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Abstract

In this thesis, we prove various results on metric injective hulls and injective
metric spaces. In Chapter II, we show that the operator given by assigning
to a metric space the corresponding metric space defined by Isbell’s injective
hull is 2-Lipschitz in the Gromov-Hausdorff sense when defined on the class of
general metric spaces and 1-Lipschitz when restricted to the class of tree-like
metric spaces. These estimates are optimal. In Chapter III, we character-
ize effectively the injective affine subspaces of the finite dimensional injective
normed spaces in any dimension and go on characterizing effectively injective
convex polyhedra, this characterization provides in particular a concrete veri-
fication algorithm. We then make use of this result to prove that the solution
set of a system of linear inequalities with at most two variables per inequality
is injective if it is non-empty. Turning to injective hulls with the structure
of a polyhedral complex, we extend in Chapter IV the canonical decomposi-
tion theory of Bandelt and Dress to infinite metric spaces with integer-valued
metric. We consider infinite totally split-decomposable metric spaces with
integer-valued metric and satisfying a local rank condition. We then give a
characterization for Isbell’s injective hull of such metric spaces to be combi-
natorially equivalent to a cube complex satisfying the CAT(0) link condition.
We apply this, among others, to injective hulls of cycle graphs. In Chapter V,
we give an alternative characterization of finite combinatorial dimension for
metric spaces. We consider the canonical decomposition of the collection of
extremal functions that induce admissible graphs. We prove an optimal bound
on the diameters of the elements of this canonical decomposition for discretely
path-connected metric spaces. We conclude by proving for different classes of
metric spaces including any proper metric space, that such a space is injective
if and only if it is 4-hyperconvex and possesses a geodesic bicombing.
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Zusammenfassung

In dieser Dissertation beweisen wir Resultate über metrische injektive Hüllen
und injektive metrische Räume. In Kapitel II beweisen wir, dass die Is-
bellsche injektive Hülle ein 2-Lipschitz-Operator ist im Sinne von Gromov-
Hausdorff, wenn man sie auf der Klasse aller metrischen Räume definiert. Die
Isbellsche injektive Hülle wird zu einem 1-Lipschitz-Operator, wenn man sie
auf die Klasse aller baumartigen metrischen Räume einschränkt. In Kapitel
III charakterisieren wir effektiv die injektiven affinen Teilmengen der endlich
dimensionalen normierten Räume beliebiger Dimension. Ausserdem beweisen
wir noch eine effektive Charakterisierung aller injektiven konvexen Polyeder.
Diese Charakterisierung liefert insbesondere einen konkreten Verifikationsal-
gorithmus. Wir verwenden dieses Resultat, um zu beweisen, dass ein System
linearer Ungleichungen mit höchstens zwei Variablen pro Ungleichung injek-
tiv ist, wenn es nicht leer ist. Desweiteren betrachten wir diejenigen injek-
tiven Hüllen, die die Struktur eines polyedrischen Komplexes haben und in
Kapitel IV verallgemeinern wir die kanonische Zerlegungstheorie von Bandelt
und Dress, indem wir sie für unendliche metrische Räume mit ganzzahliger
Metrik entwickeln. Wir betrachten dann diejenigen unendlichen, vollständig
split-zerlegbaren metrischen Räumen mit ganzzahliger Metrik, die eine lokale
Rangbedingung erfüllen. Für diese Klasse metrischer Räume charakterisieren
wir diejenigen, für die ihre Isbellsche injektive Hülle kombinatorisch äquivalent
zu einem Würfelkomplex ist, welcher die CAT(0)-Link-Bedingung erfüllt. Wir
wenden dieses Kriterium insbesondere auf Zykelgraphen an. In Kapitel V
geben wir eine alternative Charakterisierung der endlichen kombinatorischen
Dimension. Wir betrachten die kanonische Zerlegung der Familie aller Ex-
tremalfunktionen, die zulässige Graphen induzieren. Wir beweisen eine opti-
male Schranke an die Durchmesser der Elemente dieser kanonischen Zerlegung
für diskret wegzusammenhängende metrische Räume. Schliesslich beweisen
wir für verschiedene Klassen metrischer Räume, insbesondere für jeden soge-
nannten proper metrischen Raum, dass dieser genau dann injektiv ist, wenn
er 4-hyperkonvex ist und ein Bicombing besitzt.
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Chapter I

Introduction

The present thesis consists of four main components, corresponding to works
[31, 37, 38] together with a collection of further results, each one of these
components focusing on a precise topic of the theory of metric spaces. The
common goal of these four works is to develop tools for the study of injective
hulls and injective metric spaces in view of many different applications. For
instance, in phylogenetic analysis where injective hulls are used to compare
general metrics to tree-like ones, cf. [19, 20]. Furthermore, injective hulls
appear to be relevant in theoretical computer science in particular for online
algorithms in relation with the k-server problem, cf. [13, 14]. Additionally,
injective hulls provide a source of new techniques and approaches for purely
mathematical questions with geometric elements.

As an illustration, injectivity can be regarded as a general metric notion of
global weak non-positive curvature since injective metric spaces share common
features with CAT(0) spaces like, for instance, the existence of a geodesic
bicombing. Developing tools for injective metric spaces and hulls can therefore
lead for example to sharpen and understand better known results of CAT(0)
geometry.

A metric space (X, d) is called injective if for any isometric embedding
i : A → B of metric spaces and any 1-Lipschitz (equivalently distance-
nonincreasing) map f : A → X, there exists a 1-Lipschitz map g : B → X,
so that g ◦ i = f . Examples of such spaces include the real line R, l∞(I)
for any index set I, and all complete metric trees. As can be deduced from
the definition, injective metric spaces are in particular non-empty, complete,
geodesic and every triple of points has at least one median point. Moreover,
injective metric spaces are abolute 1-Lipschitz retracts and reciprocally ev-
ery absolute 1-Lipschitz retract is injective. In addition, all injective metric
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I. INTRODUCTION

spaces are contractible. The terminology coincides with the definition of an
injective object in category theory. Accordingly and unless otherwise stated,
by injective we mean in the category of metric spaces and 1-Lipschitz maps.

As a matter of fact, proving injectivity is often achieved indirectly via an
equivalent but more handy criterion. One such equivalent criterion, which
essentially amounts to a point by point extension property, is hyperconvexity,
which was introduced in [2]. A metric space (X, d) is called hyperconvex if any
collection {(xi, ri)}i∈I ⊂ X × [0,∞) with the property that d(xi, xj) ≤ ri + rj
for all pair of indices i, j ∈ I, satisfies

⋂
i∈I B(xi, ri) 6= ∅ where B(x, r) := {y ∈

X : d(x, y) ≤ r}. With the help of Zorn’s lemma, it is not difficult to prove
equivalence between injectivity and hyperconvexity. By the hyperconvexity
criterion together with a theorem of Nachbin proved in [36], it follows that
a normed space is linearly injective (i.e., injective in the category of normed
spaces and linear 1-Lipschitz maps) if and only if it is injective in the metric
category.

Ubiquity of injectivity in the theory of metric spaces is best appreciated
when considering Isbell’s injective hull construction. Indeed, Isbell showed in
[29], that every metric space (X, d) possesses an injective hull (e,E(X)), by
which is meant that two properties hold, namely that E(X) is an injective
metric space (endowed with a canonical metric which is for conciseness absent
from the notation) and e: X → E(X) is an isometric embedding such that
every isometric embedding of X into another injective metric space factors
through e.

Interestingly, Isbell’s injective hull is a general object which can be used
in different places as an alternative to ad hoc constructions, as an example,
see [30] in relation with Gromov hyperbolic metric spaces and [6]. Therefore,
Isbell’s injective hull construction offers a general framework to prove many
different results on metric spaces.

To be precise, Isbell’s injective hull is defined as the set E(X) of so-called
extremal functions which is given by

E(X) :=
{
f ∈ RX : f(x) = supy∈X(d(x, y)− f(y)) for all x ∈ X

}
.

It is not difficult to see that the difference between two elements of E(X) has
finite supremum norm and E(X) is defined as being endowed with the metric

d∞(f, g) := ‖f − g‖∞ .

Furthermore, the canonical isometric embedding e: X → E(X) is given by
the assignement x 7→ dx where the map dx : y 7→ d(x, y) is meant.

2



I. INTRODUCTION

We now continue with a description of the main results contained in
the four chapters following this introduction. Each chapter is written in
a self-contained way and possesses its own introduction recalling all the
facts and definitions needed for the development of the chapter. This allows
reading a chapter independently of the others.

Metric Stability of Trees and Tight spans. We start by considering
Isbell’s injective hull as an operator X 7→ E(X) on the family of all metric
spaces. Our goal is to determine the Lipschitz constant of this operator for
the relevant notions of distance. Besides, we wish to obtain an improved
Lipschitz constant in case the operator is restricted to metric spaces with
properties similar to those of metric trees. In this framework, dissimilarity
between two metric spaces X and Y is modeled by the Gromov-Hausdorff
comparison. The effective computation of the quantity dGH(X,Y ) consists in
measuring the minimal distortion, namely minimizing the quantity

1

2
sup

(x,y),(x′,y′)∈R
|dX(x, x′)− dY (y, y′)|

over all relations R in the product set X × Y . In this context, a relation is
defined as a subset R ⊂ X × Y such that πX(R) = X and πY (R) = Y . Our
procedure consists in proving extension results for relations between metric
spaces. For the first extension result, we let X and Y be injective metric
spaces and we consider subsets R ⊂ X ×Y such that πX(R) is a spanning set
of X. We show that there exists an extension R̄ with same distortion such
that πX(R̄) is now an α-net in X where α denotes the distortion of R. For
the second extension result, we let X be a metric tree and Y be an injective
metric space and we consider subsets R ⊂ X × Y such that πX(R) is this
time a strictly spanning set of X. We show that in this case, there exists an
extension R̄ with same distortion such that πX(R̄) = X.

From the first extension result, we deduce that X 7→ E(X) is 2-Lipschitz
in the Gromov-Hausdorff sense on the class of general metric spaces and we
show that this Lipschitz constant is optimal. Since injective hulls of Gromov
δ-hyperbolic metric spaces are themselves δ-hyperbolic (cf. [30]), X 7→ E(X)
restricts to an operator on the class of tree-like metric spaces. From the
second extension result, we deduce that Isbell’s injective hull is 1-Lipschitz
when restricted to the class of tree-like metric spaces, and the constant is
clearly optimal. These results are in particular relevant to recovery issues as
encountered for instance in phylogenetics.

This chapter corresponds to [31], which is joint work with Urs Lang and
Roger Züst.
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I. INTRODUCTION

Injective Convex Polyhedra. There are many reasons for the relevance
of injective convex polyhedra in ln∞, which denotes the set of real n-tuples
x := (x1, . . . , xn) endowed with the norm ‖x‖∞ = max1≤i≤n |xn|. It was
shown by Nachbin in [36] that an n-dimensional normed space is injective
if and only if it is linearly isometric to ln∞. Therefore, in order to study
injectivity, it is natural to focus in the first place on non-empty subsets of
the model spaces ln∞. Moreover, by Nachbin’s characterization, if a subset
of an n-dimensional normed space is injective and has non-empty interior, it
follows by a rescaling argument that the ambient space has to be isometric to
ln∞. With the goal of obtaining a simple elegant and concrete combinatorial
characterization, we consequently consider convex polyhedra in ln∞. They
indeed build the largest class for which our expectations have a chance to
be fulfilled. Furthermore, as in CAT(0) geometry, convexity is important in
our considerations and in addition, Gähler and Murphy showed in [22] that
there is a unique geodesic bicombing σ on ln∞, namely the one given by the
linear geodesics. By a (geodesic) bicombing on a geodesic metric space (X, d)
is meant a map σ : X×X× [0, 1]→ X such that for any x, y ∈ X, the induced
mapping σxy := σ(x, y, ·) : [0, 1] → X satisfies that σxy is a geodesic from x
to y, that is σxy(0) = x, σxy(1) = y and d(σxy(t), σxy(t

′)) = |t − t′| d(x, y),
together with the properties σyx(t) = σxy(1 − t) and d(σxy(t), σx′y′(t)) ≤
(1 − t) d(x, x′) + t d(y, y′). Injective convex subsets of ln∞ are thus exactly
the injective subsets of ln∞ whose unique (cf. [16]) convex geodesic bicombing
coincides with the geodesic bicombing of ln∞. Finally, considering polyhedral
sets is needed in order to be able to obtain combinatorial or computationally
usable results. Since ln∞ is injective, for any subset S, there is a subset S′ of
ln∞ containing S, with the property that S′ is isometric to E(S). Note that
S is injective if and only if for any such S′ one has S = S′. Hence injective
subsets are exactly the ones stable under taking injective hulls.

We start by giving a proof of the already known characterization of injec-
tive affine subsets of ln∞ of any dimension. We go on proving a local-to-global
injectivity criterion for convex polyhedra in ln∞. In order to do so, we con-
sider the family of tangent cones to a given convex polyhedron. This family
is a collection of convex polyhedral cones which encodes the complete local
information of the associated convex polyhedron. Precisely, we prove that a
polyhedron in ln∞ is injective if and only each of its tangent cones is injective.

We apply this local-to-global criterion to prove an effective characterization
of injective convex polyhedra in ln∞. This characterization is effective in the
sense that for any given polyhedron, the procedure to check whether it is
injective or not involves computing finitely many times the intersection of
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I. INTRODUCTION

finitely many affine subspaces of ln∞. This gives in particular an implementable
algorithm to perform injectivity tests. The characterization involves looking
at the intersection pattern of convex polyhedral cones centered at the origin
with the facets of the unit cube [−1, 1]n. From this characterization follows in
particular the following known result: if Isbell’s injective hull has a canonical
polyhedral structure parametrized by the admissible graphs, then its cells are
themselves injective.

As a concrete application of our characterization of injective convex poly-
hedra, we prove that the solution set to a system of linear inequalities with
at most two variables per inequality is injective as soon as it is non-empty. In
this context, we make use of tools from linear programming and theoretical
computer science which were developed by Shostak in [39]. Note that the
class of convex polyhedra given by such systems is stable under non-empty
intersections, unlike general injective convex polyhedra as illustrated by an
example given at the beginning of the chapter.

Injective Hulls of Infinite Totally Split-Decomposable Metric
Spaces. We now look for a way to decompose Isbell’s injective hull into
simpler components. In order to do so, we extend a construction of Bandelt
and Dress (cf. [4]) to infinite metric spaces. We start with a split (also called
cut) S := {A,B} of a set X which is a pair of non-empty subsets of X such
that A ∩ B = ∅ and X = A ∪ B. For x ∈ X, we denote by S(x) the element
of S that contains x. The split (pseudo-)metric associated to S is then a
pseudometric δS on X given by

δS(x, y) =

{
1 if S(x) 6= S(y),
0 if S(x) = S(y).

We consider infinite metric spaces with integer-valued metric as in [30] and
generalize the canonical decomposition of Bandelt and Dress which applies to
finite metric spaces. In this context, we need to consider injective hulls of
pseudometric spaces and we rather use the notation E(X, d) instead of E(X)
for Isbell’s injective hull, if (X, d) is a pseudometric space. Sometimes, when
there is no ambiguity regarding the underlying space considered, we simply
write E(d). Nevertheless, all three denote the same space.

The split-decomposition of a pseudometric d is divided into two compo-
nents, the so-called split-prime component d0 which is split-indecomposable
and the totally split-decomposable component d−d0 which can be decomposed
as a weighted sum ∑

S∈S
αdSδS
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I. INTRODUCTION

of simpler components, namely split pseudometrics δS , over the collection S
of all so-called d-splits of (X, d). Each real nonnegative weight αdS is given
by a particular formula depending on the d-split S. When the metric space
(X, d) has integer-valued metric and satisfies the local rank condition (LRC),
the split-decomposition of d is characterized by the property that the inclusion

E(X, d) ⊂ RX ∩

(
E(X, d1) +

∑
S∈S

λSE(X, δS)

)
.

holds regardless of the choices λS ∈ [0, αdS ] and where d1 := d−
∑

S∈S λSδS .
Extending the split decomposition theory to infinite metric spaces presents

several important advantages. First, there is then the possibility to apply the
new theory to the setting of injective hulls of finitely generated groups endowed
with a word metric. The second advantage is that infinite metric spaces model
homogeneous spaces in general. Furthermore, the class of infinite metric spaces
is closed under taking direct limits.

We give a necessary and sufficient condition for Isbell’s injective hull of
any infinite totally split-decomposable metric space with integer-valued met-
ric satisfying the (LRC) to be combinatorially equivalent to a CAT(0) cube
complex. Cube complexes constitute a natural object of study in parallel to
convex polyhedra especially in analogy with CAT(0) geometry. Note that the
necessary and sufficient condition we prove enables us to characterize Isbell’s
injective hull of the totally split-decomposable part, if it satisfies the (LRC),
of the split-decomposition of any integer-valued metric. This motivates, in
further investigations, to look for other kinds of decompositions for the split-
prime part d0 which might involve classes of pseudometrics other than the
split ones.

As an application, we give a complete combinatorial description of Isbell’s
injective hull of cycle graphs of any size by showing that Isbell’s injective hulls
of odd cycles are combinatorially equivalent to their associated Buneman
complex and thus in particular to a cube complex satisfying the CAT(0)
link condition. The Buneman complex is a well-known construction used in
the analysis of data structures as can be done for instance in computational
biology cf. [8, 19]. Moreover, as a further application, we give a closed
formula for the number of maximal cells of this complex in the case of cycle
graphs. This illustrates that the split decomposition theory is also effective
for computations with concrete families of metric spaces.

Further Results on Metric Injectivity. Paralleling the case of con-
vex polyhedra and of metric spaces with integer-valued metric satisfying the
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I. INTRODUCTION

(LRC), we then extend the classes of metric spaces under consideration by
looking in the first case at metric spaces of finite combinatorial dimension
and in the second case at integer-valued metric spaces in general, specializing
when required, to discretely path-connected ones.

Regarding finite combinatorial dimension, it is well-known that Isbell’s
injective hull of a finite metric space is a finite dimensional polyhedral com-
plex. The combinatorial dimension dimcomb(X) of a metric space (X, d) is
then the supremum over the dimensions of the polyhedral complexes E(Y )
over all finite subsets Y ⊂ X. We give a new characterization of combinato-
rial dimension for metric spaces and as an application, an alternative proof of
Dress’ theorem. The goal is to provide a more natural proof using the same
tools as we did for convex polyhedra, namely linear programming for system
of inequalities with at most two variables per inequality. Moreover, this al-
ternative viewpoint is expected to deepen the understanding of combinatorial
dimension and to provide new examples of spaces as studied for instance in
[16, 17]. As an illustrative feature, it is not difficult to see that ln1 and ln∞ have
finite combinatorial dimension equal to 2n−1 and n respectively (cf. [30]), we
can thus split the family of spaces lnp where p ∈ [1,∞] and n ∈ N into three
categories according to their metric properties as follows

p {2} (1, 2) ∪ (2,∞) {1,∞}
lnp CAT(0) Busemann dimcomb(lnp ) <∞

Regarding integer-valued metric spaces, we prove new results on the struc-
ture of Isbell’s injective hull. Precisely, we already know that there is a distin-
guished subset E′(X) ⊂ E(X) which admits a decomposition {P (A)}A∈A (X)

parametrized by the collection A (X) of admissible edge sets where to each
subset P (A) corresponds a graph (X,A) possibly with a self-loop. An edge
{x, y} ∈ A corresponds to a pair {x, y} satisfying f(x) + f(y) = d(x, y) for
any f ∈ P (A), in particular P (A) ⊂ P (A′) if A′ ⊂ A. We then prove a char-
acterization due to Urs Lang, of those elements P (A) of finite rank which are
maximal in the sense that there is no A ) A′ ∈ A (X). Later, we prove an
optimal bound on the diameters of the elements of this decomposition, where
optimality is proved to hold in every dimension.

Finally, we conclude with an outlook, intended to suggest further directions
of investigation, which consists in proving new criteria for injectivity of certain
classes of metric spaces. In particular, we prove that proper metric spaces
are injective if and only if they are 4-hyperconvex and possess a geodesic
bicombing.
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Chapter II

Metric Stability of Trees and
Tight Spans

II.1 Introduction

Our goal is to provide an optimal stability result, in terms of the Gromov–
Hausdorff distance, for Isbell’s [29] injective hull construction X 7→ E(X) for
metric spaces. Roughly speaking, E(X) is a smallest injective metric space
containing an isometric copy ofX (all relevant definitions will be reviewed later
in this paper). Here, a metric space Y is called injective if for any isometric
embedding i : A → B of metric spaces and any 1-Lipschitz (i.e., distance-
nonincreasing) map f : A → Y there exists a 1-Lipschitz map g : B → Y of
f , so that g ◦ i = f (see [1, Section 9] for the general categorical notion).
Examples of injective metric spaces include the real line R, l∞(I) for any
index set I, and all complete metric trees; however, by Isbell’s result, this list
is by far not exhaustive. Injective metric spaces are complete, geodesic, and
contractible and share a number of remarkable properties. We refer to [30,
Sections 2 and 3] for a recent survey of injective metric spaces and hulls.

An alternative, but equivalent, description of E(X) was given later by
Dress [18], who called it the tight span of X. If X is compact, then so is
E(X), and if X is finite, E(X) has the structure of a finite polyhedral complex
of dimension at most |X|/2 with cells isometric to polytopes in some finite-
dimensional l∞ space. If every quadruple of points in X admits an isometric
embedding into some metric tree, then so does X itself, and E(X) provides the
minimal complete such tree. This last property makes the injective hull/tight
span construction a useful tool in phylogenetic analysis. Based on genomic
differences an evolutionary distance between similar species is defined, and

8



II.1. INTRODUCTION

the construction may then be applied to this finite metric space. Due to noise
in the measurements or systematic errors, the process will rarely yield a tree,
but (the 1-skeleton of) the resulting polyhedral complex may still give a good
indication on the phylogenetic tree one tries to reconstruct (compare [19, 20]
and the references there).

In view of these applications, and also from a purely geometric perspec-
tive, it is interesting to know how strongly the injective hull is affected by
small changes of the underlying metric space. The dissimilarity of two met-
ric spaces A,B is conveniently measured by their Gromov–Hausdorff distance
dGH(A,B). Moezzi [35, Theorem 1.55] observed that dGH(E(A),E(B)) is not
larger than eight times dGH(A,B). Here it is now shown that in fact

dGH(E(A),E(B)) ≤ 2 dGH(A,B),

and an example is constructed to demonstrate that the factor two is optimal
(see Section 3). Furthermore, we prove that if both E(A) and E(B) are metric
trees (in the most general sense of R-trees), then

dGH(E(A),E(B)) ≤ dGH(A,B),

without a factor two. In particular, this implies that if X,Y are two finite
simplicial metric trees with sets of terminal vertices A,B, respectively, then
dGH(X,Y ) ≤ dGH(A,B). This result (which we have not been able to find in
the literature) is not as obvious as it may appear at first glance. A complica-
tion arises from the fact that for the respective vertex sets VX , VY , it is not
true in general that dGH(VX , VY ) ≤ dGH(A,B), not even for combinatorially
equivalent binary trees. For instance, consider the two trees X,Y depicted
below, with the indicated edge lengths.

r r���
r

S
S
Sr

S
S
S
r
�
�
�r

2
2

2

2

2

a4

a3

a2

a1 X

r r��r
SSrSS

r
��r 6 1

1

1

1

b4

b3

b2

b1 Y

Figure II.1: Two metric trees X and Y with dGH(X,Y ) = 1.

The correspondence between A := {a1, . . . , a4} and B := {b1, . . . , b4} that
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II.2. EXTENSION OF ROUGHLY ISOMETRIC RELATIONS

relates ai to bi distorts all distances by an additive error of two. Since the
diameters of A and B also differ by two, no correspondence (i.e., left- and
right-total relation) between A and B has (maximal) distortion less than two.
The Gromov–Hausdorff distance equals one half this minimal number (see Sec-
tion 3), so dGH(A,B) = 1. Similar considerations show that dGH(VX , VY ) = 2.
Yet, dGH(X,Y ) = 1. For the proof, points in X and Y need to be related in
a non-canonical way.

II.2 Extension of Roughly Isometric Relations

As just indicated, the Gromov–Hausdorff distance may be characterized in
terms of the additive distortion of relations between the two given metric
spaces. Therefore, in this section, we begin by studying the possibility of
extending relations without increasing the distortion.

Let X,Y be two metric spaces. We write |xx′| for the distance of two
points x, x′ ∈ X and, likewise, |yy′| for the distance of y, y′ ∈ Y . Given a
relation R between X and Y , i.e., a subset of X × Y , the distortion of R is
defined as the (possibly infinite) number

dis(R) := sup
{∣∣|xx′| − |yy′|∣∣ : (x, y), (x′, y′) ∈ R

}
.

In case R is given by a map f : X → Y , we write dis(f) for dis(R). If dis(f) ≤ ε
for some ε ≥ 0, then f is called ε-roughly isometric. This means that

|xx′| − ε ≤ |f(x)f(x′)| ≤ |xx′|+ ε

for every pair of points x, x′ ∈ X. See [9, Chapter 7] and [10, Chapter 7] for
this terminology. We denote by πX : X × Y → X and πY : X × Y → Y the
canonical projections. For a set A ⊂ X, we say that A spans X if, for every
pair (x, x′) ∈ X ×X,

|xx′| = sup
a∈A

(
|xa| − |x′a|

)
;

equivalently, for all ε > 0 there is an aε ∈ A such that |xx′|+ |x′aε| ≤ |xaε|+ε.
The definition is motivated by the fact that the injective hull of a metric space
A may be characterized as an injective metric extension X ⊃ A spanned by
A, see Proposition 3.3 below. For a constant α ≥ 0, a set S ⊂ X is called an
α-net in X if for every x ∈ X there exists a z ∈ S such that |xz| ≤ α.

2.1 Proposition. Suppose that X,Y are two injective metric spaces. If R ⊂
X×Y is a set with α := dis(R)/2 <∞ and the property that πX(R) spans X,
then there exists an extension R ⊂ R̄ ⊂ X × Y such that πX(R̄) is an α-net
in X and dis(R̄) = dis(R).

10
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In particular, every ε-roughly isometric map f : A → Y defined on a set
A ⊂ X that spans X admits an ε-roughly isometric extension f̄ : S → Y
to some ε/2-net S in X and, hence, also a 2ε-roughly isometric extension
f̂ : X → Y . Below we shall use the simple fact that every injective metric
space Y is hyperconvex [2] (the converse is true as well). This means that for
every family {(yi, ri)}i∈I in Y × R with the property that ri + rj ≥ |yiyj | for
all pairs of indices i, j ∈ I, there is a point y ∈ Y such that |yyi| ≤ ri for all
i ∈ I.

Proof. It suffices to show that for every setR ⊂ X×Y with α := dis(R)/2 <∞
and the property that πX(R) spans X and for every x̄ ∈ X there exists a pair
(x0, y0) ∈ X × Y such that |x̄x0| ≤ α and

dis
(
R ∪ {(x0, y0)}

)
= dis(R).

The general result then follows by an application of Zorn’s lemma.
Let such R and x̄ be given, and put α := dis(R)/2. For all (x, y), (x′, y′) ∈

R, ∣∣|xx′| − |yy′|∣∣ ≤ 2α

and (|xx̄|+α)+(|x′x̄|+α) ≥ |xx′|+2α ≥ |yy′|. Hence, since Y is hyperconvex,
there is a point y0 ∈ Y such that for all (x, y) ∈ R,

|yy0| ≤ |xx̄|+ α.

Furthermore, since πX(R) spans X, for every (x, y) ∈ R and ε > 0 there exists
(xε, yε) ∈ R such that |xx̄|+ |x̄xε| ≤ |xxε|+ ε and, hence,

|yy0| ≥ |yyε| − |y0yε| ≥ (|xxε| − 2α)− (|x̄xε|+ α) ≥ |xx̄| − 3α− ε.

Since this holds for all ε > 0, it follows that |yy0| ≥ |xx̄| − 3α. For every
(x, y) ∈ R, put r(x, y) := |yy0| + 2α, and set r(x̄) := α. We have r(x, y) +
r(x̄) = |yy0|+3α ≥ |xx̄| and r(x, y)+r(x′, y′) ≥ |yy′|+4α ≥ |xx′|+2α ≥ |xx′|,
for all (x, y), (x′, y′) ∈ R. Thus, since X is hyperconvex, there exists a point
x0 ∈ X such that

|xx0| ≤ r(x, y) = |yy0|+ 2α

and |x̄x0| ≤ r(x̄) = α for all (x, y) ∈ R. Then also

|yy0| ≤ |xx̄|+ α ≤ |xx0|+ |x̄x0|+ α ≤ |xx0|+ 2α

and so
∣∣|xx0| − |yy0|

∣∣ ≤ 2α = dis(R) for all (x, y) ∈ R.
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Now we focus on trees. A metric space X is called geodesic if for every pair
of points x, x′ ∈ X there is a geodesic segment xx′ ⊂ X connecting the two
points, i.e., the image of an isometric embedding of the interval [0, |xx′|] that
sends 0 to x and |xx′| to x′. By a metric tree X we mean a geodesic metric
space with the property that for any triple (x, y, z) of points in X and any
geodesic segments xy, xz, yz connecting them, xy ⊂ xz ∪ yz. Thus, geodesic
triangles in X are isometric to tripods, and geodesic segments are uniquely
determined by their endpoints. For the next result we need to sharpen the
above assumption that πX(R) spans X. We say that a subset A of a metric
space X strictly spans X if for every pair (x, x′) ∈ X×X there exists an a ∈ A
such that |xx′|+ |x′a| = |xa|.

2.2 Proposition. Suppose that X is a metric tree and Y is an injective
metric space. If R ⊂ X × Y is a set with the property that πX(R) strictly
spans X, there exists an extension R ⊂ R̄ ⊂ X×Y such that πX(R̄) = X and
dis(R̄) = dis(R).

In particular, every ε-roughly isometric map f : A → Y defined on a set
A ⊂ X that strictly spans X admits an ε-roughly isometric extension f̄ : X →
Y .

Proof. It suffices to show that for every set R ⊂ X × Y with dis(R) <∞ and
the property that πX(R) spans X and for every x̄ ∈ X there exists a point
ȳ ∈ Y such that

dis
(
R ∪ {(x̄, ȳ)}

)
= dis(R).

As above, the general result then follows by an application of Zorn’s lemma.
Thus let such R and x̄ be given. Put α := dis(R)/2. As in the proof of

Proposition 2.1, there exists a point y0 ∈ Y with the property that

|yy0| ≤ |xx̄|+ α

for all (x, y) ∈ R. Let S be the set of all (x, y) ∈ R with |yy0| < |xx̄| − α.
If S = ∅, then

∣∣|xx̄| − |yy0|
∣∣ ≤ α ≤ dis(R) for all (x, y) ∈ R; in particular,

ȳ := y0 has the desired property. Suppose now that S 6= ∅, and fix an arbitrary
(x1, y1) ∈ S. Since πX(R) strictly spans X, there exists a pair (x2, y2) ∈ R
such that |x1x̄| + |x̄x2| = |x1x2|. Now choose ȳ ∈ Y so that |ȳy0| ≤ α and
|ȳy2| ≤ |y0y2| − α. Note that |y0y2| ≤ |x̄x2| + α, so |ȳy2| ≤ |x̄x2|. For all
(x, y) ∈ R,

|yȳ| ≤ |yy0|+ |ȳy0| ≤ |yy0|+ α ≤ |xx̄|+ 2α.

To estimate |ȳy| from below, note first that if (x, y) ∈ R \ S, then

|yȳ| ≥ |yy0| − |ȳy0| ≥ |yy0| − α ≥ |xx̄| − 2α.
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Secondly, let (x, y) ∈ S. Consider the tripod xx1 ∪ xx2 ∪ x1x2, and note that
x̄ ∈ x1x2. Since (x, y), (x1, y1) ∈ S, the strict inequality

|xx1| ≤ |yy1|+ 2α ≤ |yy0|+ |y0y1|+ 2α < |xx̄|+ |x̄x1|

holds, so x̄ 6∈ xx1 and therefore x̄ ∈ xx2. We conclude that

|yȳ| ≥ |yy2| − |ȳy2| ≥ (|xx2| − 2α)− |x̄x2| = |xx̄| − 2α.

This shows that
∣∣|xx̄| − |yȳ|∣∣ ≤ 2α = dis(R) for all (x, y) ∈ R.

The following example shows that Proposition 2.2 is no longer true in
general if the word “strictly” is omitted.

2.3 Example. Let X be the interval [0, 2], and put x0 := 0 and xn := 2−2−n

for all integers n ≥ 1. The set A := {x0, x1, . . . } spans X, but A does not
strictly span X, because 2 6∈ A. Let Y be the simplicial metric tree with
a single interior vertex y1 and the countably many edges y0y1 and y1yn for
n = 2, 3, . . . , where |y0y1| = 2−1 and |y1yn| = 2−1 − 2−n. Note that Y is
complete, hence injective. The map f : A → Y defined by f(xn) := yn for
n = 0, 1, 2, . . . is 1-roughly isometric, as is easily checked. Since there is no
pair of points at distance one in Y , f does not admit a 1-roughly isometric
extension f̄ : X → Y .

However, the following holds.

2.4 Lemma. Let X be a metric tree, and suppose that A ⊂ X is a set that
spans X. Then there exists a dense subtree Σ ⊂ X such that A ⊂ Σ and A
strictly spans Σ.

Proof. Let Σ be the union of all geodesic segments with both endpoints in
A. Since X is a metric tree, it is easily seen that for every pair of points
x, x′ ∈ Σ the geodesic segment xx′ in X is part of a geodesic segment aa′ with
a, a′ ∈ A. In particular, Σ is a geodesic subspace of X, hence a metric tree,
and A strictly spans Σ. It remains to show that Σ is dense in X. Let x ∈ X.
Fix an arbitrary a ∈ A. Since A spans X, for every ε > 0 there is an aε ∈ A
so that |ax|+ |xaε| ≤ |aaε|+ ε. Consider the geodesic segment aaε. Let xε be
the point on aaε nearest to x. Then

2|xxε| = |ax|+ |xaε| − |aaε| ≤ ε.

Since ε > 0 was arbitrary and xε ∈ Σ, x lies in the closure of Σ.
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II.3 Gromov–Hausdorff Distance Estimates

In this section we prove the results stated in the introduction. First we re-
call the definition of the Gromov–Hausdorff distance. Let (Z, dZ) be a met-
ric space. The usual Hausdorff distance dZH(X,Y ) of two subsets X,Y of
Z is the infimum of all % > 0 such that X is contained in the (open) %-
neighborhood of Y and, vice versa, Y lies in the %-neighborhood of X. More
generally, if X and Y are two metric spaces, their Gromov–Hausdorff dis-
tance dGH(X,Y ) is defined as the infimum of all % > 0 for which there exist
a metric space (Z, dZ) and isometric copies X ′, Y ′ ⊂ Z of X and Y , respec-
tively, such that dZH(X ′, Y ′) < %. The distance is always finite if X and Y
are bounded, and for general metric spaces X1, X2, X3 the triangle inequality
dGH(X1, X2) + dGH(X2, X3) ≥ dGH(X1, X3) holds. Furthermore, dGH induces
an honest metric on the set of isometry classes of compact metric spaces.

The Gromov–Hausdorff distance of two metric spaces X,Y may alterna-
tively be characterized as follows. A correspondence R between X and Y is a
subset ofX×Y such that the projections πX : X×Y → X and πY : X×Y → Y
are surjective when restricted to R. Then

dGH(X,Y ) =
1

2
inf
R

dis(R),

where the infimum is taken over all correspondences R between X and Y
(see [9, Theorem 7.3.25]). In view of this characterization, the following two
theorems are now easy consequences of the results in the previous section.

3.1 Theorem. Suppose that X,Y are two injective metric spaces, A ⊂ X is
a set that spans X, and B ⊂ Y is a set that spans Y . Then

dGH(X,Y ) ≤ 2 dGH(A,B).

Proof. Suppose that R ⊂ A × B is a correspondence between A and B with
α := dis(R)/2 <∞. By Proposition 2.1, there is an extension R ⊂ R1 ⊂ X×Y
such that πX(R1) is an α-net in X and dis(R1) = dis(R), and there is a
further extension R1 ⊂ R2 ⊂ X × Y such that πY (R2) is an α-net in Y and
dis(R2) = dis(R1). It is then easy to see how to extend R2 to a correspondence
R̄ between X and Y so that dis(R̄) ≤ dis(R2) + 2α = 2 dis(R). Hence,

dGH(X,Y ) ≤ 1

2
dis(R̄) ≤ dis(R),

and taking the infimum over all correspondences R between A and B with
finite distortion we obtain the result.
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3.2 Theorem. Suppose that X,Y are two metric trees, A ⊂ X is a set that
spans X, and B ⊂ Y is a set that spans Y . Then

dGH(X,Y ) ≤ dGH(A,B).

Proof. Note that the completions X̄, Ȳ of X,Y satisfy dGH(X̄, Ȳ ) =
dGH(X,Y ), and A,B span X̄, Ȳ , respectively. We thus assume, without loss
of generality, that the metric trees X,Y are complete, hence injective. Let
R ⊂ A×B be a correspondence between A and B. By Lemma 2.4, A strictly
spans a tree X ′ ⊃ A that is dense in X. Hence, by Proposition 2.2, there is an
extension R ⊂ R1 ⊂ X ′ × Y such that πX′(R1) = X ′ and dis(R1) = dis(R).
We have B ⊂ B′ := πY (R1), and so B′ also spans Y . Again, B′ strictly spans
a tree Y ′ ⊃ B′ that is dense in Y , and there is an extension R1 ⊂ R2 ⊂ X×Y ′
such that πY ′(R2) = Y ′ and dis(R2) = dis(R1). Since πX(R2) ⊃ X ′ is dense
in X, and Y ′ is dense in Y , we obtain that

dGH(X,Y ) = dGH(πX(R2), Y ′) ≤ 1

2
dis(R2) =

1

2
dis(R).

As this holds for all correspondences R between A and B, this gives the
result.

Next, in order to relate these results to the discussion in the introduction,
we recall Isbell’s explicit construction of the injective hull E(X) of a metric
space X. We denote by RX the vector space of all real functions on X. As a
set, E(X) is defined as

E(X) :=
{
f ∈ RX : f(x) = supy∈X(|xy| − f(y)) for all x ∈ X

}
,

the set of the so-called extremal functions on X. For every z ∈ X, the distance
function dz, defined by dz(x) := |xz| for x ∈ X, belongs to E(X). In general,
for every f ∈ E(X) and z ∈ X, the inequalities

dz − f(z) ≤ f ≤ dz + f(z)

hold, and it follows that ‖f − dz‖∞ := sup |f − dz| = f(z). In particular,
‖f−g‖∞ is finite for every pair of functions f, g ∈ E(X), and this equips E(X)
with a metric. The map e: X → E(X) that takes x to dx is then a canonical
isometric embedding of X into E(X), as ‖dx − dy‖∞ = |xy| for all x, y ∈ X.
Isbell proved that (e,E(X)) is indeed an injective hull of X, i.e., E(X) is
an injective metric space, and (e,E(X)) is a minimal such extension of X in
that no proper subspace of E(X) containing e(X) is injective. Furthermore,
if (i, Y ) is another injective hull of X, then there exists a unique isometry
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I : E(X)→ Y with the property that I ◦ e = i. The following result explains
how injective hulls are related to spanning subsets of (injective) metric spaces,
in the sense of this paper.

3.3 Proposition. (i) For every metric space A, the image e(A) of the
canonical isometric embedding e : A→ E(A) spans E(A).

(ii) If X is an injective metric space and A ⊂ X is a set that spans X, then
X is isometric to E(A) via the map that sends x ∈ X to the restricted
distance function dx|A.

Proof. For (i), let a pair (f, g) of elements of E(A) be given, and let ε > 0.
There exists either a point b ∈ A such that ‖f − g‖∞ ≤ f(b)− g(b) + ε/2 or a
point a ∈ A such that ‖f − g‖∞ ≤ g(a)− f(a) + ε/2. Then, by the definition
of E(A), we may choose a ∈ A with f(b) ≤ |ab| − f(a) + ε/2 in the first case
and b ∈ A with g(a) ≤ |ab| − g(b) + ε/2 in the second. In either case, this
gives

‖f − g‖∞ ≤ |ab| − f(a)− g(b) + ε.

Since |ab| − f(a) ≤ f(b) = ‖f − db‖∞ and g(b) = ‖g − db‖∞, we obtain that
‖f − g‖∞ ≤ ‖f − db‖∞ − ‖g − db‖∞ + ε. As db = e(b) ∈ e(A), this shows the
claim.

For the proof of (ii), let x, y ∈ X. Since A spans X, we have first that
for every a ∈ A, dx(a) = supb∈A(|ab| − dx(b)), so dx|A ∈ E(A). Secondly,
|xy| = supa∈A(|ax| − |ay|), which implies that the inequality∥∥dx|A − dy|A∥∥∞ = sup

a∈A

∣∣|ax| − |ay|∣∣ ≤ |xy|
is in fact an equality. Hence, the map that takes x to dx|A is an isometric
embedding of X into E(A). Since X is injective, so is the image of this map.
Because no proper subspace of E(A) containing e(A) is injective, the image
agrees with E(A).

In view of Proposition 3.3, Theorem 3.1 is equivalent to saying that for
any metric spaces A and B,

dGH(E(A),E(B)) ≤ 2 dGH(A,B),

as stated in the introduction. We now show that the factor two is optimal.

