Converses from non-signalling codes and their relationship to converses from hypothesis testing

Author(s): Matthews, William

Publication Date: 2016

Permanent Link: https://doi.org/10.3929/ethz-a-010645629

Rights / License: In Copyright - Non-Commercial Use Permitted
Converses from non-signalling codes and their relationship to converses from hypothesis testing

William Matthews
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA.
Email: will@northala.net

Abstract—Finite blocklength converses for classical and quantum channel coding can be obtained by relaxing the optimization over independent encoding and decoding procedures to procedures which are merely “non-signalling”. This approach, inspired by quantum information theory, results in converses which are closely related to the hypothesis testing-based converse of Polyaniski-Poor-Verdu. Indeed, in the classical case they are equivalent. I will give an overview of the non-signalling codes method and describe its relationship to the hypothesis testing approach.

I. LINEAR TRANSFORMATIONS OF CONDITIONAL DISTRIBUTIONS

Consider the following situation. Given a symbol M, Alice applies some, possibly randomised, process to produce symbols X and F. F is sent to Bob over a noiseless channel. Alice uses X as the input to some discrete channel, from which Bob receives output Y. Bob applies some process to F and Y to obtain a symbol W. We assume that $M=(F,X)\rightarrow (F,Y)\rightarrow W$ is a Markov chain. Letting $N(y|x)=P_{Y|X}(y|x)$, $E(f,x|m)=P_{F|X|M}(f|x,m)$, and $D(w|f,y)=P_{W|FY}(w|f,y)$, we have

$$P_{WYM}(w,y,x,m)=Z(x,w|m,y)N(y|x)P_{M}(m)$$

where

$$Z(x,w|m,y):=\sum_{f}D(w|f,y)E(f,x|m).$$

The conditional distribution (2) is what one would have if $N(y|x)=Q_{Y}(y)$ for some distribution Q. It is non-signalling from Bob to Alice, which means

$$\forall x,m,y,y':\sum_{w}Z(x,w|m,y)\sum_{y'}Z(x,w|m,y')=Z(x|m).$$

in particular

$$\forall x,m,y:\sum_{w}Z(x,w|m,y)=\sum_{f}E(f,x|m).$$

Conversely, any bipartite conditional distribution which is non-signalling from Bob to Alice has a (non-unique) decomposition of the form (2) (see [9]). Operationally, this means that it can be implemented by local operations and one-way communication from Alice to Bob. Note that P_{WYM} depends on E and D only through the distribution Z.

The distribution of W given M in the present scenario is

$$P_{W|M}(w|m)=\sum_{x,y}Z(x,w|m,y)N(y|x).$$

Clearly, any linear transformation which takes conditional distributions for Y given X to conditional distributions for W given M can be written in the form (5) if we allow $Z(x,w|m,y)$ to be arbitrary numbers. In fact, the map will have the property that it transforms every conditional distribution to a conditional distribution if and only if Z is a conditional distribution which is non-signalling from Bob to Alice (see [9]).

Naturally, we can write

$$P_{WYM}(w,y,x,m)=\hat{Z}(m,w|x,y)P_{XY}(x,y),$$

where, for x such that $P_{X}(x)>0$ we define

$$\hat{Z}(m,w|x,y):=P_{M|XY}(m,w|x,y)$$

$$=P_{WYM}(w,y,x,m)P_{YX}(x)P_{W}(w|x)$$

$$=Z(x,w|m,y)P_{M}(m)P_{X}(x).$$

The final equality follows from (1). Note that $P_{X}(x)=\sum_{m,n}Z_{n,m}(x|m)P_{M}(m)$, so \hat{Z} depends only on Z and P_{M} (not on $N_{Y|X}$). For x such that $P_{X}(x)=0$ we let

$$\hat{Z}(m,w|x,y):=P_{M}(m)P_{W}(w).$$

It follows that

$$P_{M}(w)=\sum_{m,w}Z(m,w|x,y)\sum_{x}N_{Y|X}(y|x)P_{X}(x).$$

We will make use of this expression in the next section, and give a quantum generalisation of it in Section V. Note that $\hat{Z}(m,w|x,y)$ is non-signalling from Bob to Alice.

