
���������������	�
�	��

������������	�����������������������
����
���
�	�
����������
���������������	���������������������
�������������������
�������������������

���������������	�
��������

������
������������
� �
���!���
�"���#�������
�����$���	���

���������������������������������
�%�&�'�(���&�)

������������������������������
�����������*�+�+�������,���	���+�'�&�,�-�.�%�.�+�����������
���&�'�&�)�-�/�/�'�%

�������
��������������������������
���������������	���������������0�����������������	�!���
����1�����������	������������

�������������
�������2�
�������������	�
���������
���������
�����!�
���������������������2������
�������	�����������������������3���	���!�����4�������
�	�!�������������!���������,
�5���	�������	�������������	���
���������"��������
�������!��������������������������	�������������������,

https://doi.org/10.3929/ethz-a-010437712
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Cluster-Computing and
Parallelization for the

Multi-Dimensional PH-Index

Master Thesis

Bogdan Aurel Vancea
< bvancea@student.ethz.ch>

Prof. Dr. Moira C. Norrie
Dr. Tilmann Z̈aschke
Christoph Zimmerli

Global Information Systems Group
Institute of Information Systems

Department of Computer Science
ETH Zurich

1st April 2015

Copyright © 2014 Global Information Systems Group.

Abstract

The storage and management of multi-dimensional data is an important aspect in many ap-
plications, like geo-information systems, computer vision and computer geometry. In con-
temporary times, when computers are able to capture and store increasing amounts of multi-
dimensional data, it is important for applications to ef�ciently store and query this data.

This work presents a distributed version of the PH-tree, a highly ef�cient in-memory multi-
dimensional data structure, supporting range and nearest neighbour queries. We present a
distribution architecture for the PH-tree, which extends it to run on a cluster of computers.
The distributed version of the PH-tree is able to use the main-memory of all of machines
in the cluster to store the multi-dimensional data. Moreover, the distributed setting allows
each machine to be queried independently of the other machines. The point distribution
algorithm proposed in this work uses the Z-order space �lling curve to assign sections of
the space to the computers in the cluster. Additionally, we present an automatic data re-
balancing algorithm, which attempts to maintain an equal storage load across all computers.
The performance evaluation shows that the proposed distribution version of the PH-tree is
able to scale with respect to the number of computer in the cluster, obtaining an almost linear
increase in throughput and a similar reduction in the response time for point operations.

Another contribution of this work is the extension of the PH-tree to support concurrent write
access, allowing it to take advantage of multi-core processor architectures. We present sev-
eral concurrent write access strategies, with different consistency guarantees, discuss their
advantages and disadvantages and evaluate the write performance. The presented copy-on-
write strategy allows queries to execute on snapshots of the PH-tree, while the PH-tree itself
is accessed by one writer and multiple readers. This work also presents two �ne grained
locking strategies, which sacri�ce consistency to allow multiple reader and writer threads
to access the tree in the same time. All presented concurrency strategies perform locking
only in the case of the write operations, and allow read queries to execute without taking any
locks, which greatly increases the performance of read operations for large numbers of reader
threads.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 The PH-tree . 5

2.2 Related Work . 7

2.2.1 Distributed Indexes . 7

2.2.2 Concurrent Data Structures . 7

3 Index Distribution 9

3.1 Challenges . 9

3.2 Distribution Strategies . 10

3.2.1 Hashing . 11

3.2.2 Spatial Splitting . 12

3.2.3 Z-Order Curve Splitting . 14

3.3 Architecture . 15

3.4 Algorithms . 16

3.4.1 Key-Mapping Design . 16

3.4.2 Point Operations . 18

3.4.3 Range Queries . 18

3.4.4 Nearest Neighbour Queries . 19

3.4.5 Entry Rebalancing . 20

4 Concurrency 23

4.1 Challenges . 23

4.2 PH-tree Structure . 24

v

vi CONTENTS

4.3 Concurrency Strategies . 25

4.3.1 Copy-on-Write . 25

4.3.2 Locking . 26

4.3.3 Hybrid Approach . 28

4.4 Chosen Strategies . 29

5 Implementation 31

5.1 System Architecture . 31

5.2 PH-tree Java API . 32

5.3 Distribution . 34

5.3.1 Client Design . 34

5.3.2 Server Design . 35

5.3.3 Configuration Server and Key-Mapping Implementation 36

5.3.4 Communication Flow . 38

5.3.5 Iterators . 39

5.4 Concurrency . 40

6 Evaluation 43

6.1 Distribution . 43

6.1.1 Experimental Setup . 43

6.1.2 Experimental Results . 44

6.2 Concurrency . 47

6.2.1 Experimental Setup . 47

6.2.2 Experimental Results . 47

6.3 Results . 51

7 Conclusions 53

7.1 Contributions . 53

7.2 Future work . 54

A Installation and Usage Instructions 55

A.1 Compilation and Installation . 55

A.1.1 Client and Server Libraries . 55

A.1.2 ZooKeeper . 55

A.2 Usage . 56

1
Introduction

1.1 Motivation

Multi-dimensional data is widely used today, for example in domains like database manage-
ment systems, geographic information systems, computer vision and computational geome-
try. When all of the dimensions of the data hold numerical values, this data can be viewed
as a collection of points in higher dimensional spaces. Due to this nature, multi-dimensional
numerical data provides the possibility of posing more complex queries based on the distance
between these points in space. For example, in the context of a geo-information system, one
could query for all of the points that fall inside a speci�c rectangle or attempt to �nd the
nearest neighbours of an arbitrary query point.

Several point-based multi-dimensional indexing solution have been developed in the latest
years, the most prominent being kD-trees [1] and quadtrees [4]. This type of data structures
store the multi-dimensional data such that more complex operations, like range and nearest
neighbour queries are executed ef�ciently. The PH-tree [11] is a new multi-dimensional data
structure based on the quadtree. In addition to providing support for complex queries, the
PH-tree is also space-ef�cient, as its space requirements are sometimes even lower than those
of multi-dimensional arrays.

As technology advances and the world becomes more connected, multi-dimensional data
becomes easier to acquire and store. Because of this, it is necessary that multi-dimensional
data structures need to store and manage more data than would �t in the main memory of a
single machine. However, traditional multi-dimensional indexes like the kD-tree and quad-
tree do not cover this use case as they are designed to run on a single machine.

Additionally, in the last few years the processor speed has reached the power wall and pro-
cessor designers cannot increase the CPU frequency by increasing the number of transistors.
Recent advances in processor design have been made by adding more cores per CPU rather

1

2 1.2. OBJECTIVES

than increasing the processing frequency. Therefore, it is important that contemporary data
structures be adapted to multi-core architectures by allowing them to support concurrent op-
erations. As with the case of the increase storage requirements, traditional multi-dimensional
data structures do not support concurrent write operations.

This thesis attempts to provide a solution to these two issues by extending the PH-tree to run
on distributed cluster of machines and modifying it to support concurrent operations.

1.2 Objectives

We have highlighted two challenges currently faced by indexing systems:high storage re-
quirementsandsupport for concurrent access. This work proposes the distributed PH-tree,
a version of the PH-tree that can be run on a cluster of machines, making it able to handle
data sets that cannot �t in the main memory of a single machine. Moreover, the distributed
PH-tree should be able to handle concurrent requests. This applies both to requests sent to
different machines that are part of the cluster and concurrent requests sent by different clients
to the same machine.

Speci�cally, the distributed PH-tree has to ful�ll the following requirements:

Cluster capability The system should run across a network of machines, making use of the
memory and processing resources on each machine. Furthermore, the system should
attempt to balance the number of multi-dimensional entries assigned to each machine.

Cluster concurrency The system should be able to support concurrent requests to different
machines in the cluster. Each machine should be able to process queries related to the
entries that it stores locally.

Node concurrency Each machine should support multi-threaded read and write access to
the entries that it stores.

As the thesis touches on two main subjects, distribution and concurrency, the main challenges
encountered are twofold. From the distribution perspective, the challenges are the identi�ca-
tion of suitable entry distribution and balancing strategies, devising ef�cient algorithms for
executing queries across multiple cluster nodes, and the ef�cient management of a very large
number of cluster nodes. For the concurrency perspective, the challenges are the identi�-
cation of a suitable concurrent access strategy that can maximize the number of concurrent
write operations.

1.3 Thesis Outline

This chapter gave an overview of the challenges currently faced by multi-dimensional index-
ing structures and brie�y explained how this work seeks to address them. Additionally, this
chapter also presented the main objectives of this thesis. The rest of the thesis is structured as
follows:

CHAPTER 1. INTRODUCTION 3

Chapter 2 provides additional information about the PH-tree, its characteristics and sup-
ported operations. The second part of this chapter describes relevant previous work done in
the areas of distributed multi-dimensional indexes and concurrent data structures.

The design of the distributed PH-tree from the point of view of a distributed system is pre-
sented inChapter 3. This chapter presents the chosen data distribution strategy and touches
on the possible alternatives and the consequences of this choice. Additionally, we provide an
overview of how the queries spanning multiple nodes are executed by the system.

The addition of the multi-threaded read and write support for the PH-tree is presented in
Chapter 4. Several concurrent access strategies are discussed, in terms of their advantages,
disadvantages and consistency guarantees.

Chapter 5 describes the implementation-speci�c decisions that were taken during the devel-
opment process. This chapter also presents the technologies that were used and justi�es the
technological choices.

The distributed PH-tree is evaluated inChapter 6. The performance characteristics of the
implemented distributed systems as well as those of the implemented concurrency strategy
are discussed.

Chapter 7 concludes the thesis by presenting the contribution of this work in the context
of distributed multi-dimensional indexing systems. We also give an outlook of the potential
extensions.

4 1.3. THESIS OUTLINE

2
Background

The �rst part of this chapter analyses the single-threaded PH-tree, a multi-dimensional data
structure and the starting point of this work. It provides an overview of its speci�c character-
istics and describes the supported operations.

The second part of this chapter presents the relevant related work in the area of distributed
multi-dimensional indexes and concurrent data structures.

2.1 The PH-tree

The PH-tree [11] is a novel multi-dimensional indexing structure that focuses on fast re-
trieval, fast update and highly ef�cient storage. It combines concepts from PATRICIA-tries,
quadtrees and hypercubes to encode the multi-dimensional data using bit pre�x sharing. Be-
cause of this, the storage requirements can sometimes be lower than those of the storage
requirements of an array of objects.

An example PH-tree storing 2-dimensional 4 bit points is shown in Figure 2.1. The tree
illustrated in this �gure stores the points: (0, 4), (3, 4) and (3, 6). However, each point is
stored as thebit interleavingof its values in all dimensions. Therefore, the bit interleaving of
point (3, 6), represented in binary as (0011, 1010) is 01001110. By storing the points under
thebit interleavingform, the PH-tree maps the multi-dimensional points into a 1-dimensional
space. The 1-dimensional values will be referred to asZ-valuesas they form theZ-order space
�lling curve.

The PH-tree has the following important properties:

• Z-Ordering . The multi-dimensional entries are ordered according to the Z-order
space �lling curve. As a consequence, points which are close in the original multi-
dimensional space will usually also be relatively close in the Z-Ordering.

5

6 2.1. THE PH-TREE

����

���� ���� ����

����

���� ���� ����

Figure 2.1: 2 dimensional 4bit PH-tree containing the points: (0000, 1000), (0011, 1000),
(0011, 1010).

• Constant maximum height. The height of the PH-tree is equal the number of bits
needed to store each value of the multi-dimensional space. Therefore, when the values
in each dimension are represented in 64 bits, as long or doubles, the maximum height
of the PH-tree is 64. This property is important asthe maximum height of the PH-tree
is independent of the number of points it stores.

• Balancing is not needed. The PH-tree does not perform balancing operation after
write operation have occurred. While this fact could lead to un-balanced trees, it is
usually not a problem in practice, as the height of tree is limited by a constant factor.

The PH-tree is similar to a HashMap, as it stores entries consisting of key-value pairs. In this
case however, the key is a multi-dimensional data point, while the value can be an arbitrary
object. The following operations are supported:

• Point operationsoperate on single multi-dimensional points. The possible queries are
get(), put(), delete()andupdateKey(). The get() query retrieves the value associated
with a multi-dimensional key, and thedelete()operation removes the value associated
with a multi-dimensional key. Theput() operation adds new key-value to the index.
Finally, theupdateKey()operations updates the key associated with an existing key-
value entry.

• Range queriesselect all of the data points that fall inside a multi-dimensional hyper-
rectangle. This rectangle is de�ned by alower leftand aupper rightpoint.

• Nearest neighbour queriesselect the closestk points in the index to an arbitrary query
point.

