
ETH Library

Data Quality Assurance and
Analysis for Food Science Data

Master Thesis

Author(s):
Gemenetzi, Konstantina

Publication date:
2015

Permanent link:
https://doi.org/10.3929/ethz-a-010510135

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010510135
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Data Quality Assurance and Analysis
for Food Science Data

Master Thesis

Konstantina Gemenetzi
<kgemenet@student.ethz.ch>

Prof. Dr. Moira C. Norrie
David Weber

Global Information Systems Group
Institute of Information Systems

Department of Computer Science
ETH Zurich

Monday 6th April, 2015

Copyright © 2015 Global Information Systems Group.

Abstract

Data is of paramount significance in every information system. Even though data quality
might have a different meaning for different users and applications, it is always recognized
that the quality of the data in an information system can have a large impact to the quality
and value of every other aspect of the system.

In this master thesis, we model and quantify data quality in information systems with the
use of constraints. We propose a novel concept for a highly flexible and configurable data
quality management framework that can easily be adapted to the needs of different users and
applications. For this purpose, we introduce the notion of contracts, which are simple, inter-
changeable files that allow each user and application of the system to specify an individual
importance weight for each quality-related constraint, thus enabling the creation of unique
quality profiles.

Our framework allows the user to validate data during input, as well as analyze, quantify and
visualize the overall quality of the data at any time. For both the data input validation and
the data quality analysis, the user is able to select the data entities and constraint groups that
should be validated and analyzed, as well as the contract (quality profile) that should be used
for the validation and analysis. To measure quality, we defined a novel quality calculation
scheme and scale. For the definition, validation and management of the constraints in a
unified way, we use the bean validation1 specification.

For evaluating our approach, we implemented our concept within the FoodCASE food sci-
ence data management system. FoodCASE is used for the administration of nutrients for food
composition studies and contaminants for Total Diet Studies (TDS). Currently, FoodCASE
is used to manage the data of the Swiss Food Composition Database as well as the data of
TDS-Exposure2 studies for several countries across Europe. Our data quality management
framework and its FoodCASE implementation prototype were presented to the participants
of the TDS-Exposure workshop that took place during the third TDS-Exposure General As-
sembly in February 2015 and received positive feedback, which is also discussed in this work.

1http://beanvalidation.org/
2http://www.tds-exposure.eu/

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 2

2 Background 5

2.1 Data Quality . 5

2.1.1 Data versus Information . 6

2.1.2 Data Quality Dimensions . 6

2.1.3 Data Constraints . 8

2.1.4 Data Quality as a Constraint Problem 8

2.2 Data Quality Management Frameworks . 8

2.2.1 Conceptual Frameworks . 9

2.2.2 Industry Guidelines and Implemented Frameworks 10

2.3 FoodCASE . 11

2.3.1 General Information . 11

2.3.2 Architecture . 11

2.4 Issues to be Addressed . 12

3 Approach 15

3.1 Concept . 15

3.1.1 Bean Validation . 16

v

vi CONTENTS

3.1.2 Data Quality Measurement and Calculation 17

3.1.3 Contracts . 20

3.1.4 Warning to Error Threshold . 21

3.1.5 Validation Groups . 21

3.1.6 Payload Labels and Weights . 21

3.2 Data Quality Analysis Module . 22

3.2.1 Visualizations and Data Cleansing 23

3.3 Data Input Validation Module . 26

3.4 Administrative Tools Module . 28

3.4.1 Contract Editing and Creation . 28

3.4.2 General Validation and Analysis Settings 28

3.4.3 Input Validation Settings . 30

4 Implementation 31

4.1 Technologies . 31

4.1.1 Enterprise JavaBeans . 31

4.1.2 Hibernate Validator . 31

4.1.3 Java Swing . 32

4.1.4 JFreeChart . 32

4.2 Main Concept Implementation Details . 33

4.2.1 Constraint Declaration and Definition 33

4.2.2 Contracts . 37

4.2.3 Validation Groups . 39

4.2.4 Payload Weights . 40

4.3 TDS Data Quality Analysis Bean . 40

4.4 Main Helper Classes . 41

CONTENTS vii

4.4.1 ConstraintValues . 41

4.4.2 ConstraintMap . 42

4.5 Data Quality Analysis Module . 42

4.5.1 General Information . 42

4.5.2 Entity and Group Selection Tree Creation 42

4.5.3 Quality Analysis and Calculation . 43

4.5.4 Visualizations . 44

4.6 Data Input Validation Module . 45

4.6.1 General Information . 45

4.6.2 Input Validation and Quality Evaluation 46

4.6.3 Validation Feedback . 47

4.7 Administrative Tools Module . 48

4.7.1 General Information . 48

4.7.2 Contract Editing and Creation Panel 48

4.7.3 General Validation and Analysis Settings 49

4.7.4 Input Validation Settings . 49

4.8 Open Implementation Issues . 49

4.8.1 Displaying Previously Selected User Configurations 50

4.8.2 Loading of the Database Settings by the TDS Quality Analysis Bean 50

5 Comparison with FoodCASE Food Composition Data Quality Management
Framework 51

5.1 General Concept . 51

5.2 Constraints . 52

5.3 Input Validation . 52

5.4 Data Quality Analysis . 53

viii CONTENTS

6 User Evaluation 55

6.1 TDS-Exposure Workshop . 55

6.2 Questionnaire Findings . 56

6.2.1 Contracts . 56

6.2.2 Input Validation . 57

6.2.3 Analysis . 58

6.2.4 Access Rights . 58

6.2.5 Constraints . 59

6.3 Overview of Key Findings . 59

7 Extensibility 61

7.1 Use of Different Data Quality Calculation Schemes 61

7.2 Additional Data Quality Analysis Visualizations 62

7.3 Support for Method Constraints . 63

8 Conclusion 65

8.1 Summary of Work . 65

8.1.1 Concept . 65

8.1.2 Data Quality Analysis Module . 66

8.1.3 Data Input Validation Module . 66

8.1.4 Administrative Tools Module . 67

8.1.5 Implementation for the FoodCASE System 67

8.1.6 User Evaluation . 68

8.2 Contribution . 68

8.3 Future Work . 69

8.3.1 Inclusion of Additional Analyzable Entities and Constraints 69

8.3.2 Additional Analysis of User Evaluation Results 70

CONTENTS ix

8.3.3 Performance Tests and Comparison with the Food Composition
DQMF . 70

8.3.4 Persistence of Data Quality Analysis Results 71

8.3.5 Contract Editing and Creation Panel Enhancement 71

8.3.6 Improvement of Input Validation Feedback Mechanism 71

A Acronyms and Abbreviations 73

B Comparison between Hibernate Validator and OVal 75

C Questions from the TDS-Exposure Workshop Questionnaire 79

C.1 Contracts . 79

C.2 Input Validation . 80

C.3 Analysis . 80

C.4 Access Rights . 80

C.5 Constraints . 80

C.6 Constraint Grouping . 81

C.7 Comparison with existing Food Composition Data Quality Framework . . 81

C.8 Additional comments or suggestions . 81

List of Figures 83

List of Tables 85

Bibliography 89

x CONTENTS

1
Introduction

In this chapter, we present the motivation behind this work and provide a short outline of the
structure of this report.

1.1 Motivation

The main goal of any information system can be abstracted to the extraction, collection,
processing, analysis and distribution of useful information derived from data. Therefore,
without correct, consistent and overall appropriate data that is fit to its intended use, the
information system cannot properly serve its purpose.

Despite the indisputable importance of data quality in any type of information system, the
definition of a data quality modeling and measuring framework that can be applied to any
type of system has not yet been proposed. In this thesis, we attempt to model the data quality
of a system with the use of constraints, which are the rules that the data has to follow in order
to be considered of high quality. Thus, constraints can be regarded as an indicator of quality,
as the more constraints are satisfied the higher the quality of the system is.

A potential drawback of a constraint-based data quality framework approach in large inform-
ation systems is the fact that constraints are often defined in several different layers of the
information system, while their associated validators might be distributed in the system’s
interface, application and database levels. This can often lead to redundancies and inconsist-
encies and result in maintenance and performance issues. For this reason, a central motivation
of this thesis is to investigate ways in which quality constraints and validation checks can be
managed in a unified way.

1

2 1.2. STRUCTURE

Another important focus of this work is the creation of a data quality management framework
that is highly flexible and configurable. Indeed, quality might entail different aspects of the
system for different users or applications. On the other hand, even for the same user, different
constraints are most likely of different importance. As the end users of a system are usually
different than its developers, it is crucial to enable authorized users to tune these quality
aspects at any time via an intuitive and easy-to-use interface. For this purpose, we introduce
the concept of contracts, which allow authorized users to decide on the importance of each
constraint for each application as well as deactivate constraints that are not deemed relevant.

In summary, this thesis focuses on the creation of a constraint-based data quality modeling
and calculation concept, which can be applied to any type of information system and enables
managing all constraints in a unified way. This concept is used as a base to create a highly
flexible data quality management framework that allows the users of the information system
to configure the details of every quality-related aspect according to their needs. The data
quality management framework that we introduce consists of an input validation module, a
data quality analysis module and an administrative tools module.

To evaluate our approach, we implemented our data quality management framework for the
FoodCASE food science data management system. This implementation was presented to
several food science experts from across Europe, who were then asked to assess it and provide
their feedback on several aspects of the framework. An analysis of this assessment and feed-
back is also part of this work.

1.2 Structure

Chapter 2 contains the fundamental background that is needed to place this thesis into context,
starting with a description of the notion of data quality and other related concepts. It continues
with an overview of some examples of existing data quality management frameworks, both
conceptual as well as industrially applied. Next, we describe FoodCASE, which is the food
science data management system within which we implemented our data quality management
framework.

Chapter 3 presents the main contribution of this thesis, which includes a novel concept for
a highly flexible data quality management framework. It also describes the three composing
parts of this framework, which are a data quality analysis module, a data input validation
module as well as an administrative tools module for configuring the different aspects of the
framework.

Chapter 4 deals with the details of the implementation of our framework within FoodCASE.

Chapter 5 concentrates on a comparison of our framework with the previously existing food
composition data quality management framework that was implemented within FoodCASE.

In chapter 6 we display the results of a first evaluation of our system by the participants of
the TDS-Exposure workshop, which took place in Zurich in February 2015.

CHAPTER 1. INTRODUCTION 3

Chapter 7 discusses some of the possible ways in which the current framework could be
extended in order to cover additional requirements of the users.

Finally, this report concludes with chapter 8, which summarizes the work and contributions
of this thesis and discusses ways in which it could be continued and improved.

4 1.2. STRUCTURE

2
Background

This chapter contains a summary of the results of the background research related to this
thesis. It begins with a description of the concept of data quality, as well as an outline of the
dimensions that are most commonly used to characterize it. This is followed by a definition
of data constraints and their relation to data quality, which is one of the central themes in our
work.

The second part of this chapter consists of an overview of some existing data quality manage-
ment frameworks (DQMFs), which originate from both the research and the industry realms.

The chapter continues with a description of FoodCASE, the food science data management
system within which our data quality management framework is implemented, and concludes
with a summary of the open related issues that are addressed by this thesis.

2.1 Data Quality

Data quality is a complex concept that can bear different meanings depending on the context
in which it is being used. Therefore, it is nearly impossible to come up with a single, generic
definition to describe it. However, as Juran and Blanton [9] note, when it comes to quality
management, the two most critical aspects of quality are “the features of products which meet
customer needs and thereby provide customer satisfaction” as well as the products’ “freedom
from deficiencies”, with data-derived information being the product in our case. These two
aspects comprise what is often characterized as the data’s fitness of use, which is commonly
used as an example of what data quality is about.

5

6 2.1. DATA QUALITY

2.1.1 Data versus Information

Before further discussing data quality, it is very useful to make a distinction between data
and information. The terms data and information are closely related but not equivalent. Ac-
cording to Beynon-Davies [3], data is a string of symbols, while information occurs when
the symbols are used to refer to something. When it comes to information systems, data can
be seen as the ‘raw material’ that the system uses in order to derive its product, which is
information of some kind.

2.1.2 Data Quality Dimensions

In [2], data quality is defined as a multifaceted concept, which means that different dimen-
sions occur in its definition. Indeed, most studies agree about the multi-dimensional nature of
data quality [11], [14], [15]. Recognizing these dimensions can be easier in some cases than
others and might depend on the types of data and information systems that are involved.

Each dimension represents a different aspect of data quality. Batini and Scannapieco [2] make
a distinction between dimensions that refer to the data’s extension, i.e. their values, or their
intension, i.e. their schema. In this work, we focus mostly on the data extension quality.
Next, we will present some of the most commonly referred-to data quality dimensions.

Accuracy

In [2] accuracy is defined as “the degree of closeness between a value v and a value v’,
considered as the correct representation of the real-life phenomenon that v aims to represent”.
Accuracy can be distinguished between syntactic accuracy and semantic accuracy.

Syntactic accuracy is “the closeness of a value v to the elements of the corresponding defin-
ition domain D”. In other words, syntactic accuracy is not concerned with whether v is the
same as its real value v’, but rather with whether the value of v is any of the existing values
of the domain D. For example, let’s consider the months of the year. Movember in that case
would be syntactically inaccurate, as (officially) there is no such month in the year. However,
December is syntactically accurate, even if v’ is actually January.

On the other hand, semantic accuracy is “the closeness of the value v to the true value v’”.
So, to continue with the previous example, if we were looking for the first month of the year,
the only semantically accurate value would be January. In this case, March would be
syntactically accurate, but semantically inaccurate.

Completeness

Wang and Strong [15] define completeness as “the extent to which data are of sufficient
breadth, depth, and scope for the task at hand”. Pipino et al. [11] recognize that completeness

CHAPTER 2. BACKGROUND 7

can have different aspects and therefore make a distinction between schema, column and
population completeness.

Schema completeness is defined as the degree to which entities and attributes are not missing
from the schema. Column completeness deals with the amount of missing values in a partic-
ular table column (for relational data). Finally, population completeness refers to the amount
of missing values in relation to a reference population.

Consistency

Consistency deals with “the violation of semantic rules defined over (a set of) data items,
where items can be tuples of relational tables or records in a file” [2]. As with the previously
described dimensions, consistency can also have different aspects. A well-known form of
consistency in the relational database world is what is known as referential integrity: if a table
field is declared as a foreign key, it can either contain a null value, or an existing and valid
primary key from a parent table. If the above condition is not satisfied, then the consistency
of the data is compromised.

Time-related dimensions

When regarding data quality, it is important to consider how the data evolves with time.
Batini and Scannapieco [2] identify three time-related dimensions: currency, timeliness and
volatility.

Currency refers to how instantly the data is updated. Timeliness regards how actual the data
is for the current task. Finally, volatility deals with the frequency with which data varies with
time.

Other data quality dimensions

Some additional data quality dimensions that are frequently encountered in the bibliography
[2], [4], [11] are the following:

• Accessibility

• Appropriate amount of data

• Believability

• Interpretability

• Understandability

• Uniqueness

8 2.2. DATA QUALITY MANAGEMENT FRAMEWORKS

2.1.3 Data Constraints

We use the term data constraints to refer to specific rules that the data needs to comply to in
order to be considered of high quality or even meaningful in the context where it is being used.
In this work, we also use the terms business rules or just rules to refer to the same concept.
By definition, constraints are closely related to data quality, as they provide a concrete frame
to the sometimes abstract concept of data quality and equip us with ways to measure and
quantify it in an intuitive way.

2.1.4 Data Quality as a Constraint Problem

After recognizing the close relation of data quality to data constraints, deciding to regard data
quality as a constraint problem seems to be a very reasonable approach. This approach has,
however, its disadvantages. As Dasu and Johnson [4] discuss, defining the constraints and
rules that are required for high-quality data can be extremely domain-specific. This means
that in order to define the constraints for a system, it might be necessary to consult the top-
level experts of the corresponding field. In addition, due to their domain-specific nature,
constraints cannot be easily generalized and transferred to other systems, which means that
the labor-intensive and time-consuming task of defining new constraints has to be repeated
for every system whose quality has to be managed.

