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ABSTRACT

Debugging—the activity of finding and correcting errors in programs—is so ev-
eryday in every programmer’s job that any improvement at automating even parts
of it has the potential for a significant impact on productivity and software qual-
ity. While automation remains formidably difficult in general, the last few years
have seen the first successful attempts at automatically generating fixes to errors
in some situations. This thesis aims at advancing the techniques and tools for
the automatic fixing of errors in object-oriented programs with contracts (a.k.a.
assertions).

To this purpose, the thesis has developed techniques and a supporting tool, col-
lectively called AutoFix, that programmers can use in their everyday development
to generate fixes to errors in an automatic fashion. AutoFix relies on the presence
of simple specification elements in the form of contracts (such as pre- and post-
conditions) to provide high-quality fix suggestions and to enable automation of
the whole debugging process: using contracts enhances the precision of dynamic
analysis techniques for fault detection and localization, and for validating fixes.

AutoFix consists of three major parts: the ImpleFix technique which generates
fixes to the program implementation, the SpeciFix technique which suggests fixes
to the contracts, and the AutoFix tool which implements both ImpleFix and Spe-
ciFix.

Both ImpleFix and SpeciFix are driven by a set of test cases exercising the
routine where the fault occurs. ImpleFix employs various program analysis tech-
niques like dynamic invariant inference, simple static analysis, and fault localiza-
tion to produce a collection of candidate fixes that change the implementation;
while SpeciFix infers dynamic invariants in passing tests to summarize abstract
program behavior, and synthesizes weakening and strengthening changes to the
contracts to avoid failing behaviors. The generated fixes are validated against a
regression test suite and ranked by preferring the ones that are more relevant to
the failure or lead to less restrictive contracts. In the experiments conducted to
evaluate the techniques, ImpleFix and SpeciFix generated fixes that are genuine
corrections of quality comparable to those competent programmers would write
to 25% of the subject faults.
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The AutoFix tool is integrated into the Eiffel Verification Environment and
functions like a recommendation system that is capable of automatically finding
bugs and suggesting fixes in the form of source-code patches: it exploits the Auto-
Test random testing framework to detect errors and prepare test cases, and applies
the ImpleFix and SpeciFix techniques to generate candidate fixes to the errors.

In conclusion, this thesis provides an automatic and integrated solution to the
fixing of errors in object-oriented programs with contracts, which can greatly re-
duce the programmer’s debugging effort in many cases.
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ZUSAMMENFASSUNG

Debugging — das Finden und Korrigieren von Fehlern in Programmen — ist für
Programmierer so alltäglich, dass sich Verbesserungen und Automatisierungen
dieses Prozesses sehr positiv auf die Produktivität und Softwarequalität auswirken
können. Obwohl Automatisierung in diesem Gebiet schwierig ist, wurden in den
letzten Jahren erste erfolgreiche Ansätze zum automatischen Erzeugung von Fixes
für Programmfehler vorgestellt. Diese Dissertation versucht die Techniken und
Werkzeuge für das automatische Korrigieren von Fehlern in objekt-orientierten
Programmen, welche mit Contracts versehen sind, zu verbessern.

Wir präsentieren in dieser Dissertation sowohl eine Technik, als auch ein da-
zugehöriges Werkzeug, die gemeinsam als AutoFix bezeichnet werden. Program-
mierer können AutoFix in ihrer täglichen Arbeit benutzen, um Korrekturen von
Fehlern automatisch zu erzeugen. AutoFix stützt sich auf einfache Spezifikations-
elemente in Form von Contracts (z.B. Vor- und Nachbedingungen), um qualitativ
hochwertige Vorschläge für Korrekturen zu erzeugen und eine Automatisierung
des gesamten Debugging-Prozesses zu ermöglichen: Contracts erlauben dabei die
Präzision der dynamischen Analysetechniken zur Erkennung und Lokalisierung
von Fehlern zu erhöhen und der automatische Bewertung generierter Fixes zu
verbessern.

AutoFix besteht aus drei Hauptteilen: der ImpleFix Technik, welche Korrek-
turen für Programmcode erzeugt; der SpeciFix Technik, welche Korrekturen von
Contracts vorschlägt; und dem AutoFix Werkzeug, das sowohl ImpleFix als auch
SpeciFix implementiert.

Sowohl ImpleFix als auch SpeciFix nutzen eine Gruppe von Tests, welche
den Fehler einer Routine aufzeigen. ImpleFix benutzt verschiedene Analysetech-
niken wie dynamische Inferenz von Invarianten, einfache statische Analyse und
Fehlerlokalisierung, um eine Sammlung von Kandidaten-Fixes zu produzieren,
welche die Implementierung der Routine verändern. SpeciFix leitet aus erfolg-
reichen Tests dynamische Invarianten ab, um abstraktes Programmverhalten zu-
sammenzufassen, und erzeugt abschwächende oder verstärkende Änderungen der
Contracts, um fehlerhaftes Verhalten zu vermeiden. Die erzeugten Fixes werden
mithilfe einer Regressionstestsuite validiert und gewichtet, wobei die Fixes, wel-
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che relevanter für den Programmfehler oder zu weniger einschränkenden Con-
tracts führen, bevorzugt werden. In den Experimenten, welche zur Evaluation der
Techniken durchgeführt wurden, haben ImpleFix und SpeciFix in 25% der Fäl-
le Fixes generiert, welche vergleichbar mit Fixes von erfahrenen Programmieren
sind.

Das AutoFix Werkzeug ist in die Eiffel Verifikationsumgebung integriert und
funktioniert wie ein Empfehlungssystem, das automatisch Fehler findet und Fi-
xes in Form von Quellcode-Patches vorschlägt: es benutzt das AutoTest Test-
Framework um Fehler zu erkennen und Tests vorzubereiten, und verwendet die
ImpleFix und SpeciFix Techniken um Kandidaten-Fixes für Fehler zu erzeugen.

Zusammengefasst bietet diese Arbeit eine automatische und integrierte Lö-
sung für das Korrigieren von Fehlern in objekt-orientierten Programmen mit Con-
tracts, die den Debuggingaufwand für Programmierer erheblich reduzieren kann.
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CHAPTER 1

OVERVIEW

Programs have errors, and the programmer’s ever recommencing fight against er-
rors involves two tasks: finding errors; and correcting them.

Depending on when they can be detected, errors fall into two categories in
general: static errors are caught when the code is compiled and they prevent
the programs from running; dynamic errors will, however, lead to unexpected
final results or program behaviors, e.g. premature termination. Dynamic errors
are indeed discrepancies between the program implementation (what a program
actually does) and the program specification (what the program is supposed to
do).

Programmers are now used to the help from modern Integrated Development
Environments (IDEs) in fighting against static errors: incremental compilation is
able to spot such errors instantly during development, then the IDE will propose
viable actions to correct the errors. For example, Eclipse constructs a list of quick
fixes when it detects a static error, indicating actions that can be undertaken to
repair the error. A programmer then needs to review these actions and select the
appropriate ones to apply. In this way, the manual effort needed to fix static errors
is greatly reduced.

Compared with static errors, dynamic errors are more challenging to find and
to fix, yet no similar tool help in handling dynamic errors is available to pro-
grammers: although techniques to find dynamic errors automatically are now be-
coming increasingly available and slowly making their way into industrial prac-
tice [15, 41, 88], the task of correcting dynamic errors has remained largely a
manual effort due to its inherent difficulties.

The purpose of this thesis is to advance the techniques and tools for the
automatic fixing of dynamic errors in object-oriented programs with contracts
(a.k.a. assertions). Most modern programming languages are based on the object-
oriented paradigm, and some of them support contracts, either as part of the lan-
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guage (e.g. Eiffel and Spec#) or as an extension (e.g. JML for Java and code
contracts for C#), for specifying the mutual conditions as well as the obligations
among software elements. Contracts provide a specification of correct behavior
that can be used not only to detect dynamic errors automatically [70] but also to
suggest corrections.

To this purpose, the thesis has developed techniques and a supporting tool to
automatically generate corrections to dynamic errors. The current implementation
of the supporting tool is integrated in the open-source Eiffel Verification Environ-
ment (EVE) [39]—the research branch of the EiffelStudio IDE—and works on
programs written in Eiffel; its concepts and techniques are, however, applicable
to any programming language supporting some form of annotations (such as JML
for Java or the .NET CodeContracts libraries).

In the rest of this thesis, we refer to “dynamic errors” as simply “errors”, and
we use the terms “error”, “fault”, and “bug” interchangeably.

1.1 Main Results
The contributions of this thesis include the following:

• The ImpleFix technique to generate implementation fixes to program faults.
The technique combines various program analysis techniques such as dy-
namic invariant inference, simple static analysis, and fault localization. Im-
pleFix is driven by a set of test cases that exercise the routine (method)
where the fault occurs, and produces a collection of suggested fixes that
change the implementation, ranked according to a heuristic measurement of
relevance.

An extensive experimental evaluation, detailed in Section 4.2, showed Im-
pleFix is able to automatically suggest quality fixes to program faults with
high success rate. Fix quality is an aspect largely neglected [71] in the
research on program repair. ImpleFix’s work is an exception, as we intro-
duced the notion of proper fix [103] to characterize those that correct the
faults under consideration while not introducing new faults. In our experi-
ments, ImpleFix successfully suggested proper fixes to 51 out of 204 faults
from four code bases.

• The SpeciFix technique, which produces specification fixes to program
faults and complements ImpleFix. SpeciFix works on the same type of in-
put as ImpleFix. It infers dynamic invariants in passing runs to summarize
abstract program behavior, and it synthesizes weakening and strengthening
changes to the contracts that do not violate the invariants. SpeciFix ranks
the candidate fixes by preferring those that are less restrictive.



1.2. STRUCTURE 3

Program faults are discrepancies between the implementation and the spec-
ification, and the cause of a fault may be on either the implementation side
or the specification side. To the best of our knowledge, all the previous
research on program repairing has aimed to correct faults by changing the
implementation. SpeciFix tackles the problem from a different angle and
suggests specification fixes to program faults. In an experiment involving
44 faults from production software, SpeciFix produced proper fixes to con-
tracts for 11 (or 25%) of the faults.

• The AutoFix tool, which combines ImpleFix and SpeciFix, and is capable of
automatically finding bugs and suggesting fixes in the form of source-code
patches.

The AutoFix tool exploits the AutoTest random testing framework to find
faults and generate test cases for fixing, therefore the only input it expects
from the user is a program annotated with the same contracts that program-
mers using a contract-equipped language normally write [91, 38]. The Au-
toFix tool has been integrated into EVE, which makes automatic program
fixing readily accessible to programmers in their everyday development.

In its typical use scenario, the AutoFix tool runs in the background or dur-
ing work interruptions, displaying fix suggestions as they become available.
Such usage is feasible since both ImpleFix and SpeciFix require limited
computational resources to produce the fixes: the average time per fix was
below 20 minutes on commodity hardware in our experiments. Such perfor-
mance compares favorably with the other state-of-the-art repair techniques
based on dynamic analysis: for example, GenProg reported an average time
cost of nearly 100 hours for each fix in a recent experiment [54].

In the rest of this thesis, we refer to the ImpleFix technique, the SpeciFix
technique, and the AutoFix tool collectively as AutoFix.

AutoFix is the result of a joint project, also called AutoFix, between the Chair
of Software Engineering at ETH Zurich and the Software Engineering Chair at
Saarland University. AutoFix builds on the previous work on automatic testing at
ETH, leading to the AutoTest tool [70], and on the work on automatic debugging
at Saarland, leading in particular to the Pachika tool [28].

1.2 Structure
From a user’s perspective, the two most important characteristics of an automatic
fixing tool are its capability to produce high quality fixes and the easiness of using
the tool. Chapter 2 demonstrates such capability of AutoFix with two example
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faults and describes its integration into EVE which enables the programmers to
use automatic fixing easily and routinely in their development.

The dynamic analysis techniques that AutoFix exploits to localize faults and
synthesize fixes are based on concepts like expressions and predicates, execution
traces, contracts and correctness, and test cases. Chapter 3 summarizes these
concepts.

As an appropriate way to correct an error may require changes to the pro-
gram implementation or the specification, AutoFix generates candidate fixes of
both types: Chapter 4 describes the ImpleFix technique for generating fixes to
the implementation and Chapter 5 the SpeciFix technique for producing fixes that
change the contracts. Both chapters also relate the experimental evaluations of the
techniques.

Chapter 6 presents related work and compares it with our contribution. Finally,
Chapter 7 draws conclusions on the work done and suggests future work.



CHAPTER 2

AUTOFIX IN ACTION

AutoFix is designed to automate the process of program fixing as much as pos-
sible. Its desirability in practice depends largely on both the quality of the pro-
posed candidate fixes and the easiness of using the tool. This chapter demon-
strates AutoFix’s capability to propose high quality fixes with two example faults
(Section 2.1), which originate from the real world code and were included in the
experiments in Sections 4.2 and 5.2, and describes the integration of AutoFix into
EVE, which makes automatic fixing easily accessible to programmers in their
daily work.

The discussion here shows the results from the AutoFix user’s perspective;
it does not explain the technology that underlies these results. The following
chapters will present that technology.

2.1 Two example faults
We begin with a concise demonstration of how AutoFix, as seen from a user’s
perspective, proposes fixes to two example faults completely automatically.

2.1.1 Moving Items in Sorted Sets

The first fault comes from class TWO_WAY_SORTED_SET, which is the stan-
dard Eiffel implementation of sets using a doubly-linked list. Listing 2.1 outlines
features (members) of the class, some annotated with their pre- (require) and
postconditions (ensure). 1 As pictured in Figure 2.1, the integer attribute index
is an internal cursor useful to navigate the content of the set: the set elements
occupy positions 1 to count (another integer attribute, storing the total number

1All annotations were provided by developers as part of the library implementation.
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1 index : INTEGER −− Position of internal cursor .
2
3 count : INTEGER −− Number of elements in the set .
4
5 before : BOOLEAN −− Is index = 0 ?
6 do Result := ( index = 0) end
7
8 after : BOOLEAN −− Is index = count + 1 ?
9

10 off : BOOLEAN −− Is cursor before or after ?
11
12 item : G −− Item at current cursor position .
13 require not off
14
15 forth −−Move cursor forward by one.
16 require not after
17 ensure index = old index + 1
18
19 has (v : G): BOOLEAN −− Does the set contain v ?
20 ensure Result implies count 6= 0
21
22 go_i_th ( i : INTEGER) −−Move cursor to position i.
23 require 0 ≤ i ≤ count + 1
24
25 put_left (v : G) −− Insert v to the left of cursor .
26 require not before
27
28 move_item (v : G) −−Move v to the left of cursor .
29 require
30 v 6=Void
31 has (v)
32 local idx : INTEGER ; found: BOOLEAN
33 do
34 idx := index
35 from start until found or after loop
36 found := (v = item)
37 if not found then forth end
38 end
39 check found and not after end
40 remove
41 go_i_th ( idx )
42 put_left (v)
43 end

Listing 2.1: Some features of class TWO_WAY_SORTED_SET.
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of elements in the set), whereas the indexes 0 and count + 1 correspond to the
positions before the first element and after the last. before and after are also
Boolean argumentless queries (member functions) that return True when the cur-
sor is in the corresponding boundary positions.

0

a

1

b

2

index

c

3

d

4
count

5
count + 1

Figure 2.1: A doubly-linked list implementing TWO_WAY_SORTED_SET. The
cursor index is on position 2. The elements are stored in positions 1 to 4, whereas
positions 0 (before) and 5 ( after ) mark the list’s boundaries. count denotes the
number of stored elements (i.e., four).

Listing 2.1 also shows the complete implementation of routine (method)
move_item, which moves an element v (passed as argument) from its current
(unique) position in the set to the immediate left of the internal cursor index.
For example, if the list contains 〈a, b, c, d〉 and index is 2 upon invocation (as in
Figure 2.1), move_item (d) changes the list to 〈a, d, b, c〉. move_item’s precondi-
tion requires that the actual argument v be a valid reference (not Void, that is not
null) to an element already stored in the set (has(v)). After saving the cursor posi-
tion as the local variable idx, the loop in lines 35–38 performs a linear search for
the element v using the internal cursor: when the loop terminates, index denotes
v’s position in the set. The three routine calls on lines 40–42 complete the work:
remove takes v out of the set; go_i_th restores index to its original value saved in
idx; put_left puts v back in the set to the left of the position index.

2.1.1.1 An error in move_item

Running AutoTest on class TWO_WAY_SORTED_SET for only a few minutes
exposes, completely automatically, an error in the implementation of move_item.

The error is due to the property that calling remove decrements the count of
elements in the set by one. AutoTest produces a test that calls move_item when
index equals count + 1; after v is removed, this value is not a valid position be-
cause it exceeds the new value of count by two; and the following call to go_i_th
triggers a precondition violation, as the feature requires the argument to be be-
tween 0 and count + 1 (line 23).

This fault is subtle, and the failing test represents only a special case of a more
general faulty behavior that occurs whenever v appears in the set in a position to
the left of the initial value of index: even if index ≤ count initially, put_left will
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if idx > index then
idx := idx − 1

end

Listing 2.2: Correction of the error in move_item automatically generated by Au-
toFix.

insert v in the wrong position as a result of remove decrementing count—which
indirectly shifts the index of every element after index to the left by one. For
example, if index is 3 initially, calling move_item (d) on 〈a, d, b, c〉 changes the
set to 〈a, b, d, c〉, but the correct behavior is leaving it unchanged. Such additional
inputs leading to erroneous behavior go undetected by AutoTest because the de-
velopers of TWO_WAY_SORTED_SET provided an incomplete postcondition; the
class lacks a query to characterize the fault condition in general terms.2

2.1.1.2 Automatic correction of the error in move_item

AutoFix collects the test cases generated by AutoTest that exercise routine
move_item. Based on them, and on other information gathered by dynamic and
static analysis, it produces, after running only a few minutes on commodity hard-
ware without any user input, up to 10 suggestions of fixes for the error discussed.
The suggestions include only valid fixes: fixes that pass all available tests tar-
geting move_item. Among them, we find the “proper” fix in Listing 2.2, which
completely corrects the error in a way that makes us confident enough to deploy it
in the program. The correction consists of inserting the lines in Listing 2.2 before
the call to go_i_th on line 41 in Listing 2.1. The condition idx > index holds
precisely when v was initially in a position to the left of index ; in this case, we
must decrement idx by one to accommodate the decreased value of count after
the call to remove. This fix completely corrects the error beyond the specific case
reported by AutoTest, even though move_item has no postcondition to formalize
its intended behavior.

2.1.2 Duplicating Circular Lists

The second example targets a bug of routine duplicate in class CIRCULAR, which
implements circular lists based on arrays.

To understand the bug, Listing 2.3 illustrates a few details of CIRCULAR’s
API. Lists are numbered from index 1 to index count (an attribute denoting the list

2Recent work [92, 90, 93] has led to new versions of the libraries with strong (often complete)
contracts, capturing all relevant postcondition properties.
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A

1

list : B

2

C

3

cursor

D

4

count

Figure 2.2: A circular list of class CIRCULAR: the internal cursor points to the
element C at index 3.

length), and include an internal cursor that may point to any element of the list.
Routine duplicate takes a single integer argument n, which denotes the number
of elements to be copied; called on a list object list , it returns a new instance of
CIRCULAR with at most n elements copied from list starting from the position
pointed to by cursor. Since we are dealing with circular lists, the copy wraps over
to the first element. For example, calling duplicate (3) on the list in Figure 2.2
returns a fresh list with elements 〈C,D,A〉 in this order.

The implementation of duplicate is straightforward: it creates a fresh
CIRCULAR object Result (line 55 in Listing 2.3); it iteratively copies n elements
from the current list into Result; and it finally returns the list attached to Result.
The call to the creation procedure (constructor) make on line 55 allocates space for
a list with count elements; this is certainly sufficient, since Result cannot contain
more elements than the list that is duplicated. However, CIRCULAR’s creation
procedure make includes a precondition (line 50 in Listing 2.3) that only allows
allocating lists with space for at least one element (require m ≥ 1). This sets off
a bug when duplicate is called on an empty list: count is 0, and hence the call on
line 55 triggers a violation of make’s precondition. Testing tools such as AutoTest

47 class CIRCULAR [G]
48

49 make (m: INTEGER)
50 require m ≥ 1
51 do ... end
52

53 duplicate (n: INTEGER): CIRCULAR [G]
54 do
55 create Result .make (count)
56 ...
57 end
58

59 count : INTEGER −− Length of list

Listing 2.3: Some implementation details of CIRCULAR.
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make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

do
if count > 0 then

create Result .make (count)
else

create Result .make (1)
end

(a) Patching the implementation.

make (m: INTEGER)
require m ≥ 1

duplicate (n: INTEGER):
CIRCULAR [G]

require count > 0
do

create Result .make (count)

(b) Strengthening the specifica-
tion.

make (m: INTEGER)
require m ≥ 0

duplicate (n: INTEGER):
CIRCULAR [G]

do

create Result .make (count)

(c) Weakening the specification.