Currently, the amount of entries the PH-tree can store limited by the memory available on
a single host. A distributed version of the PH-tree would be able to store a much larger
amount of entries and would be able to make use of clusters of computing nodes. Speci�-
cally, the distributed version would be well suited for running in cloud environments, where
users can easily add more computing nodes to their existing systems to handle higher stor-
age requirements and improve performance. The challenges in creating a distributed version
of the PH-tree are the implementation of range and nearest neighbour queries, which might
need to be dispatched to multiple nodes of the system. The goal is to design a distribution
architecture and a set of algorithms that minimize the number of nodes to which a complex
query is sent.

CHAPTER 2. BACKGROUND 7

2.2 Related Work

The following sections reviews the existing research concerning distributed indexes and con-
current data structures. The goal of this section is to understand the existing approaches
that can be used for the design and implementation of the distributed PH-tree and to identify
which of these approaches are best suited for the use cases targeted by this work.

2.2.1 Distributed Indexes

Distributed Hash Tables (DHT's) are a class of decentralized distributed systems which ex-
pose an API similar to that of a hash-table. These P2P systems use a structured overlay
network to assign a given key to a node in the system. Requests for a certain key can be
sent to any node of the system and will be forwarded to the node responsible for it. DHT's
have been designed to work on internet-scale, connecting large numbers of machines across
large distances. The main concerns are scalability and availability, while theget()andput()
operations have ”best effort” semantics. Chord [10], one of the most popular and most ef-
�cient DHT system, manages to guarantee that any request for a certain key will arrive the
responsible node in at mostO(logn) hops, in the context in which each node contains only
O(logn)links to other nodes.

One important issues of distributed hash tables is that they only support ”exact match”
queries. The Pre�x Hash Tree [8] adds support for range queries to a DHT by using a sec-
ondary data structure, to maintain a mapping between nodes and keys. This mapping is a trie
containing the pre�xes of the bit-strings of the keys, and thus, logically, leaf nodes of this trie
correspond to interval regions of keys. All leaf-nods are linked using a linked-list, allowing
range queries to traverse the query range starting for the �rst leaf that matches the range.

A similar approach is taken by the SkipIndex [12], a multi-dimensional indexing system
that uses a SkipGraph to map geometrical regions to machine nodes. Each system node
maintains only a partial view of the region tree and thus range and nearest neighbour queries
are performed using selective multicasting.

A different approach for creating a scalable multi-dimensional index is to use a big-data
platform. [6] proposes storing a block-based multi-dimensional index structure like the R-
tree directly in HDFS1 and using query models like MapReduce2 as building blocks for the
implementation of range and nearest neighbour queries.

2.2.2 Concurrent Data Structures

Concurrent data structures are currently a very active area of research. There are two main
ways of implementing a concurrent data structures: lock-based solution and lock-free solu-
tions. Lock-based solutions use locks to synchronize the concurrent access to either the data
structure itself, calledcourse-grained locking, or to parts of the data structure, which is also
called�ne grained locking. Lock-free solutions use either atomic primitives, likecompare-

1http://hadoop.apache.org/docs/r1.2.1/hdfsdesign.html
2http://en.wikipedia.org/wiki/MapReduce

8 2.2. RELATED WORK

and-swapor software transactional memory to synchronize modi�cation attempts on the data
structure.

In the area of concurrent search trees, lock-based approaches are much more common than
lock-free solutions. Fraser [5] provides a set of API's that can be used to design arbitrary
concurrent data structures. While these API's can be used for any type of data structures,
they are based on software transactional memory or multi-word CAS operations, currently
not implemented by contemporary hardware. Brown [3] presents a general technique for
non-blocking trees implemented using multi-word equivalents of theload-link(LL), store-
conditional(SC) andvalidate(VL) atomic primitives.

A naive concurrent implementation of a search tree can be achieved by protecting all access
using a single lock. Concurrency can be improved by synchronizing the access at the level
of nodes.Hand-over-hand locking[7], something also calledlock-coupling, is a �ne-grained
technique that states that a thread can only acquire the lock of a node if it holds the lock of
the node's parent node. This technique allows multiple concurrent write operations, but the
degree of concurrency is limited due to the fact that all subtrees of a locked node are not
accessible, even if the other threads need to perform modi�cations in a different part of the
tree. Another approach is to perform optimistic retries by only locking the nodes that should
be modi�ed, check if locked nodes have not been removed from the tree and then perform the
update. This idea is used by [2] to implement a highly concurrent AVL tree.

However, an issue with all concurrent search trees where modi�cations are done to a single
node is that the execution of queries which have to run on the tree for longer periods of
time, like iterators or range queries, overlaps with the execution of other write-operations.
Therefore, longer running queries will view the any updates that are done on the tree. In
some cases, it is desirable to run the read queries on a snapshot of the tree that is isolated
from other concurrent updates. This can be achieved using a strategy calledCopy-On-Write,
which allows a single writer and an arbitrary number of reads to access the same data structure
concurrently. Moreover, each write operations creates a new version of the data structure that
is only available to readers which have started after the update which created the new version
has �nished.

3
Index Distribution

This chapter describes how PH-tree is extended to be deployed and run on a number of ma-
chines part of a computer cluster. It presents the challenges and the possible design choices
for extending the PH-tree to run in a distributed setting, discusses the system architecture
and describes the algorithms used for the distributed queries. Concurrency related issues are
addressed separately in Chapter 4.

3.1 Challenges

While extending the PH-tree to be a distributed index increases its storage capacity, there
are a number of challenges to overcome in order to reach a good implementation. These
challenges are:

• Balancing the storage load. In a cluster ofn identical nodes1, nodes which have
the same hardware resources available, all nodes should store an equal amount of data.
Assuming that the values associated with each key are relatively equal in size, all nodes
should store a relatively equal number of key-value entries.

• Maintaining data locality . The PH-tree needs to provide support for range and nearest
neighbour queries, types of queries which generally analyze contiguous portions of the
space and return sets of points which are generally close together. If the indexed points
manifest locality, points close in space reside on the same node, range and nearest
neighbour queries could be sent to only a part of the nodes in the cluster, minimizing
the network traf�c. In the best case, range and nearest neighbour queries could be sent
to only a single node. It is therefore preferable that queries are sent to as few nodes as

1Cluster machines on which the PH-tree is deployed will be referred to as nodes, indexing hosts or indexing
servers, throughout this work.

9

10 3.2. DISTRIBUTION STRATEGIES

possible, minimizing both the response time and the request load to the nodes in the
cluster.

• Ensuring cluster scalability. To support very large storage requirements, the system
should handle a large number of online-indexing nodes. Furthermore, to improve scal-
ability, adding and removing nodes to and from the system should be easy and should
not require the cluster to be shut down and re-started. Online cluster re-con�guration is
challenging because of the data migrations that it entails in order to achieve a balanced
storage load. New nodes added to the system start off as being empty and should re-
ceive some entries from the currently running active nodes. The data received by these
empty nodes should preserve locality. Nodes that are being removed from the system
need to �rst make sure that the entries currently stored are moved to different nodes in
the system in a manner that preserves locality.

• Minimizing node information . As the PH-tree is held in-memory, it is important for
the indexing nodes to be ef�cient in managing their memory, to maximize the number
of entries they can store. Maintaining a connection between two node over a network
generally requires an open socket on both participating nodes. Active connections
take up system memory and CPU cycles on indexing hosts and generate traf�c on the
network connecting them. Reducing the number of open connections that a host has
to other hosts in the cluster reduces the network traf�c between the machines in the
cluster and reduces the amount of memory and CPU cycles used by these machines
to keep the connections alive. Therefore, it is important to devise a communication
model in which each node has to be aware and communicate with a small number of
other nodes in the system, to reduce the resource consumption.

Other challenges posed by distributed indexes, and distributed systems in general, are avail-
ability and security, however these issues are not tackled by this work.

By taking into account the discussed challenges, an ideal architecture of the system has the
following requirements:

1. Ensures low response time by minimizing the number of network requests that have to
be made.

2. Points are assigned to nodes in the cluster in a way that preserves locality.

3. New nodes can be added and removed without shutting down or stopping the cluster.

4. Each node maintains open connections to a small number of other nodes in the system.

The following sections of this chapter describe the possible strategies for distributing the
points to nodes in the cluster, the strategy chosen to properly address the challenges presented
in this section, the �nal architecture of the system and the algorithms for the query execution.

3.2 Distribution Strategies

There are two main solutions to the problem of distributing a tree data structure over a cluster
of computing nodes:

CHAPTER 3. INDEX DISTRIBUTION 11

• Assigning tree nodes to machines. In this approach, there will be only a single PH-
tree containing all of the entries stored by the cluster, each node of the PH-tree being
stored on an individual machine. This means that following a pointer from a parent
tree node to a child tree node could require the forwarding of the request to a different
machine, the one containing the child tree node. As the PH-tree depth is limited by
the bit width of the data being stored, from the theoretical point of view, the number of
such ”forwards” is limited by a constant number. Additionally, spreading the tree nodes
uniformly across the machines will lead to a balanced storage load. The drawback of
this approach is that even though the number of ”forwards” during a tree travels is
limited by a constant number, the impact on the response time of the system is very
high as each ”forward” corresponds to an additional network request. For example, for
indexes storing 64 bit multi-dimensional points, a point query would take 64 forwards
between the machines in the cluster in the worst case. Moreover, the machines which
stores the root node will receive all of the requests for any data, and will quickly become
a bottleneck.

• Assigning data points to machines. In this approach, each machine in the system will
maintain a in-memory PH-tree and data points are assigned to machines according to
some mapping. This mapping will be referred to as thekey-mapping, as it maintains
a mapping between the keys of the entries stored and the machines that store them.
Queries for arbitrary points will always be dispatched to the machines that hold the
points, according thekey-mapping. Therefore, if thekey-mappingis known by the
clients of the index, point queries can be resolved by a single network request. How-
ever, in such an architecture, the manner in which the points are distributed according
to thekey-mappingin�uences the manner in which the range and nearest neighbour
queries are executed.

While both of these alternatives satisfy some of the requirements of an ideal architecture,
the drawbacks of the �rst approach, the assignment of tree nodes to machines, outweigh
the advantages it provides. The number of network requests needed by this approach when
storing 32 or 64 bit data, typical for most applications, make the use of it prohibitive in a
setting where queries must have a low-latency.

Therefore, this work will focus on the second distribution approach. The following sections
will present possible strategies for distributing the points to PH-tree's store on different ma-
chines in the cluster.

3.2.1 Hashing

The �rst approach considered is using ahashingfunction to assign the multi-dimensional
points to machines in the cluster. This process is illustrated in Figure 3.1. The hashing
function takes the multi-dimensional point and generates a host idh based on the point values
in each dimension. This approach is similar to the approach used to implement in-memory
hash tables, where keys are mapped to buckets in the hash table.

The main advantage of this approach is that if the hash function is known to all of the ma-
chines in the cluster and to all of the clients, point queries can be executed in O(1) network

12 3.2. DISTRIBUTION STRATEGIES

�+�D�V�K���I�X�Q�F�W�L�R�Q �K��C����>�����Q�@���@��Bo���>�[�����[�����������[�G�@

Figure 3.1: Distributing the points based on a hash function

requests. Moreover, if the hash function is uniform, the multi-dimensional points are spread
uniformly across the cluster, leading to a balanced storage load on all of the machines.

However, the use of a hash function for the point distribution presents some drawbacks. First
of all, a hash function works well for a �xed number of hostsn. A different cluster con�g-
uration, with a different number of machines, requires the use of a different hash function.
Moreover, changing the hash function generally requires a re-hashing of all of the points al-
ready stored in the cluster2, potentially leading to a situation where all of the stored points
need to be moved to a different machine. This situation would case a lot of traf�c within the
cluster, making it hard for the system to answer queries until the migration process is �nished.

A second issue with use of hash functions is the observation that hash functions which are
perceived to be good in this situation spread the multi-dimensional points uniformly across
the machines in the cluster. In such a situation, is is quite likely that the hash function does not
preserve point locality, and such, complex queries like range queries and nearest neighbour
queries will need to be dispatched to all of the computing nodes in the cluster.

3.2.2 Spatial Splitting

Another approach that can be used for the point distribution problem is to partition the original
space into a set of contiguous regions and assign each region to a host in the system. The most
intuitive way to perform this split is to split the multi-dimensional space equally to obtain one
region per index host. Figure 3.2 shows a potential splitting of a 2D space for 2 hosts, while
Figure 3.3 presents a possible split of the same 2D space for 4 hosts.

The spatial splitting approach is not only intuitive, but it also preserves locality, as generally,
points which are close together are part of the same regions and are therefore stored on the
same machine. Additionally, range queries can be resolved by dispatching the range query
to all of the hosts whose assigned regions intersect with the range received as input. In the
best case, range queries can be dispatched to a single host. It is generally preferable to split
the space into hyper-rectangles, as these regions can be stored using only two data points, the
bottom right and top left corners, independently of the number of dimensions of the original
space.