Another disadvantage of this approach is the fact that constraints are often defined in different
layers of the application, which, as mentioned in section 1.1, can lead to maintenance and
performance issues, as well as inconsistencies and redundancies. In addition, even though
domain experts take part in the constraint definition process, after the constraints have been
defined, the users of the system, who might also be domain experts, can usually have little
further influence and configuration options for the already defined constraints. These last two
issues are largely addressed in this work and will be discussed again in later chapters of this
report.

2.2 Data Quality Management Frameworks

A data quality management framework (DQMF) has been described as “a comprehensive
checklist of all best practices and desirable requirements for an optimal management of data
quality” along with (self-)assessment tools, with the ultimate goal of controlling and improv-
ing data quality [6].

In this section, we present a non-exhaustive overview of some of the data quality management
frameworks that we encountered during our background search. This overview ranges from
purely conceptual to non-abstract industry-adopted frameworks.

CHAPTER 2. BACKGROUND 9

2.2.1 Conceptual Frameworks

This subsection presents two of the most prominent conceptual data quality management
frameworks that have been proposed by the research community.

Beyond Accuracy: What data quality means to data consumers

One of the most acknowledged conceptual frameworks for data quality is described in [15].
The authors of [15] underline the importance of data quality and note the multidimensionality
and broadness that characterize it. In order to capture the data quality aspects that are most
important to data consumers, they conduct a series of surveys and studies which identify,
sort and rank these aspects according to their importance to consumers. The product of
this work is a hierarchical framework for organizing data quality dimensions into four data
quality categories (intrinsic, contextual, representational and accessibility data quality) and is
summarized by figure 2.1.

Figure 2.1: A conceptual framework of data quality [15]

A Conceptual Framework for Developing Quality Measures for Information Systems

The author of [5] focuses on the quality of information systems, which, as he argues, is highly
dependent on the quality of the data that the systems use and manipulate. This results from the
fact that in most cases, the data and the information that this data represents can be considered
as the actual product of the system. He also notes that data quality measures should be im-
plemented within the context that data is created and used by the data consumers. Therefore,
similarly to [15], he proposes a hierarchical conceptual framework for developing quality
measures for information systems. This framework includes three of the data quality categor-
ies encountered in [15] (contextual, representational and accessibility) and introduces two

10 2.2. DATA QUALITY MANAGEMENT FRAMEWORKS

additional categories (ergonomic and transactional), resulting to the hierarchical framework
summarized by figure 2.2.

Figure 2.2: A hierarchical framework for information system quality [5]

2.2.2 Industry Guidelines and Implemented Frameworks

In this subsection we discuss some currently existing data quality management frameworks
and guidelines. The purpose of this subsection is not to provide an exhaustive list of such
frameworks, but rather a small selection of examples.

GS1 Data Quality Framework

The non-profit international organization GS11 provides an industry-developed and endorsed
data quality framework package intended to educate businesses about the meaning and im-
portance of data quality and offer a best-practices guide to controlling and improving data
quality. This framework aims to provide a global data quality solution and consists of three
sections: a list of requirements for a good data quality management system, a product inspec-
tion procedure and a self-assessment procedure.

International Monetary Fund Data Quality Assessment Framework

The Statistics Department of the International Monetary Fund2 (IMF) developed a data qual-
ity assessment framework (DQAF) which identifies quality-related features of governance of
statistical systems, statistical processes, and statistical products. This framework provides a
structure for evaluating existing practices against a set of best practices, which include inter-
nationally accepted methodologies. It is mainly used to guide IMF staff on the use of data in

1http://www.gs1.org/
2http://www.imf.org/external/

CHAPTER 2. BACKGROUND 11

several tasks, to assist country efforts, such as self-assessments, and to enable data users in
evaluating data for policy analysis, forecasts and economic performance [8].

Australian Bureau of Statistics Data Quality Framework

The Australian Bureau of Statistics (ABS) defines a Data Quality Framework (DQF) that is
aimed at different users in different settings, including government agencies, statistical agen-
cies and independent research agencies. This framework is comprised of seven dimensions of
quality and is designed to be used in evaluating statistical collections and products. To use the
framework, ABS recommends the development of a Data Quality Statement (DQS), which is
a presentation of information about the quality of a statistical collection or product using the
DQF. To assist in the development of a DQS, ABS provides the data quality statement tool
[1].

2.3 FoodCASE

This section focuses on FoodCASE, which is the information system within which we imple-
mented and evaluated our data quality management framework. We start by presenting some
general information about FoodCASE and continue with an overview of its architecture.

2.3.1 General Information

FoodCASE (Food Composition And System Environment) is a food science data management
system that was developed at the ETH Zurich. Initially, FoodCASE was mainly a food com-
position management system used for the administration and generation of nutrient values.
It is used to manage the data in the Swiss Food Composition Database (SFCDB), which was
developed by the ETH Zurich and the Swiss Federal Office of Public Health. The SFCDB
includes information about over 700 Swiss foods. Its records indicate the energy and nu-
trient content of the food in standardized form and constitute the basis for calculating the
composition and nutritional value of food.

Recently, FoodCASE was extended to include the management of contaminants in order to
fulfill the requirements for performing Total Diet Studies (TDS). FoodCASE is now part of
the European project Total Diet Study Exposure (TDS-Exposure), which is a research project
with 26 partners from 19 countries with the goal of harmonizing TDS within Europe.

2.3.2 Architecture

The FoodCASE back-end is implemented with the use of EJB session beans running on a
JBoss application server. The GUI is implemented using Java Swing, while a PostgreSQL

12 2.4. ISSUES TO BE ADDRESSED

database serves as the persistence data storage. The high-level architecture of the FoodCASE
system is depicted in figure 2.3.

Figure 2.3: The high-level architecture of the FoodCASE system. Each module is depicted
with the use of a different color.

As seen in figure 2.3, the FoodCASE architecture consists of the following six modules [10]:

• A PostgreSQL Database which stores all the business data of the application.

• A JBoss Application Server which runs EJB session beans. The session beans provide
services which can be used by the client modules. The main responsibility of the EJB
layer is to take care of the business logic and the persistence, and make them transparent
to the clients, so that they can work directly with the business objects.

• A Content Management System (CMS) allowing the food compilers to manage the food
composition data in the system.

• An Administration Module for the system administrators.

• A Web Interface which allows the public to query information about the composition
of the foods available in Switzerland.

• A Web Service to export a single food item or the whole database as a EuroFIR Food
Data Transport Package (FDTP).

2.4 Issues to be Addressed

Our background investigation revealed some of the data-quality-related issues that have not
yet been adequately addressed by the research community. Many of the existing data quality

CHAPTER 2. BACKGROUND 13

management frameworks that we encountered are designed as conceptual guidelines and do
not offer any concrete implementation details. On the other hand, there are DQMF imple-
mentations that are too system-specific and cannot be easily generalized and used in different
information systems. For this reason, we aim to introduce a DQMF concept that is general
enough to be applicable to any information system, but also detailed enough and well-defined
in order to facilitate the implementation of every aspect it entails.

Our work aspires to investigate the extend to which data quality can be modeled and managed
by the use of constraints. Therefore, the DQMF that we propose is completely based on con-
straints, which we consider capable of accurately capturing most data quality requirements.

We also try to address two of the most important issues that are commonly associated with the
use of constraints in large information systems. The first issue is the distribution of constraints
and their validators in different layers and levels of the system, which can result in mainten-
ance and performance issues, as well as inconsistencies. To overcome this, we explore ways
in which constraints can be managed in a unified way.

The second important constraint-related issue that we focus on is the fact that after the con-
straints have been defined and declared, the users of the system are usually unable to config-
ure them in any way. Additionally, all constraints are regarded as equally important by the
system, which semantically might not be the case. To that end, our proposed DQMF offers
several layers of configuration options to the users, allowing them to decide exactly what they
wish to validate or analyze as well as how important each constraint should be.

Last but not least, our research revealed that data quality is generally viewed as an abstract
concept. However, we believe that data consumers can often benefit from a quantitative
representation of data quality. To that end, we introduce a novel data quality measurement
and calculation scheme, which is also based on constraints.

14 2.4. ISSUES TO BE ADDRESSED

3
Approach

In this chapter, we will describe in detail the main contribution of this thesis, which is a
concept for a highly configurable data input validation and data quality management and ana-
lysis framework. This concept was implemented within the FoodCASE food science data
management system, which will be discussed in detail in chapter 4. Even though we some-
times make use of examples taken from our FoodCASE implementation in order to illustrate
or clarify some of the ideas in our concept, it is important to note that this concept could
be implemented for any data management information system that applies constraints of any
type on its data.

3.1 Concept

As mentioned in sections 1.1 and 2.4, one of the main goals of this work is to explore new
ways of managing and measuring data quality in information systems. More specifically, we
want to investigate the extend to which data quality can be viewed as a constraint problem.
For this purpose, we introduce a concept for a data quality management framework that is
solely based on and modeled by the use of constraints as data quality indicators. This concept
was developed as a consolidation and enhancement of previous related work [10], [13] done
in the GlobIS1 group at ETH Zurich with the introduction of several novel ideas.

In subsection 2.1.4 we mentioned that a drawback of using constraints extensively in a large
information system is that they are often defined in several parts and layers of the system,
which makes their maintenance problematic and can possibly increase the system’s perform-

1https://globis.ethz.ch/

15

16 3.1. CONCEPT

ance costs. For this reason, a central focus of this thesis was to create a framework in which
all the constraints could be managed in a unified way. The results of the research conduc-
ted by Probst [13] demonstrate that the use of Bean Validation (BV) for the definition and
validation of constraints, can achieve this goal. The reasoning behind the use of BV is fur-
ther discussed in subsection 3.1.1, while the related implementation details are explained in
subsection 4.1.2.

Another main focus in this thesis is to provide a framework that is highly flexible and eas-
ily customizable not only by the developers that define the constraints, but also by its end
users even at runtime. For this purpose, we introduced several new concepts, such as the
contracts (subsection 3.1.3), validation groups (subsection 3.1.5) and payload weights (sub-
section 3.1.6), in order to provide several layers of configuration options.

3.1.1 Bean Validation

Bean Validation2 (JSR 303, JSR 349) is a Java specification that allows programmers to
express constraints on object models with the use of annotations. It has been accepted as part
of the Java EE 6 specification. We will discuss about the technical details behind the use of
Bean Validation in our work in subsection 4.1.2. In this section, we will focus on the features
of Bean Validation that led to its selection for our data quality management framework.

As mentioned before, the most important characteristic that made Bean Validation an attract-
ive choice is the fact that it allows for the definition of all the DQ-related constraints in a
single place, which in our framework is the entity beans corresponding to the entities being
validated and analyzed. This simplifies the management and maintenance of the constraints,
as they are always defined together with the entities they constrain.

Additionally, the use of Bean Validation allows for the validation of all constraints in a unified
way. Since data validation is a process that concerns all the levels of an application, it is
common that the same validation logic is implemented in every single layer, which can lead
to errors and increased performance costs [7]. This is demonstrated in figure 3.1.

In contrast, by using the Bean Validation specification, the validation logic is expressed as part
of the constraint annotation definition and centralized in the domain model, which allows for
their validation by using a single validator, as illustrated in figure 3.2.

Another important feature of Bean Validation, is the fact that besides the basic constraints it
provides by default (e.g. @NotNull, @Min, @Max, etc.), it also allows for the creation of
virtually any type of custom constraint. This provides a high-degree of flexibility and enables
the use of Bean Validation as the exclusive constraint modeling and definition mechanism of
an information system.

Bean Validation also provides mechanisms for grouping and labeling constraints, which we
adopted as additional configuration mechanisms for our framework in the form of validation
groups (subsection 3.1.5) and payload weights (subsection 3.1.6).

2http://beanvalidation.org/

CHAPTER 3. APPROACH 17

Figure 3.1: Implementing the same validation logic in each layer of the application [7]

Figure 3.2: Bean Validation allows for the validation of all constraints in a unified way [7]

3.1.2 Data Quality Measurement and Calculation

Data quality is generally regarded as an abstract concept that cannot be easily measured and
quantified in a unique and straightforward manner. In this thesis, we created our own data
quality measurement and calculation scheme. This scheme results to an intuitive data quality
indicator that corresponds to the degree that the data that is being validated or analyzed
satisfies the defined constraints, and is measured in (data) quality points.

A key concept behind our quality measuring scheme is that every constraint is assigned a
constraint weight. This weight can take an integer value between 0 and 100. The weight
signifies the importance of the constraint for the user of the application, with a weight of 0
corresponding to an insignificant constraint and a weight of 100 corresponding to a constraint
of highest importance.

18 3.1. CONCEPT

According to our measuring scheme, the weights are used to calculate different levels of data
quality indicators, using the notion of the weighted arithmetic mean. Each data quality indic-
ator can take an integer value between 0-100 quality points. The different quality indicator
levels belong to two categories, depending on whether they are being calculated during data
input validation or during data quality analysis. The difference between these two categories
is that in the case of input validation quality indicators we validate and analyze only one en-
tity object, the entity object for which data is being entered. On the other hand, in the case of
the data quality analysis quality indicators, we usually validate and analyze multiple entity
objects, i.e. all entity objects of the type and characteristics that we are interested to analyze.

After making a distinction between the two categories of quality indicators, we will explain
what the different possible quality indicator levels are for each category and how they are
calculated. To help clarify the meaning of each indicator, we will use an example. Let’s
assume that the data that we are interested in consists of two data entities, entity A, which
contains 100 entity objects, and entity B containing 200 entity objects. Let’s also assume
that there are three constraints declared for entity A: constraint a with weight 80, constraint
b with weight 60 and constraint c with weight 90. Similarly, let’s assume that the declared
constraints for entityB are constraint d with weight 30 and constraint e with weight 100. The
details of our example setup are summarized in table 3.1.

Entity # of entity objects constraint:weight

entity A 100 a : 80, b : 60, c : 90
entity B 200 d : 30, e : 100

Table 3.1: An example of two data entities, along with the number of entity object they
contain and their declared constraints

Input Validation Quality Indicator (IV QI)

In the input validation case, there is only one quality indicator level, which represents the
current quality of the data that has been so far entered for the object that is being modified.
This input validation quality indicator (IV QI) is calculated using the equation 3.1, where n
is the number of constraints that are defined for the current entity type, wi is the weight of
constraint i, while αi is either 1, if constraint i is satisfied, or 0, if constraint i is violated.

IV QI = ‖100 ·
∑n

i=1 αiwi∑n
i=1wi

‖ (3.1)

Using the example of table 3.1, let’s assume that while entering data for an entity A object,
the input validation reveals that while constraints a and c are satisfied, constraint b is violated.
In this case, the IV QIA is calculated as described by equation 3.2 and is equal to 74 quality
points out of 100.

IV QIA = ‖100 · 1 · 80 + 0 · 60 + 1 · 90
80 + 60 + 90

‖ = ‖100 · 170
230
‖ = ‖73.91‖ = 74 (3.2)

CHAPTER 3. APPROACH 19

Constraint-Level Analysis Quality Indicator (CLAQI)

In the data quality analysis case, we have three levels of quality indicators. On the first level,
we encounter the constraint-level analysis quality indicator (CLAQI), which represents the
quality of the particular constraint across all entity objects. This quality indicator is calculated
using the equation 3.3. Please note that this quality indicator doesn’t take any weights into
account and also that each constraint corresponds to one and only one entity type at the time.

CLAQI = ‖100 · no. of objects that satisfy current constraint
total no. of objects (of current constraint entity type)

‖ (3.3)

To continue with the example of table 3.1, let’s assume that constraint a of entityA is satisfied
in 80 out of the 100 entity A objects. Therefore, the CLAQIa for constraint a is equivalent
to 80 quality points and is calculated by equation 3.4.

CLAQIa = ‖100 · 80
100
‖ = 80 (3.4)

Entity-Level Analysis Quality Indicator (ELAQI)

The second data quality analysis quality indicator level corresponds to the entity-level ana-
lysis quality indicator (ELAQI), which takes into account all the objects of a particular entity
type. This quality indicator is calculated by using the equation 3.5, where n is the number
of constraints that are defined for the current entity type, wi the weight of constraint i and
CLAQIi the constraint-level analysis quality indicator for constraint i, which, as explained
above, is calculated by equation 3.3.

