Derivation of a Linear, Robust \mathcal{H}_2 Controller for Systems with Parametric Uncertainty

Felix Berkenkamp and Angela P. Schoellig

Abstract—In this short paper, we derive a linear, robust \mathcal{H}_2 controller for a linear system with parametric uncertainty as introduced in [1]. We prove that the linear, robust control law proposed in [1] minimizes the \mathcal{H}_2 norm of the linear, uncertain system. Thus we provide the proof for Theorem 1 in the mentioned paper.

I. PROBLEM DEFINITION

Let $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ denote the system states and inputs of a linear, discrete-time system. In the general framework of robust control (see Fig. 1), the objective is to minimize an error signal, z, caused by a disturbance, $w \in \mathbb{R}^l$, for all possible uncertainties introduced via an uncertain signal, $p \in \mathbb{R}^l$, while maintaining stability (cf. [2]). This uncertain system can be represented by

$$\begin{align*}
x_{k+1} &= Ax_k + Bu_k + B_w w_k + B_p p_k \quad (1)
z_k &= C_z x_k + D_z u_k \quad (2)
q_k &= C_q x_k + D_q u_k \quad (3)
p_k &= \alpha \Delta q_k, \quad (4)
\end{align*}$$

where the subscript k indicates the time step. The diagonal matrix $\Delta = \text{diag}(\delta_1, \ldots, \delta_f)$ with uncertain elements $|\delta_i| \leq 1$, $i = 1, \ldots, f$, together with C_q, D_q, and B_p represent the uncertainty in the system. The matrices A and B are the nominal system matrices, and α is a scalar, which is nominally set to $\alpha = 1$, but can be used to reduce the uncertainty if no robust controller can be found for $\alpha = 1$. The matrices B_w, C_z and D_z define the control objective to be minimized by the robust controller, see [2].

A popular measure for the error signal, z, is the \mathcal{H}_2 system norm. The corresponding optimization problem is

$$\min_K \max_{\Delta} \|T_{zw}\|_2, \quad (5)$$

where the transfer function from w_k to z_k, T_{zw}, depends on the controller K and on the uncertainty matrix Δ. This problem is a generalization of the well-known Linear Quadratic Regulator problem, which also minimizes the \mathcal{H}_2 system norm for systems without uncertainty.

Methods to solve such problems are given in [2]. The computations in this paper are based on [3], which derives a controller that guarantees stability and performance for all possible Δ. While the method in [3] is potentially more conservative than others in [2], it obtains the discrete-time controller by solving a convex optimization problem in terms of linear matrix inequalities (LMIs). Efficient solvers for LMIs exist [4], making this technique applicable to online applications as considered in this paper. In fact, in [5] this technique was applied to find a model predictive controller, which required solving an LMI at every time step.

II. ROBUST CONTROLLER

In this section, we derive a robust controller of the form $u_k = K x_k$ that minimizes the \mathcal{H}_2 norm according to (5). We modify the uncertainty representation in [3] to fit our system definition in (1)-(4).

Optimization variables in the resulting optimization problem are colored in blue. The sizes of the identity matrix, I, and the matrix with all elements equal to zero, 0, are omitted for legibility and can be extracted from the context. Symmetric matrix elements are denoted by \bullet and $P > 0$ is a positive-definite matrix.

Theorem 1 (cf. [1]): System (1)-(4) is robustly stable under the state feedback controller $u_k = K x_k$ with $K = RQ^{-1}$ and $\|T_{zw}\|_2 < \gamma$ if the following optimization problem is feasible:

$$\min_{W = W^T, Q = Q^T, R, \Lambda = \text{diag}(\tau_1, \ldots, \tau_f), \gamma, \beta = 1} \gamma$$

subject to

$$\text{trace}(W) < \gamma, \begin{bmatrix} W & C_z Q + D_z R & 0 & 0 & 0 \end{bmatrix} > 0, \begin{bmatrix} Q & \bullet & \bullet & \bullet & \bullet \\ 0 & I & \bullet & \bullet & \bullet \\ 0 & 0 & \Lambda & \bullet & \bullet \\ \Lambda Q + B R & 0 & 0 & Q & \bullet \\ C_q Q + D_q R & 0 & 0 & 0 & \beta \Lambda \end{bmatrix} > 0.$$
Proof: We assume that the controller has already been implemented and has been absorbed into the new system matrices,
\[
A_c = A + BK, \quad C_c = C_x + D_xK \quad M_c = C_q + D_qK .
\]

Using (7)-(9) with (1)-(4) yields a new system with simpler dynamics,
\[
\begin{align*}
x_{k+1} &= A_c x_k + B_w w_k + B_p p_k , \quad (10) \\
z_k &= C_c x_k , \quad (11) \\
p_k &= \alpha M_c x_k . \quad (12)
\end{align*}
\]

