The atmosphere of our Earth, of planets of our solar system and of exoplanets

Author(s):
Brüesch, Peter

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010580544

Rights / License:
In Copyright - Non-Commercial Use Permitted
The Atmosphere of our Earth, of Planets of our solar System and of Exoplanets

Peter Brüesch
There are more things in Heaven and Earth, Horatio, than are dreamed of in your Philosophy.

from «Hamlet»
by William Shakespeare
(1564 – 1616)
CONTENTS

0. Introduction – Contents pp A - Q
1. Prologue: The Atmosphere of our Earth pp 1 - 11
2. Physical and Chemical Basis pp 12 - 55
3. The Weather in the Troposphere pp 56 - 105
4. Flying and gliding through the air pp 106 - 189
5. Air contamination, toxic gases and radioactive Fallout pp 190 - 243
6. Breathing and Photosynthesis of Plants pp 244 - 270
7. Breathing of men and animals pp 271 - 333
8. Selected atmospheric phenomena pp 334 - 373
9. Breathing in Psychology, Philosophy and in World Religions pp 374 - 404
10. Atmospheres of Planets and Exoplanets pp 405 – 500

Each Chapter contains an Appendix with complementary information.

Preface

My first Book has been dedicated to the subject of «WATER: Its Significance in Science, in Nature and Culture, in World Religions and in the Universe».

According to the old Greek Philosophers, everything consists of the four basic elements: Air, Water, Earth and Fire. This second Book is dedicated to the element «Air» or more generally to the «Atmosphere». Similar to water, air is indispensable for all human beeings. Water and air in the first place make life on our Planet possible.

In contrast to liquid and solid water (ice), the air of our Earth is invisible. The air layer of our planet is extremely thin compared with the radius of the Earth. Our Atmosphere consists of several gases. Without these gases we would be burned by the intensive heat of the Sun during the days, and during the nights we would freeze because of the very low temperatures.

Although we need air constantly for breathing, we take it for granted. As a consequence, average people are hardly interested about the properties and quality of air. Only if the air is strongly contaminated (by thick smog, by carbone dioxide (CO₂) etc. or by bad odour), the alarm bells are ringing. Clean air and clean water are indispensable for our life.

Several implications associated with «Global Warming» have been discussed in my first Book dedicated to «WATER» and are therefore not repeated in the present work.

I found it necessary to embed each of the different topics into the associated larger context. Only in this way is it possible to generate a well-rounded and meaningful representation.

My last and tenth Chapter contains a survey about the properties and atmospheres of the Planets of our solar system as well as of Planets outside the solar system – the so-called extrasolar Planets or Exoplanets.

With a view exceptions, the Book is written deliberately simple and should be easily comprehensible. Each Chapter contains a large list of References for complementary and more detailed information.

Peter Brüesch January 2016
Acknowledgements

My deep thanks go to the following friends and collegues:

I would like to thank the late Dr. Walter Schneider for many years of support: During a large period of time he sent me highly relevant information from Journals and Books about the present topics.

During many discussions with Mister Peter Etter, I learned a lot about Insects and I am indebted for his highly illustrating demonstration and explanations of his very interesting butterfly collection (Chapter 4, Section 4.2.2). In addition I would like to thank him for his information concerning the smallest insect of the world, the «Dicopomorpha Echmepterygis» (Chapter 4, Sect. 4.2.2, p. 127).

In addition, I would like to thank Dr. Dieter Kuse for his suggestion to include a discussion about «Polar Lights» and the «Kennelly-Heaviside Layer» (Chapter 10, Sections 8.2 and 8.3).

I am also indebted to Professor Dr. Straumann for his information concerning relevant Literature about «Exoplanets» (Chapter 10, Sections 10.3 and 10.4).

Many thanks to Reto Stephan Grimm for providing me with interesting Literature concerning the present «Brake of Climate Change» as well as for information about «Exoplanets».

I am very thankful to Mister Kirkor Arsk for his valuable help related to Data handling and PC support.

Furthermore, I thank my daughters Elisabeth Schraner – Brüesch and Christine Brüesch for Books about Exoplanets from which I have learned a lot about the Atmosphere of Extrasolar Planets. Many thanks also to my granddaughter Angéline Da Silva for helping me correcting a few Chapters of my text.