ELAQI = ‖
∑n

i=1CLAQIiwi∑n
i=1wi

‖ (3.5)

For example, let’s assume that we want to calculate the ELAQIA of entity A of table 3.1.
Similarly to CLAQIa for constraint a, which was calculated as 80 by equation 3.4, we cal-
culate CLAQIb = 76 for the constraint b and CLAQIc = 98 for the constraint c. Therefore,
using the above and the constraint weights defined in table 3.1, ELAQIA equals 86 quality
points and is calculated by equation 3.6

ELAQIA = ‖80 · 80 + 76 · 60 + 98 · 90
80 + 60 + 90

‖ = 86 (3.6)

20 3.1. CONCEPT

Overall Analysis Quality Indicator (OAQI)

The third-level analysis quality indicator is the overall analysis quality indicator (OAQI),
which reflects the overall quality of the analyzed data. This quality indicator is calculated as
the weighted arithmetic mean of the ELAQI of all the analyzed entities, with the weights in
this case being the number of objects per entity. The reasoning behind this choice is that we
assume that more populous entities should affect the overall quality on a larger degree than
less-populated entities. Of course, if for a particular system our assumption is incorrect and
all entities must be considered equivalent for the quality indicator calculation, the use of a
different calculation scheme is also possible, as discussed in section 7.1. In our implementa-
tion, the overall analysis quality indicator is calculated with the use of equation 3.7, in which
n denotes the number of different analyzed entity types, ELAQIi the entity-level analysis
quality indicator of entity type i and wi the number of objects of entity type i.

OAQI = ‖
∑n

i=1ELAQIiwi∑n
i=1wi

‖ (3.7)

To use the ongoing example, let’s assume that, as calculated by equation 3.6, ELAQIA of
entity A equals 86 quality points, while ELAQIB of entity B has been calculated as 70
quality points. Using the number of objects per entity that we defined in table 3.1, the OAQI
of the data is calculated by equation 3.8 and equals 75 quality points.

OAQI = ‖86 · 100 + 70 · 200
100 + 200

‖ = ‖75.33‖ = 75 (3.8)

3.1.3 Contracts

One of the central concepts that we introduce in this thesis is the notion of contracts. We use
the term contracts to refer to text files in which we define the weight, i.e. importance, of each
constraint in the system as well as whether the constraint is activated or not. Contracts can be
used to define customized analysis and validation profiles for different users and applications
of the information system. They can also be easily shared between users. Thus, it is possible
for a user to have multiple contracts, while on the other hand the same contract can be shared
by multiple users. Contracts can easily be imported, created and configured either via the
administrative GUI, which will be further discussed in section 3.4, or by directly adding or
editing an appropriate contract file with the use of any text editor.

If a user is not authorized or does not wish to specify a contract, a fallback (default) contract
will be used. The fallback contract distinguishes between constraints of different importance
based on the gathered constraint requirements. If the user selects a contract that does not
include all constraints, a default weight that has been chosen by the user will be used for the
excluded constraints.

More technical details about how the contracts are defined and what they contain and look

CHAPTER 3. APPROACH 21

like will be discussed in section 4.2.2.

3.1.4 Warning to Error Threshold

According to our concept, the users are able to define a particular weight of their choice to
serve as the warning to error threshold (WtET). As its name suggests, this special weight
defines the distinction between two types of violations: the warnings, which are less severe,
and the errors, which are more severe. This distinction allows us to take different actions
based on the type of violations encountered. Examples of these actions include the type of
feedback that the user receives during data input, which will be described in section 3.3, as
well as whether the user should be able to save their input when such a violation occurs.

3.1.5 Validation Groups

Each constraint can belong to one or more validation groups. Validation groups can be used
to organize constraints into logical units. For instance, by using validation groups, we can cat-
egorize constraints according to their type. We can then use this categorization to distinguish
between different types of constraints, such as accuracy-related constraints, completeness-
related constraints, or consistency-related constraints. Validation groups allow users to limit
data input validation or quality analysis only to the constraints that they are most interested
in at any given time.

As will be further explained in subsection 4.2.3, new groups can only be defined by de-
velopers. Similarly, it is only possible to assign a constraint to a group during the declaration
of the constraint in the related entity class code. However, the users of the framework can
use contracts as an alternative way of creating groups at runtime, by activating only the con-
straints that they are interested in and deactivating the rest.

3.1.6 Payload Labels and Weights

The concept of payloads is part of the Bean Validation specification3. Payloads are typically
used to associate metadata information with a given constraint declaration. In our framework,
payloads have been repurposed as a way of ‘labeling’ specific constraints, in order to provide
additional configuration and flexibility options to the user. To achieve that, we predefined six
distinctive payload labels. Each of these labels corresponds to a different predefined weight,
which we refer to as the payload weight. If desired, the users can choose to allow the payload
weights to override the contract weights for all constraints for which a payload label has been
declared.

Similarly to validation groups, we can only assign a payload label during the declaration of
the constraint. Additionally, like groups, payload labels are completely optional. This implies

3http://beanvalidation.org/latest-draft/spec/

22 3.2. DATA QUALITY ANALYSIS MODULE

that for constraints that do not have an assigned payload label, the choice to allow payload
weights override their contract weight will have no effect whatsoever and the chosen contract
weight (or the fallback default) will be used in any case.

The reasoning behind this concept is that some constraints might need to always have a par-
ticular weight that should stay constant and not be overridden by contracts. For instance, a
constraint might be deemed extremely important and should have the highest weight of 100
in any case. Or there might be a constraint that we regard as irrelevant to quality and would
prefer to associate with a weight of 0. As contracts can be easily edited or changed, the
payload mechanism allows us to assign constant weights in an easy-to-maintain manner. Of
course, the option to allow payload weights to override contract weights is optional, and if
not chosen, the payload labels solely serve their purpose of carrying metadata.

The payload labels that we defined along with their corresponding weights can be found in
table 3.2.

Payload Label Weight

Info 0
Suggestion 20
Recommendation 40
Warning 60
Error 80
SevereError 100

Table 3.2: The mapping between our predefined payload labels and their associated weights

3.2 Data Quality Analysis Module

After having described the main ideas behind our data quality management concept, we will
continue with a description of the three modules of our proposed framework, starting with the
data quality analysis module. As mentioned in the beginning of this chapter, all concepts and
modules that we propose have been implemented and evaluated in the FoodCASE system.
Most of the screenshots and examples that we use to describe our modules are taken from
our FoodCASE implementation. However, our proposal could be applied to any information
system and therefore any mention of FoodCASE is done purely for the sake of example.

The data quality analysis module is the central module of our proposed framework. It is part
of the regular client of the information system and is accessible to any user that is authorized
to use the client. It can be used for performing a custom quality analysis on the data portion
that the user is interested in. The analysis is performed according to the contract that is chosen
by the user. These settings can be changed in the analysis starting screen, an annotated version
of which is depicted in figure 3.3.

In order to start a new analysis, the user needs to follow three steps (as depicted on figure 3.3):
first, they should choose the desired analysis contract, by using the dialog box that appears

CHAPTER 3. APPROACH 23

Figure 3.3: Users of the data quality analysis module can select the entities and groups that
they want to analyze as well as the analysis contract

after pressing the associated button (1). Next, they have to select the data portion they want
to analyze, by using the entity and group selection tree (2). This tree enables users to easily
select either the entirety of all the analyzable entities and all of their groups, or a subset of
them. Next, the user has to press the Start Analysis button (3), in order to launch the
analysis. The GUI also allows users to easily maximize the area (entity and group selection
or analysis results) that they are interested in at each time point (4).

After the analysis is performed, the analysis results appear in the Analysis Results
Overview tab in textual form, as seen in figure 3.4. In addition, the three visualization tabs
become visible as well (1). The textual version of the analysis results consists of two parts.
The first part (2) contains detailed statistics about each of the analyzed entities, including
the number of validated objects, how many of them were violation-free, the total number of
constraints that were validated and the number of violations that were found. The second part
(3) presents the entity-level quality indicator (ELAQI) for each analyzed entity as well as
the overall analysis quality indicator (OAQI) of the analyzed data.

3.2.1 Visualizations and Data Cleansing

As mentioned in the previous subsection, after the completion of the analysis, the three ana-
lysis result visualization tabs become visible. These visualizations provide the user with a

24 3.2. DATA QUALITY ANALYSIS MODULE

Figure 3.4: The Analysis Results Overview tab contains the results of the analysis
in textual form

bird’s eye view of the violations encountered. This overview is provided in two different
contexts, violations per entity type and violations per constraint weight range, and three al-
ternative chart types: a pie chart, a bar chart and a stacked bar chart. The visualizations allow
the user to spot the most problematic areas easily and also drill down through their areas of
interest and correct individual entries. We will now provide a description of each of the three
different visualization options.

Violations per Entity Type Pie Chart

The violations per entity type pie chart, whose fully expanded version is depicted in figure
3.5, allows users to observe the number of violations per entity type. By clicking on the
relevant tab, the users can first only see the pie chart in the panel’s leftmost section (1). The
exact number of violations per entity can be encountered either as a tool tip by hovering the
mouse over the corresponding pie chart slice, or as a text label (4) after clicking on the slice.
Clicking on a pie chart slice also leads to the appearance of the entity-specific list of violated
constraints (2), sorted by their weight, which, according to the user’s settings, can be either
the contract or payload weight.

The user can drill down further by clicking on the type of constraint violations that they want
to examine, which results in the appearance of the list of the actual entity objects that violate
the corresponding constraint (3). Finally, they are able to click on the problematic object
entry that they are interested in correcting, which leads to a highlighted detail frame that lists
all the issues with the corresponding object and its IV QI , which coincides with the input
validation frame of figure 3.8.

CHAPTER 3. APPROACH 25

Figure 3.5: The violations per entity type pie chart depicts the total violations per entity type
that were discovered during the analysis in the form of a pie chart

Violations per Entity Type Bar Chart

The violations per entity type bar chart, which can be seen in figure 3.6, presents the same in-
formation as the pie chart described before, i.e. the total discovered violations per entity type,
but in the form of a bar chart. This alternative view was added to satisfy potential personal
preferences of users towards a bar chart and to ensure that in the case where many different
entity types are present, they can easily be distinguished between each other. Drilling down to
individual problematic entries can be conducted following the same steps as before. In figure
3.6, it can be seen that some of the entries appear in violet text (1). The violet color indicates
that these entries have been edited after the completion of the analysis and it is possible that
the associated violation sources have already been corrected.

Figure 3.6: The violations per entity type bar chart depicts the total violations per entity type
that were discovered during the analysis in the form of a bar chart

26 3.3. DATA INPUT VALIDATION MODULE

Constraints per Weight Range Stacked Bar Chart

The third visualization type, depicted in figure 3.7, presents the existing constraints in the sys-
tem categorized by the numerical range in which their weight belongs to. For this categoriza-
tion, we define five weight ranges: 0-20, 21-40, 41-60, 61-80 and 81-100. This visualization
differs from the previous ones in two ways. First, it doesn’t categorize the constraints based
on their entity type, but on their weight. Secondly, it not only depicts the violated constraints
(in red), but the satisfied ones as well (in green). However, a user can only drill down through
the violations, which means that in the stacked bar chart on the leftmost part of figure 3.7,
only the red part (1) is clickable. The detail panels (2), (3) are similar to what has been
described before, with the only difference being that in the violated constraint list (2) the
violations are sorted primarily by entity type name and then by weight.

Figure 3.7: The constraints per weight range stacked bar chart depicts the total number of
constraints (satisfied and violated) encountered in each of the five weight ranges

3.3 Data Input Validation Module

The Data Input Validation Module encompasses all the necessary tools for assisting the users
in avoiding the introduction of data-quality-related issues, i.e. constraint violations, while
entering or editing data in the system via the system’s presentation layer (GUI).

We will now describe the different parts of the data input validation module that we propose,
using as an example an instance from our FoodCASE implementation, which is depicted in
figure 3.8.

As seen in figure 3.8, when the user enters an incorrect value, i.e. a value that violates one
or more constraints, the corresponding entry field background becomes red (1) in order to
indicate errors, i.e. violations of constraints with higher weight than the warning to error
threshold (WtET, discussed in subsection 3.1.4), or orange (2) to indicate warnings, i.e.

CHAPTER 3. APPROACH 27

Figure 3.8: An annotated data input frame displaying various types of input validation feed-
back

violations of constraints with weight lower than the WtET. In addition, more detailed in-
formation about the discovered violations appears in the data quality evaluation panel at the
bottom of the frame. This information consists of several parts, which can be distinguished
by their different font types and colors, which will be explained below with the help of figure
3.8.

The plain font represents the list of violations that were discovered and might be colored
either red for errors (4), orange for warnings (3), or green if no violations were found.
Similarly, the bold font (5) is used to show the current object’s input validation quality
indicator (IV QI) and, as before, might have one of three colors: red, if there is at least one
error, orange if all discovered violations are warnings, or green if no violations were found.

28 3.4. ADMINISTRATIVE TOOLS MODULE

3.4 Administrative Tools Module

As discussed, our proposed framework offers several configuration options to allow users to
tune the data quality management tools according to their wishes. Therefore, it is important
to provide an administrative tools module that is only accessible to ‘power’ users and allows
them to easily change these configuration settings. Our proposed administrative tools module
consists of three parts, which we will now describe in detail.

3.4.1 Contract Editing and Creation

The first part of our proposed administrative tools module can be used by a power user in
order to create new contracts or edit already existing ones. An example of it in use is depicted
in figure 3.9. To start with the editing process the user can select one of the existing contracts,
by using the Choose Contract button (1). The various parts of the selected contract are
then displayed in the form of a 6-column table. Each row in this table represents a constraint
that exists in the contract. The first (leftmost) four columns of the table display some of the
actual characteristics of the constraint and are not editable. In more detail, the first three
columns (2) represent the unique constraint identifier, which consists of the name of the
entity in which the constraint is defined, the entity field to which the constraint applies, when
applicable, and the name of the constraint. The fourth column (3) informs the user about
whether the contract weight can be overridden by a payload weight, i.e. whether a payload
label has been defined for this constraint. The rightmost two columns are the only ones that
can be edited by the user. As their labels suggest, the fifth column (4) allows the user to edit
the constraint contract weight while the sixth and last column (5) allows them to activate or
deactivate the constraint for the analysis and input validation. The user can then save (8) or
discard (6) their changes.

To start the process of creating a new contract, the user should press the corresponding button
(7) and enter the name of the new contract in the dialog box that appears. As a result, all the
existing constraints appear in the table with blank weights and activated. The user can then
enter the weights of constraints and possibly deactivate some of them as desired.

3.4.2 General Validation and Analysis Settings

The second part of the framework’s administrative tools allows the power user to edit some
general settings that apply to both the analysis and input validation modules. An example of
this panel can be found in figure 3.10. First, the user can decide whether the payload weights
should override the corresponding contract weights (1). Then, the user can choose two im-
portant weights, i.e. the default weight (2) that is used for a constraint if a corresponding
contract or payload weight is not found as well as the warning to error threshold (3), which
was described in subsection 3.1.4. To help new users understand the quality and calcula-
tion scheme that the framework uses, the general validation and analysis settings panel also
contains a brief overview of the main ideas behind it (4).

CHAPTER 3. APPROACH 29

Figure 3.9: The contract editing and creation panel allows users to edit existing contracts or
create new ones

Figure 3.10: The general validation and analysis settings panel allows users to configure
general settings for the validation and analysis

30 3.4. ADMINISTRATIVE TOOLS MODULE

3.4.3 Input Validation Settings

The third and final part of our proposed administrative tools module enables the power user
to configure the input validation module. This is depicted in figure 3.11. To this end, the user
can select the contract (1) that they wish to use during input validation as well as the entities
and groups (2) that they want to have validated during data input. Finally, they can choose
whether they want warnings (see subsection 3.1.4) to be displayed along with errors when
violations are discovered (3).

