Phase behavior of binary mixtures and polydisperse suspensions of compressible spheres

Author(s):
Scotti, Andrea

Publication Date:
2015

Permanent Link:
https://doi.org/10.3929/ethz-a-010579475

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
Phase Behavior of Binary Mixtures and Polydisperse Suspensions of Compressible Spheres

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
Dr. sc. ETH Zurich

presented by
Andrea Scotti
MSc Condensed Matter Physics, Parma University, Italy
born on 03.03.1986
citizen of Italy

accepted on the recommendation of

Prof. Dr. Joel Mesot, examiner
Prof. Dr. Peter Fischer, co-examiner
Prof. Dr. Alberto Fernandez-Nieves, co-examiner
Dr. Urs Gasser, co-examiner

2015
Abstract

Point defects in crystalline materials disturb the crystal structure and often prevent crystallization. An example is a suspension with a majority of small incompressible particles mixed with few too big incompressible particles that suppress the formation of crystals. Metal melts are another example, a size mismatch of 15% of the atoms in the melt inhibits crystallization. Also hard spheres, an important model system for liquids and crystals, do not form crystals with a polydispersity greater than 12%, and the polydispersity in the crystal state does not exceed 5.7%, as local segregation occurs. These restrictions do not necessarily apply for soft microgels that are polymeric networks forming particles immersed in a solvent. Due to their capability to be compressed it has been observed that large microgels in a majority of small particles deswell and fit into the lattice formed by the small ones. Microgel deswelling is also observed in monodisperse suspensions at high concentrations. This property of microgels has not been observed in any other system and completely changes the role of size polydispersity for the crystallization compared to hard spheres. In this work, suspensions of pNIPAM-based microgels, with both bidisperse (ratio between large and small particles ≈ 1.3) and polydisperse size distributions, are studied with the focus on the deswelling mechanism and the consequences for the phase behavior. The deswelling of microgels in concentrated samples is directly observed by means of Small-Angle Neutron Scattering (SANS) with contrast matching. This deswelling starts at a concentration where the particles are not in contact and, therefore, it cannot be due to a simple mechanical effect. Measurements of the osmotic pressure of the suspensions link this phenomenon to the counter-ion clouds surrounding the pNIPAM-particles. Although pNIPAM is known as a neutral microgel, charges due to the initiator of the polymerization reaction (ammonium persulfate, $\text{(NH}_4\text{)}_2\text{S}_2\text{O}_8$) are incorporated at the periphery of the particles; the majority of the NH_4^+ counter-ions are bound around the microgel forming these counter-ion clouds. A model that explains the observed deswelling mechanism in terms of overlap of these counter-ion clouds is presented. At high densities, the counter-ion clouds percolate and, therefore, all the bound counter-ions become effectively free to explore the whole volume of the sample between the microgels contributing to the suspension osmotic pressure. This builds up a difference between the osmotic pressure inside and outside the particle and, when this is larger than the microgel bulk modulus, the particles deswell. This model explains the observed deswelling at concentrations lower than random close packing where no direct contact of the particles is present. The synthesis protocol explains why large microgels show a more pronounced deswelling; to synthesize large microgels the polymerization is stopped later than for the synthesis of the small microgels.
As a consequence, the large microgels are a bit softer and start to deswell first, reducing their disturbing effect for crystallization. We introduce the effective radius of a particle, i.e. the radius of the microgel plus the thickness of the counter-ion cloud. With this effective radius we compute an effective volume fraction of the small particles in the volume available for them, i.e. the sample volume without the volume occupied by the big particles. This is a measure of the overlap of the counter-ion clouds. The concentrations where this compression happens are correctly predicted by our model.

The effect of this deswelling on the large microgels in concentrated samples is studied by means of Small-Angle X-ray Scattering (SAXS). When large particles are compressed, the average structure factor for a sample with bidisperse size distribution virtually coincides with the one of a sample composed of small particles only. In crystalline samples the compressed large particles fit into the lattice formed by the small microgels. Our model correctly predicts the deswelling mechanism of the large particles in concentrated samples with a majority of small microgels. By decreasing the size mismatch between large and small particles, we make samples with monomodal Gaussian-like size distribution to study the effect of the size polydispersity on phase behavior. The study of the average structure factors of suspensions with monomodal size distributions with polydispersities larger than 12% shows that also in these suspensions the large particles are compressed first. Suspensions with polydispersity as high as 18.5% form crystals. This value is considerably higher than for hard spheres where a polydispersity of 12% suppresses crystallization. Furthermore, the positions of the Bragg peaks in crystalline samples with both bidisperse and polydisperse size distribution coincide with the positions of the Bragg peaks of a crystal formed of small particles only. There are no traces of peaks due to a lattice consisting of large microgels only: for pNIPAM-based suspensions, the segregation of large and small microgels is not observed, this is another difference compared to hard spheres. Once the large particles are compressed, the suspension has the chance to form crystals since the polydispersity is reduced and the suspension behaves as monodisperse.