16



II.3. GROMOV–HAUSDORFF DISTANCE ESTIMATES

3.4 Example. First we show that if f : R×[0, 4]→ R is an ε-roughly isometric
map, where R × [0, 4] ⊂ R2 is endowed with the l1 metric, then ε ≥ 4. For
any integer n ≥ 1, consider the subset

Zn :=
(
{0, 8, . . . , 8n} × {0}

)
∪
(
{4, 12, . . . , 8n− 4} × {4}

)
of R× [0, 4] of cardinality 2n+ 1. Note that, with respect to the l1 distance,
distinct points in Zn are at distance at least eight from each other, and the
diameter of Zn equals 8n. Let {z1, z2, . . . , z2n+1} be an enumeration of Zn so
that f(z1) ≤ f(z2) ≤ · · · ≤ f(z2n+1). We have f(zi+1)−f(zi) ≥ ‖zi+1−zi‖1−
ε ≥ 8−ε, hence taking the sum from i = 1 to 2n we obtain f(z2n+1)−f(z1) ≥
2n(8− ε). On the other hand, f(z2n+1)− f(z1) ≤ diam(Zn) + ε = 8n+ ε. It
follows that ε ≥ 8n/(2n+ 1). This holds for any n ≥ 1, thus ε ≥ 4.

Now, for any N > 0, consider the two metric spaces A = {a1, . . . , a4} and
B = {b1, . . . , b4}, where |a1a2| = |a3a4| = 4, |a1a3| = |a2a4| = N , |a1a4| =
|a2a3| = N + 4, |b1b2| = |b3b4| = 2 and |bibj | = N + 2 (i 6= j) otherwise. The
correspondence {(a1, b1), . . . , (a4, b4)} has distortion two, and since diam(A) =
diam(B) + 2 there is no correspondence between A and B with distortion
less than two. So dGH(A,B) = 1. The injective hull E(A) is isometric to
[0, N ] × [0, 4] ⊂ R2 with the l1 distance, and E(B) is a metric tree with a
central edge of length N and two edges of length one attached at each of its
endpoints (like the tree Y depicted in the introduction). Let ε0 < 4 be given.
If N is chosen big enough, depending on ε0, essentially the same argument
as above shows that there is no ε-roughly isometric map f : E(A) → E(B)
with ε < ε0. In particular, every correspondence between E(A) and E(B)
has distortion at least ε0/2. In other words, for every δ0 < 2 we find a pair
of four-point metric spaces A,B so that E(A) is two-dimensional, E(B) is a
metric tree, dGH(A,B) = 1, and dGH(E(A),E(B)) ≥ δ0.
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Chapter III

Injective Convex Polyhedra

III.1 Introduction

We call a metric space X injective if for any metric spaces A,B such that
there exists an isometric embedding i : A → B and for any 1-Lipschitz (i.e.,
distance nonincreasing) map f : A→ X, there is a 1-Lipschitz map g : B → X
satisfying g ◦ i = f (cf. [1, Section 9] for the general categorical definition).
In particular, it follows from a result of Nachbin that a real normed space X
is injective in the the category of metric spaces if and only if X is injective in
the category of normed spaces.

The purpose of the present chapter is to provide an effective characteri-
zation of injective convex polyhedra in ln∞ by proving an easy combinatorial
criterion. It is important to note that only the case of the l∞-metric is relevant
since if a convex polyhedron P ⊂ Rn with non-empty interior is injective for
some norm ‖·‖ on Rn, then considering an increasing sequence of rescalings of
P whose union is equal to Rn, it follows by Lemma 3.1 that the space (Rn, ‖·‖)
is itself injective and by [36, Theorem 3], which states that an n-dimensional
normed space X is injective if and only if X is linearly isometric to ln∞, it
follows that (Rn, ‖·‖) is isometric to ln∞.

Note at this point that linear subspaces of injective normed spaces need
not be injective. A straightforward example is the plane

V := {x ∈ l3∞ : x1 + x2 + x3 = 0} (1.1)

which is not injective since it can be easily seen that the unit ball of V is an
hexagon and thus V cannot be isometric to l2∞. Furthermore, Example 1.4
exhibits a non-injective convex polyhedron with injective supporting hyper-
planes and Example 1.5 an injective convex polyhedron with a non-injective
face.
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It was noted in [30] that a good characterization of injective polytopes is
missing. The present chapter gives a solution to this problem. We start by
giving in Section III.2 a characterization of injective affine subspaces of ln∞
and as a consequence we obtain an easy injectivity criterion for hyperplanes,
namely if ν ∈ Rn \ {0}, then the hyperplane

X := {x ∈ Rn : x · ν = 0} ⊂ ln∞ (1.2)

(where x ·y denotes the standard scalar product on Rn) is injective if and only
if

‖ν‖1 ≤ 2 ‖ν‖∞ . (1.3)

For α ∈ R and ∅ 6= A,B ⊂ Rn, we define αA,A+B,A−B ⊂ Rn in the obvious
way and we set [a, b]A :=

⋃
α∈[a,b] αA. For a convex polyhedron ∅ 6= P ⊂ Rn

and a point p ∈ P , the tangent cone TpP is given by

TpP :=
⋃
m∈N

Pp,m where Pp,m := p+m(P − p).

The effective characterization we are aiming at is obtained in two steps. First,
we prove that injectivity follows from a local injectivity property namely in-
jectivity of tangent cones. It is no restriction to assume that the interior of P
satisfies int(P ) 6= ∅ in the next theorem which is proved in Section III.3:

1.1 Theorem. Let P ⊂ ln∞ be a convex polyhedron such that int(P ) 6= ∅.
Then, the following two conditions are equivalent:

(i) P is injective.

(ii) TpP is injective for every p ∈ ∂P .

By a convex polyhedron in Rn we mean a finite intersection of closed half-
spaces. Closed half-spaces are just called half-spaces when no ambiguity arises.
A convex polytope is then a compact convex polyhedron. A cone C is a subset
of Rn such that x ∈ C implies λx ∈ C for any λ ≥ 0. Convex polyhedra which
are additionally cones are called convex polyhedral cones. If C is a convex
polyhedral cone and x ∈ Rn, the apex apex(x + C) of a translate of C is
defined as the affine space x + V where V is the biggest linear subspace of
Rn contained in C. It is easy to see that TpP − p is a convex polyhedral
cone. In the sequel, the relative interior of a subset S is denoted by relint(S).
The dimension of a convex polyhedron P ⊂ Rn is the dimension of its affine
hull. One has int(P ) 6= ∅ if and only if dim(P ) = n and in this case, F is
a facet of P if and only if F is a face of P and dim(F ) = n − 1. Let us
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denote by Faces(P ) and Facets(P ) the set of non-empty faces and the set
of facets of P respectively, for any subset S ⊂ Rn let Faces(P, S) := {F ∈
Faces(P ) : F ∩S 6= ∅} and let Faces(P, S)c be the complement of Faces(P, S)
in Faces(P ). Moreover, Facets∗(P, S) := {F ∈ Facets(P ) : relint(F ) ∩ S 6= ∅}.
Note that the closed unit ball B(0, 1) ⊂ ln∞ is nothing but the n-hypercube
[−1, 1]n endowed with the l∞-metric. The following theorem, which is proved
in Section III.6, characterizes injective convex polyhedral cones:

1.2 Theorem. A convex polyhedral cone C ( ln∞ with int(C) 6= ∅ is injective
if and only if the following hold:

(i) TpC is injective for every p ∈ ∂C \ apex(C).

(ii) There is F ∈ Facets∗([−1, 1]n, C) such that −F /∈ Facets∗([−1, 1]n, C).

It follows from Theorem 1.2 in the case where ∂C \ apex(C) = ∅ or
equivalently when C is a half-space, that (1.3) is an injectivity criterion
for the half-spaces having the hyperplane X as in (1.2) as boundary. For
p ∈ ∂C \ apex(C) 6= ∅, the dimension of apex(TpC) is strictly bigger than
that of apex(C) and making repeated use of Theorem 1.2 on tangent cones,
one thus easily obtains:

1.3 Corollary. A convex polyhedron P ( ln∞ with int(P ) 6= ∅ is injective if
and only if for every p ∈ ∂P , the convex polyhedral cone K := TpP−p satisfies
(ii) in Theorem 1.2, which means that there is a facet F ∈ Facets∗([−1, 1]n,K)
such that −F /∈ Facets∗([−1, 1]n,K).

There are several equivalent characterizations of injective metric spaces
and one of them is hyperconvexity (cf. [2]). We call a metric space X hyper-
convex if for every family {(xi, ri)}i∈I in X × R satisfying ri + rj ≥ d(xi, xj)
for all (i, j) ∈ I × I, one has

⋂
i∈I B(xi, ri) 6= ∅ (with the convention that the

intersection equals X itself if I = ∅) where B(x, r) denotes throughout the
text, a closed ball in the contextually relevant metric (whereas open balls are
denoted by U(x, r)). Furthermore, if Y ⊂ Z with Z being injective and if there
is a 1-Lipschitz retraction r : Z → Y (i.e., r ∈ Lip1(Z, Y ) and r|Y = idY ), then
Y is injective (this follows immediately from the definition of injectivity given
above). The following two examples show that the characterization we are
looking for requires more effort than one would think at first sight:

1.4 Example. Consider the half-spaces

H := {x ∈ l4∞ : x1 ≥ 0}
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and

H ′ := {x ∈ l4∞ : x1 ≤
1

3
(x2 + x3 + x4)}.

Note that it is easy to see that both H and H ′ are injective by considering
in each case the 1-Lipschitz retraction given by mapping each point in the
complement to the unique corresponding point on the boundary so that all
coordinates but the first remain unchanged and then extending by the identity.
Moreover, both ∂H and ∂H ′ are injective by (1.3). However, it is easy to see
that P := H ∩H ′ ⊂ l4∞ is not injective by considering the three points

{p, p′, p′′} := {(0, 0, 0, 0), (0, 0,−2, 2), (0,−2, 0, 2)} ⊂ ∂H ∩ ∂H ′ ⊂ P,

note that

I := B(p, 1) ∩B(p′, 1) ∩B(p′′, 1) = {(t,−1,−1, 1) : t ∈ [−1, 1]},

hence I ∩ P = ∅. Thus P is not hyperconvex and therefore not injective.

Next, we have:

1.5 Example. Consider the injective half-space H ′ defined above, let further
H ′′ := {x ∈ l4∞ : x1 ≤ 0} and

P ′ := H ′ ∩H ′′ ⊂ l4∞.

Note that the face
F := ∂H ′ ∩ ∂H ′′ ⊂ l4∞

of P ′ is not injective since

F = {x ∈ l4∞ : x1 = 0, x2 + x3 + x4 = 0}

is isometric to (1.1) which is not injective as we already noted. Let us now
however show that P ′ is injective by defining an explicit 1-Lipschitz retraction
r of l4∞ onto P ′. Let % ∈ Lip1(l4∞,R) be the map

(x1, . . . , x4) 7→ 1

3
(x2 + x3 + x4).

Now, let r : l4∞ → P ′ be given by

(x1, . . . , x4) 7→ (min{x1, 0, %(x)}, x2, x3, x4)

and note that r is the desired 1-Lipschitz retraction.
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Finally, in Sections III.7 and III.8, we introduce and use a theorem of
Shostak (cf. [39]), in order to prove:

1.6 Corollary. Consider f, g : {1, . . . ,m} → {1, . . . , n} and for i ∈
{1, . . . ,m}, ai, bi, ci ∈ R so that

P :=
⋂

i∈{1,...,m}

{
x ∈ Rn : aixf(i) + bixg(i) ≥ ci

}
verifies int(P ) 6= ∅ and P 6= Rn. Then, P ⊂ ln∞ satisfies the injectivity
criterion stated in Corollary 1.3 and is therefore injective.

III.2 Injective Linear Subspaces in ln∞

We start this section with a characterization of injective linear subspaces in
ln∞. For each i ∈ In := {1, . . . , n}, we have the linear isometry

µi : l
n
∞ → ln∞, (x1, . . . , xn) 7→ (x1, . . . , xi−1,−xi, xi+1, . . . , xn)

and the 1-Lipschitz linear map

πi : l
n
∞ → R, (x1, . . . , xn) 7→ xi.

Moreover, let us denote by {e1, . . . , en} the standard basis of Rn. Injective
convex polyhedra were also studied in [35]. Note that Theorem 2.1 and 2.2
as well as Lemma 3.1 in Section III.3 already appear in [35]. Our proof of
Theorem 2.1 is however more elementary.

2.1 Theorem. Let ∅ 6= X ⊂ ln∞ be a linear subspace and let k := dim(X).
Then, the following are equivalent:

(i) X is injective.

(ii) There is a subset J ⊂ In with |J | = k such that for any i ∈ In \ J there
exist real numbers {c(i, j)}j∈J such that

∑
j∈J |c(i, j)| ≤ 1 and such that

X =

{
x ∈ ln∞ : ∀i ∈ In \ J , xi =

∑
j∈J

c(i, j)xj

}
.

Proof. Assume first that (ii) holds. Assume for simplicity that J = {1, . . . , k}.
Let us define the map L : lk∞ → ln∞ such that for any (y1, . . . , yk) ∈ lk∞,

L(y) :=

(
y1, . . . , yk,

k∑
j=1

c(k + 1, j)yj , . . . ,
k∑
j=1

c(n, j)yj

)
.
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It is then easy to see that L is an isometric embedding with L(lk∞) = X. It
follows that X and lk∞ are isometric and thus X is injective.

Assume now that (i) holds, there consequently exists a linear isometric
embedding L : lk∞ → X ⊂ ln∞ (see the Introduction). In particular,

‖L(ej)‖∞ = 1 (2.1)

and
‖L(σej + τel)‖∞ = 1 (2.2)

for (j, l) ∈ Ik × Ik with j 6= l (where Ik := {1, . . . , k}) and σ, τ ∈ {±1}.
Now, (2.1) implies for j ∈ Ik the existence of some f(j) ∈ In such that
|(πf(j) ◦L)(ej)| = 1; replacing L by L◦µj if necessary, we can assume without
loss of generality that

(πf(j) ◦ L)(ej) = 1 (2.3)

for any j ∈ Ik. Therefore, (2.3) together with (2.2) imply that (πf(j)◦L)(el) =
0 for (j, l) ∈ Ik × Ik with j 6= l and thus f is injective. We summarize by
writing (πf(j) ◦ L)(el) = δjl. Now, we can assume for simplicity that f(j) = j
for any j ∈ Ik hence in particular J := f(Ik) = {1, . . . , k} and

(πj ◦ L)(el) = δjl. (2.4)

It follows that there are c(k + 1, j), . . . , c(n, j) ∈ R such that

L(ej) =
(
0, . . . , 0, 1, 0, . . . , 0, c(k + 1, j), . . . , c(n, j)

)
,

where the first k entries of L(ej) are zero except the j-th one. For any
(σ1, . . . , σk) ∈ {±1}k, one has by linearity∥∥∥ k∑

j=1

σjL(ej)
∥∥∥
∞

=
∥∥∥ k∑
j=1

σjej

∥∥∥
∞

= 1.

Inserting successively appropriate values for (σ1, . . . , σk) in the above equality,
one obtains for any i ∈ In \ J = {k + 1, . . . , n},

k∑
j=1

|c(i, j)| ≤ 1.

Since X = L(lk∞), there are for any x ∈ X real numbers c1, . . . , ck ∈ R such
that x =

∑k
l=1 clL(el). For any j ∈ Ik, it follows from (2.4) that

xj = πj(x) =

k∑
l=1

cl(πj ◦ L)(el) =

k∑
l=1

clδjl = cj .
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Hence finally

x =
k∑
j=1

xjL(ej) =
(
x1, . . . , xk,

k∑
j=1

c(k + 1, j)xj , . . . ,
k∑
j=1

c(n, j)xj

)
.

This proves that (ii) holds and concludes the proof.

The next theorem is an immediate consequence of Theorem 2.1:

2.2 Theorem. Let ν ∈ Rn \ {0}. The hyperplane X = {x ∈ Rn : x · ν = 0} ⊂
ln∞ is injective if and only if ‖ν‖1 ≤ 2 ‖ν‖∞.

Proof. Assume first that X is injective. By Theorem 2.1, there is some i ∈ I
such that

X =

{
x ∈ ln∞ : −xi +

∑
j∈I\{i}

c(i, j)xj = 0

}
.

with
∑

j∈I\{i} |c(i, j)| ≤ 1. Define now ν so that νj := c(i, j) if j 6= i and
νi := −1. Note that ν is a normal vector of X and satisfies ‖ν‖1 ≤ 2 ‖ν‖∞.

For the other implication, let ν a normal vector of X satisfying ‖ν‖1 ≤
2 ‖ν‖∞ and assume without loss of generality that ‖ν‖∞ = 1; hence, ‖ν‖1 ≤ 2.
There is i ∈ I such that |νi| = 1 and assume additionally without loss of
generality that νi = −1. Thus

∑
j∈I\{i} |νj | ≤ 1 and x·ν = −xi+

∑
j∈I\{i} νjxj ,

hence we can apply Theorem 2.1 to

X =

{
x ∈ ln∞ : −xi +

∑
j∈I\{i}

νjxj = 0

}
,

to obtain that X is injective. This concludes the proof of the theorem.

III.3 Tangent cones of Injective Convex Polyhedra
in ln∞

We start this section with a lemma and then go on to prove Theorem 1.1.
Throughout the text, we call a sequence of sets (Xm)m∈N increasing if and
only if Xm ⊂ Xm+1 for m ∈ N whereas it is called decreasing if the reverse
inclusions hold.

3.1 Lemma. Let ∅ 6= S ⊂ ln∞ be a closed subset. Then, the following are
equivalent:
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(i) S is injective.

(ii) There is x ∈ S such that S ∩B(x, r) is injective for any r ∈ (0,∞).

(iii) There is an increasing sequence (Xm)m∈N of injective subsets of S such
that S =

⋃
mXm.

Proof. We only prove that (iii) implies (i) since the other implications follow
immediately from the definitions. In order to do so, we prove that (iii) implies
that S is hyperconvex. Consider a family {(xα, rα)}α∈A in S × R such that
rα + rβ ≥ ‖xα − xβ‖∞ for any (α, β) ⊂ A×A. Pick γ ∈ A arbitrarily and let
m0 ∈ N be such that xγ ∈ Xm0 . Consider a sequence (Am, ym)m∈N such that

Am :=
{
α ∈ A : xα ∈ Xm+m0

}
and

ym ∈ S ∩
⋂

α∈Am

B(xα, rα),

noting that Xm+m0 ∩
⋂
α∈Am B(xα, rα) 6= ∅ hence S ∩

⋂
α∈Am B(xα, rα) 6=

∅. Since S is closed and (ym) ⊂ S ∩ B(xγ , rγ), it follows that there is a
convergent subsequence (yml) such that yml → y ∈ S ∩ B(xγ , rγ). Thus,
y ∈ S ∩

⋂
α∈AB(xα, rα). This proves that S is hyperconvex and finishes the

proof of the lemma.

We also make use in the proof of Theorem 1.1 of the following (cf. [42]):

3.2 Theorem. S ⊂ Rn is a convex polyhedron if and only if there is a convex
polytope Q and a convex polyhedral cone C such that

S = Q+ C.

For an n-dimensional polyhedron P and for k ∈ {0, 1, . . . , n − 1}, let
Facesk(P ) denote the set of k-dimensional faces of P and let ∂kP be
the union of all elements of Facesk(P ). We use the notation d(A,B) :=
inf(a,b)∈A×B ‖a− b‖∞ for two subsets ∅ 6= A,B ⊂ ln∞. The open δ-
neighborhood

⋃
a∈A U(a, δ) of A is denoted by N(A, δ).

Proof of Theorem 1.1. By Lemma 3.1 and by definition of TpP it immediately
follows that (i) implies (ii). Assume now that (ii) holds. Let us consider an
enumeration {Fj}j∈{1,...,N} of Faces(P ) \ {P}. For j ∈ {1, . . . , N} we consider
an arbitrary point pj ∈ relint(Fj) and a corresponding 1-Lipschitz retraction
%j : ln∞ → TpjP . For p ∈ ∂P , let

εp := sup{ε ∈ (0,∞] : U(p, ε) ∩ TpP = U(p, ε) ∩ P}.
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Note that if εp = ∞ for some p, then P = TpP and thus P is injective.
Otherwise, we proceed inductively on the dimension of faces of P to show
that there is a δ > 0 such that

P ∪N(∂P, δ) ⊂ P ∪
⋃
p∈∂P

U(p, εp).

Suppose F ∈ Facesk(P ) \ {P}, for k = 0 set c(F ) := F and for k ≥ 1, set

c(F ) := F \N(∂0P ∪ ∂1P ∪ · · · ∪ ∂k−1P, δ
(k)

2 ),

ε(k+1) := min
F∈Facesk(P )

[
1

2
min

Faces(P )3F ′+F
d(c(F ), F ′)

]
.

By the Separation Theorem for Polyhedra, cf. [41, Theorem 10.4], one has
d(P ′, P ′′) > 0 for any two disjoint convex polyhedra ∅ 6= P ′, P ′′ ⊂ ln∞ and thus
ε(k+1) > 0. Furthermore, let δ(0) := ε(1) and

δ(k+1) := min
{
ε(k+1), δ

(k)

2

}
.

Moreover, we set A0 := ∂0P and for k ≥ 1:

Ak :=
⋃

F∈Facesk(P )

c(F ) = ∂kP \N(∂0P ∪ ∂1P ∪ · · · ∪ ∂k−1P, δ
(k)

2 ).

It follows by construction that for any p ∈ Ak and any F ∈ Faces(P ), one
has U(p, δ(k+1)) ∩ F 6= ∅ if and only if p ∈ F . Hence U(p, δ(k+1)) ∩ TpP =
U(p, δ(k+1)) ∩ P for any p ∈ Ak. It follows by induction that⋃

p∈∂P
U(p, δ(n)) = N(∂n−1P, δ(n)) ⊂

n−1⋃
k=0

N(Ak, δ(k+1)).

This shows that δ := δ(n) > 0 satisfies P ∪N(∂P, δ) ⊂ P ∪
⋃
p∈∂P U(p, εp). It

is now easy to see that we obtain a 1-Lipschitz retraction % : N(P, δ)→ P by
setting % := %̃|N(P,δ) where %̃ := %1◦· · ·◦%N . By Theorem 3.2, there is a convex
polytope Q and a polyhedral cone C such that P = Q + C. We can assume
without loss of generality that 0 ∈ int(Q). We can set κ := 1 + δ

2 diam(Q) and

since κP = κQ + C it follows that κP ⊂ N(P, δ). By iteration, we obtain
a sequence {(%m, Pm)}m∈N of rescalings Pm := κmP of P and corresponding
1-Lipschitz retractions %m : Pm → Pm−1 by setting %m(κx) := κ%m−1(x) for
m ≥ 2 and %1 := %|κP . Finally, we can define the 1-Lipschitz retraction
r : ln∞ → P as an inverse limit map for the system {(%m, Pm)}m∈N, that is
r(x) := (%1 ◦ · · · ◦ %m)(x) where m is the smallest natural such that x ∈ Pm.
It follows that P is injective.
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Let us consider a simple example to show that it is necessary in the above
proof to argue locally before extending to increasing rescalings.

3.3 Example. Consider Q := [−2, 0] × [−2, 0] = B((−1,−1), 1) ⊂ l2∞. We
enumerate the tangent cones of Q as follows; for k ∈ {1, 2, 3, 4}:

C2k−1 := TpkQ where (p1, . . . , p4) := ((−2,−2), (−2, 0), (0, 0), (0,−2)),

C2k := TqkQ where (q1, . . . , q4) = ((−2,−1), (−1, 0), (0,−1), (−1,−2)).

Consider corresponding 1-Lipschitz retractions such that

%2(x1, x2) := (−x1 − 4, x2) if x1 < −2 and %6(x1, x2) := (−x1, x2) if x1 > 0,

%8(x1, x2) := (x1,−x2 − 4) if x2 < −2 and %4(x1, x2) := (x1,−x2) if x2 > 0

and extend %2, %4, %6 and %8 by the identity. Finally, we set for odd indices:
%1 := %2 ◦ %8 and %2k−1 := %2k ◦ %2k−2 for k 6= 1. It is then easy to see that
(%8 ◦ · · · ◦ %1)((−10,−10)) = (−6, 2) /∈ Q.

3.4 Remark. Note that it is enough to assume that the minimal (for the
inclusion) tangent cones of P ⊂ ln∞ are injective. Hence, letting P be a convex
polyhedron with non-empty interior, the following are equivalent:

(i) P is injective.

(ii) All minimal tangent cones of P are injective.

III.4 Systems of Inequalities

The proposition that we prove in this section is used in the proof of Lemma 5.1
in Section III.5. For each i ∈ In := {1, . . . , n}, let π̂i ∈ Lip1(ln∞, l

n−1
∞ ) denote

the map
(x1, . . . , xn) 7→ (x1, . . . , x̂i, . . . , xn)

and recall that πi ∈ Lip1(ln∞,R) denotes the map (x1, . . . , xn) 7→ xi. The fol-
lowing fact was already observed by D. Descombes (personal communication):

4.1 Proposition. Let I ⊂ In, R := {ri : i ∈ I} ∪ {ri : i ∈ I} ⊂ Lip1(ln−1
∞ ,R)

and

Q :=
{
x ∈ ln∞ : for all i ∈ I one has (ri ◦ π̂i)(x) ≤ xi ≤ (ri ◦ π̂i)(x)

}
.

Assume that:
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(i) Q 6= ∅;

(ii) for any i ∈ I, ri ≤ ri.

It follows that Q is injective.

Proof. We first show the statement in the case R ⊂ Lipλ(ln−1
∞ ,R) for some

λ ∈ [0, 1). For i ∈ I, let us define %i ∈ Lip1(ln∞, l
n
∞) by setting

%i(x) :=
(
x1, . . . , xi−1,min

{
(ri ◦ π̂i)(x),max{xi, (ri ◦ π̂i)(x)}

}
, xi+1, . . . , xn

)
for any x ∈ ln∞. Consider an enumeration I = {i1, . . . , iN}. Moreover, set
G0 := idln∞ as well as Gj := %ij ◦ · · · ◦ %i1 and

T := GN = %iN ◦ · · · ◦ %i1 .

Fix now x ∈ ln∞. We show that (Tm(x))m∈N converges to a fixed point of T .
Let us define the maps {fij}ij∈I ⊂ Lipλ(ln∞,R) by

fij : y 7→ min
{

(rij ◦ π̂ij )(y),max
{
αij , (rij ◦ π̂ij )(y)

}}
,

where αij := (πij ◦Gj−1 ◦ Tm)(x) = (πij ◦Gj ◦ Tm−1)(x). We further set

βij :=
∣∣∣πij((Gj ◦ Tm)(x)− Tm(x)

)∣∣∣
for any ij ∈ I and observe that

βij =
∣∣∣πij((Gj ◦ Tm)(x)− (Gj ◦ Tm−1)(x)

)∣∣∣
=
∣∣∣πij((Gj ◦ Tm)(x)− (%ij ◦Gj ◦ Tm−1)(x)

)∣∣∣
=
∣∣(fij ◦Gj−1 ◦ Tm)(x)− (fij ◦Gj ◦ Tm−1)(x)

∣∣
≤ λ

∥∥(Gj−1 ◦ Tm)(x)− (Gj ◦ Tm−1)(x)
∥∥
∞

≤ λ
∥∥(Gj−1 ◦ Tm)(x)− (Gj−1 ◦ Tm−1)(x)

∥∥
∞

≤ λ
∥∥Tm(x)− Tm−1(x)

∥∥
∞ .

Thus ∥∥Tm+1(x)− Tm(x)
∥∥
∞ ≤ max

ij∈I
βij ≤ λ

∥∥Tm(x)− Tm−1(x)
∥∥
∞ .

It easily follows that (Tm(x))m∈N is a Cauchy sequence and thus converging
to a fixed point x∗ of T . This implies in particular that x∗ ∈ Q.
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We now prove the statement in case only R ⊂ Lip1(ln−1
∞ ,R) is assumed.

Moreover, assume without loss of generality that 0 ∈ Q. By Lemma 3.1, it is
enough to show that for any R > 0, the set Q∩B(0, R) ⊂ ln∞ is injective. For
each i ∈ I, we set

(si ◦ π̂i)(x) := min{max{(ri ◦ π̂i)(x),−R}, R},
(si ◦ π̂i)(x) := min{max{(ri ◦ π̂i)(x),−R}, R}.

It is easy to see that ri ≤ ri implies −R ≤ si ≤ si ≤ R. Hence, if one sets

P :=
{
x ∈ B(0, R) : for all i ∈ I, one has (si ◦ π̂i)(x) ≤ xi ≤ (si ◦ π̂i)(x)

}
,

it is easy to see that since the functions si and si are 1-Lipschitz and since we
assumed that 0 ∈ Q, one has P = Q ∩ B(0, R). We can thus for k ∈ N and
i ∈ I, set λk := 1− 1

k , as well as

(ski ◦ π̂i)(x) := λk
[
(si ◦ π̂i)(x) +R

]
−R,

(ski ◦ π̂i)(x) := λk
[
(si ◦ π̂i)(x)−R

]
+R.

Note that −R ≤ ski ≤ si ≤ si ≤ ski ≤ R. For any k ∈ N, we now set

Qk :=
{
x ∈ B(0, R) : for all i ∈ I, one has (ski ◦ π̂i)(x) ≤ xi ≤ (ski ◦ π̂i)(x)

}
.

The functions in Rk := {ski : i ∈ I} ∪ {ski : i ∈ I} are all λk-Lipschitz.
Hence, we can apply the above argument and define the 1-Lipschitz retraction
rk : B(0, R) → Qk to be the pointwise limit of the sequence (Tm,k)m∈N. It
follows that Qk is injective. Finally, since the sequence (Qk)k∈N is decreasing
for the inclusion and Q ∩ B(0, R) =

⋂
k∈NQk, it follows that Q ∩ B(0, R) is

injective (cf. for instance [21, Theorem 5.1]).

We later need a statement which is slightly more general than Propo-
sition 4.1 and whose proof is a direct analogue of the above proof. Let
I1, I2, I3 ⊂ In with Ii ∩ Ij = ∅ if i 6= j and

R1 := {ri : i ∈ I1} ∪ {ri : i ∈ I1}, R2 := {ri : i ∈ I2}, R3 := {ri : i ∈ I3}

such that R1,R2,R3 ⊂ Lip1(ln−1
∞ ,R). Set moreover

Q1 :=
{
x ∈ Rn : for all i ∈ I1 one has (ri ◦ π̂i)(x) ≤ xi ≤ (ri ◦ π̂i)(x)

}
,

Q2 :=
{
x ∈ Rn : for all i ∈ I2 one has (ri ◦ π̂i)(x) ≤ xi

}
,

Q3 :=
{
x ∈ Rn : for all i ∈ I3 one has xi ≤ (ri ◦ π̂i)(x)

}
,

so that Q1, Q2, Q3 ⊂ ln∞. Assume finally that Q := Q1∩Q2∩Q3 6= ∅ and that
for any i ∈ I1, ri ≤ ri. It follows that Q is injective.
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III.5 The Cone KC

In this section, we prove Lemmas 5.1 and 5.3. Both are used in the proof of
Theorem 1.2. For j ∈ In = {1, . . . , n}, let us define the cone

Cj := {x ∈ Rn : xj = ‖x‖∞},

note that
int(Cj) = {x ∈ Rn : xj > max

i∈In\{j}
|xi|}

and set
C := {−Cj : j ∈ In} ∪ {Cj : j ∈ In}.

Let ∅ 6= C ⊂ Rn be a convex polyhedral cone; in particular, 0 ∈ apex(C) and
C = C + C = λC for λ > 0 . Define

SC := {C ′ ∈ C : int(C ′) ∩ C = ∅}.

Finally, set

K̄C := {p ∈ Rn : ∃ a ∈ apex(C) such that {C ′ ∈ C : p ∈ a+ C ′} ⊂ SC}

= apex(C) +

Rn \
⋃

C′∈C\SC

C ′


and

KC := Rn \ K̄C , (5.1)

noting in particular that KC is a cone, C ⊂ KC and apex(C) + KC = KC .
Although we use the above expression in the proof of Lemma 5.1, note that
KC also admits the expression

KC :=
⋂

a∈apex(C)

⋃
C′∈C\SC

(a+ C ′). (5.2)

For a ν ∈ Rn \ {0}, let us denote by

Hν := {x ∈ Rn : x · ν ≥ 0}

the corresponding inner half-space at the origin with normal vector ν. More-
over, we again denote the standard basis of Rn by {e1, . . . , en}. Note that in
this notation and for any j ∈ In,

Cj =
⋂

(i,σ)∈(In\{j})×{±1}

Hej+σei and − Cj =
⋂

(i,σ)∈(In\{j})×{±1}

H−ej+σei .
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We now prove that the cone KC ⊂ ln∞ is injective. The purpose of introducing
KC is that we are able to construct in the proof of Theorem 1.2 a 1-Lipschitz
retraction of KC onto C. As a remark, it follows from Lemma 5.3 that KC

consists of the union of C and points p ∈ ln∞ that are contained in a finite
intersection

⋂
iB(xi, ri) of balls centered at points xi ∈ C such that

apex(C) ∩
⋂
i

B(xi, ri) = ∅.

5.1 Lemma. Let C ⊂ Rn be a convex polyhedral cone such that int(C) 6= ∅,
then KC ⊂ ln∞ is injective.

Proof. We want to use Proposition 4.1. We set

I1 := {j ∈ In : ∃σ ∈ {±1} such that σCj ∈ SC and − σCj /∈ SC},
I2 := {j ∈ In : {Cj ,−Cj} ⊂ SC}.

Whenever j ∈ I1 and τCj ∈ SC , set

I1
(j,τ) := {(i, σ) ∈ (In \ {j})× {±1} : σCi ∈ SC}

and whenever j ∈ I2, let

I2
(j,τ) := I2

j := {(i, σ) ∈ (In \ {j})× {±1} : {Ci,−Ci} ⊂ SC}.

For α ∈ {1, 2} and j ∈ Iα, we define the cones

C̃τj :=
⋂

(i,σ)∈[(In\{j})×{±1}]\Iα
(j,τ)

Hτej−σei

with C̃τj := Hτej if [(In \ {j})× {±1}] \ Iα(j,τ) = ∅ and define for a ∈ apex(C)
and x ∈ ln∞ corresponding 1-Lipschitz functions by

rj,τa (x) := aj + τ max
(i,σ)∈[(In\{j})×{±1}]\Iα

(j,τ)

σ(xi − ai).

If τ = 1, then y ∈ a + C̃1
j if and only if yj ≥ rj,1a (y). We set (rj ◦ π̂j)(x) :=

infa∈apex(C) r
j,1
a (x) and

N(j,1) :=
⋂

a∈apex(C)

[
Rn \ int(a+ C̃1

j )
]

=
{
x ∈ Rn : xj ≤ (rj ◦ π̂j)(x)

}
.
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If τ = −1, then y ∈ a+ C̃−1
j if and only if yj ≤ rj,−1

a (y). We set (rj ◦ π̂j)(x) :=

supa∈apex(C) r
j,−1
a (x) and

N(j,−1) :=
⋂

a∈apex(C)

[
Rn \ int(a+ C̃−1

j )
]

=
{
x ∈ Rn : xj ≥ (rj ◦ π̂j)(x)

}
.

If j ∈ I1 and τCj ∈ SC , we set N(j,−τ) := Rn. Now, if j ∈ I2 we need to show
that

rj ◦ π̂j ≤ rj ◦ π̂j , (5.3)

before we can apply the statement after Proposition 4.1. Let us set

Aj := Cj ∪
⋃

(l,η)∈I2
(j,1)

ηCl.

It is easy to see that apex(C) ∩ int(Aj) = ∅ since int(C) 6= 0. Furthermore,

C̃1
j ⊂ Aj since for x ∈ C̃1

j , if (i, σ) ∈ [(In \ {j})×{±1}] \ I2
(j,1), then xj ≥ σxi.

Hence, either xj = ‖x‖∞ or there is (l, η) ∈ I2
(j,1) such that ηxl = ‖x‖∞. It

follows in particular that apex(C) ∩ int(C̃1
j ) = ∅. One then easily deduces

(noting that C̃−1
j = −C̃1

j ) that[
apex(C) + int(C̃1

j )
]
∩
[
apex(C) + C̃−1

j

]
= ∅

and this implies that rj ◦ π̂j ≤ rj ◦ π̂j . Indeed, if rj,1a (y) < rj,−1
a′ (y) for some

y ∈ Rn, it follows that [a + int(C̃1
j )] ∩ [a′ + int(C̃−1

j )] 6= ∅. Now, on the one
hand, it is easy to see that setting

NC :=
⋂

(i,σ)∈(I1∪I2)×{±1}

N(i,σ) (5.4)

it follows that KC = NC . Indeed, note that Rn \KC ⊂ Rn \NC since if a face
F of [−1, 1]n which satisfies

F ∈ F :=
{
F ′ ∈ Faces([−1, 1]n) \ {[−1, 1]n} :

∀(i, σ) ∈ In × {±1}, if F ′ ⊂ σCi then σCi ∈ SC
}
,

then relint(F )∩NC = ∅. Indeed, in the asymmetric case where F is such that
−F /∈ F , there is then j ∈ I1 such that F ⊂ σCj ⊂ SC for some σ ∈ {±1} and
thus relint(F ) is in the complement of N(j,σ). In the symmetric case where
both F and −F are in F , there is then j ∈ I2 such that F ⊂ σCj , −F ⊂ −σCj
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and {Cj ,−Cj} ⊂ SC for some σ ∈ {±1}, thus relint(F ) is in the complement
of N(j,σ). Hence in both cases and for any λ > 0, one has:

relint
(
λF + apex(C)

)
∩NC = ∅

and thus Rn \ KC ⊂ Rn \ NC . Now, note that if x ∈ Rn \ NC , then x ∈
a+ int(C̃τj ) for some j ∈ Iα verifying τCj ∈ SC for some τ ∈ {±1}. Hence

x ∈ a+ int

τCj ∪ ⋃
(l,η)∈Iα

(j,τ)

ηCl


and thus x /∈ KC by (5.1). Finally, by (5.3) we can, using (5.4), apply the
statement following the proof of Proposition 4.1 to NC ⊂ ln∞ in order to obtain
that NC is injective and thus so is KC ⊂ ln∞, which finishes the proof.

To illustrate Lemma 5.1, consider the case where C = Hen . It follows that
apex(C) = ∂Hen and SC = {−Cn}. Thus KC = C = Hen is injective by
Lemma 5.1, which we already know from the statement following the proof
of Proposition 4.1. In the case where C = Cn, one has apex(C) = {0} and
SC = C \ {Cn}. Hence KC = C = Cn is injective as we already know. Finally,
if

C = Cεn :=

{
x ∈ Rn : xn ≥ max

i∈In\{n}
(1 + ε)|xi|

}
⊂ int(Cn) ∪ {0}

for some ε > 0, then we again have apex(C) = {0}, SC = C \ {Cn} and
KC = Cn. We moreover denote by

aff(X) :=

{
l∑

i=1

αixi : {α1, . . . , αl} ⊂ R, {x1, . . . , xl} ⊂ X,
l∑

i=1

αi = 1

}
⊂ Rn

the affine hull of a subset ∅ 6= X ⊂ Rn. We now define a class of polytopes
that can be obtained as a finite intersection of balls in ln∞.

5.2 Definition. Set I0 := [−1, 1]n and for 1 ≤ k ≤ n, let

Ik :=

{
[−1, 1]n ∩

k⋂
j=1

(
TpjFj − pj

)
⊂ Rn :

for all j ∈ {1, . . . , k}, Fj ∈ Facets([−1, 1]n) and pj ∈ Fj

}
.
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The next lemma enables us to find for any p ∈ KC \ C a face F ∈
Faces(P, apex(C))c of a polytope P ∈ Ik such that for some γ̄ ∈ (0,∞) and
ā ∈ apex(C), Fp := γ̄F + ā contains p. The interesting feature of Fp is that
it is stable under any 1-Lipschitz retraction of ln∞ onto a set containing C. It
is key that the set Ik is finite for every k and that Faces(P ) is finite for any
P ∈ Ik.

5.3 Lemma. Let C ⊂ ln∞ be a convex polyhedral cone such that int(C) 6= ∅
and 0 ≤ k := dim(apex(C)) < n. Define ∆: apex(C)× (0,∞)→ R by

∆(a, γ) := min
P∈Ik

min
F∈Faces(P,apex(C))c

d(γF + a, apex(C))

with minF∈Faces(P,apex(C))c d(γF+a, apex(C)) :=∞ if Faces(P, apex(C))c = ∅.
Then, for each p ∈ KC so that d(p, apex(C)) = η > 0, there are (ā, γ̄) ∈
apex(C) × [η,∞), P ∈ Ik and F ∈ Faces(P, apex(C))c such that for Fp :=
γ̄F + a, one has:

(i) p ∈ Fp as well as

(ii) d(Fp, apex(C)) is positive, ∆(0, 1) 6= ∞ and ∆(0, 1) is positive as well.
In addition:

d(Fp, apex(C)) ≥ ∆(a, γ̄) = γ̄∆(0, 1) ≥ η∆(0, 1).

(iii) Moreover, for any set C ⊂ X ⊂ ln∞ and any retraction r ∈ Lip1(ln∞, X)
onto X, one has r(Fp) ⊂ Fp.

In the proof of Lemma 5.3, we consider for given points p and q in ln∞, the
set ⋃

m∈N∩[n0,∞)

B(mq, ‖mq − p‖∞) ⊂ ln∞.

It is not difficult to see that there is a threshold n0 ∈ N as well as
q̄ ∈ Rq such that ‖mq − p‖∞ = ‖mq − q̄‖∞ for any m ≥ n0 and such
that the sequence of balls (B(mq, ‖mq − p‖∞))m∈N∩[n0,∞) is increasing. Alto-
gether, this implies that the above union can be written as the tangent cone
Tq̄B(n0q, ‖n0q − p‖∞). Before proceeding to the formal proof of Lemma 5.3,
we give a brief outline of the main ideas. For a fixed point p ∈ KC \ C, our
strategy to prove Lemma 5.3 is to iterate the above observation as many times
as the dimension k of apex(C). Going from step j to step j+ 1, we consider a
particular increasing sequence of balls with centers on a line in apex(C) and
whose union is the tangent cone Tz̄B(z,R1) as described above.
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Rq

p

q̄
m1q

m2q

m3q

B(m1q, ‖m1q − p‖∞)

B(m2q, ‖m2q − p‖∞)

B(m3q, ‖m3q − p‖∞)

Tq̄B(n0q, ‖n0q − p‖∞)

Figure III.1: Illustration of the definition of Tq̄B(n0q, ‖n0q − p‖∞) in the case
of l2∞. Each of m1, m2 and m3 is bigger or equal than the threshold n0 and
hence, each of the three corresponding l∞-balls have tangent cone at q̄ equal
to Tq̄B(n0q, ‖n0q − p‖∞), which contains p in its boundary.
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Following an easy criterion described in the proof, we consider a corre-
sponding sequence of balls centered on a ray in C in the interior of a cone
σiCji ∈ C and once more, it follows as above, that their union can be written
as a tangent cone to a ball, namely in this case p + Hσieji

. These two tan-
gent cones are defined in such a way that their intersection Gj+1 (which is
then by definition an increasing union of intersection of balls centered in C)
is (n− 1)-dimensional. Hence,

⋂k
l=0Gl is of a similar form and we show that

apex(C) ∩
k⋂
l=0

Gl = {ā}.