While the spatial splitting works well in some situations, sometimes it is unclear how to prop-
erly split the space between the machines. For example, the 2D space is easy to split into 2 or
4 equal regions, but it is more dif�cult to split for 3 or 5 hosts. It is always possible to split the

2This can be circumvented by using an extendible hash function, which does not perform a full re-hash when
a bucket is added.

CHAPTER 3. INDEX DISTRIBUTION 13

�����������+�R�V�W���� �+�R�V�W�����[

�\

Figure 3.2: Equal geometric
space splitting for 2 hosts and 2
dimensions

��������

�+�R�V�W���� �+�R�V�W����

�+�R�V�W���� �+�R�V�W����

�[

�\

Figure 3.3: Equal geometric
space splitting for 4 hosts and 2
dimensions

�����������+�R�V�W�����[

�\

�+�R�V�W����

Figure 3.4: Potential partition-
ing of the space for a skewed in-
put distribution.

�����������+�R�V�W���� �+�R�V�W�����[

�\

Figure 3.5: Another potential
partitioning for the same skewed
input distribution.

space inton equally sized ”strips”, however this approach diminishes the locality of the data
for large values ofn. Representing regions as arbitrary polygons instead of hyper-rectangles
addresses the problem to a degree, but storing these polygons and computing intersection
between them is more dif�cult than performing the same task using hyper-rectangles.

Dif�culties in splitting the space can also arise even when using hyper-rectangle regions of
different size. One instance is the case of skewed point distributions, presented in Figures
3.4 and 3.5. In the case of the point distributions illustrated in these �gures, an equal space
partitioning would not split the points equally between the hosts. However, there are many
possible rectangle-based splittings of the space, and it is unclear which of these it is better.
In some case, the best split could be achieved by splitting the space into more regions than
machines and assign each region to a machine.

Additionally, in the case of skewed input distributions, the optimal split of the space into re-
gions will change over time, as some regions will end up containing more and more points. In
this case, the cluster needs to go through are-balancingphase, when the regions are modi�ed
and some points are moved from highly populated regions to less populated neighbouring
regions. An important observation is that the number of neighbouring regions for an arbitrary

14 3.2. DISTRIBUTION STRATEGIES

Figure 3.6: Z-order space �lling curve �lling the 2 dimensional space.

region is a function of the number of dimensions of the original space. This leads to an ex-
ponential number of regions participating, or at least being considered, in the re-balancing of
the points from a single dense region to its neighbours.

3.2.3 Z-Order Curve Splitting

As previously mentioned, the in-memory PH-tree stores the multi-dimensional points accord-
ing to the Z-ordering, by mapping the initial space to the 1-dimensional Z-order curve. This
curve �lls in the initial space in a contiguous and complete manner. Figure 3.63 shows the Z-
order space �lling curve �lling the 2D space where the values in each dimension are limited
by 3 bits.

Therefore, instead of splitting the original space into regions, one could attempt to partition
the Z-order curve into contiguous intervals. Figure 3.7 shows the 1 dimensional Z-order curve
corresponding to the same 3 bit 2-dimensional space from Figure 3.6, split into 4 intervals
of different colours:[0; 12] with blue, [13; 35] with yellow, [36; 47] with violet and[48; 63]
with green. Figure 3.8 shows how the interval splitting is re�ected in the original space.
Each interval on the Z-order curve corresponds to either a hyper-rectangle or a set of hyper-
rectangles. For each interval there are at mostO(d � w) of these hyper-rectangles, whered
is the number of dimensions andw is the number of bits needed to represented the values
in each dimension. The problem of generating the representation of the multi-dimensional
space from a Z-order curve is described in [9], which provides an algorithm for generating

3Image adapted fromhttp://www.scholarpedia.org/article/B-tree_and_UB-tree . Var-
ious other adaptations of this image have been used for exempli�cation purposes.

http://www.scholarpedia.org/article/B-tree_and_UB-tree

CHAPTER 3. INDEX DISTRIBUTION 15

�� ���� ���� ��������

Figure 3.7: Example intervals on
the 3bit Z-order curve

Figure 3.8: Example intervals on
the 3 bit Z-order curve �lling the
2D space

the hyper-rectangles associated with a Z-order curve range.

An advantage of this splitting method is the regions corresponding to the Z-order intervals
manifest locality, making it well suited for a point distribution method. Moreover, even if in
the original space each region has up to an exponential number of neighbouring regions, each
interval on the Z-order curve has a small, constant number of neighbouring intervals (2 for
the interior intervals, 1 for the two edge intervals). This makes it easier to handle the cases in
which a region is densely populated and should re-balance its points to neighbouring regions.

Due to the presented advantages, the Z-order curve interval splitting is the method that was
chosen as a point distribution strategy for the distributed PH-tree.

3.3 Architecture

The network architecture of the distributed PH-tree is presented in Figure 3.9. The points
are distributed to the hosts in the cluster using the Z-order curve interval splitting method.
Thekey-mappingis stored on the con�guration server and is known to all of the nodes and
the clients of the system. The con�guration server uses a noti�cation-based model and is
responsible for notifying the indexing hosts and clients whenever any changes occur. This
model reduces the amount of network traf�c within the cluster, as nodes and clients only
need to read thekey-mappingon start-up and do not need to poll the con�guration server for
changes.

Clients of the index �rst connect to the con�guration server, retrieve thekey-mappingand
register to receive noti�cations if the mapping changes. After receiving the mapping, clients
can begin to send queries to the indexing nodes within the cluster. Clients decide which
hosts need to the contacted for a query based on the type of the query and thekey-mapping.
This model is ef�cient as it allows the clients to decide the hosts to be queried based on
local data. Furthermore, queries concerning more indexing nodes can potentially be executed
by sending network requests in parallel to all of the involved nodes. A potential drawback
of this model is that the con�guration server could become the bottleneck in a system with
many indexing hosts or many connected clients. This issue can be addressed by replicating
the con�guration data to a cluster of con�guration servers. An alternative solution would

16 3.4. ALGORITHMS

�+�R�V�W����

�+�R�V�W���� �+�R�V�W����

�&�R�Q�I�L�J�X�U�D�W�L�R�Q��
�V�H�U�Y�H�U

�&�O�L�H�Q�W

Figure 3.9: The network architecture of the distributed PH-tree

be to store only a partial representation of the mapping in each indexing node and allow
queries to be ”hop” from one node to the other until they reach the destination machines, as
in the case of the previously discussed distributed hash tables. However, the extra latency
introduced by repeated ”hops” with the cluster makes this approach ill-suited for latency-
sensitive applications like a distributed-index.

As the data is split according to Z-order curve intervals, each indexing host only needs to
maintain two connections to other hosts in the cluster (or 1 for the hosts holding the edge
intervals). This means that the resources used by a host to maintain connections to its neigh-
bours remain constant, even if the number of the nodes in the cluster increases.

3.4 Algorithms

This section will discuss how thekey-mappingis created from the Z-order curve intervals and
how the queries are executed based on the key-mapping.

3.4.1 Key-Mapping Design

The key-mappingused by the distributed PH-tree assigns the points based on the Z-order
curve intervals. To determine the host responsible for a certain multi-dimensional point, one
has to �nd the Z-order interval that contains the Z-value of this point. In the case of a range
query, one has to �nd all of the Z-order intervals for which the regions in the original space
intersect the hyper-rectangle de�ned by the top left and bottom right points which de�ne the
range query. There are two alternative for designing thekey-mappingbased on the Z-order
curve intervals:

1. Store the Z-intervals as pairs of Z-values and perform 1-dimensional interval match-
ings to determine the hosts that have to be contacted for certain queries. For point

CHAPTER 3. INDEX DISTRIBUTION 17

Figure 3.10: The intervals described in 3.8 split into hyper-rectangles.

operations, determining which host needs to be contacted can be done by performing
a binary search of the Z-value of the query point on the Z-order intervals belonging to
each host. In the case of range queries, one needs to determine the hosts storing the top
left and bottom right corners using binary search, and return all of the hosts holding the
intervals between the interval of the host storing the top left point and the host storing
the top right point. In both cases, the complexity isO(logn), wheren is the number of
hosts. The correctness of this approach stems from the fact that the region represented
by a d-dimensional hyper-rectangle [X, Y]4 is included in the set ofd-dimensional
regions corresponding to the Z-interval[ZX ; ZY]. This can be seen in Figure 3.11a.

2. Store the hyper-rectangles from the original space that correspond to each Z-order in-
terval and perform intersections between the query points/rectangles from the original
space and the hyper-rectangle of the interval regions. The complexity of this operation
is O(n � w � d), for n indexing hosts, as each region contains at mostO(w � d) hyper-
rectangles. Figure 3.10 shows how the regions de�ned by the Z-order intervals can be
split into hyper-rectangles.

Even if the �rst solution is asymptotically faster than the second one for �nding the hosts
to query, the �rst approach attempts to query a much larger area in the original space than
the second one. Therefore, the �rst method can potentially generate many more network
requests than the �rst one, especially in a system with a large number of online indexing hosts.
Moreover, the intersection operation itself is performed in-memory on the client machine
and does not generate a network request. Because of these reasons, the second approach
is preferable to the �rst approach in a system looking to minimize the number of network
requests associated to each query, like the distributed PH-tree.

An algorithm for decomposing Z-order intervals into a set of hyper-rectangles is described in
[9]. This algorithm decomposes a Z-order interval into at mostO(w � d) hyper-rectangles in
O(w � d) time, wherew is the bit width of values in each dimension andd is the number of
dimensions. We propose storing the hyper-rectangles associated with each Z-order interval

4Where X is the top left corner of the hyper-rectangle and Y is the bottom right corner of the hyper rectangle

18 3.4. ALGORITHMS

into a multi-dimensional data structure able to perform intersection between the stored hyper-
rectangles and a query point or a query hyper-rectangle.

3.4.2 Point Operations

Point operations involve a single query point, like the insertion or removal of a key-value
pair, obtaining the value associated with a key-value pair or changing the key associated with
a key-value pair. For the point queries, the client only needs to determine which host to send
the request to. This is done by determining the intersections between the query point and the
hyper-rectangles corresponding to the Z-order intervals. In the case of theget(), put() and
delete()operations, the client sends the request to the host responsible for the query point and
returns the result of the operation. In the case of theupdateKey()operations, it is possible that
a different host is responsible for the new key of the value associated with the query point.
In that case, theupdateKey()operation is performed in two steps: �rst the client removes the
old key from the host responsible for it, and then inserts the new key into the proper host.

3.4.3 Range Queries

Range queries have the formrangequery(top-left, bottom-right). Both of the received ar-
guments are multi-dimensional data points and this operation returns all of the points in the
index that fall inside the multi-dimensional rectangle de�ned by these two points. These
operations are resolved in the following manner on the client. First, the client performs an
intersection between the hyper-rectangle range and the hyper-rectangles associated with the
Z-order intervals contained in thekey-mapping. It then send requests to all of the hosts whose
regions were intersected, receives and combines the results. It is important to note that each
host returns a list of point that are already ordered via Z-ordering and because the nature of
the Z-order interval split, these lists do not need to be merged, but only concatenated.

A range query can generate up toO(n) network requests, as in some cases, all of the hosts
might need to be contacted. However, as previously also mentioned in Section 3.4.1, the
key-mappingperforms the intersection between the query-rectangle and the regions corre-
sponding to the Z-order intervals, instead of performing the intersection between the Z-order
interval of the query range and the Z-order intervals of the machines. This guarantees that
hosts whichcannotcontain points in the query range will not be queried. It is however pos-
sible that some hosts will not contain any points falling in the query hyper-rectangle, even if
the regions they are responsible for intersects with the query range.

Figure 3.11a illustrates an example range query. It shows the range de�ned by the top left
point [(0; 2)] and bottom right point[(1; 5)] overlaid against the 3-bit Z-order curve. The
Z-order interval corresponding to this range is[4; 19]and the 2 dimensional region associated
to it includes the[(0; 2); (1; 5)] rectangle. Figure 3.11b also displays the regions associated to
each host according to the split presented in Figure 3.7. In this case, only the hosts responsible
for the blue and yellow regions need to be contacted by the client.

As previously mentioned, because the Z-order range associated with the query range cor-
responds to a larger regions than the query hyper-rectangle, especially in high dimensional
spaces,

CHAPTER 3. INDEX DISTRIBUTION 19

(a) The 2-dimensional range
[(0; 2); (1; 5)] overlaid on the Z-order
curve. The Z-order curve interval cor-
responding the this range is represented
with grey.

(b) The 2-dimensional range
[0; 2); (1; 5)] overlaid on the Z-order
curve. The intervals mentioned in Figure
3.8 are coloured in this image as well,
using the same colors.