Figure 3.11: The input validation and analysis settings panel allows users to configure set-
tings for the input validation and analysis

4
Implementation

This chapter focuses on the implementation details of the data quality management frame-
work that we propose. After presenting an overview of some of the technologies used, we
describe in depth how the framework was implemented within the FoodCASE system.

4.1 Technologies

In this section, we will present some of the main technologies that we used in our implement-
ation and shortly discuss the reasoning behind their choice.

4.1.1 Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a server-side component architecture for the Java Platform
Enterprise Edition1. The EJB model enables the encapsulation of the business logic of the
application. As FoodCASE is designed based on the EJB model, the business logic of our
data quality management framework is implemented as a Stateless Session EJB.

4.1.2 Hibernate Validator

In subsection 3.1.1 we discussed the reasoning behind choosing the Bean Validation (BV)
specification in order to express and validate the data quality constraints of our framework.

1http://www.oracle.com/technetwork/java/javaee/ejb/index.html

31

32 4.1. TECHNOLOGIES

There are numerous existing bean and object validation frameworks for the Java language.
Some of the most prominent ones that we encountered during our initial research include
Hibernate Validator2, whose 5.x version is the reference implementation of Bean Validation
1.1, Apache BVal3 and OVal4. After a short examination of their features, we decided to
focus our investigation on Hibernate Validator (HV) and OVal and performed an extensive
comparison between the two, which can be found in Appendix B.

In the end, we decided to use Hibernate Validator (HV) 5.x, as it is currently better docu-
mented, more actively supported and highly integrated with Java EE. In addition, HV sup-
ports the use of validation groups and payloads, which allowed us to enhance our framework
with additional features. As our comparison demonstrated, even though OVal does offer some
additional attractive features, such as the supported use of scripted expressions for pre- and
post-conditions, it lacks other more important ones, such as the ability to group constraints
and define payloads. Thus, HV was deemed as the natural choice for our implementation.

4.1.3 Java Swing

Swing is a GUI widget toolkit for the Java language. It is part of the Oracle Java Foundation
Classes (JFC), which include a set of features for building GUIs and adding rich graphics
functionality and interactivity to Java applications5. Swing provides a set of GUI components
that are written entirely in Java and are therefore platform-independent. It is currently in the
process of being replaced by JavaFX as the standard GUI library for Java SE, even though
both will be part of the Java SE specification and included in the JRE for the foreseeable
future.

As the FoodCASE GUI is currently built using the Swing API, our framework’s analysis and
administrative GUI modules were also created using Swing components. More details about
the implementation of these modules will be discussed in later parts of this chapter.

4.1.4 JFreeChart

JFreeChart6 is a free chart library that is written entirely in Java. It provides an API that
supports a wide range of chart types, including pie charts, bar charts, histograms, line charts
and XY plots. JFreeChart is one of the most widely used chart libraries for Java. We chose it
for our data quality visualizations because it provides a rich range of features, it is very well
documented, and highly compatible with Swing, as it supports output to several Swing com-
ponent. More about the implementation of our visualizations will be discussed in subsection
4.5.4.

2http://hibernate.org/validator/
3http://bval.apache.org/
4http://oval.sourceforge.net/
5http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
6http://www.jfree.org/jfreechart/

CHAPTER 4. IMPLEMENTATION 33

4.2 Main Concept Implementation Details

In this section, we will describe the details of how the main concepts of our framework were
implemented. We will also explain in which of the FoodCASE modules we implemented the
corresponding classes and also provide some code samples for illustrative purposes.

4.2.1 Constraint Declaration and Definition

In our framework, all the constraints related to data quality are declared in the entity beans
which correspond to the FoodCASE entities that the constraints apply to. In FoodCASE, all
the entity beans can be found in the FoodCASE Lib module.

Hibernate Validator (HV) allows three levels of bean constraints: field constraints, property
constraints and class constraints. Field-level constraints can be expressed by annotating
the fields of a class. Property-level constraints can be used for classes that adhere to the
JavaBeans standards and are expressed by annotating the properties of a bean class instead
of its fields. This is achieved by annotating the property’s getter method, and should be
used as an alternative to field-level constraints. Finally, class-level constraints can be used to
designate the whole object as the subject of the validation. This is useful when the validation
depends on a correlation between several properties of an object.

As of HV 5.x, which is the reference implementation of Bean Validation 1.1, constraints
can also be applied to the parameters and return values of the methods and constructors of
any Java type [7]. Currently, we have only defined, implemented and used bean constraints,
however expanding the framework to also support method constraints is also possible and
will be discussed in section 7.3.

Hibernate Validator provides a set of commonly-used field-level built-in constraints. These
are the constraints defined by the Bean Validation specification, with the inclusion of several
additional ones. Furthermore, the user can define virtually any type of custom constraint that
meets their needs. We will further discuss these built-in and custom-defined constraints in the
next parts of this subsection.

All the constraints in our framework are expressed as Java annotations. To declare a con-
straint, the user has to annotate the field, property or class they wish to constrain. Addition-
ally, they might need or wish to define the corresponding constraint-specific attributes.

An example of a constraint declaration can be seen in listing 4.1. In this example the annota-
tion of the declared constraint is @Min and there are 4 attributes specified: value, which is
mandatory for this constraint, message, groups and payload. The last three attributes
are always part of any constraint’s definition, but can be omitted from its declaration.

It is important to note that not all constraints can be applied to any level. For instance, none
of the default constraints can be placed at class level. In other words, class-level constraints
are always custom constraints [7].

34 4.2. MAIN CONCEPT IMPLEMENTATION DETAILS

Listing 4.1: An example of a simple field-level constraint annotation declaration
@Min(

value = 0,
message = "The pool value must be greater than or equal

to {value}.\n",
groups = TdsPoolValueChecks.class,
payload = Severity.SeriousError.class

)

Built-in Constraints

As mentioned before, Hibernate Validator provides a basic set of commonly used constraints.
Most of these built-in constraints are the constraints specified in the Bean Validation 1.1 API.
A list of these constraint annotations with their associated attributes in parentheses and a short
description of their function can be seen below [7]:

• @AssertFalse: Checks whether the annotated element is false.

• @AssertTrue: Checks whether the annotated element is true.

• @DecimalMax(value=, inclusive=): Checks whether the annotated value
is less than (when inclusive=false) or less than or equal to (when
inclusive=true) the specified maximum value.

• @DecimalMin(value=, inclusive=): Checks whether the annotated value
is larger than (when inclusive=false) or larger than or equal to (when
inclusive=true) the specified minimum value.

• @Digits(integer=, fraction=): Checks whether the annotated value is a
number having up to integer digits and fraction fractional digits.

• @Future: Checks whether the annotated date is in the future.

• @Max(value=): Checks whether the annotated value is less than or equal to the
specified maximum value.

• @Min(value=): Checks whether the annotated value is higher than or equal to the
specified minimum value.

• @NotNull: Checks that the annotated value is not null.

• @Null: Checks that the annotated value is null.

• @Past: Checks whether the annotated date is in the past.

• @Pattern(regex=, flag=): Checks if the annotated string matches the regular
expression regex considering the given flag match.

• @Size(min=, max=): Checks if the annotated element’s size is between min and
max (inclusive).

• @Valid: Validates the associated object recursively.

CHAPTER 4. IMPLEMENTATION 35

Besides the above BV-specified constraints, Hibernate Validator also provides some addi-
tional built-in constraints. These are the following:

• @CreditCardNumber(ignoreNonDigitCharacters=): Checks
whether the annotated character sequence passes the Luhn checksum test.
ignoreNonDigitCharacters allows to ignore non digit characters (the
default is false).

• @EAN: Checks whether the annotated character sequence is a valid EAN7 barcode.

• @Email: Checks whether the specified character sequence is a valid email address.

• @Length(min=, max=): Checks whether the annotated character sequence is
between min and max (inclusive).

• @LuhnCheck(startIndex=, endIndex=, checkDigitIndex=,
ignoreNonDigitCharacters=): Checks whether the digits within the an-
notated character sequence pass the Luhn checksum algorithm. startIndex
and endIndex allow to only run the algorithm on the specified substring.
checkDigitIndex allows to use an arbitrary digit within the character sequence as
the check digit. If not specified it is assumed that the check digit is part of the specified
range. ignoreNonDigitCharacters allows to ignore non digit characters.

• @Mod10Check(multiplier=, weight=, startIndex=, endIndex=,
checkDigitIndex=, ignoreNonDigitCharacters=): Checks whether
the digits within the annotated character sequence pass the generic mod 10 checksum
algorithm. multiplier determines the multiplier for odd numbers (defaults to 3),
weight the weight for even numbers (defaults to 1). startIndex and endIndex
allow to only run the algorithm on the specified substring. checkDigitIndex
allows to use an arbitrary digit within the character sequence as the check digit.
If not specified it is assumed that the check digit is part of the specified range.
ignoreNonDigitCharacters allows to ignore non digit characters.

• @Mod11Check(threshold=, startIndex=, endIndex=,
checkDigitIndex=, ignoreNonDigitCharacters=,
treatCheck10As=, treatCheck11As=): Checks that the digits within
the annotated character sequence pass the mod 11 checksum algorithm. threshold
specifies the threshold for the mod11 multiplier growth; if no value is specified the
multiplier will grow indefinitely. treatCheck10As and treatCheck11As
specify the check digits to be used when the mod 11 checksum equals 10 or
11, respectively. Default to X and 0, respectively. startIndex, endIndex,
checkDigitIndex and ignoreNonDigitCharacters carry the same
semantics as in @Mod10Check.

• @NotEmpty: Checks whether the annotated element is not null nor empty.

• @NotBlank: Checks that the annotated character sequence is not null and the trimmed
length is greater than 0. The difference to @NotEmpty is that this constraint can only
be applied on strings and that trailing whitespaces are ignored.

• @Range(min=, max=): Checks whether the annotated value lies between the spe-
7EAN: International Article Number (formerly known as European Article Number)

36 4.2. MAIN CONCEPT IMPLEMENTATION DETAILS

cified min and max (inclusive).

• @SafeHtml(whitelistType=, additionalTags=,
additionalTagsWithAttributes=): Checks whether the annotated value
contains potentially malicious fragments. With the whitelistType attribute a
predefined whitelist type can be chosen which can be refined via additionalTags
or additionalTagsWithAttributes.

• @ScriptAssert(lang=, script=, alias=): Checks whether the given
script can successfully be evaluated against the annotated element.

• @URL(protocol=, host=, port= regexp=, flags=): Checks if the an-
notated character sequence is a valid URL according to RFC2396. If any of the optional
parameters protocol, host or port are specified, the corresponding URL frag-
ments must match the specified values. The optional parameters regexp and flags
allow to specify an additional regular expression (including regular expression flags)
which the URL must match.

A more detailed description about the use and supported data types of these constraints can
be found in the Hibernate Validator documentation [7].

Custom Constraints

Besides using the Hibernate Validator built-in constraints, we also defined our own custom
constraints. These custom constraints can range from relatively simple class-level ‘value-
in-range’ constraints, to more complex ones involving checks in multiple entities. Class-
level constraints are particularly useful when the validation depends on a correlation between
several fields of the object. For instance, a class-level ‘value-in-range’ would allow to check
whether the annotated value is between the currently defined min and max fields of the
object, which might be dynamically defined and not have a fixed value. This would not
be possible with the built-in @Range annotation, as it accepts only constant min and max
attributes and is not able to perform any cross-field checks.

Defining a new custom constraint involves the following steps. The first step is the creation
of the corresponding constraint annotation. The second step is to implement an appropriate
validator that includes the conditions and checks that need to be satisfied in order to validate
the constraint. Finally, the third and last step includes the definition of a default error message
that should be displayed when the constraint is violated.

In our data quality framework, all the custom constraints are defined in the FoodCASE Lib
module, as the annotations need to be available to the entity beans. The corresponding valid-
ators are defined in the same package as the constraints and by convention are named using
the constraint name followed by the word ‘Validator’. For instance, if the class that
defines the constraint is named Unique.class, the corresponding validator will be named
UniqueValidator.class.

As with any Java annotation type, the constraint annotation is defined by using the

CHAPTER 4. IMPLEMENTATION 37

@interface keyword. As demanded by the Bean Validation specification, a constraint
annotation must define three attributes: message, groups and payload. Besides these
three mandatory attributes, it is possible to define additional constraint-specific attributes,
such as the commonly used value attribute. Additionally, the definition of the constraint
annotation contains several meta-annotations, which specify important constraint character-
istics, including the supported target element types (@Target) and the associated validator
(@Constraint). An example of the definition of such a constraint annotation can be seen
in listing 4.2.

Listing 4.2: An example of a simple class-level constraint annotation. The element type
TYPE is used to define a class-level constraint, while the element type ANNOTATION TYPE
allows for the creation of composed constraints
@Target({TYPE, ANNOTATION_TYPE})
@Retention(RUNTIME)
@Constraint(validatedBy = {ValidMinMaxValidator.class})
@Documented
public @interface ValidMinMax {

String message() default "The minimum value can’t be greater
than the maximum value";

Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};
}

The definition of the custom constraint annotation is always followed by the implementation
of a validator that can validate any element that has been annotated with the constraint annota-
tion. This validator is created as a class that follows the naming convention described above,
i.e. {AnnotationName}Validator, and implements the ConstraintValidator
interface. This interface defines two parameters that are set in the implementation, namely
the annotation to be validated and the element type that can be validated. An example of such
a validator can be found in listing 4.3.

4.2.2 Contracts

As already mentioned in subsection 3.1.3, in our framework we use the term contracts to
refer to files in which we define the weight (importance) of each constraint and state whether
the constraint is currently active or not. These contracts are created as .properties files,
in which each property represents a constraint in the format key=value, where key is a
unique constraint identifier and value the associated weight, optionally followed by comma
and the word active or inactive, indicating the status of the constraint. If the status is
omitted, the constraint is considered active.

38 4.2. MAIN CONCEPT IMPLEMENTATION DETAILS

Listing 4.3: An example of validator for the ValidMinMax annotation
public class ValidMinMaxValidator implements

ConstraintValidator<ValidMinMax, TdsPoolValue>{

@Override
public void initialize(ValidMinMax a) {
}

@Override
public boolean isValid(TdsPoolValue t,

ConstraintValidatorContext cvc) {
boolean isValid;
// code that determines whether the constraint is satisfied

(isValid = true) or violated (isValid = false)
return isValid;

}
}

The unique constraint identifier that is used as the property’s key, is defined as follows:

{entityName}.[{fieldName}].{constraintName}

In the above definition, the fieldName is only included in the case of field-level constraints.

In our framework, contracts can be created and edited either via the administrative GUI,
which was described in subsection 3.4.1, or by directly creating or editing the contract files
using a text editor. Contracts are currently saved in a resource folder in the FoodCASE Lib
module, but could also be saved elsewhere if desired. A small example of the content of a
contract file can be seen in listing 4.4.

Listing 4.4: Examples of entries in a contract .properties file
TdsPoolValue.ValidMinMax=80 //class-level constraint, active
TdsPool.name.Size=90,active //field-level constraint, active
TdsPoolValue.minimum.Min=100,inactive //field-level constraint,

inactive

We chose to define contracts as .properties files instead of persisting the corresponding
information in the database in order to ensure that the contracts can be easily shared and
exchanged between users and applications of the system. This decision was based on the
fact that contracts are not just meant to be representations of the personal preferences of a
user, but rather interchangeable input validation and analysis profiles, that can be easily made
available to all interested users and applications.

CHAPTER 4. IMPLEMENTATION 39

4.2.3 Validation Groups

As explained in subsection 3.1.5, the use of validation groups enables the organization of
constraints into logical units, which in turn allows the user to restrict the analysis or input
validation to the constraints that they are interested in.

Validation groups are defined as simple tagging interfaces, i.e. inter-
faces without any methods. Hibernate Validator provides the default group
javax.validation.groups.Default, which contains all the constraints that
do not belong to any other group and is assumed for the validation if no other group is
specified. This implies that if we wish to validate all the constraints in an entity, we need
to specify as validation arguments all the groups that contain at least one constraint in the
entity as well as the Default group. However, this process can be bothersome and error
prone. Therefore, we created an extra tagging interface called AllChecks, which extends
all the defined validation group interfaces as well as the Default one. By specifying the
AllChecks group as the group to be validated, we can be sure that all the constraints
that are declared in an entity will be validated. Additionally, we defined another tagging
interface, ValidationGroup, that all custom validation group interfaces should extend.
The ValidationGroup interface was defined to ensure that only appropriate interfaces
that represent validation groups can be used as validation arguments. The resulting UML
diagram depicting the group interface structure in our framework can be found in figure 4.1.

