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ABSTRACT

Recent achievements in 4D flow MRI increased the interest

of CFD-MRI studies, which require comparison of veloc-

ity fields from both approaches for validation purposes. A

novel flow regularization approach is proposed to provide

a ground truth and to perform robust, mathematically rea-

sonable comparisons between CFD and MRI. Our suggested

method projects the measured and denoised data into the

same space as the computational domain and applies the

Helmholtz-Hodge theorem to recover the divergence-free

property of the flow field by decomposing the velocity field

into its divergence-free, curl-free and harmonic components.

Furthermore, an aortic phantom study has been set-up under

fully controlled laminar flow conditions with helical flow

patterns to validate the proposed method using phase-contrast

MRI measurements, whereas a dynamic stenosed case was

used under turbulent flow conditions to analyse the robustness

of applied pre-processings including the denoising of MRI

data and the decomposition of velocity vector field.

1. INTRODUCTION

Recently, 4D flow MRI combining 3D spatial encoding with

three-directional velocity-encoding has revealed great poten-

tial [1]. However, such measurements are limited by many

factors such as acquisition times, signal-to-noise ratio and res-

olution depending on the set-up and region of interest. Nu-

merical phantoms play an important role in the assessment

and validation of hemodynamics. However, due to the dif-

ferent spatial representation of the vector fields between the

image and computational domain, the validation is difficult.

Although such combined studies are under extensive research,

a reasonable comparison method has not yet been developed.

Most of these works do either not describe in detail how the

comparisons were achieved exactly or perform visual inter-

pretation [2, 3, 4], whereas some other works compare ve-

locity magnitude profiles and/or peak-velocities [5, 6], lin-

ear correlation coefficients [7] or volumetric flow rates [8].
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Most of these comparisons are performed on 2D planes, do

not define any norm or do not consider flow properties. Due

to their limitations, such comparisons can often lead to mis-

leading arguments. The presented work proposes the devel-

opment of a divergence-free ground truth within the computa-

tional domain for numerical phantoms to achieve a meaning-

ful comparison of computations and the measurements within

the same space based on L1, L2 or L∞ norms. These proper-

ties, to the author’s best knowledge, have not been considered

yet by any other combined CFD and MRI studies. Denois-

ing is achieved by utilizing normalized median test [9]. The

feasibility of the proposed approach is tested and validated

using in-vitro experiments of an aortic phantom under lami-

nar flow conditions with helical flow patterns. Furthermore,

the applied pre-processings were analysed for their goodness

using in-vitro experiments of a stenosed phantom under dy-

namic and turbulent conditions. The latter case has not been

used for numerical computations.

2. EXPERIMENTAL SETTING

Fig. 1. Experimental phantom setup.

A silicon replica of a healthy human aortic arch (Elas-

trat, Switzerland) (B) was connected to a centrifugal pump

(A) (BG-GP 636, Einhell Germany AG, Germany, maximum

pressure 3.9 bar) via PVC tubing with 19 mm inner diameter

with a total length of 20 m. Inlet and outlet were connected

to a reservoir (D) resulting in an open circuit. A schematic of

the setup can be seen in Fig. 1. The flow rate was controlled



using a ball bearing valve (C) placed 1.5 m downstream of the

pump. Working fluid was H2O with a temperature of 29◦C.

The flow rate was monitored in 10 min intervals by Phase-

Contrast MRI.

First, the flow was adopted in such a way, that the flow were

static laminar under helical flow patterns without stenosis.

Secondly, a rigid model of the aortic valve was designed us-

ing the valve orifice geometry of an aortic stenosis patient

obtained by 2D MRI as a template. The orifice area was

scaled to be 0.75 mm2, and a cone shaped inlet was applied.