Finally, we consider the polytope P := B(ā, γ̄)∩
⋂k
l=0Gl which is a trans-

lated rescaling of a polytope in Ik (cf. Definition 5.2) and we show that P has
a face p ∈ Fp which is disjoint from apex(C) and which can be written as a
finite intersection of balls centered in C. In particular, Fp is stable under any
1-Lipschitz retraction of ln∞ onto a subset containing C. Finally, note that if
C is injective (hence hyperconvex), then in particular Fp ∩ C 6= ∅.

Proof of Lemma 5.3. Fix p ∈ KC ⊂ ln∞ such that η := d(p, apex(C)) > 0. We
set A0 := apex(C), G0 := ln∞, D0 := ln∞. We continue inductively and define
for 1 ≤ j + 1 ≤ k the following

Aj+1 := apex(C) ∩
j+1⋂
l=0

apex(Gl) and Dj+1 :=

j+1⋂
l=0

aff(Gl)

as well as the sets G1, . . . , Gk along the following procedure: for each 0 ≤ j ≤
k− 1, choose arbitrarily a ∈ Aj and set Yj := B(a, 1)∩Dj . Next, pick q ∈ Aj
such that the following hold:

1) If there is a facet F of Yj such that Aj ∩ relint(F ) 6= ∅, then q ∈ Aj ∩
relint(F ).

2) If for any facet F ′ of Yj , one has Aj ∩ relint(F ′) = ∅, then there is a face
F ′′ of Yj with dim(F ′′) ≤ dim(Yj)− 2 such that Aj ⊂ aff(F ′′ ∪ {a}) and
then q ∈ Aj ∩ relint(F ′′).

It is not difficult to see that exactly one of these two cases occur. Let us now set
qm := a+m(q−a) for m ∈ N. There exists m1 > 0 such that one can find I :=
{(j1, σ1), . . . , (jN , σN )} ⊂ In×{±1} so that ‖p− qm‖∞ = σi(pji−qmji ) for m ≥
m1 if and only if (ji, σi) ∈ I. Hence p ∈ qm + [

⋂
(ji,σi)∈I σiCji \

⋃
(l,τ)/∈I τCl].

Since p ∈ KC and qm ∈ apex(C), it follows that there is some (ji, σi) ∈ I such
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that w ∈ C∩ int(σiCji) 6= ∅. We then set wm := a+mw ∈ C∩ [a+int(σiCji)].
As we noted before the proof, one can find z, z̄ ∈ a + R(q − a), as well as
R1 > 0 and m2 ∈ N ∩ [m1,∞) such that:

Tz̄B(z,R1) =
⋃

m≥m2

B(qm, ‖qm − p‖∞)

and v, v̄ ∈ a+ Rw as well as R2 > 0 such that

p+Hσieji
= Tv̄B(v,R2) =

⋃
m≥m2

B(wm, ‖wm − p‖∞).

We then set
Gj+1 := Tz̄B(z,R1) ∩ (p+Hσieji

)

which is a face of Tz̄B(z,R1) and thus in particular a cone with

apex(Gj+1) = apex(Tz̄B(z,R1)).

By construction, we can define the re-indexing 1 ≤ f(j + 1) := ji ≤ n such
that

aff(Gj+1) = p+ ∂Hef(j+1)
.

There is I(j) := {f(1), . . . , f(j)} ⊂ In such that for any x, y ∈ Dj and for
any f(l) ∈ I(j), xf(l) = yf(l). Therefore, since for m ≥ m2 both p and qm

are in Dj and p ∈ qm + σiCji it follows in particular that ji /∈ I(j). Hence
qm /∈ aff(Gj+1) = p + ∂Heji

and therefore ∅ 6= aff(Gj+1) ∩ Aj 6= Aj . Now, it
is easy to see that for 1 ≤ j + 1 ≤ k, one has:

Gj+1 ∩Aj = apex(Gj+1) ∩Aj = aff(Gj+1) ∩Aj ,

dim(Aj+1) = dim(Aj) − 1 and Ak = {ā} ⊂ apex(C). We finally set γ̄ :=
‖ā− p‖∞ ≥ η and

P := B(ā, γ̄) ∩
k⋂
l=0

Gl.

Similarly to what we have argued before, since p ∈ KC there is b ∈ C ∩ int(ā+
τCn0) where n0 /∈ I(k) such that setting β := ‖b− p‖∞ and

Q := B(ā, γ̄) ∩Dk,

one has that F̄ := B(b, β) ∩ Q is a facet of Q in Dk. Setting finally Fp :=
F̄ ∩P = B(b, β)∩P , it follows that Fp has the desired properties, in particular
it is a face of P (Remark that Fp = F̄ ∩ P = (aff(F̄ ) ∩ Q) ∩ P = aff(F̄ ) ∩ P
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and there is a half-space H of Dk such that rel∂H = aff(F̄ ) and P ⊂ Q ⊂ H.
Hence Fp is a face of P cf. [42, Chapter 2]) and note that P is a translated
rescaling (with parameters ā and γ̄) of a polytope in Ik. This proves (i).

Moreover, d(Fp, apex(C)) is positive since

Fp ∩ apex(C) = Fp ∩Dk ∩ apex(C) = Fp ∩ {ā} = ∅.

The rest of (ii) is easily seen to hold. Indeed, ∆(0, 1) is positive since Ik is
a finite set and thus up to rescaling and translation along points of apex(C),
there are only finitely many different intersections of a hyperplane of the form
p + Hσieji

with a tangent cone to a ball like Tz̄B(z,R1) and thus there are
only finitely many different outcomes for the sets G1, . . . , Gk depending only
on the dimension of ln∞ and independently of the particular C.

Since P is bounded and looking at the definition of the sets G1, . . . , Gk;
it is clear that the set P can be expressed as an intersection of closed balls
centered in C that are pairwise intersecting and note that such balls are stable
under r as given in (iii). This finally concludes the proof of the Lemma.

To illustrate Lemma 5.3, consider again the case where

C = Cεn := {x ∈ Rn : xn ≥ max
i∈In\{n}

(1 + ε)|xi|} ⊂ int(Cn) ∪ {0}

for some ε > 0 and consequently apex(C) = {0}, SC = C\{Cn} and KC = Cn.
For any p = (p1, . . . , pn) ∈ Cn \ Cεn, one has

Fp = B(0, ‖p‖∞) ∩ (p+Hen) = {x ∈ ln∞ : ‖x‖∞ = ‖p‖∞ and xn = pn}.

Now, in the case C = Cεn + Ren−1, one has apex(C) = Ren−1, KC = Cn +
Ren−1. For any p = (p1, . . . , pn) ∈ KC\C, one has with p̄ := (0, . . . , 0, pn−1, 0):

Fp = ∂(p+Hen−1) ∩B(p̄, pn) ∩ (p+Hen)

= {x ∈ ln∞ : ‖x− p̄‖∞ = pn, xn−1 = pn−1 and xn = pn}.

III.6 Injective Convex Polyhedral Cones

In this section, we start by proving that (ii) in Theorem 1.2 is necessary for
injectivity. We then go on with the proof of Theorem 1.2 with the help of
Lemmas 5.1 and 5.3 from Section III.5. In the next lemma, we also make use
of the observation before the proof of Lemma 5.3 (see also Fig. III.1).

6.1 Lemma. Let C ⊂ ln∞ be an injective convex polyhedral cone with
non-empty interior such that for any F ∈ Facets∗([−1, 1]n, C), −F ∈
Facets∗([−1, 1]n, C) as well. Then C = Rn.
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Proof. By assumption there is a subset I ⊂ In = {1, . . . , n} such that

C ∩ int(σCj) 6= ∅ if and only if (j, σ) ∈ I × {±1}. (6.1)

Let us assume for simplicity that I = {1, . . . , k} with I := ∅ if k = 0. Note that
by (6.1), for any i ∈ I and any x ∈ Rn there is (ui, vi) ∈ [int(C) ∩ int(Ci)] ×
[int(C) ∩ int(−Ci)] such that mui + x ∈ int(C) ∩ int(Ci) and mvi + x ∈
int(C) ∩ int(−Ci) for any m ∈ N as well as:

x+ ∂Hei =
⋃
m∈N

B(mui + x,
∥∥mui∥∥∞) ∩

⋃
m∈N

B(mvi + x,
∥∥mvi∥∥∞)

(where Hν is defined in Section III.5). Setting U im+x := B(mui+x,
∥∥mui∥∥∞)

and V i
m + x := B(mvi + x,

∥∥mvi∥∥∞), we obtain

⋂
i∈I

(x+ ∂Hei) =
⋂
i∈I

( ⋃
m∈N

[U im + x] ∩
⋃
m∈N

[V i
m + x]

)
.

It follows that there are m1, . . . ,mk, n1, . . . , nk ∈ N such that

x ∈
⋂
i∈I

(
[U imi + x] ∩ [V i

ni + x]
)

=: S ⊂
⋂
i∈I

(x+ ∂Hei).

Note that S is an intersection of closed balls with centers in C and pairwise
intersecting in ln∞ (since they all contain x), hence S∩C 6= ∅ by hyperconvexity
of C. We then deduce(

{x1} × · · · × {xk} × Rn−k
)
∩ C 6= ∅ (6.2)

for any {xi}i∈I ⊂ R. Set

π := π̂k+1 ◦ · · · ◦ π̂n

with π ≡ 0 if k = 0 and π := idRn if k = n. From (6.2), it follows
π(C) = Rk. Assume now by contradiction that π(apex(C)) 6= Rk. Pick
p ∈ C such that π(p) /∈ π(apex(C)) and pick q ∈ C ∩ π−1({−π(p)}). Re-
mark that setting z := q + p ∈ C \ apex(C) one has z 6= 0 and π(z) = 0.
Hence max1≤j≤k |zj | = 0 < maxk+1≤j≤n |zj | thus max1≤j≤k |zj | < ‖z‖∞
and therefore z /∈ ∪1≤j≤k [Cj ∪ (−Cj)]. Since int(C) 6= ∅ it follows that
C ∩ int(σCl) 6= ∅ for some (l, σ) /∈ I × {±1} which contradicts (6.1). Thus
π(apex(C)) = Rk. Hence, for any y ∈ Rk, there is w ∈ apex(C) such that
π(w) = y. Assume now by contradiction that there is w′ ∈ C such that
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π(w′) = y and w′ 6= w. Then z := w′ − w ∈ C \ {0} satisfies π(z) = 0 thus
max1≤j≤k |zj | = 0 < maxk+1≤j≤n |zj | and this as before contradicts (6.1). It
follows that π : C → Rk is injective. By definition of π and since int(C) 6= ∅,
we deduce that k = n thus C = Rn. This proves the Lemma.

Let dH(A,B) denote the Hausdorff distance of two subsets ∅ 6= A,B ⊂ ln∞,
in other words

dH(A,B) := inf{r ∈ (0,∞) : A ⊂ N(B, r) and B ⊂ N(A, r)} ∈ [0,∞]

with inf ∅ :=∞.
Before proceeding to the formal proof of Theorem 1.2, we give an outline

of the main ideas in a few paragraphs. The strategy to show in the proof
of Theorem 1.2 that (i) and (ii) imply the injectivity of C is to construct
a 1-Lipschitz retraction r of KC onto C. In order to do so, we consider an
increasing sequence (lαq + C)l∈N of translates of C along Rq with α > 0.
The direction q is chosen such that −q ∈ int(C), in order that C ⊂ lαq +
C and ∪l∈N(lαq + C) = Rn. Moreover, q is chosen so that for a facet F
of [−1, 1]n = B(0, 1) ⊂ ln∞ such that F /∈ Facets∗([−1, 1]n, C) and −F ∈
Facets∗([−1, 1]n, C), one has q ∈ relint(F ) which implies d(q+apex(C),KC) >
0. We define r as the composition r2 ◦ r1 of two 1-Lipschitz retractions. The
points of KC \C that have distance to apex(C) greater than a fixed constant
are mapped by r1 to C. The purpose of r2 is then to map the points situated
in a neighborhood of apex(C) but which are outside apex(C), onto C.

Starting with the definition of r1, we let rl be the composition of retractions
onto the tangent cones of lαq + C that are different from lαq + C itself and
we let r1 be the inverse limit of the system (rl)l∈N, similarly to the proof of
Theorem 1.1. After that, we define r2 as the pointwise limit of the composition
of a system of 1-Lipschitz retractions (%k)k∈N. The map %k is the composition
of a fixed number of 1-Lipschitz retractions %k,l defined (similarly as rl above)
as the composition of retractions onto the tangent cones of lαq

2k
+C (different

from lαq
2k

+ C itself).
To prove that r := r2 ◦ r1 is the desired map, we note that the 1-Lipschitz

retractions used to define r are all 1-Lipschitz retractions of ln∞ onto a set
containing C. Lemma 5.3 provides for any p ∈ KC\C a polytope Fp containing
p, stable under r and such that Fp ∩ apex(C) = ∅.

In particular, r induces a 1-Lipschitz retraction of Fp onto Fp∩C. To show
that the image of r is exactly C, we consider in a particular neighborhood of
apex(C), an arbitrary point p ∈ Ck,l0+1 ∩ (KC \ Ck,l0) where Ck,l0 = l0

αq
2k

+

C and consider the map %k,l0 which consists of the composition of every 1-
Lipschitz retraction onto the tangent cones of Ck,l0 (different from Ck,l0 itself).
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p

−q
Fp

KC

C

r(p)

Rq

Figure III.2: Sketch of the construction of r in the proof of Theorem 1.2 for the
especial case n = 2 and apex(C) = {0}. The two squares are balls in l2∞ cen-
tered at the origin. For each point p ∈ KC , we consider a family {Ck,l}l∈{0,...,m}
of translates of C (purple cones) such that Fp∩KC ⊂

⋃
l∈{0,...,m}Ck,l and which

induce the image point r(p) ∈ Fp ∩ C. The black cones represent the family
of smaller scale translates {Ck+1,l}l∈{0,...,m}, they induce the image under r of
points in KC that are closer to apex(C).
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We show that there is a ball U(p0, δp0) containing p and centered in Ck,l0 such
that

U(p0, δp0) ∩ Ck,l0 = U(p0, δp0) ∩ Tp0Ck,l0 .

This step is similar to an argument in the proof of Theorem 1.1 with the
key difference that it is here important that p0 /∈ apex(Ck,l0), in order that
Ck,l0 ( Tp0Ck,l0 and by definition of %k,l0 that consequently %k,l0(p) ⊂ Ck,l0 .
We can repeat this procedure until l0 = 0 to obtain %k(p) ∈ C.

We use indifferently the notation [−r, r]n and B(0, r) in the proof since
both denote the same subset of ln∞.

Proof of Theorem 1.2. If C is injective, we know by Theorem 1.1 that its
tangent cones are all injective. Furthermore, (ii) follows from Lemma 6.1.

Assume now that (i) and (ii) hold. Pick a facet F of [−1, 1]n such that
F /∈ Facets∗([−1, 1]n, C) as well as −F ∈ Facets∗([−1, 1]n, C) and pick q ∈
relint(F ) such that −q ∈ relint(−F ) ∩ int(C). Remark that

int([0,∞)F ) + apex(C) ⊂ Rn \KC .

For R > 0, set

ΣR := KC ∩
(
B(0, R) + apex(C) + [0,∞)q

)c
.

Let us define the map ∆̄: apex(C)× (0,∞)→ R by

∆̄(a, γ) := min
P∈Ik

min
F ′∈Faces(P,apex(C))c

d((γF ′+a)∩KC , [0,∞)q+apex(C)). (6.3)

where k := dim(apex(C)). It is easy to see with the help of Lemma 5.3 that
ε := ∆̄(0, 1) > 0 and thus by rescaling

∆̄(a, κ) = ∆̄(0, κ) = κ∆̄(0, 1) = κε. (6.4)

Furthermore, there is ε̄ ∈ (0, ε) such that C ∪
⋃
p∈∂C U(p, ε̄) ⊂ C ∪⋃

p∈∂C U(p, εp) where for any p ∈ ∂C, we set

εp := sup{δ ∈ (0, ε) : U(p, δ) ∩ TpC = U(p, δ) ∩ C}, (6.5)

cf. proof of Theorem 1.1. Let us then choose α ∈ [0,∞) such that

dH(C,αq + C) < ε̄
2 . (6.6)

Since by definition, one has [0,∞)q + C = ln∞, there is m ∈ N so that

B(0, 1) + apex(C) ⊂ mαq + C
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which after rescaling becomes

B(0, 1
2k

) + apex(C) ⊂ mαq

2k
+ C. (6.7)

Let {Tj}j∈{1,...,N} be an enumeration of the set:{
Tp(C) : there is F ∈ Faces(C) \ {apex(C)} such that p ∈ relint(F )

}
.

If for each j ∈ {1, . . . , N}, we pick a 1-Lipschitz retraction %j : ln∞ → Tj , then
% := %N ◦ · · · ◦ %1 defines a 1-Lipschitz retraction of αq + C onto C, cf. proof
of Theorem 1.1. Let us now for y ∈ X denote by τy the translation map
x 7→ x+ y. For l ∈ N, the map

rl := τlαq ◦ % ◦ τ−lαq

is a 1-Lipschitz retraction of (l + 1)αq + C onto lαq + C. We then define

r1(x) := (r0 ◦ r1 ◦ · · · ◦ rM )(x)

where M is the smallest natural such that x ∈ Mαq + C. Similarly, for any
j ∈ {1, . . . , N}, k ∈ N ∪ {0} and l ∈ {0, . . . ,m}, we set

%k,l := τ lαq
2k
◦ % ◦ τ

− lαq
2k

as well as
%k := %k,0 ◦ · · · ◦ %k,m.

We then define
r := r2 ◦ r1

by setting for any y ∈ r1(KC):

r2(y) := lim
k→∞

(%k ◦ %k−1 · · · ◦ %1)(y).

We now show that r is well-defined, r|C = idC and r ∈ Lip1(KC , C). This
implies that C is injective by Lemma 5.1. Consider first R ∈ ( 1

2k+1 ,
1
2k

] with
k ∈ N∪{0} and let p ∈ KC be a point at distance R from apex(C). Borrowing
its notation, we can by Lemma 5.3 find a corresponding Fp containing p such
that by (6.3) and (6.4), one has

Fp ∩KC ⊂ Σ ε

2k+1
. (6.8)
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Assume that p /∈ C. Note that by (iii) in Lemma 5.3 and since it is easy
to see that r(KC) ⊂ KC , one has

r(Fp ∩KC) ⊂ Fp ∩KC .

Let us set Ck,l := lαq
2k

+ C for any l ∈ {0, . . . ,m}. By (6.7), there is then
l0 ∈ {0, . . . ,m− 1} such that p ∈ Ck,l0+1 \ Ck,l0 since p was chosen so that

p ∈ ∂
(
B(0, R) + apex(C)

)
∩KC ⊂ B(0, 1

2k
) + apex(C).

It follows by (6.6) that

dH(Ck,l0 , Ck,l0+1) = dH(C,Ck,1) =
1

2k
dH(C,αq + C) <

ε̄

2k+1
.

Therefore, noting that if z ∈ Ck,l0 then σ(z) := 2k
(
z − l0 αq2k

)
∈ C, one sees

(cf. (6.5) for the definition of εσ(z)) that

p ∈
⋃

z∈∂Ck,l0

U(z, ε̄
2k+1 ) ⊂

⋃
z∈∂Ck,l0

U(z,
εσ(z)

2k
).

Hence, there is p0 ∈ ∂Ck,l0 such that p ∈ U(p0, δp0), δp0 <
ε̄

2k+1 and

U(p0, δp0) ∩ Ck,l0 = U(p0, δp0) ∩ Tp0Ck,l0 .

From δp0 <
ε̄

2k+1 and ε̄ < ε, it follows that p0 /∈ apex(Ck,l0) because by (6.8):

d(Fp ∩KC , apex(Ck,l0)) ≥ d(Fp ∩KC , [0,∞)q + apex(C)) ≥ ε

2k+1
> δp0 .

There is then j ∈ {1, . . . , N} such that Tp0Ck,l0 = l0
αq
2k

+ Tj . Hence %k,l0(p) ∈
Ck,l0 and thus %k(p) ∈ C.

The case where p ∈ KC is a point at distance R ≥ 1 from apex(C) is
similar. It follows that r is well-defined and it is then obviously a 1-Lipschitz
retraction onto C. This finally concludes the proof.

III.7 Graph Representation of Linear Systems of
Inequalities with at most Two Variables per
Inequality

In this section, we introduce concepts that we later use in Section III.8 to
prove Corollary 1.6. Let ∅ 6= Q ⊂ Rn be an intersection of general half-spaces,
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that is half-spaces that are either closed or open. To a general half-space H
containing Q, we assign its inner normal vector ν ∈ Rn \ {0} in order that
there is p ∈ Rn such that H = p+Hν if H is closed and H = p+ int(Hν) if H
is open (recalling that Hν := {x ∈ Rn : x · ν ≥ 0}). For n ∈ N, let us denote
by Zn the family of all Q for which there is a set ∅ 6= N (Q) ⊂ Rn \ {0} such
that the following hold:

(a) N (Q) is finite and Q can be written as the intersection over all ν ∈ N (Q)
of a general half-space with inner normal vector ν.

(b) For every ν ∈ N (Q), there exist fν , gν ∈ {0}∪ {e1, . . . , en} and aν , bν ∈ R
so that fν 6= gν as well as

ν = aνfν + bνgν .

We now describe a construction that was introduced in [39]. Every Q ∈ Zn is
the solution set of a linear system of inequalities of the form

Σ := {aνyν + bνzν � cν}ν∈N (Q)

where � stands for ≥ in some inequalities and possibly for > in some others
and yν , zν ∈ {x0, x1, . . . , xn} denote variables so that yν = xi if fν = ei as well
as zν = xj if gν = ej and yν = x0 if fν = 0. Conversely, to any system of
linear inequalities as above, we can associate an element of Zn. Now, we can
require all variables appearing in Σ to have nonzero coefficients except the zero
variable x0 which we additionally require to appear only with coefficient zero.
We can associate to Σ an undirected labeled multigraph without self-loops
ΓΣ := (VΣ,EΣ) where the vertex set VΣ is given by {x0, x1, . . . , xn} and the set
EΣ := {Eν}ν∈N (Q) consists of all the labeled edges Eν =

(
{yν , zν},Σν

)
where

Σν denotes the inequality aνyν + bνzν � cν . Note that ΓΣ does not contain
any self-loop since we require yν 6= zν , that is all equations in Σ contain two
different variables. Equations that contain only one variable different from x0

are given by edges connecting to x0 and remark that Σ does neither contain
any trivial inequalities like for example 1 ≥ 0 nor trivial inequalities of the
other type like for instance −1

3 > 0. A path P in ΓΣ is then given by(
(v1, . . . , vm+1), E1, . . . , Em

)
(7.1)

where (v1, . . . , vm+1) is a sequence of vertices in VΣ and (E1, . . . , Em) a se-
quence of labeled edges in EΣ such that for each l ∈ {1, . . . ,m}, one has:

El = ({vl, vl+1}, alvl + blvl+1 � cl) .
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We call P admissible if for each l ∈ {1, . . . ,m − 1}, the coefficients bl and
al+1 have opposite signs (i.e., one is strictly positive and the other one is
strictly negative). Note that if P is admissible, one has vl 6= x0 for each
l ∈ {2, . . . ,m − 1} because we have required that x0 appears only with zero
coefficient. Admissible paths correspond to sequences of inequalities that form
transitivity chains, the three inequalities 2x1 − 3x2 > −4, 2x2 + x3 ≥ 4
and −x3 − x1 ≥ 0 give e.g. rise to an admissible path. However, the three
inequalities x1 − x2 ≥ 0, x2 − x3 ≥ 0 and −x3 − x4 ≥ 0 cannot label an
admissible path since the coefficients of x3 have the wrong relative signs. A
path is called a loop if its first and last vertices are identical and a loop is said
to be simple as soon as its intermediate vertices are distinct. The reverse of
an admissible loop is admissible and cyclic permutations of a loop P given by
(7.1) are admissible if and only if a1 and bm have opposite signs, in which case
P is called permutable. Note also that since x0 appears in Σ only with zero
coefficient, no admissible loop with initial vertex x0 is permutable.

For an admissible path P given again by (7.1), let us define the residue
inequality of P to be the inequality obtained by applying transitivity to the
inequalities labeling the edges of P . The residue inequality of P is thus of
the form av1 + bvm+1 � c, where � denotes a strict inequality if and only if
at least one of the inequalities labeling the edges of P is strict. Consider for
example a path P given by(

(x1, x2, x3, x4), ({x1, x2}, x1 − 2x2 ≥ −1) ,

({x2, x3}, x2 + 3x3 > −2) ,

({x3, x4},−x3 − x4 ≥ 0)
)
,

we have x1 > −1 + 2(−2− 3x3) = −5− 6x3 ≥ −5 + 6x4 and thus the residue
inequality of P is x1 − 6x4 > −5. In the case where P is a loop with initial
vertex v, its residue inequality is of the form (a+ b)v � c. If it happens that
(a + b)v > c, a + b = 0 and c ≥ 0 or (a + b)v ≥ c, a + b = 0 and c > 0, the
residue inequality of P is false and we say that P is an infeasible loop. Note in
particular that infeasibility implies admissibility. We define a closure ΓΣ :=
(VΣ,EΣ) of ΓΣ to be a graph ΓΣ containing ΓΣ and having the same vertex set,
such that EΣ is obtained from EΣ by adding for each simple admissible loop
P (modulo permutations and reversals) of ΓΣ, a residue edge which is a new
edge labeled with the residue inequality of P . Let moreover Nontrivial(EΣ)
denote all the elements of EΣ that are no self-loop at x0. Note that a closure
is not necessarily unique since the initial vertex of each permutable loop can
be chosen arbitrarily. We can now state the main theorem of [39]:
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7.1 Theorem. Σ is unsatisfiable if and only if ΓΣ has an infeasible simple
loop.

As an example, consider the system

Σ = {Σi}i∈{1,...,6} =
{
x1 − x2 ≥ 0, 2x1 + x2 ≥ −1, x3 − x1 ≥ 0,

x4 − x3 ≥ 0, x3 − x4 ≥ −1, −x3 ≥ 1
2

}
.

It is easy to see that the only loop of ΓΣ contributing an edge to ΓΣ is the
loop (

(x1, x2, x1), ({x1, x2},Σ1), ({x2, x1},Σ2)

)
having residue inequality x1 ≥ −1

3 . Now note that the loop(
(x0, x1, x3, x0), ({x0, x1}, x1 ≥ −1

3), ({x1, x3},Σ3), ({x3, x0},Σ6)

)
⊂ ΓΣ

is infeasible and hence Σ must be unsatisfiable according to the theorem.

III.8 Injectivity of Linear Systems of Inequalities
with at most Two Variables per Inequality

In this section, we prove Proposition 8.1 from which Corollary 1.6 follows
immediately. For j ∈ In = {1, . . . , n}, let Fj := [−1, 1]j−1 × {1} × [−1, 1]n−j

which is a facet of the unit cube [−1, 1]n. Note that relint(Fj) = (−1, 1)j−1 ×
{1} × (−1, 1)n−j and this is used in the proof below.

8.1 Proposition. Let C ⊂ Zn be a convex polyhedral cone with int(C) 6= ∅
satisfying

C =
⋂

ν∈N (C)

{x ∈ Rn : x · (aνfν + bνgν) ≥ 0} .

There is then (j, τ) ∈ In × {±1} such that

C ∩ relint(τFj) 6= ∅ = C ∩ relint(−τFj).

Proof. We proceed by induction on n. It is easy to see that the result holds for
n = 1 and n = 2. We assume that the result holds for {1, . . . , n−1} and show
that it consequently holds for n. Since int(C) 6= ∅, there is (s, σ) ∈ In ×{±1}
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such that C ∩ relint(σFs) 6= ∅. If C ∩ relint(−σFs) = ∅, we are done. Hence,
assume that

C ∩ relint(−Fs) 6= ∅ 6= C ∩ relint(Fs) (8.1)

which recalling the notation ∂Hes = {x ∈ Rn : xs = 0} implies

relint(C ∩ ∂Hes) 6= ∅. (8.2)

The map π̂s given by (x1, x2, . . . , xs, . . . , xn) 7→ (x1, x2, . . . , x̂s, . . . , xn) is,
when restricted to ∂Hes , an isometry with the property that C0 := π̂s(C ∩
∂Hes) ∈ Zn−1. To see that the latter holds, assume without loss of generality
that fν 6= es for every ν ∈ N (C). We can write N (C) = N (C) 6s t N (C)s

where N (C) 6s is the set of all ν such that fν 6= es 6= gν and N (C)s the set
of those such that fν 6= es = gν . We then write C 6s := ∩ν∈N (C)6sHν and

Cs := ∩ν∈N (C)sHν which implies C = Cs ∩ C 6s. It is easy to see that

C ∩ ∂Hes = C 6s ∩ ∂Hes ∩
⋂

ν∈N (C)s

Haνfν .

Applying π̂s on both sides, we get:

C0 = π̂s(C
6s ∩ ∂Hes) ∩ π̂s

∂Hes ∩
⋂

ν∈N (C)s

Haνfν


=

⋂
ν∈N (C)6s

Hπ̂s(ν) ∩
⋂

ν∈N (C)s

Hπ̂s(aνfν) ∈ Zn−1.

It follows by the induction hypothesis that there is (t, τ) ∈ (In \ {s})× {±1}
such that

C0 ∩ π̂s(relint(τFt) ∩ ∂Hes) 6= ∅ = C0 ∩ π̂s(relint(−τFt) ∩ ∂Hes). (8.3)

Note moreover that C0∩π̂s(relint(τFt)∩∂Hes) 6= ∅ implies C∩relint(τFt) 6= ∅.
Furthermore, if C 6s ∩ relint(−τFt) ∩ ∂Hes = ∅, then C ∩ relint(−τFt) = ∅ and
thus we are done. We thus assume that

C 6s ∩ relint(−τFt) ∩ ∂Hes 6= ∅. (8.4)

We now show that one can find a, b ∈ R with b 6= 0 such that C ⊂ Haes+bet .
We can assume without loss of generality that in addition to fν 6= es, one
has fν 6= et for any ν ∈ N (C) since otherwise we can find the desired normal
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vector aes + bet. Let N (C)6t be the set of all ν such that fν 6= et 6= gν and
C 6t := ∩ν∈N (C)6tHν . Let

Wt := (−1, 1)n ∪ relint(Ft) ∪ relint(−Ft).

Note that Wt∩C ∈ Zn and π̂t◦π̂s(C∩∂Hes∩relint(−τFt)) ∈ Zn−2. Let Σ and
Σ0 denote the respective associated systems induced by the supporting half-
spaces. Remark that Σ0 is obtained by plugging xs = 0 and xt = −τ in every
inequality of Σ and deleting those loops corresponding to those inequalities
associated to Wt that are made trivial. Note that Σ0 is unsatisfiable by (8.3)
and thus by Theorem 7.1, there is an infeasible (hence by definition admissible)
simple loop L in every closure ΓΣ0 of the graph ΓΣ0 associated to the system
Σ0.

Let now ΓΣs := (VΣ \ {xs, xt},EΣs) where EΣs consists of all labeled
edges E ∈ EΣ0 so that there is ({yµ, xs}, aµyµ + bµxs � cµ) ∈ EΣ such that
E = ({yµ, x0}, aµyµ � cµ) (possibly with yµ = x0). Analogously, ΓΣt := (VΣ \
{xs, xt},EΣt) where EΣt consists of all labeled edges E ∈ EΣ0 so that there is
({yµ, xt}, aµyµ + bµxt � cµ) ∈ EΣ such that E = ({yµ, x0}, aµyµ � cµ + τbµ)
(possibly with yµ = x0). Now, it is easy to see that for u ∈ {s, t}, one can
choose closures satisfying:

Nontrivial
(

EΣ0 \ EΣu

)
⊂ Nontrivial

(
EΣ0 \ EΣu

)
. (8.5)

Indeed, note that since EΣu ⊂ EΣ0 , it follows that

EΣ0 \ EΣu =
(
EΣ0 \ EΣ0

)
∪
(
EΣ0 \ EΣu

)
. (8.6)

By definition, EΣ0 \ EΣu ⊂ EΣ0 \ EΣu . Now, consider an admissible loop
L0 ⊂ ΓΣ0 . If L0 contains an edge of ΓΣu , then by admissibility (in particular
x0 does not arise as intermediate vertex), L0 is a loop starting at x0 and thus
L0 does not induce any nontrivial residue edge. Hence, if L0 ⊂ ΓΣ0 induces one
nontrivial residue edge in EΣ0 \ EΣ0 , then in particular, the residue equation
of L0 does not contain x0 alone and thus L0 does not contain any edge of ΓΣu .

This thus implies that Nontrivial
(

EΣ0 \ EΣ0

)
⊂ Nontrivial

(
EΣ0 \ EΣu

)
. It

finally follows by (8.6) that (8.5) holds.
Now, if L ⊂ ΓΣ0 is nontrivial and does not contain any edge of ΓΣs , we

obtain in view of (8.5):

L ⊂
(

VΣ \ {xs, xt},Nontrivial
(

EΣ0 \ EΣs

))
⊂
(

VΣ \ {xs, xt},Nontrivial
(

EΣ0 \ EΣs

))
=: Γ.
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But Γ has Q = π̂t ◦ π̂s
(
C 6s ∩ relint(−τFt) ∩ ∂Hes

)
as associated solution set.

Thus Γ contains an infeasible simple loop and therefore its associated system
is unsatisfiable by Theorem 7.1. Hence, Q = ∅ and thus C 6s ∩ relint(−τFt) ∩
∂Hes = ∅, which contradicts (8.4). It follows that L has to contain an edge of
ΓΣs .

Similarly, if L is nontrivial and does not contain any edge of ΓΣt , we obtain
in view of (8.5):

L ⊂
(

VΣ \ {xs, xt},Nontrivial
(

EΣ0 \ EΣt

))
⊂
(

VΣ \ {xs, xt},Nontrivial
(

EΣ0 \ EΣt

))
=: Γ.

But Γ has Q = π̂t ◦ π̂s
(
C 6t ∩Wt ∩ ∂Hes

)
as associated solution set. Thus

Γ contains an infeasible simple loop and therefore its associated system is
unsatisfiable by Theorem 7.1. Hence, Q = ∅ and thus C 6t ∩Wt ∩ ∂Hes = ∅,
which contradicts (8.2) as one can easily see by noting that C 6t ∩ ∂Hes is a
cone. It follows that L has to contain an edge of ΓΣt .

Finally, note that a self-loop in ΓΣ0 at x0 cannot arise as intermediate
segment on an admissible path and no self-loop at xi 6= x0 can be induced
by a loop containing an edge in EΣs ∪ EΣt . Hence the only remaining case is
when L is a self-loop at x0. But then, since ΓΣ0 is defined so as not to contain
any infeasible self-loop at x0, it follows that L must be induced by a simple
nontrivial admissible loop L0 in ΓΣ0 and as above, one has that L0 needs to
be containing an edge of EΣs as well as an edge of EΣt .

Thus, up to replacing the loop L ⊂ ΓΣ0 by L0 if necessary, we can as-
sume that L contains an edge in EΣs as well as an edge in EΣt . It follows
that L has starting or ending edge, let us say without loss of generality
starting edge Er = ({x0, xr}, brxr � cr) ∈ EΣs and accordingly final edge
Eu = ({x0, xu}, buxu � cu) ∈ EΣt for some xr, xu ∈ V \ {x0, xs, xt}. For any
edge E of L different from Eu and Er, E does not contain x0 as endpoint by
admissibility of L, hence

E ∈ EΣ0 \ (EΣs ∪ EΣt)

which means that E has a corresponding edge EΣ ∈ EΣ that is labeled by the
same equation as E and that has thus the same endpoints (these are thus differ-
ent from xs and xt). Moreover, by definition of EΣu , we have edges EΣ

r , E
Σ
u ∈

EΣ corresponding to Er and Eu which satisfy EΣ
r = ({xr, xs}, arxr + brxs � 0)

and EΣ
u = ({xu, xt}, auxu + buxt � 0). We thus obtain an admissible (simple)

path P ⊂ ΓΣ from xs to xt. The residue inequality of P is then of the form
axs + bxt � 0 and thus C ⊂ Hν for ν := aes + bet. By (8.1), it follows that
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|a| < |b| and thus by an easy argument C ∩ relint(−sign(b)Ft) = ∅. Since we
assumed that C ∩ relint(τFt) 6= ∅, it follows that sign(b) = τ and thus

C ∩ relint(τFt) 6= ∅ = C ∩ relint(−τFt).

This proves the induction step and finishes the proof.
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Chapter IV

Injective Hulls of Infinite
Totally Split-Decomposable
Metric Spaces

IV.1 Introduction

In 1992, Bandelt and Dress (cf. [4]) introduced a decomposition theory for
finite metric spaces which is canonical, namely it is the only one which is, in
a sense, compatible with Isbell’s injective hull.

Our first goal is to extend the canonical decomposition theory to the
class of (possibly) infinite metric spaces with integer-valued totally split-
decomposable metric and possessing an injective hull which has the structure
of a polyhedral complex. For this class, we then provide necessary and suf-
ficient conditions for the injective hull to be combinatorially equivalent to a
CAT(0) cube complex.

The basic definitions of the canonical decomposition theory of Bandelt and
Dress do not need to be modified to suit our more general situation. A split
(also called cut) S = {A,B} of a set X is a pair of non-empty subsets of X
such that A∩B = ∅ and X = A∪B, or in other words X = AtB. For x ∈ X,
we denote by S(x) the element of S that contains x. The split (pseudo-)metric
associated to S is then a pseudometric δS on X such that

δS(x, y) :=

{
1 if S(x) 6= S(y),

0 if S(x) = S(y).

For a pseudometric d on X, we call S = {A,B} a d-split (of X) if the isolation
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IV.1. INTRODUCTION

index given by (1.3) satisfies
αdS > 0.

The pseudometric d is said to be totally split-decomposable if d =
∑

S∈S α
d
SδS

where S is the set of all d-splits.
A split subsystem S̄ ⊂ S is called octahedral if and only if there is a

partition of X into a disjoint union of six non-empty sets X = Y 1
1 t Y

−1
1 t

Y 1
2 t Y

−1
2 t Y 1

3 t Y
−1

3 such that S̄ consists of the four splits

S1 := {Y 1
1 t Y 1

2 t Y 1
3 , Y

−1
1 t Y −1

2 t Y −1
3 },

S2 := {Y 1
1 t Y 1

2 t Y −1
3 , Y −1

1 t Y −1
2 t Y 1

3 },
S3 := {Y 1

1 t Y −1
2 t Y 1

3 , Y
−1

1 t Y 1
2 t Y −1

3 },
S4 := {Y 1

1 t Y −1
2 t Y −1

3 , Y −1
1 t Y 1

2 t Y 1
3 }.

S is called octahedral-free if it does not contain any octahedral split subsystem.
Two splits S := {A,B} and S′ := {A′, B′} are said to be compatible if A′ ⊂ A
(and thus B ⊂ B′) or alternatively A ⊂ A′ (and thus B′ ⊂ B).

For general facts regarding injective hulls, we shall refer to [30]. Injective
hulls can be characterized in several different ways. In the sequel, the injective
hull refers to Isbell’s injective hull construction (X, d) 7→ E(X, d). Recall at
this point that the injective hull E(X, d) of a pseudometric space (X, d) is
given by

E(X, d) =
{
f ∈ RX : f(x) = supy∈X(d(x, y)− f(y)) for all x ∈ X

}
. (1.1)

The difference between two elements of E(X, d) has finite ‖·‖∞-norm and
E(X, d) is endowed with the metric

d∞(f, g) := ‖f − g‖∞ .

It is easy to see that for f ∈ E(X, d), if d(x, x′) = 0 then f(x) = f(x′). Hence,
if (X, d) is a pseudometric space and (Y, d′) is the associated metric space
obtained by collapsing every maximal set of diameter zero to a single point,
then E(X, d) and E(Y, d′) are isometric. Accordingly, the statements involving
the injective hull will be stated for metric spaces instead of pseudometric
spaces. As it is shown in [30, Theorem 4.5] and as we shall recall later in this
introduction, as soon as (X, d) is a metric space with integer-valued metric
verifying the local rank condition (LRC), which is discussed below, there is a
canonical locally finite dimensional polyhedral structure on E(X, d).

In the case where d is totally split-decomposable, our goal is to provide
necessary and sufficient conditions ensuring that E(X, d) is combinatorially
equivalent to a CAT(0) cube complex. Accordingly, we have:
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1.1 Theorem. Let (X, d) be a metric space with integer-valued totally split-
decomposable metric satisfying the local rank condition. Let S be the set of all
d-splits. Then, the following are equivalent:

(i) S does not contain any octahedral split subsystem S̄ satisfying that for
every S = {A,B} ∈ S \ S̄, there is S′ := {A′, B′} ∈ S̄ such that S and
S′ are compatible.

(ii) Each cell of E(X, d) is a parallelotope.

If (i) or (ii) holds, there is a CAT(0) cube complex K(X, d) and a canonical bi-
jective cell complex isomorphism σ : E(X, d)→ K(X, d) mapping cells affinely
to cells.