Figure 4.1: A UML diagram demonstrating the structure of the validation group interfaces
in our framework. New validation groups should extend the ValidationGroup interface
and should be extended by the AllChecks interface

All the above mentioned tagging interfaces, along with the custom validation groups that we
have defined, are currently located in the FoodCASE Lib module. To create a new custom
validation group that is well integrated in our framework a user should follow the two steps
described below:

1. Create a tagging interface that extends ValidationGroup.

2. Add the newly created interface in the list of interfaces that AllChecks extends.

Any new group that is defined this way can be included in the groups attribute of a con-
straint declaration (see listing 4.1) and thus will appear in the entity and group selection tree

40 4.3. TDS DATA QUALITY ANALYSIS BEAN

(see figures 3.3, 3.11) during the analysis or input validation configuration.

4.2.4 Payload Weights

The use of payload weights in our framework has been described in subsection 3.1.6. This
payload concept was implemented in the form of the Severity class, which contains the
definition of all the payload interfaces, i.e. the payload labels, that were presented in table
3.2, such as Info, Suggestion, Recommendation, etc. These payload interfaces ex-
tend the Hibernate Validator Payload tagging interface. In addition, the Severity class
includes a Map, which is used to map each of the payload interfaces (labels) to the corres-
ponding payload weight, as seen in table 3.2.

The payload interfaces defined in the Severity class can be used on any constraint annota-
tion, as seen in the example of listing 4.1. The TDS Data Quality Analysis Bean,
which will be described in section 4.3, is able to identify which of the constraints have a
specified payload interface and, if desired by the user, override the constraint contract weight
with its payload weight during the analysis or input validation.

4.3 TDS Data Quality Analysis Bean

The TDS Data Quality Analysis Bean is an EJB session bean that contains all the
methods that constitute the business logic of our framework. Its actual name is
TdsQualityAnalysisBean and, like all the session beans in the FoodCASE system,
it is located in the FoodCASE Server module. This EJB is responsible for all the funda-
mental functionality of our framework, including constraint and constraint group validation,
quality analysis and calculation of all types of quality indicators. Despite its name, it is not
only used by the data quality analysis module, but also by the input validation and the admin-
istrative tools modules. Following the existing FoodCASE structure, this functionality can be
invoked by other project modules, namely FoodCASE Client and FoodCASE Admin,
via the BeanBag singleton.

Some of the main methods that this EJB bean provides include the following (the method
parameters and return values are excluded):

• calculateObjectQuality: Calculates the quality of an entity object during in-
put validation and returns its IV QI .

• calculateQuality: Calculates theOAQI of the analyzed data during a data qual-
ity analysis and creates a textual summary of the analysis results.

• constraintHasPayload: Takes a constraint identifier String as an argument and
checks the constraint’s declaration to see if a payload has been defined for it.

• createNewContractProperties: ‘Scans’ all analyzable entities, i.e. the entit-
ies whose analysis is supported by our framework, for declared constraints and creates

CHAPTER 4. IMPLEMENTATION 41

a new contract .properties file with no weights defined.

• getAllEntityObjects: Returns a list of all objects of a specified entity type in
order to be used for validation and analysis.

• getAnalyzableEntities: Returns a set of all the analyzable entities (i.e. entities
whose analysis is supported by our framework).

• getEntityValidationResults: Validates the constraints belonging to the spe-
cified validation groups for all the objects of a specific entity type and creates a
ConstraintMap (see subsection 4.4.2) to be used for further quality analysis and
calculations.

• getGroupsPerEntity: ‘Scans’ the specified entity in order to discover the set of
all validation groups that constraints in the entity belong to.

• initializeWithProperWeight: Only takes effect if the option to replace the
constraints’ contract weights with their payload weights is selected. If it is, it de-
termines whether the specified constraint has declared a payload. If it has, it re-
places the contract weight of the constraint with the declared payload weight in the
ConstraintMap that the constraint belongs to.

• isError: Used during input validation, in order to determine whether a violation is
an error based on the user-selected input validation settings.

In the remainder of this chapter, we will describe the main helper classes that are used by
the data quality analysis EJB (section 4.4) and explain how the methods mentioned above
are used in each context, namely during data quality analysis (section 4.5), input validation
(section 4.6) and using the administrative tools to configure the framework’s settings (section
4.7). Where needed, we will also provide the relevant implementation details. For the sake
of brevity, from now on we will refer to the TDS Data Quality Analysis Bean as simply the
‘analysis bean’ or just the ‘bean’.

4.4 Main Helper Classes

The data quality analysis EJB relies on the use of two main helper classes, which basically
serve as the data structures that organize the data related to all the constraints, their weights
and violation count for each entity. These helper classes are called ConstraintValues
and ConstraintMap and are located in the FoodCASE Lib module. We will now de-
scribe these two classes in detail.

4.4.1 ConstraintValues

The ConstraintValues class is used to organize data about important constraint-related
values. Each individual constraint corresponds to one ConstraintValues object. The
constraint-related values that are handled by this class are the constraint’s weight, the number
of constraint violations that were found in all entity objects, and information about whether

42 4.5. DATA QUALITY ANALYSIS MODULE

the constraint has an associated payload or not. It also holds the IDs of the entity objects that
violate the constraint, which are used for the data cleaning function of the analysis visualiz-
ations.

4.4.2 ConstraintMap

The ConstraintMap helper class is used to organize all the constraint-related data that
corresponds to one particular analyzable entity. Each ConstraintMap object represents
the constraints of one entity, or more precisely, the constraints that belong to the selected
validation groups for this entity. In detail, the main function of this class is to build and main-
tain a HashMap, which is used to map each eligible constraint to a ConstraintValues
object, which represents important values associated with the particular constraint.

Despite its name, the ConstraintMap class is more than a simple map data structure.
Apart from mapping constraint identifiers to their values, ConstraintMap is also respons-
ible for loading the selected contract and reading its values. Additionally, it calculates the
entity-level analysis quality indicator (ELAQI) and the input validation quality indicator
(IV QI), and creates the string that contains the results of each entity-level analysis.

4.5 Data Quality Analysis Module

The function of our framework’s data quality analysis module has already been described in
section 3.2. We will now discuss the implementation details concerning this module.

4.5.1 General Information

The data quality analysis module takes the form of a Swing JFrame which is called
TdsQualityAssessmentFrame and is located in FoodCASE Client. This frame
is depicted in figure 3.3. It consists of two parts: the Analysis Configuration part,
which allows users to choose their desired analysis settings, and the Analysis Results
part, which displays the results of the analysis in textual and visual form. From now on, we
will refer to the TdsQualityAssessmentFrame as the ‘analysis client’ or, in the context
of the current section, as just the ‘client’.

4.5.2 Entity and Group Selection Tree Creation

The most interesting part about the Analysis Configuration section of the analysis
module, is the entity and group selection tree ((2) in figure 3.3). This is a three-level check-
box tree that provides users with an overview of all the analyzable entities and their associated
validation groups, and allows them to easily select the entities and groups that they want to

CHAPTER 4. IMPLEMENTATION 43

analyze. The choice of the check-box tree format for the representation of the analyzable
entities and groups was based on the fact that this format allows for an easy and intuitive
element overview and selection, and scales well when a large number of elements is involved.
It is implemented as a JIDE Common Layer8 CheckBoxTree, which is an open source
component that provides the functionality we need.

To create this tree, we start with a root node representing all the analyzable entities and
groups. Then, the analysis client calls the getAnalyzableEntities() method from
the analysis bean, which returns a set containing all the entities whose analysis is supported
by our framework. For each of these entities, a corresponding entity node is added to the tree.
Then, for each entity, the client invokes the bean’s getGroupsPerEntity() method and
receives a set of groups in return. For each of these groups, a group node is added at the
corresponding entity node, which concludes the creation of the tree.

4.5.3 Quality Analysis and Calculation

The analysis process begins as soon as the Start Analysis button of the analysis client
frame ((3) in figure 3.3) is pressed. An overview of all the steps that are involved in the
analysis is illustrated in figure 4.2.

As seen in this figure, after the analysis is initiated, the analysis client checks whether
at least one entity as well as a valid contract is selected. If not, the user is notified
and the client resumes its stand-by state. If the selection conditions are fulfilled, the
client parses the entity and group tree in order to find out which entities and which of
their groups should be analyzed. For each of the selected entities, the analysis bean’s
getEntityValidationResults() method is invoked. This method is responsible
for all parts of the entity’s analysis. After retrieving all the objects that belong to the en-
tity, by invoking the bean’s getAllEntityObjects() method, it creates an up-to-date
ConstraintMap that consists of only the constraints that belong to the selected valida-
tion groups of the entity. It also makes sure that the weight of each constraint has the cor-
rect value, either according to its payload or the selected contract, by invoking the bean’s
initializeWithProperWeight() method. Then it validates all the objects of the
entity and updates the ConstraintValues of each constraint according to the number
of discovered violations. After the validation is completed, the results are analyzed and the
entity-level analysis quality indicator (ELAQI) is calculated. Finally, it builds the entity-
related analysis results message that will appear in the client. The method returns the created
ConstraintMap object, which at this point contains all the information about the analysis
of the entity. This ConstraintMap object is added to a ConstraintMapList, which
holds the ConstraintMap objects of all the selected entities.

After this process is completed for each selected entity, the client invokes the bean’s
calculateQuality() method. This method, combines the analysis results represen-
ted by all the selected entities’ ConstraintMap objects and calculates the overall analysis
quality indicator (OAQI). It also builds the overall analysis results message which is dis-

8http://www.jidesoft.com/products/oss.htm

44 4.5. DATA QUALITY ANALYSIS MODULE

played on the client, along with the entity-specific analysis results messages.

After the analysis is completed, the client creates the visualizations and makes the previously
hidden visualization tabs visible.

Figure 4.2: A flowchart demonstrating the steps that are involved in the analysis process

4.5.4 Visualizations

As mentioned in the previous subsection, the visualizations are created by the analysis cli-
ent after the analysis bean has completed the analysis for the selected entities and validation
groups, by using the information contained in the ConstraintMap objects. All three visu-
alizations are created in a similar manner, utilizing a ChartCreator class. This class first
creates the chart’s dataset based on the type of the chart and the analysis information from
the ConstraintMapList. Then, with this dataset, it creates the chart using the corres-
ponding JFreeChart method (see subsection 4.1.4) and adds a listener that waits for the user
to click in one of the graph’s sections.

As soon as the user clicks in one of the violation-representing graph sections, the

CHAPTER 4. IMPLEMENTATION 45

ChartCreator creates a ViolationInfoPanel object, which in turn creates and dis-
plays the list of all the violated constraints that exist in the data represented by the clicked
graph area. An example of this list is displayed in annotated section (2) of figure 3.5. This
list is sorted by the graph-corresponding Comparator, either by the constraint weight or
by entity name (and then weight). Selecting a violated constraint from the list leads to the
creation and display of the list of entity object IDs that violate this constraint ((3) in figure
3.5), which is achieved with the help of the ConstraintValues object of the selected
constraint, which creates this list during the data analysis. Double-clicking on one of these
entity object IDs opens the corresponding entity object detail frame (figure 3.8), which is
achieved using the existing FoodCASE infrastructure.

As explained above, the visualizations are created using the information that was gathered
during the analysis. This implies that the information presented in the graphs might become
‘outdated’ if the user corrects some of the violation sources by editing an entity detail frame.
To make the user aware of which of the entities have been edited, every time that a user opens
an entity object detail frame via the analysis visualizations, the object’s entity type and ID
are added to a static ‘list’ (it is actually a more complicated data structure, handled by the
EditedEntityObjectIds class, but we refer to it as a list for the sake of simplicity).
This list is then used by a custom renderer (EntityIdRenderer), in order to display the
entity object IDs contained in this list in violet color ((1) in figure 3.6).

4.6 Data Input Validation Module

The use of our data input validation module has been described in section 3.3. In the current
section we will discuss the implementation of this module within FoodCASE. The input
validation module is implemented as part of FoodCASE Client, as the data that we want
to validate is entered via the client.

4.6.1 General Information

To ensure optimal integration with FoodCASE, our implementation is based on the already
existing input validation infrastructure. Figure 4.3 depicts a UML diagram of the main classes
and interfaces involved in the input validation process, distinguishing between the previously
existing types (in blue) and the new class we created for our framework (BeanValidator,
in orange). In addition to these classes, another previously existing component that we adop-
ted is the ValidationPanel, which is added at the bottom part of any analyzable entity
detail frame and displays the results of the input data validation and evaluation.

We will now briefly describe the already existing FoodCASE input validation infra-
structure. The Validator interface outlines the behavior that every validator should
implement, including methods to determine whether the validated object has errors or
warnings and methods to retrieve the associated error or warning messages. The ab-
stract class AbstractValidator offers property change support for validators, while

46 4.6. DATA INPUT VALIDATION MODULE

AbstractComponentValidator registers the appropriate listener for each type of val-
idated Swing component.

Figure 4.3: A UML diagram demonstrating the structure of the main input validation-related
classes and interfaces in our framework. The only class that was created by us is depicted in
orange color (BeanValidator) while the rest of the classes and interfaces (in blue color)
were already part of the previously existing input validation framework

4.6.2 Input Validation and Quality Evaluation

The BeanValidator class is responsible for validating the entity constraints during data
input, performing an evaluation and analysis of the input data and showing the results of the
evaluation to the user, in the form of textual information and visual feedback. To enable
input validation on an entity, we have to create and add a BeanValidator object to the
ValidationPanel of the entity’s detail frame. The BeanValidator constructor takes
as arguments the entity frame’s validated fields, i.e. the fields whose input needs to be valid-
ated, as well as the type of visual feedback that we want the user to receive when a violation
is encountered, which will be discussed in more detail in subsection 4.6.3.

Every time that the focus is shifted from one of the validated fields, the BeanValidator
object uses the HV validate() method to validate the input based on the user-defined
settings. The result of this validation is a set of all the violations encountered. If this set
is not empty, the BeanValidator object performs an evaluation of the input data in a
manner similar to the data quality analysis process, which was described in subsection 4.5.3.
This evaluation determines the visual feedback that the user receives on the validated entity
fields ((1) and (2) in figure 3.8), as well as the violation messages that are displayed in the
ValidationPanel at the bottom of the detail frame in plain font ((3) and (4) in figure
3.8). It also calculates the IV QI , which is displayed at the ValidationPanel in bold
font ((5) in figure 3.8).

In detail, the BeanValidator object creates a ConstraintMap representing all the con-
straints that the user wishes to validate according to the currently selected settings. This is

CHAPTER 4. IMPLEMENTATION 47

achieved by invoking the analysis bean’s getNewOrResetConstraintMap() method.
Then, for each discovered violation, it invokes the bean’s isError() method, which de-
termines whether the violation is an error, i.e. the weight of the corresponding constraint is
higher than the WtET, or a suggestion, and adds it to its maintained list of errors or warnings
accordingly. Finally, it invokes the bean’s calculateObjectQuality(), which returns
the IV QI of the entity object that is currently being edited.

4.6.3 Validation Feedback

Support of Different Visual Feedback Types

An extension that we added in the previously existing input validation infrastructure is the
support of different types of visual feedback in case of violations, or violation feedback.
In the already existing framework, fields that contain data that violates one or more con-
straints are colored in a red background, as seen in figure 4.4-1. In order to allow for
more subtle violation feedback options but not interfere with the previously existing frame-
work, we created an enumeration of four different violation feedback types (BACKGROUND
NONE, OUTLINE BACKGROUND, OUTLINE) that correspond to the four violation feedback
versions illustrated in figure 4.4. When an input validator object is created (such as our
BeanValidator described in the previous subsection), one of the enumeration types can
be optionally given as an argument, which results in the desired type of violation feedback.