For this study, a reliable value of the polydispersity of the particles has to be known to estimate its role for the phase behavior of the suspension. Dynamic Light Scattering (DLS) with CONTIN analysis gives direct access to the particle size distributions by means of Laplace inversion of the experimental data\[^{[7]}\]. The results are strongly affected by the experimental noise due to the ill-conditioned nature of the problem. In order to make the method more stable some constraints have to be imposed during the analysis. In the CONTIN method this constraint is the smoothness of the size distribution. The weight of the constraint can lead to some biasing effects, for instance, if the smoothness is overweighted, the resulting size distribu-
tion will be too broad. We have found that the method to choose the weight used in the original CONTIN produces unsatisfactory results with our data. A more reliable method to properly select the weight for the constraint is the L-Curve criterion. This criterion aims to find the best balance between the goodness of the data fit and the smoothness of the size distribution. An algorithm that joins CONTIN with the L-curve criterion has been developed in the course of this work [8]. The polydispersities obtained with our algorithm are compared with the polydispersities measured with SANS and SAXS. These two independent tools measure the form factor of the microgels and then, by means of data fitting, give us access to the polydispersity of the suspensions [9]. The polydispersities from these three different techniques agree, confirming the reliability of our CONTIN algorithm.

The softness of the microgels changes the phase behavior of monodisperse suspensions, too. This is shown by our study of suspensions of pNIPAM- AAc microgels. These are ionic microgels, i.e., permanent charges are incorporated in the polymeric network and this makes the particle pH sensitive. For this system, an unexpected metastable body centered cubic (bcc) structure is observed [10]. The formation of bcc crystals is unfavorable for the hard spheres that follow the close packing rule and, therefore, hexagonal close packing (hcp) and face centered cubic (fcc) structures are expected. In contrast, the bcc lattice is predicted from a model that relies on the competition between the close packing rule and the contact area-minimizing principle [11,12]. The interplay between these two effects controls the crystal structure made of core-shell particles. The maximum packing fraction rule, at play in the presence of pure excluded-volume interactions due to the core, favors a close packed structure, as the configurational entropy of the system is maximum in this situation. The principle of contact area-minimizing, at play since the interaction between the polymeric fuzzy shells of the particles scales with the contact area between them, favors formation of more loosely packed crystal structures like bcc. We believe that the bcc structure is metastable: it is not observed in aged samples and only forms within a certain concentration range below and above which only fcc/rhcp (random hexagonal close packing) crystals are observed. The presence of this bcc lattice is an effect of the competition between the contact area-minimizing principle and the close packing rule and, therefore, it can be seen as a direct consequence of the softness of the microgels for the phase behavior of the suspensions.

In this work we present the first model that explains the particle deswelling observed in concentrated microgel suspensions. This study also represents the first systematic investigation of the influence of both the softness and the size polydispersity on the phase behavior of suspensions of pNIPAM-based microgels. We show that the phase behavior of these suspensions completely
differs from the one of hard spheres. The reason of that relies on the capability of these microgels to deswell above a critical concentration explained and correctly predicted by our model[6]. Our experimental findings direct future efforts to correctly describe the interaction potential for compressible microgels. Furthermore, this study can help to tailor microgels which deswell at a well defined concentration of the suspension, triggered by the overlap of the counter-ion clouds. This can be interesting for technological applications whenever pNIPAM particles are used in high concentration or placed in an environment with other charged particles.
Sommario