From here onwards the time indices \(k \) are dropped in order to increase legibility. The uncertain signal \(p \) in (10)-(12) can be rewritten in elementwise form to obtain
\[
\begin{align*}
p(i) &\leq \alpha \delta_1(M_c) x(i) , \quad (13) \\
\iff p^T(i) p(i) &\leq \alpha^2 x^T(M_c)^T(M_c)(i,i) x , \quad (14) \\
\iff \begin{bmatrix} x & w & p(i) \end{bmatrix}^T\begin{bmatrix} -\alpha^2(M_c)^T(M_c)(i,i) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} x \\ w \\ p(i) \end{bmatrix} &\leq 0,
\end{align*}
\]
where \(p(i) \) is the \(i \)-th element of the vector \(p \) and \(M_c(i,i) \) refers to the \(i \)-th row of the matrix \(M \).

The three LMI constraints in (6) encode the \(H_2 \) performance criterion. The first two are standard results for linear systems without uncertainty, cf. [6]. They correspond to the calculation of the \(H_2 \) norm of system (10)-(12) without uncertainty; that is, \(\Delta = 0 \). The \(H_2 \) norm for this system is given by \(\text{trace}(C_c Q C_c^T \Gamma) \), where \(Q \) is the controllability Gramian, which can be calculated using dissipativity theory. The controllability Gramian corresponds to the ellipsoid \(x^T Q^{-1} x \), which is reachable with unit energy [4]. Thus, the third constraint can be obtained from
\[
V(x_{k+1}) - V(x_k) - w^T w_k < 0, \quad (16)
\]
where \(V(x) = x^T P x \), and \(P = Q^{-1} \) is a positive-definite, symmetric matrix. Plugging \(V(x) \) and the system dynamics (10)-(12) into (16) yields
\[
\begin{align*}
\begin{bmatrix} x^T & w^T \end{bmatrix} &\begin{bmatrix} A_c^T P A_c - P & A_c^T P B_w \\ B_c^T P A_c & B_c^T P B_w - I \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} < 0.
\end{align*}
\]

Using the S-Procedure (cf. [4]), the uncertainty definition (15) and the stability/performance condition (17) can be combined to a single equivalent matrix inequality: the inequality (17) is true for all uncertainties that satisfy (15) if and only if
\[
\begin{align*}
A_c^T P A_c - P + \alpha^2 M_c^T M_c &\quad A_c^T P B_w \quad A_c^T P B_p \\ B_c^T P A_c &\quad B_c^T P B_w - I \quad B_c^T P B_p \\
\begin{bmatrix} A_c^T P A_c & A_c^T P B_w & A_c^T P B_p \\ B_c^T P A_c & B_c^T P B_w & B_c^T P B_p \end{bmatrix} &< 0, \quad (18)
\end{align*}
\]
where \(\Gamma = \text{diag}(\tau_i, \ldots, \tau_f) \), and \(\tau_i > 0 \) for all \(i = 1, \ldots, f \).

Using Schur complements (cf. [4]), the previous matrix inequality (18) is equal to
\[
\begin{bmatrix} P & \ast & \ast \\ \ast & \ast & \ast \\ \ast & \ast & \ast \end{bmatrix} > 0. \quad (19)
\]
This matrix inequality is nonlinear in \(P \) and \(\Gamma \). It can be linearized by multiplying (19) by \(\text{diag}(Q, I, \Gamma^{-1}, I, I) \) from the right and by the transpose of the same matrix from the left. Here \(Q = P^{-1} \) is the controllability Gramian, \(\Lambda = \Gamma^{-1} \) and \(\alpha^{-2} = \beta \). The resulting matrix inequality is
\[
\begin{align*}
\begin{bmatrix} Q & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \end{bmatrix} &< 0, \quad (20)
\end{align*}
\]
which is linear in all unknown variables for a given \(\beta \). Using (7)-(9) in (20) yields
\[
\begin{align*}
\begin{bmatrix} Q & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \end{bmatrix} &< 0, \quad (21)
\end{align*}
\]
The matrix inequality (21) is nonlinear, because both \(Q \) and \(K \) are optimization variables. An invertible, nonlinear change of variables can be used in order to regain linearity. By defining \(R = K Q \), the problem remains linear and the control matrix \(K \) can be extracted via the inverse transformation \(K = R Q^{-1} \). The resulting LMI is given by
\[
\begin{align*}
\begin{bmatrix} Q & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \\ \ast & \ast & \ast & \ast & \ast \end{bmatrix} &< 0, \quad (22)
\end{align*}
\]
which is the same as in (6).