Figure 4.4: The different input validation visual feedback types supported by our framework:
1: red background, 2: no feedback, 3: light red background with red outline, 4: red outline

Additionally, we added support for orange highlighting of fields that contain warnings.

A Drawback of Using a Single Validator

In the previously existing framework, every constraint that had to be validated during data
input required the addition of the corresponding validator to the detail frame. In our frame-
work, the validation of all the constraints can be handled by a single BeanValidator
object. This feature not only facilitates the maintenance of the input validation module, but
also enables its expansion with new constraints in an effortless manner. However, using a
single validator implies that when one of the constraints is violated, the validator will fail to
validate the entity. This failure to validate will ‘propagate’ to all the constraints that use this

48 4.7. ADMINISTRATIVE TOOLS MODULE

validator, even if they are not violated. This leads to the occurrence of violation feedback in
all the fields that are validated during input, even if the data that has been entered in them is
correct.

A workaround to this issue is to provide a mapping between constraints and fields, and make
sure that the violation feedback is displayed only on the fields that are mapped to the violated
constraints. Even though this leads to correct violation feedback, it requires additional main-
tenance and extensibility effort, thus counteracting the benefits of using a single validator.

4.7 Administrative Tools Module

Our data quality management framework’s administrative tools module was implemented as
part of the FoodCASE Admin module, as it is meant to be accessible only by administrators
or ‘power’ users. We already described the use of the administrative tools module in section
3.4. In the current section we will discuss some details about its implementation.

4.7.1 General Information

As the rest of the FoodCASE GUI components, the GUI for our administrative tools
was implemented using the Java Swing toolkit. In order to integrate our administrat-
ive tools to the FoodCASE Admin module as seamlessly as possible, we used the same
class structure as the already existing quality framework administrative tools. In de-
tail, we implemented our administrative tools in the form of a Swing tabbed pane, the
TdsDataQualityAnalysisAdminTabbedPane. Currently, this tabbed pane contains
three tabs, which take the form of three Swing panels: TdsContractEditingPanel,
TdsGeneralSettingsPanel and TdsInputValidationSettingsPanel. The
function of each of these tabs was described in section 3.4 and their implementation will be
discussed in the following three subsections.

4.7.2 Contract Editing and Creation Panel

The main part of the contract editing and creation panel (TdsContractEditingPanel),
depicted in figure 3.9, is the contract-editing table, which allows users to overview the con-
straints that exist in the framework, edit their corresponding weights and activate or deactivate
them for each existing contract. It also allows the users to create new contracts in a simple
and effortless way.

To implement this table, we created a custom table model, the ContractTableModel,
which extends the Swing-defined AbstractTableModel. When a user loads an ex-
isting contract for editing, our table model is responsible for parsing the contract file and
‘translating’ the information it contains into the corresponding table column field. Each ele-
ment in the contract file corresponds to one row in the table. The only table column whose

CHAPTER 4. IMPLEMENTATION 49

information is not directly taken from the contract file is the ‘Can be overridden’
column, which basically indicates whether a payload label has been defined for the spe-
cific constraint. The value for this column is retrieved by using the analysis bean’s
constraintHasPayload() method.

To create a new contract file, the panel invokes the analysis bean’s
createNewContractProperties() method. This method parses all the ana-
lyzable entities in order to discover their constraints and returns a Properties object that
has all the existing constraints with no weights defined. This object is saved as the new
contract file and is then loaded to the table as described in the previous paragraph.

In both cases, the user changes are saved in the contract .properties file, using the
store() method of the Properties class.

4.7.3 General Validation and Analysis Settings

The general validation and analysis settings panel (TdsGeneralSettingsPanel) is
used to allow the user to configure general settings of the data quality management frame-
work according to their wishes. Therefore, this panel must be able to save the user prefer-
ences and configurations and ensure that they are available to the modules that they refer to
at any time. To achieve that, we used the already existing storeSettings() method of
the FoodCASE UserBean, which saves the selected settings in an appropriate table in the
FoodCASE database.

4.7.4 Input Validation Settings

The creation of the entity and group tree is performed dynamically, in the same way that we
described in subsection 4.5.2. Saving the tree selections in the database could be a difficult
and error-prone procedure, as we cannot know in advance how many entities and groups the
user might select. Therefore, we decided that the simplest and most reliable alternative would
be to serialize the tree object and then load it once when the FoodCASE Client module is
run. This is handled by a helper class (ValidationEntitiesGroups), which is located
in the FoodCASE Lib module. This class loads the serialized tree and then parses it into
a static map structure, which is then used by the BeanValidator class in order to decide
which constraints it should validate.

4.8 Open Implementation Issues

In this section, we will discuss some of the issues that we encountered during the implement-
ation of our framework that remain unresolved.

50 4.8. OPEN IMPLEMENTATION ISSUES

4.8.1 Displaying Previously Selected User Configurations

As discussed in sections 3.4 and 4.7, the administrative tools module is used by authorized
‘power’ users in order to change important settings related to the data quality analysis and
input validation. These settings are saved in the database, with the exception of the input
validation entity and group tree, which is serialized.

Even though the various settings are loaded and used correctly during data quality analysis
and input validation, the display of previously selected settings in the administrative tools
GUI has been problematic in some cases. For instance, the various checkbox values are
not always displayed correctly. Similarly, displaying the previously selected input validation
entity and group tree choices was inconsistent and had to be disabled. Even though this issue
does not affect how the setting values are loaded in the modules in which the settings are
actually used, it can be a source of confusion for system administrators, as it prevents them
from recognizing which settings have been used until that point.

4.8.2 Loading of the Database Settings by the TDS Quality Analysis Bean

As described in sections 4.5 and 4.6, both the data quality analysis and input val-
idation modules rely on the business logic that is implemented in the analysis bean
(TdsQualityAnalysisBean). When one of these modules invokes a method from the
analysis bean, the bean needs to be aware of the various user-specified input validation and
quality analysis settings that are relevant to the method being invoked. Such settings include
the selected validation contract, the default weight and the weight-to-error threshold. To allow
the bean to directly load these settings from the database, we tried to inject the UserBean
into the TdsQualityAnalysisBean. However, this resulted into several deployment er-
rors. Due to time constraints, we were unable to thoroughly investigate and correct the source
of these errors. As a workaround, the required settings are currently loaded by the module
that needs to use one of the analysis bean’s methods, i.e. either the data quality analysis mod-
ule or the input validation module, and then passed as an argument to the invoked method.
Even though this workaround works as required, it is a rather inelegant solution and should
be addressed in the future.

5
Comparison with FoodCASE Food

Composition Data Quality
Management Framework

As we have already mentioned in the course of this report, the framework that we implemen-
ted is not the only existing data quality management framework (DQMF) in the FoodCASE
system. The previously existing DQMF, conceptualized and developed mainly by Presser
[12] and Mock [10], is responsible for the same main tasks as our framework, namely data
quality input validation and overall data quality analysis. Currently, both frameworks are part
of the FoodCASE system, but each of them targets a different part of the data: while the pre-
viously existing framework manages the quality of the food composition data, our framework
focuses on the data related to total diet studies (TDS).

In this chapter, we will present an overview on how the two frameworks compare to one
another, by focusing on the additional features that our framework provides.

5.1 General Concept

Both frameworks view data quality as a constraint problem and provide options for assigning
an importance weight to the constraints in the system. Furthermore, both use this weight
to calculate a quality score for the data. However, our framework introduces the concept of
contracts, which can be easily created, edited and shared between users. Besides assigning
weights to constraints, contracts can also be used to completely deactivate (or reactivate)

51

52 5.2. CONSTRAINTS

constraints, something that is not possible in the previous framework. In addition to contracts,
our framework allows the user to specify the entities and groups of constraints that they wish
to validate. These configurations are not only applied to the data quality analysis, but to the
input validation as well.

5.2 Constraints

In our framework, constraints are defined as Java annotations and validated in a unified man-
ner. In contrast, in the previous framework, there is a distinction between constraints that
are defined for the data quality analysis, which take the form of database SQL constraints,
and constraints that are defined for the input validation, which take the form of Java classes.
This implies that the same constraint might need to exist in two forms, which can lead to
maintenance issues and inconsistencies. Additionally, the validation of each constraint in the
previous framework requires the explicit invocation of each of the corresponding validator
methods, something that is not required in our framework, as the validation is handled in a
unified way.

Furthermore, the contract concept in our framework implies that constraints can be easily
deactivated and reactivated both for the analysis and input validation. Also, the distinction
between warnings and errors is dynamic, as it depends on the weight of the constraint and a
user defined weight-to-error threshold. Additionally, the payload concept allows the defini-
tion of a payload weight that, if desired, can override the corresponding constraint contract
weight. Finally, the user can define a default weight that should be used for new constraints or
any constraint with no defined weight. All the features that were mentioned in this paragraph
are not available in the food composition DQMF.

5.3 Input Validation

Even though both frameworks use the same underlying validation and violation feedback
infrastructure, the concept and implementation of input validation is very different between
the two frameworks. The first big difference is that while in the food composition DQMF
the user cannot configure the input validation, in our framework it is just as configurable as
data quality analysis. The user can select a contract for the input validation, which affects
the constraint weights as well as whether they are activated or not. As with the analysis, the
user can also choose particular entities and groups to be validated, something that is also not
possible in the previous framework. Also, the user can select the warning-to-error weight
threshold and whether they want to display the violations of constraints that have a lower
weight than this threshold. Finally, a quality indicator (IV QI) is calculated and displayed
during input validation as well, which can motivate the user into correcting as many input
data issues as possible.

CHAPTER 5. COMPARISON WITH FOODCASE FOOD COMPOSITION DATA QUALITY
MANAGEMENT FRAMEWORK 53

5.4 Data Quality Analysis

The two frameworks’ differences regarding the underlying concept of the data quality analysis
were discussed in section 5.1. Even though both frameworks provide the possibility to drill
down through the data in order to discover and correct potentially existing issues, our DQMF
allows the user to select the entities and groups they want to analyze before the analysis. This
can speed up the analysis and help the user identify the issues they are interested in faster and
without the need of many ‘drill-down steps’. Also, the visualizations in our framework are
simpler, focus on violations and are used only for the general overview of the encountered
violations. More detailed constraint-specific information is provided in textual form, which
we consider as a more appropriate way to represent information in this level of detail.

54 5.4. DATA QUALITY ANALYSIS

6
User Evaluation

6.1 TDS-Exposure Workshop

A prototype of this work was presented at the TDS-Exposure workshop that took place during
the third TDS-Exposure General Assembly in Zurich between the 9th and 13th of February
2015. This workshop was attended by several food science experts from around Europe.
The participants were of many different positions such as researchers, compilers, laboratory
workers and investigators. The presentation consisted of an explanation of the main concepts
and ideas behind our framework, followed by a demo of the three implemented modules
(input validation, data quality analysis and administration module) in the FoodCASE system.

In order to evaluate how our DQMF concept and implementation is perceived by its target
users and to understand ways in which it could be improved in order to be in accordance with
the users’ wishes, at the end of the presentation the participants were asked to complete a
questionnaire about several areas of the framework. The questionnaire was answered by 15
of the participants. Even though this number might seem low, these participants constitute a
big part of all the food science experts within the TDS-Exposure project in Europe.

In this chapter, we will present the most interesting results that are revealed by an initial ana-
lysis of the questionnaire answers. This analysis is currently done in the context of individual
answers, which means that we have not yet analyzed, compared and correlated the relation-
ships between groups of answers or answers of users of different positions. The full list of
questions contained in our questionnaire is presented at the appendix C.

55

56 6.2. QUESTIONNAIRE FINDINGS

6.2 Questionnaire Findings

In this section, we will present our findings organized according to the general question cat-
egory that they correspond to. In all the questions whose answers we present, the participants
could choose from a five-level Likert-type scale if they ‘Strongly Agree’ (SA), ‘Agree’ (A),
are ‘Neutral’ (N), ‘Disagree’ (D) or ‘Strongly Disagree’ (SD). Next to each finding, we in-
dicate the percentages of answers that led to its conclusion.

6.2.1 Contracts

Finding SA% A% N% D% SD%

1 Almost 90% of the participants consider
assigning a weight to each data constraint
useful

40 46.67 13.33 - -

2 Almost 90% find the 0-100 weight scale
intuitive

33.33 53.33 6.67 6.67 -

3 Almost half of the participants consider
having different contracts for different
users and applications of the system use-
ful

6.67 40 53.33 - -

4 60% would like to be able to share and
exchange contract files with other users

13.33 46.67 33.33 6.67 -

5 While 40% of the participants would like
to be able to activate or deactivate con-
straints at runtime, about 30% disagree

13.33 26.67 33.33 13.33 13.33

6 40% find the existence of payload weights
useful

6.67 33.33 53.33 6.67 -

7 Almost 70% find it acceptable if the pay-
load weight can only be defined by de-
velopers, while more than 25% disagree

6.67 60 6.67 20 6.67

Table 6.1: Findings related to the concept of contracts

CHAPTER 6. USER EVALUATION 57

6.2.2 Input Validation

Finding SA% A% N% D% SD%

1 100% of the participants find a quality
indicator during input validation (IV QI)
useful

13.33 86.67 - - -

2 Almost 75% would like to have a visual
representation of quality during input val-
idation

13.33 60 13.33 13.33 -

3 While about 35% of the participants
would like all constraints to be considered
equivalent if a contract is not selected,
40% disagree

6.67 26.67 26.67 26.67 13.33

4 Almost 70% agree that if a contract is
not selected for input validation, a default
contract should be used

6.67 60 26.67 6.67 -

5 More than 85% of the participants agree
that when an important constraint is viol-
ated, it shouldn’t be possible to save the
data

13.33 73.33 6.67 6.67 -

6 80% agree that if less important con-
straints are violated, it should be possible
to save the data

20 60 6.67 13.33 -

7 While more than 50% would like to be
able to save the data even if important
constraints are violated, as long as they
are aware of the violations and can ex-
plain their occurrence, 30% disagree

- 53.33 13.33 33.33 -

8 If a violation occurs during input val-
idation, 80% would like the system to
provide an example of appropriate data

- 80 20 - -

9 If a violation occurs during input valida-
tion, almost 70% would not like the sys-
tem to insert the most probable value that
satisfies the constraint

6.67 6.67 20 46.67 20

Table 6.2: Findings related to input validation

58 6.2. QUESTIONNAIRE FINDINGS

6.2.3 Analysis

Finding SA% A% N% D% SD%

1 80% of the participants agree that being
able to perform an overall data quality
analysis is a useful feature

20 60 20 - -

2 More than 70% would like to be able to
analyze the data quality according to cer-
tain constraint groups

6.67 66.67 20 6.67 -

3 60% would like to be able to only analyze
certain data entities

6.67 53.33 20 20 -

4 More than half of the participants find
having the analysis results in textual form
useful

- 53.33 46.67 - -

5 80% would like to have visual representa-
tions of the analysis results

33.33 46.67 20 - -

Table 6.3: Finding related to data quality analysis

6.2.4 Access Rights

Finding SA% A% N% D% SD%

1 Almost 70% of the participants believe
that anyone should be able to perform a
data quality analysis

6.67 60 26.67 6.67 -

2 Almost 70% of the participants don’t
think that the weight threshold that dis-
tinguishes errors from warnings should be
decided by any type of user

- 13.33 20 53.33 13.33

3 More than 70% disagree with allowing
any type of user to disable input valida-
tion warnings

- 13.33 13.33 73.33 -

Table 6.4: Findings related to user access rights

CHAPTER 6. USER EVALUATION 59

6.2.5 Constraints

Finding SA% A% N% D% SD%

1 More than half of the participants find it
acceptable if new constraints can only be
defined by developers

20 33.33 33.33 13.33 -

2 More than 70% find organizing con-
straints into groups useful

- 73.33 26.67 - -

3 While 40% of the participants find it ac-
ceptable if constraints can only be as-
signed to groups by developers, 20% dis-
agree

- 40 40 20 -

4 While about 25% of the participants be-
lieve it would be necessary that the con-
straints could be defined during the run-
ning application by a non-developer (such
as a power user), 40% disagree

- 26.67 33.33 33.33 6.67

5 More than 50% would like to be able to
define customized groups of constraints
during runtime

6.67 46.67 46.67 - -

Table 6.5: Findings related to constraints

6.3 Overview of Key Findings

We will now present a list of the most interesting findings that emerged from our initial
analysis of the participants’ answers.