By a parallelotope we mean a Minkowski sum of a finite collection of lin-
early independent closed segments (see for instance [25]). When condition
(i) in Theorem 1.1 holds, we say that the family of all d-splits of X has no
compatibly octahedral decomposition. If the diameters of the cells of E(X, d)
are uniformly bounded, σ in Theorem 1.1 can be chosen to be bi-Lipschitz.

For a metric space (X, d), let I(x, y) := {z ∈ X : d(x, z) + d(z, y) =
d(x, y)}. (X, d) is called discretely geodesic if the metric is integer-valued
and for every pair of points x, y ∈ X there exists an isometric embedding
γ : {0, 1, . . . , d(x, y)} → X such that γ(0) = x and γ(d(x, y)) = y. Moreover,
we say that a discretely geodesic metric space X has β-stable intervals, for
some constant β ≥ 0, if for every triple of points x, y, y′ ∈ X such that
d(y, y′) = 1 we have

dH(I(x, y), I(x, y′)) ≤ β

where dH denotes the Hausdorff distance in X.
The injective hull has among other features, applications to geometric

group theory. Let Γ be a finitely generated group, G a finite generating set,
and let Γ be equipped with the word metric dG with respect to the alphabet
G ∪G−1. It is shown in the proof of [30, Theorem 1.1] that if (Γ, dG) has β-
stable intervals, then (Γ, dG) satisfies the (LRC) as well as E(Γ, dG) is proper
and has the structure of a polyhedral complex. The isometric action of Γ on
(Γ, dG) given by (x, y) 7→ Lx(y) := xy induces consequently a proper action
by cell isometries of Γ on E(Γ, dG) given by

(x, f) 7→ L̄x(f) = f ◦ L−1
x .

Moreover, if (Γ, dG) is δ-hyperbolic (in particular it has β-stable intervals),
then E(Γ, dG) has only finitely many isometry types of cells and the action
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is cocompact. As an immediate consequence of these observations, we thus
obtain:

1.2 Theorem. Let Γ be a finitely generated group and (Γ, dG) the associated
metric space with respect to the alphabet G ∪G−1. Assume that dG is totally
split-decomposable and (i) in Theorem 1.1 holds. Then, the following hold:

(i) if (Γ, dG) has β-stable intervals, there is a proper action of Γ on K(Γ, dG)
given by

(x, y) 7→ (σ ◦ L̄x ◦ σ−1)(y).

(ii) If (Γ, dG) is δ-hyperbolic, the action of Γ on K(Γ, dG) is proper as well
as cocompact.

We give an outline of the structure of Isbell’s injective hull and describe
when it corresponds to that of a polyhedral complex, following [30]. Given a
pseudometric space (X, d), let us consider the vector space RX of real-valued
functions on X and

∆(X, d) := {f ∈ RX : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X}.

We call f ∈ ∆(X, d) extremal if there is no g ≤ f in ∆(X, d) distinct from
f . The set E(X, d) of extremal functions is equivalently given by (1.1). To
be able to describe the structure of E(X, d) further, one can assign to every
f ∈ E(X, d) the undirected graph with vertex set X and edge set

A(f) :=
{
{x, y} : x, y ∈ X and f(x) + f(y) = d(x, y)

}
, (1.2)

allowing self-loops {x, x} which correspond to zeros of f . Furthermore, we let

E′(X, d) :=
{
f ∈ ∆(X, d) :

⋃
A(f) = X

}
.

Note that if f ∈ E′(X, d), the graph (X,A(f)) has no isolated vertices (al-
though it may be disconnected). A set A of unordered pairs of (possibly equal)
points in X is called admissible if there exists an f ∈ E′(X, d) with A(f) = A,
and we denote by A (X) the collection of admissible sets.

To every A ∈ A (X), we associate the affine subspace H(A) of RX given
by

H(A) : = {g ∈ RX : A ⊂ A(g)}
= {g ∈ RX : g(x) + g(y) = d(x, y) for all x, y ∈ A}.
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We define the rank of A to be the dimension of H(A),

rank(A) := dim(H(A)) ∈ N ∪ {0,∞}.

We can compute rank(A) as follows: if f, g are two elements of H(A) and
{x, y} ∈ A, one has f(x) + f(y) = d(x, y) = g(x) + g(y), hence f(y)− g(y) =
−(f(x) − g(x)), which means that the difference f − g has alternating sign
along all edge paths in the graph (X,A). Therefore, there is either none or
exactly one degree of freedom for the values of f ∈ H(A) on every connected
component of (X,A), depending upon whether or not the component contains
an odd cycle. We call such components (viewed as subsets of X) odd or even
A-components, respectively.

If (X, d) is a finite metric space, E(X, d) is a finite polyhedral complex. If
(X, d) is infinite, we say that (X, d) satisfies the local rank condition (LRC)
if and only if for every f ∈ E(X, d), there exist ε,N > 0 such that for all
g ∈ E′(X, d) with ‖f − g‖∞ < ε, one has rank(A(g)) ≤ N . Recall (cf. [30,
Theorem 4.4]) that if (X, d) is a metric space with integer-valued metric and
satisfying the (LRC), then E(X, d) = E′(X, d). In this case, let

P (A) := E′(X, d) ∩H(A) = E(X, d) ∩H(A) = ∆(X, d) ∩H(A).

The family {P (A)}A∈A (X) then defines a polyhedral structure on E(X, d) and
in particular P (A′) is a face of P (A) if and only if A ⊂ A′.

In order to prove Theorem 1.1, we need to be able to decompose any
pseudometric d on a set X in a way that is coherent with the structure of
E(X, d). The isolation index of a pair S := {A,B} of non-empty subsets with
respect to a pseudometric d on X is the non-negative number αdS (equivalently
αd{A,B} or simply αS) given by

αdS :=
1

2
inf

a,a′∈A
b,b′∈B

[
max

{
d(a, b) + d(a′, b′), d(a′, b) + d(a, b′), d(a, a′) + d(b, b′)

}
−d(a, a′)− d(b, b′)

]
.

(1.3)

Moreover, we call a pseudometric d0 on X split-prime if αd0
S = 0 for any

split S of X. Note that by Lemma 2.4, there are for any integer-valued
pseudometric only finitely many d-splits separating any pair of points.

1.3 Theorem. Let (X, d) be a pseudometric space with integer-valued pseu-
dometric, let SX be the set of all splits of X and let S be the set all d-splits.
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Let {
λS ∈ [0, αdS ] if S ∈ S,
λS = 0 if S ∈ SX \ S.

Then,

d̃ := d−
∑
S∈S

λSδS

is a pseudometric such that for every split S ∈ SX , one has

αd̃S = αdS − λS .

In particular, there is a split-prime pseudometric d0 such that

d = d0 +
∑
S∈S

αdSδS .

The decomposition given by Theorem 1.3 can be characterized uniquely
in a corollary to Theorem 2.10:

1.4 Corollary. Let (X, d) be a metric space with integer-valued metric sat-
isfying the (LRC). Let S be the family of all d-splits of X so that d =
d0 +

∑
S∈S αSδS and let λS ∈ [0, αS ] for every S ∈ S. Then, setting

d1 := d−
∑

S∈S λSδS, we have

E(X, d) ⊂ RX ∩

(
E(X, d1) +

∑
S∈S

λSE(X, δS)

)
. (1.4)

Moreover, for any split S = {A,B} of X and any λS > 0 such that d =
d1 + λSδS, if E(X, d) ⊂ E(X, d1) + λSE(X, δS), then the following hold:

(i) S is a d-split of X and

(ii) λS ≤ αS.

Note that the above relates in particular to the question raised in [3, Sec-
tion 8.3] and regarding the structure of general cellular graphs.

The present chapter is divided into three main parts: Section 2 deals with
the generalization of the decomposition theory of Bandelt and Dress (cf. [4])
to (possibly) infinite metric spaces with integer-valued metric. Section 3 deals
with the proof of Theorem 1.1, we adapt and generalize the arguments of [28]
to infinite metric spaces and infinite split systems. Section 4 starts with the
observation that the Buneman complex B(S, α), which is a well-known object
in discrete mathematics (cf. [19] and the references there) satisfies the CAT(0)
link condition and continues with the proof that E(X, d) satisfies this same
condition. Finally, Section 5 deals with several examples.
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IV.2 Decomposition Theory

It is easy to see that E(X, d) as defined at the beginning of the Introduction
is a subset of

∆1(X, d) := {f ∈ ∆(X, d) : f is 1-Lipschitz}.

Note that a function f ∈ RX belongs to ∆1(X, d) if and only if

‖f − dx‖∞ = f(x) for all x ∈ X. (2.1)

The metric d∞(f, g) := ‖f − g‖∞ on ∆1(X, d) is thus well-defined since for
any x ∈ X, one has

‖f − g‖∞ ≤ ‖f − dx‖∞ + ‖g − dx‖∞ = f(x) + g(x) <∞.

The set E(X, d) ⊂ ∆1(X, d) is equipped with the induced metric and one has
the canonical isometric map

e: (X, d)→ E(X, d), e(x) = dx.

In case (X, d) is a metric space, e is an isometric embedding and Isbell showed
that (e,E(X, d)) is indeed an injective hull ofX. That is, E(X, d) is an injective
metric space, and every isometric embedding ofX into another injective metric
space factors through e. A metric space (X, d) is called injective if for any
isometric embedding i : Y → Z of metric spaces and any 1-Lipschitz (i.e.,
distance nonincreasing) map f : Y → X there exists a 1-Lipschitz map g : Z →
X, so that g ◦ i = f (cf. [1, Section 9] for the general categorical definition).
For a recent survey of injective metric spaces, we refer to [30, Section 2].

Let (X, d) be any pseudometric space. A partial split S = {A,B} of X is a
pair of non-empty subsets of X such that A∩B = ∅. If in addition X = A∪B
holds, then S = {A,B} is a split of X. A partial d-split is a partial split
S = {A,B} for which αdS > 0. For any {a, a′} ⊂ A and {b, b′} ⊂ B (where if
x = y, {x, y} denotes {x}), let

βd{{a,a′},{b,b′}} :=
1

2

[
max{d(a, b) + d(a′, b′), d(a′, b) + d(a, b′), d(a, a′) + d(b, b′)}

−d(a, a′)− d(b, b′)
]

and when the reference to the pseudometric is unnecessary, we shall omit it and
write simply α{A,B} as well as β{{a,a′},{b,b′}}. Note that for any pseudometric
d on X, one has

αd{{r,s},{t,u}} = βd{{r,s},{t,u}}. (2.2)
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Indeed,

d(r, t) + d(s, u)− d(r, s)− d(t, u) ≤ d(r, t) + d(u, r)− d(t, u) = 2βd{{r},{t,u}}

and

d(r, t) + d(s, u)− d(r, s)− d(t, u) ≤ d(r, t) + d(u, r)− d(t, u) ≤ 2d(r, t)

= 2βd{{r},{t}}.

The proof of the next lemma follows the one of [4, Theorem 1].

2.1 Lemma. Let (X, d) be a pseudometric space and {A0, B0} a partial d-split
of X. For any {a, a′} ⊂ A0, {b, b′} ⊂ B0 and x ∈ X \ (A0 ∪B0), one has

β{{a,a′},{b,b′}} ≥ α{{a,a′,x},{b,b′}} + α{{a,a′},{b,b′,x}}. (2.3)

Proof. Assume that (2.3) fails for some a1, a2, b1, b2, x, then all three quantities
must be positive. For simplicity, we write xy for d(x, y). Let {i, j} = {1, 2}
be so that

β{{a1,x},{b1,b2}} = 1
2

(
a1bj + xbi − a1x− b1b2

)
.

It follows that

1
2

(
a1bj + xbi − a1x− b1b2 + max{a1x+ a2bi, a1bi + a2x} − a1a2 − xbi

)
=

β{{a1,x},{b1,b2}} + β{{a1,a2},{x,bi}} ≥
α{{a1,a2,x},{b1,b2}} + α{{a1,a2},{b1,b2,x}} >

β{{a1,a2},{b1,b2}} =

1
2

(
max{a1b1 + a2b2, a1b2 + a2b1} − a1a2 − b1b2

)
.

Hence

δ := a1bj−a1x+max{a1x+a2bi, a1bi+a2x} > max{a1b1 +a2b2, a1b2 +a2b1}.

The above strict inequality can only hold if a1bi + a2x > a1x + a2bi which
implies that δ = a1bj − a1x+ a1bi + a2x. Therefore, one has

a1b1 + a1b2 − a1x+ a2x = δ > max{a1b1 + a2b2, a1b2 + a2b1}.

Hence for each k ∈ {1, 2}, one has

a1bk + a2x > a1x+ a2bk.

By interchanging the role of a1 and a2, we also obtain the reverse strict in-
equality and this is a contradiction. This proves (2.3).
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The next theorem corresponds to [4, Theorem 1].

2.2 Theorem. Let (X, d) be a finite pseudometric space and let {A0, B0} be
a partial d-split. Then ∑

{A,B}∈E0

α{A,B} ≤ α{A0,B0}

where E0 denotes the set of all d-splits {A,B} extending {A0, B0}, namely
d-splits satisfying A0 ⊂ A and B0 ⊂ B.

Proof. Note that since X is finite, there are {a, a′} ⊂ A0 and {b, b′} ⊂ B0 such
that

α{A0,B0} = β{{a,a′},{b,b′}}

and thus we obtain

α{A0,B0} ≥ α{A0∪{x},B0} + α{A0,B0∪{x}}. (2.4)

By induction, the desired result follows.

We go on with the following more general situation.

2.3 Theorem. Let (X, d) be a pseudometric space such that for every x, y ∈
X, there are only finitely many d-splits S satisfying S(x) 6= S(y). Let moreover
{A0, B0} be a partial d-split. Then,∑

{A,B}∈E0

α{A,B} ≤ α{A0,B0}

where E0 denotes the set of all d-splits {A,B} extending {A0, B0}.

Proof. Note that for any ε > 0, there are {a, a′} ⊂ A0 and {b, b′} ⊂ B0 such
that

α{A0,B0} + ε ≥ β{{a,a′},{b,b′}}
and thus using (2.3), we obtain

α{A0,B0} + ε ≥ α{A0∪{x},B0} + α{A0,B0∪{x}}. (2.5)

Since there are only finitely many d-splits separating any pair of points in
X, there are only finitely many d-splits {Si}i∈{1,...,m} extending {A0, B0}, i.e.
such that one has Si := {Ai, Bi} where A0 ⊂ Ai and B0 ⊂ Bi. For every
1 ≤ i < j ≤ m, choose xij ∈ X \ (A0 ∪ B0) such that either xij ∈ Ai ∩ Bj or
xij ∈ Bi ∩Aj (in particular neither xij ∈ Ai ∩Aj nor xij ∈ Bi ∩Bj). Writing
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Z := (xij)1≤i<j≤m and applying (2.5) recursively for each element of Z, we
obtain for some big enough constant C > 0:

α{A0,B0} + Cε ≥
∑
ZA⊂Z

α{A0∪ZA,B0∪(Z\ZA)}.

Note that by choice of Z, there is for any {Ai, Bi} a unique ZA ⊂ Z (namely
ZA := Z ∩ Ai) such that {Ai, Bi} extends {A0 ∪ ZA, B0 ∪ (Z \ ZA)} which
implies

α{A0∪ZA,B0∪(Z\ZA)} ≥ α{Ai,Bi}.

It follows that
α{A0,B0} + Cε ≥

∑
i∈{1,...,m}

α{Ai,Bi}.

and letting ε tend to zero, this concludes the proof.

Note now that if (X, d) is a pseudometric space with integer-valued pseu-
dometric, then for any split S, one has

αS ∈ [0,∞) ∩ 1
2Z. (2.6)

2.4 Lemma. Let (X, d) be a pseudometric space with integer-valued pseu-
dometric. For every x, y ∈ X, there are at most 2d(x, y) distinct d-splits S
satisfying S(x) 6= S(y).

Proof. Assume by contradiction that one can find m := 2d(x, y) + 1 distinct
d-splits Si such that Si(x) 6= Si(y). For every 1 ≤ i < j ≤ m, choose zij ∈ X
such that either zij ∈ Si(x)∩Sj(y) or zij ∈ Si(y)∩Sj(x). Furthermore, setting
Z := {x, y} ∪ {zij : 1 ≤ i < j ≤ m}, one has Si(x) ∩ Z 6= Sj(x) ∩ Z if i 6= j,
hence

d(x, y) + 1
2 ≤

∑
i∈{1,...,m}

αdSi ≤
∑

i∈{1,...,m}

α
d|Z×Z
{Si(x)∩Z,Si(y)∩Z}

and by Theorem 2.2, applied to the partial split A0 := {x} and B0 := {y} of

the finite set Z, the right-hand side is less than or equal to α
d|Z×Z
{{x},{y}} = d(x, y),

which is a contradiction.

Furthermore, it is easy to see that if S = {A,B} is a d-split of X such
that S(x) 6= S(y) for some pair of points x, y such that d(x, y) = 1, then one
has C(x, y) := {z ∈ X : d(x, y) + d(y, z) = d(x, z)} ⊂ S(y) and C(y, x) ⊂
S(x). Note however that one might have X = C(x, y) ∪ C(y, x) without
{C(x, y), C(y, x)} being a d-split, this is the case for instance if X is the set of
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all vertices of the plane tessellation by hexagons, endowed with the shortest-
path metric. Indeed, in this case, X is bipartite and thusX = C(x, y)∪C(y, x).
However, d is in this case a split-prime metric. The next theorem corresponds
to [4, Theorem 2] and the same proof works.

2.5 Lemma. Let (X, d) be a pseudometric space with integer-valued pseudo-
metric. Let S be the set of all d-splits and let S̃ ⊂ S be any finite subset.
If λS ∈ (0, αdS ] for every S ∈ S̃ and λS := 0 for every other split, then

d̃ := d −
∑

S∈S̃ λSδS is a pseudometric such that for every split S of X, one
has

αd̃S = αdS − λS .

Proof. We first prove the assertion for

d̃ := d− λδ{A0,B0}

where {A0, B0} ∈ S and λ ≤ αd{A0,B0}. The result then follows by induction.

We verify that d̃ is indeed a pseudometric by showing the triangle inequality.
Let x, y, z ∈ X and assume without loss of generality that x, y ∈ A0. For
simplicity, we shall denote d(x, y) simply by xy. If x, y, z ∈ A0, then d and d̃
agree on {x, y, z} and we are done. Otherwise, z ∈ B0, in which case we get

d̃(x, z) = xz − λ ≤ xy + yz − λ = d̃(x, y) + d̃(y, z).

On the other side, since λ ≤ αd{A0,B0} ≤ βd{{x,y},{z}} = 1
2(xz + yz − xy), we

obtain by rearranging

xy ≤ xz − λ+ yz − λ = d̃(x, z) + d̃(y, z).

Thus, d̃ is a pseudometric.
Let {x, y} and {z, w} be two disjoint subsets of X. If {{x, y}, {z, w}}

extends to {A0, B0}, then clearly

βd̃{{x,y},{z,w}} = βd{{x,y},{z,w}} − λ. (2.7)

Now, we prove that if {{x, y}, {z, w}} does not extend to {A0, B0}, then

βd̃{{x,y},{z,w}} = βd{{x,y},{z,w}}. (2.8)

First, if either A0 or B0 contains at least three of x, y, z, w, then (2.8) clearly
holds. We may thus assume without loss of generality that x, z ∈ A0 and
y, w ∈ B0. Since

βd{{x,z},{y,w}} = 1
2

(
max{xy + zw, xw + yz} − xz − yw

)
≥ αd{A0,B0} ≥ λ,
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we obtain that max{xy + zw − 2λ, xw + yz − 2λ} ≥ xz + yw. Hence

βd̃{{x,y},{z,w}}

= 1
2

(
max{xz + yw, xw + yz − 2λ, xy + zw − 2λ} − xy − zw + 2λ

)
= 1

2

(
max{xw + yz − 2λ, xy + zw − 2λ} − xy − zw + 2λ

)
= 1

2

(
max{xz + yw, xw + yz, xy + zw} − xy − zw

)
= βd{{x,y},{z,w}},

as required. Finally, it remains to prove that for every split {A,B} of X, one
has

αd̃{A,B} =

{
αd{A,B} − λ if {A,B} = {A0, B0},
αd{A,B} otherwise.

By (2.7), one has αd̃{A0,B0} = αd{A0,B0} − λ. Let now {A,B} be a split of X

different from {A0, B0}. Since the metric d takes only a discrete set of values,
by (2.2) there are a, a′ ∈ A and b, b′ ∈ B such that

αd{A,B} = αd{{a,a′},{b,b′}} = βd{{a,a′},{b,b′}}.

Since {A0, B0} is a d-split, if αd{A,B} = 0, then {A0, B0} cannot ex-

tend {{a, a′}, {b, b′}}, and if αd{A,B} > 0, then {A0, B0} cannot extend

{{a, a′}, {b, b′}} either by Theorem 2.3. Hence by (2.8), one has

αd{A,B} = βd{{a,a′},{b,b′}} = βd̃{{a,a′},{b,b′}} ≥ α
d̃
{A,B}.

To prove the reverse inequality, assume that a, a′ ∈ A and b, b′ ∈ B are such
that

αd̃{A,B} = αd̃{{a,a′},{b,b′}} = βd̃{{a,a′},{b,b′}}.

If {A0, B0} does not extend {{a, a′}, {b, b′}}, one has by (2.8) that

αd{A,B} ≤ β
d
{{a,a′},{b,b′}} = βd̃{{a,a′},{b,b′}}.

Now, if {A0, B0} extends {{a, a′}, {b, b′}}, it follows from Theorem 2.3 and
(2.7) that

αd{A,B} ≤ α
d
{A,B} + αd{A0,B0} − λ ≤ α

d
{{a,a′},{b,b′}} − λ ≤ β

d
{{a,a′},{b,b′}} − λ

= βd̃{{a,a′},{b,b′}}

= αd̃{A,B}.

Using induction, this concludes the case |S̃| <∞.
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We can now proceed to the more general case.

Proof of Theorem 1.3. Let S̃ ⊂ S be the set of all d-splits S such that λS > 0.
For any Y := {x, y, z} ⊂ X, we can consider the set S̃Y ⊂ S̃ of all splits in S̃
that restrict to a split of Y . Since S̃ ⊂ S, S̃Y is a finite set by Lemma 2.4.
We set

d̃Y := d−
∑
S∈S̃Y

λSδS . (2.9)

Now, d̃|Y×Y coincides with d̃Y |Y×Y and the latter satisfies the triangle in-
equality as we proved in the case |S̃| < ∞, hence so does the former. It
follows that d̃ is a pseudometric. Let now S0 := {A0, B0} be any split of X,
we consider three cases:

(a) Assume that S0 ∈ S̃. Note that d̃ is in general not integer-valued. For
any ε > 0, we can choose ã, ã′ ∈ A0 and b̃, b̃′ ∈ B0 such that

αd̃{A0,B0} ≥ α
d̃
{{ã,ã′},{b̃,̃b′}} − ε.

Moreover, we can choose a, a′ ∈ A0 and b, b′ ∈ B0 such that

αd{A0,B0} = αd{{a,a′},{b,b′}}.

By Theorem 2.3, {A0, B0} is the unique d-split extending {{a, a′}, {b, b′}}.
Furthermore, set

Y := {ã, ã′, b̃, b̃′, a, a′, b, b′}.

We can assume without loss of generality that S0 ⊂ S̃Y . We have

αd̃{A0,B0} ≥ α
d̃
{{ã,ã′},{b̃,̃b′}} − ε ≥ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} − ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

− ε

Note that d-splits of X that restrict to splits of Y are d|Y×Y -splits. Since
S0 ⊂ S̃Y , S0 is a d-split and it is the unique d-split of X that restricts
to {{ã, ã′, a, a′}, {b̃, b̃′, b, b′}} on Y , we can apply the Lemma 2.5 with d̃Y
given by (2.9) to deduce that

α
d̃Y |Y×Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

= α
d|Y×Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

− λ{A0,B0}.

Finally, the right-hand side is equal to

αd{{a,a′},{b,b′}} − λ{A0,B0} = αd{A0,B0} − λ{A0,B0}.

64



IV.2. DECOMPOSITION THEORY

Hence, αd̃{A0,B0} ≥ α
d
{A0,B0} − λ{A0,B0} − ε. Since this holds for any ε > 0,

we get αd̃{A0,B0} ≥ αd{A0,B0} − λ{A0,B0}. The other inequality is obtained
similarly, noting that

αd̃{A0,B0} ≤ α
d̃
{{ã,ã′},{b̃,̃b′}} ≤ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} + ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

+ ε.

(b) Assume that S0 ∈ S \ S̃. Let Y and SY be defined as in the former case.
Similarly to the former case, we have

αd̃{A0,B0} ≥ α
d̃
{{ã,ã′},{b̃,̃b′}} − ε ≥ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} − ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

− ε.

as well as

αd̃{A0,B0} ≤ α
d̃
{{ã,ã′},{b̃,̃b′}} ≤ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} + ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

+ ε.

Since S̃Y ⊂ S̃, we have S0 /∈ S̃Y by assumption. Since S0 is the unique
d-split of X that restricts to {{ã, ã′, a, a′}, {b̃, b̃′, b, b′}} on Y , it follows
that no element of S̃Y restricts to {{ã, ã′, a, a′}, {b̃, b̃′, b, b′}} on Y . We
can apply Lemma 2.5 with d̃Y given by (2.9) to obtain

α
d̃Y |Y×Y
{{a,a′,ā,ā′},{b,b′,b̄,b̄′}} = α

d|Y×Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

.

The right-hand side is now equal to

αd{{a,a′},{b̄,b̄′}} = αd{A0,B0}.

Since ε > 0 can be taken arbitrarily small, we thus get αd̃{A0,B0} =

αd{A0,B0}.

(c) Assume that S0 /∈ S, let Y and SY be defined as in the former case, we
get

αd̃{A0,B0} ≥ α
d̃
{{ã,ã′},{b̃,̃b′}} − ε ≥ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} − ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

− ε.
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as well as

αd̃{A0,B0} ≤ α
d̃
{{ã,ã′},{b̃,̃b′}} ≤ α

d̃
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}} + ε

= αd̃Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

+ ε.

Note that S0 restricts to {{ã, ã′, a, a′}, {b̃, b̃′, b, b′}} on Y and since

αd{A0,B0} = αd{{a,a′},{b,b′}} = 0,

it follows that {{ã, ã′, a, a′}, {b̃, b̃′, b, b′}} is not a d|Y×Y -split of Y . Hence
by the finite case with d̃Y given by (2.9), it follows that

α
d̃Y |Y×Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

= α
d|Y×Y
{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

= αd{{ã,ã′,a,a′},{b̃,̃b′,b,b′}}

= αd{A0,B0}

= 0.

Since ε > 0 can be taken arbitrarily small, we thus get αd̃{A0,B0} = 0 =

αd{A0,B0}.

This concludes the proof.

The next definition is the same as in the finite case.

2.6 Definition. We say that a collection S of splits of X is weakly compatible
if there are no four points {x0, x1, x2, x3} ⊂ X and three splits {S1, S2, S3} ⊂ S
such that for any i, j ∈ {1, 2, 3}, one has

Si(x0) = Si(xj)⇐⇒ i = j.

It is clear from (2.2) that for a pseudometric space (X, d) and every set of
four different points {x0, x1, x2, x3} ⊂ X at least one of

α{{x0,x1},{x2,x3}}, α{{x0,x2},{x1,x3}} and α{{x0,x3},{x1,x2}}

is equal to zero. From Theorem 2.3, it thus follows that the d-splits with re-
spect to any integer-valued pseudometric d on X are weakly compatible. Now,
for pseudometric spaces with integer-valued pseudometric, the next theorem
is proved as [4, Theorem 3].
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2.7 Theorem. The d-splits with respect to any integer-valued pseudometric
d on a set X are weakly compatible. Conversely, let S0 be any collection of
weakly compatible splits of X. For each S ∈ S0, choose some λS ∈ (0,∞) such
that

d :=
∑
S∈S0

λSδS : X ×X → Z ∩ [0,∞).

Then, S0 is the set of all d-splits and for each S ∈ S0, the isolation index
αS = αdS equals λS.

Proof. Let S := {A,B} ∈ S0. Pick x, y ∈ A and z, w ∈ B such that

αd{{x,y},{z,w}} = αd{A,B}.

By weak compatibility of S0, we can assume that there is no split in S0 ex-
tending (without loss of generality) {{x,w}, {y, z}}. Let

S1 := {S ∈ S0 : S extends {{x, y}, {z, w}}},
S2 := {S ∈ S0 : S extends {{x, z}, {y, w}}},

noting that S ⊂ S1. All splits in S0 \ (S1 ∪ S2) equally contribute to each of
the three distance sums involving x, y, z, w in βd{{x,y},{z,w}}, so that by (2.2),
we get

αd{{x,y},{z,w}} = βd{{x,y},{z,w}} =
1

2
(max{xz + yw, xw + yz} − xy − zw)

= max

∑
S∈S1

λS ,
∑

S∈S1∪S2

λS

− ∑
S∈S1

λS

=
∑
S∈S1

λS

≥ λ{A,B}
> 0.

Therefore, {A,B} is a d-split. Let us denote by S the set of all d-splits of
X, we have just proved that S0 ⊂ S. We can decompose d according to
Theorem 1.3 to obtain

d = d0 +
∑
S∈S

αdSδS ≥
∑
S∈S0

αdSδS ≥
∑
S∈S0

λSδS = d,

which implies that equality holds throughout. This finally yields d0 ≡ 0 as
well as S0 = S. Furthermore, for each S ∈ S, one has αdS = λS and for each
S /∈ S, one has αdS = 0. This concludes the result.
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In the next lemma, assumptions ensure that E(X, d) is a polyhedral com-
plex. We denote by Σ0(E(X, d)) the set of vertices of the polyhedral complex
E(X, d). Equivalently, it is the set of all functions f ∈ E′(X, d) such that
rank(A(f)) = 0.

2.8 Lemma. Let (X, d) be a metric space with integer-valued metric satisfying
the (LRC) and let f ∈ Σ0(E(X, d)). Let S<∞ be any finite subset of the set S
of all d-splits of X. If for every S ∈ S<∞, one picks λS ∈ [0, αdS ], then there
are functions fS ∈ E(X, δS) such that

f −
∑

S∈S<∞

λSfS ∈ ∆

X, d− ∑
S∈S<∞

λSδS

 .

Proof. Let S := {A,B} ∈ S<∞ where S<∞ is any finite subset S. Since
rank(A(f)) = 0 and thus A(f) is in particular not bipartite, there are a, a′ ∈ X
such that {a, a′} ∈ A(f) and either a, a′ ∈ A or a, a′ ∈ B. Assume without
loss of generality that a, a′ ∈ A. Note that if there are b, b′ ∈ B such that one
has {b, b′} ∈ A(f), then

max{d(a, b) + d(a′, b′), d(a, b′) + d(a′, b)} ≤ f(a) + f(a′) + f(b) + f(b′)

= d(a, a′) + d(b, b′),

and thus αdS = 0, which contradicts our assumption. Hence for any b, b′ ∈ B,
one has {b, b′} /∈ A(f). We set

fS(x) =

{
0 if x ∈ A,
1 if x ∈ B.

We show that f (1) := f −λSfS and d(1) := d−λSfS satisfy f (1) ∈ ∆
(
X, d(1)

)
.

We denote distances d(x, y) simply by xy and we distinguish three cases:

(a) if x, y ∈ A, then

f (1)(x) + f (1)(y) = f(x) + f(y) ≥ xy = d(1)(x, y),

(b) if x ∈ A and y ∈ B, then

f (1)(x) + f (1)(y) = f(x) + f(y)− λS ≥ xy − λS = d(1)(x, y),
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(c) if x, y ∈ B, there are {a, a′} ⊂ A such that

f(a) + f(a′)− aa′ = 0

hence,

f (1)(x) + f (1)(y) = f(x) + f(y)− 2λS

≥ [f(x) + f(y)− 2λS ] +
[
f(a) + f(a′)− aa′

]
≥ max

{
xa+ ya′, xa′ + ya

}
− aa′ − 2λS

≥ xy.

Hence f (1) ∈ ∆
(
X, d(1)

)
as desired. Now, note that if {x, y} ∈ Ad(f), then

either x, y ∈ A or x ∈ A and y ∈ B. In both cases one sees that equalities
hold in (a) and (b) above and thus that {x, y} ∈ Ad(1)

(f (1)) (where Ad
(1)

(f (1))
refers to those {x, y} such that f (1)(x) + f (1)(y) = d(1)(x, y)), thus

Ad(f) ⊂ Ad(1)
(f (1)), (2.10)

hence in particular f (1) ∈ Σ0(E(X, d(1))). For S′ := {A′, B′} ∈ S \ {S}, we

can proceed as above finding c, c′ ∈ A′ such that {c, c′} ∈ Ad
(1)

(f (1)). By

Theorem 1.3, it follows that αd
(1)

S′ = αdS′ > 0 which implies that for e, e′ ∈ B′,
one has {e, e′} /∈ Ad(1)

(f (1)). We set

f
(1)
S′ (x) =

{
0 if x ∈ A′,
1 if x ∈ B′

and as before, we obtain f (1) − λS′f
(1)
S′ ∈ ∆

(
X, d(1) − λS′δS′

)
. By (2.10), it

follows that fS′ = f
(1)
S′ . Hence, we obtain

f − λSfS − λS′fS′ = f (1) − λS′f
(1)
S′ ∈ ∆

(
X, d(1) − λS′δS′

)
= ∆

(
X, d(2)

)
where d(2) = d−λSδS−λS′δS′ . By induction, we now get the desired result.

The next lemma is proved as the corresponding assertion in [4, Theorem 7].

2.9 Lemma. Let (X, d) be a metric space with integer-valued metric satisfying
the (LRC). For any split S = {A,B} of X and any λS > 0 such that d =
d1 + λSδS, if ∆(X, d) = ∆(X, d1) + λS∆(X, δS), then the following hold:

(i) S is a d-split of X and
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(ii) λS ≤ αS.

Proof. Assume that there is a split S = {A,B} of X and λS > 0 such that
d = d1 + λSδS . If ∆(X, d) = ∆(X, d1) + λS∆(X, δS), we show that for any
A0 := {a, a′} ⊂ A and B0 := {b, b′} ⊂ B and writing simply xy instead of
d(x, y), one has

1
2

(
max{ab+ a′b′, a′b+ ab′} − aa′ − bb′

)
≥ λS .

Note that for any Y ⊂ X and any split S of X, one has

∆(d|Y×Y ) = ∆(d1|Y×Y ) + λS∆(δS |Y×Y )

and thus in particular for Y := A0 ∪ B0 and the split S := {A0, B0} of Y .
Define now the map f : Y → R as follows

f(a) := 1
2(aa′ + ab− a′b),

f(a′) := 1
2(aa′ + a′b− ab),

f(b) := 1
2(ab+ a′b− aa′),

f(b′) := max{ab′ − f(a), a′b′ − f(a′), bb′ − f(b)}.

It is then easy to see that

f(a) + f(a′) = aa′,

f(a) + f(b) = ab,

f(a′) + f(b) = a′b.

Furthermore, f(a), f(a′) and f(b) are clearly non-negative. From

ab′ − f(a) + a′b′ − f(a′) = ab′ + a′b′ − aa′ ≥ 0

we deduce that f(b′) ≥ 0. Therefore, f ∈ E(Y, d) ⊂ ∆(Y, d). By assumption,
there exist f1 ∈ ∆(Y, d1) and fS ∈ ∆(Y, δS) such that

f = f1 + λSfS .

Since δS(a, a′) = 0, we have

d1(a, a′) = aa′ = f(a) + f(a′) ≥ f1(a) + f1(a′)

hence f1(a) + f1(a′) = aa′ and thus fS(a) = fS(a′) = 0 which implies

fS(b) ≥ 1 and fS(b′) ≥ 1.
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Moreover, we have

f1(a) + f1(b) + λSfS(b) = f(a) + f(b) = ab = d1(a, b) + λS

≤ f1(a) + f1(b) + λS .

Therefore
fS(b) = 1.

Similarly,

f1(a′) + f1(b) + λSfS(b) = f(a′) + f(b) = a′b = d1(a′, b) + λS

≤ f1(a′) + f1(b) + λS ,

and thus
f(a′) + f(b) = f1(a′) + f1(b) + λS = a′b.

Observe that since λSfS(b) = λS > 0, one has

f(b) + f(b′) > f1(b) + f1(b′) ≥ d1(b, b′) = bb′.

Since we may interchange the role of a and a′ in the following, we can assume
that f(a) + f(b′) = ab′ since f ∈ E(Y, d). Hence

f1(a) + f1(b′) + λSfS(b) = f(a) + f(b′) = ab′ = d1(a, b′) + λS

≤ f1(a) + f1(b′) + λS .

and therefore
fS(b′) = 1.

Since
f1(b) + f1(b′) ≥ d1(b, b′) = bb′,

we finally obtain

1
2

(
max{ab+ a′b′, a′b+ ab′} − aa′ − bb′

)
≥ 1

2

(
a′b+ ab′ − aa′ − bb′

)
= 1

2

(
f(a′) + f(b) + f(a) + f(b′)− f(a)− f(a′)− bb′

)
= 1

2

(
f1(a′) + f1(b) + λ+ f1(a) + f1(b′) + λ− f1(a)− f1(a′)− bb′

)
= 1

2

(
f1(b) + f1(b′)− bb′

)
+ λS

≥ λS ,

i.e. αdS ≥ λS and this is the desired result.
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Note that
∆(X, d0) +

∑
S∈S

αS∆(X, δS) ⊂ [0,∞]X ,

and since S is possibly infinite, we cannot replace [0,∞]X by RX in general.

2.10 Theorem. Let (X, d) be a metric space with integer-valued metric sat-
isfying the (LRC). Let S be the family of all d-splits of X so that d =
d0+

∑
S∈S αSδS, let λS ∈ [0, αS ] for every S ∈ S and set d1 := d−

∑
S∈S λSδS.

Then

∆(X, d) = RX ∩

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)
.

Proof. Let S be the set of all d-splits and let S ∈ S. As in the proof of
Lemma 2.8, for f ∈ Σ0(E(X, d)), since rank(A(f)) = 0 and thus A(f) is in
particular not bipartite, there are a, a′ ∈ X such that {a, a′} ∈ A(f) and
without loss of generality that a, a′ ∈ A. Then, for any b, b′ ∈ B, one has
{b, b′} /∈ A(f). We set

fS(x) =

{
0 if x ∈ A,
1 if x ∈ B.

We first show that for every x ∈ X, one has
∑

S∈S λSfS(x) 6= ∞. Note that
for every x ∈ X, there exists x′ ∈ X such that {x, x′} ∈ Ad(f). Furthermore,
we have

d(x, x′) = d0(x, x′) +
∑
S∈S

S(x)6=S(x′)

αdSδS(x, x′).

Since αdS ∈ [0,∞) ∩ 1
2Z, we deduce that the set

Sxx′ := {S ∈ S : S(x) 6= S(x′)}

is finite. Moreover, for every S := {A,B} ∈ S \ Sxx′ , since {x, x′} ∈ Ad(f),
one has x, x′ ∈ A and fS(x) = 0 = fS(x′) by definition. It follows that∑

S∈S λSfS ∈ RX as well as

f1 := f −
∑
S∈S

λSfS ∈ RX .

For d1 := d −
∑

S∈S λSδS , it now remains to show that f1 ∈ ∆(X, d1). For
every x, y ∈ X, there are x′, y′ ∈ X such that {x, x′}, {y, y′} ∈ Ad(f). Since for
every S ∈ Sxy, one has fS(x) + fS(y) = 1, it follows that Sxy ⊂ Sxx′ ∪ Syy′ =:
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S<∞ where |S<∞| <∞. By Lemma 2.8 and setting d<∞1 := d−
∑

S∈S<∞ λSδS ,
it follows that

f<∞1 := f −
∑

S∈S<∞

λSfS ∈ ∆
(
X, d<∞1

)
and thus

f1(x) + f1(y) = f<∞1 (x) + f<∞1 (y) ≥ d1(x, y).

This shows that

Σ0(E(X, d)) ⊂

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)
.

Now, using that (X, d) satisfies the (LRC), we can take for each cell of E(X, d),
all finite convex combinations of its vertices and by convexity of ∆(X, d1) and
∆(X, δS) for every S ∈ S, we deduce that

E(X, d) ⊂

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)
.

Adding finally [0,∞)X on both sides and intersecting with RX , we get

∆(X, d) ⊂ RX ∩

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)
.

Since the other inclusion is easy to see, we obtain the desired result.

Let f ∈ E(X, d) ⊂ ∆(X, d). From

∆(X, d) = RX ∩

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)
, (2.11)

we have a decomposition f = f1 +
∑

S∈S λSfS . Note that if there are for
S ∈ S, functions fS ≥ gS ∈ ∆(X, δS) and f1 ≥ g1 ∈ ∆(X, d1) where not
all inequalities are equalities, then g := g1 +

∑
S∈S λSgS ∈ ∆(X, d) by (2.11).

Since g ≤ f ∈ E(X, d), this contradicts the minimality of f . We must therefore
have that

f ∈ RX ∩

(
E(X, d1) +

∑
S∈S

λSE(X, δS)

)
.
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We have thus shown that (2.11) implies

E(X, d) ⊂ RX ∩

(
E(X, d1) +

∑
S∈S

λSE(X, δS)

)
.

Hence, we obtain:

2.11 Corollary. Let (X, d) be a metric space with integer-valued metric
satisfying the (LRC). Let S be the family of all d-splits of X such that
d = d0 +

∑
S∈S αSδS and let λS ∈ [0, αS ] for every S ∈ S so that d1 :=

d−
∑

S∈S λSδS. Then

E(X, d) ⊂ RX ∩

(
E(X, d1) +

∑
S∈S

λSE(X, δS)

)
. (2.12)

It is also easy to see that (2.12) implies (2.11). Remember that from [30],
there is a 1-Lipschitz map p : ∆(X, d) → E(X, d) such that for every f ∈
∆(X, d), one has p(f) ≤ f . Then p(f) =: g ∈ E(X, d). From (2.12), we obtain
a decomposition of g as g := g1 +

∑
S∈S λSgS . Moreover, f − g ∈ [0,∞)X ,

hence g1 + (f − g) ∈ ∆(X, d1) and thus

f = g1 + (f − g) +
∑
S∈S

λSgS ∈ RX ∩

(
∆(X, d1) +

∑
S∈S

λS∆(X, δS)

)

which is the desired result.
We continue with a remark relating to the case of finite metric spaces (with

a nonnegative real-valued metric).