Last but not least I would like to thank my dear wife for her interest and valuable suggestions as well as for her support and never ending patience during the elaboration of this work.

Peter Brüesch

Peter Brüesch: Scientific Career

1934 Born in Schuls (Scuol) – Graubünden – Switzerland
1948–1954 Academic high school in Chur, Switzerland
1954–1960 Study of Experimental Physics at the ETHZ in Zürich
1960–1965 PhD at the Laboratory of „Physical Chemistry“ at the ETHZ
1965–1967 Postdoctoral Fellowship at the Chemistry Department, Oregon State University, USA
1967–2002 Scientific collaborator and Project Leader at the ABB Research Center – Switzerland
1975 Nominated «Assistant Lecturer» at the Physics Department of the EPFL in Lausanne
1975 Lectures about «Phonons: Theory and Experiment»
1987 Nominated „Professeur Titulaire“ at the Physics Department of the EPFL
1998–2000 Consultant at the ABB Research Center in the field of «Water Technology and Aqueous Solutions»
 - Since 1997: Lectures about „Solid State Physics“ and about „Water“ at the EPFL in Lausanne
 - 2002–2001: Elaboration of a comprehensive work about „Water“.
 - This formed the basis of the following extended Work in German and English:
 „Wasser: Seine Bedeutung in der Wissenschaft, in der Natur und Kultur,
 in den Weltreligionen und im Universum”
 „Water: Its Significance in Science, in Nature and Culture,
 in World Religions and in the Universe”
2011–2015: «The Atmosphere of our Earth, of the Planets of our Solar System and of Exoplanets»

E-Mail: p.brueesch@bluewin.ch
General References

R.0.1 The Greek four classical elements
- Classical elements
- Elemental: The Four Elements
 From Ancient Greek Science and Philosophy to Ancient Sites Poetry

R.0.2 Vier Elemente Lehre

R.0.3 Feuer, Wasser, Erde, Luft
Horst Rademacher, Erwin Lausch, Dagmar Röhrlich, Wiebke Rögener
Wiley-VCH Verlag GmbH & Co. KGaA

R.0.4 WATER: Its Significance in Science, in Nature and Culture, in World Religions and in the Universe
Brüesch, Peter
Home – ETH E-Collection
e-Collection.ethbib.ethz.ch

R.0.5 Die Atmosphäre der Erde – (Eine Einführung in die Meteorologie)
Helmut Kraus
Verlag: Springer Berlin (2004); ISBN: 978-3-540-20656-9

R.0.6 Air: Our Planet's Ailing Atmosphere
Hans Tammemagi

R.0.7 An Introduction to Atmospheric Physics
David G. Andrews
Second Edition published 2010

R.0.8 Fundamentals of Atmospheric Physics
Murry L. Salby
Elsevier Science 1996
ISBN 0126151601, 9780126151602

R.0.9 Atmosphärenphysik
Niklaus Kämpfer: Institut für angewandte Physik, Univ. Bern
[PDF] Atmosphärenphysik; Frühlingssemester 2011
www.iapme.unibe.ch/teaching/FS_phys/FS19_Kapitel1_2.pdf

R.0.10 Die Entdeckung der Stratosphäre – ein Ereignis der Berliner Wissenschaftsgeschichte
Karl-Heinz Bernhardt

R.0.11 Physik unserer Umwelt: Die Atmosphäre
buch.de; Erschienen bei Springer
3. überarbeitete und aktualisierte Auflage, 06-2000
Walter Roedel

R.0.12 Thermal Physics of the Atmosphere
Maarten H.P. Ambaum
ISBN: 978-0-470-74515-1
John Wiley & Sons ; April 2010
Contents

1. Prologue pp 1 - 11
 1.1 Formation of the Earth’s Atmosphere 2 - 4
 1.2 The Atmosphere and the Air 5 - 8
 1.3 The Layers of the Atmosphere 9 - 11
A-1 Appendix
R-1 References R-1-0 - R-1-3

2. Physics and Chemistry of the Earth’s Atmosphere pp 12 - 55
 2.1 Preliminary remarks and Contents 13 - 14
 2.2 Composition of dry air 15 - 23
 2.3 The Troposphere with water vapor 24 - 32
 2.4 The Stratosphere 33 - 42
 2.5 The Mesosphere 43 - 45
 2.6 The Thermosphere 46 - 50
 2.7 The Exosphere 51 - 55
A-2 Appendix
R-2 References R-2-0 - R-2-7
3. The Weather in the Troposphere