II. NON-SIGNALLING CODES

We can regard channel coding as a special case of the scenario described in the previous section. Let M and W take values in the same set of size k. We can interpret M as the message and W as the estimate of that message made by the decoder. Let M be uniformly distributed. The average probability of error is $Pr(M\neq W)$. With the arbitrary noiseless communication from Alice to Bob allowed in the
previous section one can obviously find zero-error codes of arbitrary size for any channel \(N_{Y|X} \). A conventional code corresponds to the situation where

\[
Z(x, w|m, y) = E(x|m)D(w|y).
\]

(12)

For these types of code, \(Z \) is non-signalling not only from Bob to Alice but also from Alice to Bob, that is

\[
\forall w, y, m, m' : \sum_x Z(x, w|m, y) = \sum_x Z(x, w|m', y) =: Z_{W|Y}(w|y).
\]

(13)

We call any code with this property a non-signalling code [7].

The condition (13) implies that \(\hat{Z} \) satisfies

\[
\sum_x \hat{Z}(m, w|x, y)P_X(x) = P_M(m)Z_{W|Y}(w|y)
\]

(14)

and, if \(\hat{Z} \) satisfies this condition then the corresponding \(Z \) is non-signalling from Alice to Bob. The success probability of the code for channel \(N_{Y|X} \) is

\[
Pr(M = W) = \sum_{m,x,y} Z(m, m|x, y)N_{Y|X}(y|x)P_M(m)
\]

(15)

\[
= \sum_{m,x,y} \hat{Z}(m, m|x, y)N_{Y|X}(y|x)P_X(x).
\]

(16)

Remark 1. Fixing \(N_{Y|X} \), the success probability (15) is a linear functional of \(Z \) and, since the constraints which make \(Z \) non-signalling are linear, maximising the success probability over all non-signalling codes is a linear program.

Using symmetry, this can be simplified to one whose size is independent of \(k \) [9].

If we use a non-signalling code and take a channel \(R_{Y|X} \) where \(Y \) and \(X \) are independent, i.e. \(R_{Y|X}(y|x) = Q_Y(y) \) then, using (14), the distribution of \((M, W)\) is

\[
Q_{MW}(m, w) = \sum_{x,y} \hat{Z}(m, w|x, y)P_X(x)Q_Y(y)
\]

(17)

\[
= P_M(m) \sum_y Z_{W|Y}(w|y)Q_Y(y).
\]

(18)

that is \(W \) and \(M \) are independent. In this situation, for any choice of \(Q_Y \), \(Pr(M = W) = 1/k \), that is

\[
\forall Q_Y : \sum_{m,x,y} \hat{Z}(m, m|x, y)P_X(x)Q_Y(y) = 1/k.
\]

(19)

III. HYPOTHESIS TESTING CONVERSE

Consider the following hypothesis testing problem. The null hypothesis is that \(X \) and \(Y \) are distributed according to \(P_{XY} \). The alternative hypothesis is a composite hypothesis, which states that \(X \) and \(Y \) are distributed according to \(P_{X|Q_Y} \) for some arbitrary \(Q_Y \). A hypothesis test is specified by

\[
T[x, y] := Pr(\text{Accept null}|X = x, Y = y).
\]

(20)

The minimum type-II error which can be attained by a test with type-I error no more than \(\epsilon \) is

\[
\beta^*_\epsilon(P_{XY}) := \min_{Q_Y} \max_{\epsilon > 0} \sum_{x,y} T[x, y] P_X(x)Q_Y(y)
\]

subject to

\[
\sum_{y \neq y} T[x, y] P_X(x) \geq 1 - \epsilon.
\]

(22)

Let us define for distributions \(p \) and \(q \),

\[
\beta_\epsilon(p, q) := \min_{T} \left\{ \sum_x T[z]q(z) : \sum_x T[z]p(z) \geq 1 - \epsilon \right\}.
\]