Listing 2.4: Three different fixes for the bug of Listing 2.3. Changed or added lines are highlighted.

detect this bug automatically by providing a concrete test case that exposes the
discrepancy between implementation and specification.

How should we fix this bug? Listing 2.4 shows three different possible repairs,
all of which AutoFix can generate completely automatically. An obvious choice is
patching duplicate ’s implementation as shown in Listing 2.4a: if count is 0 when
duplicate is invoked, allocate Result with space for one element; this satisfies
make’s precondition in all cases.

This fix to the implementation is acceptable, since it makes duplicate run
correctly, but it is not entirely satisfactory: CIRCULAR’s implementation looks
perfectly adequate, whereas the ultimate source of failure seems to be incorrect
or inadequate specification. A straightforward fix is then adding a precondition to
duplicate that only allows calling it on non-empty lists. Listing 2.4b shows such a
fix, which strengthens duplicate ’s precondition thus invalidating the test case ex-
posing the bug. The strengthening fix has the advantage of being textually simpler
than the implementation fix, and hence also probably simpler for programmers to
understand. However, both fixes in Listings 2.4a and 2.4b are partial, in that they
remove the source of faulty behavior in duplicate but they do not prevent similar
faults—deriving from calling make with m = 0—from happening. A more critical
issue with the specification-strengthening fix in Listing 2.4b is that it may break
clients of CIRCULAR that rely on the previous weaker precondition.3 There are
cases where strengthening produces the most appropriate fixes; in the running
example, however, strengthening arguably is not the optimal strategy.

3Note that this strengthening does not introduce new bugs; it just shifts the responsibility for
the fault from duplicate to its clients.
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A look at make’s implementation (not shown in Listing 2.3) would reveal that
the creation procedure’s precondition m ≥ 1 is unnecessarily restrictive, since the
routine body works as expected also when executed with m = 0. This suggests a
fix that weakens make’s precondition as shown in Listing 2.4c. This is arguably
the most appropriate correction to the bug of duplicate : it is very simple, it fixes
the specific bug as well as similar ones originating in creating an empty list, and it
does not invalidate any clients of CIRCULAR’s API. AutoFix generates both spec-
ification fixes in Listings 2.4b and 2.4c but ranks the weakening fix higher than the
strengthening one. More generally, AutoFix outputs specification-strengthening
fixes only when they do not introduce bugs in available tests, and it always prefers
the least restrictive fixes among those that are applicable.

2.2 The AutoFix Tool
The AutoFix tool implements the automatic fixing techniques and provides a user-
friendly interface for these techniques so that they are easily accessible to pro-
grammers. The AutoFix tool requires a program to be debugged as the only user
input: although the underlying fixing techniques take a set of passing and failing
test cases as input, the tool relieves programmers of the burden of preparing such
tests by exploiting AutoTest to automatically detect bugs and generate tests for
fixing; the AutoFix tool requires only a little effort to set up and launch, yet when
successful it reports faults together with ready-to-apply candidate fixes, making
debugging much easier: the candidate fixes involve only simple changes to the
program and the changes are presented side by side with the original source for
better readability; if a candidate fix to the implementation is appropriate, then the
programmer just needs to click a button to apply it to the code.

This section describes the AutoFix tool user interface and explains how the
tool can be used easily by programmers in the development process on a daily
basis through a typical use case scenario.

2.2.1 The Graphical User Interface

The graphical user interface (GUI) of the AutoFix tool consists of four panels:
the Settings panel for the tool configuration, the Faults panel and the Fixes panel
for providing a centralized view of all the detected faults and generated candidate
fixes, respectively, and the Outputs panel for intermediate tool outputs.

The Settings panel (Figure 2.3a) provides a means for the user to configure
the tool behavior easily. The meanings of the settings, and the restrictions on their
values when applicable, are as follows:

1. Groups of classes to AutoFix. Some classes can be tested more thoroughly
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(a) The Settings panel

(b) The Faults panel

(c) The Fixes panel

Figure 2.3: From top to bottom: the Settings panel, the Faults panel and the Fixes panel of
the AutoFix tool.
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if they are tested together, e.g. when their interfaces strongly depend on each
other, such classes can be specified to AutoFix in groups. Class groups do
not need to disjoint with each other.

2. Working directory. This is where all the intermediate files and results will
be stored during automatic testing and fixing.

3. Maximum session length for testing (in minutes). This positive integer de-
fines the lengths of the testing sessions using AutoTest.

4. What to test in each session? Each testing session can be configured to test:
one class, one group of classes, or all classes.

5. Use fixed seed. Although the automatic fixing process is deterministic in
that the same input test cases will always produce the same candidate fixes,
the AutoTest tool exercises random testing: it uses a seed to generate a se-
quence of random numbers to control how testing proceeds. By default,
AutoTest uses a new seed for each testing session and therefore different
testing sessions produce different testing results, which in turn lead to dif-
ferent fixing sessions. When reproducible fixing sessions are desirable, a
fixed seed for AutoTest can be provided here.

6. When to start fixing? Program fixing can be started automatically after each
testing session, after all testing sessions, or manually.

7. Maximum session length for fixing (in minutes). This non-negative integer
defines the maximum length of a fixing session. Value 0 means no time
limit is set for fixing sessions.

8. Maximum fix candidates to propose. This positive integer decides the max-
imum number of candidate fixes the tool will produce for each fault. The
candidate fixes may target either the program implementation or the con-
tracts.

9. Maximum number of tests to use in fixing. The non-negative numbers de-
termine how many tests will be used as input in each fixing session. Value
0 means all available tests should be used.

The most important functionalities of the AutoFix tool are organized into two
views: the Faults view and the Fixes view, corresponding to the Faults panel (Fig-
ure 2.3b) and the Fixes panel (Figure 2.3c) respectively.

The Faults view lists all the faults detected by AutoTest, with detailed infor-
mation about each fault like the fault signature, the numbers of corresponding
passing and failing tests, and the status of the fault (e.g. whether the fault has
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been fixed or not). For example, Figure 2.3b shows the details about a fault: from
its id MY_LIST.duplicate .3.1. MY_LIST.duplicate we know the fault triggered a
failure during testing routine duplicate from class MY_LIST (first occurrence of
MY_LIST.duplicate), and the failure was a precondition violation (exception code
3) when executing the first instruction (instruction index 1) of MY_LIST.duplicate
(second occurrence of MY_LIST.duplicate); AutoTest has generated 40 passing
tests for routine duplicate and 13 failing tests revealing the very same fault, which
can later be used for fixing the fault.

The Fixes view enumerates all the proposed candidate fixes to each fault.
When a particular fix is selected, relevant code snippets before and after applying
the fix will be shown, with their differences highlighted, to facilitate fix review.
For example, the fix with id Auto−18, as shown in Figure 2.3c, requires adding an
if conditional around an instruction so that a different operation is executed when
storage .count is less than or equal to 0. Also in this view, once the user decides
an implementation fix is good enough, she only needs to first select the fix and
then click on the button “Apply” to deploy the fix and correct the corresponding
fault.

2.2.2 A Typical Use Scenario

The AutoFix tool can run on every program that compiles, and therefore is ap-
plicable in different scenarios during both software implementation and main-
tainance. Consider the following typical use scenario of AutoFix from the per-
spective of a nondescript user named Alice.

As Alice checks in for work today, she finds out that the latest version of
EiffelStudio—the IDE she normally uses for development—includes a new pane
with a tool called AutoFix. AutoFix’s interface (Figure 2.3) looks familiarly sim-
ilar to other tools already available in EiffelStudio that Alice routinely used. In
fact, the only required input to the AutoFix pane is simply the name of one class
to be analyzed.

Later during the day, Alice decides to give AutoFix a try. Class MY_LIST she’s
been working on during the morning now includes implementations of the main
public features; this seems a good time to start testing. Since it’s almost noon,
Alice launches AutoFix on MY_LIST with default settings and leaves for lunch.

When she’s back after one hour, Alice sees that automatic testing (ran by
AutoFix using contracts as oracles) has found a bug in MY_LIST’s copy method
duplicate (Figure 2.3b). In a different tab (Figure 2.3c), AutoFix lists four differ-
ent fix suggestions: two of them change the code, whereas the other two change
the available contracts.

Using AutoFix’s diff view, Alice quickly inspects the bug and the suggested
fixes; she immediately finds out that the bug is triggered when duplicate is called



2.2. THE AUTOFIX TOOL 15

on an empty list. All the four fixes have been validated against the available
tests, but Alice singles out two of them as fully satisfactory: one creates and
returns an empty list as a special case; another one relaxes the precondition of a
constructor that turned out to work correctly even in the case of empty lists. Since
relaxing the precondition would change the API contracts, which were previously
agreed to by all members of the development team, Alice opts for deploying the
implementation fix that handles the empty list case separately. This requires one
click.

AutoFix has helped Alice find and correct an error in the codebase in a matter
of minutes. Now, she can continue extending the implementation of MY_LIST
with more confidence in the correctness of existing code. Alice plans to start
another, longer AutoFix session when she’ll leave in the evening.
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CHAPTER 3

AUTOFIX CONCEPTS

AutoFix employs dynamic analysis techniques to localize faults and synthesize
fixes (see Chapters 4 and 5). Such techniques are based on concepts like expres-
sions and predicates, execution traces, contracts and correctness, and tests. This
chapter summarizes these concepts and lays the foundation for the automatic fix-
ing techniques presented in the following two chapters.

3.1 Expressions and Predicates
AutoFix understands the causes of faults and builds fixes by constructing and
analyzing a number of abstractions of the program states. Such abstractions are
based on Boolean predicates that AutoFix collects from three basic sources:

• argumentless Boolean queries;

• expressions appearing in the program text or in contracts;

• Boolean combinations of basic predicates (previous two items).

3.1.1 Argumentless Boolean Queries

Classes are usually equipped with a set of argumentless Boolean-valued functions
(called Boolean queries from now on), defining key properties of the object state:
a list is empty or not, the cursor is on boundary positions or before the first element
(off and before in Figure 2.1), a checking account is overdrawn or not. For a
routine r, Qr denotes the set of all calls to public Boolean queries on objects
visible in r’s body or contracts.

Boolean queries characterize fundamental object properties. Hence, they are
good candidates to provide useful characterizations of object states: being argu-
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mentless, they describe the object state absolutely, as opposed to in relation with
some given arguments; they usually do not have preconditions, and hence are al-
ways defined; they are widely used in object-oriented design, which suggests that
they model important properties of classes. Some of our previous work [60, 28]
showed the effectiveness of Boolean queries as a guide to partitioning the state
space for testing and other applications.

3.1.2 Program Expressions

In addition to programmer-written Boolean queries, it is useful to build additional
predicates by combining expressions extracted from the program text of failing
routines and from failing contract clauses. For a routine r and a contract clause c,
the set Er,c denotes all expressions (of any type) that appear in r’s body or in c.
We normally compute the set Er,c for a clause c that fails in some execution of r;
for illustrative purposes, however, consider the simple case of the routine before
and the contract clause index >1 in Figure 2.1: Ebefore , index >1 consists of the
expressions Result , index , index = 0, index > 1, 0, 1.

Then, with the goal of collecting additional expressions that are applicable in
the context of a routine r for describing program state, the set Er,c extends Er,c
by unfolding [91]: Er,c includes all elements in Er,c and, for every e ∈ Er,c of
reference type t and for every argumentless query q applicable to objects of type
t, Er,c also includes the expression e .q (a call of q on target e). In the example,
Ebefore ,index >1 = Ebefore ,index >1 because all the expressions in Ebefore ,index >1 are
of primitive type (integer or Boolean), but this will no longer be the case for
assertions involving references.

Finally, we combine the expressions in Er,c to form Boolean predicates; the
resulting set is denoted Br,c. The set Br,c contains all predicates built according to
the following rules:

Boolean expressions: b, for every Boolean b ∈ Er,c of Boolean type (including,
in particular, the Boolean queries Qr defined in Section 3.1.1);

Voidness checks: e = Void, for every e ∈ Er,c of reference type;

Integer comparisons: e ∼ e′, for every e ∈ Er,c of integer type, every e′ ∈
Er,c \ {e} ∪ {0} also of integer type,1 and every comparison operator ∼ in
{=, <,≤};

Complements: not p, for every p ∈ Br,c.

In the example, Bbefore ,index >1 contains Result and not Result, since Result has
Boolean type; the comparisons index <0, index ≤ 0, index = 0, index 6= 0,

1The constant 0 is always included because it is likely to expose relevant cases.
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index ≥ 0, and index >0; and the same comparisons between index and the con-
stant 1.

3.1.3 Combinations of Basic Predicates

One final source of predicates comes from the observation that the values of
Boolean expressions describing object states are often correlated. For exam-
ple, off always returns True on an empty set (Figure 2.1); thus, the implication
count = 0 implies off describes a correlation between two predicates that par-
tially characterizes the semantics of routine off .

Considering all possible implications between predicates is impractical and
leads to a huge number of often irrelevant predicates. Instead, we define the set
Pr,c as the superset of Br,c that also includes:

• All implications appearing in c, in contracts of r, or in contracts of any
routine appearing in Br,c;

• For every implication a implies b collected from contracts, its mutations
not a implies b, a implies not b, b implies a obtained by negating the
antecedent a, the consequent b, or both.

These implications are often helpful in capturing the object state in faulty runs.
The collection of implications and their mutations may contain redundancies

in the form of implications that are co-implied (they are always both true or both
false). Redundancies increase the size of the predicate set without providing addi-
tional information. To prune redundancies, we use the automated theorem prover
Z3 [30]: we iteratively remove redundant implications until we reach a fixpoint.
In the remainder, we assume Pr,c has pruned out redundant implications using this
procedure.

3.2 Execution Traces of Routines
Expressions and predicates enable us to focus on the interesting aspects of the
program state at any point during the execution of routines. To be able to under-
stand the real cause for a fault, we also need to examine how the program state
evolves, that is how the instructions at different locations transit the program from
one state to another. We model such evolvement using execution traces.

Let S be a set of program states, abstracted using expressions and predicates
as defined in Section 3.1, and L the set of program locations. For simplicity of
presentation, we assume that each routine r has two boundary locations: execution
of r always starts from its entry location lr ∈ L and returns, if ever, from its exit
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location lr ∈ L; instructions at routine boundary locations are always the null
operation NOP.

Given a call of routine r with actual arguments a1, . . . , an on a target object
a0, written τ = a0.r(a1, . . . , am), its execution starts from an initial state s0 at
location l0 = lr, and defines uniquely a trace ρτ as the sequence

ρτ = s0 l0 s1 l1 · · · sn−1 ln−1 sn ln · · · (3.1)

of states and locations, where si ∈ S and li ∈ L (i ≥ 0). A triple silisi+1 in
ρτ denotes that the execution reaches location li in state si, and the instruction at
location li transits the program state to si+1. If li is the entry location of a routine
rk, then si is the pre-state of the routine call; if li is the exit location of routine rk,
then si is the post-state of the routine call. The sequence

κτ = r0 r1 · · · rn−1 rn · · · (3.2)

containing only routine names of the boundary locations in ρτ is the call sequence
determined by τ . Since τ is a call to r at the outmost level, r0 = r.

Consider feature duplicate in Listing 2.3, the call emp.duplicate (1) deter-
mines the trace x0 l duplicate x1 l line55 x2 lmake where x0 is the initial state, x1 = x0,
and x2 is the state when calling make on line 55 in Listing 2.3; the test terminates
then with a contract violation. Another call list . duplicate (3) determines the
call sequence duplicate make make duplicate .

3.3 Contracts and Correctness
AutoFix works on Eiffel classes equipped with contracts [69]. Contracts de-
fine the specification of a class and consist of assertions: preconditions (require
), postconditions (ensure), intermediate assertions (check), and class invariants
(translated for simplicity of presentation into additional pre- and postconditions
in the examples of this thesis). Each assertion consists of one or more clauses,
implicitly conjoined and usually displayed on different lines; Consider for exam-
ple routine move_item in Listing 2.1, its precondition has two clauses: v 6= Void
on line 30 and has(v) on line 31. We denote by Pr and Qr the pre- and postcon-
dition of a routine r.

Given an assertion A and a program state s ∈ S , we say that A holds at s
(or, equivalently, that s satisfies A) if A evaluates to True under state s; if this is
the case, we write s |= A. Since contracts are executable, we can evaluate any
assertion at any program state reached during a concrete execution.

Contracts provide an operational criterion to classify routine calls into invalid,
successful, and failing. A call τ = a0.r(a1, . . . , am) is valid if the initial state s0
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of the trace ρτ is such that it satisfies r’s precondition, that is s0 |= Pr; otherwise
τ is invalid. A valid routine call τ is successful if it returns and, for every j(j >
0), location lj in τ ’s trace ρτ satisfies the following: if lj = lrj for a routine
rj then sj |= Prj , and if lj = lrj then sj |= Qrj . In words, every nested call
performed during the computation of r starts in a state that satisfies the called
routine’s precondition and terminates in a state that satisfies the called routine’s
postcondition when it returns. A valid routine call is failing if it is not successful,
that is if it eventually reaches a state that violates some assertion; the violation
terminates routine execution.

Take routine duplicate in Listing 2.3 as an example, the call emp.duplicate (1)
is valid but failing: the nested call to make does not satisfy make’s precondition
m ≥ 1 on line 50 in Listing 2.3 because count = 0 <1 in an empty list; while
the other call list . duplicate (3) is successful because the execution of duplicate
terminates without violating any contract (and produces the correct result).

3.4 Tests
In this work, a test case t, or just “test”, is simply a call to a routine r, and t is
valid, passing, or failing, if and only if the call to r is valid, successful, or failing,
respectively. An invalid test case for routine r does not tell us anything about
r’s correctness, since every invocation of r should satisfy r’s precondition to be
acceptable; a failing test case t reveals a fault in routine r; conversely, a passing
test case documents a legitimate usage of routine r with respect to its specification.
As we forcibly terminate tests that are still running after a timeout, all traces of
tests are finite. Two failing test cases t1, t2 identify the same fault if their traces
ρ1, ρ2 end with the same location f and violate the same assertion c.

Every session of automated program fixing takes as input a set T of test cases,
partitioned into sets P (passing) and F (failing), and each session targets a single
specific fault. When we want to make the targeted fault explicit, we write Tr,
Pr, and F f,c

r . For example, F 42,not before
move_item denotes a set of test cases all violating

put_left ’s precondition at line 42 in move_item (Listing 2.1).
The fixing algorithms described in Chapter 4 and Chapter 5 are independent

of whether the test cases T are generated automatically or written manually. The
experiments discussed in both chapters use the random testing framework Auto-
Test [70]. Relying on AutoTest makes the whole process, from fault detection
to fixing, completely automatic; our experiments show that even short AutoTest
sessions are sufficient to produce suitable test cases that AutoFix can use for gen-
erating good-quality fixes to the implementation.



22 CHAPTER 3. AUTOFIX CONCEPTS



CHAPTER 4

FIXING THE IMPLEMENTATION

At the core of AutoFix are the techniques for automatically suggesting fixes to
faults. As a bug manifests a discrepancy between specification and implemen-
tation, such techniques should be able to suggest fixes with respect to both the
implementation and the contracts.

This chapter presents the ImpleFix technique of AutoFix to generate correc-
tions to program implementations completely automatically. This part of the re-
search is described in [86, 87]. The SpeciFix technique that aims at automatically
proposing fixes to contracts is described in Chapter 5.

Section 4.1 explains the ImpleFix algorithm in detail through its successive
stages: program state abstraction, fault localization, synthesis of fix actions, gen-
eration of candidate fixes, validation of candidates, and ranking heuristics. Sec-
tion 4.2 discusses the experimental evaluation, including a detailed statistical anal-
ysis of numerous important measures.

4.1 How ImpleFix Generates Fixes to the Imple-
mentation

Figure 4.1 summarizes the steps of ImpleFix processing, from program to fix. The
following subsections give the details.