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Weather – General</td>
<td>57 - 62</td>
</tr>
<tr>
<td>3.2</td>
<td>The Troposphere</td>
<td>63 - 67</td>
</tr>
<tr>
<td>3.3</td>
<td>The World of Clouds</td>
<td>68 - 78</td>
</tr>
<tr>
<td>3.4</td>
<td>The Wind</td>
<td>79 - 86</td>
</tr>
<tr>
<td>3.5</td>
<td>Precipitations and extreme Weather conditions</td>
<td>87 - 99</td>
</tr>
<tr>
<td>3.6</td>
<td>Use of Wind Energy</td>
<td>100 - 105</td>
</tr>
</tbody>
</table>

A-3 Appendix

R-3 References

4. Flying in the Air

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Flying – Overview</td>
<td>107 - 108</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical principles</td>
<td>109 - 119</td>
</tr>
<tr>
<td>4.2</td>
<td>Flying and gliding Animals - Invertebrates</td>
<td>120 - 139</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Invertebrates and Vertebrates</td>
<td>121 - 123</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Flying and gliding Invertebrates: Insects</td>
<td>124 - 139</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Bees, Ants and Termites</td>
<td>130</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Butterflies</td>
<td>131 - 134</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>How Flies are flying</td>
<td>135 - 136</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Hymenopteras Insect - Dragonflies</td>
<td>137 - 139</td>
</tr>
<tr>
<td>4.3</td>
<td>Flying and gliding Vertebrates</td>
<td>140 – 174</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Flying Protozoa</td>
<td>141 - 144</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The birds</td>
<td>145 - 153</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Gliding flight of Fishes</td>
<td>154 – 156</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Gliding flight of Reptiles</td>
<td>157 - 160</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Gliding Amphibians</td>
<td>161 - 163</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Gliding and flying Mammals</td>
<td>164 - 174</td>
</tr>
<tr>
<td>4.3.6.1</td>
<td>Bats - General</td>
<td>166 - 169</td>
</tr>
<tr>
<td>4.3.6.2</td>
<td>Flying Foxes</td>
<td>170 - 171</td>
</tr>
<tr>
<td>4.3.6.3</td>
<td>Little Red Flying Fox</td>
<td>172</td>
</tr>
<tr>
<td>4.3.6.4</td>
<td>Gliding Squirrels</td>
<td>173</td>
</tr>
<tr>
<td>4.3.6.5</td>
<td>Gliding Lemurs</td>
<td>174</td>
</tr>
<tr>
<td>4.4</td>
<td>Gliding and flying of Men</td>
<td>175 - 189</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The dream of flying with wings</td>
<td>176 - 179</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The first gliding and flying machines</td>
<td>180 - 182</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The Zeppelin Airship</td>
<td>183</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Glider</td>
<td>184</td>
</tr>
<tr>
<td>4.4.5</td>
<td>The Jumbo-Jet Boeing 747 – 81</td>
<td>185 - 187</td>
</tr>
<tr>
<td>4.4.6</td>
<td>The Helicopter</td>
<td>188 - 189</td>
</tr>
</tbody>
</table>

