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Abstract—We consider the problem of estimating the partition
function of the two-dimensional ferromagnetic Ising model in an
external magnetic field. The estimation is done via importance
sampling in the dual of the Forney factor graph representing the
model. Emphasis is on models at low temperature (corresponding
to models with strong couplings) and on models with a mixture
of strong and weak coupling parameters.

I. INTRODUCTION

The problem of estimating the partition function of the
finite-size two-dimensional (2D) ferromagnetic Ising model in
a consistent external field is considered. Applying factor graph
duality to address the problem has been investigated in [1]–[4].
It was demonstrated in [1] that Monte Carlo methods based
on the dual factor graph work very well for the Ising model
at low temperature. In contrast, Monte Carlo methods in the
primal/original graph suffer from critical slowing down and
erratic convergence to estimate the partition function in the
low-temperature regime [5]. Monte Carlo methods (based on
uniform sampling and Gibbs sampling) in the dual factor graph
were also proposed in [1] to estimate the partition function of
the 2D Ising model without an external field.

In this paper, we continue this research to extend the
results of [1], [2] to models with a mixture of strong and
weak coupling parameters and in the presence of an external
magnetic field. After defining an auxiliary probability mass
function in the dual Forney factor graph of the model, we
propose an importance sampling algorithm that can efficiently
estimate the partition function. A similar importance sampling
algorithm, designed specifically for models in a strong external
field, was recently proposed in [2].

The paper is organized as follows. We review the Forney
factor graph representation of the 2D Ising model in an
external field in Section II. Section III discusses dual Forney
factor graphs and the normal factor graph duality theorem. The
importance sampling algorithm is described in Section IV. In
Section V, we report numerical experiments.

II. THE ISING MODEL IN AN EXTERNAL MAGNETIC FIELD

Let X1, X2, . . . , XN be a set of discrete binary random
variables arranged on the sites of a 2D lattice. We suppose
that interactions are restricted to adjacent (nearest-neighbor)
variables (see Fig. 1). The real coupling parameter Jk,` con-
trols the strength of the interaction between adjacent variables

(Xk, X`). The real parameter Hm corresponds to the presence
of an external field and controls the strength of the interaction
between Xm and the field. Each random variable takes on
values in X = {0, 1}. Let xi represent a possible realization
of Xi, x stand for a configuration (x1, x2, . . . , xN ), and X
stand for (X1, X2, . . . , XN ).

The energy of a configuration x is given by [6]

H(x) = −
∑

(k, `) ∈ B

Jk,` ·
(
[xk = x`]− [xk 6= x`]

)
−

N∑
m=1

Hm ·
(
[xm = 1]− [xm = 0]

)
(1)

where B contains all the unordered pairs (bonds) (k, `) with
non-zero interactions, and [·] denotes the Iverson bracket [7],
which evaluates to 1 if the condition in the bracket is satisfied
and to 0 otherwise.

In this paper, the focus is on ferromagnetic Ising models
characterized by Jk,` > 0 for each (k, `) ∈ B. The external
field is assumed to be consistent, i.e., it is either assigned to
all positive or to all negative values.

The probability that the model is in configuration x is given
by the Boltzmann distribution [6]

pB(x) =
e−βH(x)

Z
(2)

where the normalization constant Z is the partition function
Z =

∑
x∈XN e−βH(x) and β is the inverse temperature. In the

rest of this paper, we assume β = 1. With this assumption,
large values of J correspond to models at low temperature.
Boundary conditions are assumed to be periodic.

For each adjacent pair (xk, x`), let κ : X 2 → R>0

κk,`(xk, x`) = eJk,`·
(
[xk=x`]−[xk 6=x`]

)
(3)

and for each xm, let τ : X → R>0

τm(xm) = eHm·
(
[xm=1]−[xm=0]

)
(4)

We then define f : XN → R>0 as

f(x)
4
=

∏
(k, `) ∈ B

κk,`(xk, x`)

N∏
m=1

τm(xm) (5)
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The corresponding Forney factor graph (normal graph) for
the factorization in (5) is shown in Fig. 1, where the boxes
labeled “=” are equality constraints [8], [9]. In Forney factor
graphs variables are represented by edges.

From (5), Z in (2) can also be expressed as

Z =
∑

x∈XN

f(x) (6)

At high temperature (i.e., for small J), the Boltzmann
distribution (2) approaches the uniform distribution. In this
case, Monte Carlo methods for estimating Z usually perform
well in the primal factor graph. Estimating Z in the low-
temperature regime is more challenging [5], [10], [11].