ImpleFix takes a program with contracts as input, and it first employs Auto-
Test to generate test cases for the program. Each generated failing test exposes a
fault in the program, which can be characterized by a program location f and by
a violated contract clause c (Section 3.4); the presentation in this section leaves
f and c implicit whenever clear from the context. To generate fixes to a fault,
ImpleFix examines the execution of a group of tests, including the failing tests
exposing the same fault and the passing ones testing the same routine as the se-
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ImpleFix
Eiffel

program

class SET
...

end

test cases

forth ; move 3
back; move 7

suspicious
snapshots

1. line 42: before
2. line 41: idx >index

fix actions

1. forth
2. idx := 1

candidate fixes

1. line 42:
> if before
>then forth

2. line 41:
> if idx > index
>then idx := 1

valid fixes

line 42: 3
> if before
>then forth

Figure 4.1: How ImpleFix generates fixes to the program implementation. Given
an Eiffel program with contracts (Section 3.3), we generate passing and failing
test cases that target a faulty routine (Section 3.4). By comparing the program
state during passing and failing runs, ImpleFix identifies suspicious snapshots
(Sections 4.1.1–4.1.2) that denote likely locations and causes of failures. For each
suspicious snapshot, ImpleFix generates fix actions (Section 4.1.3) that can change
the program state of the snapshot. Injecting fix actions into the original program
determines a collection of candidate fixes (Section 4.1.4). The candidates that
pass the regression test suite are valid (Section 4.1.5) and output to the user.

lected failing tests. The notion of snapshot (described in Section 4.1.1) is the
fundamental abstraction for characterizing and understanding the behavior of the
program in the test cases; ImpleFix uses snapshots to model correct and incorrect
behavior. Fixing a fault requires finding a suitable location where to modify the
program to remove the source of the error. Since each snapshot refers to a spe-
cific program location, fault localization (described in Section 4.1.2) boils down
to ranking snapshots according to a combination of static and dynamic analyses
that search for the origins of faults.

Once ImpleFix has decided where to modify the program, it builds a code
snippet that changes the program behavior at the chosen location. ImpleFix syn-
thesizes such fix actions, described in Section 4.1.3, by combining the informa-
tion in snapshots with heuristics and behavioral abstractions that amend common
sources of programming errors.

ImpleFix injects fix actions at program locations according to simple condi-
tional schema; the result is a collection of candidate fixes (Section 4.1.4). The
following validation phase (Section 4.1.5) determines which candidate fixes pass
all available test cases and can thus be retained.

In general, ImpleFix builds several valid fixes for the same fault; the valid
fixes are ranked according to heuristic measures of “quality” (Section 4.1.6), so
that the best fixes are likely to emerge in top positions.
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4.1.1 Program State Abstraction: Snapshots

The first phase of the fixing algorithm constructs abstractions of the passing and
failing runs that assess the program behavior in different conditions. These ab-
stractions rely on the notion of snapshot1: a triple

〈`, p, v〉 ,

consisting of a program location `, a Boolean predicate p, and a Boolean value v.
A snapshot abstracts one or more program executions that reach location ` with
p evaluating to v. For example, 〈31, v = Void, False〉 describes that the predicate
v = Void evalutes to False in an execution reaching line 31.

Consider a routine r failing at some location f by violating a contract clause c.
Given a set Tr of test cases for this fault, partitioned into passing Pr and fail-
ing F f,c

r as described in Section 3.4, ImpleFix constructs a set snap(Tr) of snap-
shots. The snapshots come from two sources: invariant analysis (described in
Section 4.1.1.1) and enumeration (Section 4.1.1.2).

We introduce some notation to define snapshots. A test case t ∈ Tr describes
a sequence loc(t) = `1, `2, . . . of executed program locations. For an expression e
and a location ` ∈ loc(t), [[e]]`t is the value of e at ` in t, if e can be evaluated at `
(otherwise, [[e]]`t is undefined).

4.1.1.1 Invariant analysis

An invariant at a program location ` with respect to a set of test cases is a col-
lection of predicates that all hold at ` in every run of the tests. ImpleFix uses
Daikon [35] to infer invariants that characterize the passing and failing runs; their
difference determine some snapshots that highlight possible failure causes. 2

For each location ` reached by some tests in Tr, we compute the passing in-
variant π` as the collection of predicates that hold in all passing tests Pr ⊂ Tr;
and the failing invariant φ` as the collection of predicates that hold in all failing
tests in F f,c

r ⊆ Tr. ImpleFix uses only invariants built out of publicly visible
predicates in Pr,c. The predicates in Π = {p | p ∈ φ` and ¬p ∈ π`} characterize
potential causes of errors, as Π contains predicates that hold in failing runs but not
in passing runs.3 Correspondingly, the set snap(Tr) includes all components〈

`,
∧
p∈Π

p,True

〉
,

1In previous work [87], we used the term “component” instead of “snapshot”.
2Using Daikon is an implementation choice made to take advantage of its useful collection of

invariant templates, which includes Boolean combinations beyond those described in Section 3.1.
3Since the set of predicates used by ImpleFix is closed under complement (Section 3.1), Π is

equivalently computed as the negations of the predicates in {p | p ∈ π` and ¬p ∈ φ`}.
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for every non-empty subset Π of Π that profiles potential error causes.
The rationale for considering differences of sets of predicates is similar to the

ideas behind the predicate elimination strategies in “cooperative bug isolation”
techniques [58]. The dynamic analysis described in Section 4.1.2.2 would as-
sign the highest dynamic score to snapshots whose predicates correspond to the
deterministic bug predictors in cooperative bug isolation.

4.1.1.2 Enumeration

For each test t ∈ Tr, each predicate p ∈ Pr,c, and each location ` ∈ loc(t) reached
in t’s execution where the value of p is defined, the set snap(Tr) of snapshots
includes

〈`, p, [[p]]`t〉 ,

where p is evaluated at ` in t.
In the case of the fault of routine move_item (discussed in Section 2.1.1), the

snapshots include, among many others, 〈34, v = Void, False〉 (every execution
has v 6= Void when it reaches line 34) and 〈41, idx > index,True〉 (executions
failing at line 41 have idx > index).

Only considering snapshots corresponding to actual test executions avoids a
blow-up in the size of snap(Tr). In our experiments (Section 4.2), the number of
snapshots enumerated for each fault ranged from about a dozen to few hundreds;
those achieving a high suspiciousness score (hence actually used to build fixes, as
explained in Section 4.1.2.3) typically targeted only one or two locations ` with
different predicates p.

4.1.2 Fault Localization

The goal of the fault localization phase is to determine which snapshots in
snap(Tr) are reliable characterizations of the reasons for the fault under analysis.
Fault localization in ImpleFix computes a number of heuristic measures for each
snapshot, described in the following subsections; these include simple syntactic
measures such as the distance between program statements (Section 4.1.2.1) and
metrics based on the runtime behavior of the program in the passing and failing
tests (Section 4.1.2.2).

The various measures are combined in a ranking of the snapshots (Sec-
tion 4.1.2.3) to estimate their “suspiciousness”: each triple 〈`, p, v〉 is assigned
a score susp〈`, p, v〉 which assesses how suspicious the snapshot is. A high rank-
ing for a snapshot 〈`, p, v〉 indicates that the fault is likely to originate at location
` when predicate p evaluates to v. The following phases of the fixing algorithm
only target snapshots achieving a high score in the ranking.
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4.1.2.1 Static analysis

The static analysis performed by ImpleFix is based on simple measures of proxim-
ity and similarity: control dependence measures the distance, in terms of number
of instructions, between two program locations; expression dependence measures
the syntactic similarity between two predicates. Both measures are variants of
standard notions used in compiler construction [4, 72]. ImpleFix uses control de-
pendence to estimate the proximity of a location to where a contract violation is
triggered; the algorithm then differentiates further among expressions evaluated
at nearby program locations according to syntactic similarity between each ex-
pression and the violated contract clause. Static analysis provides coarse-grained
measures that are only useful when combined with the more accurate dynamic
analysis (Section 4.1.2.2) as described in Section 4.1.2.3.

4.1.2.1.1 Control dependence. ImpleFix uses control dependence to rank lo-
cations (in snapshots) according to proximity to the location of failure. For two
program locations `1, `2, write `1  `2 if `1 and `2 belong to the same routine and
there exists a directed path from `1 to `2 on the control-flow graph of the routine’s
body; otherwise, `1 6 `2. The control distance cdist(`1, `2) of two program lo-
cations is the length of the shortest directed path from `1 to `2 on the control-flow
graph if `1  `2, and∞ if `1 6 `2. For example, cdist(40, 42) = 2 in Figure 2.1.

Correspondingly, when `  , the control dependence cdep(`, ) is the nor-
malized score:

cdep(`, ) = 1− cdist(`, )

max{cdist(λ, ) | λ ∈ r and λ }
,

where λ ranges over all locations in routine r (where ` and  also appear); other-
wise, ` 6  and cdep(`, ) = 0.

Ignoring whether a path in the control-flow graph is feasible when comput-
ing control-dependence scores does not affect the overall precision of ImpleFix’s
heuristics: Section 4.1.2.3 shows how static analysis scores are combined with a
score obtained by dynamic analysis; when the latter is zero (the case for unfeasi-
ble paths, which no test can exercise), the overall score is also zero regardless of
static analysis scores.

4.1.2.1.2 Expression dependence. ImpleFix uses expression dependence to
rank expressions (in snapshots) according to similarity to the contract clause vio-
lated in a failure. Expression dependence is meaningful for expressions evaluated
in the same local environment (that is, with strong control dependence), where
the same syntax is likely to refer to identical program elements. Considering only
syntactic similarity is sufficient because ImpleFix will be able to affect the value
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of any assignable expressions (see Section 4.1.3). For an expression e, define the
set sub(e) of its sub-expressions as follows:

• e ∈ sub(e);

• if e′ ∈ sub(e) is a query call of the form t.q (a1, . . . , am) for m ≥ 0, then
t ∈ sub(e) and ai ∈ sub(e) for all 1 ≤ i ≤ m.

This definition also accommodates infix operators (such as Boolean connectives
and arithmetic operators), which are just syntactic sugar for query calls; for ex-
ample a and b are both sub-expressions of a + b, a shorthand for a. plus (b).
Unqualified query calls are treated as qualified call on the implicit target Current.

The expression proximity eprox(e1, e2) of two expressions e1, e2 measures
how similar e1 and e2 are in terms of shared sub-expressions; namely,
eprox(e1, e2) = |sub(e1) ∩ sub(e2)| . For example, the expression proximity
eprox( i ≤ count, 0≤ i ≤ count + 1) is 2, corresponding to the shared sub-
expressions i and count. The larger the expression proximity between two ex-
pressions is, the more similar they are.

Correspondingly, the expression dependence edep(p, c) is the normalized
score:

edep(p, c) =
eprox(p, c)

max{eprox(π, c) | π ∈ Pr,c}
,

measuring the amount of evidence that p and c are syntactically similar. In rou-
tine before in Figure 2.1, for example, edep(index, index = 0) is 1/3 because
eprox(index, index = 0) = 1 and index = 0 itself has the maximum expression
proximity to index = 0.

4.1.2.2 Dynamic analysis

Our dynamic analysis borrows techniques from generic fault localization [108] to
determine which locations are likely to host the cause of failure. Each snapshot
receives a dynamic score dyn〈`, p, v〉, roughly measuring how often it appears
in failing runs as opposed to passing runs. A high dynamic score is empirical
evidence that the snapshot characterizes the fault and suggests what has to be
changed; we use static analysis (Section 4.1.2.1) to differentiate further among
snapshots that receive similar dynamic scores.

4.1.2.2.1 Principles for computing the dynamic score. Consider a failure vi-
olating the contract clause c at location f in some routine r. For a test case t ∈ Tr
and a snapshot 〈`, p, v〉 such that ` is a location in r’s body, write 〈`, p, v〉 ∈ t if t
reaches location ` at least once and p evaluates to v there:

〈`, p, v〉 ∈ t iff ∃`i ∈ loc(t), ` = `i, and v = [[p]]`it .
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For every test case t ∈ Tr such that 〈`, p, v〉 ∈ t, σ(t) describes t’s contribution
to the dynamic score of 〈`, p, v〉: a large σ(t) should denote evidence that 〈`, p, v〉
is a likely “source” of error if t is a failing test case, and evidence against it if t is
passing. We choose a σ that meets the following requirements:

(a) If there is at least one failing test case t such that 〈`, p, v〉 ∈ t, the overall
score assigned to 〈`, p, v〉 must be positive: the evidence provided by failing
test cases cannot be canceled out completely.

(b) The magnitude of each failing (resp. passing) test case’s contribution σ(t) to
the dynamic score assigned to 〈`, p, v〉 decreases as more failing (resp. pass-
ing) test cases for that snapshot are available: the evidence provided by the
first few test cases is crucial, while repeated outcomes carry a lower weight.

(c) The evidence provided by one failing test case alone is stronger than the evi-
dence provided by one passing test case.

The first two principles correspond to “Heuristic III” of Wong et al. [108], whose
experiments yielded better fault localization accuracy than most alternative ap-
proaches. According to these principles, snapshots appearing only in failing test
cases are more likely to be fault causes.

ImpleFix’s dynamic analysis assigns scores starting from the same basic prin-
ciples as Wong et al.’s, but with differences suggested by the ultimate goal of au-
tomatic fixing: our dynamic score ranks snapshots rather than just program loca-
tions, and assigns weight to test cases differently. Contracts help find the location
responsible for a fault: in many cases, it is close to where the contract violation
occurred; on the other hand, automatic fixing requires gathering information not
only about the location but also about the state “responsible” for the fault. This
observation led to the application of fault localization principles on snapshots in
ImpleFix. It is also consistent with recent experimental evidence [95] suggesting
that the behavior of existing fault localization techniques on the standard bench-
marks used to evaluate them is not always a good predictor of their performance
in the context of automated program repair; hence the necessity of adapting to the
specific needs of automated fixing.4

4.1.2.2.2 Dynamic score. Assume an arbitrary order on the test cases and let
σ(t) be αi for the i-th failing test case t and βαi for the i-th passing test case.
Selecting 0 < α < 1 decreases the contribution of each test case exponentially,
which meets principle (b); then, selecting 0 < β < 1 fulfills principle (c).

4The results of Wong et al.’s heuristics in Qi et al.’s experiments [95] are not directly applicable
to ImpleFix (which uses different algorithms and adapts Wong et al.’s heuristics to its specific
needs); replication belongs to future work.
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The evidence provided by each test case adds up:

dyn〈`, p, v〉= γ +
∑{

σ(u) |u ∈ F f,c
r

}
−
∑
{σ(v) | v ∈ Pr} ,

for some γ ≥ 0; the chosen ordering is immaterial. We compute the score with
the closed form of geometric progressions:

#p〈`, p, v〉 = |{t ∈ Pr | 〈`, p, v〉 ∈ t}| ,
#f〈`, p, v〉 =

∣∣{t ∈ F f,c
r | 〈`, p, v〉 ∈ t

}∣∣ ,
dyn〈`, p, v〉 = γ +

α

1− α
(
1− β + βα#p〈`,p,v〉 − α#f〈`,p,v〉) ,

where #p〈`, p, v〉 and #f〈`, p, v〉 are the number of passing and failing test
cases that determine the snapshot 〈`, p, v〉. It is straightforward to prove that
dyn〈`, p, v〉 is positive if #f〈`, p, v〉 ≥ 1, for every nonnegative α, β, γ such that
0 < α + β < 1; hence the score meets principle (a) as well.

Since the dynamic score dyn varies exponentially only with the number of
passing and failing test cases, the overall success rate of the ImpleFix algorithm
is affected mainly by the number of tests but not significantly by variations in
the values of α and β. A small empirical trial involving a sample of the faults
used in the evaluation of Section 4.2 confirmed this expectation of robustness; it
also suggested selecting the values α = 1/3, β = 2/3, and γ = 1 as defaults
in the current implementation of ImpleFix, which tend to produce slightly shorter
running times on average (up to 10% improvement). With these values, one can
check that 2/3 < dyn〈`, p, v〉 < 3/2, and 1 < dyn〈`, p, v〉 < 3/2 if at least one
failing test exercises the snapshot.

4.1.2.3 Overall score

ImpleFix combines the various metrics into an overall score susp〈`, p, v〉. The
score puts together static and dynamic metrics with the idea that the latter give the
primary source of evidence, whereas the less precise evidence provided by static
analysis is useful to discriminate among snapshots with similar dynamic behavior.

Since the static measures are normalized ratios, and the dynamic score is also
fractional, we may combine them by harmonic mean [19]:

susp〈`, p, v〉 =
3

edep(p, c)−1+cdep(`, f)−1+dyn〈`, p, v〉−1 .

Our current choice of parameters for the dynamic score (Section 4.1.2.2.2) makes
it dominant in determining the overall score susp〈`, p, v〉: while expression and
control dependence vary between 0 and 1, the dynamic score has minimum 1 (for
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at least one failing test case and indefinitely many passing). This range difference
is consistent with the principle that dynamic analysis is the principal source of
evidence.

For the fault of Figure 2.1, the snapshot 〈41, idx > index,True〉 receives a
high overall score. ImpleFix targets snapshots such as this in the fix action phase.

4.1.3 Fix Action Synthesis

A snapshot 〈`, p, v〉 in snap(Tr) with a high score susp〈`, p, v〉 suggests that the
“cause” of the fault under analysis is that expression p takes value v when the exe-
cution reaches `. Correspondingly, ImpleFix tries to build fixing actions (snippets
of instructions) that modify the value of p at `, so that the execution can hope-
fully continue without triggering the fault. This view reduces fixing to a program
synthesis problem: find an action snip that satisfies the specification:

require p = v do snip ensure p 6= v end .

ImpleFix uses two basic strategies for generating fixing actions: setting and re-
placement. Setting (described in Section 4.1.3.1) consists of modifying the value
of variables or objects through assignments or routine calls. Replacement (de-
scribed in Section 4.1.3.2) consists of modifying the value of expressions directly
where they are used in the program. Three simple heuristics, with increasing
specificity, help prevent the combinatorial explosion in the generation of fixing
actions:

1. Since the majority of program fixes are short and simple [29, 65], we only
generate fixing actions that consist of simple instructions;

2. We select the instructions in the actions according to context (the location
that we are fixing) and common patterns, and based on behavioral models
of the classes (Section 4.1.3.3);

3. For integer expressions, we also deploy constraint solving techniques to
build suitable derived expressions (Section 4.1.3.4).

We now describe actions by setting and replacements, which are the basic
mechanisms ImpleFix uses to synthesize actions, as well as the usage of behav-
ioral models and constraint solving. To limit the number of candidates, ImpleFix
uses no more than one basic action in each candidate fix.

4.1.3.1 Actions by setting

One way to change the value of a predicate is to modify the value of its constituent
expressions by assigning new values to them or by calling modifier routines on
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them. For example, calling routine forth on the current object has the indirect
effect of setting predicate before to False.

Not all expressions are directly modifiable by setting; an expression e is mod-
ifiable at a location ` if: e is of reference type (hence we can use e as target of
routine calls); or e is of integer type and the assignment e := 0 can be executed
at `; or e is of Boolean type and the assignment e := True can be executed at `.
For example, index is modifiable everywhere in routine move_item because it is
an attribute of the enclosing class; the argument i of routine go_i_th, instead, is
not modifiable within its scope because arguments are read-only in Eiffel.

Since the Boolean predicates of snapshots may not be directly modifiable,
we also consider sub-expressions of any type. The definition of sub-expression
(introduced in Section 4.1.2.1.2) induces a partial order �: e1 � e2 iff e1 ∈
sub(e2) that is e1 is a sub-expression of e2; correspondingly, we define the largest
expressions in a set as those that are only sub-expressions of themselves. For
example, the largest expressions of integer type in sub(idx < index or after )
are idx and index.

A snapshot 〈`, p, v〉 induces a set of target expressions that are modifiable in
the context given by the snapshot. For each type (Boolean, integer, and refer-
ence), the set targ〈`, p〉 of target expressions includes the largest expressions of
that type among p’s sub-expressions sub(p) that are modifiable at `. For exam-
ple, targ〈41, idx >Current.index〉 in Figure 2.1 includes the reference expres-
sion Current, the integer expressions Current.index and idx, but no Boolean ex-
pressions (idx >Current.index is not modifiable because it is not a valid L-value
of an assignment).

Finally, the algorithm constructs the set set〈`, p〉 of settings induced by a snap-
shot 〈`, p, v〉 according to the target types as follows; these include elementary
assignments, as well as the available routine calls.

4.1.3.1.1 Boolean targets. For e ∈ targ〈`, p〉 of Boolean type, set〈`, p〉 in-
cludes the assignments e := d for d equal to the constants True and False and to
the complement expression not e.

4.1.3.1.2 Integer targets. For e ∈ targ〈`, p〉 of integer type, set〈`, p〉 includes
the assignments e := d for d equal to the constants 0, 1, and −1, the “shifted”
expressions e+ 1 and e− 1, and the expressions deriving from integer constraint
solving (discussed in Section 4.1.3.4).