2.12 Remark. Consider for any finite metric space (X, d) the sequence of
metric spaces ((X, dn))n∈N where dn : X ×X → 1

nZ is given by

dn(x, x′) := min{t ∈ 1
nZ : t ≥ d(x, x′)}.

It is easy to see that one has dn → d pointwise and dn defines a metric for any
n ∈ N. For any f ∈ E(X, d), let fn := f + 1

2n . One has

fn ∈ ∆(X, dn) = ∆(X, dn0 ) +
∑
S∈S

αd
n

S ∆(X, δS)

and thus we can write fn = fn0 +
∑

S∈S α
dn

S f
n
S where each function appearing

on the right-hand side is bounded by diam(X). From the formula for the
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IV.3. THE BUNEMAN COMPLEX

isolation indices, we see that for S ∈ S, one has αd
n

S → αdS and by properness
of ∆(X, δS) endowed with the supremum norm, considering subsequences if
necessary, fnS → fS ∈ ∆(X, δS), similarly fn0 → f0 ∈ ∆(X, d0). Since fn → f
in the supremum norm, and by uniqueness of the limit, we obtain

f = f0 +
∑
S∈S

αdSfS ∈ ∆(X, d0) +
∑
S∈S

αdS∆(X, δS).

But since f ∈ E(X, d), it follows by minimality that

f0 +
∑
S∈S

αdSfS ∈ E(X, d0) +
∑
S∈S

αdSE(X, δS)

and this closes the remark.

We conclude this section with a final remark.

2.13 Remark. Let (X, d) be a metric space with integer-valued metric. By
Theorem 1.3, one can consider the associated split decomposition

d = d0 +
∑
S∈S

αdSδS .

Note that the pseudometric
∑

S∈S α
d
SδS is now only known to be 1

2Z-valued
by (2.6). Nevertheless, it is easy to see that E(X, γd) = γE(X, d) in RX for
any γ > 0. Hence

E(X,
∑
S∈S

αdSδS) = 1
2E(X,

∑
S∈S

2αdSδS) ⊂ 1
2

(
RX ∩

∑
S∈S

2αdSE(X, δS)

)
= RX ∩

∑
S∈S

αdSE(X, δS).

Thus, by rescaling the situation is similar to the integer-valued case.

IV.3 The Buneman Complex and Related Topics

If S is a split system (on a set X) and α : S → (0,∞) is any map S 7→ αS ,
the weighted split system given by the pair (S, α) is called a split system pair
(of X). If S is weakly compatible as in Definition 2.6, then (S, α) is called a
weakly compatible split system pair. Let now S be a weakly compatible split
system on a pseudometric space with integer-valued pseudometric (X, d) and
assume that

d =
∑
S∈S

αSδS .
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IV.3. THE BUNEMAN COMPLEX

By Theorem 2.7, S is the set of all d-splits of X and d is thus totally split-
decomposable. The weakly compatible split system pair (S, α) is called the
split system pair associated to (X, d). Unless otherwise stated, this is the split
system pair that we refer to in the sequel, when considering a totally split-
decomposable pseudometric space (X, d). We give some statements that hold
for general cell complexes which we define as follows.

3.1 Definition. We call K a (real) cell complex if K is a subset of a real vector
space endowed with a family of convex subsets {Ci}i∈I of K such that the
collection ∆K := {Ci}i∈I verifies for any Ci, Cj ∈ ∆K that Ci∩Cj ∈ ∆K∪{∅}
and

⋃
iCi = K. The sets Ci are called the cells of K and the dimension of Ci

is the dimension of its affine hull, which might be infinite.

Let now (S, α) be any split system pair on a set X, let

U(S) := {A ⊂ X : there is S ∈ S such that A ∈ S}

and for µ : U(S)→ [0,∞), let

supp(µ) := {A ∈ U(S) : µ(A) > 0}.

For A ⊂ X, we usually denote its complement X \ A by Ā. If A ∈ U(S), we
denote the split {A, Ā} ∈ S by SA. Moreover, we define a (possibly) infinite
dimensional hypercube

H(S, α) := {µ : U(S)→ [0,∞) : for all A ∈ U(S)

one has µ(A) + µ(Ā) =
αSA

2 }.

Note that H(S, α) has a natural cell complex structure, cells are sets of the
form

[µ] := {µ′ ∈ H(S, α) : supp(µ′) ⊂ supp(µ)}

where µ ∈ H(S, α). The cells of H(S, α) are (possibly) infinite dimensional
hypercubes. The Buneman complex is the subcomplex of H(S, α) given by

B(S, α) :=

{µ ∈ H(S, α) : if A,B ∈ supp(µ) and A ∪B = X, then A ∩B = ∅} .

Furthermore, let

T̄ (S, α) :={
µ ∈ H(S, α) : if {Ai}i∈I ⊂ supp(µ) and

⋃
i∈I

Ai = X, then
⋂
i∈I

Ai = ∅

}
.
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It is easy to see that T̄ (S, α) is a subcomplex of B(S, α), as in the finite case
[19, Section 4]. Indeed, T̄ (S, α) ⊂ B(S, α) and T̄ (S, α) is a subcomplex of
H(S, α) since if µ ∈ T̄ (S, α), then for any µ′ ∈ H(S, α) such that supp(µ′) ⊂
supp(µ), one obviously has µ′ ∈ T̄ (S, α). We can thus denote by [ψ] the
smallest cell of H(S, α) containing ψ ∈ H(S, α) and thus if ψ ∈ B(S, α), then
[ψ] ⊂ B(S, α) and similarly if ψ ∈ T̄ (S, α), then [ψ] ⊂ T̄ (S, α).

Now, for x ∈ X consider the map φx : U(S)→ [0,∞) which is defined as

φx(A) :=

{
αSA

2 if x /∈ A,
0 if x ∈ A.

Moreover, let d1 : RU(S) × RU(S) → [0,∞]X be given by

(µ, ψ) 7→
∑

A∈U(S)

|µ(A)− ψ(A)|.

The map κ : RU(S) → [0,∞]X given by µ 7→ κ(µ) where for x ∈ X, one has

κ(µ)(x) = d1(µ, φx).

The next lemma summarizes several useful properties which follow from
the above definitions.

3.2 Lemma. Let (S, α) be a split system pair on a set X and assume d :=∑
S∈S αSδS defines a pseudometric on X. It follows easily that the following

hold:

(i) For every x, y ∈ X, one has

d1(φx, φy) = d(x, y).

(ii) For every x ∈ X, one has

φx ∈ T̄ (S, α) ⊂ B(S, α).

(iii) For every µ, φ ∈ RU(S), one has

sup
x∈X
|κ(µ)(x)− κ(φ)(x)| ≤ d1(µ, φ)

where each side might be infinite.
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For x, y ∈ X and S = {A, Ā} ∈ S, let S(x) := A if x ∈ A and S(x) := Ā
if x ∈ Ā. Define Sxy := {S ∈ S : S(x) 6= S(y)}. Under the assumptions of
Lemma 3.2, for ψ : S → R one has

κ(ψ)(x) + κ(ψ)(y) =
∑
S∈Sxy

[∣∣ψ(S(x))− φx(S(x))
∣∣+
∣∣ψ(S(x))− φy(S(x))

∣∣
+
∣∣ψ(S(x))− φx(S(x))

∣∣+
∣∣ψ(S(x))− φy(S(x))

∣∣]
+
∑
S/∈Sxy

[∣∣ψ(S(x))− φx(S(x))
∣∣+
∣∣ψ(S(x))− φy(S(x))

∣∣
+
∣∣ψ(S(x))− φx(S(x))

∣∣
+
∣∣ψ(S(x))− φy(S(x))

∣∣]
≥

∑
S∈Sxy

αSδS(x, y)

+
∑
S/∈Sxy

[
2
∣∣ψ(S(x))

∣∣+ 2
∣∣ψ(S(x))− αS

2

∣∣],
Hence, it follows that

1

2
[κ(ψ)(x)+κ(ψ)(y)−d(x, y)] ≥

∑
S∈S

S(x)=S(y)

[∣∣ψ(S(x))
∣∣+ ∣∣ψ(S(x))− αS

2

∣∣], (3.1)

and equality holds if ψ ∈ H(S, α).
For simplicity, we denote the injective hull E(X, d) by E(d) when the un-

derlying space X is clear (unlike in [30] where it is denoted by E(X)) and
E′(X, d) by E′(d). Analogously, ∆(X, d) is denoted by ∆(d) (it corresponds
to the space ∆(X) in [30]).

3.3 Lemma. Let (S, α) be a split system pair on a set X and assume that
d :=

∑
S∈S αSδS defines a pseudometric on X. For every µ ∈ H(S, α), the

following are equivalent:

(i) κ(µ) ∈ E′(d).

(ii) µ ∈ T̄ (S, α).

Proof. Consider µ ∈ H(S, α). Let us first show that (ii) implies (i). Let
µ ∈ H(S, α) and assume that κ(µ) /∈ E′(d). For x, y ∈ X we have κ(µ)(x) +
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κ(µ)(y) = d1(µ, φx) + d1(µ, φy) ≥ d1(φx, φy) = d(x, y), in particular κ(µ) ∈
[0,∞]X . By our contradiction assumption, there is x ∈ X such that for
every y ∈ X, one has κ(µ)(x) + κ(µ)(y) > d(x, y) where the left-hand side is
possibly infinite. Since µ ∈ H(S, α), equality holds in (3.1), hence there is
Sy ∈ S such that Sy(x) = Sy(y) and µ(Sy(x)) > 0. ThereforeX =

⋃
y∈X Sy(x)

where {Sy}y∈X ⊂ supp(µ). Moreover, x ∈
⋂
y∈X Sy(x) 6= ∅. It follows that

µ /∈ T̄ (S, α). This shows that (ii) implies (i).
To show the other implication, assume that κ(µ) ∈ E′(d). For every x ∈ X,

there is w ∈ X such that κ(µ)(x)+κ(µ)(w) = d(x,w). By (3.1), for any S ∈ S
one has

if S(x) = S(w), then µ(S(x)) = 0 = µ(S(w)). (3.2)

Note that for any Ai ∈ supp(µ), there exists by definition Si ∈ S as well as
xi ∈ X such that Ai = Si(xi). Now, if X =

⋃
i∈I Ai =

⋃
i∈I Si(xi) and if

by contradiction we assume that
⋂
i∈I Si(xi) 6= ∅, we can pick an arbitrary

z ∈
⋂
i∈I Si(xi). Then, for every i ∈ I one has Si(xi) = Si(z) and thus

X =
⋃
i∈I Si(z). It is now easy to see that the existence of z contradicts (3.2).

Indeed, for any y ∈ X, there is Sj ∈ {Si}i∈I ⊂ S such that y ∈ Sj(z) and
hence

Sj(y) = Sj(z). (3.3)

However,
Sj(z) = Sj(xj) = Aj ∈ supp(µ) (3.4)

and y can be chosen so that κ(µ)(z) + κ(µ)(y) = d(z, y). Thus by (3.2) and
(3.3), one has µ(Sj(y)) = 0 = µ(Sj(z)) which is a contradiction to (3.4). This
finishes the proof.

3.4 Lemma. Let (X, d) be a totally split-decomposable metric space
with integer-valued metric satisfying the (LRC). Then, the map κ̄ :=
κ|T̄ (S,α) : T̄ (S, α)→ E(d) is surjective.

Proof. Let f ∈ E(d). By Corollary 2.11, we have E(d) ⊂
∑

S∈S αSE(δS).
Thus, we have a decomposition

f =
∑
S∈S

αSfS

where fS ∈ E(δS) implies that if S = {A, Ā}, then for any x ∈ A and y ∈ Ā
one has that fS is constantly equal to fS(x) on A, constantly equal to fS(y)
on Ā and fS(x), fS(y) ≥ 0 as well as fS(x) + fS(y) = 1. Define the map
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ψf : U(S) → [0,∞) by setting for every S = {A, Ā} as well as for arbitrarily
chosen x ∈ A and y ∈ Ā:

ψf (A) :=
αS
2
fS(x) and ψf (Ā) :=

αS
2
fS(y).

It is clear that ψf is well-defined, i.e., the above definition does not depend
on the particular choice of x and y. Furthermore, it is easy to see that

(a) ψf ∈ H(S, α) and

(b) κ(ψf ) = f ∈ E(d) = E′(d).

It then follows from Lemma 3.3 that ψf ∈ T̄ (S, α) and this finishes the proof.

For a map φ : S → [0,∞), let

S(φ) := {S ∈ S : S ⊂ supp(φ)}.

Let us define for a cell [φ] of T̄ (S, α) and x ∈ X, the map γx[φ] : U(S)→ [0,∞)
given by

γx[φ](A) =

{
φx(A) if A ∈ U(S(φ)),

φ(A) if A ∈ U(S \ S(φ)).

Note that one has ψ ∈ [φ] if and only if supp(ψ) ⊂ supp(φ) and it follows that
if A ∈ U(S \ S(φ)), then

ψ(A) = φ(A) = γx[φ](A).

Hence γx[φ] ∈ [φ] since supp(γx[φ]) ⊂ supp(φ).

3.5 Definition. Let i : (X, dX)→ (Y, dY ) be an isometric map of pseudomet-
ric spaces. We say that Z ⊂ Y is X-gated (for i and with respect to dY ) if
and only if for every x ∈ X, there is yx ∈ Z such that for every z ∈ Z, one
has

dY (i(x), z) = dY (i(x), yx) + dY (yx, z).

The proof of the next lemma follows the proof of [28, Lemma 3.1].

3.6 Lemma. Let (S, α) be a split system pair on a set X and assume that
d :=

∑
S∈S αSδS defines a pseudometric on X. Then, every cell [φ] of T̄ (S, α)

is X-gated with respect to the restriction of d1 to T̄ (S, α).
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Proof. We already noted that φx ∈ T̄ (S, α) for every x ∈ X and that the
map x 7→ φx is an isometric embedding of X into T̄ (S, α). By Lemma 3.3, if
ψ ∈ T̄ (S, α), then for any x ∈ X, there is y ∈ X such that κ(ψ)(x)+κ(ψ)(y) =
d(x, y) and thus d1(φx, ψ) = κ(ψ)(x) <∞. In particular, the restriction of d1

to T̄ (S, α) is a metric. Now, for x ∈ X and ψ ∈ [φ], one has:

d1(φx, ψ) =
∑

A∈U(S)

|φx(A)− ψ(A)|

=
∑

A∈U(S\S(φ))

|φx(A)− ψ(A)|+
∑

A∈U(S(φ))

|φx(A)− ψ(A)|

=
∑

A∈U(S\S(φ))

|φx(A)− γx[φ](A)|+
∑

A∈U(S(φ))

|γx[φ](A)− ψ(A)|

= d1(φx, γ
x
[φ]) + d1(γx[φ], ψ),

which shows that γx[φ] is a gate for φx in [φ] with respect to the metric d1.

3.7 Lemma. Let (S, α) be a split system pair on a set X and assume that
d :=

∑
S∈S αSδS defines a pseudometric on X. Then, for every φ ∈ T̄ (S, α),

the split system S(φ) ⊂ S is antipodal, which means that for any x ∈ X, there
is y ∈ X such that

for every S ∈ S(φ), one has S(x) 6= S(y). (3.5)

For x, y ∈ X, if d(x, y) = κ(φ)(x) + κ(φ)(y), then x and y satisfy (3.5).

Proof. By Lemma 3.3, κ(φ) ∈ E′(d). Thus for any x ∈ X, there is y ∈ X such
that

d(x, y) = κ(φ)(x) + κ(φ)(y)

which can be rewritten as∑
S∈S

αSδS(x, y) = d1(φ, φx) + d1(φ, φy). (3.6)

It is easy to see that for every S ∈ S, one has

αSδS(x, y) =
∑
A∈S
|φx(A)− φy(A)| ≤

∑
A∈S

[
|φx(A)− φ(A)|+ |φ(A)− φy(A)|

]
which together with (3.6) imply

αSδS(x, y) =
∑
A∈S

[
|φx(A)− φ(A)|+ |φ(A)− φy(A)|

]
. (3.7)
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Assume now that there is S ∈ S(φ) such that S(x) = S(y), then by (3.7), one
has

0 = αSδS(x, y) =
∑
A∈S

[
|φx(A)− φ(A)|+ |φ(A)− φy(A)|

]
= 4φ(S(x)),

which implies S(x) /∈ supp(φ) and thus S /∈ S(φ), which is a contradiction.
This finishes the proof.

By Lemma 3.6 every cell [φ] of T̄ (S, α) is X-gated. Let (Γ([φ]), d1) denote
the set of all X-gates of [φ] endowed with the restriction of d1. A pseudometric
space (X, d) is called antipodal if there exists an involution σ : X → X such
that for every x, y ∈ X, one has

d(x, σ(x)) = d(x, y) + d(y, σ(x)).

The proof of the next lemma follows the proof of [28, Lemma 4.2].

3.8 Lemma. Let (S, α) be a split system pair on a set X and assume that
d :=

∑
S∈S αSδS defines a pseudometric on X. Then, for every cell [φ] of

T̄ (S, α), the metric space (Γ([φ]), d1) is antipodal.

Proof. Let x ∈ X. Lemma 3.7 implies that there is y ∈ X such that for every
S ∈ S(φ), one has S(x) 6= S(y). Now, define the map σ : Γ([φ]) → Γ([φ]) by
picking for each γu[φ] ∈ Γ([φ]) an arbitrary element

v ∈
⋂

S∈S(φ)

S(u)

and letting
γu[φ] 7→ γv[φ].

First note that if γu[φ] = γu
′

[φ], one then has for each A ∈ U(S(φ)):

φu(A) = γu[φ](A) = γu
′

[φ](A) = φu′(A)

that is ⋂
S∈S(φ)

S(u) =
⋂

S∈S(φ)

S(u′).

Note moreover that σ is well-defined since if v 6= v′ are such that S(u) 6= S(v)
and S(u) 6= S(v′) for all S ∈ S(φ), then S(v) = S(v′) for all S ∈ S(φ) and
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thus γv[φ] = γv
′

[φ] by definition of γv[φ] and γv
′

[φ]. Hence σ is a well-defined map.
It is easy to see that σ is also an involution since

v ∈
⋂

S∈S(φ)

S(u)

implies that for every S ∈ S(φ), one has S(v) = S(u) that is S(v) = S(u) and
thus

u ∈
⋂

S∈S(φ)

S(v).

Furthermore, it is easy to deduce from S(x) 6= S(y) for all S ∈ S(φ) that for
z ∈ X and A ∈ U(S(φ)), one has

|φx(A)− φy(A)| = |φx(A)− φz(A)|+ |φz(A)− φy(A)|. (3.8)

Indeed, if A = S(x) then both sides are equal to αS
2 and the same happens

if A = S(x). Finally, since γx[φ], γ
y
[φ], γ

z
[φ] ∈ [φ], it follows that for every A ∈

U(S \ S(φ)), one has:

γx[φ](A) = γz[φ](A) = γy[φ](A)

which together with (3.8) imply

d1(γx[φ], γ
y
[φ]) = d1(γx[φ], γ

z
[φ]) + d1(γz[φ], γ

y
[φ]).

Since x and z were chosen arbitrarily in X, it follows that (Γ([φ]), d1) is
antipodal and this concludes the proof.

For ψ ∈ T̄ (S, α), we know from Lemma 3.3, that κ(ψ) ∈ E′(d). Recalling
that H(A) := {g ∈ RX : A ⊂ A(g)} from the introduction and setting A :=
A(κ(ψ))), let us then denote by [κ(ψ)] the set H(A) ∩ E′(d). If (X, d) has
integer-valued metric and satisfies the (LRC), E(d) is a cell complex where all
cells are of this form.

3.9 Lemma. Let (S, α) be a split system pair on a set X and assume that
d :=

∑
S∈S αSδS defines a pseudometric on X. Then, for every cell [ψ] of

T̄ (S, α), one has
κ([ψ]) ⊂ [κ(ψ)].

Proof. For each x ∈ X, there is y ∈ X such that κ(ψ)(x) + κ(ψ)(y) = d(x, y).
It follows from (3.7) that∑

S∈S\S(ψ)

αSδS(x, y) =
∑

A∈U(S\S(ψ))

[
|φx(A)− ψ(A)|+ |ψ(A)− φy(A)|

]
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and from the definitions of γx[ψ], γ
y
[ψ] it follows that

d1(γx[ψ], γ
y
[ψ]) =

∑
S∈S(ψ)

αSδS(x, y).

We thus obtain using again the definitions of γx[ψ], γ
y
[ψ] for the last equality

below:

d1(φx, φy) = d(x, y)

=
∑
S∈S

αSδS(x, y)

=
∑

S∈S(ψ)

αSδS(x, y) +
∑

S∈S\S(ψ)

αSδS(x, y)

= d1(γx[ψ], γ
y
[ψ]) +

∑
A∈U(S\S(ψ))

[
|φx(A)− ψ(A)|+ |ψ(A)− φy(A)|

]
= d1(γx[ψ], γ

y
[ψ]) + d1(φx, γ

x
[ψ]) + d1(φy, γ

y
[ψ]). (3.9)

Besides, using Lemma 3.7 we obtain for every µ ∈ [ψ]:

d1(γx[ψ], γ
y
[ψ]) =

∑
S∈S(ψ)

αSδS(x, y)

=
∑

S∈S(ψ)

αS

=
∑

S∈S(ψ)

[
(µ(S(x))− 0) + (αS2 − µ(S(x)))

+ (αS2 − µ(S(x))) + (µ(S(x))− 0)
]

=
∑

S∈U(S(ψ))

[
|φx(A)− µ(A)|+ |φy(A)− µ(A)|

]
= d1(γx[ψ], µ) + d1(µ, γy[ψ]) (3.10)

where the last equality follows from the fact that since µ, γx[ψ], γ
y
[ψ] ∈ [ψ] one

has for every A ∈ U(S \ S(ψ)) that ψ(A) = µ(A) as well as γx[ψ](A) = ψ(A) =

γy[ψ](A). We thus deduce from (3.9) and (3.10) that

d1(φx, φy) = d1(φx, γ
x
[ψ]) + d1(γx[ψ], µ) + d1(µ, γy[ψ]) + d1(γy[ψ], φy).

It thus follows that

d(x, y) = d1(φx, φy) = d1(φx, µ) + d1(µ, φy) = κ(µ)(x) + κ(µ)(y).

Since {x, y} was an arbitrary edge of A(κ(ψ)), we obtain that A(κ(ψ)) ⊂
A(κ(µ)) and this is equivalent to κ(µ) ∈ [κ(ψ)]. This finishes the proof.
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For |X| < ∞, it is easy to see using Theorem 2.10 that E′(d) = E(d) is
a subcomplex of the zonotope

∑
S∈S αSE(δS). Indeed, for every cell [f ] of

E(d), we set H(A(f)) :=
⋂
{x,y}∈A(f) ∂H{x,y} where ∂H{x,y} := {g ∈ RX :

g(x) + g(y) = d(x, y)} and we have cf. [30]:

[f ] = E(d) ∩H(A(f)) = ∆(d) ∩H(A(f)).

It follows that every cell of E(d) is a face of the convex polyhedron ∆(d) =∑
S∈S αS∆(δS). Thus, we can write [f ] := ∂H ∩ ∆(d) for every cell [f ] of

E(d), where H ⊂ RX is a half-space containing ∆(d). It easily follows that
[f ] = ∂H ∩

∑
S∈S αSE(δS) and thus [f ] is a face of

∑
S∈S αSE(δS). In case

|X| =∞, one can make the following observations:

3.10 Remark. Assume (X, d) has integer-valued metric, is totally split-
decomposable, and satisfies the (LRC). In the proof Lemma 3.15 below, we
only need that every cell [f ] of E(d) can be written as

[f ] =
∑
S∈S[f ]

αSE(δS) +
∑

S∈S\S[f ]

αSpS (3.11)

where for each S ∈ S \S[f ], one has pS ∈ {0, 1}X . To see that this holds, note
first that as above in the finite case, one has:

[f ] = E(d) ∩H(A(f)) =
(∑
S∈S

αSE(δS)
)
∩H(A(f)).

Set
Z{x,y} :=

(∑
S∈S

αSE(δS)
)
∩ ∂H{x,y}

where as above

H{x,y} =
{
g ∈ RX : g(x) + g(y) ≥ d(x, y) =

∑
S∈S

S(x) 6=S(y)

αS

}
.

It is then easy to see that by definition of the sets E(δS) and since one has a
decomposition f =

∑
S∈S αSfS with fS ∈ E(δS) for every S ∈ S, it follows

that:
Z{x,y} =

∑
S∈S

S(x)6=S(y)

αSE(δS) +
∑
S∈S

S(x)=S(y)

αSpS
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where pS |S(x) ≡ 0 and pS |S(x)
≡ 1 and additionally, for every

∑
S∈S αSgS ∈

Z{x,y}, it follows that gS = pS for every S ∈ S satisfying S(x) = S(y). In
other words, one has the stronger property:

Z{x,y} =
(∑
S∈S

αSE(δS)
)
\
{∑
S∈S

αSgS ∈
∑
S∈S

αSE(δS) :

∃S ∈ S such that S(x) = S(y) and gS 6= pS

}
.

Taking repeatedly intersections of Z{x,y} with sets of the form ∂H{x′,y′} where
{x′, y′} ∈ A(f), we obtain after finitely many steps, the set Sxy := {S ∈
S : S(x) 6= S(y)} being finite, and setting S ′ := {S ∈ S : for all {x, y} ∈
A(f) one has S(x) 6= S(y)} as well as S ′′ := {S ∈ S : there is {x, y} ∈
A(f) so that S(x) = S(y)}

[f ] =
(∑
S∈S

αSE(δS)
)
∩

⋂
{x,y}∈A(f)

∂H{x,y} =
∑
S∈S′

αSE(δS) +
∑
S∈S′′

αSpS (3.12)

where pS |S(x) ≡ 0 and pS |S(x)
≡ 1 for {x, y} ∈ A(f) satisfying S(x) = S(y).

As before, the following stronger property holds:

[f ] =
(∑
S∈S

αSE(δS)
)
\

⋃
{x,y}∈A(f)

{∑
S∈S

αSgS ∈
∑
S∈S

αSE(δS) :

∃S ∈ S so that S(x) = S(y) and gS 6= pS

}
.

(3.13)

We go on with a more concrete description of the representation of the
cells of E(X, d) in the case where each of them is a combinatorial hypercube.

3.11 Remark. It is not difficult to see if (X, d) is as in Remark 3.10 and if
every cell [f ] of E(X, d) is a combinatorial hypercube, then the representation
(3.11) verifies

k := dim([f ]) = |S[f ]|. (3.14)

Indeed, for every 1-cell [g] of E(X, d), one can represent [g] as in (3.11), namely:

[g] =
∑
S∈S[g]

αSE(δS) +
∑

S∈S\S[g]

αSp
g
S .

Now, note that the affine hull aff([g]) is a 1-dimensional affine subspace of
RX which contains for every S ∈ S[g], a translate of aff(E(δS)). Hence, if
|S[g]| ≥ 2, then for S, S′ ∈ S[g] with S′ 6= S′′, aff(E(δS′)) and aff(E(δS′′)) have
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colinear directional vectors. This is however impossible since for any S ∈ S,
the directional vector of E(δS) with S = {A,B} is a scalar multiple of the
function h ∈ RX that satisfies h|A ≡ 1 and h|B ≡ −1.

It is easy to see by induction that if Z is a sum of finitely many Minkowski
segments which is combinatorially equivalent to an n-hypercube, then for any
vertex z of Z, it follows that Z is the Minkowski sum of translates of all its
edges incident to z. Indeed, assume z is any vertex of Z. By the combinatorial
n-hypercube equivalence of Z, z is incident to exactly n different edges. All
facets of Z incident to z are again zonotopes and are combinatorially equiv-
alent to (n − 1)-hypercubes. There are n such facets and each of them is by
induction the sum of n− 1 edges among those n edges incident to z. Since Z
is a zonotope, it is centrally symmetric. Thus, the symmetric image of each
facet of Z incident to z is again a facet of Z that can be written as a sum of
edges. Hence, there are 2n facets of Z that can be written as a Minkowski
sum of edges of Z. Since Z must have exactly 2n facets, the result follows.

Now, since every cell [f ] is a combinatorial hypercube as well as a zonotope,
it is thus equal to the Minkowski sum of its edges which are in turn 1-cells of
E(X, d). It follows that for i ∈ {1, . . . , k}, we can pick 1-cells [fi] of E(X, d),
so that they all intersect in the vertex f0 of [f ], and we can write:

[f ] = f0 +
∑

i∈{1,...,k}

([fi]− f0)

Using the representation (3.11) for [f ] and for each [fi], we can thus write:

[f ] = f0 +
∑

i∈{1,...,k}

αSiE(δSi) +
∑

S∈S\{Si}

αSpS − f0

 .

Since f0 =
∑

S∈S αSpS =
∑

S∈S\{S1,...,Sk} αSpS +
∑

i∈{1,...,k} αSipSi , it follows:

[f ] = f0 +
∑

i∈{1,...,k}

(
αSiE(δSi)− αSipSi

)
=

∑
S∈S\{S1,...,Sk}

αSpS +
∑

i∈{1,...,k}

αSiE(δSi),

which implies that S[f ] = {Si}i∈{1,...,k} since it is already clear that
{Si}i∈{1,...,k} ⊂ S[f ] and thus they must be equal by the above (i.e., in
aff(P + P ′), if P + P ′ = P , then P ′ = {0}).
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3.12 Remark. If (X, d) is again as in Remark 3.10 and if every cell [f ] of
E(X, d) is a combinatorial hypercube, it is easy to see that if f =

∑
S∈S αSfS

as usual with αS > 0 and fS ∈ E(δS) and setting

Sf := {S ∈ S : fS(X) ⊂ (0, 1)},

then
[f ] =

∑
S∈Sf

αSE(δS) +
∑

S∈S\Sf

αSpS ,

i.e. S[f ] = Sf . Let [f ] be given by its representation as in (3.11). Note
first that for any S ∈ Sf and for any pair of points x, y ∈ X such that
f(x) + f(y) = d(x, y), one has equivalently∑

S∈S
αSfS(x) +

∑
S∈S

αSfS(y) =
∑
S∈S

αSδS(x, y),

hence one necessarily has S(x) 6= S(y) and thus by (3.12), it follows that
Sf ⊂ S[f ]. Now, for the other inclusion, assume that Sf ( S[f ]. Since [f ] is a
hypercube, it follows that∑

S∈Sf

αSE(δS) +
∑

S∈S\Sf

αSpS

is a strict subcell of [f ] containing f and this contradicts the definition of [f ].

3.13 Remark. For (X, d) as in Remark 3.10, let us define the map

λ : E(X, d)→ T̄ (S, α)

by the assignement f 7→ ψf where ψf (as defined in the proof of Lemma 3.4) is
depending on a choice of a representation

∑
S∈S αSfS for f , and this choice is

not unique in general. Furthermore, note that one always has κ◦λ = idE(X,d).
It follows that κ is surjective. In general however, λ ◦ κ 6= idT̄ (S,α).

We go on with a more concrete description of the maps κ and λ:

3.14 Remark. Again, if (X, d) is as in Remark 3.10 and if every cell [f ] of
E(X, d) is a combinatorial hypercube, note that κ : T̄ (S, α)→ E(X, d) is given
by

ψ 7→

(
κ(ψ) : x 7→

∑
S∈S

2ψ(S(x)) =
∑
S∈S

αS
ψ(S(x))

αS/2
=:
∑
S∈S

αSfS(x)

)
(3.15)

88



IV.3. THE BUNEMAN COMPLEX

and λ : E(X, d) → T̄ (S, α) is given by f 7→ ψf where recall that ψf is given
for any A ∈ U(S) and for an arbitrarily chosen x ∈ A by

ψf : A 7→ αSA
2
fSA(x).

By Remark 3.12, it follows that one has:

[κ(ψ)] =
∑

S∈Sκ(ψ)

αSE(δS) +
∑

S∈S\Sκ(ψ)

αSp
κ(ψ)
S

and thus:

(a) λ([κ(ψ)]) = [ψ],

(b) moreover,
[κ(ψ)] = (κ ◦ λ)([κ(ψ)]) = κ([ψ])

where the first equality was already noted in Remark 3.13 and the second
equality follows from (a).

(c) To see that κ is injective, assume g := κ(ψ) = κ(ψ′) =: g′. Then, in partic-

ular, one has [g] = [g′]. Thus, by (3.13) one has Sg = Sg′ as well as pgS = pg
′

S

for each S ∈ S \ Sg. It follows that
∑

S∈Sg αSgS =
∑

S∈Sg′
αSg

′
S . Since∑

S∈Sg αSE(δS) is a finite dimensional zonotope combinatorially equiva-

lent to a hypercube, it follows that gS = g′S for every S ∈ Sg and thus
by (3.15), it follows ψ = ψ′. Hence together with Remark 3.13, it follows
that κ is bijective with inverse λ.

(d) In addition:

λ([f ]) = λ([(κ ◦ λ)(f)]) = (λ ◦ κ)[λ(f)] = [λ(f)]

where the first equality was already noted in Remark 3.13, the second
equality follows from (b) and the last equality follows from (c).

(e) By Remarks 3.11 and 3.12, we have that dim([f ]) = k implies
dim([λ(f)]) = k.

(f) Finally, if dim([ψ]) = k, then dim([κ(ψ)]) = k since if we assume that
dim([κ(ψ)]) > k, it then follows as in (e) from Remarks 3.11 and 3.12
that dim(λ([κ(ψ)])) > k and by (a) it follows that dim([ψ]) > k which is
a contradiction.
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Hence, the map
κ : T̄ (S, α)→ E(X, d)

defines a bijection as well as an isomorphism of cell complexes.

In view of Remark 3.10, we have:

3.15 Lemma. Let (X, d) be a totally split-decomposable metric space with
integer-valued metric which satisfies the (LRC). For every cell [f ] of E(d),
there is f̄ ∈ [f ] such that [f̄ ] = [f ] and so that for ψf̄ ∈ T̄ (S, α) as defined in
the proof of Lemma 3.4, one has

[κ(ψf̄ )] ⊂ κ([ψf̄ ]).

Proof. By the above remark, there is S[f ] ⊂ S such that

[f ] =
∑
S∈S[f ]

αSE(δS) +
∑

S∈S\S[f ]

αSpS

where for each S ∈ S \ S[f ], one has pS ∈ {0, 1}X . We can thus write

f =
∑
S∈S[f ]

αSfS +
∑

S∈S\S[f ]

αSpS

where for every S ∈ S, one has fS ∈ E(δS). Let us moreover define

Sf := {S ∈ S : fS(X) ⊂ (0, 1)}.

It is clear that Sf ⊂ S[f ]. Moreover, S(ψf ) = Sf for ψf defined as in the proof
of Lemma 3.4. Let us now define f̄ ∈ [f ] as

f̄ :=
∑
S∈S[f ]

αS f̄S +
∑

S∈S\S[f ]

αSpS

such that for any S ∈ S[f ], f̄S is constantly equal to 1
2 on X. It is then clear

that Sf̄ = S[f ]. Since S(ψf̄ ) = Sf̄ = S[f ] ⊃ Sf = S(ψf ) and because for every
A ∈ U(S \ S(ψf̄ )) = U(S \ S[f ]), one has

ψf̄ (A) = ψf (A),

it follows that supp(ψf ) ⊂ supp(ψf̄ ) and thus ψf ∈ [ψf̄ ]. Now for any g ∈ [f ],
one similarly has

S(ψg) = Sg ⊂ S[f ] = S(ψf̄ )
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as well as for every A ∈ U(S \ S[f ]) = U(S \ S(ψf̄ ))

ψg(A) = ψf̄ (A).

Thus, supp(ψg) ⊂ supp(ψf̄ ) and thus ψg ∈ [ψf̄ ], that is g = κ(ψg) ∈ κ([ψf̄ ]).
It follows that

[κ(ψf̄ )] = [f̄ ] = [f ] ⊂ κ([ψf̄ ]),

which finishes the proof.

Consider the isometric embedding e: X → E(d) given by

x 7→ (dx : y 7→ d(x, y))

where E(d) is endowed with the metric d∞(f, g) := ‖f − g‖∞. Assume that
(X, d) satisfies the assumptions of Lemma 3.15. We say that E(d) is cell-
decomposable if every cell C of E(d) is X-gated (cf. Definition 3.5). Now, we
have the following:

3.16 Lemma. Let (X, d) be a totally split-decomposable metric space with
integer-valued metric satisfying the (LRC). Then, E(d) is cell-decomposable.

Proof. Let C be a cell of E(d) = E′(d). By Lemmas 3.9 and 3.15, there is
f̄ ∈ C such that [f̄ ] = C and such that ψf̄ ∈ T̄ (S, α) (as defined in the proof
of Lemma 3.4) satisfies

C = [f̄ ] = [κ(ψf̄ )] = κ([ψf̄ ]).

as well as for every g ∈ [f̄ ]:

supp(ψg) ⊂ supp(ψf̄ ). (3.16)

Let x ∈ X be chosen arbitrarily. We want to show that

κ(γx[ψf̄ ]) is a gate for dx in [f̄ ].

For an arbitrarily chosen f ∈ [f̄ ], let us set ψ := ψf which by (3.16) satisfies
ψf ∈ [ψf̄ ]. Now, by Lemma 3.3, there must exist y ∈ X such that

κ(ψf̄ )(x) + κ(ψf̄ )(y) = f̄(x) + f̄(y) = d(x, y).
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Since κ(ψf ) = f ∈ [f̄ ], one has A(f̄) ⊂ A(f), cf. (1.2) and thus κ(ψ)(x) +
κ(ψ)(y) = d(x, y), hence

d1(φx, φy) = d(x, y)

= κ(ψ)(x) + κ(ψ)(y)

= d1(φx, ψ) + d1(ψ, φy)

= d1(φx, γ
x
[ψf̄ ]) + d1(γx[ψf̄ ], ψ) + d1(ψ, γy[ψf̄ ]) + d1(γy[ψf̄ ], φy) (3.17)

and since κ is 1-Lipschitz, it follows that

‖κ(φx)− κ(φy)‖∞ ≤
∥∥∥κ(φx)− κ(γx[ψf̄ ])

∥∥∥
∞

+
∥∥∥κ(γx[ψf̄ ])− κ(ψ)

∥∥∥
∞

+
∥∥∥κ(ψ)− κ(γy[ψf̄ ])

∥∥∥
∞

+
∥∥∥κ(γy[ψf̄ ])− κ(φy)

∥∥∥
∞

≤ d1(φx, γ
x
[ψf̄ ]) + d1(γx[ψf̄ ], ψ)

+ d1(ψ, γy[ψf̄ ]) + d1(γy[ψf̄ ], φy)

= d(x, y). (3.18)

It is easy to see that κ(φx) = dx and κ(φy) = dy as well as ‖dx − dy‖∞ =
d(x, y) which implies that both inequalities above are actual equalities. Since
κ(ψf ) = f , we thus obtain

‖dx − dy‖∞ =
∥∥∥dx − κ(γx[ψf̄ ])

∥∥∥
∞

+
∥∥∥κ(γx[ψf̄ ])− f

∥∥∥
∞

+
∥∥∥f − κ(γy[ψf̄ ])

∥∥∥
∞

+
∥∥∥κ(γy[ψf̄ ])− dy

∥∥∥
∞
.

In particular ∥∥∥dx − κ(γx[ψf̄ ])
∥∥∥
∞

+
∥∥∥κ(γx[ψf̄ ])− f

∥∥∥
∞

= ‖dx − f‖∞

and this proves that κ(γx[ψf̄ ]) is a gate for dx in [f̄ ]. This is the desired result.

It is easy to see that [27, Theorem 1.1] generalizes to the case where |X| =
∞ as long as E′(X, d) = E(X, d). To be self-contained, we give a proof of the
theorem.

3.17 Theorem. Let (X, d) be a metric space with integer-valued metric satis-
fying the (LRC). If f ∈ E(X, d) is such that [f ] is X-gated, then the following
hold:
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(i) (G([f ]), d∞) is a finite antipodal metric space.

(ii) The map Φ: ([f ], d∞)→ E(G([f ]), d∞) given by

g 7→
(
γx[f ] 7→ g(x)− γx[f ](x)

)
(3.19)

is a bijective isometry as well as an isomorphism of polytopes.

Proof. If rank(A(f)) = 0, the result clearly holds, hence let f ∈ E(d) be such
that rank(A(f)) ≥ 1.

We first show that (G([f ]), d∞) is an antipodal metric space. For each
x ∈ X, consider

%(x) := {y ∈ X : {x, y} ∈ A(f)}.

