equation (2.4), the properties of the Bochner integral, Hölder’s inequality, and similar estimates as before to derive

\[
\| \xi_3^n(j) \|_{H,\infty,T^n,L^p}^p = \int_0^{t_j^n} \int_0^{\Pi_n(r)} S(t_j^n - s) BS(s - r) G(X(r)) \ dr \ ds \|_{H,\infty,T^n,L^p}^p
\]

\[
= \int_0^{t_j^n} S(t_j^n - \Pi_n(r)) \int_0^{\Pi_n(r)} S(\Pi_n(r) - s) BS(s - r) G(X(r)) \ dr \ ds \|_{H,\infty,T^n,L^p}^p \leq C_p \int_0^T (\Pi_n(r) - r)^{p-1} \int_0^{\Pi_n(r)} \| X(r) \|_{H^1,L^p}^p \ dr \ ds
\]

\[
\leq C_p k_n \| X \|_{H^1,L^p,\infty}^p.
\]
This concludes the estimates of the terms, and overall we have
\[\|X - X^n_{k_n}\|_{H,\infty T^n,L^p} \leq C_1 \left((h + k_n^{1/2})^p \right) \|X\|_{H^p,\infty T^n,L^p}^{j-1} + C_2 \sum_{i=0}^{j-1} k_n \|X - X^n_{k_n}\|_{H,\infty T^n,L^p}. \]

A discrete version of Gronwall's inequality (cf. [10]) implies
\[\|X - X^n_{k_n}\|_{H,\infty T^n,L^p} \leq C_1 \left((h + k_n^{1/2})^p \right) \|X\|_{H^p,\infty T^n,L^p}^{j-1} \cdot \prod_{i=0}^{j-1} (1 + C_2 k_n) \leq C_1 \left((h + k_n^{1/2})^p \right) \|X\|_{H^p,\infty T^n,L^p}^{j-1} \cdot \exp(C_2 T), \]
which concludes the proof for \(p > 2 \). Finally, for \(p \leq 2 \), Hölder’s inequality leads for \(p' > 2 \) to
\[\|X - X^n_{k_n}\|_{H,\infty T^n,L^p} \leq \|X - X^n_{k_n}\|_{H,\infty T^n,L^{p'}} = O((h + k_n^{1/2})^\alpha + k_n). \]

Theorem 5.3. For every \(\epsilon > 0 \)
\[\|X - X^n_{k_n}\|_{H,\infty T^n} \leq (h^2 + k_n)^{1-\epsilon}, \quad \mathbb{P} \text{-a.s.} \]
asymptotically for \(h \) and \(k_n \) small enough such that there exists \(\lambda > 0 \) with \(h^2 = O(k_n^\lambda) \), i.e., the series of approximations \((X^n, n \in \mathbb{N}) \) defined in Equation (3.3) converges almost surely to \(X \) with order \(O((h^2 + k_n)^{1-\epsilon}) \) for \(h, k_n \to 0 \).

Proof. Let \(\epsilon > 0 \), then Chebyshev’s inequality implies with Theorem 5.2 for all \(0 \leq j \leq n \) that
\[\mathbb{P}(\|X - X^n_{k_n}\|_{H,\infty T^n} \geq (h^2 + k_n)^{1-\epsilon}) \leq \mathbb{P}(\|X - X^n_{k_n}\|_{H,\infty T^n,L^p} \leq C_p (h^2 + k_n)^{\epsilon} \).
\]
Since \(k_n = O(n^{-1}) \) and \(h^2 = O(k_n^\lambda) \) for some \(\lambda > 0 \), the series
\[\sum_{n=1}^{\infty} \mathbb{P}(\|X - X^n_{k_n}\|_{H,\infty T^n} \geq (h^2 + k_n)^{1-\epsilon}) \leq C \sum_{n=1}^{\infty} n^{-\epsilon(1+\lambda)} \]
converges for any \(p > \epsilon^{-1}(1+\lambda)^{-1} \) and therefore, by the Borel–Cantelli lemma
\[\|X - X^n_{k_n}\|_{H,\infty T^n} \leq (h^2 + k_n)^{1-\epsilon}, \quad \mathbb{P} \text{-a.s.}, \]
which concludes the proof. \(\square \)

As a final step we combine the approximation of the noise from Lemma 3.1 and Lemma 3.2 with Theorem 5.2.