In this paper, we consider models at low temperature (i.e.,
with large J) and models with a mixture of strong and weak
coupling parameters in an external magnetic field. To compute
an estimate of Z in this case, we propose an importance
sampling algorithm in the dual of the Forney factor graph of
the 2D Ising model.

III. THE DUAL FORNEY FACTOR GRAPH

We can obtain the dual of the Forney factor graph in Fig. 1,
by replacing each binary variable x with its dual binary
variable x̃, each factor κk,` with its 2D Discrete Fourier
transform (DFT), each factor τm with its one-dimensional (1D)
DFT, and each equality constraint with an XOR factor, cf. [8],
[12]–[14]. Fig. 2 shows the dual Forney factor graph of the 2D
Ising model, where boxes containing “ + ” symbols represent
XOR factors as

g(x̃1, x̃2, . . . , x̃k) = [x̃1 ⊕ x̃2 ⊕ . . .⊕ x̃k = 0] (7)

the small boxes attached to each XOR factor are given by

λm(x̃m) =

{
coshHm, if x̃m = 0
− sinhHm, if x̃m = 1

(8)

and the unlabeled normal-size boxes attached to each equality
constraint represent factors as

γk(x̃k) =

{
2 cosh Jk, if x̃k = 0
2 sinhJk, if x̃k = 1

(9)

Here, Jk is the coupling parameter associated with each
bond. See [1]–[3], for more details on constructing the dual
Forney factor graph of the 2D Ising model.

In the dual domain, we denote the partition function by Zd.
For the models that we study here, the normal factor graph
duality theorem states that (see [13, Theorem 2])

Zd = |XN |Z (10)

In order to design Monte Carlo methods in the dual Forney
graph, we require factors (8) and (9) to be non-negative. In a
2D Ising model, Z is invariant under the change of sign of the
external field [6]. Therefore, without loss of generality, we will
assume Hm < 0 for 1 ≤ m ≤ N . Under the ferromagnetic
assumption Jk,` > 0 for (k, `) ∈ B. With these assumptions,
(8) and (9) will be non-negative.
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Fig. 1: Forney factor graph of the 2D Ising model in an ex-
ternal field, where unlabeled normal-size boxes represent (3),
small boxes represent (4), and boxes containing “ = ” symbols
are equality constraints.
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Fig. 2: The dual Forney factor graph of the 2D Ising model
in an external field, where boxes containing “ + ” symbols
represent (7), small boxes represent (8), and unlabeled normal-
size boxes represent (9).

IV. THE IMPORTANCE SAMPLING ALGORITHM

The importance sampling algorithm is described on Fig. 2.
We partition X̃ into X̃A and X̃B , with the condition that X̃B

is a linear combination (involving the XOR factors) of X̃A. In
this set-up, a valid configuration in the dual factor graph can
be created by assigning values to X̃A, followed by computing
X̃B as a linear combination of X̃A.

An example of such a partitioning is shown in Fig. 3,
where X̃A is the set of all the variables associated with the
thick edges and X̃B the set of all the variables associated
with the remaining thin edges. Accordingly, let BA ⊂ B
contain the indices of the bonds marked by thick edges and
BB = B − BA. For a valid configuration x̃ = (x̃A, x̃B), let
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x̃A = (ỹ, z̃), where ỹ contains all the thick edges attached to
the small unlabeled boxes (involved in (8)) and z̃ contains all
the variables associated with the thick bonds (involved in (9)).

We prove that wH(ỹ), the Hamming weight of ỹ, is always
even, where the Hamming weight of a vector is the number
of non-zero components of that vector [15].

Lemma 1. If x̃ is a valid configuration in the dual Forney
factor graph, then wH(ỹ) is even.

Proof. We consider c =
⊕N

t=1 ỹt the component-wise XOR of
ỹ. Each XOR factor imposes the constraint that all its incident
variables sum to 0 in GF(2). Each ỹt in c can thus be expanded
as the XOR of the corresponding variables associated with the
bonds, furthermore, the variables on the bonds each appear
twice in this expansion. Hence c = 0, i.e., wH(ỹ) is even. �

Lemma 1 implies that Zd, and thus Z itself, are invariant
under the change of sign of Hm. Indeed, regardless of the sign
of Hm, i.e., assigned to all positive or to all negative values∏N
m=1 λm(x̃m) takes the same positive value, cf. (8).
The importance sampling algorithm works as follows. To

draw x̃(`) at each iteration `, we first draw x̃
(`)
A according to

a suitably defined auxiliary probability mass function on the
bonds (see (13)). We then update x̃