We define the map σ : G([f ])→ G([f ]) by sending every gate γx[f ] to the gate

γy[f ] where y ∈ %(x) is chosen arbitrarily. To see that σ is well-defined, note

that for every g ∈ [f ] and if {x, y} ∈ A(g), one has

d∞(dx, dy) = d(x, y)

= g(x) + g(y)

= d∞(dx, g) + d∞(dy, g)

= d∞(dx, γ
x
[f ]) + d∞(γx[f ], g) + d∞(g, γy[f ]) + d∞(γy[f ], dy) (3.20)

which rearranging and using the triangle inequality gives that for any y ∈ %(x)
and any g ∈ [f ], one has

d∞(γx[f ], γ
y
[f ]) = d∞(γx[f ], g) + d∞(g, γy[f ]). (3.21)

It follows in particular from (3.21) that (X,A(f)) has no odd A(f)-component.
Now, let x′ ∈ X be such that γx

′

[f ] = γx[f ]. For any y′ ∈ %(x′), one can use (3.21)
to obtain

d∞(γx
′

[f ], γ
y′

[f ]) = d∞(γx[f ], γ
y′

[f ]) = d∞(γx[f ], γ
y
[f ])− d∞(γy[f ], γ

y′

[f ])

= d∞(γx
′

[f ], γ
y
[f ])− d∞(γy[f ], γ

y′

[f ])

= d∞(γx
′

[f ], γ
y′

[f ])− 2d∞(γy[f ], γ
y′

[f ])

which implies that γy
′

[f ] = γy[f ], and this is the desired result. This proves that σ

is well-defined. It is now clear that σ is an involution which turns (G([f ]), d∞)
into an antipodal metric space. It is finite since (X,A(f)) has only finitely
many even A(f)-components.
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We now show that Φ defines a bijective isometry. Note that Φ can also be
expressed as

Φ(g) : γx[f ] 7→ d∞(g, dx)− d∞(γx[f ], dx) (3.22)

and also as
Φ(g) = dg∞ : γx[f ] 7→ d∞(g, γx[f ]) (3.23)

It is easy to see by (3.23) that Φ is well-defined, i.e. it does not depend
on the choice of x or x′ as long as γx[f ] = γx

′

[f ]. Moreover, for every g ∈ [f ], one

clearly has Φ(g) ∈ ∆(G([f ]), d∞) by (3.23). As a consequence of (3.21) and
(3.23), for every x ∈ X one has

Φ(g)(γx[f ]) + Φ(g)(σ(γx[f ])) = d(γx[f ], σ(γx[f ])),

which shows that Φ(g) ∈ E(G([f ]), d∞). To see that Φ is surjective, let us
define for any h ∈ E(G([f ]), d∞), the associated function

g′ : x 7→ h(γx[f ]) + γx[f ](x).

We clearly have Φ(g′) = h and thus we only need to show that g′ ∈ [f ]. We
have

g′(x) + g′(y) = h(γx[f ]) + γx[f ](x) + h(γy[f ]) + γy[f ](y)

≥ d∞(γx[f ], γ
y
[f ]) + d∞(γx[f ], dx) + d∞(γy[f ], dy)

≥ d∞(dx, dy)

= d(x, y), (3.24)

hence in particular g′ ∈ ∆(d). If {x, y} ∈ A(f), one has by (3.21)

d∞(γx[f ], γ
y
[f ]) + d∞(γx[f ], dx) + d∞(γy[f ], dy)

= d∞(γx[f ], f) + d∞(f, γy[f ]) + d∞(γx[f ], dx) + d∞(γy[f ], dy)

= d∞(f, dx) + d∞(f, dy)

= f(x) + f(y)

= d(x, y),

and since h ∈ E(G([f ]), d∞), one has

h(γx[f ]) + h(σ(γx[f ])) = d∞(γx[f ], σ(γx[f ]))

(recall that for any extremal function f , if {x, y} ∈ A(f) and xy + yz = xz,
then {x, z} ∈ A(f)). Hence if {x, y} ∈ A(f), one can replace all inequalities in
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(3.24) by equalities. This shows that g′ ∈ [f ] and thus Φ is surjective. Now,
it is easy to see that Φ preserves distances since for every g, h ∈ [f ], one has
by (3.22) that

g(x)− h(x) = g(x)− γx[f ](x)−
(
h(x)− γx[f ](x)

)
= Φ(g)(γx[f ])− Φ(h)(γx[f ])

and thus Φ is a bijective isometry. Note now that by [30] there is an affine
isometry α : ([f ], d∞)→ ln∞ and since E(G([f ]), d∞) consists of a unique max-
imal cell, another affine isometry β : E(G([f ]), d∞) → ln∞. It follows that the
map

β ◦ Φ ◦ α−1 : α([f ])→ β(E(G([f ]), d∞))

is a bijective isometry between convex subsets (with non-empty interior) of
finite dimensional normed spaces. It follows by an extension of Mazur-Ulam
Theorem (cf. [33]) that β ◦ Φ ◦ α−1 is the restriction of an affine bijective
isometry. It follows that Φ has the same property and is thus in particular a
polytope isomorphism.

Let (X, d) be a totally split-decomposable metric space with integer-valued
metric satisfying the (LRC). By Lemma 3.16, we know that every cell [f ] ⊂
E′(d) = E(d) is X-gated. Hence if (G([f ]), d∞) denotes the set of all X-gates
of [f ], and if d∞ denotes the metric d∞(f, g) = ‖f − g‖∞ (we adopt the same
notation for restrictions of d∞), we obtain by Theorem 3.17 that the following
hold:

1) (G([f ]), d∞) is an antipodal metric space.

2) [f ] and E(G([f ]), d∞) are combinatorially equivalent polytopes.

If we assume that dim([f ]) = n, then since G([f ]) ⊂ [f ], it follows (cf. [30,
Proposition 3.5 and Theorem 4.3 (1)]) that E(G([f ]), d∞) isometrically embeds
into ([f ], d∞) through

E(G([f ]), d∞) ↪→ E([f ]) ∼= [f ].

Thus in particular, one has

dim(E(G([f ]), d∞)) ≤ n (3.25)

Finally, this implies by [27, Theorem 1.2] that

|G([f ])| ≤ 2n.
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Indeed, if |G([f ])| ≥ 2(n+ 1) (possibly |G([f ])| =∞), then since (G([f ]), d∞)
is antipodal, we can select (n+1) pairs of antipodal points in G([f ]) to obtain
an antipodal metric space (A, d∞) with A ⊂ G([f ]) and |A| = 2(n + 1). It
follows by [30, Proposition 3.5] that E(A, d∞) is isometrically embedded in
E(G([f ]), d∞) and thus again by [27, Theorem 1.2], one has

n+ 1 ≤ dim(E(A, d∞)) ≤ dim(E(G([f ]), d∞)

which contradicts (3.25). Hence, with (2) above, this proves that

|G([f ])| ≤ 2dim([f ]).

From Lemma 3.18, the following follows.

3.18 Lemma. Let κ : (A, d) → (A′, d′) be a map of metric spaces such that
the following hold:

(i) κ is 1-Lipschitz,

(ii) κ is surjective,

(iii) (A, d) is an antipodal metric space and

(iv) for any x ∈ A, there is y ∈ A antipodal to x such that

d(x, y) = d′(κ(x), κ(y)).

Then, it follows that κ is an isometry.

Proof. Let x, z ∈ A be chosen arbitrarily. By (iv), there is y antipodal to x
such that d(x, y) = d′(κ(x), κ(y)). Hence, one has:

d(x, z) + d(z, y) = d(x, y)

= d′(κ(x), κ(y))

≤ d′(κ(x), κ(z)) + d′(κ(z), κ(y))

≤ d(x, z) + d(z, y)

= d(x, y).

It follows that the above inequalities are actual equalities and using again that
κ is 1-Lipschitz, it follows that

d′(κ(x), κ(z)) = d(x, z).

Since x and z were chosen arbitrarily, this proves the result.
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3.19 Lemma. Let (X, d) be a totally split-decomposable metric space with
integer-valued metric satisfying the (LRC). Let [f ] be any positive dimensional
cell of E(d) and let ψf̄ as well as f̄ be defined as in the proofs of Lemmas 3.4
and 3.15. Then, the map

κ̄ := κ|Γ([ψf̄ ]) : (Γ([ψf̄ ]), d1)→ (G([f ]), d∞)

is an isometry.

Proof. We already know that κ̄ is 1-Lipschitz and it is surjective by the proof
of Lemma 3.16. Now, for any x ∈ X, there is y ∈ X such that

f̄(x) + f̄(y) = d(x, y).

By the proofs of Lemmas 3.7 and 3.8, it follows (by definition κ(ψf̄ ) = f̄)
that γx[ψf̄ ] and γy[ψf̄ ] are antipodal in (Γ([ψf̄ ]), d1). Furthermore, by (3.17) and

(3.18), one has

d1(γx[ψf̄ ], γ
y
[ψf̄ ]) =

∥∥∥κ(γx[ψf̄ ])− κ(γy[ψf̄ ])
∥∥∥
∞
.

We can thus apply Lemma 3.18 to deduce that κ̄ is an isometry.

Under the assumptions of Lemma 3.19. For x, y ∈ X arbitrarily chosen, it
follows from the definitions of γx[ψf̄ ] and γy[ψf̄ ], that one has

d1(γx[ψf̄ ], γ
y
[ψf̄ ]) =

∑
S∈S(ψf̄ )

αSδS(x, y) (3.26)

where S(ψf̄ ) is weakly compatible. It follows by Theorem 2.7 that

(Γ([ψf̄ ]), d1) is a totally split-decomposable metric space.

Moreover, for any metric space (X, d), the underlying graph UG(X, d) of (X, d)
is the graph (X,E) where {x, y} ∈ E if and only if d(x, z) + d(z, y) > d(x, y)
for any z ∈ X \ {x, y}. Furthermore, let C6 denote the 6-cycle metric graph
and let K3×2 denote the complete graph on six vertices with 3 disjoint edges
taken away (i.e., the 1-skeleton of the octahedron).

3.20 Remark. Note that if S is an antipodal split system on (X, d), then
for any (Ai)i∈I , if

⋃
i∈I Ai = X, it follows that

⋂
i∈I Ai = ∅. Indeed, if

x ∈
⋂
i∈I Ai, there is a subsystem of pairwise different splits {Si}i∈I ⊂ S such

that Ai = Si(x). Now, there is y ∈ X such that y ∈
⋂
S∈S S(x) ⊂

⋂
i∈I Si(x) =⋂

i∈I A
c
i = (

⋃
i∈I Ai)

c, which implies that
⋃
i∈I Ai 6= X. The octahedral split

system is an example of antipodal split system.
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We conclude this section with a proof.

Proof of Theorem 1.1. The second part of Theorem 1.1, namely the existence
of K(X, d) and σ follows immediately from Theorem 4.4 (which is proved in
the next section). Indeed, Theorem 4.4 implies that if we remetrize E(X, d) by
identifying each cell (which is a parallelotope by the first part of Theorem 1.1)
with a corresponding unit hypercube (of same dimension) endowed with the
euclidean metric, and considering the induced length metric, we obtain a com-
plex K(X, d) which satisfies the CAT(0) link condition. Since (X, d) satisfies
the (LRC), it follows that K(X, d) is complete and locally CAT(0) (analogue to
I.7.13 Theorem and II.5.2 Theorem in [7]). By the (LRC), it also follows that
K(X, d) is locally bi-Lipschitz equivalent to E(X, d), the topology induced by
the length metric on K(X, d) is therefore the same as the topology on E(X, d)
and thus K(X, d) is contractible as well. By Cartan-Hadamard Theorem, it
follows that K(X, d) is globally CAT(0).

We now prove the first part of Theorem 1.1. As an introductory remark,
note that by Lemma 3.8, Lemma 3.19 and (3.26), it follows that (G([f ]), d∞) is
an antipodal totally split-decomposable metric space with 2dim([f ]) elements.
By Theorem 3.17, ([f ], d∞) is combinatorially equivalent to E(G([f ]), d∞),
which is by [27, Theorem 1.2] an n-dimensional combinatorial hypercube if
|G([f ])| = 2n ≥ 8. Moreover, if |G([f ])| ≤ 4, then E(G([f ]), d∞) is clearly
a combinatorial hypercube as well. Now, assume that |G([f ])| = 6. Since
(G([f ]), d∞) is antipodal, it follows by [26, Corollary 3.3] that UG(G([f ]), d∞)
is either K3×2 or C6. If UG(G([f ]), d∞) = C6, then by [27, Theorem 1.2 (a)],
E(G([f ]), d∞) is a 3-dimensional combinatorial hypercube.

Assume now that E(G([f ]), d∞) is a combinatorial rhombic dodecahedron,
i.e. (ii) in Theorem 1.1 does not hold, then UG(G([f ]), d∞) = K3×2 and it
follows by the proof of [26, Theorem 5.1, Case 2] that

d∞(κ(γx[ψf̄ ]), κ(γy[ψf̄ ])) =
∑

S∈{S1,S2,S3,S4}

βSδS(x, y)

where {S1, S2, S3, S4} is weakly compatible and the coefficients βS are all
positive. Moreover, by (3.26) and Lemma 3.19, we have

d∞(κ(γx[ψf̄ ]), κ(γy[ψf̄ ])) =
∑

S∈S(ψf̄ )

αSδS(x, y)

where S(ψf̄ ) is weakly compatible and consists of d-splits of X. Note that the
metric d∞ on G([f ]) induces a pseudometric d̄ on X by setting

d̄(x, y) := d∞(κ(γx[ψf̄ ]), κ(γy[ψf̄ ])).
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It follows by Theorem 2.7 and approximation by rescalings of integer-valued
pseudometrics that the split systems S(ψf̄ ) and {S1, S2, S3, S4} each consist of
all the d̄-splits of X, which implies that S(ψf̄ ) = {S1, S2, S3, S4}. Therefore,
the split system S̄ := {S1, S2, S3, S4} consists of d-splits of X and thus it is
an octahedral split subsystem of S. We can write the splits in S̄ as

S1 := {Y 1
1 t Y 1

2 t Y 1
3 , Y

−1
1 t Y −1

2 t Y −1
3 },

S2 := {Y 1
1 t Y 1

2 t Y −1
3 , Y −1

1 t Y −1
2 t Y 1

3 },
S3 := {Y 1

1 t Y −1
2 t Y 1

3 , Y
−1

1 t Y 1
2 t Y −1

3 },
S4 := {Y 1

1 t Y −1
2 t Y −1

3 , Y −1
1 t Y 1

2 t Y 1
3 }, (3.27)

where X = Y 1
1 t Y

−1
1 t Y 1

2 t Y
−1

2 t Y 1
3 t Y

−1
3 and all sets being non-empty.

From our introductory remark and since we have assumed that [f ] is a com-
binatorial rhombic dodecahedron, then [f ] must be a maximal cell since as
we have already seen, in dimensions strictly higher than three, a cell must be
a hypercube and the same holds for all of its faces. Since our assumptions
imply E(d) = E′(d) and [f ] is a three dimensional maximal cell, it follows from
Theorem V.1.2 that the graph (X,A(f)) consists of three complete bipartite
connected components that are given by their respective partitions, namely
Y 1

1 t Y
−1

1 , Y 1
2 t Y

−1
2 and Y 1

3 t Y
−1

3 . For each S := {A,B} ∈ S \ S̄, there is
{x, y} ∈ A(f) such that S(x) = S(y) by bipartiteness, let us say {x, y} ⊂ A.
It follows from (3.1) that ψ := ψf̄ ∈ T̄ (S, α) (where ψf̄ is as defined in the
proof of Lemma 3.4, in particular [f̄ ] = [f ] where κ(ψ) = f̄) satisfies then
ψ(A) = 0. Hence, ψ(B) = αS

2 and thus for every further {x′, y′} ∈ A(f), one
has {x′, y′} 6⊂ B. This implies by bipartite completeness of Y 1

i t Y
−1
i that

there are σ, τ, θ ∈ {±1} such that Y σ
1 ∪ Y τ

2 ∪ Y θ
3 ( A which is equivalent to

{A,B} and {A′, B′} = {Y σ
1 ∪Y τ

2 ∪Y θ
3 , Y

−σ
1 ∪Y −τ2 ∪Y −θ3 } ∈ S̄ being compatible

(i.e., A′ ⊂ A). It follows that (i) in Theorem 1.1 does not hold.
Conversely, assume that (i) does not hold and thus there exists such a split

subsystem S̄ with the properties stated in (i). Define ψ ∈ H(S, α) so that
S(ψ) = S̄ and S̄ consists of four splits as given in (3.27) and is a converse to
(i). We can choose ψ so that for any S := {A,B} ∈ S \ S̄, one additionally
has ψ(A) = 0 for Y σ

1 ∪ Y τ
2 ∪ Y θ

3 ( A and accordingly ψ(B) = αS
2 . One has

ψ ∈ T̄ (S, α) since for any (Ci)i∈I ⊂ supp(ψ), we can consider for each i ∈ I,
a corresponding S′i = {A′i, B′i} ∈ S̄ such that Ci ⊂ B′i =: Di. It follows that
if ∪i∈ICi = X, then ∪i∈IDi = X and thus by Remark 3.20, it follows that
∩i∈IDi = ∅ which implies ∩i∈ICi = ∅. It is then easy to see that [κ(ψ)] is
a combinatorial rhombic dodecahedron since for any (x, y) ∈ Y 1

i × Y
−1
i , one

has that S(x) = S(y) implies that S ∈ S \ S(ψ) and by definition of ψ we

99



IV.4. THE CAT(0) LINK CONDITION

have ψ(S(x)) = 0 = ψ(S(y)) but since ψ ∈ H(S, α), we have equality in (3.1),
which implies that {x, y} ∈ A(κ(ψ)). This means that (X,A(κ(ψ))) consists of
the three complete bipartite connected components X = ∪i∈{1,2,3}(Y 1

i t Y
−1
i )

which implies that dim([κ(ψ)]) = 3. Setting f := κ(ψ) ∈ E(d), it is easy to see
that we have the decomposition f :=

∑
S∈S αSfS so that for S := {A,B} ∈ S,

one has

fS(z) =


ψ(A)
αS/2

if z ∈ A,

ψ(B)
αS/2

if z ∈ B,
(3.28)

and ψf = ψ holds (ψf is defined in the proof of Lemma 3.4). By (3.12) and
(3.13), we have (in the notation of the proof of Lemma 3.15) that Sf ⊂ S[f ]

and |S[f ]| = 4. But (3.28) shows that |Sf | = 4 since |S(ψ)| = 4. It follows that
Sf = S[f ] and thus we can set f̄ := f . We then have ψf̄ = ψf = ψ and with
Lemma 3.19 we obtain that [f ] is a combinatorial rhombic dodecahedron and
thus (ii) in Theorem 1.1 does not hold either. This finishes the proof.

IV.4 The CAT(0) Link Condition for the
Buneman Complex and the Cubical Injective
Hull

We start by considering B(S, α) which displays some similarities with the
CAT(0) cube complex that is constructed in [11] and denoted by X. The next
definition is a combinatorial characterization of the local CAT(0) condition
for cube complexes, cf. [12].

4.1 Definition. A cell complex K as in Definition 3.1, whose finite dimen-
sional cells are combinatorial hypercubes, is said to satisfy the CAT(0) link
condition if for every set of seven cells C,C1

1 , C
2
1 , C

3
1 , C

1
2 , C

2
2 , C

3
2 of K, such

that the following hold:

(A) C =
⋂
i∈{1,2,3}C

i
2,

(B) Cj1 =
⋂
i∈{1,2,3}\{j}C

i
2,

(C) dim(C) = k ≥ 0 and for each i ∈ {1, 2, 3}, one has dim(Ci1) = k + 1 as
well as dim(Ci2) = k + 2,

there exists a cell C̄ of K such that dim(C̄) = k + 3 and
⋃
i∈{1,2,3}C

i
2 ⊂ C̄.
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We proceed to the next observation which is a direct consequence of the
definitions.

4.2 Lemma. Let (S, α) be a split system pair on a set X. Then, the Buneman
complex B(S, α) satisfies the CAT(0) link condition.

Proof. Let
[µ], [µ1

1], [µ2
1], [µ3

1], [µ1
2], [µ2

2], [µ3
2] ⊂ B(S, α)

be cells of B(S, α) such that the following hold:

(i) supp(µ) =
⋂
i∈{1,2,3} supp(µi2),

(ii) supp(µj1) =
⋂
i∈{1,2,3}\{j} supp(µi2),

(iii) dim([µ]) = |S(µ)| = k ≥ 0 and for each j ∈ {1, 2, 3}, one has

dim([µj1]) = |S(µj1)| = k + 1,

as well as
dim([µj2]) = |S(µj2)| = k + 2.

This implies that there are splits {S1, S2, S3} ⊂ S \ S(µ) such that

(i) for j ∈ {1, 2, 3}, one has supp(µj1) = supp(µ) ∪ Sj and

(ii) for i ∈ {1, 2, 3}, supp(µi2) = supp(µ) ∪
⋃
j∈{1,2,3}\{i} Sj .

But now, pick ψ ∈ H(S, α) such that

supp(ψ) = supp(µ) ∪
⋃

j∈{1,2,3}

Sj =
⋃

j∈{1,2,3}

supp(µj2).

It is then very easy to check that ψ ∈ B(S, α) and thus [ψ] is a cell of B(S, α).
Moreover, one has by definition:

(i)
⋃
i∈{1,2,3}[µ

i
2] ⊂ [ψ] and

(ii) dim([ψ]) = |S(ψ)| = k + 3.

This finishes the proof of the CAT(0) link condition for B(S, α).

Recall that a split system S is called antipodal if for every x ∈ X, there is
y ∈ X such that for every S ∈ S, one has

S(x) 6= S(y).

As a preliminary to the proof of Theorem 4.4, we have the following:
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4.3 Lemma. Let S be a split system on a set X. Then,

(i) Assume that S is a weakly compatible split system and assume that for
all i ∈ {1, 2, 3}, the split system S(µi2) = S(µ) ∪ [{S1, S2, S3} \ {Si}] is
antipodal. Then, S(ψ) := S(µ) ∪ {S1, S2, S3} is antipodal as well.

(ii) Let (X, d) be a totally split-decomposable metric space (hence in partic-
ular, S is weakly compatible). Let {f i2}i∈{1,2,3} ⊂ E′(d) be such that for
the split systems given in (i), one has: S(µi2) = S(ψf i2

). Then, for every
x ∈ X, one can find y ∈ X so that the following hold:

(a) For some i ∈ {1, 2, 3}, one has {x, y} ∈ A(f i2).

(b) For every S ∈ S(ψ), one has S(x) 6= S(y).

Proof. Let x ∈ X be arbitrarily chosen. Since for every i ∈ {1, 2, 3}, S(µi2) is
antipodal, there is yi2 ∈ X such that for every S ∈ S(µi2), one has

S(x) 6= S(yi2).

Note now that if Si(x) 6= Si(y
i
2), then for every S ∈ S(ψ), one has

S(x) 6= S(yi2).

Moreover, if yi2 = yj2 with i 6= j, then

Si(x) 6= Si(y
j
2) = Si(y

i
2)

and hence as above it follows that for every S ∈ S(ψ), one has

S(x) 6= S(yi2).

If we now assume that there are pairwise different points {x, y1
2, y

2
2, y

3
2} such

that
Si(x) = Si(y

j
2)⇐⇒ i = j,

then it follows that the points {x, y1
2, y

2
2, y

3
2} and the splits {S1, S2, S3} con-

tradict the weak compatibility of S. This proves the first assertion.
The second assertion follows from the fact that by the last part of the

statement of Lemma 3.7, if for each i ∈ {1, 2, 3}, we pick yi2 ∈ X such that
{x, yi2} ∈ A(f i2), then S(x) 6= S(yi2) for every S ∈ S(µi2), and thus by the
above proof, we deduce that for some i ∈ {1, 2, 3}, one has S(x) 6= S(yi2) for
every S ∈ S(ψ) which implies that if we set y := yi2, the second assertion
follows.
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We now have:

4.4 Theorem. Let (X, d) be a metric space with integer-valued totally split-
decomposable metric satisfying the (LRC) and such that each cell of E(X, d) is
a combinatorial hypercube. Then, E(X, d) satisfies the CAT(0) link condition.

Proof. Assume that there are cells

[f ], [f1
1 ], [f2

1 ], [f3
1 ], [f1

2 ], [f2
2 ], [f3

2 ] ⊂ E′(d)

such that

(i) [f ] =
⋂
i∈{1,2,3} supp[f i2],

(ii) [f j1 ] =
⋂
i∈{1,2,3}\{j} supp[f i2],

(iii) dim([f ]) = k ≥ 0 and for each i ∈ {1, 2, 3}, one has dim([f i1]) = k + 1 as
well as dim([f i2]) = k + 2.

Since all cells of E′(d) are hypercubes, it is easy to see (using Remark 3.11 to
see that dim([ψf ]) = |S(ψf )| = k as well as for the other similar equalities in
(iii)) that one has

(i) [ψf ] =
⋂
i∈{1,2,3} supp[ψf i2

],

(ii) [ψ
fj1

] =
⋂
i∈{1,2,3}\{j} supp[ψf i2

],

(iii) dim([ψf ]) = |S(ψf )| = k and for each j ∈ {1, 2, 3}, one has dim([ψ
fj1

]) =

|S(ψ
fj1

)| = k + 1 as well as dim([ψf i2
]) = |S(ψf i2

)| = k + 2.

By Lemma 4.2, there is ψ ∈ B(S, α) such that

(a) supp(ψ) = supp(ψf ) ∪
⋃
i∈{1,2,3} Si and

(b) S(ψ) = S(ψf ) ∪ {S1, S2, S3}.

Let x ∈ X be chosen arbitrarily, by Lemma 4.3 there is y ∈ X such that
for every S ∈ S(ψ), one has S(x) 6= S(y) and without loss of generality
{x, y} ∈ A(f1

2 ). For the sake of simplicity, we set g := f1
2 . It follows from

(3.9) that

d1(φx, φy) = d1(φx, γ
x
[ψg ]) + d1(γx[ψg ], γ

y
[ψg ]) + d1(γy[ψg ], φy)
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which is easily seen to imply∑
S∈S\S(ψg)

αSδS(x, y) = d1(φx, γ
x
[ψg ]) + d1(φy, γ

y
[ψg ]). (4.1)

On the other hand, starting from the definition of φx and γx[ψg ], we have

d1(φx, γ
x
[ψg ]) =

∑
A∈U(S\S(ψg))

x∈A

|0− ψg(A)|+
∑

A∈U(S\S(ψg))
x/∈A

∣∣∣αSA2 − ψg(A)
∣∣∣

and analogously

d1(φy, γ
y
[ψg ]) =

∑
A∈U(S\S(ψg))

y∈A

|0− ψg(A)|+
∑

A∈U(S\S(ψg))
y/∈A

∣∣∣αSA2 − ψg(A)
∣∣∣ .

Hence, using the fact that g ∈ E′(d) and thus ψg ∈ H(S, α), cf. proof of
Lemma 3.4, we obtain a second expression for the right-hand side of (4.1),
namely

d1(φx, γ
x
[ψg ]) + d1(φy, γ

y
[ψg ]) =

∑
A∈U(S\S(ψg))

x,y∈A

2ψg(A)

+
∑

A∈U(S\S(ψg))
x∈A,y/∈A

αSA
2

+
∑

A∈U(S\S(ψg))
x/∈A,y∈A

αSA
2

+
∑

A∈U(S\S(ψg))
x,y /∈A

2
∣∣∣αSA2 − ψg(A)

∣∣∣ . (4.2)

Since the sum of the second and third term of the right-hand side of (4.2)
amounts to

∑
S∈S\S(ψg) αSδS(x, y), comparing (4.1) and (4.2) we obtain∑

A∈U(S\S(ψg))
x,y∈A

2ψg(A) +
∑

A∈U(S\S(ψg))
x,y /∈A

2
∣∣∣αSA2 − ψg(A)

∣∣∣ = 0

hence for every A ∈ U(S \ S(ψg)) such that x, y ∈ A, one has ψg(A) = 0 or in
other words, for any S ∈ S \S(ψg) such that S(x) = S(y), one has ψg(S(x)) =
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0 = ψg(S(y)). Now, note that by definition of ψ, one has supp(ψg) ⊂ supp(ψ)
as well as S \ S(ψ) ⊂ S \ S(ψg) and thus for every S ∈ S \ S(ψ) such that
S(x) = S(y), one has ψ(S(x)) = 0. It is easy to see that this implies that for
every S ∈ S \ S(ψ), since ψ ∈ H(S, α), one has

αSδS(x, y) = 2
[
ψ(S(x)) + |φy(S(x))− ψ(S(x))|

]
. (4.3)

Moreover, one easily obtains∑
S∈S\S(ψ)

2
[
ψ(S(x)) + |φy(S(x))− ψ(S(x))|

]
=

∑
S∈S\S(ψ)

[
|φx(S(x))− ψ(S(x))|+ |φy(S(x))− ψ(S(x))|
+ |φx(S(x))− ψ(S(x))|+ |φy(S(x))− ψ(S(x))|

]
=

∑
A∈U(S\S(ψ))

[
|φx(A)− ψ(A)|+ |φy(A)− ψ(A)|

]
. (4.4)

Furthermore, y was chosen so that for every S ∈ S(ψ), one has S(x) 6= S(y).
Thus for every ψ̄ ∈ [ψ], one obtains:

αSδS(x, y)

= αS

= [0 + ψ̄(S(x))] + [αS2 − ψ̄(S(x))] + [αS2 − ψ̄(S(x))] + [ψ̄(S(x))− 0]

=
∑
A∈S

[
|φx(A)− ψ̄(A)|+ |φy(A)− ψ̄(A)|

]
(4.5)

and thus since d1(γx[ψ], γ
y
[ψ]) =

∑
S∈S(ψ) αSδS(x, y) together with (4.5) and

since for every A ∈ U(S \ S(ψ)), one has ψ̄(A) = ψ(A), it follows that

d1(γx[ψ], γ
y
[ψ]) =

∑
A∈U(S(ψ))

[
|φx(A)− ψ̄(A)|+ |φy(A)− ψ̄(A)|

]
= d1(γx[ψ], ψ̄) + d1(ψ̄, γy[ψ]). (4.6)
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Hence

d1(φx, φy) =
∑
S∈S

αSδS(x, y)

=
∑

S∈S(ψ)

αSδS(x, y) +
∑

S∈S\S(ψ)

αSδS(x, y)

= d1(γx[ψ], γ
y
[ψ]) +

∑
S∈S\S(ψ)

2
[
ψ(S(x)) + |φy(S(x))− ψ(S(x))|

]
= d1(γx[ψ], γ

y
[ψ]) +

∑
A∈U(S\S(ψ))

[
|φx(A)− ψ(A)|+ |φy(A)− ψ(A)|

]
= d1(φx, γ

x
[ψ]) + d1(γx[ψ], γ

y
[ψ]) + d1(γy[ψ], φy). (4.7)

where the third equality follows from (4.3), the fourth one from (4.4) and the
last one by our definitions. Hence, inserting (4.6) into (4.7), one has:

d1(φx, φy) = d1(φx, γ
x
[ψ]) + d1(γx[ψ], ψ) + d1(ψ, γy[ψ]) + d1(γy[ψ], φy). (4.8)

It follows from d(x, y) = d1(φx, φy) and (4.8) that

d(x, y) = d1(φx, ψ) + d1(ψ, φy) = κ(ψ)(x) + κ(ψ)(y). (4.9)

Since for any x ∈ X, there is such an y ∈ X, it follows that κ(ψ) ∈ E′(d).
Moreover, by definition of ψ, one has

⋃
i∈{1,2,3}

κ([ψf i2
]) = κ

 ⋃
i∈{1,2,3}

[ψf i2
]

 ⊂ κ([ψ]) ⊂ [κ(ψ)]

where the last inclusion follows from Lemma 3.9. Now, since [κ(ψ)] is a
hypercube, this proves that E(d) = E′(d) satisfies the CAT(0) link condition.

Two splits S := {A,B} and S′ = {A′, B′} of X are called incompatible if

A ∩A′, A ∩B′, B ∩A′, B ∩B′ 6= ∅.

A split system S is called incompatible if any pair of splits in S is incompatible.

4.5 Remark. For particular split system pairs (S, α) and particular sets
X, the Buneman complex B(S, α) displays some similarities with the CAT(0)
cube complex that is constructed in [11]. There, a split system pair is obtained
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by considering a wall spaceW (corresponding to S) on a set Y (corresponding
to X) and taking the function α chosen to be constantly equal to one on S.

For a Coxeter group, its Cayley graph is endowed with the standard word
metric and there is a canonical decomposition (in general not weakly com-
patible, e.g. the tessellation of the plane by hexagons) of this metric given
by the splits of the form S := {C(x, y), C(y, x)} where C(x, y) := {z ∈ X :
d(x, y) + d(y, z) = d(x, z)} and where {x, y} is an edge in the Cayley graph,
together with α constantly equal to one.

The set K0 (denoted by X0 in [11]) is defined to be consisting of all the
admissible sections, i.e. the maps σ : S → U(S) such that for any S 6= S′:
σ(S) ∩ σ(S′) 6= ∅. Next, K1 is the graph with vertex set K0, where two
vertices σ and σ′ are connected by an edge if and only if there is a unique
S ∈ S such that σ(S) 6= σ′(S). For an arbitrarily fixed point p ∈ X, one then
lets Γp be the path-connected component of σp in K1 where for any S, one
lets σp(S) := S(p).

Let us define Bp(S, α) := {ψ ∈ B(S, α) : d1(ψ, φp) < ∞}, let Σ0(Γp) be
the 0-skeleton of Γp, and let Σ0(Bp(S, α)) and Σ1(Bp(S, α)) be the 0- and
1-skeleton of Bp(S, α). We define

M : (Σ0(Γp), d1)→ (Σ0(Bp(S, α)), d1)

by sending every admissible section σ : S → U(S) to a functionM(σ) : U(S)→
R defined by assigning (recall that SA := {A,Ac}):

A 7→

{
αSA

2 if A = σ(S)c,

0 if A = σ(S).

Now assume that {σ, τ} is an edge of Γp which means that there is a unique
S′ := {A′, B′} ∈ S such that σ(S′) 6= τ(S′). This is equivalent to the fact
that M(σ)(A′) = M(τ)(B′), M(σ)(B′) = M(τ)(A′) and for any A ∈ U(S \
{S′}), one has M(σ)(A) = M(τ)(A). It is easy to see, that this is in turn
equivalent to the fact that there is a function ψ ∈ Σ1(Bp(S, α)) such that
dim([ψ]) = 1, S′ ⊂ supp(ψ) and so that for every A ∈ U(S \ {S′}), one
has M(σ)(A) = ψ(A) = M(τ)(A). Therefore, M extends bijectively to an
isometric isomorphism of cell complexes

M1 : (Γp, d1)→ (Σ1(Bp(S, α)), d1).

Let us denote an edge ej of Γp by its corresponding labeling split Sj (the unique
one on which the endpoints of ej differ). Now, k-corners (σ, {e1, . . . , ek}) (in
the terminology of [11]) are simply pairs of the form (σ, {S1, . . . , Sk}) where
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σ ∈ Γp and where the split system {S1, . . . , Sk} is incompatible. The complex
K is then obtained by gluing a k-cube to every k-corner (one shows that the
existence of a k-corner implies the existence of the 1-skeleton of a k-hypercube
contained in Γp and containing this k-corner as a vertex). It is now easy to
see that there is an isomorphism of cell complexes

i : K→ Bp(S, α)

which extends M1. To any k-dimensional cube C giving rise to a cell of K
corresponds by construction a k-corner (σ, {S1, . . . , Sk}). It is then easy to see
that defining ψ ∈ H(S, α) so that ψ(A) := σ(A) for A ∈ U(S \ {S1, . . . , Sk})
and ψ(A) :=

αSA
4 otherwise, we obtain that ψ ∈ Bp(S, α) and [ψ] is a k-

dimensional cell of Bp(S, α), hence a k-dimensional combinatorial hypercube.
We can thus extend M1 and map bijectively C to [ψ] with i. Conversely, let
σ ∈ Σ0(Bp(S, α)) be a vertex of a k-dimensional cell [ψ] of Bp(S, α). The
pair (σ,S(ψ)) has to be a k-corner in Γp by incompatiblity of S(ψ) and thus
the inverse image of [ψ] under i is the k-dimensional cube in K glued to the
k-corner (σ,S(ψ)).

IV.5 Examples

5.1 Example. Let (X, d) be an infinite connected graph endowed with the
shortest-path metric. It is easy to see that if X is bipartite, then the system S
of all d-splits of (X, d) is octahedral-free. Indeed, assume on the contrary that
X = Y 1

1 t Y
−1

1 t Y 1
2 t Y

−1
2 t Y 1

3 t Y
−1

3 is a partition of X into six non-empty
subsets such that

S1 := {Y 1
1 t Y 1

2 t Y 1
3 , Y

−1
1 t Y −1

2 t Y −1
3 },

S2 := {Y 1
1 t Y 1

2 t Y −1
3 , Y −1

1 t Y −1
2 t Y 1

3 },
S3 := {Y 1

1 t Y −1
2 t Y 1

3 , Y
−1

1 t Y 1
2 t Y −1

3 },
S4 := {Y 1

1 t Y −1
2 t Y −1

3 , Y −1
1 t Y 1

2 t Y 1
3 }, (5.1)

and {S1, . . . , S4} ⊂ S. Since X is a connected graph, there must be an edge
{x, y} between two non-antipodal sets in the partition, for instance an edge
joining x ∈ Y 1

1 to y ∈ Y −1
1 . Now, we see that both S3(x) 6= S3(y) and

S4(x) 6= S4(y). This is a contradiction to the fact that since X is bipartite,
there is for any edge {x, y} in X, at most one d-split S separating x and y (i.e.
such that S(x) 6= S(y)) namely the split given by {C(x, y), C(y, x)} where
C(x, y) := {z ∈ X : d(x, y) + d(y, z) = d(x, z)}.
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5.2 Example. For n ∈ N, let

C2n+1 :=
(
{x1, . . . , x2n+1}, {{xi, xi+1}}i∈{1,...,2n+1}

)
where x2n+2 := x1.

The graph C2n+1 is the odd cycle with 2n+ 1 vertices and we endow it with
the shortest path metric d. We use the fact that the metric d is totally split-
decomposable to give an explicit description of the injective hull E(C2n+1, d).

One can easily verify that d = 1
2

∑
S∈S δS where S is the set of all d-splits

of X, hence α : S → (0,∞) can be chosen to be constantly equal to 1
2 . One has

S = {S1, . . . , S2n+1} where for i ∈ {1, . . . , 2n+ 1}, with indices taken modulo
2n+ 1, Si is given by where

Si = {Ai, Bi} = {{xi+1, . . . , xi+n}, {xi+n+1, . . . , xi}}.

It is now not difficult to prove that the assumptions of Theorem 1.1 are
fulfilled for (X, d) = (C2n+1, d). Since we are in the case of a finite metric
space, the (LRC) is trivially satisfied. Moreover,

d =
1

2

∑
S∈S

δS ,

where S is the family of all d-splits of X. Finally, it is not difficult to see that
S is octahedral-free and thus that (i) in Theorem 1.1 holds as well. Indeed, if
a subsystem S̄ := {S̄1, S̄2, S̄3, S̄4} ⊂ S is octahedral, that is, it is induced by
a partition into six non-empty subsets

C2n+1 = Y 1
1 t Y −1

1 t Y 1
2 t Y −1

2 t Y 1
3 t Y −1

3

as in (5.1), then for any x ∈ Y σ
i , for any y ∈ Y −σi and for every S ∈ S̄, one

has S(x) 6= S(y) (we say that S cuts the edge {x, y}). In order for such a pair
{x, y} to exist for every x ∈ C2n+1, it follows that if Sj ∈ S̄ with 1 ≤ j ≤ n+1
(the case n+ 2 ≤ j ≤ 2n+ 1 is similar), then Sj+n, Sj+n+1 /∈ S̄. Indeed, there
are exactly two splits that cut one of the edges {{xj , xj+1}, {xj+n, xj+n+1}}
which are cut by Sj , namely Sj+n which cuts {xj+n, xj+n+1} and Sj+n+1

which cuts {xj , xj+1}. Since we are considering C2n+1, it follows that S̄ must
induce a partition into eight non-empty subsets

C2n+1 = Z1
1 t Z−1

1 t Z1
2 t Z−1

2 t Z1
3 t Z−1

3 t Z1
4 t Z−1

4

such that S(x) 6= S(y) for every S ∈ S̄ if and only if x ∈ Zσi and y ∈ Z−σi .
It follows that S̄ is not octahedral and thus S must be octahedral-free, which
shows in particular that (i) in Theorem 1.1 holds. We deduce that for every

109



IV.5. EXAMPLES

n ∈ N ∪ {0}, E(C2n+1, d) is a finite cube complex satisfying the CAT(0) link-
condition (and simply connected since it is an injective hull).

We can furthermore describe explicitely the dimension and gluing pattern
of the maximal cells of E(C2n+1, d) by studying the different split susbsystems
of S. Note first that by finiteness, we have B(S, α) = T̄ (S, α) (see [19]) and
by Remark 3.14 the map

κ : T̄ (S, α)→ E(C2n+1, d)

is in particular an isomorphism of cell complexes. The family of maximal
cells of E(C2n+1, d) is thus in bijection with the family of maximal cells of
B(S, α) which in turn bijectively corresponds with the family M of maximal
incompatible split subsystems M⊂ S.

Observe that for any such M ∈ M, we can consider a corresponding
element ψ ∈ T̄ (S, α) such that S(ψ) =M. We have

κ(ψ)(x) + κ(ψ)(y) = d(x, y)

if and only if S(x) 6= S(y) for every S ∈M. SinceM is a maximal incompat-
ible split subsystem of S, it follows that for any S = {A,B} ∈ S \M where
|A| = k and |B| = k + 1, one has ψ(A) = αS

2 = 1
4 and ψ(B) = 0.

For the gluing pattern, we have for any two maximal cells [ψ], [µ] ⊂
T̄ (S, α), [ψ]∩ [µ] 6= 0 if and only if ψ(A) = µ(A) for every A ∈ U(S \ (S(ψ)∪
S(µ))) and in this case, [ψ]∩[µ] is the set of all functions φ ∈ B(S, α) such that
φ(A) = ψ(A) for A ∈ U(S(ψ) \ S(µ))), φ(A) = µ(A) for A ∈ U(S(µ) \ S(ψ)))
and S(φ) = S(ψ) ∩ S(µ).

Note that for any S̄j ∈ S̄, the only two splits that are not incompatible
with S̄j are the only two splits that cut an edge already cut by S̄j .

To compute |M|, it is easier to describe the split system S in a different
way, by assigning for i ∈ {1, . . . , n + 1}, to every edge {xi, xi+1} of C2n+1,
the pair of splits S1

i = {A1
i , B

1
i } and S−1

i = {A−1
i , B−1

i } which cut the edge
{xi, xi+1} (i.e. S1

i (xi) 6= S1
i (xi+1) and S−1

i (xi) 6= S−1
i (xi+1)) and which are

determined by the requirements xi ∈ A1
i and |A1

i | = n+ 1 as well as xi ∈ A−1
i

and |A−1
i | = n. Moreover, S1

1 = S−1
n+1.