The set of distributions for \(Y \) and the set of tests are both compact, convex sets and the objective function on the RHS of (21) is a bilinear function of the distribution and test. Therefore, by von Neumann’s minimax theorem

\[
\beta^*_\epsilon(P_{XY}) = \max_{Q_Y} \beta_\epsilon(P_{XY}, \|P_XQ_Y\|).
\]

(24)

Proposition 2. There is a non-signalling code of size \(k \), input distribution \(P_X \), and error probability \(\epsilon \) for channel \(N_{Y|X} \) if and only if there is a test \(T \) with

\[
\sum_{x,y} T[x, y] N_{Y|X}(y|x)P_X(x) = 1 - \epsilon, \quad \text{and} \quad \forall Q_Y : \sum_{x,y} T[x, y]Q_Y(y)P_X(x) = 1/k.
\]

(25)

(26)

Proof. Suppose that we have a non-signalling code of size \(k \) which attains error probability \(\epsilon \) for channel \(N_{Y|X} \). The distribution of \(X \) is fixed by \(Z \) and the fact that \(M \) is uniformly distributed. For the direct part, let \(Z \) be the bipartite conditional distribution for a non-signalling code satisfying the stated properties. If we let

\[
T[x, y] = \sum_{m=1}^k \hat{Z}(m, m|x, y),
\]

(27)

then using (16) we obtain (25) and, using (19) in addition, we obtain (26).

For the converse, let \(T \) be a test satisfying (25) and (26), and let

\[
\hat{Z}(m, m|x, y) = \frac{1}{k} \delta_{mw} T[x, y]
\]

(28)

\[
\frac{1}{k(k-1)} \left(1 - \delta_{mw} \right) \left(1 - T[x, y] \right).
\]

This clearly satisfies (3). Using (26) we have

\[
\sum_x \hat{Z}(m, m|x, y)P_X(x) = \frac{1}{k} \delta_{mw} \sum_x T[x, y]P_X(x)
\]

(29)

\[
+ \frac{1}{k(k-1)} \left(1 - \sum_x T[x, y]P_X(x) \right) = 1/k^2
\]

(30)

so \(\hat{Z} \) also satisfies (14). It follows that \(Z \) satisfies (3) and (13), so it is a non-signalling code. Furthermore, by (25),

\[
Pr(M = W) = \sum_{m,x,y} \hat{Z}(m, m|x, y)N_{Y|X}(y|x)P_X(x)
\]

(31)

\[
= 1 - \epsilon.
\]
A constraint on tests of the form (26) is a rather unusual
in the context of hypothesis testing. In [10], tests with this
property (or more generally, property (35)) are called “P_X
balanced”), and as noted there, we may relax this condition
without changing the minimax type-II error probability: Suppose we have a test T' which satisfies
\[\sum_{x,y} T'(x,y)N_{Y|X}(y|x)P_X(x) \geq 1 - \epsilon, \] and
\[\forall y : \sum_{x,y} T'(x,y)Q_Y(y|x)P_X(x) \leq \beta. \] (32) (33)
The later condition is equivalent to
\[\forall y : \sum_{x} T'(x,y)P_X(x) =: c_y \leq \beta. \] (34)
If we let
\[T(x,y) = (1 - \lambda_y)T'(x,y) + \lambda_y, \]
where $\lambda_y = \frac{\beta - c_y}{1 - \epsilon}$, then
\[\forall y : \sum_{x} T(x,y)P_X(x) = \beta, \] and since $T'(x,y) \leq T(x,y) \leq 1$ for all x,y
\[\sum_{x,y} T(x,y)N_{Y|X}(y|x)P_X(x) \geq 1 - \epsilon. \] (35) (36)
It follows that there is a non-signalling code of size k and input distribution P_X with error probability ϵ for $N_{Y|X}$ if and only if
\[1/k \geq \beta^{+}(N_{Y|X}(y|x)P_X(x)). \] (37)

Theorem 3. There is a non-signalling code of size k and input distribution P_X and error probability ϵ for $N_{Y|X}$ if and only if
\[k \leq \min_{Q_Y} \beta^{+}(N_{Y|X}P_X)||Q_Y P_X||^{-1}. \] (38)
There is a non-signalling code of size k and error probability ϵ for $N_{Y|X}$ if and only if
\[k \leq \max_{P_Y} \min_{Q_Y} \beta^{+}(N_{Y|X}P_X)||Q_Y P_X||^{-1}. \] (39)
As an upper-bound this is exactly the “minimax” converse given (for conventional codes) in [6] and further studied in [10].