4.1.3.1.3 Reference targets. For e ∈ targ〈`, p〉 of reference type, if
e.c (a1, . . . , an) is a call to a command (procedure) c executable at `, include
e.c (a1, . . . , an) in set〈`, p〉. (Section 4.1.3.3 discusses how behavioral models
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help select executable calls at ` with chances of affecting the program state indi-
cated by the snapshot.)

In the example of Section 2.1.1, the fault’s snapshot 〈41, idx > index,True〉
determines the settings set〈41, idx > index〉 that include assignments of 0, 1,
and −1 to idx and index, and unit increments and decrements of the same vari-
ables.

4.1.3.2 Actions by replacement

In some cases, assigning new values to an expression is undesirable or infeasible.
For example, expression i in routine go_i_th of Figure 2.1 does not have any
modifiable sub-expression. In such situations, replacement directly substitutes
the usage of expressions in existing instructions. Replacing the argument idx
with idx − 1 on line 41 modifies the effect of the call to go_i_th without directly
changing any local or global variables.

Every location ` labels either a primitive instruction (an assignment or a rou-
tine call) or a Boolean condition (the branching condition of an if instruction or
the exit condition of a loop). Correspondingly, we define the set sub(`) of sub-
expressions of a location ` as follows:

• if ` labels a Boolean condition b then sub(`) = sub(b);

• if ` labels an assignment v := e then sub(`) = sub(e);

• if ` labels a routine call t.c (a1, . . . , an) then

sub(`) =
⋃
{sub(ai) | 1 ≤ i ≤ n } .

Then, a snapshot 〈`, p, v〉 determines a set replace〈`, p〉 of replacements: in-
structions obtained by replacing one of the sub-expressions of the instruction at `
according to the same simple heuristics used for setting. More precisely, we con-
sider expressions e among the largest ones of Boolean or integer type in sub(p)
and we modify their occurrences in the instruction at `. Notice that if ` labels a
conditional or loop, we replace e only in the Boolean condition, not in the body
of the compound instruction.

4.1.3.2.1 Boolean expressions. For e of Boolean type, replace〈`, p〉 includes
the instructions obtained by replacing each occurrence of e in ` by the constants
True and False and by the complement expression not e.
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4.1.3.2.2 Integer expressions. For e of integer type, replace〈`, p〉 includes the
instructions obtained by replacing each occurrence of e in ` by the constants 0,
1, and −1, by the “shifted” expressions e + 1 and e − 1, and by the expressions
deriving from integer constraint solving (Section 4.1.3.4).

Continuing the example of the fault of Section 2.1.1, the snapshot
〈41, idx > index,True〉 induces the replacement set replace〈41, idx > index〉
including go_i_th ( idx − 1), go_i_th ( idx + 1), as well as go_i_th (0),
go_i_th (1), and go_i_th (−1).

4.1.3.3 Behavioral models

Some of the fixing actions generated by ImpleFix try to modify the program state
by calling routines on the current or other objects. This generation is not blind but
targets operations applicable to the target objects that can modify the value of the
predicate p in the current snapshot 〈`, p, v〉. To this end, we exploit the finite-state
behavioral model abstraction to quickly find out the most promising operations or
operation sequences.

is_empty
before

not after

not is_empty
before

not after

is_empty
not before
not after

not is_empty
not before
not after

forth

forth

Figure 4.2: Behavioral model of routine forth .

Using techniques we previously developed for Pachika [28], ImpleFix extracts
a simple behavioral model from all passing runs of the class under consideration.
The behavioral model represents a predicate abstraction of the class behavior. It
is a finite-state automaton whose states are labeled with predicates that hold in
that state, and transitions are labeled with routine names, connecting observed
pre-state to observed post-states.

As an example, Figure 4.2 shows a partial behavioral model for the forth
routine in Figure 2.1. This behavioral model shows, among other things, that
not before always holds after calls to forth in any valid initial state. By com-
bining this information with the snapshot 〈42, before ,True〉, we can surmise that
invoking forth on line 42 mutates the current object state so that it avoids the
possible failure cause before = True.
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In general, the built behavioral abstraction is neither complete nor sound be-
cause it is based on a finite number of test runs. Nonetheless, it is often sufficiently
precise to reduce the generation of routine calls to those that are likely to affect
the snapshot state in the few cases where enumerating all actions by setting (Sec-
tion 4.1.3.1) is impractical.

4.1.3.4 Constraint solving

In contract-based development, numerous assertions take the form of Boolean
combinations of linear inequalities over program variables and constants. The
precondition of go_i_th on line 23 in Figure 2.1 is an example of such linearly
constrained assertions (or linear assertions for short). Such precondition requires
that the argument i denote a valid position inside the set.

When dealing with integer expressions extracted from linear assertions, we de-
ploy specific techniques to generate fixing actions in addition to the basic heuris-
tics discussed in the previous sections (such as trying out the “special” values 0
and 1). The basic idea is to solve linear assertions for extremal values compatible
with the constraint. Given a snapshot 〈`, λ, v〉 such that λ is a linear assertion,
and an integer expression j appearing in λ, ImpleFix uses Mathematica to solve
λ for maximal and minimal values of j as a function of the other parameters (nu-
meric or symbolic) in λ. To increase the quality of the solution, we strengthen
λ with linear assertions from the class invariants that share identifiers with λ. In
the example of go_i_th, the class invariant count ≥ 0 would be added to λ when
looking for extrema. The solution consists, in this case, of the extremal values 0
and count + 1, which are both used as replacements (Section 4.1.3.2) of variable
i .

4.1.4 Candidate Fix Generation

Given a “suspicious” snapshot 〈`, p, v〉 in snap(Tr), the previous section showed
how to generate fix actions that can mutate the value of p at location `. Injecting
any such fix actions at location ` gives a modified program that is a candidate
fix: a program where the faulty behavior may have been corrected. We inject
fix actions in program in two phases. First, we select a fix schema—a template
that abstracts common instruction patterns (Section 4.1.4.1). Then, we instantiate
the fix schema with the snapshot’s predicate p and some fixing action it induces
(Section 4.1.4.2).

Whereas the space of all possible fixes generated with this approach is poten-
tially huge, ImpleFix only generates candidate fixes for the few most suspicious
snapshots (15 most suspicious ones, in the current implementation). In our exper-
iments, each snapshot determines at most 50 candidate fixes (on average, no more
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than 30), which can be validated in reasonable time (see Section 4.2.3.4).

4.1.4.1 Fix schemas

ImpleFix uses a set of predefined templates called fix schemas. The four fix
schemas currently supported are shown in Figure 4.3;5 they consist of conditional
wrappers that apply the fix actions only in certain conditions (with the exception
of schema a which is unconditional). In the schemas, fail is a placeholder for a
predicate, snippet is a fixing action, and old_stmt are the statements in the origi-
nal program where the fix is injected.

(a) snippet
old_stmt

(c) if not fail then
old_stmt

end

(b) if fail then
snippet

end
old_stmt

(d) if fail then
snippet

else
old_stmt

end

Figure 4.3: Fix schemas implemented in ImpleFix.

4.1.4.2 Schema instantiation

For a state snapshot 〈`, p, v〉, we instantiate the schemas in Figure 4.3 as follows:

fail becomes p = v, the snapshot’s predicate and value.

snippet becomes any fix action by setting (set〈`, p〉 in Section 4.1.3.1) or by re-
placement (replace〈`, p〉 in Section 4.1.3.2).

old_stmt is the instruction at location ` in the original program.

The instantiated schema replaces the instruction at position ` in the program being
fixed; the modified program is a candidate fix.

5Recent work [65] has demonstrated that these simple schemas account for a large fraction of
the manually-written fixes found in open-source projects.
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For example, consider again the snapshot 〈41, idx > index,True〉, which re-
ceives a high “suspiciousness” score for the fault described in Section 2.1.1 and
which induces, among others, the fix action consisting of decrementing idx. The
corresponding instantiation of fix schema (b) in Figure 4.3 is then: fail becomes
idx > index = True, snippet becomes idx := idx − 1, and old_stmt is the in-
struction go_i_th ( idx ) on line 23 in Figure 2.1. Injecting the instantiated schema
(replacing line 23) yields the candidate fix in Figure 2.2, already discussed in Sec-
tion 2.1.1.

4.1.5 Fix Validation

The generation of candidate fixes, described in the previous Sections 4.1.3 and
4.1.4, involves several heuristics and is “best effort”: there is no guarantee that the
candidates actually correct the error (or even that they are executable programs).
Each candidate fix must pass a validation phase which determines whether its de-
ployment removes the erroneous behavior under consideration. The validation
phase regressively runs each candidate fix through the full set Tr of passing and
failing test cases for the routine r being fixed. A fix is validated (or valid) if it
passes all the previously failing test cases F f,c

r and it still passes the original pass-
ing test cases Pr. ImpleFix only reports valid fixes to users, ranked as described
in Section 4.1.6.

The correctness of a program is defined relative to its specification; in the
case of automated program fixing, this implies that the validated fixes are only as
good as the available tests or, if these are generated automatically, as the available
contracts. In other words, evidently incomplete or incorrect contracts may let
inappropriate candidate fixes pass the validation phase.

To distinguish between fixes that merely pass the validation phase because
they do not violate any of the available contracts and high-quality fixes that devel-
opers would confidently deploy, we introduce the notion of proper fix. Intuitively,
a proper fix is one that removes a fault without introducing other faulty or un-
expected behavior. More rigorously, assume we have the complete behavioral
specification Sr of a routine r; following our related work [92, 93], Sr is a pre-
/postcondition pair that characterizes the effects of executing r on every query
(attribute or function) of its enclosing class. A valid fix is proper if it satisfies Sr;
conversely, it is improper if it is valid but not proper.

While we have demonstrated [93] that it is possible to formalize complete
behavioral specifications in many interesting cases (in particular, for a large part
of the EiffelBase library used in the experiments of Section 4.2), the line between
proper and improper may be fuzzy under some circumstances when the notion
of “reasonable” behavior is disputable or context-dependent. Conversely, there
are cases—such as when building a proper fix is very complex or exceedingly
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expensive—where a valid but improper fix is still better than no fix at all because
it removes a concrete failure and lets the program continue its execution.

In spite of these difficulties of principle, the experiments in Section 4.2 show
that the simple contracts normally available in Eiffel programs are often good
enough in many practical cases to enable ImpleFix to suggest fixes that we can
confidently classify as proper, as they meet the expectations of real programmers
familiar with the code base under analysis.

4.1.6 Fix Ranking

The ImpleFix algorithm often finds several valid fixes for a given fault. While it is
ultimately the programmer’s responsibility to select which one to deploy, flooding
them with many fixes defeats the purpose of automated debugging, because un-
derstanding what the various fixes actually do and deciding which one is the most
appropriate is tantamount to the effort of designing a fix in the first place.

To facilitate the selection, ImpleFix ranks the valid fixes according to the “sus-
piciousness” score susp〈`, p, v〉 of the snapshot 〈`, p, v〉 that determined each fix.6

Since multiple fixing actions may determine valid fixes for the same snapshot, ties
in the ranking are possible. The experiments in Section 4.2 demonstrate that high-
quality proper fixes often rank in the top 10 positions among the valid ones; hence
ImpleFix users only have to inspect the top fixes to decide with good confidence
if any of them is deployable.

4.2 Experimental Evaluation
We performed an extensive experimental evaluation of the behavior and perfor-
mance of ImpleFix by applying it to over 200 faults found in various Eiffel pro-
grams [86]. The experiments characterize the reproducible average behavior of
ImpleFix in a variety of conditions that are indicative of general usage. To en-
sure generalizable results, the evaluation follows stringent rules: the experimental
protocol follows recommended guidelines [9] to achieve statistically significant
results in the parts that involve randomization; the faults submitted to ImpleFix
come from four code bases of different quality and maturity; the experiments
characterize usage with limited computational resources.

Two additional features distinguish this experimental evaluation from those
of most related work (see Chapter 6). First, the experiments try to capture the
usage of ImpleFix as a fully automatic tool where user interaction is limited to
selecting a project, pushing a button, and waiting for the results. The second

6Since all fixing actions are comparatively simple, they do not affect the ranking of valid fixes,
which is only based on suspiciousness of snapshots.
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feature of the evaluation is that it includes a detailed inspection of the quality
of the automatically generated fixes, based on the distinction between valid and
proper fixes introduced in Section 4.1.5.

4.2.1 Experimental Questions and Summary of Findings

Based on the high-level goals just presented, the experimental evaluation ad-
dresses the following questions:

Q1 How many faults can ImpleFix correct, and what are their characteristics?

Q2 What is the quality of the fixes produced by ImpleFix?

Q3 What is the cost of fixing faults with ImpleFix?

Q4 How robust is ImpleFix’s performance in an “average” run?

The main findings of the evaluation are as follows:

• ImpleFix produced valid fixes for 86 (or 42%) out of 204 randomly detected
faults in various programs.

• Of the 86 valid fixes produced by ImpleFix, 51 (or 59%) are proper, that is
of quality comparable to those produced by professional programmers.

• ImpleFix achieves its results with limited computational resources: Imple-
Fix ran no more than 15 minutes per fault in 93.1% of the experiments; its
median running time in all our experiments was 3 minutes, with a standard
deviation of 6.3 minutes.

• ImpleFix’s behavior is, to a large extent, robust with respect to variations in
the test cases produced by AutoTest: 48 (or 56%) of the faults that Imple-
Fix managed to fix at least once were fixed (with possibly different fixes) in
over 95% of the sessions. If we ignore the empty sessions where AutoTest
did not manage to reproduce a fault, ImpleFix produced a valid fix 41% of
all non-empty sessions—when ImpleFix is successful, it is robustly so.

4.2.2 Experimental Setup

All the experiments ran on the computing facilities of the Swiss National Su-
percomputing Centre consisting of Transtec Lynx CALLEO High-Performance
Servers 2840 with 12 physical cores and 48 GB of RAM. Each experiment ses-
sion used exclusively one physical core at 1.6 GHz and 4 GB of RAM, whose
computing power is similar to that of a commodity personal computer. Therefore,
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the experiments reflect the performance of ImpleFix in a standard programming
environment.

We now describe the code bases and the faults targeted by the experiments
(Section 4.2.2.1), then present the experimental protocol (Section 4.2.2.2).

4.2.2.1 Experimental subjects

The experiments targeted a total of 204 contract-violation faults collected from
four code bases of different quality and maturity. The following discussion an-
alyzes whether such a setup provides a sufficiently varied collection of subjects
that exercise ImpleFix in different conditions.

4.2.2.1.1 Code bases. The experiments targeted four code bases:

• Base is a data structure library. It consists of the standard data structure
classes from the EiffelBase and Gobo projects, distributed with the Eiffel-
Studio IDE and developed by professional programmers over many years.

• TxtLib is a library to manipulate text documents, developed at ETH
Zurich by second-year bachelor’s students with some programming expe-
rience.

• Cards is an on-line card gaming system, developed as project for DOSE, a
distributed software engineering course organized by ETH [76] for master’s
students. Since this project is a collaborative effort involving groups in
different countries, the students who developed Cards had heterogeneous,
but generally limited, skills and experience with Eiffel programming and
using contracts; their development process had to face the challenges of
team distribution.

• ELearn is an application supporting e-learning, developed in another edi-
tion of DOSE.

Table 4.1 gives an idea of the complexity of the programs selected for the
experiments, in terms of number of classes (#C), thousands of lines of code
(#kLOC), number of routines (#R), Boolean queries (#Q), and number of con-
tract clauses in preconditions (#Pre), postconditions (#Post), and class invariants
(#Inv).

The data suggests that Base classes are significantly more complex than the
classes in other code bases, but they also offer a better interface with more Boolean
queries that can be used by ImpleFix (Section 3.1). The availability of contracts
also varies significantly in the code bases, ranging from 0.76 precondition clauses
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Table 4.1: Size and other metrics of the code bases (the dot is the decimal mark;
the comma is the thousands separator).

Code base #C #kLOC #R #Q #Pre #Post #Inv

Base 11 26.548 1,504 169 1,147 1,270 209
TxtLib 10 12.126 780 48 97 134 11
Cards 32 20.553 1,479 81 157 586 58
ELearn 27 13.693 1,055 20 144 148 38

Total 80 72.920 4,818 318 1,545 2,138 316

per routine in Base down to only 0.11 precondition clauses per routine in Cards.
This diversity in the quality of interfaces and contracts ensures that the experi-
ments are representative of ImpleFix’s behavior in different conditions; in partic-
ular, they demonstrate the performance also with software of low quality and with
very few contracts, where fault localization can be imprecise and unacceptable
behavior may be incorrectly classified as passing for lack of precise oracles (thus
making it more difficult to satisfactorily fix the bugs that are exposed by other
contracts).

4.2.2.1.2 Faults targeted by the experiments. To select a collection of faults
for our fixing experiments, we performed a preliminarily run of AutoTest [70]
on the code bases and recorded information about all faults found that consisted
of contract violations. These include violations of preconditions, postconditions,
class invariants, and intermediate assertions (check instructions), but also viola-
tions of implicit contracts, such as dereferencing a void pointer and accessing an
array element using an index that is out of bounds, and application-level memory
and I/O errors such as a program terminating without closing an open file and
buffer overruns. In contrast, we ignored lower-level errors such as disk failures or
out-of-memory allocations, since these are only handled by the language runtime.
Running AutoTest for two hours on each class in the code bases provided a total
of 204 unique contract-violation faults (identified as discussed in Section 3.4). Ta-
ble 4.2 counts these unique faults for each code base (#Faults), and also shows the
breakdown into void-dereferencing faults (#Void), precondition violations (#Pre),
postcondition violations (#Post), class invariant violations (#Inv), and check vio-
lations (#Check), as well as the number of faults per kLOC ( #F

kLOC
). The figures in

the last column give a rough estimate of the quality of the code bases, confirming
the expectation that software developed by professional programmers adheres to
higher quality standards.

The use of AutoTest for selecting faults has two principal consequences for
this study:
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Table 4.2: Faults used in the fixing experiments.

Code base #Faults #Void #Pre #Post #Inv #Check #F
kLOC

Base 60 0 23 32 0 5 2.3
TxtLib 31 12 14 1 0 4 2.6
Cards 63 24 21 8 10 0 3.1
ELearn 50 16 23 8 3 0 3.7

Total 204 52 81 49 13 9 2.8

• On the negative side, using AutoTest reduces the types of programs we can
include in the experiments, as the random testing algorithm implemented in
AutoTest has limited effectiveness with functionalities related to graphical
user interfaces, networking, or persistence.

• On the positive side, using AutoTest guards against bias in the selection of
faults in the testable classes, and makes the experiments representative of
the primary intended usage of ImpleFix: a completely automatic tool that
can handle the whole debugging process autonomously.

To ensure that the faults found by AutoTest are “real”, we asked, in related
work [93], some of the maintainers of Base to inspect 10 faults, randomly se-
lected among the 60 faults in Base used in our experiments; their analysis con-
firmed all of them as real bugs requiring to be fixed. Since Eiffel developers write
both programs and their contracts, it is generally safe to assume that a contract vi-
olation exposes a genuine fault, since a discrepancy between implementation and
specification must be reconciled somehow; this assumption was confirmed in all
our previous work with AutoTest.

4.2.2.2 Experimental protocol

The ultimate goal of the experiments is to determine the typical behavior of Im-
pleFix in general usage conditions under constrained computational resources and
a completely automatic process. Correspondingly, the experimental protocol in-
volves a large number of repetitions, to ensure that the average results are sta-
tistically significant representatives of a typical run, and combines AutoTest and
ImpleFix sessions, to minimize the dependency of the quality of fixes produced
by ImpleFix on the choice of test cases, and to avoid requiring users to provide
test cases.

For each unique fault f identified as in Section 4.2.2.1, we ran 30 AutoTest
sessions of 60 minutes each, with the faulty routine as primary target. Each session
produces a sequence of test cases generated at different times. Given a fault f in a
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routine r, we call m-minute series on f any prefix of a testing sequence generated
by AutoTest on r. A series may include both passing and failing test cases. In our
analysis we considered series of m = 5, 10, 15, 20, 30, 40, 50, and 60 minutes.
The process determined 30 m-minute series (one per session) for every m and for
every fault f; each such series consists of a set T = P ∪F of passing P and failing
F test cases.

Since the ImpleFix algorithms are deterministic, an m-minute series on some
fault f uniquely determines an ImpleFix session using the tests in T to fix the
fault f. The remainder of the discussion talks of m-minute fixing session on f to
denote the unique ImpleFix session run using some given m-minute series on f.
In all, we recorded the fixes produced by 270 (= 9×30) fixing sessions of various
lengths on each fault; in each session, we analyzed at most 10 fixes—those ranked
in the top 10 positions—and discarded the others (if any).