Figure 3.11: Illustration of a range query intersected with the host intervals

3.4.4 Nearest Neighbour Queries

Nearest neighbour queries return thek nearest points, according to the Euclidean distance, to
an arbitrary query point, thus having the formknn query(q, k). The query point does not need
to be stored in the index. The execution of a nearest neighbour query has the following steps:

1. The client �rst determines which hosts is responsible for the query pointqand forwards
the query to this host.

2. After receiving a set of candidate points from the host, the client determines the fur-
thest neighbourfn of the query pointq from this set of candidates, according to the
Euclidean distance.

3. The client computes the distanced = dist (q; fn) and performs a range query on the
range[q � d; q + d] . If the hyper-rectangle range is all stored by the host that was
�rst queried for the candidates, the retrieved candidate points are simply returned as
the query result.

4. The �nal result of the nearest neighbour query consists of thek points from the result
of the previously executed range query that are closest toq.

The additional range query is needed because the Z-order splitting, or any other geometrical
splitting, does not guarantee that closestk neighbours of a point will be placed in the same
regions as the point itself. This range query ensures that points which are closer toq thanfn ,
but stored in a different region, will also be returned.

It is sometime possible that the initial query sent to the host responsible forqwill return fewer
thank points. This will generally only happen when the cluster contains very few points. In
this case, the queried area should be iteratively increased until at leastk points are returned.
This can be done by computing the distanced and iterative increasing it until the range query
[q � d; q+ d] returns at leastk points.

20 3.4. ALGORITHMS

(a) The 2 dimensional space. (b) Distance to further neighbour.

(c) The additional rectangle range query. (d) The optimal circle range query.

Figure 3.12: Illustration of a 3 nearest neighbour query execution in a 2 dimensional space.

While this approach for �nding thek nearest neighbours of a query point is correct, it is
not the most ef�cient one. The main issues is that the additional range query searches for
other neighbours in a hyper-cubing range. The optimal strategy would be to search for these
neighbours in hyper-sphere of radiusd centered atq. This hyper-sphere is inscribed in the
hyper-cube search by the range query, as illustrated in Figure 3.12d. Therefore, the algorithm
presented in this work can sometimes send unnecessary request to hosts responsible for the
areas outside of the hyper-sphere and still within the hypercube. This is generally not a
problem in lower dimensional spaces, however the different in volume between the hyper-
cube and the hyper-sphere increases gradually with dimensionality of the space.

3.4.5 Entry Rebalancing

As previously described, data sets which are skewed towards certain areas of the multi-
dimensional space will cause some machines to store more points than the others. A load
balancing algorithm is needed to balance the amount of entries stored across the cluster, such
that each hosts stores roughly the same amount of entries.

CHAPTER 3. INDEX DISTRIBUTION 21

Each host is assigned a thresholdt corresponding to the maximum number of entries it can
store. For simplicity, we assume that all the hosts in the system are identical and have the
samet. The load balancing algorithm used by the distributed PH-tree assumes that values
stored with each data points have roughly the same size, and such a threshold on the number
of entries a hosts can store coincides with the amount of data it can store. The presented
balancing algorithm can easily be modi�ed by simply using the amount of occupied memory
as a threshold.

Furthermore, the con�guration server maintains the number of entries associated to each
hosts, which we call thesizeof the host. It is important to note that since each multi-
dimensional point has a small size compared to the amount of main memory available on each
machine, the balancing algorithm can work properly even if a host only knows an approxi-
mation of the number of entries stored by the other hosts. Therefore, to improve scalability,
the hosts do not update the size stored in the con�guration server after each individual write
operation, but only after a certain number of write operations were performed since the last
update. An alternative solution would be update the size at a �xed time period. Each host
maintains a cached copy of the size information, and is noti�ed by the con�guration server
when a different host updates this information.

After the number of entries stored by a certain host reaches the balancing thresholdt, that
host will attempt to move some of the points it stores to a neighbouring host. This process
is referred to as are-balanacing operationand will change the Z-order intervals of both the
host initiating the re-balancing and the host receiving the additional entries. Given a hosth
responsible for an arbitrary interval, the host responsible for the Z-order interval to the right
will be called itsright neighbour. Similarly, the host responsible for the Z-order interval to
the left will be called theh's left neighbour.

The re-balancing algorithm proceeds as follows:

1. Theinitiator host checks the size of the hosts responsible for the intervals to the left and
to the right of its Z-order interval. When the host responsible for the leftmost intervals
initiates a re-balancing operation it only checks the size of its right neighbour, while
the host responsible for the rightmost interval only considers re-balancing to its left
neighbour.

2. Theinitiator selects the neighbouring host with the fewest entries and sends an initiate
balancing message. If the neighbour is available to participate in the operation, the
algorithm continues with the following step. If the neighbour is busy, theinitiator will
attempt to re-balance to the other neighbour. If that is not possible, the re-balancing
operation fails and will be re-attempted at a later point.

3. The initiator sends a subset of its entries to thereceiverhost. This subset is a contiguous
run of entries stored by the initiator.

4. After the entries have been moved, theinitiator updates thekey-mappingon the con-
�guration server.

5. The initiator sends a commit message to thereceiverhost, notifying it that the operation
was successful. After this message is sent, both hosts mark themselves as available for
any other re-balancing operations.

22 3.4. ALGORITHMS

This algorithm allows a hosth to be part of only a single re-balancing operation at a moment
in time. As soon as a host successfully initiates a re-balancing operation, both theinitiator and
thereceivermark themselves as busy and will refuse further re-balancing initiation operations
until the current operation is �nished. This allows up ton=2 balancing operations to run in
parallel across the cluster, as each operation involves two neighbouring hosts.

Furthermore, clients currently balancing do not accept write requests. This is done to prevent
theinitiator host to accept updates to the section of Z-order curve that is currently re-balanced
to thereceiverhost.

4
Concurrency

4.1 Challenges

The in-memory version of the PH-tree does not support concurrent access and remains con-
sistent only if accessed by a single writer thread or multiple reader threads at a time. With the
current popularity of multi-core CPU's, concurrent write access has the potential of providing
a signi�cant improvement in the throughput of the PH-tree. The addition of concurrent access
presents the following challenges:

• Concurrent access strategies must guarantee that PH-tree remains consistent for any
number of threads that access it and for any arbitrary interleaving of the executions
of these thread. Furthermore, deadlock should not occur when the data structure is
accessed by multiple threads.

• The chosen strategy should optimize the execution time for the most common opera-
tion, by minimizing for example, the amount of locks that have to be taken during for
those operations. In case of an indexing data structure, we assume that read operations
are more common than write operations and should be prioritized by the concurrency
strategy from the response time point of view.

• Different concurrent access strategies come with different consistency guarantees. For
example, consider the situation in which two processes A and B work concurrently on
a shared data structure. Process A starts a read operation at timet and process B a write
operation at timet + � . The consistency model determines if process A might see the
changes made by process B, if process B �nishes the operation before A.

• The PH-tree also supports an iterator over all of the entries or over all of the entries
contained within a speci�ed hyper-rectangle. The concurrency strategy should allow
iterators to traverse a PH-tree, even if the tree is concurrently modi�ed by other threads.

23

24 4.2. PH-TREE STRUCTURE

���� ����

���� ����

����

���� ����

����

����

����

�U�R�R�W���Q�R�G�H

�S�U�H�I�L�[

�+�&���/�+�&

�S�R�V�W�I�L�[�H�V

(a) Logical structure of a PH-tree.

�3�U�H�I�L�[��������
�+�&���/�+�&
�3�R�V�W�I�L�[�H�V����������������

�+�&���/�+�&

�3�U�H�I�L�[��������
�+�&���/�+�&
�3�R�V�W�I�L�[�H�V��������

(b) Node structure of the same PH-tree

Figure 4.1: A 2 dimensional PH-tree containing three 4-bit entries: (0000, 1000), (0011,
1010), (1011, 1000). The values are omitted.

The concurrency strategy used will in�uence which entries of the tree are seen by the
iterator.

4.2 PH-tree Structure

The PH-tree stores key-value pair entries. The keys are multi-dimensional data points and the
values are optional. The entries are stored as bit strings, to exploit any pre�x sharing between
the bit strings of the keys and reduce the storage requirements.

Figure 4.1a illustrates a 2 dimensional PH-tree containing the entries (0000, 1000), (0011,
1010), (1011, 1000). Figure 4.1b shows the corresponding node structure for the same PH-
tree. Each node contains apre�x, a a hypercube(HC) and a set ofpost�xes. Thepre�x is a
portion of the bit string common to all bit string portions stored in that node. Apost�x is an
ending portion of a single bit string. Thehypercubeis a data structure that stores references
to post�xesor subnodes. Currently, the PH-tree supports multiple representation for thehy-
percube, either as an array (HC) or a sparse linear representation LHC. For example, the root
node in Figure 4.1a has ahypercubestoring references to two subnodes. The subnodes each
have an associatedpre�x and ahypercubestoring links to post�xes.

This structural representation of the PH-tree has the following important consequences:

• All information stored in a node cannot be read or written in an atomic manner, as the
pre�x, the hypercube and the post�xes need to be read or written in separate instruc-
tions.

• Adding a new sub-node to a node, as well as removing or replacing it can be done
atomically.

The following section presents the concurrent access strategies available in the concurrent
version of the PH-tree and discusses their consistency guarantees.

CHAPTER 4. CONCURRENCY 25

4.3 Concurrency Strategies

4.3.1 Copy-on-Write

Copy-on-Write is an concurrent access strategy that allows multiple threads to access the
same shared data structure. When one of these threads needs to modify the shared data
structure, it �rst makes a copy of it, performs the modi�cations and then updates it with
its modi�ed copy. Each write operation creates a new version of the shared data structure,
making it immutable. This strategy allows one writer thread and an arbitrary number of reader
threads to work on the same data in the same time. If multiple writer threads were to access
the data structure, each would end up with its updated copy and the last to replace the shared
data structure with the copy would overwrite the changes of the other writer.

In case of the trees, writer threads do not have to copy the full tree before applying their
modi�cations. It is suf�cient to create a copy of the node that is updated and copies of all of
its ancestor nodes, up to and including the root of the tree. The number of nodes copied for
each update is equal to the maximum height of the tree. In case of the PH-tree, this number is
equal to the number of bits needed to represent the values on each dimensions, independent
of the number of nodes or entries currently stored in the tree.

Figure 4.2 illustrates the execution of write operation. For simplicity, a general binary tree is
pictured here, as the operation is executed in a similar manner on a PH-tree. In this example,
node G needs to be updated. To achieve this, all of the ancestors of G are copied and the copy
of G, G0 is updated. Finally, the root pointer of the tree is changed from A toA0 atomically.
It is important that the root swap is performed in an atomic manner, such that any readers
concurrently accessing the tree will either access the old or the new version of the tree.

�$

�)

�&

�*�'

�%

�(

�$�¶

�&�¶

�*�¶

Figure 4.2: Illustration of Copy-on-Write on a binary tree where the node G has to be written

There are several possibilities to handle multiple writer threads using the Copy-on-Write strat-
egy. One approach would be allow multiple threads to access the tree in the same time. This
can be done by implementing the atomic root swap using a Test-And-Set atomic operation,
essentially turning each write operation into a transaction. In case the root was changed since
the thread has started the operation, the atomic Test-And-Set fails and the thread will need to
restart the operation. The main drawback of this approach is that the commit fails even if the
changes are made to different parts of the tree.

Iterators created on a Copy-on-Write PH-tree essentially traverse a snapshot of the tree taken

26 4.3. CONCURRENCY STRATEGIES

�$

�)

�&

�*�'

�%

�(

(a) The root is locked

�$

�)

�&

�*�'

�%

�(

(b) The next node is locked

�$

�)

�&

�*�'

�%

�(

(c) The root can now be unlocked

�$

�)

�&

�*�'

�%

�(

(d) The �nal node is locked

Figure 4.3: Illustration of hand-over-hand locking descent to node G

on the iterator creation timet. If an iterator is created at timet, it will view all of the entries
that were contained in the tree at timet, even if these entries were removed from the tree
before the iterator �nishes. Moreover, iterators will never see any entries that may have been
added to the PH-tree after timet.

4.3.2 Locking

A very simple way to handle concurrent writer threads is to use a global lock that each thread
must take before the execution of an operation. If the lock is a mutex, the tree can only
be accessed by a single thread. If the thread is a read-write lock, the tree can be accessed
by either a single writer or several reader threads. However, thiscoarse-grainedlocking
strategy does not allow one writer thread and one reader to perform the accesses in parallel.
Furthermore, if the lock favors readers, writers might the permanently blocked from accessing
the tree for workloads with a sustained number of read accesses. A similar situation arises for
a read-write lock that favors writers, which might block reader threads inde�nitely. Due to
these disadvantages, we turned our attention to other locking approaches, namely�ne-grained
locking strategies.