IV. A LITTLE BACKGROUND

For any two systems Q and Q of equal dimension d we define $|\Phi^+\rangle_{QQ} := \sum_{j<k} \langle j|_{Q} \otimes |j|_{Q}$ and $\Phi^+_{QQ} = |\Phi^+\rangle_{QQ}$. The vector $|\Phi^+\rangle_{QQ}$ has the property that for any operator $L_{\bar{Q}}$
\[L_{\bar{Q}}|\Phi^+\rangle_{QQ} = L_{\bar{Q}}^{T}|\Phi^+\rangle_{QQ}. \] (40)
where $L_{\bar{Q}}^{T}$ is the transpose of $L_{\bar{Q}} := \text{id}^{Q_{-\bar{Q}}} L_{\bar{Q}}$ in the computational basis ($\text{id}^{Q_{-\bar{Q}}}$ is the linear map which takes the computational basis for operators on \bar{Q} to that for Q, i.e. $\text{id}^{Q_{-\bar{Q}}} : |i\rangle_{\bar{Q}} \mapsto |i\rangle_{\bar{Q}}$). This fact is sometimes referred

\[\square \]

do to as the ‘transpose trick’. We also note that $\text{Tr}_{Q} \Phi^+_{QQ} = \mathbb{I}_{Q}$
and $\text{Tr}_{\bar{Q}} \Phi^+_{QQ} = \mathbb{I}_{\bar{Q}}$. From this property it follows that, for any
density operator ρ, $\rho^{1/2} \Phi_{\bar{Q}} \rho^{1/2}$ is a purification of ρ.
Let \mathcal{H}_{A} and \mathcal{H}_{B} be Hilbert spaces of finite dimension. Any linear map $\mathcal{L}_{\bar{A} \rightarrow B}$ from operators on \mathcal{H}_{A} to operators on \mathcal{H}_{B}, has an
operator representation $\mathcal{L}_{\bar{A} \rightarrow B} \Phi^+_{\bar{A}}$. We note that
\[\mathcal{L}_{\bar{A} \rightarrow B} : \kappa_{A} \mapsto \text{Tr}_{\bar{A}} \kappa_{\bar{A}} \mathcal{L}_{\bar{A} \rightarrow B} \Phi^+_{\bar{A}}. \] (41)
(This correspondence between linear maps between operators and operators is known as the “Choi-Jamiolkowski isomorphism.”) Complete positivity of a map corresponds to its operator representation being positive semidefinite. $\mathcal{L}_{\bar{A} \rightarrow B}$ is trace preserving if and only if $\text{Tr}_{\bar{B}} \mathcal{L}_{\bar{A} \rightarrow B} \Phi^+_{\bar{A}} = \mathbb{I}_{\bar{B}}$. A quantum operation from system A to system B is a linear
map from \mathcal{H}_{A} to \mathcal{H}_{B} which is completely positive and trace-preserving.