4.2.3 Experimental Results

The experimental data were analyzed through statistical techniques. Sec-
tion 4.2.3.1 examines the code bases from testing point of view. Section 4.2.3.2
discusses how many valid fixes ImpleFix produced in the experiments, and Sec-
tion 4.2.3.3 how many of these were proper fixes. Section 4.2.3.4 presents the
average ImpleFix running times. Section 4.2.3.5 analyzes the performance of Im-
pleFix over multiple sessions to assess its average behavior and its robustness.

4.2.3.1 Testability of the experimental subjects

For the evaluation, what matters most is the number and quality of fixed produced
by ImpleFix. It is interesting, however, to look into the results of AutoTest ses-
sions to get a more precise characterization of the experimental subjects and to
see how the four code bases differ in their testability. The data provides more
evidence that the four code bases have different quality and are diverse subjects
for our experiments.

4.2.3.1.1 Total number of tests. Each histogram in Figure 4.4 depicts the dis-
tribution of the mean number of test cases generated by AutoTest in the 30 re-
peated 60-minute sessions for each routine. That is, a bar at position x reach-
ing height y denotes that there exist y routines r1, . . . , ry such that, for each
1 ≤ j ≤ y, the mean number |T | of tests T in the 60-minute series on some
fault of rj is x. Figures 4.4a–d show the distributions of the individual code bases,
while Figure 4.4e is the overall distribution.

The figures suggest that Base is normally easily testable—probably a conse-
quence of its carefully-designed interface and contracts. In contrast, Cards and
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Figure 4.4: Number of tests generated by AutoTest on the experimental subjects.
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ELearn are hard to test on average; and TxtLib is a mixed case. A Mann-
Whitney U test confirms that the differences are statistically significant: if we
partition the four code bases into two groups, one comprising Base and TxtLib
and the other Cards and ELearn, intra-group differences are not statistically
significant (with 692 ≤ U ≤ 1272 and p > 0.06) whereas inter-group differences
are (with 264 ≤ U ≤ 1754 and p < 0.03).7

4.2.3.1.2 Ratio of failing to passing tests. Another interesting measure is the
average ratio of failing to passing tests generated in one session, which gives
an idea of how frequent failures are. Each histogram in Figure 4.5 depicts the
distribution of the mean failing-to-passing ratio for the test cases generated by
AutoTest in the 30 repeated 60-minute sessions for each routine; notice that the
horizontal scale is logarithmic. That is, a bar at position x reaching height y
denotes that there exist y routines r1, . . . , ry such that, for each 1 ≤ j ≤ y, the
mean ratio |F |/|P | of failing tests F to passing tests P in the 60-minute series on
some fault of rj is ex.

Consistently with Figure 4.4, Figure 4.5 suggests that it is harder to produce
failing tests for Base than for the other code bases. A Mann-Whitney U test
confirms that the difference between Base and the other three code bases is sta-
tistically significant (with 105 ≤ U ≤ 445 and p < 10−7) whereas the differ-
ences among TxtLib, Cards, and ELearn are not (with 515 ≤ U ≤ 859 and
p > 0.06).

4.2.3.2 How many faults ImpleFix can fix

It is important to know for how many faults ImpleFix managed to construct valid
fixes in some of the repeated experiments. The related questions of whether these
results are sensitive to the testing time or depend on chance are discussed in the
following sections.

4.2.3.2.1 When ImpleFix succeeds. The second column of Table 4.3 lists the
total number of unique faults for which ImpleFix was able to build a valid fix and
rank it among the top 10 during at least one of the 55080 (270 sessions for each
of the 204 unique faults) fixing sessions, and the percentage relative to the total
number of unique faults in each code base. The other columns give the breakdown
into the same categories of fault as in Table 4.2. Overall, ImpleFix succeeded in
fixing 86 (or 42%) of the faults. Section 4.2.3.5 discusses related measures of
success rate, that is the percentage of sessions that produced a valid fix.

7In this section, the sample sizes for the U tests are the number of faults in each code base.
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Figure 4.5: Failing-to-passing ratio of tests generated by AutoTest on the experi-
mental subjects; the horizontal scales are logarithmic.
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The fixing process is in general non-monotonic; that is, there are faults f on
which there exists some successful m-minute fixing session but no successful
n-minute fixing sessions for some n > m. The reason is the randomness of
AutoTest: a short AutoTest run may produce better, if fewer, tests for fixing than a
longer run, which would have more chances of generating spurious or redundant
passing tests. Non-monotonic behavior is, however, very infrequent: we observed
it only for two faults (one in Base and one in Cards) which were overly sen-
sitive to the kinds of test cases generated. In both cases, the faults were fixed in
all sessions but those corresponding to a single intermediate testing time (respec-
tively, 15 and 20 minutes). This corroborates the idea that non-monotonicity is an
ephemeral effect of randomness of test-case generation, and suggests that it is not
a significant issue in practice.

4.2.3.2.2 When ImpleFix fails. To understand the limitations of our tech-
nique, we manually analyzed all the faults for which ImpleFix always failed, and
identified four scenarios that prevent success. Table 4.4 lists the number of faults
not fixed (column #NotFixed) and the breakdown into the scenarios described
next.

Faults hard to reproduce. A small portion of the faults identified during the
preliminary 2-hour sessions (Section 4.2.2.1) could not be reproduced during the
shorter AutoTest sessions used to provide input to ImpleFix (Section 4.2.2.2).
Without failing test cases8 the ImpleFix algorithms cannot possibly be expected
to work. Column #NoFail in Table 4.4 lists the faults that we could not reproduce,
and hence could not fix, in the experiments.9

Complex patches required. While a significant fraction of fixes are sim-
ple [29], some faults require complex changes to the implementation (for example,
adding a loop or handling special cases differently). Such patches are currently

8As a side remark, ImpleFix managed to fix 19 faults for which AutoTest could generate only
failing tests; 7 of those fixes are even proper.

9Even if AutoTest were given enough time to generate failing tests, ImpleFix would still not
succeed on these faults due to complex patch required (4 faults) or incorrect contracts (6 faults).

Table 4.3: Number of faults fixed by ImpleFix (valid fixes).

Code base #Fixed #Void #Pre #Post #Inv #Check

Base 26 (43%) – (–) 18 (78%) 7 (22%) – (–) 1 (20%)
TxtLib 14 (45%) 5 (42%) 5 (36%) 0 (0%) – (–) 4 (100%)
Cards 31 (49%) 14 (58%) 13 (62%) 4 (50%) 0 (0%) – (–)
ELearn 15 (30%) 4 (25%) 9 (39%) 2 (25%) 0 (0%) – (–)

Total 86 (42%) 23 (44%) 45 (56%) 13 (27%) 0 (0%) 5 (56%)
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Table 4.4: Types of faults that ImpleFix could not fix.

Code base #NotFixed #NoFail #Complex #Contract #Design

Base 34 3 8 10 13
TxtLib 17 1 5 10 1
Cards 32 6 4 16 6
ELearn 35 0 13 14 8

Total 118 10 30 50 28

out of the scope of ImpleFix; column #Complex of Table 4.4 lists the faults that
would require complex patches.

Incorrect or incomplete contracts. ImpleFix assumes contracts are correct and
tries to fix implementations based on them. In practice, however, contracts contain
errors too; in such cases, ImpleFix may be unable to satisfy an incorrect specifi-
cation with changes to the code. A related problem occurs when contracts are
missing some constraints—for example about the invocation order of routines—
that are documented informally in the comments; faults generated by violating
such informally-stated requisites are spurious, and ImpleFix’s attempts thus be-
come vain. Column #Contract of Table 4.4 lists the faults involving incorrect or
incomplete contracts that ImpleFix cannot fix. (In recent work [85], we developed
a fixing technique that suggests changes to incorrect or inconsistent contracts to
remove faults.)

Design flaws. The design of a piece of software may include inconsistencies
and dependencies between components; as a consequence fixing some faults may
require changing elements of the design—something currently beyond what Im-
pleFix can do. The design flaws that ImpleFix cannot correct often involve inher-
itance; for example, a class LINKED_SET in Base inherits from LINKED_LIST
but does not uniformly changes its contracts to reflect the fact that a set does not
have duplicates while a list may. Fixing errors such as this requires a substantial
makeover of the inheritance hierarchy, of the interfaces, or both. Column #Design
of Table 4.4 lists the faults due to design flaws that ImpleFix cannot fix.

4.2.3.2.3 Which fix schemas are used. Not all four schemas available to Im-
pleFix (Section 4.1.4.1) are as successful at generating valid fixes. Table 4.5 shows
the number of faults successfully fixed using each of the schemas a, b, c, and d in
Figure 4.3. For reference, column #F shows the total number of faults in each code
base; since two valid fixes for the same fault may use different schemas, the total
number of faults fixed with any schema is larger than the numbers in column #F.
Schemas b and d are the most successful ones, producing valid fixes for 79% and
75% of the 86 fixable faults; together, they can fix all the 86 faults. This means
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that the most effectively deployable fixing strategies are: “execute a repair action
when a suspicious state holds” (schema b); and “execute an alternative action
when a suspicious state holds, and proceed normally otherwise” (schema d).

Table 4.5: Number of faults fixed using each of the fix schemas in Figure 4.3.

Code base #F Schema (a) Schema (b) Schema (c) Schema (d)

Base 26 9 18 18 23
TxtLib 14 0 12 0 6
Cards 31 0 27 6 25
ELearn 15 0 11 4 11

Total 86 9 68 28 65

In our experiments, ImpleFix produced
valid fixes for 86 (42%) of 204 faults.

4.2.3.3 Quality of fixes

What is the quality of the valid fixes produced by ImpleFix in our experiments?
We manually inspected the valid fixes and determined how many of them can be
considered proper, that is genuine corrections that remove the root of the error
(see Section 4.1.5).

Since what constitutes correct behavior might be controversial in some corner
cases, we tried to leverage as much information as possible to determine the likely
intent of developers, using comments, inspecting client code, and consulting ex-
ternal documentation when available. In other words, we tried to classify a valid
fix as proper only if it really meets the expectations of real programmers famil-
iar with the code base under analysis. Whenever the notion of proper was still
undetermined, we tried to be conservative as much as possible. While we cannot
guarantee that the classification is indisputable, we are confident it is overall very
reasonable and sets high standards of quality.

Table 4.6: Number of faults fixed by ImpleFix (proper fixes).

Code base #Fixed #Void #Pre #Post #Inv #Check

Base 12 (20%) – (–) 12 (52%) 0 (0%) – (–) 0 (0%)
TxtLib 9 (29%) 4 (33%) 2 (14%) 0 (0%) – (–) 3 (75%)
Cards 18 (29%) 10 (42%) 8 (38%) 0 (0%) 0 (0%) – (–)
ELearn 12 (24%) 3 (19%) 7 (30%) 2 (25%) 0 (0%) – (–)

Total 51 (25%) 17 (33%) 29 (36%) 2 (4%) 0 (0%) 3 (33%)
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Table 4.7: Number of faults with proper fixes using each of the fix schemas in
Figure 4.3.

Code base #F Schema (a) Schema (b) Schema (c) Schema (d)

Base 12 0 7 5 7
TxtLib 9 0 8 0 0
Cards 18 0 18 0 3
ELearn 12 0 7 4 3

Total 51 0 40 9 13

The second column of Table 4.6 lists the total number of unique faults for
which ImpleFix was able to build a proper fix and rank it among the top 10 during
at least one of the fixing sessions, and the percentage relative to the total number
of faults in code base. The other columns give the breakdown into the same cate-
gories of fault as in Tables 4.2 and 4.3. Overall, ImpleFix produces proper fixes in
the majority (59% of 86 faults) of cases where it succeeds, corresponding to 25%
of all unique faults considered in the experiments; these figures suggest that the
quality of fixes produced by ImpleFix is often high.

The quality bar for proper fixes is set quite high: many valid but non-proper
fixes could still be usefully deployed, as they provide effective work-arounds that
can at least avoid system crashes and allow executions to continue. Indeed, this
kind of “first-aid” patches is the primary target of related approaches described in
Section 6.5.

We did not analyze the ranking of proper fixes within the top 10 valid fixes
reported by ImpleFix. The ranking criteria (Section 4.1.6) are currently not pre-
cise enough to guarantee that proper fixes consistently rank higher than improper
ones. Even if the schemas used by ImpleFix lead to textually simple fixes, analyz-
ing up to 10 fixes may introduce a significant overhead; nonetheless, especially
for programmers familiar with the code bases10, the time spent analyzing fixes
is still likely to trade off favorably against the effort that would be required by a
manual debugging process that starts from a single failing test case. Future work
will empirically investigate the human effort required to evaluate and deploy fixes
produced by ImpleFix.

4.2.3.3.1 Which fix schemas are used. The effectiveness of the various fix
schemas becomes less evenly distributed when we look at proper fixes. Table 4.7
shows the number of faults with a proper fix using each of the schemas a, b, c,
and d in Figure 4.3; it is the counterpart of Table 4.5 for proper fixes. schema a

10During the data collection phase for this paper, it took the first author 3 to 6 minutes to
understand and assess each valid fix for a given fault.
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is used in no proper fix, whereas schema b is successful with 78% of the 51 faults
for which ImpleFix generates a proper fix; schemas b and d together can fix 44 out
of those 51 faults. These figures demonstrate that unconditional fixes (schema a)
were not useful for the faults in our experiments. Related empirical research on
manually-written fixes [82] suggests, however, that there is a significant fraction of
faults whose natural corrections consist of unconditionally adding an instruction;
this indicates that schema a may still turn out to be applicable to code bases other
than those used in our experiments (or that ImpleFix’s fault localization based on
Boolean conditions in snapshots naturally leads to conditional fixes).

In our experiments, ImpleFix produced proper fixes
(of quality comparable to programmer-written fixes)

for 51 (25%) of 204 faults.

4.2.3.4 Time cost of fixing

Two sets of measures quantify the cost of ImpleFix in terms of running time. The
first one is the average running time for ImpleFix alone; the second one is the
average total running time per fix produced, including both testing and fixing.

4.2.3.4.1 Fixing time per fault. Figure 4.6 shows the distribution of running
times for ImpleFix (independent of the length of the preliminary AutoTest ses-
sions) in all the experiments.11 A bar at position xwhose black component reaches
height yB, gray component reaches height yG ≥ yB, and white component reaches
height yW ≥ yG denotes that yW fixing sessions terminated in a time between
x− 5 and x minutes; yG of them produced a valid fix; and yB of them produced a
proper fix. The pictured data does not include the 11670 “empty” sessions where
AutoTest failed to supply any failing test cases, which terminated immediately
without producing any fix. The distribution is visibly skewed towards shorter run-
ning times, which demonstrates that ImpleFix requires limited amounts of time in
general.

Table 4.8 presents the same data about non-empty fixing sessions in a differ-
ent form: for each amount of ImpleFix running time (first column), it displays the
number and percentage of sessions that terminated in that amount of time (#Ses-
sions), the number and percentage of those that produced a valid fix (#Valid), and
the number and percentage of those that produced a proper fix (#Proper). Table 4.9
shows the minimum, maximum, mean, median, standard deviation, and skewness
of the running times (in minutes) across: all fixing sessions, all non-empty ses-
sions, all sessions that produced a valid fix, and all sessions that produced a proper
fix.

11ImpleFix ran with a timeout of 60 minutes, which was reached only for two faults.
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Figure 4.6: Distribution of running times for ImpleFix, independent of the length
of the preliminary AutoTest sessions (black bars: sessions with proper fixes; gray
bars: sessions with valid fixes; white bars: all sessions).

Table 4.8: Distribution of running times for ImpleFix.

min. Fixing #Sessions #Valid #Proper

5 25905 (59.7%) 8275 (31.9%) 5130 (19.8%)
10 36164 (83.4%) 13449 (37.2%) 8246 (22.8%)
15 40388 (93.1%) 16220 (40.2%) 9892 (24.5%)
20 42003 (96.9%) 17114 (40.7%) 10432 (24.8%)
25 42436 (97.9%) 17295 (40.8%) 10543 (24.8%)
30 42650 (98.4%) 17371 (40.7%) 10607 (24.9%)
40 43025 (99.2%) 17670 (41.1%) 10799 (25.1%)
50 43318 (99.9%) 17918 (41.4%) 11013 (25.4%)

60 43365 (100.0%) 17954 (41.4%) 11046 (25.5%)

Table 4.9: ImpleFix running time statistics (times are in minutes).

min max mean median stddev skew

All 0.0 60 4.8 3.0 6.3 3.2
Non-empty 0.0 60 6.1 4.0 6.5 3.2
Valid 0.5 60 7.8 5.5 7.6 2.8
Proper 0.5 60 8.1 5.4 8.3 2.9
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4.2.3.4.2 Total time per fix. The total running time of a fixing session also de-
pends on the time spent generating input test cases; the session will then produce
a variable number of valid fixes ranging between zero and ten (remember that we
ignore fixes not ranked within the top 10). To have a finer-grained measure of the
running time based on these factors, we define the unit fixing time of a combined
session that runs AutoTest for t1 and ImpleFix for t2 and produces v > 0 valid
fixes as (t1 +t2)/v. Figure 4.7 shows the distribution of unit fixing times in the ex-
periments: a bar at position x reaching height y denotes that y sessions produced
at least one valid fix each, spending an average of x minutes of testing and fixing
on each. The distribution is strongly skewed towards short fixing times, showing
that the vast majority of valid fixes is produced in 15 minutes or less. Table 4.10
shows the statistics of unit fixing times for all sessions producing valid fixes, and
for all sessions producing proper fixes. Figure 4.8 shows the same distribution
of unit fixing times as Figure 4.7 but for proper fixes. This distribution is also
skewed towards shorted fixing times, but much less so than the one in Figure 4.7:
while the majority of valid fixes can be produced in 35 minutes or less, proper
fixes require more time on average, and there is a substantial fraction of proper
fixes requiring longer times up to about 70 minutes.
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Figure 4.7: Distribution of unit fixing times for valid fixes (which including the
time spent in the preliminary AutoTest sessions).

The unit fixing time is undefined for sessions producing no fixes, but we can
still account for the time spent by fruitless fixing sessions by defining the average
unit fixing time of a group of sessions as the total time spent testing and fixing
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Unit fixing time for proper fixes in minutes
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Figure 4.8: Distribution of unit fixing times for proper fixes (including the time
spent in the preliminary AutoTest sessions).

Table 4.10: Unit fixing times statistics (times are in minutes and include the time
spent in the preliminary AutoTest sessions).

min max mean median stddev skew

Valid 0.7 98.6 10.8 6.9 12.1 2.9
Proper 1.0 101.1 23.5 17.9 17.9 1.1

divided by the total number of valid fixes produced (assuming we get at least one
valid fix). Table 4.11 shows, for each choice of testing time, the average unit
fixing time for valid fixes (second column) and for proper fixes (third column);
the last line reports the average unit fixing time over all sessions: 19.9 minutes for
valid fixes and 74.2 minutes for proper fixes.

Looking at the big picture, the fixing times are prevalently of moderate magni-
tude, suggesting that ImpleFix (and its usage in combination with AutoTest) can
make an efficient usage of computational time and quickly produce useful results
in most cases. The experimental results also suggest practical guidelines to use
ImpleFix and AutoTest: as a rule of thumb, running AutoTest for five to ten min-
utes has a fair chance of producing test cases for ImpleFix to correct an “average”
fault.
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Table 4.11: Average unit fixing times for different testing times (times are in
minutes).

min. Testing min. Valid min. Proper

5 6.0 22.0
10 8.9 32.5
15 11.9 43.7
20 14.6 54.0
25 17.7 65.3
30 20.4 76.7
40 26.1 97.3
50 31.9 121.6
60 37.3 143.5

All 19.9 74.2

In our experiments, ImpleFix took on average less than
20 minutes per valid fix, including the time required

to generate suitable tests with AutoTest.

4.2.3.5 Robustness

The last part of the evaluation analyzes the robustness and repeatability of Im-
pleFix sessions. The ImpleFix algorithm is purely deterministic, given as input
an annotated program and a set of passing and failing test cases exposing a fault
in the program. In our experiments, however, all the tests come from AutoTest,
which operates a randomized algorithm, so that different runs of AutoTest may
produce test suites of different quality. We want to assess the robustness of Im-
pleFix with respect to different choices of input test suites, that is how ImpleFix’s
output depends on the test cases supplied. Assessing robustness is important to
demonstrate that our evaluation is indicative of average usage, and its results do
not hinge on having used a particularly fortunate selection of tests.

Our experiments consisted of many repeated runs of AutoTest, each followed
by ImpleFix runs using the generated test as input. To assess robustness we fix the
testing time, and we measure the percentage of ImpleFix runs, on each of the re-
peated testing sessions terminating within the allotted testing time, that produced
a valid fix. A high percentage shows that ImpleFix was successful in most of the
repeated testing runs, and hence largely independent of the specific performance
of AutoTest; to put it differently, a random testing session followed by a fixing
sessions has a high chance of producing a valid fix.