The fully approximated scheme reads then (see [3])
\[\tilde{X}_{j+1} = r(k_n A_h) \tilde{X}_j + \int_{t_j}^{t_{j+1}} r(k_n A_h) P_h B \tilde{X}_j^2 \, ds
+ \int_{t_j}^{t_{j+1}} r(k_n A_h) P_h G(\tilde{X}_j^2) \, dM^\kappa (s)
+ \int_{t_j}^{t_{j+1}} (r(k_n A_h) P_h G(\tilde{X}_j^2 \, dM^\sqrt{\kappa}(r))) \, dM^\sqrt{\kappa} (s). \]
To preserve the order of convergence for given $\nu > 1$, we require $\kappa_1 \geq C_2 h^{-4/(\nu-1)}$ for the Euler–Maruyama term and $\kappa_2 \geq C_2 h^{-2/(\nu-1)}$ for the Milstein term. For an equilibrated error we use the first κ terms of the Karhunen–Loève expansion for the Euler–Maruyama term and $\sqrt{\kappa}$ terms for the Milstein term. In this sense the simulation of the Milstein term is computationally not more expensive than the Euler term. For the Milstein term we have to sum over all mixed stochastic processes, i.e., κ_2^2 resp. $\kappa_2^2/2$ terms, if we use the symmetry of Γ. If the simulation of the Euler–Maruyama term needs computational effort $O(\kappa)$ and $\kappa_1 = \kappa_2^2$, the overall work for the Milstein term is also $O(\kappa_1)$. By adding the Milstein term, we increase the order of convergence, but with the correct truncation of the Karhunen–Loève expansion the overall work does not increase. Then, the next corollary is a consequence of Theorem 5.2, Lemma 3.1, and Lemma 3.2.

Corollary 5.4. The sequence of fully discrete approximations $(\hat{X}^n, n \in \mathbb{N})$ converges in L^p and almost surely to the mild solution X of Equation (2.1) and satisfies for constants C_1 and C_2 that depend on T and for $\kappa \geq C_2 h^{-2 \max(n, 2)/(\nu-1)}$, for fixed $C > 0$, where $\nu > 1$ with $\gamma_i \leq C_\nu i^{-\nu}$, for $i \in \mathbb{N}$ and $C_\nu > 0$,

$$\|X - \hat{X}^n_{n}\|_{H^1, T^n, L^p} \leq C_1 (h + k_1^{1/2})^\alpha \|X\|_{H^0, \infty, L^p} + C_2 k_1 \|X\|_{H^1, L^p, \infty}.$$

Especially for $\alpha = 2$ and $X \in H^2$, the error is bounded by

$$\|X - \hat{X}^n_{n}\|_{H^1, T^n, L^p} = O(h^2 + k_1).$$

Furthermore, with the same prerequisites as in Theorem 5.3 it holds asymptotically for any $\epsilon > 0$ that

$$\|X - \hat{X}^n_{n}\|_{H^1, T^n} \leq (h^2 + k_1)^{1-\epsilon}, \quad \mathbb{P}\text{-a.s.}$$

Similar results also hold in the semidiscrete case. In conclusion, we see that the approximation of the noise by an appropriate truncation of the Karhunen–Loève expansion does not affect the overall order of convergence of the approximation scheme. Otherwise the convergence of the noise approximation will dominate the errors (see [4]).

References

MILSTEIN METHOD FOR MULTIPLICATIVE ADVECTION-DIFFUSION SPDES

(Andrea Barth)

ETH, Seminar für Angewandte Mathematik
Rämistrasse 101
CH–8092 Zürich, Switzerland

and

Centre of Mathematics for Applications (CMA)
University of Oslo
P.O. Box 1053, Blindern
N–0316 Oslo, Norway

E-mail address: andrea.barth@sam.math.ethz.ch

(Annika Lang)

ETH, Seminar für Angewandte Mathematik
Rämistrasse 101
CH–8092 Zürich, Switzerland

and

Fakultät für Mathematik und Informatik
Universität Mannheim
D–68131 Mannheim, Germany

E-mail address: annika.lang@sam.math.ethz.ch
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-15</td>
<td>A. Barth and A. Lang
(L^p) and almost sure convergence of a Milstein scheme for stochastic partial differential equations</td>
</tr>
<tr>
<td>11-14</td>
<td>X. Claeys
A single trace integral formulation of the second kind for acoustic scattering</td>
</tr>
<tr>
<td>11-13</td>
<td>W.-J. Beyn, C. Effenberger and D. Kressner
Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems</td>
</tr>
<tr>
<td>11-12</td>
<td>C.J. Gittelson
Adaptive stochastic Galerkin methods: beyond the elliptic case</td>
</tr>
<tr>
<td>11-11</td>
<td>C.J. Gittelson
An adaptive stochastic Galerkin method</td>
</tr>
<tr>
<td>11-10</td>
<td>C.J. Gittelson
Stochastic Galerkin approximation of operator equations with infinite dimensional noise</td>
</tr>
<tr>
<td>11-09</td>
<td>R. Hiptmair, A. Moiola and I. Perugia
Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations</td>
</tr>
<tr>
<td>11-08</td>
<td>W. Dahmen, C. Huang, Ch. Schwab and G. Welper
Adaptive Petrov-Galerkin methods for first order transport equations</td>
</tr>
<tr>
<td>11-07</td>
<td>V.H. Hoang and Ch. Schwab
Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs</td>
</tr>
<tr>
<td>11-05</td>
<td>U.S. Fjordholm, S. Mishra and E. Tadmor
Entropy stable ENO scheme</td>
</tr>
<tr>
<td>11-04</td>
<td>M. Ganesh, S.C. Hawkins and R. Hiptmair
Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method</td>
</tr>
<tr>
<td>11-03</td>
<td>O. Reichmann
Optimal space-time adaptive wavelet methods for degenerate parabolic PDEs</td>
</tr>
</tbody>
</table>