Given any density operator ρ_{AB} we can write
\[\rho_{AB} = \mathcal{N}_{\bar{A} \rightarrow B} \rho_{\bar{A}} \] (42)
where $\rho_{\bar{A}} = \rho_{\bar{A}}^{1/2} \Phi_{\bar{A}}^{1/2}$ and $\mathcal{N}_{\bar{A} \rightarrow B}$ is an operation
which we may specify explicitly in terms of its operator representation: Let $\rho_{\bar{A}}^{1/2}$ denote the generalised inverse of $\rho_{\bar{A}}^{1/2}$, which is the unique operator such that $\rho_{\bar{A}} \rho_{\bar{A}}^{1/2}$ and $\rho_{\bar{A}}^{1/2} \rho_{\bar{A}}$ are equal to the orthogonal projection operator, $\rho_{\bar{A}}^{0}$, onto the support of $\rho_{\bar{A}}$. Then, for any state $\tau_{\bar{B}}$, the operation
\[\mathcal{N}_{\bar{A} \rightarrow B} \Phi_{\bar{A}} = \rho_{\bar{A}}^{1/2} \rho_{\bar{B}} \rho_{\bar{A}}^{1/2} + (1 - \rho_{\bar{A}}^{0}) \otimes \tau_{\bar{B}} \] (43)
satisfies equation (42).

V. LINEAR TRANSFORMATIONS OF QUANTUM OPERATIONS

We will now develop the quantum generalisation of the classical results given earlier, starting with Section I.

Alice has some system M to which she applies an operation $\mathcal{E}_{X \rightarrow \mathcal{M}}$. System F is transferred noiselessly to Bob, while an operation $\Lambda^{\mathcal{X} \rightarrow \mathcal{F}}$ is applied to X leaving Bob with system Y. Bob applies an operation $\mathcal{D}_{\mathcal{W} \rightarrow \mathcal{Y}}$ to \mathcal{Y}, leaving him with system W. The overall operation from M to W is
\[\mathcal{D}_{\mathcal{W} \rightarrow \mathcal{Y}} : \mathcal{I}^{\mathcal{F} \rightarrow \mathcal{M}} \odot \Lambda^{\mathcal{X} \rightarrow \mathcal{F}} \mathcal{E}_{X \rightarrow \mathcal{M}}. \] (44)
Fixing $\mathcal{D}_{\mathcal{W} \rightarrow \mathcal{Y}}$ and $\mathcal{E}_{X \rightarrow \mathcal{M}}$ (44) is a linear function of $\Lambda^{\mathcal{X} \rightarrow \mathcal{F}}$ which maps any operation $\Lambda^{\mathcal{X} \rightarrow \mathcal{F}}$ to an operation. In fact it satisfies a strictly stronger property, which is that if $\Lambda^{\mathcal{X} \rightarrow \mathcal{F}}$ is an operation, then it will be mapped to an operation. As shown in [5], any linear map from operations to operations with this property can be written in the form (44).

We define a bipartite operation $\mathcal{E}_{X \rightarrow \mathcal{M}}$ via
\[\mathcal{E}_{X \rightarrow \mathcal{M}} := \mathcal{D}_{\mathcal{W} \rightarrow \mathcal{Y}} \mathcal{E}_{X \rightarrow \mathcal{M}}. \] (45)
This operation completely determines the map from operations to operations discussed above (see [12]). Evidently this operation is implemented by local operations and one-way quantum communication from Alice to Bob. Any operation of this form is non-signalling from Bob to Alice [1], in the sense that
\[\forall \rho_{\bar{Y}} : \text{Tr}_{\bar{W}} \mathcal{E}_{X \rightarrow \mathcal{M}} \rho_{\bar{Y}} = \mathcal{E}_{X \rightarrow \mathcal{M}}. \] (46)
In particular, \(\mathcal{Z}^{X\leftarrow M} = \text{Tr}_X \mathcal{E} F_{X\leftarrow M} \). Conversely, any bipartite operation which satisfies (46) can be implemented by local operations and quantum communication from Alice to Bob [3]. That is, it can be written in the form (45).