This geometry was then 3D printed (Dimension Elite, Strata-

sys Ltd., Eden Prairie, MN, USA) using Acrylonitrile buta-

diene styrene (ABS) as a source material and used to ob-

tain dynamic turbulent flow under stenosed condition. For

the acquisition of the flow field a 3D spoiled Gradient-Echo

sequence with flow encoding gradients was used. In order

to achieve a higher velocity-to-noise ratio a Bayesian Multi-

Point approach [10] with three different encoding velocities

(280, 93 and 40 cm/s) per direction was chosen. Flip angle

was set to 10 degrees, the voxel size was 1 mm isotropic with

a field of view of 250 x 155 x 60 mm3 and TE/TR were 5.9

ms and 10 ms, respectively. Total scan time was 15.5 min.

All scans were performed using a 6-element cardiac coil on

a 3T Philips scanner (Achieva, Philips Healthcare, Best, The

Netherlands). Linear Phase Correction was applied to com-

pensate for the eddy-current induced background phase.

3. PRE-PROCESSINGS OF THE NUMERICAL

PHANTOM

Flow reconstruction yields both the proton density images and

three-directional velocity data, denoted by uMRI. The phan-

tom aorta was segmented semi-automatically with snake evo-

lution methods using ITK-SNAP [11], see Fig. 2 (left). The

surface mesh was smoothed with VMTK [12]. The mesh was

built using snappyHexMesh, an OpenFOAM utility for creat-

ing hexahedral meshes.

3.1. Denoising of MRI data

The three-dimensional velocity data was composed with the

segmentation binary mask, such that only the original values

were kept within the surface of the segmented aorta. Values

outside the surface were set to zero, such that they are not con-

sidered by the latter interpolation of measurements onto the

mesh domain. After these processes, one is still left with the

noise within the aorta, for which fast, accurate and automatic

post-processings are required to get an appropriate input for

numerical computations. Outlier detection techniques should

also avoid heavy computational cost. This problem has been

extensively studied in the existing literature [13]. We have ap-

plied the normalized median test proposed by [9]. In order to

use the MRI acquisitions as initial conditions for the numer-

ical simulations, the denoised data were projected onto the

mesh domain using the linear interpolation provided by ITK

[14]. The resulting projection of denoised velocities, denoted

by ūMRI, does not respect the incompressibility constraint,

and therefore a projection onto the divergence-free space were

performed to address this issue.

3.2. Projection onto the divergence-free space

The Helmholtz-Hodge decomposition [15] is adopted. For

regularity reasons, it is supposed that ūMRI is quadratically

integrable, and the aortic domain, Ω, is assumed to be a

bounded, simply-connected and Lipschitz subdomain of R3.

Under such assumptions, the following space splitting holds:

(

L2 (Ω)
)3

= Hdiv,0 (Ω)⊕ Hcurl,0 (Ω)⊕ Hhar (Ω) ,

where Hdiv,0 is the Sobolev space of square integrable vec-

tor fields with a square integrable divergence and a free-

divergence , Hcurl,0 is the Sobolev space of square integrable

vectors with a square integrable curl and a free-curl , and Hhar

is the space of harmonic scalar functions q ∈ H1(Ω) having

zero Laplacian. As a matter of fact, the vector ūMRI can be

uniquely decomposed into the sum ūMRI = ũ + u∧ + u
⋆,

where ũ ∈ Hdiv,0 (Ω), u∧ ∈ Hcurl,0 (Ω) and u
⋆ ∈ Hhar (Ω).

In what follows, we look for the divergence-free component

of the denoised velocity, simply denoted by ũ
⋆ = ũ+ u

⋆.

Since the space Hcurl,0 coincides with the gradient of potential

space, it exists a potential q ∈ H1

0(Ω) such that u∧ = ∇q. Let

us assume that f = −div ūMRI ∈ H−1(Ω), where H−1(Ω)
is the dual space of H1

0(Ω). We use no-slip boundary condi-

tion at the aortic wall Γ5 to ensure the well-posedness of the

problem, while homogeneous Neumann boundary condition

is considered on the remaining boundaries. Let n denote the

outward unit normal vector on the boundary. By applying the

divergence operator, the projection problem reads

P⊥ : find ũ
⋆ = ūMRI −∇q ∈ Hdiv(Ω) such that

−∆q = f in Ω , q = 0 on Γ5 and ∇nq = 0 on ∂Ω\Γ5.