A-4 Appendix

R-4 References

I

J

0 - 6
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>5.1</td>
<td>General Aspects</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Primary Pollutants</td>
</tr>
<tr>
<td></td>
<td>5.2.1</td>
<td>Carbon dioxide CO₂</td>
</tr>
<tr>
<td></td>
<td>5.2.2</td>
<td>Carbon monoxide CO</td>
</tr>
<tr>
<td></td>
<td>5.2.3</td>
<td>Oxides of Nitrogen NOₓ</td>
</tr>
<tr>
<td></td>
<td>5.2.4</td>
<td>Methane CH₄</td>
</tr>
<tr>
<td></td>
<td>5.2.5</td>
<td>Sulfur oxides SOₓ</td>
</tr>
<tr>
<td></td>
<td>5.2.6</td>
<td>Ammonia NH₃</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Toxic organic molecules</td>
</tr>
<tr>
<td></td>
<td>5.3.1</td>
<td>Volatile organic compounds</td>
</tr>
<tr>
<td></td>
<td>5.3.2</td>
<td>Persistent organic Pollutants (POP’s)</td>
</tr>
<tr>
<td></td>
<td>5.3.3</td>
<td>The Seveso Disaster with Dioxin</td>
</tr>
<tr>
<td></td>
<td>5.3.4</td>
<td>The Bhopal Disaster</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>Particulate Matter (PM’s) in the Atmosphere: Formation and Dynamics</td>
</tr>
<tr>
<td></td>
<td>5.4.1</td>
<td>Particulates – Categories – Particle sizes</td>
</tr>
<tr>
<td></td>
<td>5.4.2</td>
<td>Cunningham-Correction– Viscosity</td>
</tr>
<tr>
<td></td>
<td>5.4.3</td>
<td>Stoke’s Law with Cunningham-Correction</td>
</tr>
<tr>
<td></td>
<td>5.4.4</td>
<td>Descent velocities of falling particles in air</td>
</tr>
<tr>
<td></td>
<td>5.4.5</td>
<td>Asbestos - Diseases</td>
</tr>
<tr>
<td></td>
<td>5.4.6</td>
<td>Nanoparticles - pollutants</td>
</tr>
<tr>
<td></td>
<td>5.4.7</td>
<td>Chernobyl Disaster</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>Secondary pollutants</td>
</tr>
<tr>
<td></td>
<td>5.5.1</td>
<td>Ozon O₃</td>
</tr>
<tr>
<td></td>
<td>A-5</td>
<td>Appendix</td>
</tr>
<tr>
<td></td>
<td>R-5</td>
<td>References R-5-0 – R-5-17</td>
</tr>
<tr>
<td>6.</td>
<td>6.1</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Cellular respiration</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>Respiration and Photosynthesis of Water – Plants</td>
</tr>
<tr>
<td></td>
<td>A-6</td>
<td>Appendix</td>
</tr>
<tr>
<td></td>
<td>R-6</td>
<td>References R-6-0 – R-6-9</td>
</tr>
</tbody>
</table>

7.0 Animal Classes 272 – 276
7.1 Breathing of Mammals 277 - 286
7.2 Breathing of Amphibians 287 - 290
7.3 Breathing of Reptiles 291 - 305
7.4 Breathing of Birds 306 - 310
7.5 Breathing of Fishes 311 - 319
7.6 Breathing of Invertebrates 320, 333
7.6.1 Invertebrates – General and Examples 321 - 323
7.6.2 Insects 324 - 333
7.6.2.1 Tracheae – Tracheoles – Spiracles 325 – 327
7.6.2.2 Butterflies 328 - 329
7.6.2.3 Ants 330
7.6.2.4 Termites 331
7.6.2.5 Aquatic Insects 332 - 333

A-7 Appendix

R-7 References R-7-0 – R-7-22

8. Selected Atmospheric Phenomena pp 334 - 373

8.1 Thunderstorm clouds, Lightenings and Thunder 335 - 350
8.1.1 Origin and Structure of Thunderstorm clouds 336 - 338
8.1.2 Electrical charges in a Thunderstorm cloud 339 - 342
8.1.3 Origin and Properties of Thunder 343 - 344
8.1.4 Danger of Lightnings and Lightning Protection 345 - 347
8.1.5 Fractal Properties of Lightnings 348
8.1.6 Ball-Lightnings – Observations and Properties 349 - 350
8.2 Earth’s Magnetic field, Solar Wind, Magneto-Plasma and Polar Lights 351 - 361
8.2.1 Internal Structure of the Earth and Earth’s magnetis field 352
8.2.2 Solar wind and Magnetic field 353 - 357
8.2.3 Origin and Formation of Polar Lights 358 - 361
8.3 Heaviside-Layer, Short Waves and Short-Wave Transmitters 362 - 365
8.3.1 The Ionosphere with Kennelly-Heaviside Layer 363
8.3.2 Kennelly-Heaviside Layer and Short-Wave Transmitter 364 - 365
8.4 Further Atmospheric Phenomena 366 - 373
8.4.1 The Rainbow 367
8.4.2 Halos: Formation and Appearance 368
8.4.3 St. Elme’s Fire: General and History 369 - 370
8.4.4 «Purple Light» 371
8.4.5 Night sky glow – Airglow 372
8.4.6 «Red Sprites», «Sprites» and «Blue Jets» 373

A – 8 Appendix

R – 8 References R-8-0 – R-8-14

0 - 8