(`)
B to create a valid con-

figuration x̃(`) = (x̃
(`)
A , x̃

(`)
B ). Updating x̃

(`)
B at each iteration

is easy as x̃B is a linear combination of x̃A.
Let us define

Λ(x̃B)
4
=

∏
k∈BB

γk(x̃k) (11)

Ψ(x̃A)
4
=

∏
k∈BA

γk(x̃k)

N∏
m=1

λm(x̃m) (12)

q(x̃A)
4
=

Ψ(x̃A)

Zq
, ∀ x̃A ∈ X |BA| (13)

where Zq in (13) is available as

Zq =
∑
x̃A

Ψ(x̃A) = 2|BA| exp
( ∑
k∈BA

Jk −
N∑
m=1

Hm

)
(14)

Here |BA| is the cardinality of BA. Note that Hm < 0.
The product form of (12) suggests that to draw a sample

x̃
(`)
A = (ỹ(`), z̃(`)) according to q(x̃A), two separate subrou-

tines are required, one for the ỹ(`)-part, and another for the
z̃(`)-part. To draw the ỹ(`)-part, we apply.

repeat
draw u

(`)
1 , u

(`)
2 , . . . , u

(`)
N

i.i.d.∼ U [0, 1]

for m = 1 to N
if u(`)m < 1

2 (1 + e2Hm)

ỹ
(`)
m = 0

else
ỹ
(`)
m = 1

end if
end for

until wH(ỹ(`)) is even
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Fig. 3: A partitioning of variables in the dual Forney factor
graph of the 2D Ising model. The thick edges represent X̃A

and the remaining thin edges represent X̃B .

The criteria to accept ỹ(`) is based on Lemma 1. The
quantity 1

2 (1 + e2Hm) is equal to λm(0)/
(
λm(0) + λm(1)

)
.

To draw the z̃(`)-part, the following subroutine is applied.

draw u
(`)
1 , u

(`)
2 , . . . , u

(`)
|BA|

i.i.d.∼ U [0, 1]

for k = 1 to |BA|
if u(`)k < 1

2 (1 + e−2Jk)

z̃
(`)
k = 0

else
z̃
(`)
k = 1

end if
end for

Here, 1
2 (1+ e−2Jk) is equal to γk(0)/

(
γk(0) + γk(1)

)
. We

can then create x̃
(`)
A as a concatenation of ỹ(`) and z̃(`).

It is possible to compute the probability of rejection in the
algorithm. E.g., if the model is in a constant external field H

P
(
wH(ỹ) is odd

)
= sinh(N |H|)e−N |H| (15)
≤ 0.5 (16)

The two previous subroutines will provide i.i.d. samples
x̃
(1)
A , x̃

(2)
A , . . . , x̃

(`)
A , . . . according to (13). Updating x̃

(`)
B is

easy after generating x̃
(`)
A . The created samples are then used

in the following importance sampling algorithm in order to
estimate Zd.

for ` = 1 to L
draw x

(`)
A according to q(x̃A)

update x̃
(`)
B

end for
compute

ẐIS =
Zq
L

L∑
`=1

Λ(x̃
(`)
B ) (17)
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Lemma 2. ẐIS is an unbiased estimator of Zd.

Proof.

Eq[ ẐIS ] = Eq

[ Zq
L

L∑
`=1

Λ(X̃
(`)
B )
]

= Zq · Eq
[

Λ(X̃B) ]

=
∑
x̃A

Ψ(x̃A) · Λ(x̃B)

= Zd

�

The estimate of Zd is then used to compute a Monte Carlo
estimate of Z, as in (6), via the normal factor graph duality
theorem (cf. Section III).

The accuracy of (17) depends on the fluctuations of Λ(x̃B).
If Λ(x̃B) varies smoothly, ẐIS will have a small variance. From
(9) and (11), we expect to observe a small variance if Jk is
large for k ∈ BB – as for large values of Jk, each factor (9)
tends to a constant factor. For more details, see [4].

We emphasize that our choice of partitioning in Fig. 3 is not
unique. Fig. 4 shows another example of a partitioning in the
dual Forney factor graph whose corresponding partitioning in
the primal factor graph is not cycle-free. A partitioning which
gives rise to a slightly different importance sampling algorithm
(with no rejections) is discussed in [4].

The proposed algorithm is applicable to the Ising model in
the absence of an external field as well. Indeed, partitionings
in Figs. 3 and 4 are valid even when the external field is not
present. We will consider Ising models without an external
field in our numerical experiments in Section V-A.