4. MATHEMATICAL MODEL

4.1. Navier-Stokes equations for Newtonian fluids

The flow is modelled as homogeneous, incompressible, and

Newtonian fluid governed by the Navier-Stokes equations

by solving the following steady state problem, Pfd: for

T > 0 and t ∈ (0, T ), find u ∈ C0
(

(0, T ), L2(Ω)3
)

∩

L2

(

(0, T ),
(

H1

0 (Ω)
)3
)

and p ∈ L2
(

(0, T ), L2

0(Ω)
)

such

that

ρ

(

∂u

dt
+ u · ∇u

)

− divσ(u, p) = 0 in (0, T )× Ω

divu = 0 in (0, T )× Ω

where u, p are the computed velocity and pressure fields

respectively, σ(u, p) represents the Cauchy stress tensor,
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Fig. 2. Left: Nomenclature used for the boundaries and the

cross-sectional planes through the aorta. Right: Schematic

representation of the Windkessel model.

and the gravity is neglected. Being consistent with the

experiment, corresponding parameters are used for wa-

ter at 29◦C. These are ρ = 103 kg/m3 for density and

µ = 8.01 · 10−4 kg/(sm) for kinematic viscosity. To ensure

that the problem Pfd is well-posed, reasonable boundary

conditions are required. The aortic wall is assumed to be

rigid and a no-slip boundary condition is imposed on Γ5,

meaning that frictional forces will create a boundary layer

along the wall. Post-processed and projected velocity data,

ũ
⋆, is prescribed on the inlet, Γ0. The remaining boundary

conditions are modelled using multiscale couplings.

4.2. Multiscale coupling with zero-dimensional model

Reduced order modeling represent a useful formalism that

can provide partial but accurate information about the arte-

rial hemodynamics. During the past decades, there has been

significant developments using several techniques of multi-

scale modeling, where reduced order models, also referred

to as lumped-parameter models, are coupled with multi-

dimensional description of the cardiovascular system [16].

Such reduced order models provide boundary conditions to

be coupled with the detailed three-dimensional model. In this

way, flow rate and pressure may be exchanged between the

models of different complexity. In this work, a reduced circu-

lation model allows to describe the systemic hemodynamics

and provides a physiological pressure load at the downstream

boundary of the descending aorta [17].

Among the existing models, the three-element Wind-

kessel model is represented by an analog electrical circuit

scheme, and it accounts for the vessel wall compliance and

the fluid viscosity through a capacitor C and two resistances

Rp and Rd, see Fig. 2. The following second order differen-

tial problem holds: P0d : find PΓ such that

PΓ − P ∗ + CRd

dPΓ

dt
= (R1 +R2)QΓ + CR1R2

dQΓ

dt
.

Using the flow rate QΓ provided by the fluid solver, i.e. Pfd,

as input, the reduced model allows to get a physiological

pressure load applied as boundary condition on the outlets

Γi, i ∈ {1, 2, 3, 4}. The parameters of the reduced model are

tuned in a dynamic case to obtain physiologically relevant

results. In the presented work, the coupled problem is solved

until the steady state, where a threshold tolerance ǫ is reached.

Fig. 3 reveals the entire workflow.
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ūMRI

ũ
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Fig. 3. Workflow: Pre-processing and simulation.

5. NUMERICAL EXAMPLES AND VALIDATION

The numerical phantom was implemented using icoFoam,

an OpenFOAM [18] solver for incompressible, laminar

Navier-Stokes equations using the PISO algorithm. The

first experiment is concerned with numerical validation of

the divergence-free projection. A validation case was im-

plemented in 2D where the exact solution is known. The

problem was solved with Rheolef [19] finite element frame-

work and the error was compared between the computed and

the exact solutions for several polynomial approximations.