Fine grainedlocking strategies perform locking at the level of tree nodes and can allow mul-
tiple writer threads to modify the tree in the same time. Two popular strategies are described
in the following sections. For simplicity, in the following sections we �rst consider how the
strategies support concurrent writers and then discuss how to incorporate concurrent read and
writer access.

CHAPTER 4. CONCURRENCY 27

�$

�)

�&

�*�'

�%

�(

(a) The parent of the target node is locked

�$

�)

�&

�*�'

�%

�(

(b) The target node is locked

Figure 4.4: Illustration of optimistic locking descent to node G

Hand-over-Hand Locking

Hand-over-hand locking, also calledlock-coupling, is a �ne-grained locking strategy accord-
ing to which a lock for a node can only be acquired if the parent lock is also held. When
traversing the tree according to this strategy, at most two locks will be held by a thread at a
time. An additional lock needs to be acquired before acquiring the lock of the root of the tree,
to prevent con�icts on the creation of the �rst node of the tree.

Figure 4.3 shows the sequence of events happening when a thread needs to update a node.
We consider that each node has an associated exclusive write lock. The node to be updated in
this �gure is node G. The thread �rst acquires the root, descends to node C and acquires that
lock as well. The root can be unlocked before descending to node G and acquiring that lock.
After the changes are done, the lock of node G is unlocked.

This strategy allows multiple threads to modify the different subtrees of the tree. The main
drawback of this approach is that if the non-leaf nodes are modi�ed, subtrees of those nodes
cannot be modi�ed of a different thread until the current thread �nishes the update operation.
Secondly, there will be a high contention for the locks on the higher levels of the tree, which
could negatively affect performance for write-heavy workloads.

Optimistic Locking

Optimistic locking is an alternative �ne grained locking strategy which seeks to minimize the
number of locks which are taken during a write operation. The basic idea is to traverse the
tree without acquiring any write locks until the node to be updated is reached. Once at the
target node, the writer thread acquires the lock of the parent and the lock of the current node.
After this happens, the write operation can continue only if both of these two nodes have not
yet been removed from the tree and the current node is still a child node of the parent node.
If any of these checks fail, the write operation fails and the current thread begins another
attempt by starting a new traversal of the tree. Figure 4.4 shows the sequence of events for
the update of a node in the tree using optimistic locking. As in the previous section, the node
to be modi�ed is G.

To speed up checking if a node is still reachable from the root node, each node has an addi-
tional removed �ag, which indicates if certain node has been removed from the tree. When a
thread removes a node, it sets this �ag to true before releasing the lock of the node.

28 4.3. CONCURRENCY STRATEGIES

One advantage of this method is that in a large tree, re-tries are generally rare as threads do
not generally attempt to update the same node. Moreover, a thread holding the lock of a
certain node does not block other threads from performing update operations on the node's
subtrees, unlike the hand-over-hand strategy.

Handling Reader Threads

It is important to mention the fact that in the case of the PH-tree, all update operation to a
single node are not executed in an atomic fashion, which can cause reader threads to perform
reads from nodes which are in an inconsistent state. This inconsistency can be avoided by
protecting the nodes with a read-write lock and requiring the read operations to acquire the
lock of a node in reading mode before performing a read. Additionally, writer threads attempt
to acquire the lock of a node in write mode during the read operation. The conversion of
exclusive locks to read-write locks allows both described �ne-grained locking strategies to
support both concurrent writers and readers.

In the case of the �ne-grained locking concurrency strategies, iterators running the PH-tree
operate according to a relaxed consistency semantics. Therefore, an iterator created at timet,
which �nished traversing the tree at timee will see all of entries that were part of the tree a
timet and are still part of the tree at timee. Moreover, entries inserted or removed in the time
interval[t; e] may also be seen by the iterator. It is however guaranteed that all of the entries
seen by the iterator are visited according the Z-ordering.

4.3.3 Hybrid Approach

As previously mentioned, both hand-over-hand locking and optimistic locking require readers
to acquire locks on the nodes they perform the reads on. This increases the latency of the
read operation due to the overhead of acquiring locks. Moreover, when the tree is accessed
by many reader threads, lock contention can lead to a very fast performance decrease.

We propose the modi�cation of the �ne-grained locking strategies to incorporate copy-on-
write logic for the write operations. Speci�cally, before performing a write operation on
certain node, the writer thread �rst creates of copy of the node, performs the update on the
copy and then atomically replaces the parent node's reference to the node with the copy. As
the writer thread holds the lock on the parent node, it is guaranteed that no other writer threads
will overwrite this change. Furthermore, reader threads do not need to acquire locks on the
nodes when reading the node information, as the current node they are accessing will not be
changed by the writers.

This modi�cations allows the read operations and iterators on the PH-tree to remain un-
changed, while only the write operations need to be updated. Therefore, the response time of
the read operations will not suffer from the overhead of lock contention.

CHAPTER 4. CONCURRENCY 29

4.4 Chosen Strategies

The PH-tree supports both a full Copy-on-Write concurrency strategy and the hybrid versions
of the described �ne grained locking strategies. The optimistic locking strategy is generally
faster than the hand-over-hand locking strategy, the actual results being detailed in Section
6.2 of Chapter 6. However, optimistic locking can lead to starvation when many threads
need to update the same node or nodes which are close together. Therefore, hand-over-hand
locking can be chosen over optimistic locking in situations where it is important that writer
threads are not starved. The choice between the Copy-on-Write strategy and the �ne grained
strategies comes down to the choice between the consistency guarantees provided by them.
For example, snapshots of the tree can only be obtained if the tree is using the Copy-on-Write
strategy.

30 4.4. CHOSEN STRATEGIES

5
Implementation

This chapter describes the implementation of the approaches described in the previous chapter
in order to obtain a distributed and concurrent PH-tree. We discuss the technologies used to
implement the distribution architecture and explain how the multiple concurrency strategies
have been integrated in the code of the PH-tree.

5.1 System Architecture

The architecture of the distributed PH-tree is shown in Figure 5.1. The implementation con-
sists of two artifacts: theclient library and theserver library.

Theclient library is deployed on the clients and contains the code necessary to connect to the
con�guration server, retrieve the cluster information and perform operations on the cluster.
Theclient library also contains a dependency to theKryo library, a Java serialization library
that is used to encode the values stored on the PH-tree before the insert operation and decode
the values retrieved from the server. Clients cannot modify the cluster information and can
only subscribe to be noti�ed by the con�guration server when indexing hosts join or leave the
cluster and when the Z-order curve intervals changes as the result of a rebalancing operation.

Theserver librarycontains the index server logic and needs to be deployed on the indexing
hosts. Theserver library implements a multi-threaded Java server application running on
the indexing hosts. TheNetty IO1 library is used to handle incoming client requests using a
thread pool. When a server is started, it �rst connects to the con�guration server to retrieve
the cluster information and then is assigned an interval of the Z-order curve for which it
is responsible. If the cluster already contains some data the new node can mark itself as a
free node and will be contacted by the next node in the cluster that will begin a balancing
operation. Indexing hosts update the intervals in the cluster con�guration after a balancing

1http://netty.io/

31

32 5.2. PH-TREE JAVA API

�&�O�L�H�Q�W���0�D�F�K�L�Q�H

�&�O�L�H�Q�W���O�L�E�U�D�U�\

�.�U�\�R���6�H�U�L�D�O�L�]�D�W�L�R�Q

�=�R�R�N�H�H�S�H�U���6�H�U�Y�H�U

�&�O�X�V�W�H�U���F�R�Q�I�L�J�X�U�D�W�L�R�Q

�6�H�U�Y�H�U���0�D�F�K�L�Q�H

�6�H�U�Y�H�U���O�L�E�U�D�U�\

�1�H�W�W�\���,�2

�3�+���7�U�H�H

�,�Q�G�H�[�L�Q�J
�V�H�U�Y�H�U�V

�&�O�L�H�Q�W���U�H�D�G�V��
�F�R�Q�I�L�J�X�U�D�W�L�R�Q �,�Q�G�H�[���V�H�U�Y�H�U�V��

�U�H�D�G�������X�S�G�D�W�H��
�F�R�Q�I�L�J�X�U�D�W�L�R�Q

�&�O�L�H�Q�W���T�X�H�U�L�H�V
�L�Q�G�H�[���K�R�V�W�V

Figure 5.1: The implementation architecture of the distributed PH-tree

operation and periodically update the number of entries stored.

Thecon�guration serverwas implemented usingZooKeeper2, an open source server whose
goal is to provide reliable distributed coordination. ZooKeeper provides a centralized ser-
vice for maintaining con�guration information and performing distributed synchronization.
The cluster con�gurationis stored in a ZooKeeper speci�c format. ZooKeeper also allows
the possibility of replicating the stored con�guration by running aqourum3 of machines to
improve availability.

A minimal con�guration of the distributed PH-tree requires one ZooKeeper server, one in-
dexing host running theserver libraryand one client machine performing operation using the
cluster library.

5.2 PH-tree Java API

The Java API of the PH-tree is presented in Figure 5.2. The interfacePhTreeV is the
main interface and corresponds to a PH-tree that stores entries with keys of typelong[]
and arbitrary objects as values. A set API is provided through the classesPhTree and
PhTreeD . PhTree uses aPhTreeV instance with empty values to implement a set for
multi-dimensional points with values of typelong . PhTreeVD is targeted towards applica-
tion which require �oating point precision for the values of each dimension. This type of tree
is backed by thePhTreeV instance and performs pre and post processing of the multiple-
dimensional points to map them fromdouble[] to long[] .

The initial PH-tree implementation also provides support for range trees, which can store
hyper-rectangles de�ned by two multi-dimensional points: the bottom right and top left

2http://zookeeper.apache.org/
3The name used by ZooKeeper for a replicated cluster of ZooKeeper servers.

CHAPTER 5. IMPLEMENTATION 33

Figure 5.2: The Java API of the PH-tree. The classes coloured with blue represent the existing
code, the additions in green represent the distributed implementation.

corners of the hyper-rectangle. These types of trees are implemented using special types
of pre and post processors and are internally backed by point PH-trees.PhTreeRangeV
stores hyper-rectangles de�ned by multi-dimensional points represented aslong[] and al-
lows arbitrary values.PhTreeRangeVD is similar but allows points to be represented as
double[] . Both of these two implementations use an instance ofPhTreeV to store the
processed hyper-rectangles, as shown in Figure 5.2. Finally,PhTreeRangeD provides sup-
port for hype-rectangle set index is backed by aPhTree object.

As presented in Figure 5.2, all of the types of trees discussed implement the interface
PhTreeV . The distributed PH-tree provides another implementation for this interface.
Method calls to any of the trees in the presented hierarchy are transformed into commands
send by theDistrbutedPhTreeV class to the indexing hosts over the network. After the
requests are serviced,DistributedPhTreeV combines the responses and provides the
appropriate returning value.

One big advantage of this approach is that client is not aware if it is using an in-memory tree
or a distributed one, except at the creation time. Therefore, applications previously using the
in-memory version of the PH-tree can easily switch to the distributed implementation, with
minimal code changes.

The choice of providing a separate implementation only of thePhTreeV class has another
important consequence: the indexing hosts only need to maintain an in-memory instance
of a PhTreeV implementation, independent of the type of tree used by the client. This
simpli�es the implementation and also has the advantage of off-loading the pre and post
processing operations from the servers to the clients, allowing faster request processing and
better throughput on the servers.

34 5.3. DISTRIBUTION

5.3 Distribution

5.3.1 Client Design

A high level diagram of the client library is presented in Figure 5.3. The
DistributedPhTreeV class implements thePhTreeV interface and provides access
the distributed PH-tree. Each method call on thePhTreeV interface is delegated to a
PhTreeIndexProxy object. This object converts each method call into aRequest ob-
ject, similar to theCommand design pattern4. The proxy class also decides which hosts need
to be contacted to resolve the operation, based on a locally cachedKey-Mapping object.
This object contains the most recent cluster con�guration available to the host. TheRequest
object is then passed on to aRequestDispatcher , where it is encoded into an array of
bytes and sent to the corresponding hosts via the Java TCP Socket API. TheTransport
class keeps the most recently used connections alive, to avoid having to perform the TCP
handshake for each operation when repeatedly interacting with the same host.

Figure 5.3: The class diagram of the client library

The calls to theDistributedPhTreeV methods are blocking, as theTransport object
blocks the execution until it has received a response from the remote indexing host. The re-
sponse is received as an array of bytes and is decoded into aResponse object and returned
to theRequestDispatcher object. If more hosts participated in the query, their corre-
spondingResponse objects are combined and the result of the operation is returned to the
caller of theDistributedPhTreeV method.