We divide the family M of maximal incompatible split subsystems of S
into three subfamilies

M = Ma ∪Mb ∪Mc

so that for
M := {Sσ1

j1
, . . . , Sσkjk } ∈M

with 1 ≤ j1 < j2 < · · · < jk−1 < jk ≤ 2n + 1, one has the following three
cases:
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(a) M∈Ma if and only if Sσ1
j1

= S1
1 . In this case, we have

|Ma| = Σa
(n−1,n−1) + Σa

(n−1,n)

where Σ(n−1,n−1) := Σa
(n−1,n−1) stands for the case where Sσkjk = S1

n and

Σ(n−1,n) := Σa
(n−1,n) for the case where Sσkjk = S−1

n . The notation

Σa
(n−1,n−1)

refers to the fact that
|Bσ1

j1
∩Aσkjk | = n− 1

and
|Aσ1

j1
∩Bσk

jk
| = n− 1

(i.e., starting with x2 and going counterclockwise we count n − 1 points
until we hit the line representing Sσkjk , similarly when starting with xn+2

we count n− 1 points as well until we hit the line representing Sσkjk .)

(b) M∈Mb if and only if Sσ1
j1

= S−1
1 . In this case, we have

|Mb| = Σb
(n−1,n−1) + Σb

(n,n−1)

where by symmetry
Σb

(n−1,n−1) = Σ(n−1,n−1)

stands for the case where Sσkjk = S−1
n and

Σb
(n,n−1) = Σ(n−1,n)

for the case where Sσkjk = S1
n+1.

(c) M∈Mc if and only if Sσ1
j1

= S1
2 . In this case, we have

|Mc| = Σc
(n−1,n−1)

where by symmetry
Σc

(n−1,n−1) = Σ(n−1,n−1)

stands for the case where Sσkjk = S1
n+1.
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x1

x2

x3

x4

xn
xn+1

xn+2

xn+3

xn+4

x2n+1

x2n

x2n−1

Sσkjk = S1
n

Sσkjk = S−1
nSσ1

j1
= S1

1

Figure IV.1: Σa
(n−1,n−1) corresponds to the number of maximal incompatible

split systems {Sσ1
j1
, . . . , Sσkjk } with Sσ1

j1
= S1

1 and Sσkjk = S1
n. Σa

(n−1,n) is the

number of those with Sσ1
j1

= S1
1 and Sσkjk = S−1

n .
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x1

x2

x3

x4

xn xn+1
xn+2

xn+3

xn+4

x2n+1

x2n

x2n−1

Sσkjk = S−1
n Sσkjk = S1

n+1

Sσ1
j1

= S−1
1

Figure IV.2: Σb
(n−1,n−1) corresponds to the number of maximal incompatible

split systems {Sσ1
j1
, . . . , Sσkjk } with Sσ1

j1
= S−1

1 and Sσkjk = S−1
n . Σb

(n,n−1) is the

number of those with Sσ1
j1

= S−1
1 and Sσkjk = S1

n+1.
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x1

x2

x3

x4

xn xn+1

xn+2

xn+3

xn+4

x2n+1

x2n

x2n−1

Sσkjk = S1
n+1

Sσ1
j1

= S1
2

Figure IV.3: Σc
(n−1,n−1) corresponds to the number of maximal incompatible

split systems {Sσ1
j1
, . . . , Sσkjk } with Sσ1

j1
= S1

2 and Sσkjk = S1
n+1.
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Summing up, we obtain the formula

|M| = Θn = 3Σ(n−1,n−1) + 2Σ(n−1,n)

and it is easy to see that we furthermore have the following recurrence re-
lations: Σ(n−1,n−1) = Σ(n−2,n−2) + Σ(n−3,n−2) and Σ(n−1,n) = Σ(n−2,n−1) +
Σ(n−2,n−2) and the initial conditions Σ(0,0) := 1, Σ(0,1) := 0 and Σ(1,1) := 1. If
one considers the three roots {σ1, σ2, σ3} of the equation x3− x− 1 = 0 given
by

σ1 =
1

3

(
27

2
− 3
√

69

2

) 1
3

+

(
1
2

(
9 +
√

69
)) 1

3

3
2
3

,

σ2 = −1

6

(
1 + i

√
3
)(27

2
− 3
√

69

2

) 1
3

−
(
1− i

√
3
) (

1
2

(
9 +
√

69
)) 1

3

2 · 3
2
3

,

σ3 = −1

6

(
1− i

√
3
)(27

2
− 3
√

69

2

) 1
3

−
(
1 + i

√
3
) (

1
2

(
9 +
√

69
)) 1

3

2 · 3
2
3

and the three roots {τ1, τ2, τ3} of the equation x3 − 2x2 + x− 1 = 0 given by

τ1 =
1

3

2 +

(
25

2
− 3
√

69

2

) 1
3

+

(
1

2

(
25 + 3

√
69
)) 1

3

 ,

τ2 =
2

3
− 1

6

(
1 + i

√
3
)(25

2
− 3
√

69

2

) 1
3

− 1

6

(
1− i

√
3
)(25

2
+

3
√

69

2

) 1
3

,

τ3 =
2

3
− 1

6

(
1− i

√
3
)(25

2
− 3
√

69

2

) 1
3

− 1

6

(
1 + i

√
3
)(25

2
+

3
√

69

2

) 1
3

,

one can verify that
Θn = σ1τ

n
1 + σ3τ

n
2 + σ2τ

n
3 .

Note that Θ0 is one. The first values of Θn for n ≥ 1 are listed in the following
table:

n 1 2 3 4 5 6 7 8 9 10

C2n+1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21

Θn 3 5 7 12 22 39 68 119 209 367
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Figure IV.4: List of all 12 maximal incompatible split subsystems for C2n+1 =
C9. The first three lines correspond to the nine 4-dimensional maximal cells
of E(C2n+1) and the last line corresponds to the three 3-dimensional maximal
cells.
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The numbers Θn can also be proved to correspond to the coefficient of zn

in the power series expansion in a neighborhood of the origin of the analytic
function

z 7→ 3z − z2

1− 2z + z2 − z3
.

Finally, it is not difficult to compute the number of k-dimensional cells of
E(C2n+1) as a function of k and n as it is done in [40]. Indeed, note that for
a 0-cell ψ ∈ T̄ (S, α), it is easy to see that ψ is in the maximal cell [µ] if and
only if for any split S = {A,B} ∈ S where |A| = n+ 1 and A ∈ supp(ψ), one
has S ∈ S(µ). More generally, for every k ∈ {0, . . . , n}, there is a bijection
between the k-dimensional cells of E(C2n+1) and the set of pairs (S̄, S̄ ′) where
S̄ is a split subsystem of S with k elements and S̄ ⊂ S̄ ′. The correspondence
between [ψ] and (S̄, S̄ ′) is given by picking for every S = {A,B} ∈ S where
|A| = n + 1, the function ψ in such a way that S(ψ) := S̄, ψ(B) = 0 if
S ∈ S̄ ′ \ S̄ and ψ(A) = 0 if S ∈ S \ S̄ ′.

5.3 Example. Let (X, d) be an infinite connected bipartite (4, 4)-graph as
defined in [3] endowed with the shortest-path metric. Let S = {A,B} be an
alternating split on X (cf. [3]). Assume by contradiction that S has isolation
index αdS ∈ {0,

1
2}. We show that αS = 1. Since all isolation indices of splits

on X are in 1
2Z, it follows that one can find four points r, s, u, v ∈ X such

that r, s ∈ A, u, v ∈ B and αd{{r,s},{u,v}} = αdS . We can now consider a finite
subgraph Y of X such that

(a) Y is a bipartite (4, 4)-graph and

(b) I(r, s) ∪ I(r, u) ∪ I(r, v) ∪ I(s, u) ∪ I(s, v) ∪ I(u, v) ⊂ Y .

In general, the restriction d|Y×Y does not coincide with the shortest path
metric dY on Y . However, by (b), it follows that for any a, b ∈ {r, s, u, v}, one
has dY (a, b) = d|Y×Y (a, b). Note that SY := {A ∩ Y,B ∩ Y } is an alternating
split of Y (restrictions of alternating splits to (4, 4)-subgraphs are easily seen
to be alternating again) and

αdYSY ≤ α
dY
{{r,s},{u,v}} = α

d|Y×Y
{{r,s},{u,v}} = αdS ≤ 1

2 .

However, by (a), (Y, dY ) is a finite bipartite (4, 4)-graph and thus by [3, Propo-
sition 8.8], it follows that αdYSY = 1 which contradicts the above. If now SA
denotes the system of all alternating splits of (X, d), note that for any x, y ∈ X
such that d(x, y) = 1, there is a unique S ∈ SA such that S(x) 6= S(y). Note

117



IV.5. EXAMPLES

that d0 := d −
∑

S∈SA δS is a pseudometric by Theorem 1.3. Hence for any
a, b ∈ X, consider a path a = x0, x1, . . . , xm−1, xm = b in (X, d), we have

d0(a, b) ≤
m−1∑
i=0

d0(xi, xi+1) = 0.

It follows that d0 is identically zero and thus d is totally split-decomposable.
Moreover, (X, d) satisfies the (LRC). Indeed, the isometric cycles in (X, d) are
gated (cf. [3, Theorem 8.7]), it follows that (X, d) has 1-stable intervals and
thus by the proof of [30, Theorem 1.1], we obtain the desired result. Examples
of such infinite bipartite (4, 4)-graphs are given for m ≥ 4, for σ any element
of the symmetric group Sm and for {rσ(i)σ(i+1)}i∈{1,...,m} ⊂ N ∩ [2,∞) ∪ {∞}
by the Cayley graph of Coxeter groups of the form

C = 〈s1, . . . , sm|(sσ(1)sσ(2))
rσ(1)σ(2) = 1, . . . , (sσ(m−1)sσ(m))

rσ(m−1)σ(m) = 1,

(sσ(m)sσ(1))
rσ(m)σ(1) = 1 〉 .

The restriction on the number of relations ensures that the Cayley graph is
planar, m ≥ 4 ensures that the degree is at least four and the condition
rσ(i)σ(i+1) ≥ 2 for every i ensures that each face contains at least four vertices.
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Chapter V

Further Results on Metric
Injectivity

V.1 Introduction

The goal of this chapter is to develop structural tools for Isbell’s injective hull
of infinite metric spaces with integer valued-metric. In case X is separable,
E(X) isometrically embeds into l∞(N). With this in mind, we obtain criteria
for the injectivity of subsets of l∞(N).

Recall that a metric space (X, d) is called injective if for any isometric em-
bedding i : A→ B of metric spaces and any 1-Lipschitz (equivalently distance-
nonincreasing) map f : A→ Y , there exists a 1-Lipschitz extension g : B → X
of f , so that g◦i = f . Examples of injective metric spaces include the real line
R, l∞(I) for any index set I, and all complete metric trees. Isbell showed that
every metric space X possesses an injective hull (e,E(X)) which means that
two properties hold: E(X) is an injective metric space and e: X → E(X) is
an isometric embedding such that every isometric embedding of X into some
injective metric space factors through e. Following [30], we start with an out-
line of the construction of Isbell’s injective hull. Later, we use injective and
hyperconvex indifferently, they are equivalent properties.

Given a metric space (X, d), let us consider the vector space RX of real-
valued functions on X and

∆(X) := {f ∈ RX : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X}.

We call f ∈ ∆(X) extremal if there is no g ≤ f in ∆(X) distinct from f . The
set E(X) of extremal functions is equivalently given by

E(X) =
{
f ∈ RX : f(x) = supy∈X(d(x, y)− f(y)) for all x ∈ X

}
. (1.1)
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The difference between two elements of E(X) has finite supremum norm and
E(X) is endowed with the metric

d∞(f, g) := ‖f − g‖∞ .

To be able to describe the structure of E(X) in further details, one can assign
to every f ∈ RX the undirected graph with vertex set X and edge set

A(f) :=
{
{x, y} : x, y ∈ X and f(x) + f(y) = d(x, y)

}
, (1.2)

allowing self-loops {x, x} which correspond to zeros of f . Furthermore, one
lets

E′(X) :=
{
f ∈ ∆(X) :

⋃
A(f) = X

}
.

Note that whenever f ∈ E′(X), the graph (X,A(f)) has no isolated vertices
(although it may be disconnected). A set A of unordered pairs of (possibly
equal) points in X is called admissible if there exists an f ∈ E′(X) with
A(f) = A, and we denote by A (X) the collection of admissible sets. To every
A ∈ A (X), we associate the affine subspace H(A) of RX given by

H(A) := {g ∈ RX : A ⊂ A(g)}
= {g ∈ RX : g(x) + g(y) = d(x, y) for all {x, y} ∈ A}.

We define the rank of A to be the dimension of H(A), namely

rank(A) := dim(H(A)) ∈ N ∪ {0,∞}.

Furthermore, let

P (A) := E′(X) ∩H(A) = {g ∈ E′(X) : A ⊂ A(g)}

and note that
P (A) = E(X) ∩H(A) = ∆(X) ∩H(A).

If (X, d) is a finite metric space, E(X) is a finite polyhedral complex and its
dimension is the maximum of the dimensions of its cells. The combinatorial
dimension dimcomb(X) of a metric space (X, d) is the supremum of the di-
mensions of the polyhedral complexes E(Y ) over all finite subsets Y ⊂ X. For
any set S such that |S| ≤ 2, let S2 denote the collection of all subsets of S
of cardinality exactly two. For Z a set of even cardinality, every involution
i : Z → Z selects a subset Zi := {{z, i(z)} : z ∈ Z} of Z2 of |Z|/2 disjoint
pairs. Using the main theorem of [39], we obtain the following criterion in the
spirit of Dress’ Theorem, cf. [16, Theorem 4.1].
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1.1 Theorem. Let (X, d) be a metric space and let n ∈ N. The inequality
dimcomb(X) ≤ n holds if and only if for every set Z ⊂ X satisfying |Z| =
2(n + 1) and for every fixed-point free involution i : Z → Z, there exists a
weight function w : Z2 → 1

2Z ∩ [−2, 2] such that the following hold:

(1) w 6≡ 0, w ≤ 0 on Zi := {{z, i(z)} : z ∈ Z} and w ≥ 0 on Z2 \ Zi,

(2) for every z ∈ Z, one has
∑

z′∈Z\{z}w({z, z′}) = 0 and

(3) S(w) :=
∑
{z,z′}∈Z2

w({z, z′})d(z, z′) ≥ 0.

Now, an A-path in X of length l ∈ N∪{0} is an (l+ 1)-tuple (v0, . . . , vl) ∈
X l+1 with {vi−1, vi} ∈ A for i ∈ {1, . . . , l}. An A-cycle is an A-path
(v0, . . . , vl) with vl = v0. Note that (x, x) is anA-cycle of length 1 if {x, x} ∈ A.
We define the A-component [x]A of a point x ∈ X to be the set

[x]A := {y ∈ X : there exists an A-path from x to y}.

Later, if no ambiguity arises, we write simply [x] instead of [x]A. Now, if g and
h are two elements in H(A) and {v, v′} ∈ A, we have g(v) + g(v′) = d(v, v′) =
h(v) + h(v′) hence g(v′)− h(v′) = −(g(v)− h(v)), it thus follows that

g(y)− h(y) = (−1)l(g(x)− h(x)) (1.3)

whenever there is an A-path of length l from x to y. As a consequence, if
there exists an A-cycle of odd length in [x]A, for all g, h ∈ H(A), one then has

g|[x]A = h|[x]A . (1.4)

We call [x]A an odd A-component in this case. In the other case, i.e. if
[x]A contains no A-cycle of odd length, [x]A is called an even A-component.
We have the following important property holding for integer-valued metric
spaces, which is due to Urs Lang and which we prove in Section V.3.

1.2 Theorem. Let (X, d) be a metric space with integer-valued metric and
let A ∈ A (X) be such that 1 ≤ k := rank(A) < ∞. Then, P (A) is maximal
in the sense that there is no A ) A′ ∈ A (X) if and only if all connected
components of (X,A) are complete bipartite, in particular, (X,A) has no odd
A-component.

Back to a general metric space (X, d), we note that the set {g|[x]A : g ∈
H(A)} is a one-dimensional real parameter family. In fact, every even A-
component admits a unique partition

[x]A = [x]A1 ∪ [x]A−1 (1.5)
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such that x ∈ [x]A1 and every edge {v, v′} ∈ A with {v, v′} ⊂ [x]A connects [x]A

and [x]A−1, in other words, the subgraph of (X,A) induced by [x]A is bipar-
tite. If one chooses reference points x1, . . . , xn ∈ X such that [x1]A, . . . , [xn]A

are precisely the n even A-components of X, there is then a unique induced
canonical partition associated to A, namely

X = XA
0 ∪

n⋃
i=1

(
[xi]

A
1 ∪ [xi]

A
−1

)
(1.6)

where XA
0 (which we will simply denote by XA

0 if no ambiguity arises) is
the union of all non-bipartite components of (X,A). Later, for each (i, σ) ∈
{1, . . . , n}× {±1} we denote by 〈xσi 〉A a choice of a reference point in [xi]

A
σ in

which case we can rewrite (1.6) as

X = XA
0 ∪

n⋃
i=1

(
〈xσi 〉A ∪ 〈x−σi 〉

A
)
. (1.7)

By (1.3), g(y) − h(y) = σ(g(x) − h(x)) whenever g, h ∈ H(A), σ ∈ {1,−1},
and y ∈ [x]Aσ . It is now clear that rank(A) is exactly the number of even
A-components of X. If rank(A) = 0, H(A) consists of a single function. This
occurs in particular if A = A(dx) for some x ∈ X in which case {x, y} ∈ A for
every y ∈ X, so X is A-connected, and (x, x) is an A-cycle of length 1. Now, a
metric space (X, d) is called discretely path-connected if it has integer-valued
metric and if for every pair of points x, y ∈ X, there exists a discrete path
γ : {0, 1, . . . , l} → X from x to y namely γ satisfies γ(0) = x, γ(l) = y and
d(γ(k − 1), γ(k)) = 1 for every k ∈ {1, . . . , l}. If γ can in addition be chosen
to be an isometric embedding γ : {0, 1, . . . , d(x, y)} → X, then (X, d) is called
discretely geodesic. In the theorem below, let

diam(P (A)) := sup{‖f − g‖∞ : f, g ∈ P (A)}

which is finite. In this case, one has

1.3 Theorem. Let (X, d) be a discretely path-connected metric space, A ∈
A (X) and let X = X0 ∪

⋃k
j=1[xj ] be the associated decomposition with refer-

ence points {x1, . . . , xk} as defined in (1.6). Then, the following hold:

(i) If X0 = ∅, then diam(P (A)) ≤ 2dim(P (A))− 1.

(ii) If X0 6= ∅, then diam(P (A)) ≤ 2dim(P (A)).
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We also exhibit metric spaces showing that the above bounds are optimal.
If X has integer-valued metric, and if y ∈ X0 := X \

⋃n
k=1[xk], then there is an

A-path from y to itself of odd length, so f(y) ∈ Z− f(y) and thus f(y) ∈ 1
2Z.

Hence, if rank(f) = 0, then X = X0 and therefore

f(X) ⊂ 1

2
Z. (1.8)

For (X, d) a general metric space again, suppose now that A ∈ A (X), and
1 ≤ n := rank(A) < ∞. Then, the difference of any two elements of H(A)
is uniformly bounded on X, so the supremum norm gives a metric on H(A),
and there exists an affine isometry from H(A) onto ln∞. In particular H(A) is
injective. Indeed, let I : H(A)→ ln∞ be the affine map defined by

I(g) := (g(x1), . . . , g(xn)). (1.9)

It follows from (1.3) that ‖g − h‖∞ = max1≤k≤n |g(xk) − h(xk)| = ‖I(g) −
I(h)‖∞ for all g, h ∈ H(A).

Finally, we switch to metric spaces with bicombings and subsets of l∞(N).

1.4 Definition. A metric space (X, d) with a bicombing is a geodesic metric
space with a map

σ : X ×X × [0, 1]→ X

such that for any x, y ∈ X, the map σxy := σ(x, y, ·) : [0, 1] → X satisfies the
following three properties:

(i) σxy is a geodesic from x to y. This namely means that σxy(0) = x,
σxy(1) = y, and d(σxy(t), σxy(t

′)) = |t− t′| d(x, y) for t, t′ ∈ [0, 1],

(ii) σyx(t) = σxy(1− t) for t ∈ [0, 1],

(iii) d(σxy(t), σx′y′(t)) ≤ (1− t) d(x, x′) + t d(y, y′) for t ∈ [0, 1].

A map σ with those properties is called a bicombing.

Note that separable metric spaces embed isometrically via the Kuratowski
embedding into l∞(N). Now, recall from [30] that every injective metric space
admits a bicombing and remember that hyperconvexity and injectivity are
equivalent. Recall that the dual l1(N)∗ and l∞(N) are isomorphic as normed
spaces. Note that a weak* closed subset of l∞(N) is norm closed and thus
complete for the standard metric of l∞(N). From Section V.5, we obtain
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1.5 Theorem. Let (X, d) be a proper metric space or a weak* closed subset
of l∞(N) endowed with standard metric of l∞(N). Then, the following are
equivalent:

(i) X is a hyperconvex metric space,

(ii) X is a 4-hyperconvex metric space with a bicombing.

In the above, a metric space X is proper if closed bounded subsets are
compact. Finally, we note that the constant four in the above statement
cannot be decreased.

V.2 Dress’ Theorem

In order for this chapter to be self-contained, we describe the same construc-
tion as in Section III.7 and which was introduced in [39]. Let Σ be a linear
system of inequalities of the form

Σ := {aiyi + bizi � ci}i∈I

where the generic notation � is used to regroup both ≥ and > under a common
symbol. For i ∈ {1, . . . , n}, each variable yi and zi is drawn from a finite
set {w0, w1, . . . , wn} . As a matter of convention, we can require for every
i ∈ {1, . . . , n} that ai 6= 0 unless yi = w0, in which case ai := 0 where
w0 is the zero variable, similarly bi 6= 0 if zi 6= w0 and bi := 0 otherwise.
We can associate to Σ an undirected labeled multigraph without self-loops
ΓΣ := (VΣ,EΣ) where the vertex set VΣ is given by {w0, w1, . . . , wn} and the
set EΣ := {Ei}i∈I consists of all the labeled edges Ei =

(
{yi, zi},Σi

)
where

Σi denotes the inequality aiyi + bizi � ci. Note that ΓΣ does not contain
any self-loop since we require yi 6= zi, that is all equations in Σ contain two
different variables. Equations that contain only one variable different from w0

are given by edges connecting to w0. Note that by definition, Σ does neither
contain any trivial inequalities like for example 1 ≥ 0 nor trivial inequalities
of the other type like for instance −1

3 > 0. A path P in ΓΣ is then given by(
(v1, . . . , vm+1), E1, . . . , Em

)
(2.1)

where (v1, . . . , vm+1) is a sequence of vertices in VΣ and (E1, . . . , Em) a se-
quence of labeled edges in EΣ such that for each l ∈ {1, . . . ,m}, one has

El = ({vl, vl+1}, alvl + blvl+1 � cl) .
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We call P admissible if for each l ∈ {1, . . . ,m − 1}, the coefficients bl and
al+1 have opposite signs (i.e., one is strictly positive and the other one is
strictly negative). Note that if P is admissible, one has vl 6= w0 for each
l ∈ {2, . . . ,m − 1} since w0 only appears with zero coefficient. Admissible
paths correspond to sequences of inequalities that form transitivity chains. A
path is called a loop if its first and last vertices are identical and a loop is
said to be simple as soon as its intermediate vertices are distinct. The reverse
of an admissible loop is admissible and cyclic permutations of a loop P given
by (2.1) are admissible if and only if a1 and bm have opposite signs, in which
case P is called permutable. Note also that since w0 only appears with zero
coefficient, no admissible loop with initial vertex w0 is permutable.

For an admissible path P given again by (2.1), let us define the residue
inequality of P to be the inequality obtained by applying transitivity to the
inequalities labeling the edges of P . The residue inequality of P is thus of the
form av1 + bvm+1 � c, where � denotes a strict inequality if and only if at
least one of the inequalities labeling the edges of P is strict.

In the case where P is a loop with initial vertex v, its residue inequality is
of the form (a+b)v � c. If it happens that (a+b)v > c, a+b = 0 and c ≥ 0 or
(a+b)v ≥ c, a+b = 0 and c > 0, the residue inequality of P is false and we say
that P is an infeasible loop. By definition, infeasibility implies admissibility.
We define a closure ΓΣ := (VΣ,EΣ) of ΓΣ to be a graph ΓΣ containing ΓΣ and
having the same vertex set, such that EΣ is obtained from EΣ by adding for
each simple admissible loop P (modulo permutations and reversals) of ΓΣ, a
residue edge, that is a new edge labeled with the residue inequality of P . Let
moreover Nontrivial(EΣ) denote all the elements of EΣ that are no self-loop
at w0. Note that a closure is not necessarily unique since the initial vertex of
each permutable loop can be chosen arbitrarily. We can now state the main
theorem of [39]:

2.1 Theorem. Σ is unsatisfiable if and only if ΓΣ has an infeasible simple
loop.

In the proof of Theorem 1.1, we will use the correspondence between ad-
missible loops and weight functions satisfying properties like (1)-(3) in Theo-
rem 1.1. Later, we often use the shorthand notations wxy and dxy to denote
w({x, y}) and d(x, y) respectively.

Proof of Theorem 1.1. Let us first assume that such a weight function w sat-
isfying the assumptions of the theorem exists. Let Zi := {{z, i(z)} : z ∈ Z}.
Let E ⊂ Z2 and let w̄ be any weight function on Z2, we define the map
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σw̄E : Z → R by the assignment

z 7→
∑

{z,z′}∈E

w̄zz′ .

By (2) in Theorem 1.1, one has σwZ2
(z) = 0. Hence in particular for every

z ∈ Z, since i is an involution, one has

σwZ2\Zi(z) = σ−wZi (z) = −wzi(z) = σ−wZi (i(z)) = σwZ2\Zi(i(z)) (2.2)

Assume now that f ∈ ∆(Z) and Zi ⊂ A(f), one has f(z) + f(z′) ≥ dzz′ for
any {z, z′} ∈ Z2 and

f(z) + f(i(z)) = dzi(z) for any {z, i(z)} ∈ Zi. (2.3)

Now,∑
z∈Z

σwZ2\Zi(z)f(z) =
∑

{z,z′}∈Z2\Zi

wzz′ [f(z)+f(z′)] ≥
∑

{z,z′}∈Z2\Zi

wzz′dzz′ (2.4)

We can thus apply (3) in Theorem 1.1 to obtain that the last quan-
tity is bounded below by

∑
{z,z′}∈Zi −wzz′dzz′ which is again the same as∑

z∈Z σ
w
Z2\Zi(z)f(z) by (2.2) and by (2.3). It follows that the inequality in

(2.4) is an actual equality, which implies

f(z′) + f(z′′) = dz′z′′ for every {z′, z′′} ∈ Z2 \ Zi such that wz′z′′ 6= 0.

Now, since w 6≡ 0, there is {z̄, i(z̄)} ∈ Zi such that wz̄i(z̄) < 0 and there is
therefore {z′, z′′} ∈ Z2 \Zi such that wz′z′′ > 0. Hence, if f ∈ ∆(Z) and Zi ⊂
A(f) then Zi ( A(f) and thus rank(f) ≤ n. It follows that dimcomb(X) ≤ n.

Conversely, assume that dimcomb(X) ≤ n and let Z ⊂ X with |Z| =
2(n + 1). Let moreover i : Z → Z be a fixed-point free involution. Let Σ be
the linear system of inequalities associated to ∆(Z) and to the edge set Zi, in
other words f ∈ RX is a solution to Σ if and only if f ∈ ∆(X) and A(f) = Zi.
We now want to apply Theorem 2.1 and proceed as follows.

The system Σ induces an associated self-loop free labeled multigraph
ΓΣ := ({f(z0), f(z1), . . . , f(z2n+2)},EΣ) as in Table V.1 where the zero vari-
able is denoted by f(z0). By assumption, the system Σ is unsatisfiable and
thus the arbitrarily chosen closure Γ̄Σ contains an infeasible simple loop L by
Theorem 2.1. It is easy to see that by admissibility, L cannot contain any of the
labeled edges in (b) which are of the form ({f(zi), f(zj)}, f(zi) + f(zj) ≥ dij).
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Σ EΣ

(a) f(zi) + f(zj) > dij ({f(zi), f(zj)}, f(zi) + f(zj) > dij)

(b) f(zi) + f(zj) = dij
({f(zi), f(zj)},−f(zi)− f(zj) ≥ −dij) and

({f(zi), f(zj)}, f(zi) + f(zj) ≥ dij)
(c) f(zi) > dii = 0 ({f(z0), f(zi)}, f(zi) > 0)

Table V.1: Description of assignments of labeled edges in ΓΣ to inequalities
Σ.

Furthermore, we can assume without loss of generality that L is not a self-loop
at f(z0). We introduce now

EZi :=
{

({f(z), f(i(z)},−f(z)− f(i(z)) ≥ −dij)
}
z∈Z

and
EZ2\Zi :=

{
({f(zi), f(zj}, f(zi) + f(zj) > dij)

}
{zi,zj}∈Z2\Zi

.

We distinguish two cases:

Case 1: L does not contain the variable f(z0).

Then by admissibility, there is a permutation θ such that L is a simple loop

given by
(

(f(zθ(1)), . . . , f(zθ(2k))), E1, . . . , E2k

)
and we can assume without

loss of generality that

E1 = ({f(zθ(1)), f(zθ(2))},−f(zθ(1))− f(zθ(2)) ≥ −dθ(1)θ(2)) ∈ EZi ,

and

E2k = {f(zθ(2k)), f(zθ(1))}, f(zθ(2k)) + f(zθ(1)) > dθ(2k)θ(1)) ∈ EZ2\Zi ,

therefore in particular i(zθ(2k−1)) = zθ(2k), that is E2k−1 ∈ EZi . Hence, the
residue inequality of L is of the form

0 >

2k∑
j=1

(−1)jdθ(j)θ(j+1).

It follows by infeasibility of L that
∑2k

j=1(−1)jdθ(j)θ(j+1) ≥ 0. Setting now

wz,z′ :=


−1 if {z, z′} ∈ {{zθ(2l−1)zθ(2l)}}l∈{1,...,k},

1 if {z, z′} ∈ {{zθ(2l)zθ(2l+1)}}l∈{1,...,k},
0 otherwise.
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we obtain the desired weight function w.

Case 2: L contains the variable f(z0).

Under this assumption, L is a simple loop given by(
(f(z0), f(zθ(1)), . . . , f(zθ(2k))), E1, . . . , E2k+1

)
.

We can assume without loss of generality that the starting and ending edges
of L have labels induced by simple admissible loops

Lσ :=
(

(f(zσ(1)), . . . , f(zσ(2k1−1))), E
σ
1 , . . . , E

σ
2k1

)
and

Lτ :=
(

(f(zτ(1)), . . . , f(zτ(2k2−1))), E
τ
1 , . . . , E

τ
2k2

)
instead of having starting and ending edges of the form

({f(z0), f(zθ(1))}, f(zθ(1)) > 0) and ({f(z0), f(zθ(2k))}, f(zθ(2k)) > 0).

Indeed, since if for instance L′ := ((f(z1), f(z2), f(z3)), E1, E2, E3) is an ad-
missible loop with E2 ∈ EZi , then by the triangle inequality, we can replace
the edge ({f(z0), f(z1)}, f(z1) > 0) by substituting the label f(z1) > 0 by the
residue equation 2f(z1) > d12 − d23 + d13 of L′. By the triangle inequality,
L′ remains infeasible after this replacement. Note that since Zi is a set of
disjoint edges and since the variable f(zσ(1)) must appear with the same sign
in both Eσ1 and Eσ2k1

and f(zτ(1)) with the same sign in both Eτ1 and Eτ2k2
,

one must have Eσ1 , E
σ
2k1
, Eτ1 , E

τ
2k2
∈ EZ2\Zi . Hence, the residue inequality of

L is without loss of generality of the form

1

2

2k1−1∑
j=1

(−1)j+1dσ(j)σ(j+1)+
2k−1∑
j=1

(−1)jdθ(j)θ(j+1)+
1

2

2k2−1∑
j=1

(−1)j+1dτ(j)τ(j+1) ≥ 0

(2.5)
with

(A) σ(2k1) = σ(1) = θ(1) and τ(2k2) = τ(1) = θ(2k) as well as

(B) i(zθ(2l−1)) = zθ(2l), i(zσ(2l)) = zσ(2l+1) and i(zτ(2l)) = zτ(2l+1).

If wzizj is defined as the coefficient of dij in (2.5), then (1) in the statement
of the Theorem holds by (b) in Table V.1. Furthermore, we have∑
z∈Z\{zθ(1)}

wzθ(1)z = wzσ(1)zσ(2)
+ wzσ(2k1−1)zσ(2k1)

+ wzθ(1)zθ(2)
= 1

2 + 1
2 − 1 = 0
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and similarly∑
z∈Z\{zθ(2k)}

wzθ(2k)z = wzθ(2k−1)zθ(2k)
+ wzτ(1)zτ(2)

+ wzτ(2k2−1)zτ(2k2)
= 0.

Moreover, for z′ ∈ Z \ {zθ(1), zθ(2k)}, it is clear that our definition implies∑
z∈Z\{z′}wz′z = 0, thus (2) in the statement of the Theorem holds. By

definition of w, (2.5) is equivalent to S(w) ≥ 0 and thus (3) holds as well.
This concludes the proof.

Finally, we have the following variant of Dress’ Theorem. The equiva-
lence between the first two properties is [16, Theorem 4.1]. Our proof uses
Theorem 1.1.

2.2 Theorem. Let (X, d) be a metric space and let n ≥ 1 be an integer. The
following are equivalent:

(i) dimcomb(X) ≤ n.

(ii) For every set Z ⊂ X satisfying |Z| = 2(n + 1) and for every fixed-
point free involution i : Z → Z, there exists a fixed-point free bijection
j : Z → Z different from i such that∑

z∈Z
d(z, i(z)) ≤

∑
z∈Z

d(z, j(z)). (2.6)

(iii) For Z ⊂ X with |Z| = 2(n+ 1) and for every fixed-point free involution
i : Z → Z, there exists a weight function w : Z2 → {−2,−1, 0, 1, 2} such
that properties (1)− (3) in Theorem 1.1 hold.

Proof. Recall that Zi := {{z, i(z)} : z ∈ Z}. We start by showing the equiv-
alence between (ii) and (iii). Assume first that (ii) holds. Define wzz′ to be
the coefficient of dzz′ in the expression∑

z∈Z
dzj(z) −

∑
z∈Z

dzi(z).

It is easy to see that w then satisfies (iii). Conversely, assume that (iii) holds.
We define the undirected edge sets Ei and Ej by giving weight −1 to each
edge of Ei and weight 1 to each edge of Ej and choosing multiplicity in order
for the sum to match the weights given by w following Table V.2. Since w
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satisfies (2) in Theorem 1.1, it follows that the graph (Z,Ej) has degree zero
or two at each vertex since∑

z′∈Z\{z}:{z,z′}∈Z2\Zi

wzz′ = −
∑

z′∈Z\{z}:{z,z′}∈Zi

wzz′ = −wzi(z) ≤ 2

and thus we can decompose it into disjoint cycles by Veblen’s theorem for
multigraphs, cf. [23]. Finally, on each of these cycles, we can pick an arbitrary
orientation which induces then a bijection j : Z → Z . It is then easy to see
that j satisfies the requirement of (ii) and this concludes the proof.

wzz′ −2 −1 wzz′ = 0 and z′ = i(z) wzz′ = 0 and z′ 6= i(z) 1 2

Ei 2 2 2 0 0 0

Ej 0 1 2 0 1 2

Table V.2: Multiplicity choices according to weights.

The fact that (ii) implies (i) is the easy implication in the statement [16,
Theorem 4.1]. To be self-contained, we repeat the proof. Let Y ⊂ X be a
finite set. If |Y | ≤ 2n+1, then dim(E(Y )) ≤ n. Suppose now that |Y | ≥ 2n+2
as well as f ∈ E(Y ), and let Z ⊂ Y be a set with |Z| = 2n + 2 so that there
is a fixed point free involution i : Z → Z such that for every z ∈ Z, one
has {z, i(z)} ∈ A(f). By assumption, there exists a fixed point free bijection
j : Z → Z such that j 6= i and∑

z∈Z
d(z, i(z)) ≤

∑
z∈Z

d(z, j(z)).

Since f(z) + f(i(z)) = d(z, i(z)) and d(z, j(z)) ≤ f(z) + f(j(z)), this gives∑
z∈Z

f(z) + f(i(z)) ≤
∑
z∈Z

f(z) + f(j(z)).

Since both i and j are bijections, these two sums agree so that each of the
inequalities d(z, j(z)) ≤ f(z) + f(j(z)) must in fact be an equality. Therefore
{z, j(z)} ∈ A(f). There is at least one z ∈ Z such that j(z) 6= i(z), so the
graph with vertex set Z and edge set {{z, i(z)}}z∈Z ∪ {{z, j(z)}}z∈Z has at
most n connected components. As this holds for every Z and i as above, we
conclude that the graph (Y,A(f)) has no more than n components. Since
f ∈ E(Y ) was chosen arbitrarily, this shows that the dimension of E(Y ) is less
than or equal to n.

We now show that (i) implies (ii). With the help of Theorem 1.1, we
obtain a shorter and more natural argument than the one given in the proof
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of [16, Theorem 4.1]. Thus, assume that (i) holds. Let us consider the set
W (0) of all w : Z2 → R such that w ≤ 0 on Zi, w ≥ 0 on Z2 \ Zi, and∑

z′∈Z\{z}

wzz′ = 0

for all z ∈ Z. By Theorem 1.1, it follows that we can pick w ∈ W (0) \ {0}
such that S(w) :=

∑
{z,z′}∈Z2

wzz′d(z, z′) ≥ 0 and so that no w′ ∈W (0) \ {0}
with S(w′) ≥ 0 has strictly smaller support (edges where the weight function
is nonzero). It follows that

{v ∈W (0) : spt(v) ⊂ spt(w)} ⊂ {v ∈W (0) : S(v) ≥ 0}. (2.7)

To see that (2.7) holds, let λ > 0 be the maximal number with the property
that |λv| ≤ |w|. Then, v′ := w − λv belongs to W (0) and spt(v′) is a strict
subset of spt(w). If either v′ 6= 0, then S(v′) < 0 and λS(v) = S(w)−S(v′) > 0
and otherwise v′ = 0 which implies S(v′) = 0 and thus λS(v) = S(w)−S(v′) =
S(w) ≥ 0. This proves (2.7).

Now we can proceed as just as in [16]. Since for fixed z, the sum of the
weights wzz′ is zero, we claim that there exist m ∈ N and pairwise distinct
points {z0, z1, . . . , zm} such that for each k ∈ {0, . . . ,m}, one has

wzki(zk) < 0 < wi(zk)zk+1

where zm+1 := z0. We do not exclude that for l > k one might for instance
have zl = i(zk). To see that such points {z0, z1, . . . , zm} exist, one can proceed
inductively starting with z′0 ∈ Z such that wz′0i(z′0) < 0. Therefore, there is
z′1 ∈ Z such that wi(z′0)z′1

> 0. Since |Z| < ∞, we can continue this process
until we eventually reach z′l ∈ Z with wz′li(z

′
l)
< 0 and so that the only z ∈ Z

such that wi(z′l)z > 0 satisfies z = z′k for some 0 ≤ k ≤ l − 1. In this case, the
result follows by setting z0 := z′k, z1 := z′k+1, . . . , zm := z′l and this proves the
claim.

Finally, the function

v :=
m∑
k=0

(
−δ{zk,i(zk)} + δ{i(zk),zk+1}

)
defined on Z2 belongs to W (0) \ {0} and spt(v) ⊂ spt(w). Hence S(v) ≥ 0 by
(2.7). This means that

m∑
k=0

d(zk, i(zk)) ≤
m∑
k=0

d(i(zk), zk+1)

and (ii) easily follows, extending j by i if necessary.
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V.3 Barriers, Graphs of Maximal Elements and
Applications

Let (X, d) be a metric space. For A ∈ A (X), let P (A) be called a barrier if
E(X) \ P (A) is disconnected. In the proposition below, we use the notation
I(f, f ′) := {g ∈ E(X) : d∞(f, g) + d∞(g, f ′) = d∞(f, f ′)}.

3.1 Proposition. Let (X, d) be a metric space with integer-valued metric.
Let A ∈ A (X) be such that 0 ≤ rank(A) < ∞ and let X ′ := X \ e−1(P (A)).
Then, P (A) is a barrier if and only if the following hold:

(i) There are ∅ 6= B,C ⊂ X ′ with B ∩ C = ∅ and X ′ = B ∪ C so that
for every b ∈ B and for every c ∈ C, there is h ∈ P (A) such that
{b, c} ∈ A(h) or equivalently

I(db, dc) ∩ P (A) 6= ∅.

(ii) For every g ∈ E(X, d) \ P (A) and for some Y ∈ {B,C}, one has for
every y ∈ Y that

I(g, dy) ∩ P (A) 6= ∅.

Proof. It is not difficult to see that if P (A) is a barrier, then (i) and (ii)
follow. Assume now that (i) and (ii) hold. Since P (A) is injective by [30,
Theorem 4.3], there is a 1-Lipschitz retraction % : E(X, d) → P (A). For any
z ∈ e−1(P (A)), we have

d∞(%(g), dz) = d∞(%(g), %(dz)) ≤ d∞(g, dz).

Now, by (ii), there is for any y ∈ Y , an element hy ∈ I(g, dy)∩P (A). Therefore

%(g)(y) = d∞(%(g), dy) ≤ d∞(%(g), hy) + d∞(hy, dy)

= d∞(%(g), %(hy)) + d∞(hy, dy)

≤ d∞(g, hy) + d∞(hy, dy)

= d∞(g, dy)

= g(y).