Let \(\hat{M} \) have the same dimension as system \(M \) and suppose that, initially, Alice has systems \(MM \). The 'transpose trick' tells us that \(\mu_{MM} = \text{Tr}_M \mu_{MM} \). Let \(\hat{M} \) be the state of the system MM in the state

\[
\mu_{\hat{M}M} := \mu_M^{1/2} \phi_{\hat{M}M}^+ \phi_{\hat{M}M}^{1/2} = \mu_M^{1/2} \phi_{MM}^+ \phi_{MM}^{1/2} \tag{47}
\]

where \(\mu_M := \text{Tr}_M \mu_{MM} \). The 'transpose trick' tells us that \(\mu_M^{1/2} = \text{id} \mu_{MM}^{1/2} \). Let

\[
\omega_{\hat{M}MM} := D^{W\leftarrow Y} \text{id} F \otimes \mathcal{N}^{Y\leftarrow X} \mathcal{E} F_{X\leftarrow M} \mu_{\hat{M}M} \tag{48}
\]

After Alice applies \(\mathcal{E} \), the system MM is in the state \(\rho_{\hat{M}MM} = \mu_{\hat{M}M}^{1/2} (\mathcal{E} F_{X\leftarrow M} \phi_{\hat{M}MM}^+ \phi_{\hat{M}MM}^{1/2} \mu_{MM}^{1/2} \). The solution is illustrated in the top half of the figure. Let \(\hat{E} \) be an operation (see previous section) such that \(\rho_{\hat{E}MM} = \mathcal{E} \hat{E} \rho_{\hat{E}XX} \) where (for the remainder of this article) \(\rho_{\hat{E}XX} \) is defined to be the state

\[
\rho_{\hat{E}XX} := \rho_X^{1/2} \phi_{\hat{E}XX}^+ \phi_{\hat{E}XX}^{1/2}. \tag{49}
\]

Note that \(\rho_X := \text{Tr}_X \rho_{\hat{E}XX} = \text{id} \phi_{\hat{E}XX} F \rho_{\hat{E}XX} \). Then

\[
\omega_{\hat{E}MM} = D^{W\leftarrow Y} \mathcal{N}^{Y\leftarrow X} \rho_{\hat{E}MM} = \mathcal{Z}^{W\leftarrow Y} \mathcal{N}^{Y\leftarrow X} \rho_{\hat{E}XX} \tag{50}
\]

where

\[
\mathcal{Z}^{W\leftarrow Y} := D^{W\leftarrow Y} \mathcal{E} \mathcal{N}^{Y\leftarrow X}. \tag{51}
\]

Note the analogy between the expression (50) for the final state of \(\hat{M}W \) and the expression (11) for the joint distribution of \(M \) and \(W \). In terms of the operator representations of \(\hat{Z} \) and \(Z \), we have

\[
\frac{1}{\sqrt{2}} (\mathcal{Z}^{W\leftarrow X} \rho_{\hat{E}XX}^+ \phi_{\hat{E}XX}) \rho_X^{1/2} = \mu_{\hat{M}M}^{1/2} (\mathcal{Z}^{W\leftarrow X} \rho_{\hat{E}XX}^+ \phi_{\hat{E}XX}) \rho_X^{1/2}. \tag{52}
\]

VI. QUANTUM NON-SIGNALLING CODES

We can view block coding of classical (or quantum) information over a quantum channel as a special case of the scenario described in the previous section. In this case \(M \) and \(W \) are of the same dimension, \(k \) (which we call the size of the code). If (as in the classical case) we are concerned with the transmission of a uniformly distributed classical message, then \(M \) stores a uniformly distributed classical message in the computational basis. That is, \(\mu_M = \mathbb{I}_M/k \). If \(M \) is measured in the computational basis then we obtain a copy of the message that was sent. The probability of successful transmission is, therefore, the probability of obtaining equal results computational basis measurements are performed on \(\hat{M} \) and \(W \). The POVM element corresponding to this outcome is

\[
\Pi_{\hat{M}W} := \sum_m |m\rangle \langle m|_{\hat{M}} \otimes |m\rangle \langle m|_W,
\]

so the success probability of the code is

\[
1 - \epsilon = \text{Tr} \Pi_{\hat{M}W} \mathcal{Z}^{W\leftarrow Y} \mathcal{N}^{Y\leftarrow X} \rho_{\hat{E}XX}. \tag{53}
\]