4http://en.wikipedia.org/wiki/Commandpattern

CHAPTER 5. IMPLEMENTATION 35

5.3.2 Server Design

Theserver libraryis implemented as a multi-threaded, asynchronous, event-driven server, ac-
cording to thereactor pattern5. This model uses two types of threads:Dispatcherthreads and
Handlerthreads. ADispatcherthread accepts incoming connections, allocates the necessary
resources for the connection and then passes the connection resources to aHandler thread.
TheHandler thread accepts requests from the client using the connection resource provided
by theDispatcherthread. For the TCP protocol, this resource is generally a reference to a
Socketobject. TheHandler thread manages requests from more than one client by leverag-
ing the event-based IO support provided by the operating system. TheNetty IOJava library
is used for the implementation, as it provides an easy manner to set up a pool ofHandler
threads. The chosen server architecture generally performs better than architectures which
create a new thread for every request, as theHandler threads are pooled and are initialized
before any client requests are serviced.

The high level diagram of the server library is presented in Figure 5.4. The main class of the
server libraryis theIndexMiddleware class, which sets up the pool of handler threads
and starts the dispatcher thread. TheMiddlewareChannelHandler class is the �rst
handler that is executed by one of theHandler threads upon receiving a request on a client
connection. This class reads all of the bytes corresponding to a single request from a client
and places them into a byte array object. This object is then passed to an instance of the
IOHandler class, which coverts the byte array into aRequest object. TheIOHandler
then passes theRequest object to another handler, based on the type of the request. Client
requests are passed along to aRequestHandler object, while balancing requests, coming
from other servers are passed to theBalancingRequestHandler object.

Figure 5.4: The class diagram of the server library

Information that is commonly accessed by all of theHandler threads is stored in the

5http://en.wikipedia.org/wiki/Reactorpattern

36 5.3. DISTRIBUTION

IndexContext object. This object contains a reference to theClusterService , used
to read and writer cluster con�guration data, and to the in-memory PH-tree instance on that
server, which is used in processing the client requests.

5.3.3 Configuration Server and Key-Mapping Implementation

TheKey-Mappingwas implemented using the ZooKeeper, an open-source coordination ser-
vice. ZooKeeper provides access to a shared hierarchical namespace similar to a �le system.
This namespace is comprised of data registers, calledznodes, which are identi�ed by a path
and store data in the form of a byte array. The data stored within aznodeis guaranteed to
always be read and written atomically. Additionally, eachznodecan have any number of
childrenznodes. ZooKeeper provides primitives to create and deleteznodes, check if a node
exists, get and set the data stored by a node and also retrieves the list of children of a node.
It is also possible to setwatcheson certain znodes, and receive noti�cations from ZooKeeper
when the data of the node was changed.

Both the client and the servers access the con�guration data using theClusterService
object, which maintains a cached version of the con�guration on aKeyMapping ob-
ject. Handlers in theserver library module can also update the con�guration through
the ClusterService API. The ClusterService receives noti�cations from the
ZooKeeper server when any data was changed and updates theKeyMapping object ac-
cordingly. The implementation of theClusterService uses theCurator6 framework, a
set of libraries that provide a simpler and more reliable API for accessing ZooKeeper.

The ZooKeeper con�guration for the distributed PH-tree is illustrated in Figure 5.5. This
con�guration was implemented using three main znodes:

• The /mapping znodecontains the set of all Z-order intervals, together with the hosts
responsible for each of these intervals. All of this information is serialized into a byte
array and is always read and written atomically by the indexing hosts. This is done to
ensure that all Z-order intervals are read by the clients in an atomic manner, and always
offer them a consistent view of the system.

• The/sizesznode stores an approximation of the number of entries stored in each index-
ing host, which is needed to make decisions during there-balancingoperation. This
znode contains one child znode for each host, the child node storing the approximate
size of each host. This allows all of the hosts to update their size without clashing
with updates from other hosts. Even though this means that the sizes of all of the
hosts cannot be read atomically, the consistency loss is not signi�cant, as the balancing
operations do not require the precise number of entries stored on the neighbours.

• Finally, the/freeznode contains a list of hosts which have registered themselves as free
on start-up and will be contacted by the balancing initiators during the next balancing
operations.

As the clients maintain a cached copy of the latest information in ZooKeeper, it is possible
that, due to network delays, the mapping on the client may be different from the actual in-

6http://curator.apache.org/

CHAPTER 5. IMPLEMENTATION 37

Figure 5.5: A diagram of the Key-Mapping stored in ZooKeeper

tervals on the server. Consider the following situation: a client initiates a query and after
analyzing the localKey-Mapping, it decides it has to contact hosth to retrieve the value for a
certain keyk. However, before the request reaches hosth, this host could have already partic-
ipated in a re-balancing operation and moved a part of its entries to a neighbouring host. If the
entry involved in the query was moved to a different host, hosth no longer has it and would
respond to the client that no such host exists in the cluster. This is wrong, as the entry was
simply moved to a neighbouring host. To prevent this type of situations, theKey-Mappinghas
a version number that is incremented after each re-balancing operation. Each indexing host
stores the version of the mapping that was generated during the last re-balancing operation
in which that host was involved. Furthermore, the clients include the version number of their
local mapping in the requests sent to the hosts. Upon receiving a request, the server checks
the client mapping version against the version of its last re-balancing operation. If the client
version number is higher or equal, the request can be serviced without any consistency loss,
as any changes that may have increase the clients version happened to other intervals in the
mapping. Instead, if the client's version number is smaller than the host's version, the client is
noticed that it's mapping is outdated and should retry the query. The client keeps attempting
to send queries to indexing servers until it has received a response for an up to date mapping.

In a cluster ofn hosts, there can be at mostn=2 balancing operations running in parallel on
the cluster, as each host can be involved in a single balancing operation at a time. Therefore, it
is important that a host's updates to the mapping do not overwrite the changes made by other

38 5.3. DISTRIBUTION

hosts. The mapping update operation is performed in acompare-and-swapmanner, using
the multi-update operation support provided by ZooKeeper. Using this type of operation,
it is possible to perform an update to a znode only if its version (or alternatively, another
znode's version) has not changed since the previous value was read. Following a re-balancing
operation, the initiator hosts attempts to write the new version of the mapping to ZooKeeper.
If the mapping was changed by another host, the initiator reads the new mapping, applies
its changes on the interval bounds and retries the operation until it is successful. While this
approach can lead to starvation if a host is consistently blocked by other hosts to update the
mapping, such a large numbe of concurrent re-balancing operatons is not likely to happen. An
alternative solution to this problem would have been to implement a distributed lock on the
mapping through ZooKeeper. In that situation, the initiators would always need to perform
three requests to ZooKeeper: one request to acquire the lock, the second to perform the write
and the third to release the lock. Our solution optimizes the duration of the re-balancing
operation for the best case, when the write will be successful, as that situation is much more
common in practice.

5.3.4 Communication Flow

The distributed PH-tree uses a custom binary protocol for both the communication between
a client and an indexing host and between two indexing neighbouring indexing hosts. The
main communication �ow is described in Figure 5.6. TheRequestDispatcher on the
client creates aRequest object for each method call to the PH-tree API. This request object
contains the request type and the arguments received by the method and it is converted into an
array of bytes by theRequestEncoder class, according to the communication protocol.
The array of bytes is sent through the network to all of the servers that participate in the
operation. On the server, the request is assigned to one of request processing threads which
converts the array of bytes back to aRequest object using aRequestDecoder . The
request is then serviced by aRequestHandler object, which returns aResponse object
containing the result of the request. TheResponse object is converted into an array of bytes
using aResponseEncoder and sent back to the client over the wire. Back on the client,
the response is decoded from a byte array. In case multiple servers were contacted, all of their
responses are decoded and then combined to produce the return value of the method call.

The main reasons for using a binary protocol, as opposed to a more high level protocol based
on JSON7 or XML8 are the following:

• A binary protocol produces a much smaller output than a text based protocol. In the
case of the custom binary protocol, all parameters are converted into arrays of bytes
of the smallest possible size and combined into a large byte array. JSON and XML
formats require additional metadata to store the name of the �elds and to make the
representation human readable.

• JSON or XML protocols follow a two-step process: �rst the request is converted into
a JSON or XML document, then the document is converted into an array of bytes to
be sent over the network. The binary protocol skips the middle step and transforms

7http://json.org/
8http://en.wikipedia.org/wiki/XML

CHAPTER 5. IMPLEMENTATION 39

Figure 5.6: A diagram of the communication �ow between the client and the server

requests directly into arrays of bytes. This makes the binary encoding faster than the
text-based alternatives.

• The messages exchanged for this communication protocols are generally quite simple
and thus the implementation effort for ef�cient custom serialization is not very high.

5.3.5 Iterators

Beside the number of queries that return a list of entries that match certain parameters, the
PH-tree API also provides support for iterators. These iterators implement the Java iterator
API and allow clients to iterator over all of the entries of the tree or over all of the entries that
fall within a certain query hyper-rectangle.

Once an iterator is created using the client API, the client sends a request to the host holding
the �rst key in the iterator. This host creates an in-memory iterator object that is maintained
until the client has �nished iterating over the entries. The client retrieves batches of entries
from the iterator on the host, to avoid having to send a request each time the iterator is moved
a single position. Once all entries in the iterator stored on a single host have been exhausted,
the client contacts the host holding the following portion of the iterator data and repeats the
procedure.

One advantage of this approach is that the client does not have to perform a network request
for each entry of the iterator. Secondly, for iterators over large areas, spanning multiple hosts,
it might also be unfeasible to request all of the entries in the iterator from all of the hosts
and just iterator over them in-memory, on the client machine. A potential drawback of this
solution is that each iterator running on a client has an associated iterator object running on
an server machine. Thus, creating very large numbers of iterators could lead to large memory
consumption on the servers and could potentially affect the performance in a negative manner.

40 5.4. CONCURRENCY

5.4 Concurrency

The addition of concurrency support to the PH-tree involves the modi�cation of the write
operations to handle accesses from multiple threads. The operations which perform queries,
create or execute iterators across the PH-tree were not modi�ed, to preserve the response
time of the read operations. Therefore, only theput(), delete()andupdateKey()methods for
implementations of thePhTreeV interface require modi�cations to support concurrency.

The implementation was performed by isolating the write methods into a separate interface
calledPhOperations . Thus, the PH-tree implementation delegates the execution of the
write methods to an internalPhOperations object. This pattern allows us to easily provide
multiple implementation for concurrent write access strategies by placing each strategy into
a separate implementation class.

Figure 5.7: The Java API of the concurrency classes

Figure 5.7 shows thePhOperations interface and its implementations. First of all,
PhOperationsSimple provides an no-concurrency implementation of the write opera-
tions, allowing applications that do not require concurrent access to by-pass the response time
performance penalty added by the synchronized implementations.PhOperationsCOW
provides a full Copy-on-Write implementation, which essentially creates a ”new” version9

of the tree at each write operation and supports iteration on snapshots of the tree. This imple-
mentation supports a single writer thread accessing the three concurrently with an arbitrar-
ily large number of readers.PhOperationHoH andPhOperationsOL are �ne grained
lock-based concurrency strategies, providing support for multiple reader and writer threads at
the cost of strict consistency. In both of these implementations, the nodes modi�ed are �rst
copied and the modi�ed copies are atomically replaced in the parent nodes. This removes
the need for taking locks in the read methods.PhOperationsHoH implements the tree
descent using hand-over-hand locking, whilePhOperationsOL performs optimistic lock-
ing for this purpose. As previously discussed in Chapter 4,PhOperationsOL may need
multiple descents on the tree until the locking attempt was successful and should generally
perform better thanPhOperaionsHoH for workloads in which the writers are not accessing

9Only a single path from the root to the update node is copied at each write operations, the rest of the tree is
shared with the previous version.

CHAPTER 5. IMPLEMENTATION 41

the same area of the tree at the same time.

Another big advantage is that thePhOperations reference can be swapped at runtime,
which changes the concurrency strategy used by the PH-tree. This allows a tree to use op-
timistic locking while it is ”loaded” with entries from multiple threads, and then switch to
copy-on-write to allow iterators or range queries to execute on snapshots of the tree.

The implementation uses the locks provided by the Java API for the write locks. An instance
of ReentrantLock is added to each node object, and the locks are taken by the writer
threads according to the concurrency strategy used. Furthermore, theReentrantLock
object is used to synchronize the writer threads in the copy-in-write implementation of the
tree. An alternative to using lock objects on each node is to perform synchronization using a
separate concurrent data structure, in an attempt to reduce the amount of memory associated
with each node. For example, to ”lock” a node, a writer would insert the node reference into
a concurrent hash set. Similarly, ”unlocking” a node is done by removing the node from the
set. Therefore, a node is ”locked” if it is stored in the set and ”unlocked” otherwise. This
approach would reduce the space overhead added by the lock object, however its performance
depends greatly on the performance of the concurrent hash set. Furthermore, if a thread wants
to acquire a lock that is already taken is has to repeatedly poll the data structure, entering a
busy-wait state. This means that the thread will keep using the CPU and generate a lot of
traf�c on the memory bus until the lock is released. We have �nally chosen the solution that
assigns a lock object to each node, as it avoids busy-waiting when writer threads have to wait
on a lock.