1. The findings of table 6.1 indicate that the majority of the participants agree with most
aspects of the contract concept as it is defined at the moment. In detail, they like the
idea of assigning weights to constraints (finding #1), they find the 0-100 scale intuitive
(#2) and would like to be able to share and exchange contracts with other users (#4).

2. According to the table 6.1, the participants are generally favorable towards the payload
concept (finding #6), while the majority of them doesn’t mind if the payload weight
can only be defined by developers (#7).

3. Being able to deactivate and activate constraints at runtime has both supporters and
opponents (table 6.1, finding #5).

60 6.3. OVERVIEW OF KEY FINDINGS

4. All of the participants consider having a quality indicator during data quality analysis
useful and the majority of them would like a visual representation of quality as well
(table 6.2, findings #1, #2).

5. If no contract is selected, the participants prefer the use of a default contract rather than
considering all constraints equivalent (table 6.2, findings #3, #4).

6. Table 6.2 indicates that during data input, the participants would generally like to be
able to save the data only if no severe violations occur (findings #5, #6). When viola-
tions do occur, most of them would like the system to provide an example of appropriate
data (#8), but they wouldn’t like it to insert the most probable value by default (#9).

7. Table 6.3 indicates that most of the participants find being able to perform an overall
data quality analysis useful (finding #1). They also like the idea of being able to select
the entities (#3) and constraint groups (#2) that will be analyzed.

8. As far as the analysis results are concerned, while the participants like having both a
textual and visual representation of the results, they indicate a higher preference to-
wards the visual representation (table 6.3, findings #4, #5).

9. The participants would like the data quality analysis to be available to any user, while
they believe that only authorized users should be able to change the warning-to-error
threshold and disable the appearance of warnings during input validation (table 6.3).

10. According to table 6.5, most participants find it acceptable if new constraints can only
be defined by developers (finding #1). While the majority of the participants think that
the definition of constraints at runtime is not necessary, approximately one quarter of
the participants disagree (#4).

11. Most participants like being able to organize constraints into groups and would like to
be able to define customized constraint groups at runtime (table 6.5, findings #2, #5).

12. While a big part of the participants find it acceptable if constraints can only be assigned
to groups by developers, there is a non-negligible part (20%) that believes that assigning
constraints to groups should be available to users too (table 6.5, finding #3).

Overall, the results of the questionnaire are very encouraging for our framework, as most
of the findings indicate that the participants of the workshop agree with the majority of the
framework’s aspects. The answers also indicate that some participants are skeptical about the
degree of freedom that should be available for the analysis and input validation and would
generally prefer to restrict the access to important settings to power users only. Finally, most
of the participants are satisfied if constraints, payloads and validation groups can only be
defined by developers.

7
Extensibility

In this chapter we will discuss some of the ways in which our framework could be extended.
It is important to note that the focus of this chapter is not on planned or currently necessary
extensions, but rather on additional or alternative functionality that could be easily implemen-
ted if new requirements arise. The future work and planned extensions for our framework will
be discussed in section 8.3.

7.1 Use of Different Data Quality Calculation Schemes

To calculate the various types and levels of quality indicators, we currently use the meas-
urement and calculation scheme that was described in subsection 3.1.2. Our current calcu-
lation scheme is mainly based on the use of the weighted arithmetic mean. According to
this scheme, depending on the type of quality indicator that we want to calculate, we use a
different type of weight. Thus, the weights used for calculating IV QI and ELAQI are the
constraint weights, while the weights used for calculating OLAQI are the number of entity
objects.

While we believe that the constraint weights should in any case be part of the quality calcula-
tions, we acknowledge that some users of the framework might be interested in applying more
sophisticated quality calculation schemes that possibly take additional factors into account,
such as time-related conditions or additional entity importance indicators. On the other hand,
it is also possible that some users consider that the number of objects that belongs to each
entity should not be a factor in the OLAQI calculation (described by equation 3.7). In this
case, the OLAQI would be equivalent to the simple arithmetic mean of the different entities’
ELAQI and would be calculated by the equation 7.1, in which n is the number of different

61

62 7.2. ADDITIONAL DATA QUALITY ANALYSIS VISUALIZATIONS

entity types and ELAQIi the entity-level analysis quality indicator of entity type i.

OAQI = ‖ 1
n

n∑
i=1

ELAQIi‖ (7.1)

To continue with the example of subsection 3.1.2, if we consider the entities presented in table
3.1 and assume that ELAQIA = 86 quality points, while ELAQIB = 70 quality points, the
OLAQI in this case will be calculated by equation 7.2 to be 78 quality points, while by
taking the number of objects per entity into account (as in the example equation 3.8), it was
calculated to be 75 quality points.

OAQI = ‖86 + 70

2
‖ = 78 (7.2)

If deemed necessary by the users, extending our system to support alternative cal-
culation schemes is possible without the need of extensive changes in the system.
Depending on the type of scheme that is desired, the only methods that are in-
volved in the current calculations and would need to be altered are the analysis
bean’s calculateObjectQuality() and calculateQuality(), as well as the
calculateEntityQualityWeightedMean() contained in the ConstraintMap
class.

7.2 Additional Data Quality Analysis Visualizations

Our data quality analysis module currently offers three options for the visualization of the
analysis results. These visualizations were described in subsection 3.2.1. If desired by the
users, the framework could be extended by adding additional visualization views of the ana-
lysis results. For instance, some users might wish to have an overview of the analysis results
organized by the group that the violated constraints belong to, or they might wish to have a
violations per entity view that is normalized by the number of objects in the entity.

The effort for adding a visualization view that has a similar structure to the existing views,
would mainly depend on the effort required for acquiring the data set that is needed and
tuning the details related to the desired visualization graph type. The rest is for the most part
taken care of by the existing framework infrastructure and the functionality provided by the
JFreeChart API.

Of course, it is possible that in order to add more complicated visualizations that are of a sig-
nificantly different nature to the already existing ones, more effort and additional extensions
are required.

CHAPTER 7. EXTENSIBILITY 63

7.3 Support for Method Constraints

As discussed in subsection 4.2.1, our framework currently supports only bean constraint val-
idation, i.e. field, property and class constraints. If deemed necessary, the framework could
be extended to support method constraints as well.

To achieve that, there are a few additions that should be performed in the ana-
lysis bean. More specifically, any method that contains some kind of scan
through the analyzable entity constraints should be extended in order to scan for
method constraints as well. Currently, the methods that contain such a scan
are initializeNewConstraintMap(), createNewContractProperties(),
constraintHasPayload() and getGroupsPerEntity().

Besides the above, it might also be needed to alter the definition of the unique constraint iden-
tifier, mentioned in subsection 4.2.2, which would possible require appropriate adjustments
to the contract table and its model in the administrative module.

Having completed the above extensions, adding a new method constraint would be similar
to adding a bean constraint, as described in subsection 4.2.1 and would require adding the
method constraint definition, validator and declaration.

64 7.3. SUPPORT FOR METHOD CONSTRAINTS

8
Conclusion

This chapter concludes this thesis report by providing a summary of the work that was presen-
ted, followed by a recap of our main contributions and an outline of the future work that could
be done in the scope of the introduced data quality management framework (DQMF).

8.1 Summary of Work

8.1.1 Concept

In this thesis, we introduce a novel concept for managing data quality in information sys-
tems. This concept is based on the notion that data quality could be regarded as a constraint
problem. This means that we could quantify and measure data quality in an information sys-
tem based on the degree that the data complies to certain constraints. These constraints are
basically the rules that the system has to follow in order to be considered of high quality.

Our concept takes into account that not all constraints should be equivalent as indicators of
quality. For this reason, we decided that each constraint should be assigned a weight, which
is a representation of the constraint’s importance. We also acknowledge that the importance
of each constraint might vary for different users and different applications of the information
system. For this reason, we introduce the concept of contracts, which are files that associate
every constraint to its own weight. A user can create one or more contracts to be used for
different applications. In addition, the same contract can be shared and exchanged between
different users.

Our concept also defines its own quality measurement and calculation scheme and scale.

65

66 8.1. SUMMARY OF WORK

According to this scheme, constraint weights can take integer values from 0-100. Using these
weights, we define different levels of quality indicators to represent the quality according to
an individual constraint (CLAQI), or the quality of individual entity objects (IV QI), entities
(ELAQI) or the entirety of the data that can be analyzed by our framework (OAQI). These
quality indicators are calculated based on the concept of the weighted arithmetic mean, and
similar to weights, can take an integer value of 0-100 data quality points.

To provide additional flexibility and configuration capabilities, our framework allows organ-
izing constraints into validation groups. Additionally, it defines certain payload weights,
which are weights that can optionally be assigned to constraints at the time of the constraint
declaration, and override the contract weight for the constraints that declare them. Finally,
the framework enables the user to set a specific weight-to-error threshold (WtET). The WtET
can be used to distinguish between two types of violations, warnings and errors, and take a
different action based on the type of violation that is encountered.

8.1.2 Data Quality Analysis Module

To take full advantage of the capabilities that are offered by our concept, we propose a data
quality analysis module that is responsible for analyzing the part of the data that the user is
interested in at the time of the analysis according to the configurations and settings chosen
by the user. In detail, this module allows the user to choose the entities and constraint groups
that they want to analyze.

The analysis results are then displayed in textual and visual form. The textual form of the
results consists of simple statistics about the constraints that were validated as well as the
ELAQI and OAQI quality indicators. The visual form of the results consists of three visu-
alization views: the violations per entity pie chart view, the violations per entity bar chart
view and the constraints by weight range stacked bar chart view. All three visualization
views offer ’drill-down’ functionality, which allows the user to easily find more information
about the violations they are interested in and even edit the affected entity objects in order to
correct the causes of the violations.

8.1.3 Data Input Validation Module

The input validation module that we propose as part of our framework informs the user about
potential constraint violations that they might introduce during data input. Being aware of
these violations can help the user to avoid them, which in turn can result into data of higher
quality. The user is informed about the violations in two ways. First, the user receives visual
violation feedback in the form of highlighting of the affected data input fields, in one of the
ways illustrated in figure 4.4. Secondly, the user also receives textual feedback about the
violations, which takes the form of a color-coded list of the encountered violations as well as
the quality indicator (IV QI) of the currently validated object. The color of the text represents
the severity of the violations and can be red for errors, orange for warnings and green, if no
violations were encountered.

CHAPTER 8. CONCLUSION 67

Our input validation module offers the same level of flexibility and configurability as our
proposed data analysis module. In detail, the users can select which specific entities and
constraint groups they want to have validated during data input, as well as the contract that
should be used for the validation. They can also select the WtET that should be used to
distinguish between errors and warnings, as well as whether they want the system to display
warnings or just errors.

8.1.4 Administrative Tools Module

In order to allow the user to easily configure the framework according to their wishes, our
framework proposes an administrative tools module. This module consists of three parts, or
panels. The first panel enables the creation of new contracts or the editing of existing ones.
By editing the contract files, the user is able to change the importance of each constraint and,
if required, to deactivate or reactivate certain constraints. The user is also able to identify
which of the constraints are declared with the use of a payload weight.

The second panel of the module allows the user to configure settings that are used by both the
analysis and input validation modules. In detail, via this panel the user is able to define the
default weight that should be used for constraints which do not have a corresponding contract
weight, as well as the WtET that should be used for the distinction between warnings and
errors.

Finally, the third panel can be used for the configuration of the input validation module.
More specifically, it enables the user to select the contract that should be used during the
input validation as well as the entities and constraint groups that should be validated. It also
allows the user to define whether warnings should be displayed or omitted during input.

8.1.5 Implementation for the FoodCASE System

All of the features of the introduced concept along with the three corresponding proposed
modules (data quality analysis module, data input validation module and administrative tools
module) were implemented for the FoodCASE food science data management system. The
implementation is written in the Java language and relies on the use of Bean Validation for
the definition, declaration and validation of the constraints as well as for the implementation
of validation groups and payloads. More specifically, we use the Hibernate Validator API
(version 5.x), which is the reference implementation of Bean Validation 1.1. The GUIs are
implemented using Java Swing, while for the data quality analysis results’ visualization we
use the free JFreeChart chart creation library. This implementation is currently fully embed-
ded in FoodCASE.

68 8.2. CONTRIBUTION

8.1.6 User Evaluation

Our framework was presented at the TDS-Exposure workshop that took place during the third
TDS-Exposure General Assembly in Zurich. After attending a presentation and demonstra-
tion of the framework, the participants, consisting of several food science experts from around
Europe, were asked to complete a questionnaire related to the framework.

Our initial analysis of the questionnaire results was very encouraging, as they generally in-
dicated that the participants were in accordance with most aspects of the framework.

8.2 Contribution

The main contributions of this thesis can be outlined as follows:

1. Creation of a novel constraint-based data quality concept which:

• provides an intuitive quantified view of quality by using constraints as data quality
indicators

• allows users to decide how important for quality each constraint should be

• allows grouping constraints into groups

2. Utilization of different types and levels of constraints:

• currently only field-level and class-level bean constraints are used, but the use of
method constraints is also possible

3. Introduction of the concept of contracts in order to allow the user to:

• define different analysis and input validation profiles in the form of contract files

• share and exchange contract files with other users

• change the importance of constraints at runtime

• deactivate and reactivate constraints at runtime

4. Introduction of a novel data quality measurement and calculation scheme which:

• is based on an intuitive 0-100 data quality points scale

• defines different types and levels of constraints as data quality indicators

• uses the weights of the constraints in the quality calculation

5. Introduction of a payload weight concept which:

• enables the declaration of non-changeable constraint payload weights that can
override the corresponding constraint contract weights

• allows the user to decide whether they wish the payload weights to override the
constraint weights

CHAPTER 8. CONCLUSION 69

6. Conception of a flexible and highly configurable data quality management framework
(DQMF) which:

• allows the user to restrict the quality analysis and input validation only to the
entities and constraint groups of interest

• allows the user to choose the contract that should be used for the analysis and
input validation at any time

• provides the ability to manage and validate constraints in a unified way, both for
data analysis and input validation

7. Proposal of a data analysis module which:

• helps the user configure the analysis as desired

• provides both textual and visual representations of the analysis results

• is equipped with ‘drill-down’ capabilities, which assist the user in deciding the
data areas that need to be improved and allow them to easily discover and edit
individual entity object violations

8. Proposal of an input validation module which:

• is just as configurable as the data quality analysis module

• provides input validation feedback in both visual and textual form

• allows the users to disable or enable warning messages

9. Proposal of an administrative tool which allows the user to:

• configure every characteristic of the DQMF via an easy-to-use GUI

• create new contract files, or view and edit existing ones in a convenient manner

10. Implementation of all the above-mentioned concepts, features and modules and cre-
ation of the FoodCASE DQMF which:

• was evaluated by FoodCASE users and received highly positive feedback

8.3 Future Work

We will conclude our report by discussing some of the ways in which our framework could be
optimized and extended. Some of these points are already planned for the future, while others
are currently regarded as interesting ideas that could be considered in order to enhance the
framework. Of course, this list is not exhaustive and additional optimization and extension
options might be consider in the future.

8.3.1 Inclusion of Additional Analyzable Entities and Constraints

The main goal during the development of our current framework implementation for the
FoodCASE system was to provide the required infrastructure, functionality and user inter-
faces that are needed for our proposed DQMF and realize all the features of our concept.

70 8.3. FUTURE WORK

The next required step for a complete DQMF is the inclusion of all the entities that should be
analyzed as well all the possible constraints that are related to the data quality of the system.
Adding all the entities that should be analyzed is rather straightforward, in the sense that the
system defines a limited number of entities pertaining to TDS-Exposure, which is the part
of data within FoodCASE that our DQMF targets. However, adding all the quality-related
constraints to the system is a much more demanding task, which, as explained in subsection
2.1.4, requires consulting the domain experts.