Formally, to measure the robustness with respect to choice of test cases, we
introduce the notion of success rate: given a fault f and a testing time m, the
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Figure 4.9: Distribution of success rates for valid fixes.

Absolute success rate for proper fixes.
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Figure 4.10: Distribution of success rates for proper fixes.
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m-minute absolute success rate on f is defined as the percentage of m-minute
fixing sessions on f that produce at least one valid fix; the relative success rate is
defined similarly but the percentage is relative only to non-empty fixing sessions
(where AutoTest produced at least one failing test case). Figure 4.9 shows the
distribution of the absolute (Figure 4.9a) and relative (Figure 4.9b) success rates
for all “fixable” faults—for which ImpleFix produced a valid fix at least once in
our experiments—for any testing time m. The graphs demonstrate that Imple-
Fix has repeatable behavior with a strong majority of faults, largely insensitive
to the specific input test cases. The relative success rates, in particular, exclude
the empty AutoTest sessions (which are concentrated on some “hard to reproduce
faults” as discussed in Section 4.2.3.2) and thus characterize the robustness of Im-
pleFix’s behavior on the “approachable” faults. (The fact that a classification into
“approachable” and “hard” faults for ImpleFix naturally emerges further indicates
that the kinds of faults used in this evaluation are varied.)

To have a quantitative look at the same data, Table 4.12 displays, for each
testing time m, the number of faults that were fixed successfully—producing a
valid fix—in at least X% of the m-minute fixing sessions, for percentages X =
50, 80, 90, 95.12 Each table entry also shows, in parentheses, the percentage of the
fixed faults, relative to the 86 fixable faults that ImpleFix fixed at least once; the
data is shown for both the relative and the absolute success rate. For example,
ImpleFix was successful at least 95% of the times with 56% of all fixable faults;
or even with 79% of all fixable faults provided with at least one failing test case.
The last line displays the statistics over all testing sessions of any length. The
aggregated data over all fixing sessions for all faults is the following: 32% of all
sessions and 41% of all non-empty sessions produced a valid fix. These success
rates suggest a high repeatability of fixing.

Figure 4.10 and Table 4.13 display similar data about successful sessions that
produced at least one proper fix, with percentages relative to all faults for which
ImpleFix produced a proper fix at least once in our experiments. The aggregated
data over all fixing sessions for all faults is the following: 20% of all sessions and
25% of all non-empty sessions produced a proper fix; these percentages are quite
close to the 25% of all faults for which ImpleFix produces at least once a proper
fix (Table 4.6). The data for proper fixes is overall quite similar to the one for valid
fixes. The absolute figures are a bit smaller, given that the requirement of proper
fixes is more demanding, but still support the hypothesis that ImpleFix’s behavior

12All else being equal, the number of fixed faults is larger when considering relative success
rates: a relative success rate of X% = r/n corresponds to r successful fixing sessions out of
n non-empty sessions; an absolute success rate of X% = a/(n + e) for the same testing time
corresponds to a successful fixing sessions out of n non-empty sessions and e empty sessions;
since r/n = a/(n + e) and e ≥ 0, it must be r ≥ a; hence the number of unique faults is also
larger in general for the relative rate.
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Table 4.12: Repeatability of ImpleFix on faults that produced some valid fixes.

Success rate: 50% 80% 90% 95%

min. Testing relative absolute relative absolute relative absolute relative absolute

5 83 (97%) 58 (67%) 80 (93%) 49 (57%) 78 (91%) 46 (53%) 75 (87%) 40 (47%)
10 83 (97%) 62 (72%) 77 (90%) 56 (65%) 75 (87%) 51 (59%) 69 (80%) 45 (52%)
15 81 (94%) 65 (76%) 76 (88%) 58 (67%) 71 (83%) 52 (60%) 68 (79%) 48 (56%)
20 82 (95%) 68 (79%) 76 (88%) 58 (67%) 70 (81%) 54 (63%) 67 (78%) 51 (59%)
25 80 (93%) 68 (79%) 72 (84%) 58 (67%) 70 (81%) 56 (65%) 65 (76%) 51 (59%)
30 81 (94%) 69 (80%) 74 (86%) 59 (69%) 70 (81%) 56 (65%) 68 (79%) 53 (62%)
40 79 (92%) 69 (80%) 71 (83%) 61 (71%) 68 (79%) 58 (67%) 65 (76%) 55 (64%)
50 79 (92%) 70 (81%) 73 (85%) 62 (72%) 69 (80%) 59 (69%) 63 (73%) 53 (62%)
60 78 (91%) 71 (83%) 73 (85%) 61 (71%) 68 (79%) 59 (69%) 67 (78%) 57 (66%)

All 79 (92%) 67 (78%) 73 (85%) 56 (65%) 69 (80%) 51 (59%) 68 (79%) 48 (56%)

Table 4.13: Repeatability of ImpleFix on faults that produced some proper fixes.

Success rate: 50% 80% 90% 95%

min. Testing relative absolute relative absolute relative absolute relative absolute

5 45 (88%) 35 (69%) 42 (82%) 31 (61%) 41 (80%) 41 (80%) 39 (76%) 24 (47%)
10 47 (92%) 41 (80%) 43 (84%) 35 (69%) 42 (82%) 42 (82%) 36 (71%) 27 (53%)
15 47 (92%) 41 (80%) 43 (84%) 37 (73%) 39 (76%) 39 (76%) 36 (71%) 29 (57%)
20 47 (92%) 43 (84%) 43 (84%) 37 (73%) 40 (78%) 40 (78%) 35 (69%) 27 (53%)
25 48 (94%) 44 (86%) 42 (82%) 37 (73%) 39 (76%) 39 (76%) 34 (67%) 28 (55%)
30 46 (90%) 43 (84%) 42 (82%) 37 (73%) 41 (80%) 41 (80%) 39 (76%) 32 (63%)
40 47 (92%) 45 (88%) 41 (80%) 39 (76%) 39 (76%) 39 (76%) 34 (67%) 32 (63%)
50 47 (92%) 45 (88%) 42 (82%) 39 (76%) 39 (76%) 39 (76%) 33 (65%) 31 (61%)
60 47 (92%) 45 (88%) 41 (80%) 39 (76%) 40 (78%) 40 (78%) 34 (67%) 31 (61%)

All 47 (92%) 43 (84%) 42 (82%) 36 (71%) 40 (78%) 40 (78%) 35 (69%) 28 (55%)

is often robust and largely independent of the quality of provided test cases.

In our experiments, ImpleFix produced valid fixes
in 41% of the sessions with valid input tests.

4.2.4 Limitations

ImpleFix relies on a few assumptions, which may restrict its practical applicabil-
ity.

Contracts or a similar form of annotation must be available in the source code.
The simple contracts that programmers write [38] are sufficient for ImpleFix; and
having to write contracts can be traded off against not having to write test cases.
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Requiring contracts does not limit the applicability of our technique to Eiffel,
given the increasing availability of support for contracts in mainstream program-
ming languages. However, the software projects that use contracts in their de-
velopment is still a small minority [38], which restricts broader applicability of
ImpleFix on the software that is currently available without additional annotation
effort.

Whether writing contracts is a practice that can become part of mainstream
software development is a long-standing question. Our previous experience is
certainly encouraging, in that using contracts does not require highly-trained pro-
grammers, and involves efforts that can be traded off against other costs (e.g.,
maintenance [73]) and are comparable to those required by other more accepted
practices. For example, EiffelBase’s contracts-to-code ratio is around 0.2 [93];
while detailed quantitative data about industrial experiences with a more accepted
practice such as test-driven development is scarce, the few references that indicate
quantitative measures [13, 74, 66] report test-LOC-to-application-LOC ratios be-
tween 0.4 and 1.0 for projects of size comparable to EiffelBase. More extensive
assessments belong to future work beyond the scope of the present paper.

Functional faults are the primary target of ImpleFix, given that contracts pro-
vide an effective specification of functional correctness. This excludes, for exam-
ple, violation of liveness properties (e.g., termination) or low-level I/O runtime
errors (Section 4.2.2.1). Nonetheless, the expressiveness of contracts is signifi-
cant, and in fact we could identify various categories of contract-violation faults
that ImpleFix can or cannot fix (Section 4.2.3.2).

Correctness of contracts is assumed by AutoTest, which uses them as oracles,
and by ImpleFix, which fixes implementations accordingly. Since contracts have
errors too, this may affect the behavior of ImpleFix on certain faults (see Sec-
tion 4.2.3.2). Anyway, the line for correctness must be drawn somewhere: test
cases may also include incorrect usages or be incorrectly classified.

Types of fixes generated by ImpleFix include only a subset of all possible ac-
tions (Section 4.1.3) and are limited to simple schema (Section 4.1.4). This limits
the range of fixes that ImpleFix can generate; at the same time, it helps reduce the
search space of potential fixes, focusing on the few schema that cover the majority
of cases [29, 65].

4.2.5 Threats to validity

While we designed the evaluation of ImpleFix targeting a broad scope and repeat-
able results, a few threats to generalizability remain.

Automatically generated test cases were used in all our experiments. This
provides complete automation to the debugging process, but it also somewhat
restricts the kinds of projects and the kinds of faults that we can try to those that
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we can test with AutoTest. We plan to experiment with manually-written test
cases in future work.

Unit tests were used in all our experiments, as opposed to system tests. Unit
tests are normally smaller, which helps with fault localization and, consequently,
to reduce the search space of possible fixes. The fact that unit tests are produced
as part of fairly widespread practices such as test-driven development [13] reflects
positively on the likelihood that they be available for automated fixing.

Size and other characteristics (type of program, programming style, and so on)
of the programs used in the evaluation were constrained by the fundamental choice
of targeting object-oriented programs using contracts that can be tested with Au-
toTest. This implies that further experiments are needed to determine to what ex-
tent the algorithms used by ImpleFix scale to much larger code bases—possibly
with large-size modules and system-wide executions—and which design choices
should be reconsidered in that context. To partly mitigate this threat to generaliz-
ability, we selected experimental subjects of non-trivial size exhibiting variety in
terms of quality, maturity, and available contracts—within the constraints imposed
by our fundamental design choices, as discussed in Section 4.2.2.1.

Variability of performance relative to different choices for the various heuris-
tics used by ImpleFix has not been exhaustively investigated. While most heuris-
tics rely on well-defined notions, and we provided the rationale for the various
design choices, there are a few parameters (such as α, β, and γ in Section 4.1.2.2)
whose impact we have not investigated as thoroughly as other aspects of the Im-
pleFix algorithm. As also discussed in Section 4.1.2.2, the overall principles be-
hind the various heuristics are not affected by specific choices for these parame-
ters; therefore, the impact of this threat to generalizability is arguably limited.

Limited computational resources were used in all our experiments; this is in
contrast to other evaluations of fixing techniques [54]. Our motivation for this
choice is that we conceived ImpleFix as a tool integrated within a personal devel-
opment environment, usable by individual programmers in their everyday activ-
ity. While using a different approach to automatic fixing could take advantage of
massive computational resources, ImpleFix was designed to be inexpensive and
evaluated against this yardstick.

Classification of fixes into proper and improper was done manually by the first
author. While this may have introduced a classification bias, it also ensured that
the classification was done by someone familiar with the code bases, and hence in
a good position to understand the global effects of suggested fixes. Future work
will investigate this issue empirically, as done in recent related work [53].

Programmer-written contracts were used in all our experiments. This ensures
that ImpleFix works with the kinds of contracts that programmers tend to write.
However, as future work, it will be interesting to experiment with stronger higher-
quality contracts to see how ImpleFix performance is affected. In recent work [93]
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we obtained good results with this approach applied to testing with AutoTest.



62 CHAPTER 4. FIXING THE IMPLEMENTATION



CHAPTER 5

CORRECTING THE SPECIFICATION

Using the ImpleFix technique from the Chapter 5 AutoFix can already generate
high quality fixes for many program faults. There are, however, a significant num-
ber of bugs [20] whose most appropriate correction is changing the specification to
rectify the expectations about what the implementation ought to do. For example,
a function max computing the maximum value of a set of integers is undefined if
the set is empty; we could change max’s implementation to return a special value
when called on an empty set, but the best thing to do is disallowing such calls
altogether by specifying them invalid.

This chapter presents the SpeciFix technique that automatically fixes bugs by
correcting the specification [85]: given a program execution that violates some
contract, and therefore reveals a bug, the technique suggests changes to the con-
tracts that prevent the violation from being triggered.

Fixing contracts relies on extracting specification elements based on the actual
behavior of the implementation. This is superficially similar to the problem of in-
ferring (or mining) specifications—a well-established research area that produced
numerous landmark results (e.g., [24, 36]; see Section 6.6 for more references).
While SpeciFix uses inference techniques as one of its components, suggesting
changes to an existing specification to correct a bug is more delicate business than
just inferring specifications. Changing contracts is changing the design of an API
as experienced by its clients. In the example of max, adding a precondition that
requires that the set be non empty makes all client code of max responsible for sat-
isfying the requirement upon calling max. Therefore, we must make sure that the
suggested contract changes have a limited impact on a potentially infinite number
of clients.

The SpeciFix technique presented in this section uses a combination of heuris-
tics to validate possible specification fixes with respect to their impact on client
code. It discards fixes that invalidate previously passing test cases; to avoid over-
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fitting, it runs every candidate fix through a regression testing session that gen-
erates (completely automatically, using our testing framework AutoTest) new ex-
ecutions; and it ranks all fixes that pass regression by preferring those that are
the least restrictive. The empirical evaluation in Section 5.2 indicates that these
heuristics work well in practice for the bugs we considered. Notably, there is a
significant fraction of bugs whose appropriate fix is a change to the specification;
in those cases, SpeciFix can often generate useful fixes.

Section 5.1 presents the technique implemented in SpeciFix, starting with an
overview of its components (Figure 5.1) followed by a detailed description of each
of them. The evaluation in Section 5.2 presents experiments where we applied
SpeciFix to 44 faults in standard data-structure libraries.

5.1 How SpeciFix Generates Corrections to Con-
tracts

Just like generating fixes to the implementation, SpeciFix works completely au-
tomatically when generating corrections to contracts: its only input is an Eiffel
program annotated with simple contracts. After going through the steps described
in the rest of this section, SpeciFix’s final output is a list of fix suggestions to
contracts for the bugs in the input program.

Figure 5.1 gives an overview of the components of the SpeciFix technique
for fixing the contracts. The technique is also based on dynamic analysis, and
hence it characterizes correct and incorrect behavior by means of passing and fail-
ing test cases (Sections 3.4), e.g. the ones produced using AutoTest. The core of
the fix generation algorithm applies two complementary strategies (Section 5.1.1):
weaken (i.e., relax) a violated contract if it is needlessly restrictive; or strengthen
an existing contract to rule out failure-inducing inputs. SpeciFix produces candi-
date fixes using both strategies, possibly in combination (Section 5.1.2). To deter-
mine whether the weaker or stronger contracts remove all faulty behavior in the
program, SpeciFix runs candidate fixes through a validation phase (Section 5.1.3)
based on all available tests. To avoid overfitting, some tests are generated ini-
tially but used only in the validation phase (and not directly to generate fixes). If
multiple fixes for the same fault survive the validation phase, SpeciFix outputs
them to the user ordered according to the strength of their new contracts: weaker
contracts are more widely applicable, and hence are ranked higher than more re-
strictive stronger contracts (Section 5.1.3).
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SpeciFix
Eiffel

program

class
CIRCULAR
...

end

test cases

list . duplicate (3) 3
emp.duplicate (3) 7

dynamic
invariants

1. line 50:
>m ≥ 0

2. line 55:
>not is_empty

weakening
fixes

line 50:
>m ≥ 0

strengthening
fixes

line 55:
>not is_empty

valid fixes

1. line 50: 3
>require m ≥ 0

2. line 55: 3
>require not is_empty

Figure 5.1: How SpeciFix generates fixes to contracts. Running AutoTest on an in-
put Eiffel program with contracts produces a collection of test cases that character-
ize correct and incorrect behavior. With the goal of correcting faulty behavior, the
fix generation algorithm infers dynamic invariants in passing tests (Section 5.1.4)
and builds candidate fixes using two strategies: weakening and strengthening the
existing contracts (Sections 5.1.1 and 5.1.2). The candidate fixes enter a validation
phase where they must pass all valid test cases; valid fixes are ranked—the weaker
the new contracts the higher the ranking—and presented as output (Section 5.1.3).

5.1.1 Weakening vs. Strengthening

Let t be a failing test case with call sequence κt as in (3.2); r = r0 is the outermost
routine of t, and rn is the routine whose contract violation triggers the fault. As-
suming the implementation of all routines r0, . . . , rn is correct, we should change
the contracts of r0, r1, . . . , rn to fix the fault exposed by t. There are two ways to
do that:

Strengthening: strengthen r’s precondition to disallow t’s input. Strengthening
makes t invalid and thus prevents the call sequence that led to the violation
of rn’s contract.

Weakening: weaken rn’s contract to allow t’s execution to continue past rn.
If the execution can continue without triggering other errors, weakening
makes t passing.

If applicable, weakening is in principle preferable to strengthening, because
the former does not risk breaking clients by introducing more stringent conditions
for correctly calling r. Strengthening is, however, always applicable, whereas
weakening may not work if rn’s correct execution depends on the weakened con-
tract. Even in the cases where weakening makes t passing without triggering any
new fault, it may be that the absence of new faults is just a result of the rest of the
specification being inaccurate or incomplete. For example, weakening the pre-
condition of a function max to work on lists of any size (including empty lists)
may not trigger any faults simply because max has no postcondition, and hence
there is no automatic way of finding out that the value returned for empty lists is
inconsistent.
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In practice, SpeciFix prefers the least restrictive fixes (i.e., weakening) but
always tries both weakening and strengthening in combination. Another obser-
vation is that strengthening only the outermost routine’s precondition often is too
ad hoc, since it corresponds to a partial change of API assumptions which may
be inconsistent with the way other routines are used. Therefore, SpeciFix tries to
collectively strengthen all routines r0, . . . , rn−1 to disallow fault-inducing input at
every call site. Indeed, the experiments of Section 5.2 show that strengthening
leads to many useful and correct fixes in practice.

5.1.2 Fix Generation

A run of SpeciFix targets a specific fault of some routine r. This is characterized
by a set Fr of failing test cases all of which have r as outermost routine and
identify the same fault—the violation of contract An (pre- or postcondition) of
routine rn. To characterize correct behavior, SpeciFix also inputs a set Pr of
passing test cases which have r as outermost routine. Based on this, SpeciFix
builds a set Φ of candidate fixes through the following steps, illustrated on the
running example.

Build weakening assertions Ω for rn. Let r̃n be rn with An relaxed to True.
Generate fresh sets P̃ and F̃ of passing and failing test cases for r̃n. Based on
them, determine the sets IP̃ and IF̃ of dynamic invariants respectively holding in
all passing tests P̃ and in all failing tests F̃ (Section 5.1.4 describes the dynamic
invariant detection process). Let Ω = {ω | ω ∈ IP̃ and ¬ω ∈ IF̃} be a set of
weakening assertions, which characterize the minimal requirements for a test of
r̃n to be passing and not failing. In the example, make works without errors when
m ≥ 0, whereas it fails when m < 0; thus Ω = {m ≥ 0}.

Build weakening fixesW . For each ω ∈ Ω∪{False}, build the weakening fix
f obtained by replacing An with An ∨ w in rn. Add f to the set W of weakening
fixes. Adding False to Ω determines a dummy fix which is used to build purely
strengthening fixes in the next step. In the example, W contains a weakening fix
fw corresponding to the one in Figure 2.4c, and a dummy fix f0 where make’s
precondition has been “weakened” with False (hence it is unchanged).

Validate weakening fixes. For each f ∈ W , if f passes all tests in Pr ∪ Fr
then add f to the set Φ of candidate fixes without modifications, and remove it
from W . In the example, fw passes validation and is added to Φ. f0 is instead the
unchanged program in Figure 2.3, and hence it stays in W .

Build strengthening assertions Σk for rk. For each f ∈ W that did not
pass validation, determine the sets IPk and IFk of dynamic invariants currently
holding in all pre-states of the calls to rk respectively in the passing tests Pr and
in the failing tests Fr; k ranges over the subset of {0, . . . , n − 1} for which sk
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is a pre-state (skrk appears in the traces). Let Σk = {σ | σ ∈ IPk and ¬σ ∈
IFk } be the corresponding sets of strengthening assertions, which characterize the
minimal additional requirements for a test to pass through rk without failing. In
the example, duplicate correctly calls make precisely when count > 0; thus,
Σ0 = {count > 0}.