42 5.4. CONCURRENCY

6
Evaluation

This chapter contains the performance evaluation of the distributed PH-tree. Section 6.1
presents the performance of the PH-tree from the distributed point of view, for indexing clus-
ters of different sizes. The concurrent access strategies presented in Chapter 4 are evaluated
in Section 6.2.

6.1 Distribution

6.1.1 Experimental Setup

The experiments were executed in order to measure the insertion response time and through-
put for distributed clusters containing different numbers of server hosts. The machines used
were provided by the Google Computer Engine1 cloud platform. Each server process ran on a
virtual instance containing 2 virtual CPU's and 7.5 GB of RAM memory2. Google Compute
Engine does not provide any information regarding the physical hardware used by the virtual
machines, however the virtual machine emulated the Intel Core i7-3800 processor family,
with each of the 2 CPU cores having a 2.6GHz frequency. The same type of machines have
been used to run the ZooKeeper server, the indexing server processes and generate client
requests.

Both the throughput and the response time were measured on the client machines. In the
measurements, we consider that an operation performed on the distributed index starts in the
moment when the method corresponding to this operation is called in the client code and ends
when the same methods returns. Therefore, the duration of an operation includes the request
encoding on the client side, the time needed by the request to travel over the network to the

1https://cloud.google.com/compute/
2The code used by Google Compute engine for this type of virtual machine isn1-standard-2

43

44 6.1. DISTRIBUTION

server machine, the processing time on the server machine, the time needed by the server
response to travel over the network back to the client and the response decoding.

The experiments are run the help of a shell script, which starts the necessary processes on
the appropriate machines, tracks the execution of the experiment, collects the client logs and
stops the processes at the end of the experiment. A typical experiment runs in the following
manner. First, the shell script connects to virtual machine assigned for the ZooKeeper server
and starts the ZooKeeper server process. Next, the script connects to all server machines part
of the cluster con�guration for the current experiment and starts an indexing server process
on each server machine. Finally, the shell script connects to a set of client machines and
starts a Java program that will generate the appropriate workload for the current experiment.
Each client process logs the duration of each request together with the time stamp at which
the request was completed. After all clients have �nished executing, the log �les are gathered
from the client machines and merged into a master log.

Because not all the clients start executing at precisely the same time, each experiment will be
formed of three phases:the build-upphase, when some clients perform requests and others
have not started yet, thestable request loadphase, when all clients are performing requests
and thecool downphase, when some clients still perform requests and others have �nished.
These phases are identi�ed by analyzing the trace of the throughput of the system for the
whole duration of the experiment. The time intervals corresponding to thebuild upandcool
downphases are removed from the master log and the stats presented are computed only on
the data from thestable request loadphase.

6.1.2 Experimental Results

All distributed experiments used a 2 dimensional PH-tree with 64 bit long values in each
dimension. The client requests were generated from a number of 7 client virtual machines
and the number of servers is increased from 1 to 4 in increments of 1. We evaluated the
performance for four different workloads: a insertion workload, a point query workload, a
range query workload and nearest neighbour workload. The values in each dimension have
been sampled from the Gaussian distribution using thenextGaussian() method of the
RandomJava class. Because this method returns a double precision value sampled from the
Gaussian distribution with mean 0.0 and standard deviation 1.0, the sampled value has been
scaled to a higher space by multiplying it with264 � 1. Because each type of experiment
uses the exact same workload, generated by the same number of clients, for clusters of dif-
ferent sizes, it is expected that environments with more servers will lead to a higher overall
throughput and a lower response time.

During the insertion workload, each client machine created requests using 8 separate threads,
each thread inserting 50000 2-dimensional points. At the end of each run of this experi-
ment, the PH-tree contains 2.8 million entries. Figures 6.1a and 6.1b present evolution of
the throughput, respectively of the response of the PH-tree for the insert operation. Figure
6.1a shows that the throughput of the system increases together with the number of index-
ing servers. We see that increasing the number of indexing hosts from one to two leads to
a linear increase in throughput, while the addition of the third and fourth server increases
the throughput even more. Figure 6.1b presents the evolution of the response time for the
insert operation, showing that the response time decrease almost linearly when increasing the

CHAPTER 6. EVALUATION 45

(a) Write throughput (b) Write response time

(c) Read throughput (d) Read response time

(e) Range query throughput (f) Range query response time

(g) KNN with k = 100 throughput (h) KNN with k = 100 response time

Figure 6.1: Evolution of the throughput and response time of the distributed PH-tree for
clusters of different size

46 6.1. DISTRIBUTION

number of hosts.

The point query workload is based on the insertion workload, using the same number of
client machines and threads. Each thread inserts 50000 points, and also retrieves the each
point with a point query after the insertion operation was performed. For this workload, we
measured only the duration of theget() operation. Figure 6.1c presents the evolution of
the throughput, while Figure 6.1d presents the evolution of the response time. The evolution
of the throughput and response time is similar to the insertion workload, as increasing the
number of indexing servers increase the throughput of the system and reduces the response
time.

For the range query workload, each of the 8 threads running on each machine performs 10000
range queries on a 2-dimensional PH-tree generated using the insertion workload described
previously. Each range query is performed on a hyper-rectangle centered over an existing
query point. The top left corner of the query hyper-rectangle is obtained by subtracting a
random displacement from each dimension of the query center point. The top right corner
is obtained by adding the same randomly generated displacements to each dimension of the
center point. The displacements are sampled from the uniform distribution in the integer
range[0; 221 � 1] using thenextInt() method of theRandom class. With this scaling,
the number of results is kept under 1000 for each query. Furthermore, more than70% of
all range queries need to query a single host to retrieve the response. Figures 6.1e and 6.1e
present the evolution of the throughput and response time for the described workload. In such
a workload, when most of the range queries are resolved by sending the range request to a
single indexing host, the throughput and response time evolve similar to workloads involving
point operations, i.e. each new added indexing server leads to an increase in throughput and
a decrease in response time.

It is important to add that in the case of range queries, the measured performance depends on
the number of hosts that need to be contacted to resolve each range query. As range queries
need to send requests to all of the indexing servers in the worst case, some other workloads
might lead to each query being forwarded to all hosts in the cluster. In that case, even if the
client library attempts to send the requests in parallel, the response time of the range operation
will be dependant on the number of indexing hostsn.

The nearest neighbour workload, similar to the range query workload, is executed on a 2-
dimensional PH-tree obtained using the insertion workload and containing 2.8 million points.
Each of the 8 threads running on the client machine perform 5000 nearest neighbour queries
with k = 100. For this experiment, each query points considered in the nearest neighbour
query is chosen from the points already stored in the tree. In the case of this workload,
around90% of the range queries are resolved after the host containing the query point is
queried, while the rest of the queries need to be expanded to multiple hosts. Figure 6.1g
shows the that the throughput of the system increases as new servers are added. Moreover,
additional servers also decrease the average response time, as shown in Figure 6.1b. As is the
case with range queries, the response time of the nearest neighbour query is not independent
of the number of indexing hosts. Ask increases, the section of the space containing thek
neighbours increases as well, and a larger number of hosts increases the potential number of
hosts whose regions intersect with the section containing thek neighbours.

CHAPTER 6. EVALUATION 47

6.2 Concurrency

6.2.1 Experimental Setup

The aim of the concurrency tests is the evaluate the throughput and response time of each
implemented concurrency strategy. Furthermore, it is important to view how each concur-
rency strategy scales with respect to the number of concurrent threads accessing the PH-tree.
Additionally, we identify the impact the concurrency strategies have when the PH-tree is only
accessed by a single thread in the same time.

The concurrent experiments have been run on a Google Compute Engine VM3 instance with
16 virtual CPU cores and 60GB of RAM. Similar to the machines used for the distribution
computation, information regarding the physical hardware used by the machine is not avail-
able. However, the emulated hardware family is Intel Xeon E5-1600, and each virtual CPU
has a frequency of 2.5 GHz. All performed experiments were performed with 3 repetitions
and the response time and throughput have been averaged across the repetitions.

6.2.2 Experimental Results

Write performance

The �rst type of tests evaluate the throughput and response time of the concurrency strategies
for an increasing number of threads. In each run, an array of 5 million multi-dimensional
elements is inserted into an empty PH-tree. The values are sampled from the Gaussian distri-
bution. The array is split equally into non-overlapping intervals between the inserting threads
and each thread will insert a certain section of it. As the number of inserted entries is equal
across the runs, it is expected that more inserting threads will lead to a higher throughput.

The experiments were performed for multi-dimensional entries with an increasing number of
dimensions. Figure 6.2 shows the response time and throughput for the insertion operation,
with the number of threads varying from 1 to 16. The number of writer threads is limited to
the number of available CPU cores, to limit the effects of context switching on the experiment
execution. The �gure shows the results of the same experiment on PH-tree having dimensions
1, 2, 3, 6 and 10.

For all of the tests, the Copy-on-Write strategy maintains a relatively steady throughput,
caused by the fact that this strategy only allows a single writer thread and multiple readers
at a time. The contention on the writer lock also causes the response time to increase as the
number of writer threads increases.

For up to 6 dimensions, both the Hand-over-Hand and Optimistic locking strategies generally
perform better than the Copy-on-Writer strategy for a small number of writer threads, having
a higher throughput and a lower response time. For both of these strategies, increasing the
number of threads leads to an increase in throughput, up to a point where the lock contention
becomes so high that it causes the throughput to drop. Optimistic locking generally outper-
forms Hand-over-Hand locking, having a better through put and a lower response time in all
cases. Additionally, Optimistic locking generates less lock contention and manages to main-

3The code of the virtual machine on the Google Compute Engine platform isn1-standard-16 .

48 6.2. CONCURRENCY

(a) 1D PH-tree throughput (b) 1D PH-tree response time

(c) 2D PH-tree throughput (d) 2D PH-tree response time

(e) 3D PH-tree throughput (f) 3D PH-tree response time

(g) 6D PH-tree throughput (h) 6D PH-tree response time

(i) 10D PH-tree throughput (j) 10D PH-tree response time

Figure 6.2: Evolution of write throughput and response time for the PH-tree

CHAPTER 6. EVALUATION 49

tain the increase in throughput for a higher number of writer threads than Hand-over-Hand
locking. For both �ne grained locking strategies, an increase in the number of threads leads
to an increase in the lock contention, which leads to an increase in response time.

Another important factor in the multi-threaded performance of the PH-tree is the contention
on the memory bus. As the number of dimensions of the PH-tree increases, each thread
needs to both read and write an increasing amount of data from and to the main memory.
Figure 6.2i shows that for 10 dimensional trees, the difference in throughput between the
concurrency approaches is much smaller than in the 1, 2, 3 or 6 dimensional experiments.

Single Thread Write Performance

The second type of tests measures the penalty induced by the concurrency strategies when
the tree is accessed by a single writer thread. For these experiments, 1 million 3-dimensional
entries were inserted into an empty PH-tree by a single thread. The hardware used for this
tests is an Intel i5-760 with 4 CPU cores, each running at a 2.8 GHz frequency. The values
for each entry were generated uniformly at random. Figure 6.3 illustrates the time needed for
the insertion workload for each concurrency strategy and the single-threaded version of the
tree. For the single-threaded version, the insertion �nished in 1.1 seconds. The version will
be used as a baseline for the other measurements.

Figure 6.3: Time needed by 1 thread to insert16 entries into the PH-tree

In the case of the Copy-on-Write version, the insertion workload �nished in 3.2 seconds,
taking almost three times longer than the baseline. This is due to the fact that each insert
copies a full-path from the root of the tree to the modi�ed node. Hand-over-Hand locking
�nished in 1.5 seconds, and was approximately 30% slower than the baseline version. In
the case of Hand-over-Hand locking, all nodes in the path from the root to the modi�ed
node are locked and copies are created only for the nodes which are updated. This makes
the Hand-over-Hand strategy faster than the full Copy-on-Write strategy, but slower than the

50 6.2. CONCURRENCY

(a) 3D PH-tree throughput (b) 3D PH-tree response time

(c) 6D PH-tree throughput (d) 6D PH-tree response time

(e) 10D PH-tree throughput (f) 10D PH-tree response time

Figure 6.4: Evolution of read throughput and response time for the PH-tree

single-threaded implementation, which does not take any locks or perform any node copies.
Finally, the Optimistic locking strategy performs the best from the implemented concurrency
strategies, �nishing the insertion in 1.3 second. This strategy is faster than the Hand-over-
Hand strategy, as only two nodes are locked, as opposed to a full path, but is still slower than
the single-threaded implementation.

