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Abstract—Future generations of cellular networks will have
higher node density, larger number of antennas per node, and
wider bandwidth. This paper develops capacity scaling laws
for such networks by explicitly incorporating the impact of
bandwidth on capacity. The main contribution is a capacity
scaling upper bound for a cellular-type network architecture
without base station cooperation. This upper bound is shown
to be tight, as it provides the same scaling as an infrastructure
multi-hop protocol introduced in previous work. The results
show that large cellular networks transition from bandwidth-
limited to power-limited capacities depending on the scaling of
the bandwidth compared to the scaling of the number of nodes
and that single hop protocols are suboptimal except when the
bandwidth scaling is small.

Index Terms—Wideband, capacity scaling, cellular network.

I. INTRODUCTION

Wireless standardization bodies have begun to consider
deployment of millimeter wave (mmWave) technology with
frequencies in the range 30 − 300GHz, leading to large
amounts of spectrum available for communication [1]. Other
technologies that increase available system bandwidth, such as
carrier aggregation across bands and opportunistic cognitive
reuse of occupied bands, are also being considered for future
generations of cellular networks.

The conventional analysis of a point-to-point wideband
channel exhibits a transition from a high-SNR regime where
rate grows with bandwidth to a low-SNR regime where rate
is power-limited [2]. However, since practical networking
protocols usually divide the available bandwidth among nodes
in some form, the fact that system bandwidth is increasing
does not necessarily imply that a network with large number
of nodes will experience the effects described in the wideband
point-to-point channel model.

While the exact capacity region of a large network is not
known, capacity scaling laws provide a useful framework that
characterizes the growth of the capacity region as the number
of nodes increases [3]. In order to quantify the impact of
increasing bandwidth on network capacity, considered in the
light of other resources that also increase the available degrees
of freedom, this paper provides a scaling law analysis of a
cellular network operating in the wideband regime.

Work supported in part by COINS, FPU2012/01319, NSF Grants # 1302336
and 1547332, and NYU WIRELESS.

From an information theoretic perspective, mmWave, carrier
aggregation, massive Multiple Input Multiple Output (MIMO)
and dense cellular deployments are all, in essence, various
ways to increase the fundamental degrees of freedom of the
network: bandwidth, antennas and infrastructure density. To
evaluate the potential value of each of these technologies,
this paper derives an upper bound on the scaling of per node
capacity of cellular networks under parametric scaling of these
dimensions. Our analysis follows along the lines of the classic
scaling laws results [3]–[9], but is applied to cellular networks
rather than ad-hoc networks. Specifically, we consider a large
cellular network with n mobile nodes, with various scalings
in n of parameters such as the bandwidth, area, number of
base stations (BSs) and number of BS antennas. In addition,
we consider that BSs do not cooperate and nodes communi-
cate with their closest BS, creating two traffic flows usually
found in cellular networks, consisting of uplink and downlink
transmissions. This produces different scaling properties than
those in ad-hoc networks with infrastucture assistance [7]–[9].

Considering a deterministic channel model, our main result
determines an upper bound to the throughput capacity scaling
using cut-set arguments, by separating each single BS from
the rest of the network. The cut of the network effectively
forms a combined point-to-point MIMO system that displays
a behavior resembling that of point-to-point channels. The
upper bound meets a lower bound achieved by an infrastruc-
ture multi-hop (IMH) protocol whose throughput scaling was
described for fading channels in [10], thereby establishing the
capacity of cellular networks without BS cooperation, with
two scaling regimes:

• In the bandwidth limited regime, bandwidth grows slower
than the power that can be delivered towards the aggre-
gate network, and throughput scales with the degrees of
freedom of the network.

• In the power limited regime, bandwidth grows faster than
the power transfer, and throughput scales at most with the
power delivered to the nodes.

The rest of the paper is organized as follows. In Section
II we provide a brief overview of the literature on capacity
scaling laws analysis. In Section III we describe our models for
a large cellular network with increasing number of users, and
the channel between terminals. In Section IV we describe the
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upper bound on the throughput capacity, establish the optimal
throughput scaling and discuss different operating regimes.
Finally, Section V concludes the paper.

II. OVERVIEW OF CAPACITY SCALING LAWS

Capacity scaling law analysis started with the seminal work
of Gupta and Kumar [3] where they studied the scaling of the
rate R(n) achieved by each node in an ad-hoc network with n
nodes distributed in a unit area (called dense network). Their
protocols exhibit a scaling of R(n) ∝ Θ( 1√

n
)1. This suggests

that using the protocols in [3] it is not possible to increase
the number of nodes in network arbitrarily without sacrificing
rates. Similar results exist for extended network models [4],
where n users spread over an area Θ(n) with constant user
density, instead of a fixed area with user density Θ(n).