In a conventional code, there is no auxiliary forward communication and the bipartite operation is of the form

\[
\mathcal{Z}^{X\leftarrow W} = \mathcal{E}_{X\leftarrow M} \otimes \mathcal{D}^{W\leftarrow Y} \tag{54}
\]

where \(\mathcal{E}_{X\leftarrow M} \) and \(\mathcal{D}^{W\leftarrow Y} \) are encoding and decoding operations. The bipartite operation for such codes is not only non-signalling from Bob to Alice, but also from Alice to Bob. We call any forward-assisted quantum code whose bipartite operation is non-signalling in both directions a quantum non-signalling code [12]. In terms of the operation \(\mathcal{Z}^{X\leftarrow W} \mathcal{N}^{Y\leftarrow X} \) this condition is

\[
\mathcal{Z}^{W\leftarrow X} \rho_{\hat{E}XX} \otimes 1_Y = \mu_M \otimes \mathcal{Z}^{W\leftarrow X}. \tag{55}
\]

and given any operation \(\hat{Z} \) which satisfies this condition the corresponding \(Z \) is non-signalling from Bob to Alice.

Remark 4. In terms of the operator representation of \(Z \), the success probability is a linear functional, the non-signalling and normalising constraints on \(Z \) are affine, while the complete positivity of \(Z \) is equivalent to the operator representation being positive semidefinite. Therefore, maximising the success probability over non-signalling quantum codes is a semidefinite program (see [12]).

The quantum analog of a channel for which \(Y \) and \(X \) are independent is for the operation \(\mathcal{N}^{Y\leftarrow X} \) to have the form \(\mathcal{N}^{Y\leftarrow X} = \sigma_Y \text{Tr}_X \). As one would expect, the success probability of a quantum non-signalling code of size \(k \) for any such channel is simply \(1/k \), that is

\[
\forall \sigma_Y : \text{Tr} \Pi_{\hat{M}W} \mathcal{Z}^{W\leftarrow X} \rho_{\hat{E}XX} \otimes \sigma_Y = 1/k. \tag{56}
\]
VII. QUANTUM HYPOTHESIS TESTING CONVERSE

Consider the quantum hypothesis testing problem where the null hypothesis is that the state of $\tilde{X}\tilde{Y}$ is $\rho_{\tilde{X}\tilde{Y}}$ and the (composite) alternative hypothesis is that that state of $\tilde{X}\tilde{Y}$ is of the form $\rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}}$ where $\rho_{\tilde{X}} = Tr_{\tilde{Y}}\rho_{\tilde{X}\tilde{Y}}$ and $\sigma_{\tilde{Y}}$ is any state. We can specific a quantum hypothesis test by giving the POVM element $T_{\tilde{X}\tilde{Y}}$ corresponding to acceptance of the null hypothesis.

\[
\beta^*_{\rho_{\tilde{X}\tilde{Y}}} := \min_{0 \leq T_{\tilde{X}\tilde{Y}} \leq 1} \max_{\sigma_{\tilde{Y}}} Tr T_{\tilde{X}\tilde{Y}} \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}} \tag{56}
\]
subject to $Tr T_{\tilde{X}\tilde{Y}} \rho_{\tilde{X}\tilde{Y}} \geq 1 - \epsilon$. \tag{57}

For any two states ρ_0 and ρ_1 of the same system we define

\[
\beta_{\epsilon}(\rho_0 || \rho_1) := \min \{ Tr T \rho_1 : Tr T \rho_0 \geq 1 - \epsilon, 0 \leq T \leq 1 \}.
\]

By von Neumann’s minimax theorem

\[
\beta^*_{\rho_{\tilde{X}\tilde{Y}}} = \max_{\sigma_{\tilde{Y}}} \beta_{\epsilon}(\rho_{\tilde{X}} || \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}}) \tag{58}
\]

We now give the quantum generalisation of Proposition 2.