Read performance

Finally, the last type of tests evaluate the scalability of the PH-tree read operations with re-
spect to the number of concurrent reader threads. In this test, the PH-tree is loaded with 5
million entries and then all entries inserted in the tree are retrieved with theget()point query.
The entries are split into non-overlapping partitions and each partition is assigned to a reader
thread. Each thread then retrieves all of the keys in its partition. As previously mentioned,
the concurrent access strategies did not modify the read operations and all implemented con-
current strategies perform the read operations in the same manner.

CHAPTER 6. EVALUATION 51

These tests have been run on the same 16 CPU machine described in 6.2.1. The number of
reader threads is varied from 1 to 16, to reduce the effects of thread context switching. The
test was repeated for PH-trees of dimensions 1, 2, 3, 6 and 10, to observe the effect of the
higher dimensional data in the overall performance of the PH-tree. Figure 6.4 presents the
evolution of the throughput and response time for the 3, 6 and 10 dimensions. The plots for
dimensions 1 and 2 have been omitted as the performance of the PH-tree in those cases is
very similar to the 3 dimensional case.

The results show that an increased number of reader threads increases the overall throughput
of the PH-tree. The increase in throughput is almost linear for up to 6 reader threads, after
which each additional reader thread adds a smaller increase to the throughput. The throughput
stabilizes after the number of readers goes over 10. As in the case of insertion performance,
the number of dimensions of the data stored in the PH-tree in�uences both the throughput
and response time. As the number of dimensions increases, the throughput decreases and the
response time decreases. This is due to the fact that the PH-tree nodes themselves are bigger
and each thread needs to transfer more data over the memory bus.

6.3 Results

The distributed experiments showed that the distributed PH-tree scales with an increasing
number of server machines. In all experiments of this type, the addition of server machines
to the cluster increased the overall throughput of the system and decreased the response time
for each individual request. This increase in throughput and decrease in response time will
always happen in workloads consisting mostly of point operations. In the case of range and
nearest neighbour queries, the performance is dependent on the number of hosts that need
to contacted for each individual query, a number that generally increases if the number of
hosts is increased. However, we found that if the majority of the range and nearest neighbour
queries are resolved on a single host, the system displays similar throughput and response
time characteristics as in the case of point operation workloads.

The concurrent experiments compared the performance of the three implemented concur-
rency strategies:Copy-on-Write, Hand-over-Hand lockingandOptimistic locking.Optimistic
lockingperformed better for the write operations, having a higher throughput and a lower re-
sponse time than both other strategies.Hand-over-Hand lockingperforms better thanCopy-
on-Writefor smaller dimensions and up to 3 or writer threads, depending on the operation.
Hand-over-Hand lockingperforms worse in settings with a higher number of writers due to
an increased lock and memory bus contention. Generally,Optimistic lockingprovides the
best performance for both read and write operations.

52 6.3. RESULTS

7
Conclusions

7.1 Contributions

This work presents a complete solution for implementing a distributed and parallel multi-
dimensional index based on the PH-tree. We propose a distribution architecture for the PH-
tree and devise a set of ef�cient distributed algorithms for the PH-tree operations. Further-
more, the in-memory PH-tree was extended to support concurrent write operations, allowing
each machine in the cluster to service more requests in an concurrent manner. The main
contributions of this work are the following:

The distribution architecture partitions the multi-dimensional space in a manner that allows
fast point operation and ef�cient range and nearest neighbour queries. The proposed bal-
ancing algorithm ensures that all hosts will eventually hold a comparable number of entries,
even in the case of very skewed input distributions. The presented distribution solution can
be easily adapted for other types of indexes, as long as the key domain for of this indexes
can be mapped to a 1 dimensional line, allowing the construction of ef�cient and scalable
range-queryable, distributed key-values stores.

The in-memory PH-tree was updated to support concurrent access according to two consis-
tency paradigms. The Copy-on-Write approach offers full consistency guarantees, providing
snapshot semantics to queries and isolating readers from any further modi�cations to the tree.
For situations where full consistency is not needed, the Optimistic locking approach offers
relaxed consistency semantics and provides improved write throughput by allowing concur-
rent write operations. Hand-over-Hand locking provides the same consistency as Optimistic
Locking, and also guarantees that starvation will not occur in the case of the writers. Further-
more, none of presented approaches require the readers to acquire any locks and thus add no
overhead to the execution of the read operations.

53

54 7.2. FUTURE WORK

7.2 Future work

One aspect of the distributed PH-tree that could be improved is the execution of the distributed
nearest neighbour queries. As previously mentioned in section 3.4, the nearest neighbour al-
gorithm �rst obtains thek nearest neighbours from the host responsible for the query point
and then proceeds to run a range query on the cluster to check for any closer points on dif-
ferent hosts. The additional check is done by exploring a hyper-cubic section of the initial
space. A more ef�cient approach would be to check a hyper-spheric region centered in the
query point. This improvement could reduce the number of hosts queried on the second step
of the nearest neighbour queries and could potentially improve the execution time of such
queries.

From the point of view of the balancing algorithm, hosts participating in re-balancing opera-
tions do not accept write requests for the duration of these operations, to simplify the update
of the mapping between the points and the hosts. The balancing algorithm could be modi�ed
to allow the hosts to accept write requests to a separate buffer and integrate the buffer to the
stored PH-tree after the balancing operation has �nished.

The concurrency strategies presented by this work rely on locking and copy-on-write to al-
low concurrent access. Further work could focus on investigating the performance of con-
current access strategies which use atomic operations instead of locks as a synchronization
mechanism. Such a solution would remove the overhead added by the lock contention and
potentially provide better performance in some situations.

A
Installation and Usage Instructions

The distributed PH-tree was implemented in Java and uses Maven1 for compilation, packag-
ing and dependency management. Compiling the project requires the Java Development Kit
8 and Maven 3 to be installed on the local computer. Moreover, the source code uses the
PH-tree library as a compilation and run-time dependency, and therefore it is required that
the PH-tree Maven artifact be installed in the local computer repository prior to compilation.

A.1 Compilation and Installation

A.1.1 Client and Server Libraries

As previously mentioned, the compilation is performed using Maven, which can be down-
loaded fromhttp://maven.apache.org/download.cgi . To compile the project,
open a console to the directory where the source code is stored and type the command:
maven package . This command will compile both the client and server libraries and
execute all the unit tests. When compiling from the command line, it is necessary that the
Maven binary be present in the PATH variable of the command line environment. Alterna-
tively, the project can be compiled from an IDE, as the majority of the contemporary IDE's
provide wizards for importing and managing Maven projects.

A.1.2 ZooKeeper

The cluster of machines running the distributed PH-tree needs at least one ZooKeeper server
to manage the cluster con�guration information. An up-to-date guide for downloading
and installing a basic ZooKeeper server is available at the following location:https://

1https://maven.apache.org/

55

56 A.2. USAGE

// connect to a cluster of machines storing
// its configuration in the ZooKeeper at
// the following address
String zkHost = "localhost";
int zkPort = 2181;
PHFactory factory = new ZKPHFactory(zkHost, zkPort);

//create a 2D PH-tree with 64 bit width
PhTree tree = factory.createPHTreeSet(2, 64);

Figure A.1: Example code snippet for connecting to the PH-tree from the Java API

zookeeper.apache.org/doc/trunk/zookeeperStarted.html . A short sum-
mary of operations needed to install and start a ZooKeeper server is presented below.

• Download the latest stable ZooKeeper package and copy it to the desired installation
directory. This directory will be referred to asZOOHOME.

• In theZOOHOME/conf directory, rename thezoo sample.cfg �le to zoo.cfg .
The initial �le contains a sample con�guration �le for ZooKeeper, and renaming it to
zoo.cfg will make ZooKeeper use this con�guration when started.

• Start the ZooKeeper server using thezkServer.sh script in the directory
ZOOHOME.

A.2 Usage

To set up the distributed PH-tree, �rst start the ZooKeeper server on an assigned computer.
Indexing servers can be started using themiddleware-1.0-SNAPSHOT.jar Java jar.
The following code snippet starts a server on the machine with ipserver-ip on port 5000
that connects to a ZooKeeper server running onzk-ip :

java -jar middleware-1.0-SNAPSHOT.jar server-ip:5000 zk-ip:2181

Additional servers can be added by executing this command on a different machine and
changingserver-ip accordingly.

Clients can access the distributed PH-tree using the API provided in the client library mod-
ule. An example for connecting to a running cluster of machines is listed in Figure A.1.
ThePHFactory class creates references to PH-tree classes, which can be used to perform
operations on the distributed PH-tree.

List of Figures

2.1 2 dimensional 4bit PH-tree containing the points: (0000, 1000), (0011,
1000), (0011, 1010). .6

3.1 Distributing the points based on a hash function12

3.2 Equal geometric space splitting for 2 hosts and 2 dimensions13

3.3 Equal geometric space splitting for 4 hosts and 2 dimensions13

3.4 Potential partitioning of the space for a skewed input distribution. 13

3.5 Another potential partitioning for the same skewed input distribution. . 13

3.6 Z-order space filling curve filling the 2 dimensional space.14

3.7 Example intervals on the 3bit Z-order curve15

3.8 Example intervals on the 3 bit Z-order curve filling the 2D space15

3.9 The network architecture of the distributed PH-tree16

3.10 The intervals described in 3.8 split into hyper-rectangles.17

3.11 Illustration of a range query intersected with the host intervals 19

3.12 Illustration of a 3 nearest neighbour query execution in a 2 dimensional
space. .20

4.1 A 2 dimensional PH-tree containing three 4-bit entries: (0000, 1000),
(0011, 1010), (1011, 1000). The values are omitted.24

4.2 Illustration of Copy-on-Write on a binary tree where the node G has to
be written .25

4.3 Illustration of hand-over-hand locking descent to node G26

4.4 Illustration of optimistic locking descent to node G27

5.1 The implementation architecture of the distributed PH-tree 32

5.2 The Java API of the PH-tree. The classes coloured with blue represent
the existing code, the additions in green represent the distributed im-
plementation. .33

5.3 The class diagram of the client library .34

57

58 LIST OF FIGURES

5.4 The class diagram of the server library .35

5.5 A diagram of the Key-Mapping stored in ZooKeeper37

5.6 A diagram of the communication flow between the client and the server 39

5.7 The Java API of the concurrency classes .40

6.1 Evolution of the throughput and response time of the distributed PH-
tree for clusters of different size .45

6.2 Evolution of write throughput and response time for the PH-tree 48

6.3 Time needed by 1 thread to insert16 entries into the PH-tree 49

6.4 Evolution of read throughput and response time for the PH-tree 50

A.1 Example code snippet for connecting to the PH-tree from the Java API . .56

Bibliography

[1] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

[2] Nathan G. Bronson, Jared Casper, Hassan Cha�, and Kunle Olukotun. A practical
concurrent binary search tree.SIGPLAN Not., 45(5):257–268, January 2010.

[3] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking
trees. InProceedings of the 19th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP '14, pages 329–342, New York, NY, USA, 2014.
ACM.

[4] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on
composite keys.Acta Inf., 4:1–9, 1974.

[5] Keir Fraser and Tim Harris. Concurrent programming without locks.ACM Trans.
Comput. Syst., 25(2), May 2007.

[6] Haojun Liao, Jizhong Han, and Jinyun Fang. Multi-dimensional index on hadoop dis-
tributed �le system. InNetworking, Architecture and Storage (NAS), 2010 IEEE Fifth
International Conference on, pages 240–249, July 2010.

[7] M. Moir and N. Shavit. Concurrent data structures. InHandbook of Data Structures and
Applications, D. Metha and S. Sahni Editors, pages 47–14 – 47–30, 2007. Chapman
and Hall/CRC Press.

[8] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker.
Pre�x hash tree: An indexing data structure over distributed hash tables. Technical
report, 2004.

[9] Toms Skopal, Michal Krtk, Jaroslav Pokorn, and Vclav Snsel. A new range query
algorithm for Universal B-trees.Information Systems, 31:489–511, 2006.

[10] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. InProceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM '01, pages 149–160, New York, NY, USA,
2001. ACM.

[11] Tilmann Z̈aschke, Christoph Zimmerli, and Moira C. Norrie. The ph-tree: A space-
ef�cient storage structure and multi-dimensional index. InProceedings of the 2014

59

60 BIBLIOGRAPHY

ACM SIGMOD International Conference on Management of Data, SIGMOD '14, pages
397–408, New York, NY, USA, 2014. ACM.

[12] Chi Zhang and Arvind Krishnamurthy. Skipindex: Towards a scalable peer-to-peer
index service for high dimensional data. Technical report, Princeton Univ, 2004.