Let us consider the initial vector u = ũ+ u∧ + u
⋆ such that

ũ =
(

sin2(2πx) sin(4πy),− sin2(2πy) sin(4πx)
)T

,

u∧ =
(

2.2 sin(4πx) sin2(2πy), 2.2 sin(4πy) sin2(2πx)
)T

and

u
⋆ =

(

1.7 log
(

x2 + y2
)

, 1.7 log
(

x2 + y2
))T

. Given u,

this test consists in finding the divergence-free component

ũ
⋆ = ũ + u

⋆ . The spatial accuracy is studied by computing

the error in L2, denoted by ‖.‖0,2,Ω, and L∞, denoted by

‖.‖0,∞,Ω, norms with respect to the exact solution, respec-

tively for several finite element polynomial approximations.

By observing the slope in logarithmic scale, Fig. 4 depicts

that the error evolution shows similar convergence rates to

the expected theoretical errors. In particular, the L2 error has

a convergence rate equal to k when using Pk,k≥1 polynoms.
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Fig. 4. Convergence properties of the div-free projection.

raw vector uMRI denoised vector ūMRI divergence-free vector ũ
⋆

Fig. 5. Pre-processings shown under stenosed condition.

Top: Velocity vector. Bottom: Divergence of the velocity.

Following the preprocessing steps described in Section 3,

we perform the denoising and divergence-free projection in

the case of a dynamic and stenotic phantom. Results in Fig.

5 clearly show the accuracy of the method under turbulent

conditions, where the outliers are removed and the final ve-

locity respects the incompressibility constraint. Notice that

div ũ
⋆ < 0.05s−1.

In the second experiment, we performed numerical com-

putations under laminar flow conditions with helical flow pat-

terns using the denoised data as depicted in the graph in Sec-

tion 4.2. Four defined planes are considered across the aorta,

see Fig. 2(left), where a quantitative comparison of the veloc-

ity magnitude is performed. Comparisons in Fig. 6 show that

the velocity magnitudes turned out to be almost identical in

pre-processed data [m
3

/s] computations [m
3

/s]

Γ1 2.798 × 10
−5

5.409 × 10
−5

Γ2 1.984 × 10
−5

3.362 × 10
−5

Γ3 4.287 × 10
−5

5.512 × 10
−5

Γ4 9.041 × 10
−5

8.322 × 10
−5

Table 1. Comparison between initial and computed fluxes.

ũ
⋆

u

H̃FI
⋆

HFI

P1 P2 P3 P4 Streamlines of u

Fig. 6. Comparison between data and computations under

laminar flow conditions.

the defined planes P1, P2 and P3 across the aorta, see Fig. 2.

However, a slight difference is observed in P4, which corre-

sponds to the brachiocephalic artery. A potential explanation

is that this error originates from the small lengths of the arches

and from the low accuracy of the MRI acquisitions in these

small arches. Moreover, the same observation holds when

we evaluate the flow rates on the outlets. Unlike the flow

rate on the descending aorta, Table 1 shows less similarities

with respect to the experimental acquisitions in the arches.

Therefore, the normalized error between the computed solu-

tion and the ground truth in the entire computational domain

is

∫

Ω

|u− ũ
⋆|/

∫

Ω

|ũ⋆| ≈ 0.1129.

Since the flow considered in the aorta has a helical pattern, see

streamlines in Fig. 6, we chose the helical flow index (HFI)

as an indicator to quantify the helicity [20]. HFI measures

the alignment between the local velocity u and the vorticity

w vectors, and it is given by the normalized helicity density

HFI = u ·w/(|u| |w|). Accordingly, HFI is given by the co-

sine of the angle between u and w. Therefore, HFI is close to

1 if the flow is purely helical, while the sign of HFI gives the

direction of the rotation. The index is calculated on data and

computational results, referred to as H̃FI
⋆

and HFI respec-

tively (see Fig. 6), and it shows the zones of almost purely

helical flow where |HFI| ≈ 1.

6. CONCLUSION

A novel approach has been proposed to perform reliable com-

parisons between CFD and MRI. Phantom experiments of

laminar flow under helical patterns have been performed. Nu-

merical computations were compared against MRI acquisi-

tions, and results show good agreement. As a future exten-

sion, the present strategies will be used to simulate a dynamic

flow considering a stenotic valve upstream the domain using

a blood mimicking flow instead of H2O. Stability and the nu-

merical issues will be provided in a forthcoming work.
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