Proposition 5. There is a quantum non-signalling code of size k with input state $\rho_{\tilde{X}}$ and error probability ϵ for operation $N^{\tilde{X} \to \tilde{Y}}$ if and only if there is a quantum hypothesis test $T_{\tilde{X}\tilde{Y}}$ satisfying

\[
Tr T_{\tilde{X}\tilde{Y}} N^{\tilde{X} \to \tilde{Y}} \rho_{\tilde{X}} = 1 - \epsilon, \quad \forall \sigma_{\tilde{Y}} \colon Tr T_{\tilde{X}\tilde{Y}} \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}} = 1/k
\]

where $\rho_{\tilde{X}} = \rho_{\tilde{X}}^{1/2} \Phi^+_{\tilde{X}\tilde{Y}} \rho_{\tilde{X}}^{1/2}$.

Proof. First the converse part: Suppose that there is a non-signalling code Z with properties stated in (5). Consider the test obtained by applying the operation $Z^{\tilde{X} \to \tilde{Y}}$ to system $\tilde{X}\tilde{Y}$, measuring both M and W in their computational bases, and accepting (the null hypothesis) when the two results are equal. By (52) and (55) this test has the required properties.

For the direct part, let $T_{\tilde{X}\tilde{Y}}$ be a test satisfying (59) and (60), and let

\[
\begin{aligned}
Z^{\tilde{X} \to \tilde{Y}} : A_{\tilde{X}} \mapsto & \frac{1}{k} \sum_{W} T_{\tilde{X}\tilde{Y}} A_{\tilde{X}}
+ \frac{1}{k(k-1)} \left(I - \sum_{W} T_{\tilde{X}\tilde{Y}} \right) (I - T_{\tilde{X}\tilde{Y}}) A_{\tilde{X}}
\end{aligned}
\]

where $\Pi_{\tilde{X}W} := \sum_{m} |m\rangle \langle m| \otimes |m\rangle \langle m|$. It is easy to check that this is non-signalling from Bob to Alice, and the property (60) ensures that this $Z^{\tilde{X} \to \tilde{Y}}$ satisfies (54). That is, if the desired error probability follows from (52), (59) and $\Pi_{\tilde{X}W}(1 - \Pi_{\tilde{X}W}) = 0$. \qquad \Box

Corollary 6. If there is a non-signalling code of size k and average input state $\rho_{\tilde{X}}$ and error probability ϵ for $N^{\tilde{X} \to \tilde{Y}}$ then

\[
k \leq \min_{\sigma_{\tilde{Y}}} \beta_{\epsilon}(N^{\tilde{X} \to \tilde{Y}} \rho_{\tilde{X}} || \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}})^{-1}. \tag{62}
\]

If there is a non-signalling code of size k and error probability ϵ for $N^{\tilde{X} \to \tilde{Y}}$ then

\[
k \leq \max_{\rho_{\tilde{X}}} \min_{\sigma_{\tilde{Y}}} \beta_{\epsilon}(N^{\tilde{X} \to \tilde{Y}} \rho_{\tilde{X}} || \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}})^{-1}. \tag{63}
\]

This converse applies to entanglement-assisted codes because they are non-signalling. For memoryless channels, analysing the large block length limit of the upper bound on rate that it gives recovers (see [11]) the known, single-letter formula for the entanglement-assisted classical capacity of a quantum channel [2].

As noted in [11], if we are dealing with codes of the form (53), then the hypothesis test constructed in the direct part of (5) can be implemented by local measurements and classical post-processing of the results (to compare the outcomes). This means that we can obtain a better converse for such codes by restricting the optimisation over hypothesis tests to those which can be implemented in this way. In [11] it was shown that if we restrict to those which can implemented by local operations and one-way classical communication from Alice to Bob then the converse obtained is equivalent to the one obtained in [8].

In Corollary 6 we do not have a quantum analog of Theorem 3 because the implication is only one way. If we could show that one can restrict to quantum tests satisfying $Tr T_{\tilde{X}\tilde{Y}} \rho_{\tilde{X}} \otimes \sigma_{\tilde{Y}} = \beta_{\epsilon}$ for all $\sigma_{\tilde{Y}}$ without changing the minimax type-II error probability then we could add the other direction of implication to Corollary 6. Whether this is true is open at the time of writing.

ACKNOWLEDGMENT

My thanks to Debbie Leung and Andreas Winter for many useful discussions on this topic.

REFERENCES