Build strengthening fixes. For each combination 〈σ0, . . . , σn−1〉 ⊆ Σ0 ×
· · · × Σn−1 of strengthening assertions, build the strengthening fix φ obtained by
replacing each precondition Prk of routine rk with Prk ∧ σk, for all applicable k.
Add φ to the set Φ of candidate fixes. In the example, the dummy fix f0 is turned
into a valid fix φ0 by strengthening duplicate ’s precondition as count > 0.

Candidates. The output of the fix generation phase is a set Φ of fix candidates.
The candidates are filtered and ranked as explained in the following section.

5.1.3 Fix Validation and Ranking

Validation. The purpose of the validation phase is to ascertain which of the can-
didate fixes in Φ remove the fault under analysis. To this end, SpeciFix runs every
fix candidate f ∈ Φ through all available tests for r; f is valid if it still passes all
originally passing tests, and it also passes all originally failing tests that have not
become invalid.

The dual risk of unsoundness for validation based on a finite number of test
cases is overfitting: a fix may pass validation but be unusable in a general context,
because it introduces specification changes that harm usages of the API different
from those exercised by the test cases used to generate the fix. To reduce the
risk of overfitting, SpeciFix uses only half of the originally generated test cases to
generate the candidate fixes. Then, the validation phase uses all available tests for
the routine under analysis, not only those in Pr andFr used to generate fixes. This
increases the likelihood that the validated fixes are applicable beyond the specific
cases that drove fix generation.

Ranking. Not all valid fixes are equally desirable: all else being equal, we
prefer those that introduce the least changes to the specification, and that make
invalid the fewest test cases. SpeciFix ranks valid fixes to reflect these criteria, and
only reports the top five fixes for each fault. This approach is a good compromise
between the contrasting needs of exposing programmers to a limited number of
fixes—which they have to understand and validate—and of retaining fixes that
fall behind in the ranking even if they are of high quality, due to the imperfect
precision of the ranking heuristics.

The ranking heuristics is based on two elements: number of invalidated tests
and the strength of the new contracts. A fix f consists of a collection 〈A0, . . . , An〉
of new contracts for the routines r0, . . . , rn; each Ak (0 ≤ k ≤ n) is either a pre-
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or a postcondition and may be weaker, stronger, or unchanged with respect to the
original program. Given two valid fixes f1, f2, letA1

k, A
2
k be their new contracts for

the same routine rk. We say that A1
k is not stronger than A2

k, written A1
k � A2

k, if
A1
k holds wheneverA2

k holds; precisely, we determine strength based on executing
all available tests for r: A1

k � A2
k iff every test that is valid for A1

k (i.e., a test that
leads to executions where A1

k is evaluated and holds) is also valid for A2
k (i.e.,

A2
k is evaluated and holds). This generalizes to an ordering between fixes by

lexicographic generalization of � on tuples 〈A0, . . . , An〉. The ordering is partial
because the sets of valid test cases for f1 and for f2 may be non-comparable. The
final ranking orders fixes according to the � relation and, for incomparable fixes,
ranks higher those that determine the higher number of valid (and hence passing)
tests.

In the running example, the weakening fix in Figure 2.4c ranks higher than the
strengthening fix in Figure 2.4b: all test cases with count >0 are equivalent for
the two fixes, but the test cases with count = 0 are valid only for the weakening
fix.

5.1.4 Dynamic Invariants and State Abstraction

SpeciFix infers invariants at program states dynamically by observing the behav-
ior during concrete executions. Dynamic invariant inference (see Section 6.6) has
become a standard technique of dynamic analysis. Using the notation of Sec-
tion 3.2, we can define an invariant at the entry of routine rk as an assertion I such
that sk |= I for every passing test t whose trace ρt includes the snapshot sk lrk ; the
invariant at routine exit is defined similarly with respect to post-states.

Invariant inference in SpeciFix must cater to the specific needs of fixing con-
tracts. To this end, we abstract the concrete program state by a number of predi-
cates that include public queries and any subexpressions of the available contracts
(see Section 3.1).

5.2 Experimental Evaluation

We performed a preliminary evaluation of the behavior of SpeciFix by applying
it to 44 bugs of production software. The overall goal of the evaluation is cor-
roborating the expectation that, for bugs whose “most appropriate” correction is
fixing the specification, SpeciFix can produce repair suggestions of good quality.
A more detailed evaluation taking into account aspects such as robustness and
readability of the produced fixes belongs to future work.
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CLASS LOC #R #P #Q #C #F #P #F Tt Tf
ACTIVE_LIST 2165 139 91 121 25 2 212 210 240 23
ARRAY 1474 101 70 110 10 9 850 555 900 72
ARRAYED_CIRCULAR1 1907 133 80 92 23 3 320 234 360 17
ARRAYED_SET 2346 146 118 131 26 6 554 432 720 34
DS_ARRAYED_LIST 2862 168 219 173 15 3 132 89 240 15
DS_HASH_SET 3159 171 154 140 20 1 14 60 120 5
DS_LINKED_LIST 3497 162 207 166 13 3 360 25 360 25
LINKED_LIST 1995 109 70 91 23 0 – – 60 –
LINKED_SET 2347 122 99 101 26 4 416 70 480 22
TWO_WAY_SORTED_SET 2856 141 118 118 31 13 1260 655 1260 106
TOTAL 24608 1392 1226 1243 212 44 4118 2330 4680 319

Table 5.1: Classes used in the experiments; for each class we report: lines of code
LOC, number #R of routines, number #P of assertions in preconditions, number
#Q of assertions in postconditions, and number #C of assertions in the class in-
variant. In the right-hand side, we report the number #F of faults targeted by the
experiments, the total number of test cases (passing #P and #F failing) used by
SpeciFix, the Tt minutes spent running AutoTest on routines of the class, and the
Tf minutes spent running SpeciFix (net of testing time) on faults of the class.

5.2.1 Experimental Setup

We selected 10 of the most widely used data-structure classes of the EiffelBase
(rev. 92914) and Gobo (rev. 91005) libraries—the two major Eiffel standard li-
braries. While these are the same classes used in the experimental evaluation of
ImpleFix (Section 4.2), we did not attempt a direct comparison for different rea-
sons. First, some of the bugs used in ImpleFix have been fixed in the latest library
versions, and hence they are not reproducible. Second, ImpleFix and SpeciFix are
complementary approaches: our experience with ImpleFix suggested that there is
a substantial fraction of bugs whose most appropriate correction is fixing the spec-
ification, and it is precisely on those that we expect SpeciFix to work successfully.
Third, running SpeciFix on the very same input as ImpleFix would limit the gen-
eralizability of the evaluation results; instead, we want to evaluate the behavior of
SpeciFix in standard conditions and avoid overfitting.

All the experiments ran on a Windows 7 machine with a 2.6 GHz Intel 4-
core CPU and 16 GB of memory. We ran AutoTest for one hour on each of the
10 classes in Table 5.1. This automatic testing session found 44 unique faults
consisting of pre- or postcondition violations. We ran SpeciFix on each of these
faults individually, using only half of the test cases (randomly picked among those
generated for each fault in the one-hour session) to generate the fixes and all of

1Shortened to CIRCULAR in Section 2.1.2.
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them in the validation phase (Section 5.1.3). The right-hand side of Table 5.1
reports, for each class, the total number of test cases used by SpeciFix, and the
total time for testing (the initial one-hour sessions plus additional calls to AutoTest
to generate tests for relaxed routines used to infer the weakening assertions Ω, as
described in Section 5.1.2) and fixing. The average figures per fault are: 106.4
minutes of testing time and 7.2 minutes of fixing time (minimum: 4.1 minutes,
maximum: 30 minutes, median 6.2 minutes). The testing time dominates since
AutoTest operates randomly and thus generates many test cases that will not be
used (such as passing tests of routines without faults).

5.2.2 Results

Evaluating the effectiveness of repairs that modify contracts is a somewhat subtle
issue, since it ultimately involves what is a design choice: changing API speci-
fication. Related work on automatic repair (see Section 6.3) has rarely, if ever,2

assessed the quality and acceptability for human programmers of the produced
fixes beyond running standard regression test suites. To this end, in previous
work [103, 87] we introduced the notions of valid and proper fix: any fix that
passes all the available tests is valid (and hence every fix output by SpeciFix is
valid), but only those that manual inspection reveals to satisfactorily remove the
real source of failure without introducing other bugs are classified as proper. Even
if the line between proper and improper might be fuzzy in some corner cases, we
could normally confidently classify fixes into proper and improper based on our
familiarity with the code base under analysis.

We use the same classification criterion in the evaluation of fixes produced by
SpeciFix: Table 5.2 lists the total number of faults for which SpeciFix generated
valid or proper fixes (and ranked them in the top 5 positions: we ignore fixes that
rank lower).

For 25% of the faults, SpeciFix produced fixes that manual inspection revealed
to satisfactorily remove the real source of failure.

The percentage of proper fixes (25% of faults) is similar to that obtained in
the work with SpeciFix; but the high percentage of valid fixes (over 90%) requires
some explanation. Obtaining valid contract fixes is easy if only poor-quality tests
are available. One can always strengthen preconditions to invalidate failing test
cases (or, conversely, weaken failing postconditions to trivially pass tests): since
SpeciFix validates fixes based on the available test cases, which in turn are only as
good as the contracts of the class (beyond those directly targeted by the fix), such
straightforward fixes yield valid repairs for classes equipped with very weak and
incomplete contracts. This does not mean that such fixes are always improper;

2The only exception we are aware of is [53].
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TYPE OF FAULT #F VALID PROPER VALID FIXES PROPER FIXES
ALL WEAK STRONG BOTH ALL WEAK STRONG BOTH

Precondition violation 22 22 7 77 23 30 24 13 1 12 0
Postcondition violation 22 20 4 71 56 13 2 7 3 4 0

TOTAL 44 42 11 148 79 43 26 20 4 16 0

Table 5.2: Fixes built by SpeciFix. For each TYPE of fault, the left-hand side of
the table reports the number #F of faults of that type input to SpeciFix, and for
how many of those faults SpeciFix built (at least one) VALID or PROPER fixes.
The right-hand side reports the total number of fixes produced in each category;
the same fault may have multiple valid or proper fixes. Columns ALL list all fixes
in each category, followed by a breakdown into purely weakening (WEAK), purely
strengthening (STRONG), and mixed (involving BOTH strengthening of some con-
tract and weakening of some other).

in fact, 80% of all proper fixes strengthen preconditions: it is only when it is
combined with very poor specification (especially class invariants) that fixing may
lead to improper fixes. Furthermore, despite being not directly deployable, the
valid but improper fixes produced by SpeciFix are still very valuable as debugging
aids, since they clearly highlight the failure-inducing inputs.

Acceptability trial. In order to get more confidence in the capability of Spe-
ciFix to produce proper, acceptable fixes from a programmer’s perspective, we
conducted a small trial involving 4 PhD students (henceforth, the “subjects”) in
our group. The subjects were quite familiar with the Eiffel language and its stan-
dard libraries, but had not been involved in the work on ImpleFix or SpeciFix.
To keep the workload small, we randomly selected only 8 out of the 11 faults for
which SpeciFix produced proper fixes, and submitted them to the subjects: for
each fault, we produced one failing test case (randomly picked among those pro-
duced by AutoTest) and up to 3 fixes produced by SpeciFix. In order to compare
the acceptability of specification and implementation fixes, we also included up
to 2 proper implementation fixes for each of 5 faults (out of 8) produced using
ImpleFix. For each fault, the subjects: (1) declared which fixes they considered
acceptable (i.e., they “correct the fault while not introducing new faults”, as in our
definition of “proper”); and (2) ordered the fixes in decreasing order of quality.

Table 5.3 summarizes the results of the acceptability trial: for each subject
Sx and fault Fy, a “c” represents a contract fix (produced by SpeciFix) and an
“i” an implementation fix (produced by ImpleFix); the order represents the one
expressed in task (2) of the trial; multiple fixes judged of equally good quality
are grouped in braces. Underlined fixes correspond to those judged acceptable in
task (1) of the trial. For example, the entry {i i} c c in row S4, column F5 means
that subject S4 judged the two implementation fixes of fault F5 acceptable and of
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F1 F2 F3 F4 F5 F6 F7 F8

S1 c i {c c} i i c c i c i c {i c} {i i} c c c c c c c c

S2 c i c {c i i} c c {i c} i c {i c} c i {c i} c c c c c c

S3 c i c c {i i} c {c i c} c i i c i i {c c} c c c c {c c}
S4 c i c c i i c i c c c i {i c} {i i} c c c c {c c} c c

Table 5.3: Results of the trial.

equivalent quality, better than one contract fix (still acceptable), and better still
than another contract fix (unacceptable).

The disagreement of subject S3 about which faults are proper targets two faults
which are worth discussing in more detail because they are indicative of the ex-
pectations of different programmers. Fault F8 affects routine subtract in class
TWO_WAY_SORTED_SET: s . subtract ( t ) removes from set s all elements in set
t , but it does not work correctly if s and t are references to the same object. One
repair produced by SpeciFix strengthens subtract ’s precondition to disallow the
case s = t ; the other three subjects thought that the case of s and t aliased is
special and hence can be handled separately, whereas S3 maintained that a proper
fix should work correctly also when s = t . The other fault F5 affects routine
prune_first of class DS_ARRAYED_LIST: l . prune_first removes the first ele-

ment of list l , but it does not work if l is empty. SpeciFix suggested to strengthen
the routine’s precondition to count >0; S3 expected a proper fix to do nothing
when l is empty, whereas the other subjects thought that removing the “first” ele-
ment makes sense only if the first element exists. In both cases, how the routines
should behave on corner cases is a somewhat subjective matter. Anyway, all the
subject agreed that even improper strengthening fixes are useful to understand a
fault’s source and manually fix them. For F5 and F8 which we just described, the
inferred preconditions clearly outline the case in which the routines do not work;
changing the implementation to cover those cases as well becomes straightfor-
ward.

The highlights: all subjects but one agreed with our assessment of proper fixes;
the subjects unanimously preferred a contract fix over an implementation fix for
3 of the 5 faults that had both kinds of fix. The subject who disagreed about
proper fixes still agreed that the contract fixes for 6 out of 8 faults are proper.
With the proviso that its small scale does not warrant arbitrary generalizations,
the trial demonstrates substantial agreement with our assessment of proper fixes;
and suggests that, if a fault can be fixed with a contract fix, SpeciFix has a chance
of building a high-quality one.
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Programmers found most proper fixes produced by SpeciFix acceptable and
often preferable to fixes for the same bugs that change the implementation.

5.2.3 Limitations and Threats to Validity

Limitations. The main limitation to the applicability of SpeciFix is that it re-
quires contracts, just as ImpleFix does. On the one hand, it requires a language
where contracts are expressible; this is an obvious consequence of the technique’s
goals and is not severely restrictive since many languages support some form of
notation for contracts (e.g., JML for Java and CodeContracts for C#). On the other
hand, SpeciFix works well only on classes that come already equipped with some
contracts of decent quality. Class invariants (which SpeciFix does not change
but only assumes) are particularly useful to ensure that the test cases generated
represent reasonable usage, so that validation (Section 5.1.3) is precise. Despite
being often weak and largely incomplete, the kinds of contracts Eiffel programmer
write have been sufficient to get good experimental results; but in future work we
will investigate how SpeciFix performance improves if it is given more expressive
contracts [93].

Threats to validity. The most significant threat to external validity—
concerning the generalizability of our experimental results—comes from limit-
ing the experiments to data-structure classes. This is a limitation partly inherited
from the usage of AutoTest to generate test cases; AutoTest is meant for unit test-
ing and hence works more easily with classes with a clearly defined interface such
as data structures. In future work, we plan to experiment with other kinds of pro-
gram (as we already did successfully with ImpleFix in Section 4.2) and possibly
with manually-written test cases. Another threat comes from the small number of
subjects used in the trial (Section 5.2.2), and the fact that they all were graduate
students. We acknowledge that the trial only gives a preliminary assessment, and
more user studies are needed to ensure generalizability.

Threats to internal validity—concerning the proper execution of our
experiments—include repeatability. Since SpeciFix uses AutoTest to generate test
cases, and the performance of AutoTest is affected by chance, different runs may
yield different results. Based on our previous extensive experience with using
AutoTest’s test cases for dynamic analysis as described in Section 4.2, we expect
AutoTest behavior to be predictable over the testing time allotted in our experi-
ments; therefore, this threat is unlikely to be significant. Since SpeciFix produces
many valid but not proper fixes, an issue is how much effort is required to identify
the improper fixes. While we have no hard evidence about this, even improper
fixes succinctly characterize the failure-inducing inputs, and hence they are still
useful as debugging aids. Furthermore, contract fixes are normally quite simple,
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arguably easier to read than implementation fixes; all subjects in the trial spent
on average around two minutes to classify each contract fix, which seems to in-
dicate an acceptable overhead. More experiments are also needed to determine
the sensitivity of SpeciFix to what fraction of the tests are used for generation vs.
validation.



CHAPTER 6

COMPARISON TO EARLIER WORK

We present the related work on automatic fault detection and fixing in six areas:
techniques to automatic testing; approaches to fault localization; fixing techniques
working on the source code (as AutoFix does); applications to specialized do-
mains; fixing techniques that operate dynamically at runtime; and techniques to
inference invariants.

6.1 Automatic testing

During the last decade, automatic testing has become an effective technique to
detect faults, in programs and systems, completely automatically. Among the ap-
proaches to automatic testing, random testing is one of the simplest, yet it has
been successfully applied to a variety of programs including Java libraries and
applications [80, 25, 99]; Eiffel libraries [21]; and Haskell programs [22]. The
research on random testing has produced a variety of tools—including our own
AutoTest [70], Randoop [81], JCrasher [25], Eclat [80], Jtest [83], Jartege [78],
Yeti [79], and RUTE-J [6]—as well as rigorous analysis [10] justifying its practi-
cal success on theoretical grounds.

Search-based test-case generation refines random testing with the goal of im-
proving its performance and accuracy. McMinn [68] and Ali et al. [3] survey
the state of the art in search-based techniques. Genetic algorithms are a recur-
ring choice for searching over unstructured spaces in combination with random
exploration; Tonella [100] first suggested the idea, and Andrews et al. [7] show
how to use genetic algorithms to optimize the performance of standard random
testing. Our previous work [102, 104] also extended purely random testing with
search-based techniques. Other approaches to automatic testing introduce white-
box techniques such as symbolic execution [62] and fuzzying [41], or leverage the
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availability of formal specifications in various forms [46, 113].

6.2 Fault localization

Fault localization is the process of locating statements that should be changed in
order to correct a given fault. Many of the approaches to automated fault localiza-
tion rely on measures of code coverage or program states.

6.2.1 Code coverage.

Code coverage metrics have been used to rank instructions based on their likeli-
hood of triggering failures. Jones et al. [52], for example, introduce the notion of
failure rate: an instruction has a high failure rate if it is executed more often in
failing test cases than in passing test cases. A block of code is then “suspicious”
of being faulty if it includes many instructions with high failure rate; Jones et al.
also implemented visualization support for their debugging approach in the tool
Tarantula.

Renieris and Reiss’s fault localization technique [96] is based on the notion
of nearest neighbor: given a test suite, the nearest neighbor of a faulty test case
t is the passing test case that is most similar to t. Removing all the instructions
mentioned in the nearest neighbor from the faulty test produces a smaller set of
instructions; instructions in the set are the prime candidates to be responsible for
the fault under consideration. Artzi et al. [12] apply similar techniques to rank
statements together with their runtime values to locate execution faults in PHP
web applications. For better fault localization effectiveness, Artzi et al. also ex-
ploit concolic test-generation techniques to build new test cases that are similar to
the failing one, the basic idea being that the differences between similar passing
and failing test executions highly correlate with the fault cause.

Many other authors have extended code coverage techniques for fault localiza-
tion. For example, Zhang et al. [112] address the propagation of infected program
states; Liu et al. [59] rely on a model-based approach; and Wong et al. [108] per-
form an extensive comparison of variants of fault localization techniques and out-
line general principles behind them (which we follow in Section 4.1.2.2). Pytlik et
al. [94] discuss the limitations of using only state invariants for fault localization,
a limitation that AutoFix avoids by combining snapshots based on state invariants
with snapshots based on enumeration (Section 4.1.1).
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6.2.2 Program states.