That being the case, to observe fast convergence in the dual
domain, not all the coupling parameters need to be strong, but
a restricted subset of them. The method of this paper can thus
be regarded as supplementary to the ones presented in [1]
and [2], where the focus is on models at low temperature
(corresponding to models in which all the coupling parameters
are strong) and on models in a strong external field.

V. NUMERICAL EXPERIMENTS

We apply the importance sampling algorithm to estimate the
log partition function per site, i.e., 1

N lnZ, of 2D Ising models.
All simulation results show 1

N lnZ vs. the number of samples
for one instance1 of the model with periodic boundaries.

We consider 2D ferromagnetic Ising models with spatially
varying (edge-dependent) coupling parameters without an ex-
ternal field in Section V-A We will also compare the efficiency
of the importance sampling algorithm with uniform sampling.
Comparisons with Gibbs sampling and the Swendsen-Wang
algorithm [16] are discussed in [4]. 2D ferromagnetic Ising
models in an external field with spatially varying model
parameters are considered in Section V-B.

1In statistical physics, estimating quantities for a fixed set of couplings
(generated according to some distribution) is called the “quenched average”.
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Fig. 4: Another example of a partitioning of variables in the
dual Forney factor graph of the 2D Ising model.
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2.486
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2.494

2.498

2.502

2.506

Number of Samples

Fig. 5: Estimated log partition function per site vs. the number
of samples for a 30× 30 Ising model, with Jk ∼ U [1.0, 1.25]
for k ∈ BA and Jk ∼ U [1.25, 1.5] for k ∈ BB . The plot
shows five different sample paths obtained from importance
sampling (solid black lines) and five different sample paths
obtained from uniform sampling (dashed blue lines) on the
dual factor graph.

A. 2D Ising models without an external field

We consider a 2D Ising model of size N = 30 × 30
without an external magnetic field. For k ∈ BA, we set
Jk

i.i.d.∼ U [1.0, 1.25] and for k ∈ BB , set Jk
i.i.d.∼ U [1.25, 1.5].

Fig. 5 shows simulation results obtained from importance
sampling (solid lines) and from uniform sampling (dashed
lines) in the dual Forney factor graph. From Fig. 5, the
estimated log partition function per site is about 2.503.

We observe that importance sampling outperforms uniform
sampling (with virtually the same amount of computation
time); see also [2], [4].
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Fig. 6: Estimated log partition function per site vs. the number of samples for a 50×50 Ising model, with Jk ∼ U [0.1, 1.0] for
k ∈ BA and Hm ∼ U [−0.8,−0.2] for 1 ≤ m ≤ N ; for k ∈ BB (left) Jk ∼ U [1.0, 1.2], (middle) Jk ∼ U [1.2, 1.4], and (right)
Jk ∼ U [1.4, 1.6]. Each plot shows ten different sample paths obtained from importance sampling on the dual factor graph.

B. 2D Ising models in an external field

We set N = 50 × 50, Jk
i.i.d.∼ U [0.1, 1.0] for k ∈ BA, and

Hm
i.i.d.∼ U [−0.8,−0.2] for 1 ≤ m ≤ N in all the experiments.

In the first experiment, Jk
i.i.d.∼ U [1.0, 1.2] for k ∈ BB .

Simulation results obtained from importance sampling in the
dual factor graph are shown in Fig. 6 (left). In the second
experiment, Jk

i.i.d.∼ U [1.4, 1.5] for k ∈ BB . Fig. 6 (middle)
shows simulation results. We set Jk

i.i.d.∼ U [1.4, 1.6] for k ∈ BB
in the third experiment. Simulation results are shown in Fig. 6
(right), where the estimated 1

N lnZ is about 2.5518. Notice
that in Fig. 6 from left to right, the range of the y-axis is
0.015, 0.008, and 0.006, respectively.

In agreement with our analysis in Section IV, we observe
that convergence improves as Jk becomes larger for k ∈ BB .

VI. CONCLUSION

An importance sampling algorithm was presented for esti-
mating the partition function of the 2D ferromagnetic Ising
model in a consistent external magnetic field. The algorithm
is described in the dual Forney factor graph representing
the model. After introducing a partitioning and an auxiliary
importance sampling distribution, the method operates by
first simulating a subset of the variables, followed by doing
computations over the remaining ones. The algorithm can
efficiently estimate the partition function when the model is
at low temperature or when the model contains a mixture of
strong and weak coupling parameters. The proposed algorithm
is applicable to the 3D Ising model and the q-state Potts model
in an external field as well. For duality results in the context
of statistical physics, see, e.g., [17], [18], [19, Chapter 10].
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