Un difetto in un materiale cristallino ne disturba la struttura e spesso pre-
viene la cristallizzazione. Un esempio è una sospensione composta in mag-
gioranza da particelle piccole e incompressibili miste con poche parti-
celle molto grandi anch’esse incompressibili che impediscono la formazione
di cristalli. I metalli fusì sono un altro esempio, una discrepanza nelle di-
mensioni degli atomi superiore al 15% nella fase liquida inibisce la cristal-
lizzazione. Anche le sfere rigide, un importante modello sia per i liquidi
che per i cristalli, non formano cristalli a polidispersità più grandi del 12%,
e la polidispersità nei cristalli non supera il 5.7% dato che localmente c’è
segregazione. Queste restrizioni non si applicano necessariamente ai micro-
gel soffici che sono reti polimeriche che formano particelle immerse in un
solvente. A causa della loro capacità di essere compresse, è stato osservato
che grandi microgel circondati da una maggioranza di piccoli si restringono
per adattarsi al reticolo cristallino formato dalle particelle più piccole. La
compressione di queste particelle è anche osservata in sospensioni di mi-
crogel monodispersi ad alte concentrazioni. Questa proprietà dei microgel
non è stata riscontrata in nessun altro sistema e cambia completamente il
ruolo della polidispersità nella cristallizzazione rispetto alle sfere rigide. In
questo lavoro, studiamo sospensioni di microgel composte di pNIPAM con
particelle distribuite secondo distribuzioni sia bimodali (rapporto tra parti-
celle grandi e piccole ≈ 1.3) che polidisperse, con particolare attenzione al
meccanismo di compressione e alle sue conseguenze sul comportamento di
fase del sistema. La compressione dei microgel in campioni concentrati è
studiata con lo Scattering di neutroni a piccoli angoli (SANS) con contrast-
matching. La compressione inizia a concentrazioni tali per cui le particelle
non sono ancora in contatto e quindi non può essere dovuta a una inter-
azione meccanica diretta. Misure della pressione osmotica delle sospensioni
collegano questo fenomeno alle nubi di contro-ioni che circondano le parti-
celle di pNIPAM. Sebbene il pNIPAM sia noto come microgel neutro, alcune
cariche dovute agli iniziatori della reazione di polimerizzazione (persolfato
d’ammonio, (NH$_4$)$_2$S$_2$O$_8$), sono incorporate alla periferia delle particelle;
la maggioranza dei contro-ioni NH$_4^+$ sono vincolati attorno al microgel for-
mendo queste nubi di contro-ioni. Un modello che spiega la compressione
dei microgel in termini di sovrapposizione di queste nubi di contro-ioni viene
presentato6. A alte densità, le nubi di contro-ioni percolano rendendo così
i contro-ioni legati alle periferie effettivamente liberi di muoversi in tutto
lo spazio tra i microgel. Questo fa sì che si instauri una differenza tra la
pressione osmotica all’interno e all’esterno della particella e, quando questa
è maggiore del modulo di compressibilità del microgel, questo viene com-
presso. Questo modello spiega il fatto che la compressione possa avvenire
prima del raggiungimento dell’impacchettamento casuale in assenza di con-
La procedura di sintesi spiega perché le particelle grandi mostrano una compressione più pronunciata; durante la loro sintesi la polimerizzazione viene arrestata prima rispetto a quanto avviene per la sintesi delle particelle più piccole. Da ciò dipende che le particelle più grandi siano leggermente più soffici e inizino a comprimersi per prime, riducendo così il loro effetto di disturbo per la cristallizzazione. Abbiamo introdotto il raggio effettivo delle particelle, cioè il raggio della particella a cui va aggiunta l’estensione della nube di contro-ioni. Con questo calcoliamo la frazione di volume occupata dalle particelle piccole nel loro volume accessibile, cioè il volume del campione senza il volume occupato dalle particelle più grosse. Questa quantità è una misura della sovrapposizione tra le nubi di contro-ioni. Le concentrazioni dove si riscontra la compressione sono correttamente predette dal nostro modello.

L’effetto di questa compressione dei microgel più grandi in campioni concentrati, è studiata con lo scattering di raggi X a piccoli angoli (SAXS). Quando le particelle più grandi sono compresse, il fattore di struttura medio di un campione con distribuzione bimodale virtualmente coincide con quello di un campione composto solo da microgel di minore dimensione. Nei campioni cristallini, le particelle pressse si adattano al reticolo formato da quelle più piccole. Queste misure mostrano come il nostro modello predica correttamente il meccanismo di compressione dei microgel di dimensione maggiore in campioni concentrati in presenza di una maggioranza di microgel di minore dimensione. Diminuendo la differenza tra i raggi delle particelle grandi e piccole, abbiamo realizzato campioni con una distribuzione Gaussiana monomodale per studiare l’effetto della posidispersità sul comportamento di fase del sistema. Lo studio dei fattori di struttura di queste sospensioni con polidispersità maggiore del 12% mostra che, anche in questi campioni, le particelle più grandi si comprimono per prime. Cristalli sono stati osservati in campioni con polidispersità pari al 18.5%. Questo valore è considerevolmente più alto che per le sfere rigide dove una polidispersità del 12% sopprime la cristallizzazione. Inoltre le posizioni dei picchi di Bragg di campioni sia bimodali che polidispersi coincidono con quelle dei picchi di Bragg di cristalli formati solo dai microgel più piccoli. Non c’è alcuna traccia di picchi dovuti a un reticolo composto dalle particelle più grandi: per sospensioni di microgel composti di pNIPAM, la segregazione tra particelle grandi e piccole non è osservata, questo marca un’ulteriore differenza con le sfere rigide. Una volta che le particelle di dimensioni maggiori sono compresse, la sospensione ha la possibilità di cristallizzare in quanto la polidispersità è stata ridotta e la sospensione si comporta come se fosse monodispersa.