For each Y ∈ {B,C}, we set K(Y ) := F−1
Y ((−∞, 0]) where FY : E(X, d)→ R

is the Lipschitz function defined by

g 7→ sup
z∈X\Y

(%(g)(z)− g(z)).
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The set K(Y ) is closed by continuity of FY . Furthermore, we have db ∈ K(B)
and dc ∈ K(C) and thus K(B),K(C) 6= ∅. In addition,

E(X, d) \ P (A) = (E(X, d) \K(B)) t (E(X, d) \K(C))

Moreover, K(B) ∩ K(C) ⊂ P (A) since FB(g), FC(g) ≤ 0 implies %(g) ≤ g on
all of X and thus %(g) = g by minimality of g, which implies that g ∈ P (A).
It follows that E(X, d) \ K(B) and E(X, d) \ K(C) induce a disjoint open
non-empty partition of E(X, d) \ P (A) which is thus disconnected.

Now we proceed to

Proof of Theorem 1.2. We know by [30, Theorem 4.3], that P (A) is a k-
dimensional polytope. Consider the family {fv}v∈V ⊂ P (A) of all vertices
of P (A), i.e. for every v ∈ V , one has rank(A(fv)) = 0. Since P (A) is a
finite dimensional polytope, one has |V | < ∞. Furthermore, by (1.8), we
already know that fv(X) ⊂ 1

2Z for every v ∈ V . It follows that the convex
combination

f :=
1

|V |
∑
v∈V

fv (3.1)

satisfies f ∈ E′(X) and f(X) ⊂ 1
2|V |Z as well as A(f) = A. Hence in particular

δ :=
1

3
min
{y,y′}/∈A

|f(y) + f(y′)− d(y, y′)| > 0. (3.2)

Assume that A ∈ A (X) is such that 1 ≤ k = rank(A) < ∞ and that P (A)
is maximal. Assume by contradiction that there is a bipartite component
[w] = [w]1 ∪ [w]−1 of (X,A) (with w ∈ [w]1) which is not complete bipartite,
hence there is (x, x̄) ∈ [w]1 × [w]−1 such that {x, x̄} /∈ A. Let us define

Y := {y ∈ [w]−1 : {x, y} ∈ A}

as well as

Z := {z ∈ [w]1 : for all z̄ ∈ [w]−1 \ Y, {z, z̄} /∈ A}.

Hence [w] = Y t ([w]−1 \ Y ) t Z t ([w]1 \ Z) noting that each of these four
sets is non-empty, x ∈ Z and x̄ ∈ [w]−1 \ Y . For f ∈ E′(X) and δ as above,
we can now set

g(y) :=


f(y)− δ if y ∈ Z,
f(y) + δ if y ∈ Y,
f(y) otherwise.

It is easy to see that g ∈ E′(X), since
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(a) if y ∈ Z, then {y, ȳ} ∈ A(g) for some ȳ ∈ Y ,

(b) if y ∈ Y , then {x, y} ∈ A(g) and we already noted that x ∈ Z,

(c) if y ∈ [w]1 \ Z, then {y, ȳ} ∈ A(g) for some ȳ ∈ [w]−1 \ Y and finally

(d) if y ∈ [w]−1 \ Y , then {y, ȳ} ∈ A(g) for some ȳ ∈ [w]1 \ Z by definition of
Z.

It follows that A(g) ( A(f) = A and this contradicts the maximality of P (A).
Now, assume again that A ∈ A (X) is such that 1 ≤ k = rank(A) < ∞

and that P (A) is maximal. Suppose by contradiction that there is at least
one odd A-component, in other words, X0 as in (1.6) satisfies X0 6= ∅. Pick
x ∈ X0 such that A 6= A(dx). Let Xx

0 be the connected component of X0

containing x. Define

S := {S ⊂ X ′0 : x ∈ S and for every a, b ∈ S one has {a, b} /∈ A}.

The set S is non-empty since it contains {x} and it is endowed with a partial
ordering given by the inclusion. Moreover, if {Ti}i∈I is a totally ordered subset
of S, then it is easy to see that T := ∪i∈ITi satisfies x ∈ T and if a, b ∈ T
then {a, b} /∈ A, therefore T ∈ S. Finally, one easily sees that T is an upper
bound for {Ti}i∈I . It follows that we can apply Zorn’s lemma to deduce that
S contains a maximal element M . By maximality of M , it is easy to see that
for every y ∈ Xx

0 \M , there is z ∈ M such that {y, z} ∈ A. Altogether, M
satisfies

1) If a, b ∈M then {a, b} /∈ A.

2) For every y ∈ Xx
0 \M , there is z ∈M such that {y, z} ∈ A.

Hence we can let f ∈ E′(X) be defined by (3.1) so that A(f) = A and let
δ > 0 be given by (3.2), we can set

g(y) :=


f(y)− δ if y ∈M,

f(y) + δ if y ∈ Xx
0 \M,

f(y) if y ∈ X \Xx
0 .

It is easy to see that g ∈ E′(X) and A(g) ( A(f) = A. Hence, this contradicts
the maximality of P (A). So we must have X0 = ∅.

Conversely, assume now that all connected components of (X,A) are com-
plete bipartite. This implies that for every connected component [w] of X, for
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every pairs (x, x̄), (y, ȳ) ∈ [w]1× [w]−1 and for f ∈ E′(X) such that A(f) = A,
one has

d(x, x̄) + d(y, ȳ) = f(x) + f(x̄) + f(y) + f(ȳ) = d(x, ȳ) + d(x̄, y). (3.3)

Let now g ∈ E′(X) be such that A(g) ⊂ A. Pick arbitrarily (u, ū) ∈ [w]1 ×
[w]−1. Either {u, ū} ∈ A(g) or there is (v, v̄) ∈ ([w]1 \ {u}) × ([w]−1 \ {ū})
such that {u, v̄}, {ū, v} ∈ A(g) ⊂ A which implies together with (3.3) that

g(u) + g(v) + g(ū) + g(v̄) = d(u, v̄) + d(ū, v) = d(u, ū) + d(v, v̄)

and thus {u, ū}, {v, v̄} ∈ A(g) since d(u, ū) ≤ g(u) + g(ū) and d(v, v̄) ≤ g(v) +
g(v̄). Consequently, we have A(g) = A. It follows that P (A) is maximal and
this concludes the proof.

Let (X, d) be a metric space with integer-valued metric as well as A ∈
A (X) and assume that its associated decomposition (1.7) with reference
points 〈xσi 〉(i,σ)∈{1,...,n}×{±1} satisfies X0 = ∅. Define

Y :=
{
x1

1, . . . , x
1
n, x
−1
1 , . . . , x−1

n

}
⊂ X (3.4)

and let Y2 denote the family of subsets of cardinality two of Y . Note that A
induces a perfect matching in Y given by

AY :=
{
{x1

1, x
−1
1 }, . . . , {x

1
n, x
−1
n }
}
.

Let us set

Y ′2 :=
{
{xσi , xτj } : (i, σ), (j, τ) ∈ {1, . . . , n} × {±1} and i 6= j

}
Furthermore, for all (i, σ), (j, τ) ∈ {1, . . . , n}×{±1} so that {xσi , xτj } ∈ Y ′2 ,

let

c(x−σi , x−τj ) := min
(x,y)∈〈xσi 〉×〈xτj 〉

[
d(x, x−σi ) + d(y, x−τj )− d(x, y)

]
. (3.5)

Similarly, for all (i, σ) ∈ {1, . . . , n} × {±1}, let further

c(x−σi ) :=
1

2
min

(x,y)∈〈xσi 〉×〈xσi 〉

[
d(x, x−σi ) + d(y, x−σi )− d(x, y)

]
. (3.6)

3.2 Proposition. Let (X, d) be a metric space with integer-valued metric.
Let A ∈ A (X) be such that 1 ≤ n := rank(A) < ∞. Then, there is no
A ) A′ ∈ A (X) if and only if the decomposition of X given by (1.7) satisfies
X0 = ∅ and the following hold:
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(i) For all (i, σ) ∈ In × {±1}, x ∈ 〈xσi 〉 and y ∈ 〈x−σi 〉, one has

d(x, y) + d(x−σi , xσi ) = d(x, x−σi ) + d(y, xσi ). (3.7)

(ii) There is a solution g ∈ RY to the system of linear inequalities with at
most two variables per inequality given by

g(x1
i ) + g(x−1

i ) = d(x1
i , x
−1
i ) for i ∈ {1, . . . , n}, (3.8)

g(xσi ) + g(xτj ) < c(xσi , x
τ
j ) for {xσi , xτj } ∈ Y ′2 , (3.9)

g(xσi ) < c(xσi ) for (i, σ) ∈ {1, . . . , n} × {±1}. (3.10)

Proof. First, remember that by Theorem 1.2, if A ∈ A (X), P (A) is maximal
if and only if all connected components of (X,A) are complete bipartite, in
particular X0 = ∅. As argued at the beginning of the proof of Theorem 1.2,
there is by definition a function f ∈ E′(X) such that A(f) = A and such that
f(X) ⊂ 1

2NZ where N denotes the number of vertices of P (A). Considering
then the restriction AY := AY (fY ) and g := fY , it is easy to see that (i)
and (ii) are fulfilled. Conversely, assume that (i) and (ii) hold. It follows
in particular that g ∈ P (AY ). Now, for every (i, σ) ∈ In × {±1} and every
x ∈ 〈xσi 〉, let ḡ ∈ RX be the function given by

ḡ(x) := d(x, x−σi )− g(x−σi ).

By (3.7) and (3.8), one has for all (x, y) ∈ 〈xσi 〉 × 〈x
−σ
i 〉, that

ḡ(x) + ḡ(y) = d(x, x−σi )− g(x−σi ) + d(y, xσi )− g(xσi ) = d(x, y).

For all (i, σ), (j, τ) ∈ In × {±1} satisfying either i 6= j or satisfying i = j and
σ = τ , one has for all (x, y) ∈ 〈xσi 〉 × 〈xτj 〉 by (b):

ḡ(x) + ḡ(y) = d(x, x−σi )− g(x−σi ) + d(y, x−τj )− g(x−τj )

> d(x, x−σi ) + d(y, x−τj )

− min
(z,w)∈〈xσi 〉×〈xτj 〉

[
d(z, x−σi ) + d(w, x−τj )− d(z, w)

]
≥ d(x, y).

Furthermore, for every (i, σ) ∈ In × {±1} and x ∈ 〈xσi 〉, one has by (c):

2ḡ(x) = 2(d(x, x−σi )− g(x−σi ))

> 2d(x, x−σi )− min
(z,w)∈〈xσi 〉×〈xσi 〉

[
d(z, x−σi ) + d(w, x−σi )− d(z, w)

]
≥ 0.

Hence, equations (3.8), (3.9) and (3.10) ensure that ḡ ∈ E′(X) as well as
A(ḡ) = A. This finishes the proof.
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The next example shows in particular that the system of linear inequalities
given in Proposition 3.2 is minimal in dimension two (it is trivially minimal in
dimension one). Indeed, we exhibit a maximal cell P (A) for which I(P (A)) is
the solution set of a system where each inequality corresponds to a supporting
half-space of I(P (A)) containing a facet in its boundary.

3.3 Example. Consider the finite metric space X := {xi}1≤i≤4 ∪ {x′i}1≤i≤4

given by d(xi, x
′
i) := 2 as well as

d(xi, xi+1) = d(xi, x
′
i+1) = d(x′i, xi+1) = d(x′i, x

′
i+1) := 3

and d(xi, xi+2) := 6. The function f constantly equal to three on all of X gen-
erates a cell P (A(f)) of dimension two which is isometric to an octagon in l2∞
with four sides of length two and parallel to the coordinate axes and four diag-
onal sides of length one. The complex E(X) consists of a central cell P (A(f))
and each side of length two is parametrized by a pair {xi, x′i}. Along each such
side, two triangles isometric to the convex hull conv((0, 0), (1, 1), (2, 0)) ⊂ l2∞
are glued along their longer side. The first is P (A(fi)), containing dxi and
generated by the function

fi(y) :=


0.5 if y = xi,

1.5 if y = x′i,

5.5 if y ∈ {xi+2, x
′
i+2},

3 otherwise.

The second triangle being P (A(f ′i)), containing dx′i and generated by the func-
tion f ′i defined by interchanging the roles of xj and x′j for every j in the
definition of fi. Define further

gi(y) :=


1 if y ∈ {xi, x′i},
5 if y ∈ {xi+2, x

′
i+2},

3 otherwise.

and

hii+1(y) :=

{
1.5 if y ∈ {xi, x′i, xi+1, x

′
i+1},

4.5 otherwise.

It is easy to see that F := G ∪ H := {g1, g2, g3, g4} ∪ {h12, h23, h34, h41} ⊂
P (A(f)). For every g ∈ F , one has rank(A(g)) = 1 and for every further
h ∈ F such that g 6= h, one has A(g) 6= A(h). It follows that P (A(f)) has eight
different one-dimensional faces. Furthermore, if g ∈ G, then diam(P (A(g))) =
2 and if h ∈ H, then diam(P (A(h))) = 1.
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For any metric space (X, d), since f ∈ RX is extremal if and only if for all
x ∈ X, one has

f(x) = sup
y∈X

(d(x, y)− f(y)), (3.11)

it follows that each dz is extremal. Applying (3.11) twice one obtains

f(x) ≤ sup
y∈X

(d(x, x′) + d(x′, y)− f(y)) = d(x, x′) + f(x′)

for all x, x′ ∈ X, so every f ∈ E(X) is 1-Lipschitz and thus

E(X) ⊂ ∆(X) ∩ Lip1(X,R). (3.12)

Moreover, for any f ∈ E(X), one has

‖f − dx‖∞ = f(x) (3.13)

since a function f ∈ RX belongs to ∆(X) ∩ Lip1(X,R) if and only if for all
x, y ∈ X, one has |f(x) − d(x, y)| ≤ f(y). Moreover, note that if f ∈ E(X)
satisfies f(x) = 0, then f = dx as can easily be seen from the inequalities

d(x, y)− f(x) ≤ f(y) ≤ d(x, y) + f(x)

which hold for any y ∈ X. We can now conclude this section by two remarks
regarding the zero rank elements of E(X).

3.4 Remark. Let (X, d) be any integer-valued metric space. Let A ∈
A (X) be such that rank(A) = k. Moreover, let f ∈ E′(X) be such that
A = A(f) and finally assume that dx ∈ P (A). Consider arbitrary ref-
erence points x1, . . . , xk ∈ X for the decomposition (1.6) associated to A.
Furthermore, let If : H(A) → lk∞ denote the affine isometry defined by
g 7→

(
g(x1) − f(x1), . . . , g(xk) − f(xk)

)
. Let g ∈ P (A), if x ∈ X0, then

by (1.4), one has dx|X0 = g|X0 , we thus obtain g(x) = dx(x) = 0 and hence
g = dx by the above observation. Hence, assume now that g 6= dx and thus
x /∈ X0, there is j ∈ {1, . . . , k} such that x ∈ [xj ]σ. Further, pick x̄ ∈ [xj ]−σ
so that {x, x̄} ∈ A(f) ⊂ A(g). One has

‖g − dx‖∞ = g(x) = d(x, x̄)− g(x̄) = dx(x̄)− g(x̄). (3.14)

By (1.3), one obtains

dx(x̄)− g(x̄) = −(dx(xj)− g(xj)) = −πj(dx(x̄)− g(x̄)). (3.15)
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where πj is the j-th coordinate map πj : lk∞ → R given by y 7→ yj . Let us
define the cone Cj := {x ∈ lk∞ : xj = ‖x‖∞}. We obtain from (3.14) and
(3.15) that

If (P (A)) ⊂ {If (dx)} − Cj
where the right-hand side is a Minkowski sum of subsets of lk∞.

3.5 Remark. Note that in general, (Σ0 ◦ E′)(X) 6= e(X) where (Σ0 ◦ E′)(X)
denotes the 0-skeleton of E′(X), namely the set of function f ∈ E′(X) such
that rank(A(f)) = 0. The preceding remark only applies to vertices in e(X).
It is a natural question to ask under which conditions on X, one has (Σ0 ◦
E′)(X) = e(X). The following example shows that even if X is a median
metric space, (Σ0◦E′)(X) 6= e(X) in general. First, looking at modular spaces
is justified by noticing that if there is a triple of different points x, y, z ∈ X
such that I(x, y) ∩ I(x, z) ∩ I(y, z) = ∅, then e(X) 6= (Σ0 ◦ E′)(X) = ∅.

The function f : {x, y, z} → R defined by f(x) := (y|z)x, f(y) := (x|z)y
and f(z) := (x|y)z can be extended to an element of g ∈ E(X) by [30, Propo-
sition 3.5]. For g ∈ E′(X), it follows that {x, y}, {x, z}, {y, z} ∈ A(g) and thus
all points in P (A(g)) are median points in E′(X) for x, y, z. Hence, any vertex
of P (A(g)) is in (Σ0 ◦ E′)(X) \ e(X). The contrary is however not true, as
one can see by letting X be the vertex set of the 3-cube [0, 1]3 ⊂ l31 with the
induced metric. Indeed, it is easy to see that the function

f(x) :=

{
1 if x1 + x2 + x3 ≡ 0(mod 2),

2 otherwise

verifies f ∈ (Σ0 ◦ E′)(X) \ e(X).

V.4 The Diameter of Cells of E(X)

We begin by summarizing a couple of properties which are proved in [30,
Section 4].

4.1 Lemma. Let A ∈ A (X) and let X = X0 ∪
⋃k
j=1[xj ] be the associated

decomposition with reference points {x1, . . . , xk} as defined (1.6). Now, for
any pair (g, h) ∈ P (A)× P (A), set Fgh := g − h. Then, the following hold

(i) Fgh is constant on each [xj ]σ.

(ii) For any pair (x, y) ∈ [xj ]σ × [xj ]−σ, one has

Fgh(x) = −Fgh(y).
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(iii) For any x ∈ X0, one has Fgh(x) = 0.

(iv) Fgh ∈ Lip2(X,R).

Proof. Recall from (1.3) that if there is an A-path (y1, . . . , yN ) ∈ XN , i.e.
{yi, yi+1} ∈ A for each i ∈ {1, . . . , N −1} and (y1, yN ) = (x, y), then it follows
that g(y1)− h(y1) = (−1)N−1(g(yN )− h(yN )), that is

Fgh(x) = (−1)N−1Fgh(y) (4.1)

and note that N − 1 denotes the number of A-edges of (y1, . . . , yN ). Hence if
x, y ∈ [xj ]σ, since [xj ] is a bipartite component, N − 1 can be chosen to be
even and thus Fgh(x) = Fgh(y) which implies (i).

If (x, y) ∈ [xj ]σ×[xj ]−σ, one can choose N−1 to be odd and thus Fgh(x) =
−Fgh(y), which shows (ii).

If x ∈ X0, then we may set x = y in (4.1) and N − 1 can be chosen to be
odd, so (iii) follows easily.

To see that (iv) holds, note that g, h ∈ E(X) ⊂ Lip1(X,R) by (3.12) and
thus (iv) follows.

Recall that in the notation of (1.6), for any z ∈ X \ X0, there is j ∈
{1, . . . , k} and σ ∈ {±1} such that z ∈ [xj ]σ. We then set [z]1 := [xj ]σ and
[z]−1 := [xj ]−σ.

Proof of Theorem 1.3. We first prove (i). We set k := dim(P (A)) and assume
that X0 = ∅. Pick any x ∈ X and assume without loss of generality that
x ∈ [xl]τ , pick now y ∈ [xl]−τ . By discrete path-connectedness of X, there is a
path (y1, . . . , yN ) ∈ XN (i.e. d(yi, yi+1) = 1 for i ∈ {1, . . . , N − 1}) such that
(y1, yN ) = (x, y). Now, for any pair (g, h) ∈ P (A)× P (A), set Fgh := g − h.

From (i) and (ii) in Lemma 4.1, it is easy to see that there are
{z1, . . . , zM} ⊂ {y1, . . . , yN} with (z1, zM ) = (x, y) = (y1, yN ) having the
following two properties:

(1) For any i, j ∈ {1, . . . ,M}, if i 6= j, then Fgh(zi) 6= Fgh(zj) or equivalently

[zi]1 = [xj ]σ 6= [xm]η = [zj ]1.

(2) For any j ∈ {1, . . . ,M − 1} there is (wj , wj+1) ∈ [zj ]1 × [zj+1]1 such that
d(wj , wj+1) = 1 or equivalently

d([zj ]1, [zj+1]1) = 1

where d(A,B) := infa∈A,b∈B d(a, b).
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Note that M ≤ 2k by (1) above. Besides, Fgh is a 2-Lipschitz function (iv) in
Lemma 4.1. It follows from (2) above that

|Fgh(zj)− Fgh(zj+1)| = |Fgh(wj)− Fgh(wj+1)| ≤ 2.

Hence, one has:

2|Fgh(x)| = |Fgh(x)− Fgh(y)| =

∣∣∣∣∣∣
M−1∑
j=1

[
Fgh(zj)− Fgh(zj+1)

]∣∣∣∣∣∣
≤

M−1∑
j=1

2

≤ 2(2k − 1).

It follows that ‖Fgh‖∞ ≤ 2k − 1 since the same procedure applies for every
x ∈ X. Since g and h were chosen arbitrarily in P (A), we obtain that

diam(P (A)) ≤ 2dim(P (A))− 1.

Now, to prove (2) assume X0 6= ∅. From (iv) in Lemma 4.1, we know that
Fgh is constantly equal to zero on X0. Proceeding in a way similar to the
above, we obtain ‖Fgh‖∞ ≤ 2k. It follows that

diam(P (A)) ≤ 2dim(P (A)),

as required.

We now present the two examples showing that the above bounds are
optimal. Both examples are not only discretely path-connected, but even
discretely geodesic. This means that the above bounds remain optimal when
restricting to the class of discretely geodesic metric spaces.

4.2 Example. For n ∈ N, let (X, d) be given by the graph (X,E) endowed
with the shortest-path metric where the vertex set |X| = 6n − 4 consists of
the union X := V1 ∪ V2 ∪ V3 with

Vi := {v, vi1, vi2, . . . , vi2n−2, v̄}

and the edge set E is given by E := E1 ∪ E2 ∪ E3 where

Ei := {v, vi1} ∪ {v̄, vi2n−2} ∪ {{vij , vij+1} : 1 ≤ j ≤ 2n− 3}.

141



V.4. THE DIAMETER OF CELLS OF E(X)

Let now f : X → R stand for the constant function equal to 2n−1
2 . It is easy

to see that f ∈ E(X) and that

f =
1

2
(dv + dv̄).

Note now that dim(P (A(f))) = n. Indeed, the set of all n even A(f)-
components of the graph (X,A(f)) consists of the component

[v] = [v]1 ∪ [v]−1 = {v} ∪ {v̄}

together with the n− 1 components given by

[v1
j ] = [v1

j ]1 ∪ [v1
j ]−1 = {v1

j , v
2
j , v

3
j } ∪ {v1

2n−1−j , v
2
2n−1−j , v

3
2n−1−j}

for j ∈ {1, . . . , n − 1}. On the other side, remark that dv, dv̄ ∈ P (A(f)) and
‖dv − dv̄‖∞ = 2n− 1, thus diam(P (A(f))) ≥ 2n− 1. Therefore

diam(P (A(f))) = 2n− 1

since diam(P (A(f))) ≤ diam(E(X)) = diam(X) = 2n − 1. This proves that
(i) in Theorem 1.3 is optimal.

4.3 Example. For n ∈ N, let (X, d) be given by the graph (X,E) endowed
with the shortest-path metric where the vertex set |X| = 6n − 1 consists of
the union X := V1 ∪ V2 ∪ V3 with

Vi := {v, vi1, vi2, . . . , vi2n−1, v̄},

noting that unlike Example 4.2, the sets Vi have odd cardinality and the edge
set E is given by E := E1 ∪ E2 ∪ E3 where

Ei := {v, vi1} ∪ {v̄, vi2n−1} ∪ {{vij , vij+1} : 1 ≤ j ≤ 2n− 2}.

Let now f : X → R stand for the function constantly equal to n. It is easy to
see that f ∈ E(X) and that

f =
1

2
(dv + dv̄).

Note now that dim(P (A(f))) = n. Indeed, the set of all n even A(f)-
components of the graph (X,A(f)) consists of the component

[v] = [v]1 ∪ [v]−1 = {v} ∪ {v̄}
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together with the n− 1 components given by

[v1
j ] = [v1

j ]1 ∪ [v1
j ]−1 = {v1

j , v
2
j , v

3
j } ∪ {v1

2n−j , v
2
2n−j , v

3
2n−j}

for j ∈ {1, . . . , n − 1}. Unlike Example 4.2, there is in addition an odd
A(f)-component given by the three vertices {v1

n, v
2
n, v

3
n}. Finally, remark that

similarly to the above, one has dv, dv̄ ∈ P (A(f)) and ‖dv − dv̄‖∞ = 2n hence
diam(P (A(f))) = 2n. This proves that (ii) in Theorem 1.3 is optimal.

Finally, we exhibit an example of a discretely geodesic metric space show-
ing that there is no counterpart to Theorem 1.3 namely, there is no function
f : R→ R such that for any cell P (A) of E(X), one has

dim(P (A)) ≤ f(diam(P (A))).

4.4 Example. For n ∈ N, let (X, d) be given by the graph (X,E) endowed
with the shortest-path metric, where the vertex set |X| = 2n + 2 is given by
the union

X := {v} ∪ {v̄} ∪W ∪ W̄

with W := {w1, . . . , wn} and W̄ := {w̄1, . . . , w̄n}. The edge set E is then
given by

E := {v, v̄} ∪ E1 ∪ E2 ∪ E3

where E1 := {{wi, v} : 1 ≤ i ≤ n}, E2 := {{w̄i, v̄} : 1 ≤ i ≤ n} and

E3 := ∪1≤i≤n{{wi, w̄j} : 1 ≤ j ≤ n and j 6= i}.

It is easy to see that (X,E) is a bipartite graph of diameter equal to three
since for instance d(w1, w̄1) = 3. Let us now define f : X → R by setting

f(v) := 1
2 −

1
3n and f(v̄) := 1

2 + 1
3

as well as setting for every i ∈ {1, . . . , n},

f(wi) := 3
2 −

1
3i

and f(w̄i) := 3
2 + 1

3i
.

It is then easy to see that f ∈ E(X). Moreover, dim(P (A(f))) = n since the
graph (X,A(f)) consists of the two even A(f)-components:

[w1] = [w1]1 ∪ [w1]−1 = {w1} ∪ {w̄1, v̄},

[wn] = [wn]1 ∪ [wn]−1 = {wn, v} ∪ {w̄n},

as well as the n− 2 even A(f)-components:

[wi] = [wi]1 ∪ [wi]−1 = {wi} ∪ {w̄i} for i ∈ {2, . . . , n− 1}.
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We continue with a further example. Note that by Theorem 1.2, the graph
associated to a maximal cell is a disjoint union of complete bipartite graphs,
hence in particular X0 = ∅. Therefore, the bound in (ii) of Theorem 1.3 is
never attained in maximal cells. In the next example, it is shown that the
bound in (i) of Theorem 1.3 is in maximal cells in general not attained either.

4.5 Example. Let (X, d) be a finite discretely path-connected metric space
and let A ∈ A (X) be such that P (A) is a maximal cell of E(X) and
dim(P (A)) = 2. Let

X =

2⋃
j=1

([xj ]1 ∪ [xj ]−1)

be the associated decomposition Assume now by contradiction that there
are g, h ∈ P (A) such that ‖g − h‖∞ = 3, i.e. by (i) Theorem 1.3 one has
diam(P (A)) = 3. By (ii) in Lemma 4.1 one has for Fgh := g − h and
(z, w) ∈ [xi]σ × [xi]−σ that Fgh(z) = −Fgh(w). We can assume without loss
of generality that Fgh is constantly equal to 3 on [x2]1 and thus it is con-
stantly equal to −3 on [x2]−1. Moreover, since Fgh is 2-Lipschitz by (iv) in
Lemma 4.1, it follows that Fgh is constantly equal to 1 on [x1]1 and constantly
equal to −1 on [x1]−1. Furthermore, since (X, d) is discretely path connected
and again because Fgh is 2-Lipschitz, there are y ∈ [x1]1 and y′ ∈ [x1]−1

such that d(y, y′) = 1. Since A has complete bipartite components, one has
{y, y′} ∈ A. Since both g and h are 1-Lipschitz functions, it follows from

2 = |Fgh(y)− Fgh(y′)| ≤ |g(y)− g(y′)|+ |h(y)− h(y′)| ≤ 2

that each above inequality is an equality, hence

g(y′) = g(y)− 1 = g(y)− d(y, y′) = −g(y′)

which implies g(y′) = 0 and thus g = dy′ . Analogously, h(y′) = h(y) +
1 = h(y) + d(y, y′) = 2h(y) + h(y′) implies that h(y) = 0 and thus h = dy.
Hence, ‖g − h‖∞ =

∥∥dy′ − dy∥∥∞ = d(y, y′) = 1 and this is a contradiction
to our assumption. It follows that if P (A) is a maximal cell of E(X) and
dim(P (A)) = 2, then diam(P (A)) < 3.

Example 4.5 shows together with 4.2 that the isometry classes realized as
cells of Isbell’s injective hull is different from the isometry classes realized as
maximal cells. In particular, Example 4.5 shows for instance that the regular
octagon with unit edge-length in l2∞ which has a diameter equal to three,
cannot arise as a maximal cell in the injective hull of any finite discretely
geodesic metric space. Similarly, the cells we construct in Example 4.2 do not
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arise as maximal cells in dimension two. It is already known [26] that if (X, d)
is a finite metric space, the polyhedral structure of E(X) consists of a single
maximal cell if and only if (X, d) is an antipodal metric space. It follows that
the regular octagon with unit edge-length in l2∞ cannot be realized as Isbell’s
injective hull of a finite discretely geodesic metric space.

V.5 Bicombings

The following theorem is stated in [17]. Below, Sm denotes the symmetric
group of order m. Recall that we define bicombings in Definition 1.4.

5.1 Theorem. Let (X, d) be a complete metric space with a bicombing σ.
Then, for m ∈ N, there exists a map barm : Xm → X such that the following
hold:

(i) barm(x1, . . . , xm) lies in the closed σ-convex hull of {x1, . . . , xm};

(ii) d(barm(x1, . . . , xm),barn(y1, . . . , ym)) ≤ minπ∈Sm
1
m

∑m
i=1 d(xi, yπ(i));

(iii) ϕ(barm(x1, . . . , xm)) = barm(ϕ(x1), . . . , ϕ(xm)) whenever ϕ is an isom-
etry of X and σ is such that for any (x, y) ∈ X ×X one has ϕ ◦ σxy =
σϕ(x)ϕ(y), i.e. σ is ϕ-equivariant.

We then call barm a barycenter map.

The construction satisfies bar1(x) := x and bar2(x, y) := σxy(
1
2) = σyx(1

2)
as well as for m ≥ 3,

barm(x1, . . . , xm) = barm(barm−1(x̂1), . . . ,barm−1(x̂m)),

where x̂i := (x1, . . . , xi−1, xi+1, . . . , xm).

5.2 Definition. A metric space (X, d) is said to be n-hyperconvex if for any
collection {(xi, ri)}i∈{1,...,n} ⊂ X × [0,∞) satisfying ri + rj ≥ d(xi, xj) for all
i, j ∈ {1, . . . , n}, one has ⋂

i∈{1,...,n}

B(xi, ri) 6= ∅.

where B(x, r) := {y ∈ X : d(x, y) ≤ r}. If the same holds when replacing
{1, . . . , n} by any index set I, then (X, d) is said to be hyperconvex. (X, d) is
said to be n-hyperconvex up to α respectively hyperconvex up to α for some
α ∈ [0,∞) if the above properties hold for balls with radii bounded from above
by α.
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The following proposition is a direct adaptation of [5, Lemma 2.13], see
also [32]:

5.3 Proposition. Let (X, d) be a complete 4-hyperconvex metric space with
a bicombing σ. Then (X, d) is n-hyperconvex for any n ∈ N.

Proof. We prove by induction for n ≥ 4 that if collections of n mutually
intersecting balls have a common point, then the same is true for collections
of n+1 balls. Let {Bi}i∈{1,...,n+1} be a collection of n+1 mutually intersecting
closed balls. Fix any point x0 ∈ X and let

∆0 := max
1≤i≤n+1

d(x0, Bi).

We show that there is a point x1 ∈ X such that

∆1 := max
1≤i≤n+1

d(x1, Bi) ≤ 4
5∆0

and such that
d(x0, x1) ≤ ∆0.

Iterating this procedure we obtain a sequence {xk}k∈N such that

∆k := max
1≤i≤n+1

d(xk, Bi) ≤
(

4
5

)k
∆0

and such that
d(xk, xk+1) ≤

(
4
5

)k
∆0.

It follows that {xk}k∈N is a Cauchy sequence and its limit must be contained
in
⋂
i∈{1,...,n+1}Bi since ∆k → 0.

Let N :=
(
n+1
n−1

)
and let A := {A1, . . . , AN} be an enumeration of the

collection of subsets A ⊂ {1, . . . , n+ 1} of cardinality n− 1. By the induction
hypothesis, the collection of n balls consisting of B(x0,∆0) and {Bi}i∈A has a
common point yA. By Theorem 5.1, there is a barycenter map barN : XN →
X. We set

x1 := barN (yA1 , . . . , yAN ).

Since B(x0,∆0) is σ-convex by (iii) in Definition 1.4 and since {yA}A∈A ⊂
B(x0,∆0), we have x1 ∈ B(x0,∆0) by (i) in Theorem 5.1 and hence
d(x0, x1) ≤ ∆0. Let i ∈ {1, . . . , n + 1} be chosen arbitrarily, in order to
estimate d(x1, Bi), note first that

d(yA, Bi) ≤ d(yA, x0) + d(x0, Bi) ≤ 2∆0.
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For any yA, choose zA ∈ Bi such that d(yA, zA) ≤ d(yA, Bi) + ε. If yA ∈ Bi,
set zA := yA. Moreover, define

z := barN (zA1 , . . . , zAN ).

By (i) in Theorem 5.1 applied to barN : XN → X, we have

d(x1, Bi) ≤ d(x1, z) ≤
1

N
min
σ∈SN

N∑
i=1

d(yAi , zAσ(i)
) ≤ 1

N

N∑
i=1

d(yAi , zAi)

≤ ε+
1

N

∑
A∈A,i/∈A

d(yA, Bi).

Since there are exactly N ′ :=
(
n
n−2

)
sets A ∈ A such that i ∈ A, we obtain

ε+
1

N

∑
A∈A,i/∈A

d(yA, Bi) ≤ ε+
1

N

(
N −N ′

)
2∆0 = ε+

4

n+ 1
∆0 ≤ ε+

4

5
∆0.

Since this holds for any ε > 0 and i ∈ {1, . . . , n + 1} was chosen arbitrarily,
we obtain max1≤i≤n+1 d(x1, Bi) ≤ 4

5∆0. This concludes the proof.

It is noted in [5] that 4-hyperconvex in Proposition 5.3 is optimal. Indeed,
note that it is not difficult to see that if (X, d) is a proper metric space, then
(X, d) is hyperconvex if and only if it is hyperconvex for every n ∈ N. Consider
now ln1 with n ≥ 1, it is not difficult to see that ln1 is a proper 3-hyperconvex
metric space. However, ln1 is not hyperconvex for n ≥ 3. Now,

5.4 Lemma. Let (X, d) be a metric space. Assume there is α > 0 such that
for any x ∈ X, the closed ball B(x, α) is hyperconvex. Then, X is hyperconvex
up to α

2 .

Proof. Let {(xi, ri)}i∈I ⊂ X × [0, α2 ] be such that d(xi, xj) ≤ ri + rj , hence
in particular d(xi, xj) ≤ α. Fixing an i ∈ I, it follows that for any j ∈ I,
one has xj ∈ B(xi, α). By hyperconvexity of B(xi, α), it thus follows that⋂
i∈I B(xi,

α
2 ) 6= ∅ and thus the result follows.

Conversely, it is easy to see that if X is hyperconvex up to α, then for any
x ∈ X the closed ball B(x, α2 ) is hyperconvex. An analogue of the next lemma
appears in [34].

5.5 Lemma. Let (X, d) be a metric space with a bicombing σ and hyperconvex
up to α

2 > 0. Then, (X, d) is hyperconvex up to α.
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Proof. Let {(xi, ri)}i∈I ⊂ X × [0, α] be such that d(xi, xj) ≤ ri + rj . For
any i ∈ I, note that by (iii) in Definition 1.4, one has d(σxixj (

1
2), σxixk(1

2)) ≤
d(xj ,xk)

2 and thus since { ri2 }i∈I ⊂ [0, α2 ], we can pick

x′i ∈
⋂
j∈I

B(σxixj (
1
2),

rj
2 )

noticing that in particular

x′i ∈ B(σxixi(
1
2), ri2 ) = B(xi,

ri
2 ). (5.1)

Now, we have by (ii) in Definition 1.4 that σxixj (
1
2) = σxjxi(

1
2) and thus

together with the triangle inequality, one has

d(x′i, x
′
j) ≤ d(x′i, σxixj (

1
2)) + d(σxixj (

1
2), x′j) ≤

ri
2

+
rj
2
.

Therefore, we can pick

x ∈
⋂
i∈I

B(x′i,
ri
2 )

and together with (5.1), it follows that for any i ∈ I, one has d(x, xi) ≤ ri.
Consequently

x ∈
⋂
i∈I

B(xi, ri)

and this concludes the proof.

From Lemma 5.5 we immediately obtain:

5.6 Corollary. Let (X, d) be a metric space with bicombing and hyperconvex
up to α > 0. Then, (X, d) is n-hyperconvex for any n ∈ N.

Recall that l1(N)∗ and l∞(N) are isomorphic in the category of normed
spaces and thus so are l1(N)∗∗ and l∞(N)∗. There is a canonical linear embed-
ding Λ′ : l1(N) → l1(N)∗∗ given by the evaluation map f 7→ (ϕ 7→ ϕ(f)) and
let

Λ: l1(N)→ l∞(N)∗ (5.2)

be the associated linear embedding.

5.7 Lemma. Let A be a weak* closed subset of l∞(N). If A is n-hyperconvex
for any n ∈ N, then A is hyperconvex.
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Proof. Consider now {(xi, ri)}i∈I ⊂ A× [0,∞) such that ‖xi−xj‖∞ ≤ ri+rj .
Fix i ∈ I. By Banach-Alaoglu, B(xi, ri) is weak* compact and since A is
weak* closed, it follows that A ∩ B(xi, ri) is weak* compact. Now, for any
finite index subset J of I and for any j ∈ J , the set A ∩ B(xi, ri) ∩ B(xj , rj)
is weak* closed in S. Furthermore,

A ∩B(xi, ri) ∩
⋂
j∈J

B(xj , rj) 6= ∅.

By the closed set criterion for compactness, we finally obtain that

A ∩
⋂
i∈I

B(xi, ri) 6= ∅.

This concludes the proof.

From the above observation and an analogue one in the proper case as
well as with Proposition 5.3, one easily obtains Theorem 1.5. Now, note that
if {(fγ , Cγ)}γ∈Γ ⊂ l1(N)× R, then the convex set

P :=
⋂
γ∈Γ

Λ(fγ)−1
(
[Cγ ,∞)

)
⊂ l∞(N) (5.3)

is weak* closed in l∞(N).

5.8 Lemma. Let P be given by (5.3). If P is hyperconvex, then for any p ∈ P ,
the tangent cone

TpP :=
⋃
n∈N

(
p+ n(P − p)

)
is hyperconvex.

Proof. Since

TpP =
⋂

γ∈Γ(p)

Λ(fγ)−1
(
[Cγ ,∞)

)
where Γ(p) := {γ ∈ Γ : Λ(fγ)(p) = Cγ}, it suffices to show by Lemma 5.7
that TpP is n-hyperconvex for any n ∈ N. Let {(xi, ri)}i∈I ⊂ TpP × [0,∞) be
such that |I| < ∞ and ‖xi − xj‖∞ ≤ ri + rj . There is then n ∈ N such that
{xi}i∈I ⊂ p+ n(P − p). By hyperconvexity of the latter, it follows that(

p+ n(P − p)
)
∩
⋂
i∈I

B(xi, ri) 6= ∅

hence a fortiori TpP ∩
⋂
i∈I B(xi, ri) 6= ∅ and the result follows.
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Since every convex subset of l∞(N) is endowed with a bicombing given by
the linear geodesics, we deduce the following consequence:

5.9 Theorem. Let P be given by (5.3) assuming additionally that |Γ| < ∞.
Then, P is hyperconvex if and only if for every p ∈ P , the tangent cone TpP
is hyperconvex.

Proof. Necessity follows from Lemma 5.8. Now, assume that for every p ∈ P ,
the tangent cone TpP is hyperconvex. Similarly to the procedure involved in
finding δ in the proof of Theorem III.1.1, one can find ε > 0 such that for any
p ∈ P , there is q ∈ P such that

B(p, ε) ∩ P = B(p, ε) ∩ TqP.

By hyperconvexity of TqP , it follows that B(p, ε) ∩ TqP is hyperconvex as
well, and thus so is B(p, ε) ∩ P . It follows from Lemma 5.4, Lemma 5.5 and
Corollary 5.6 that every finite collection of mutually intersecting closed balls
in P has a common point in P . It finally follows from Lemma 5.7 that P is
hyperconvex. This concludes the proof.

From Lemma 5.7 applied to each tangent cone and using that in this
particular case, the usual barycenter of a finite point set from l∞(N) can be
used in the proof of Proposition 5.3, we obtain

5.10 Corollary. Let {(fγ , Cγ)}γ∈{1,...,m} ⊂ l1(N)×R and consider the convex
subset

P :=
⋂

γ∈{1,...,m}

Λ(fγ)−1
(
[Cγ ,∞)

)
⊂ l∞(N).

Then, P is hyperconvex if and only if for every p ∈ P , the tangent cone TpP
is 4-hyperconvex.
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