To achieve including as many relevant constraints as possible, there are plans for conducting
a survey that should be completed by as many food science experts as possible. The survey
will list all the entities and entity fields that are related to TDS-Exposure and inquire the par-
ticipants about the types of constraints that would make sense for each of the listed elements
and their importance. The results of this survey can then be analyzed by the FoodCASE
developers, in order to determine and implement the desired constraints for the system.

8.3.2 Additional Analysis of User Evaluation Results

In chapter 6 we presented our initial analysis of the results of the questionnaire that was
answered by the participants of TDS-Exposure workshop that took place during the third
TDS-Exposure General Assembly in Zurich. Our framework was recently presented to the
participants of the Food Composition for Nutrient and Exposure Assessment Workshop that
took place during the EuroFIR Food Forum in Brussels1. The participants of this workshop
were also asked to complete the questionnaire that is described in appendix C.

Unfortunately, due to time constraints, we were not able to analyze the answers that we
received during the workshop in Brussels so far. However, one of the planned next steps is
to analyze the results of both questionnaire answers thoroughly and perform a comparison
between the answers of the two groups of participants.

8.3.3 Performance Tests and Comparison with the Food Composition DQMF

Chapter 5 discusses some of the most important similarities and differences between our
DQMF and the food composition DQMF. As soon as our framework is enriched with ad-
ditional constraints, it would be particularly interesting to test its performance and examine
how it compares in relation to the performance of the food composition DQMF for equivalent
amount of data and constraints. It would also be interesting to conduct comparative usability
tests for the two frameworks.

1http://www.eurofir.org/

CHAPTER 8. CONCLUSION 71

8.3.4 Persistence of Data Quality Analysis Results

The data quality analysis results are currently not persistent, which means that as soon as the
user exits the analysis frame, the results are lost. An interesting extension to our framework
would be to make the results persistent by storing them in the FoodCASE database. This
would allow for a historical analysis of the data quality, which could help ensure that the
quality of the data only increases over time.

8.3.5 Contract Editing and Creation Panel Enhancement

One extension that could enhance the usability of the contract editing and creation panel
would be the option to compare the contract that is being edited with the current list of con-
straints at the framework and inform the user about the encountered differences. In detail,
the user could be informed about whether there are system constraints that are not included
in the contract or constraints that exist in the contract but have been removed from the sys-
tem. In each case, the system could then prompt the user to decide whether they want to
add the newly discovered constraints to the contract or delete them from the contract respect-
ively. This would help the users in maintaining the contracts and keeping them up-to-date,
especially in systems in which new constraints are being added or removed frequently.

8.3.6 Improvement of Input Validation Feedback Mechanism

As explained it the last part of subsection 4.6.3, in our current input validation module, the
validation of all the constraints can be handled by a single BeanValidator object. The use
of a single validator for all the validated constraints implies that in order to avoid receiving
violation feedback in every field associated with any of these constraints, a mapping of con-
straints to frame fields needs to be provided. This solution, however, results into additional
maintenance effort, as the mapping needs to be updated every time that a new constraint is
added. Determining a way that would allow us to maintain the use of a single validator and
receive correct violation feedback without the need of additional effort remains one of the
open issues in our framework.

72 8.3. FUTURE WORK

A
Acronyms and Abbreviations

ABS Australian Bureau of Statistics
API Application Programming Interface
BV Bean Validation
CLAQI Constraint-Level Analysis Quality Indicator
CMS Content Management System
DQ Data Quality
DQA Data Quality Analysis
DQAF Data Quality Analysis/Assessment Framework
DQF Data Quality Framework
DQI Data Quality Indicator
DQMF Data Quality Management Framework
DQS Data Quality Statement
DIV Data Input Validation
EJB Enterprise Java Beans
ELAQI Entity-Level Analysis Quality Indicator
FDTP Food Data Transport Package
FoodCASE Food Composition And System Environment
GUI Graphical User Interface
HBV Hibernate Bean Validation
IMF International Monetary Fund
IS Information System
IVQI Input Validation Quality Indicator
Java SE Java Platform, Standard Edition
JFC Java Foundation Classes
JSR Java Specification Requests

Continued on next page

73

74

Acronyms and Abbreviations – Continued from previous page

JRE Java Runtime Environment
OAQI Overall Analysis Quality Indicator
SFCDB Swiss Food Composition Database
TDS Total Diet Study
WtET Warning to Error Threshold

B
Comparison between Hibernate

Validator and OVal

Table B.1: Comparison between Hibernate Validator and OVal

Hibernate Validator OVal

validation target Java Beans all types of objects

constraint
configuration

• annotations
• XML

• annotations
• XML
• POJOs (latter not well docu-

mented)

what can it
validate?

• class fields
• method/constructor paramet-

ers
• method return values
• complete object

• class fields
• method/constructor paramet-

ers
• method return values

JSR303 compliant reference implementation

no, but comes with configurer that
can translate the JSR303 built-in

standard constraints to equivalent
OVal constraints (also able to

translate EJB3 JPA annotations

Continued on next page

75

76

Table B.1 – Continued from previous page

Hibernate Validator OVal

custom
annotation based
constraint
declaration

possible possible

express
constraints using
scripts

possible possible

using scripted
expressions for
pre-/post-
conditions

not possible by default possible

cross-parameter
constraints

available (for some or all parameters
of a method or constructor)

not by default (perhaps possible with
scripted expressions)

possibility to apply
constraints to
method and
constructor
parameters as well
as method return
values

yes (as of 1.1) yes (but need to convert project to
AspectJ project)

programming by
contract
capabilities

as of version 1.1 provides the
possibility to express pre- and post-

conditions

yes, by using AspectJ (even though
not full-blown programming by

contract capabilities)

constraint
composition possible possible

recursive
validation

possible possible

declaring
activation rules for
constraints

not directly possible (but could be
done by using class-level custom

constraints)
possible with when attribute

grouping
constraints

possible not possible

payload definition possible not possible

personalized
messages possible possible

availability of
“probe mode” (to
simplify UI user
input validation)

no yes

CDI integration yes (since 1.1) no

Continued on next page

APPENDIX B. COMPARISON BETWEEN HIBERNATE VALIDATOR AND OVAL 77

Table B.1 – Continued from previous page

Hibernate Validator OVal

latest release 5.2.Alpha (10.2014), stable: 5.1.Final 1.84 (11.2013)

78

C
Questions from the TDS-Exposure

Workshop Questionnaire

In this chapter we provide the list of questions that composed the questionnaire that was completed by
the participants of the TDS-Exposure workshop 2015 in Zurich. The introductory questions focused on the
participants’ position and skills and are meant to provide some degree of context to their responses. For
the questions in sections C.1 to C.5, the participants could choose from a five-level Likert-type scale if they
‘Strongly Disagree’, ‘Disagree’, are ‘Neutral’, ‘Agree’ or ‘Strongly Agree’. The remainder of the questions
(sections C.6 to C.8) could be answered openly, with the exception of questions C.7-1 and C.7-3, which
accepted a ‘Yes’ or ‘No’ answer.

Intro and User Skills
• Position
• Name (optional)
• How would you estimate your computer skills? (Choose from 1-5, where 1=beginner, 3=average

user, 5=professional)

C.1 Contracts

1. I find it useful to be able to assign a weight (or “importance score”) to each data constraint
2. I find specifying the constraint weights using a scale of 0-100 (where 0=not important and

100=most important) intuitive
3. I would like the option to have different “contracts” or quality profiles (different constraint import-

ance scores and different active/inactive constraints) for different users and applications of the
system

79

80 C.2. INPUT VALIDATION

4. I would like to be able to share and exchange contract files with other users
5. I would like to be able to easily activate/deactivate constraints at runtime
6. For some constraints, it would be useful to have a weight (importance score) that would override

the contract weights of the constraint
7. It is acceptable if the weight can only be defined by a developer

C.2 Input Validation
1. During input validation, I find a quality indicator percentage useful
2. I would like to have a visual representation of quality during input validation
3. If I don’t specify a contract for input validation, I would like all constraints to be of equal weight
4. If I don’t specify a contract for input validation, I would like a default contract to be used
5. When some important constraints are violated, it should not be possible to save the data
6. When some less important constraints are violated, it is OK to be able to save the data
7. In some cases I would like to be able to save the data even if important constraints are violated, as

long as I am aware of the violations and can provide an explanation about their occurrence (e.g.
data not available yet)

8. When a constraint violation occurs during data input, I would like the system to provide an ex-
ample of data that satisfies the constraint

9. When a constraint violation occurs during data input, I would like the system to insert the most
probable value that satisfies the constraint

C.3 Analysis
1. I think that being able to perform an overall data quality analysis is a useful feature
2. I would like to be able to analyze the data quality according to certain constraint groups (e.g. only

perform data completeness checks or value correctness controls)
3. I would like to be able to only analyze certain data entities (e.g. samples)
4. I find it useful to have the data quality analysis results in textual form
5. I would like to have visual representations (e.g. graphs, pie charts) of data quality analysis results

C.4 Access Rights
1. Anyone should be able to perform a data quality analysis
2. Anyone should be able to decide on the weight threshold that distinguishes errors from warnings
3. Anyone should be able to disable warnings during input validation

C.5 Constraints

1. It is acceptable that new constraints can only be defined by developers and not any user of the
application

APPENDIX C. QUESTIONS FROM THE TDS-EXPOSURE WORKSHOP QUESTIONNAIRE 81

2. It would be useful to be able to organize constraints into groups (logical units) in order to be able
to validate/analyze only these groups

3. It is acceptable if constraints can only be assigned to groups by developers
4. It would be necessary that the constraints could be defined during the running application by a

non-developer such as a power user
5. It would be helpful for users of the application (non-developers) to be able to define customized

groups of constraints during runtime

C.6 Constraint Grouping

1. Can you think of additional ways to group constraints that would be useful to you? If so, please
describe.

C.7 Comparison with existing Food Composition Data Quality
Framework

1. Have you had experience using the existing Food Composition input validation framework?
(Yes/No)

2. If yes, how would you compare it to the Contaminant input validation framework that was presen-
ted today?

3. Have you had experience using the existing Food Composition data quality analysis framework?
(Yes/No)

4. If yes, how would you compare it to the Contaminant data quality analysis framework that was
presented today?

C.8 Additional comments or suggestions

1. Do you have any comments or suggestions related to the data quality framework? If so, please
describe.

82 C.8. ADDITIONAL COMMENTS OR SUGGESTIONS

List of Figures

2.1 A conceptual framework of data quality [15] . 9

2.2 A hierarchical framework for information system quality [5] 10

2.3 The high-level architecture of the FoodCASE system. Each module is depicted with the use
of a different color. 12

3.1 Implementing the same validation logic in each layer of the application [7] 17

3.2 Bean Validation allows for the validation of all constraints in a unified way [7] 17

3.3 Users of the data quality analysis module can select the entities and groups that they want
to analyze as well as the analysis contract . 23

3.4 The Analysis Results Overview tab contains the results of the analysis in textual
form . 24

3.5 The violations per entity type pie chart depicts the total violations per entity type that were
discovered during the analysis in the form of a pie chart . 25

3.6 The violations per entity type bar chart depicts the total violations per entity type that were
discovered during the analysis in the form of a bar chart . 25

3.7 The constraints per weight range stacked bar chart depicts the total number of constraints
(satisfied and violated) encountered in each of the five weight ranges 26

3.8 An annotated data input frame displaying various types of input validation feedback 27

3.9 The contract editing and creation panel allows users to edit existing contracts or create new
ones . 29

3.10 The general validation and analysis settings panel allows users to configure general settings
for the validation and analysis . 29

3.11 The input validation and analysis settings panel allows users to configure settings for the
input validation and analysis . 30

4.1 A UML diagram demonstrating the structure of the validation group interfaces in our
framework. New validation groups should extend the ValidationGroup interface and
should be extended by the AllChecks interface . 39

4.2 A flowchart demonstrating the steps that are involved in the analysis process 44

83

84 LIST OF FIGURES

4.3 A UML diagram demonstrating the structure of the main input validation-related classes
and interfaces in our framework. The only class that was created by us is depicted in orange
color (BeanValidator) while the rest of the classes and interfaces (in blue color) were
already part of the previously existing input validation framework 46

4.4 The different input validation visual feedback types supported by our framework: 1: red
background, 2: no feedback, 3: light red background with red outline, 4: red outline 47

List of Tables

3.1 An example of two data entities, along with the number of entity object they contain and
their declared constraints . 18

3.2 The mapping between our predefined payload labels and their associated weights 22

6.1 Findings related to the concept of contracts . 56

6.2 Findings related to input validation . 57

6.3 Finding related to data quality analysis . 58

6.4 Findings related to user access rights . 58

6.5 Findings related to constraints . 59

B.1 Comparison between Hibernate Validator and OVal . 75

85

86 LIST OF TABLES

Acknowledgments

First and foremost, I would like to offer my deepest gratitude to my supervisor, David Weber, for his excel-
lent guidance, continuous support and positive attitude during the course of this thesis. He was always
available to discuss problems, answer questions and offer advice, while allowing me enough freedom to
explore my ideas.

Furthermore, I wish to express my sincere thanks to Prof. Dr. Moira C. Norrie and the GlobIS group for
giving me the opportunity to work on my master thesis in such an interesting topic. Special thanks is
owed to Dr. Karl Presser for the interesting discussions and his valuable insight into FoodCASE.

I am forever indebted to my parents for their unconditional support and encouragement. A big thanks
is owed to my sister, Maria, for temporarily moving to Zurich, partly to be close to me. I would also like
to thank all my friends for always being there for me. Special thanks goes to Karolos for being my lunch
buddy throughout my studies and always starting interesting discussions. Last but not least, I am ex-
tremely grateful to my boyfriend, Jan, for his tremendous support and patience and for taking care of me
for the past six months.

87

Bibliography

[1] ABS Data Quality Framework. https://www.nss.gov.au/dataquality/
aboutqualityframework.jsp. [Online; accessed 02-April-2015].

[2] C. Batini and M. Scannapieco. Data quality: concepts, methodologies and techniques. Springer, 2006.

[3] P. Beynon-Davies. Information systems: An introduction to informatics in organisations, volume 9.
Palgrave Basingstoke, 2002.

[4] T. Dasu and T. Johnson. Exploratory data mining and data cleaning, volume 479. John Wiley & Sons,
2003.

[5] A. Dedeke. A conceptual framework for developing quality measures for information systems. In IQ,
pages 126–128, 2000.

[6] GS1 Website. http://www.gs1.org/, November 2014. [Online; accessed 13-November-2014].

[7] Hibernate Validator Reference Guide. http://docs.jboss.org/hibernate/validator/5.
1/reference/, October 2014. [Online; accessed 17-March-2015].

[8] IMF DQAF Factsheet. http://dsbb.imf.org/images/pdfs/dqrs_factsheet.pdf, July
2003. [Online; accessed 02-April-2015].

[9] J. Juran and A. B. Godfrey. Quality handbook. Republished McGraw-Hill, 1999.

[10] R. Mock. Data Quality Analysis for Food Composition Databases. PhD thesis, Eidgenössische Technis-
che Hochschule Zürich, Department of Computer Science, Institute of Information Systems, Global
Information Systems Group, 2011.

[11] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality assessment. Commun. ACM, 45(4):211–218, Apr.
2002.

[12] K. P. Presser. A requirement-oriented data quality model and framework of a food composition data-
base system. PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20770, 2012,
2012.

[13] O. Probst. Investigating a Constraint-Based Approach to Data Quality in Information Systems. PhD
thesis, Master thesis ETH Zürich, 2013, 2013.

[14] T. C. Redman. Data Quality for the Information Age. Artech House, Inc., Norwood, MA, USA, 1st edition,
1997.

[15] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to data consumers. Journal
of management information systems, pages 5–33, 1996.

89

https://www.nss.gov.au/dataquality/aboutqualityframework.jsp
https://www.nss.gov.au/dataquality/aboutqualityframework.jsp
http://www.gs1.org/
http://docs.jboss.org/hibernate/validator/5.1/reference/
http://docs.jboss.org/hibernate/validator/5.1/reference/
http://dsbb.imf.org/images/pdfs/dqrs_factsheet.pdf