The application of code coverage techniques produces a set of instructions likely
to be responsible for failure; programmers still have to examine each instruc-
tion to understand what the problem is. Fault localization techniques based on
program states aim at providing more precise information in such contexts: state-
based analyses are finer-grained than those based only on code coverage because
they can also report suspicious state values that should be changed. Huang et
al [47], for example, suggest to insert check points in the program to mark “points
of interest”. Then, a dynamic analysis—applied to program states rather than
locations—can identify a set of suspicious states; furthermore, the usage of check
points introduces the flexibility to skip uninteresting parts of the computation,
for example repeated iterations of a loop. Delta debugging [110, 111] addresses
similar issues: isolating the variables, and their values, relevant to a failure by
analyzing the state difference between passing and failing test cases.

Angelina [18] is a technique that repeatedly runs a program against a group
of tests with the intent of discovering a list of expressions from the suspected
faulty code such that: changing the value of any such expression at runtime could
make the failing tests pass, while still letting the originally passing tests pass.
Such expressions are then reported to the programmer as suggestions: building
the actual corrections is still the programmer’s job.

Most fault localization techniques target each fault individually, and hence
they perform poorly when multiple bugs interact and must be considered together.
To address such scenarios, Liblit et al. [57] introduce a technique that separates
the effects of multiple faults and identifies predictors associated with each fault.

While the research on automated fault localization has made substantial pro-
gresses, effectively applying fault localization in practice to help programmers
still poses open challenges. Parnin and Orso [84] demonstrate that most auto-
mated debugging techniques focus on tasks (mostly, localization) that represent
only a small part of the real debugging activity. Automated fixing techniques can
help in this regard by providing an additional layer of automation that includes
synthesizing suitable validated corrections.

6.2.3 Fault localization for automatic fixing.

The ImpleFix technique in Chapter 4 includes fault localization techniques (Sec-
tion 4.1.2). To generate fixes completely automatically fault localization must be
sufficiently precise to suggest only a limited number of “suspicious” instructions.
In our case, using contracts helps to restrict the search to the boundaries of the rou-
tine where a contract-violation fault occurs. Then, we combine dynamic analysis
techniques based on those employed for fault localization (Section 4.1.2.2) with
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simple static analyses (Section 4.1.2.1) to produce a ranking of state snapshots
within routines that is sufficiently accurate for the fixing algorithm to produce
good-quality results.

Coker and Hafiz [23] show how to identify, through static analyses based on
types, unsafe integer usages in C programs; simple program transformations can
automatically patch such unsafe usages.

6.3 Source-code Repairs
Techniques such as ImpleFix target the source code to permanently remove the
buggy behavior from a program.

6.3.1 Machine-learning Techniques.

Machine-learning techniques can help search the space of candidate fixes effi-
ciently and support heuristics to scale to large code bases.

Jeffrey et al. [49] present BugFix, a tool that summarizes existing fixes in the
form of association rules. BugFix then tries to apply existing association rules
to new bugs. The user can also provide feedback—in the form of new fixes or
validations of fixes provided by the algorithm—thus ameliorating the performance
of the algorithm over time.

Other authors applied genetic algorithms to generate suitable fixes. Arcuri and
Yao [11, 8] use a co-evolutionary algorithm where an initially faulty program and
some test cases compete to evolve the program into one that satisfies its formal
specification.

Weimer et al. [107, 106] describe GenProg, a technique that uses genetic pro-
gramming1 to mutate a faulty program into one that passes all given test cases.
GenProg has been extensively evaluated [55, 54] with various open-source pro-
grams, showing that it provides a scalable technique, which can produce non-
trivial corrections of subtle bugs, and which works without any user annotations
(but it requires a regression test suite).

Kim et al. [53] describe Par, a technique that combines GenProg’s genetic pro-
gramming with a rich predefined set of fix patterns (suggested by human-written
patches). Most of the fix patterns supported by Par are covered by AutoFix’s
synthesis strategies (Section 4.1.3); the few differences concern the usage of over-
loaded methods—a feature not available in the Eiffel language, and hence not
covered by AutoFix. Par has also been extensively evaluated, with a focus on ac-
ceptability of patches: the programmers involved in the study tended to consider

1See also Arcuri and Briand’s remarks [9, Sec. 2] on the role of evolutionary search in Weimer
et al.’s experiments [107].
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the patches generated by Par more acceptable than those generated by GenProg,
and often as acceptable as human-written patches for the same bugs. The notion
of acceptability addresses similar concerns to our notion of proper fix, since they
both capture quality as perceived by human programmers beyond the objective
yet weak notion of validity, although the two are not directly comparable.

Of the several approaches to source-code general-purpose program repair dis-
cussed in this section, GenProg and Par are the only ones that have undergone
evaluations comparable with AutoFix’s: the other approaches have only been
applied to seeded faults [44, 42, 8], to few benchmarks used for fault localiza-
tion [49], or do not aim at complete automation [105].

GenProg can fix 52% of 105 bugs with the latest improvements [54]; Par fixes
23% of 119 bugs (GenProg fixes 13% of the same 119 bugs [53]). In our exper-
iments in Section 4.2, we target almost twice as many bugs (204) and AutoFix
fixes 42% of them. Whereas these quantitative results should not directly be com-
pared because they involve different techniques and faults, they demonstrate that
all three approaches produce interesting results and have been thoroughly evalu-
ated. GenProg’s and Par’s evaluations have demonstrated their scalability to large
programs: GenProg worked on 8 C programs totaling over 5 million lines of code;
Par worked on 6 Java programs totaling nearly 500 thousand lines of code. Au-
toFix’s evaluation targeted a total of 72 thousand lines of Eiffel code; while lines
of code is a coarse-grained measure of effort, more experiments are needed to
conclusively evaluate AutoFix’s scalability on much larger programs. The test
cases used in GenProg’s and Par’s evaluations (respectively, around 10 thousand
and 25 thousand) do not seem to be directly comparable with those used by Auto-
Fix: GenProg and Par use manually-written tests, which may include system tests
as well as unit tests; AutoFix does not require user-written test cases (and uses
fewer on average anyway) but uses automatically generated tests that normally
exercise only a limited subset of the instructions in the whole program. The sen-
sitivity of GenProg or Par about the input test suite have not been systematically
investigated,2 and therefore we do not know if they could perform well with tests
generated automatically. In contrast, our experiments show that AutoFix is robust
with respect to the input tests, and in fact it works consistently well with tests ran-
domly generated given the simple contracts available in Eiffel programs. Another
advantage of leveraging contracts is that AutoFix can naturally target functional
errors (such as those shown in Section 2.1.1).

Weimer et al.’s evaluation of fix quality has been carried out only for a sam-
ple of the bugs, and mostly in terms of induced runtime performance [55]. It
is therefore hard to compare with AutoFix’s. Finally, AutoFix works with re-

2GenProg’s sensitivity to the design choices of its genetic algorithm has been recently investi-
gated [56].
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markably limited computational resources: using the same pricing scheme used
in GenProg’s evaluation [54]3, AutoFix would require a mere $0.01 per valid fix
(computed as 0.184× total fixing time in hours / total number of valid fixes) and
$0.03 per proper fix; or $0.06 per valid and $0.23 per proper fix including the time
to generate tests—two orders of magnitude less than GenProg’s $7.32 per valid
fix.

6.3.2 Axiomatic Reasoning

He and Gupta [44] present a technique that compares two program states at a
faulty location in the program. The comparison between the two program states
illustrates the source of the error; a change to the program that reconciles the
two states fixes the bug. Unlike our work, theirs compares states purely statically
with modular weakest precondition reasoning. A disadvantage of this approach
is that modular weakest precondition reasoning may require detailed postcondi-
tions (typically, full functional specifications in first-order logic) in the presence
of routine calls: the effects of a call to foo within routine bar are limited to what
foo’s postcondition specifies, which may be insufficient to reason about bar’s be-
havior. Even if the static analysis were done globally instead of modularly, it
would still require detailed annotations to reason about calls to native routines,
whose source code is not available. This may limit the applicability to small or
simpler programs; AutoFix, in contrast, compares program states mostly dynam-
ically, handling native calls and requiring only simple annotations for postcondi-
tions. Another limitation of He and Gupta’s work is that it builds fix actions by
syntactically comparing the two program states; this restricts the fixes that can
be automatically generated to changes in expressions (for example, in off-by-one
errors). AutoFix uses instead a combination of heuristics and fix schemas, which
makes for a flexible usage of a class’s public routines without making the search
space of possible solutions intractably large.

6.3.3 Constraint-based Techniques.

Gopinath et al. [42] present a framework that repairs errors due to value misuses in
Java programs annotated with pre- and postconditions. A repairing process with
the framework involves encoding programs as relational formulae, where some
of the values used in “suspicious” statements are replaced by free variables. The
conjunction of the formula representing a program with its pre- and postcondition
is fed to a SAT solver, which suggests suitable instantiations for the free variables.
The overall framework assumes an external fault localization scheme to provide

3We consider on-demand instances of Amazon’s EC2 cloud computing infrastructure, costing
$0.184 per wall-clock hour at the time of GenProg’s experiments.
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a list of suspicious statements; if the localization does not select the proper state-
ments, the repair will fail. Solutions using dynamic analysis, such as AutoFix,
have a greater flexibility in this respect, because they can better integrate fault
localization techniques—which are also typically based on dynamic analysis. As
part of future work, however, we will investigate including SAT-based techniques
within AutoFix.

Nguyen et al. [75] build on previous work [18] about detecting suspicious
expressions to automatically synthesize possible replacements for such expres-
sion; their SemFix technique replaces or adds constants, variables, and operators
to faulty expressions until all previously failing tests become passing. The major
differences with respect to AutoFix are that SemFix’s fault localization is based on
statements rather than snapshots, which gives a coarser granularity; and that the
fixes produced by SemFix are restricted to changes of right-hand sides of assign-
ments and Boolean conditionals, whereas AutoFix supports routine calls, more
complex expression substitutions, and conditional schemas. This implies that Au-
toFix can produce fixes that are cumbersome or impossible to build using SemFix.
For example, conditional fixes are very often used by AutoFix (Tables 4.5 and 4.7)
but can be generated by SemFix only if a conditional already exists at the repair
location; and supporting routine calls in fixes takes advantage of modules with a
well-designed API.

6.3.4 Model-driven Techniques

Some automated fixing methods exploit finite-state abstractions to detect errors or
to build patches. AutoFix also uses a form of finite-state abstraction as one way
to synthesize suitable fixing actions (Section 4.1.3.3).

In previous work, we developed Pachika [28], a tool that automatically builds
finite-state behavioral models from a set of passing and failing test cases of a Java
program. Pachika also generates fix candidates by modifying the model of failing
runs in a way which makes it compatible with the model of passing runs. The
modifications can insert new transitions or delete existing transitions to change
the behavior of the failing model; the changes in the model are then propagated
back to the Java implementation. AutoFix exploits some of the techniques used in
Pachika—such as finite-state models and state abstraction—in combination with
other novel ones—such as snapshots, dynamic analysis for fault localization, fix
actions and schema, contracts, and automatic test-case generation.

Weimer [105] presents an algorithm to produce patches of Java programs ac-
cording to finite-state specifications of a class. The main differences with respect
to AutoFix are the need for user-provided finite-state machine specifications, and
the focus on security policies: patches may harm other functionalities of the pro-
gram and “are not intended to be applied automatically” [105].
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6.4 Domain-specific Models

Automated debugging can be more tractable over restricted models of computa-
tions. A number of works deal with fixing finite-state programs, and normally
assumes a specification given in some form of temporal logic [67, 51, 51].

Gorla et al. [17, 43] show how to patch web applications at runtime by ex-
ploiting the redundancy of services offered through their APIs; the patches are
generated from a set of rewrite rules that record the relations between services.
In more recent work [16], they support workarounds of general-purpose Java ap-
plications based on a repertoire of syntactically different library calls that achieve
the same semantics.

Janjua and Mycroft [48] target atomicity violation errors in concurrent pro-
grams, which they fix by introducing synchronization statements automatically.
More recently, Jin et al. [50] developed the tool AFix that targets the same type of
concurrency errors.

Abraham and Erwig [1] develop automated correction techniques for spread-
sheets, whose users may introduce erroneous formulae. Their technique is based
on annotating cells with simple information about their “expected value”; when-
ever the computed value of a cell contradicts its expected value, the system sug-
gests changes to the cell formula that would restore its value to within the expected
range. The method can be combined with automated testing techniques to reduce
the need for manual annotations [2].

Samimi et al. [98] show an approach to correct errors in print statements that
output string literals in PHP applications. Given a test suite and using an HTML
validator as oracle for acceptable output, executing each test and validating its out-
put induces a partial constraint on the string literals. Whenever the combination of
all generated constraints has a solution, it can be used to modify the string literals
in the print statements to avoid generating incorrect output. Constraint satisfac-
tion can be quite effective when applied to restricted domains such as PHP strings;
along the same lines, AutoFix uses constraint-based techniques when dealing with
linear combinations of integer variables (Section 4.1.3.4).

6.5 Dynamic Patching

Some fixing techniques work dynamically, that is at runtime, with the goal of con-
trasting the adverse effects of some malfunctioning functionality and prolonging
the up time of some piece of deployed software. Demsky et al. [31, 33] provide
generic support for dynamic patching inside the Java language.
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6.5.1 Data-structure repair.

Demsky and Rinard [32] show how to dynamically repair data structures that
violate their consistency constraints. The programmer specifies the constraints,
which are monitored at runtime, in a domain language based on sets and relations.
The system reacts to violations of the constraints by running repair actions that
try to restore the data structure in a consistent state.

Elkarablieh and Khurshid [34] develop the Juzi tool for Java programs. A user-
defined repOk Boolean query checks whether the data structure is in a coherent
state. Juzi monitors repOk at runtime and performs some repair action whenever
the state is corrupted. The repair actions are determined by symbolic execution
and by a systematic search through the object space. In follow-up work [63, 64],
the same authors outline how the dynamic fixes generated by Juzi can be ab-
stracted and propagated back to the source code.

Samimi et al.’s work [97] leverages specifications in the form of contracts to
dynamically repair data structures and other applications. As in our work, an op-
eration whose output violates its postcondition signals a fault. When this occurs,
their Plan B technique uses constraint solving to generate a different output for the
same operation that satisfies the postcondition and is consistent with the rest of the
program state; in other words, they execute the specification as a replacement for
executing a faulty implementation. Their prototype implementation for Java has
been evaluated on a few data-structure faults similar to those targeted by Demsky
and Rinard [32], as well as on other operations that are naturally expressed as
constraint satisfaction problems.

6.5.2 Memory-error Repair.

The ClearView framework [89] dynamically corrects buffer overflows and illegal
control flow transfers in binaries. It exploits a variant of Daikon [37] to extract
invariants in normal executions. When the inferred invariants are violated, the
system tries to restore them by looking at the differences between the current state
and the invariant state. ClearView can prevent the damaging effects of malicious
code injections.

Exterminator [14, 77] is a framework to detect and correct buffer overflow
and dangling pointer errors in C and C++ programs. The tool executes programs
using a probabilistic memory allocator that assigns a memory area of variably
larger size to each usage; an array of size n, for example, will be stored in an area
with strictly more than n cells. With this padded memory, dereferencing pointers
outside the intended frame (as in an off-by-one overflow access) will not crash the
program. Exterminator records all such harmless accesses outside the intended
memory frame and abstracts them to produce patches that permanently change
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the memory layout; the patched layout accommodates the actual behavior of the
program in a safe way.

6.6 Invariant Inference
Invariant inference techniques learn assertions that hold for a given implementa-
tion. These techniques are naturally classified in static and dynamic. Static tech-
niques analyze the source code to infer specification elements. Since inferring
all but the simplest classes of properties is undecidable, static techniques are usu-
ally sound but incomplete. Abstract interpretation is a fundamental framework for
static invariant inference [24], which has been applied in many different contexts.

SpeciFix relies instead on dynamic techniques for invariant inference. These
summarize properties that are invariant over multiple runs of a program; their
advantage over static techniques is that dynamic approaches do not require a so-
phisticated analytical framework and are applicable to the whole programming
language: they work on anything that can be executed. While dynamic techniques
provide no guarantees of soundness or completeness, they work quite well in prac-
tice. Dynamic invariant inference has been pioneered by the Daikon tool [36].
Daikon uses a pre-defined set of templates describing common relations among
program variables. Much work has been done to extend and improve the Daikon
approach; for example to support object-oriented features [26], and to infer com-
plex and often complete postconditions [101]. The dynamic approach has also
been applied to other kinds of specifications such as finite-state behavioral speci-
fications [5, 27, 61, 109] and algebraic specifications [40, 45].



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In the past decade, automated debugging has made spectacular advances: first,
we have seen methods to isolate failure causes automatically; then, methods that
highlight likely failure locations. Recently, the slogan “automated debugging”
has denoted techniques that truly deserve this name: we can actually generate
workable fixes completely automatically.

This chapter summarizes our contribution to automatic program fixing as pro-
vided in this thesis, and outlines potential directions for future research. Sec-
tion 7.1 recapitulates the major contributions, and Section 7.2 describes future
work.

7.1 Main Contributions
AutoFix provides an automatic and integrated solution to program fixing, which
programmers could easily use in development. The solution relies on the presence
of simple specification elements in the form of contracts to provide high-quality
fix suggestions and to enable automation of the whole debugging process. The
most important components in the work of this thesis include the following:

1. The ImpleFix technique, which generates implementation fixes to program
faults automatically. In an extensive experiment with over 200 faults in
software of various quality, ImpleFix generated proper fixes, i.e. fixes that
remove the fault under consideration without introducing other faulty or
unexpected behavior, to 25% of the faults, requiring an average time per fix
under 20 minutes—where the average includes all failed fixing attempts and
the automatic generation of test cases that profile the faults.

2. The SpeciFix technique, which automatically fixes programming bugs by
rectifying specifications in the form of simple contracts, and therefore com-
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plements the ImpleFix technique. In an experimental evaluation, we ran
SpeciFix on 44 bugs of Eiffel standard data-structure libraries, and Speci-
Fix produced proper fixes to 11 (or 25%) of the bugs, using similar amount
of time as ImpleFix requires.

3. The AutoFix tool, which combines ImpleFix and SpeciFix and is integrated
into the EVE IDE. The tool presents itself as a recommendation system that
automatically finds bugs and suggests fixes to the bugs.

With AutoFix, the programmer’s debugging effort could be reduced to almost
zero in many cases. We write “almost zero”, as we still assume that a human
should assess the generated fixes and keep authority over the code. One may also
think of systems that generate and apply fixes automatically; the risk of undesired
behavior may still be preferred to no behavior at all, and can be alleviated by more
precise specifications expressed as contracts. In any case, we look forward to a
future in which much of the debugging is taken over by automated tools, reducing
risks in development and relieving programmers from a significant burden.

7.2 Future Work

We now propose some future work following the contributions highlighted in the
previous section.

Although the previous experiments suggest that simple contracts and auto-
matically generated tests are already useful in automatic fixing, more extensive
experiments are necessary to find out how the amount and the quality of contracts
in a program as well as the use of manually written tests would influence Auto-
Fix’s behavior and results. Also, the experiment in Section 5.2 does not provide
enough data points to answer questions related to the performance of SpeciFix
with statistical significance. To answer these questions we need to conduct more
experiments, e.g., of similar scale as the one described in Section 4.2.

An important goal in the future is to provide a more meaningful ranking of
all candidate fixes. With the help of AutoFix, fixing a fault often boils down to
identifying a proper candidate from all the generated implementation and specifi-
cation fixes. The two types of fix candidates are, however, presented to the user
in separate groups now, and little information is provided to the user regarding
which candidate is more likely to be proper. The new ranking algorithm should
take into account the existing ranking mechanism and the nature of different fixes,
and it should also learn from the manual inspection results of the candidate fixes
as well as the manually written fixes from programmers, so that the ranking will
get improved over time.
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Automatic fixing would benefit from customized test generation. In its current
implementation, AutoFix uses AutoTest as it is to detect faults and prepare test
cases. AutoTest was, however, designed to find as many faults as possible in a
given time, and generating appropriate passing and failing tests that would lead to
optimal automatic fixing results is not one of its concerns. We plan to investigate
further how test case selection affects the performance of AutoFix, design heuris-
tics for optimal test case selection for fixing, and use the heuristics to guide test
preparation in AutoTest.

The performance of AutoFix can be improved by incorporating more static
techniques. AutoFix can already automatically generate candidate fixes using
mostly dynamic techniques. By combining the dynamic techniques with other
static techniques like constraint solving and axiomatic reasoning we can improve
both the effectiveness and the efficiency of AutoFix. For example, constraint solv-
ing may provide fixes that are hard or even impossible to get from instantiating
the fixing schemas in Section 4.1.4.1, and axiomatic reasoning could help decide
whether to skip generating implementation fixes depending on whether the pre-
condition and the postcondition of the routine under debugging conflict with each
other and therefore leave no space for satisfactory implementation fixes.
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