In questo studio, una conoscenza certa del valore della polidispersità è fondamentale per capirne gli effetti sul comportamento di fase del sistema.
L'inversione con una trasformata di Laplace dei dati dello scattering dinamico di luce (DLS) col metodo CONTIN permette di accedere direttamente alla distribuzione delle dimensioni delle particelle in sospensione\[7\]. I risultati, comunque, dipendono fortemente dal rumore nelle misure, questo è dovuto alla natura mal-condizionata del problema. Per rendere il metodo più stabile, qualche restrizione va imposta alla distribuzione che vogliamo calcolare. Nella versione originale di CONTIN questa restrizione è la richiesta che la distribuzione sia il più liscia possibile. Il peso che la restrizione ha durante l’analisi può condizionare il risultato finale, ad esempio se la richiesta che la soluzione sia liscia viene sovrastimata, otterremo una distribuzione troppo ampia. Il classico metodo CONTIN, applicato ai dati delle nostre dispersioni, ha prodotto risultati insoddisfacenti. Abbiamo ottenuto risultati più consistenti utilizzando il criterio noto come *L-curve criterion*. Questo criterio ha lo scopo di selezionare il peso per la restrizione che meglio bilancia la bontà del fit dei dati con la richiesta che la distribuzione ottenuta sia liscia. Durante questo progetto abbiamo sviluppato un algoritmo che unisce il classico CONTIN con l'*L-curve criterion*\[8\]. Le polidispersità ottenute col nostro algoritmo sono comparate con quelle ottenute mediante SANS e SAXS. Queste due tecniche misurano il fattore di struttura delle particelle in sospensione e, mediante il fit dei dati, ci permettono di calcolarne la polidispersità. I valori ottenuti per questa grandezza, usando le tre tecniche, coincidono confermando l’affidabilità del nostro algoritmo.

La morbidezza dei microgel cambia anche il comportamento di fase di sospensioni con distribuzione monomodale. Questo è mostrato dal nostro studio su sospensioni composte da microgel di pNIPAM-AAc. Questi sono microgel ionici, cioè il network polimerico contiene cariche permanenti e queste rendono la particella sensibile a variazioni di pH. In questo sistema, un’inaspettata struttura metastabile a corpo cubico centrato (bcc) è stata osservata\[10\]. La formazione di cristalli bcc è sfavorevole per le sfere rigide che seguono il principio di massimizzazione dell’impacchettamento e, quindi, strutture a impacchettamento esagonale compatto (hcp) e a corpo cubico a facce centrate (fcc) sono attese per tale sistema. Al contrario, il reticolo bcc è predetto da un modello che considera la competizione tra la regola della massimizzazione dell’impacchettamento e il principio di minimizzazione dell’area di contatto. La competizione tra questi due principi controllo la struttura cristallina che viene a formarsi in sistemi di particelle con un core rigido circondato da una corona composta da catene polimeriche meno dense. Il contributo del principio di massimo impacchettamento dipende dal core e favorisce strutture hcp o fcc in quanto queste massimizzano l’entropia configurazionale del sistema. La minimizzazione dell’area di contatto dipende dalle corona e scala proporzionalmente con l’area di contatto tra di esse, favorendo l’insorgere di strutture a più bassa densità di impacchettamento come la bcc. Noi riteniamo che la struttura bcc sia metastabile: non è stata
osservata in campioni invecchiati e si forma solo in un ristretto intervallo di concentrazioni, sotto e sopra il quale sono osservate solamente strutture rhcp (impackettamento casuale esagonale compatto) e fcc. La presenza di questo reticolo bcc è ascrivibile alla competizione tra il principio di massimo impaccettamento e quello di minimizzazione dell’area di contatto tra le particelle, può essere vista come una diretta conseguenza della morbidezza dei microgel sul comportamento di fase della sospensione. Sarebbe interessante studiare se il meccanismo di compressione dei microgel, spiegato in questo lavoro, influenzi o meno le strutture cristalline che si formano e come la presenza di cariche nel network cambi la compressione delle particelle.

In questo lavoro presentiamo il primo modello che spiega la compressione delle particelle osservato in sospensioni di microgel concentrate. Questo studio rappresenta inoltre la prima investigazione sistematica dell’influenza che la polidispersità e la morbidezza dei microgel hanno sul loro comportamento di fase. Mostriamo che questo differisce completamente da quello delle sfere rigide. La ragione di ciò è ricondotta alla capacità dei microgel di venire compressi sopra una concentrazione critica che è spiegata dal nostro modello[6]. Le nostre osservazioni indirizzeranno i futuri sforzi per descrivere correttamente il potenziale che agisce in sistemi di microgel compressibili. Inoltre, questo studio può aiutare la progettazione di microgel che si comprimano a ben definite concentrazioni della sospensione. Questo potrebbe rivelarsi interessante per applicazioni tecnologiche ogniqualvolta particelle di pNIPAM siano usate a alte concentrazioni o in ambienti con altre particelle cariche.