Ozgur, Lévêque and Tse [4] introduced hierarchical coop-
eration (HC), and showed that HC achieves linear scaling
R(n) = Θ(1) in dense networks and improves the Gupta-
Kumar result to Θ(n2−α/2) in extended networks with a low
path-loss exponent α < 3. Under HC, nodes cooperate to
form virtual antenna arrays, and for a sufficiently high number
of layers of cooperation, it would be possible to break the
original limitation and grow the number of nodes arbitrarily
without incurring any rate penalty. However, Franceschetti,
Migliore and Minero [5] pointed out that the physical degrees
of freedom of a signal within a bounded area are finite. It
would be unrealistic to assume that as the number of nodes
increases, all channel coefficients remain independent. Thus
the result in [4] would be an artifact of optimistic indepen-
dence assumptions. Considering these constraints, [5] obtained
an ultimate limitation to scaling of R(n) as Θ( log(n)2√

n
).

In [6], Ozgur, Johary, Tse and Lévêque proposed an argu-
ment to harmonize the results of [4] and [5]. Even though
for very high n channels do become dependent, this occurs at
values of n so high that there would exist first a transitory
regime with high, but finite, values of n where the linear
scaling analysis holds. In [6] the same authors also introduced
the concept of operating regimes, by allowing area to scale
with an arbitrary exponent of n, A ∝ nν . A threshold
on exponent ν separates two regimes: for small ν network
capacity behaves similarly than the dense network model and
for ν above the threshold network capacity behaves as in the
extended network model.

Recently, the ability of HC to achieve linear scaling was put
into question in [12]. It was found that under practical limi-
tations, the optimal number of layers in a HC implementation
would be small, contradicting the theoretical analysis where
rate improves with the number of layers and for achieving the
linear scaling a very large number of layers is necessary.

There have been other extensions of scaling law analysis in
ad-hoc networks introducing cooperation, mobility, broadcast,

1We use the standard f(n) = O(g(n)), f(n) = Ω(g(n)) and f(n) =
Θ(g(n)) notations [11] to respectively represent that at sufficiently high n
function f(n) becomes less than or equal than g(n), greater than or equal to
g(n), and identical to g(n) up to a constant factor.

infrastructure or large bandwidth. Readers are referred to [13]
for a comprehensive review.

Most literature on scaling laws follows ad-hoc network
models, which have different traffic demand than a cellular
network. Even though [7]–[9] have modeled ad-hoc networks
with infrastructure support, the use of infrastructure in these
models is only as an intermediary to help the delivery of ad-
hoc type communications. In these works, data always flows
from one node to another, with destinations randomly picked
across the network. More importantly, in such models it is
always possible to fall back to pure ad-hoc protocols ignoring
the presence of infrastructure when this is beneficial.

A. Our Contributions
In this paper, rather than ad-hoc networks supported by

infrastructure, we consider the traffic flows typical in cellular
networks, where each node sustains uplink and downlink data
flows with its closest BS. On the one hand, this reduces the
typical distance between source-destination pairs; on the other
hand, this model may cause rates of many users to concentrate
at the same BS causing bottlenecks that cannot be avoided by
dropping the infrastructure and falling back to pure ad-hoc
protocols. Both our approach and that of [8] have in common
the presence of infrastructure with arbitrary scaling density,
but the difference in the traffic renders the ultimate scaling
limitations very different.

The main innovation of our analysis is including the impact
of very large bandwidths in capacity scaling. This provides
a characterization of a bandwidth threshold beyond which a
large network stops benefiting from the bandwidth increase
and experiences power limitations, mirroring the well-known
fact that point-to-point links become power-limited when
bandwidth is large.

Most scaling analyses [3]–[9] considered a fixed bandwidth.
However, a network with a fixed bandwidth would only
exhibit low SNRs in long-distance links with a high path loss,
scaling with the dimensions of the network and unrelated to
bandwidth. This occurs because it is always possible to slice
the constant bandwidth in small narrowband chunks as the
number of nodes n grows. In order to study large system
bandwidth W , one could have W →∞ and then let n grow,
as in [14]. Nonetheless, this method forces the network to be
always power-limited, rather than providing insights on the
bandwidth scaling necessary to enter power-limitation, and its
interplay with network architecture and rates. In our model, the
goal is to investigate what happens between the two extremes;
for this we take limits on W and n increasing to infinity at
the same time, following an exponential relation:

ψ := lim
n,W→∞

logW

log n
, (1)

and the cases in the literature correspond to ψ = 0 and ψ =∞.

III. NETWORK AND CHANNEL MODELS

A. Network Model
We consider a sequence of cellular wireless networks in-

dexed by n, where n is the number of single-antenna nodes
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uniformly distributed in an area A. The network is supported
by m BSs that do not cooperate, with ` antennas each, and
communication takes place over an increasing bandwidth W .

Table I defines the scaling relation between n and the
different network parameters. Here W0, A0, m0, l0, k0 are
fixed constants. The exponents of the number of BSs and BS
antennas are taken from [8]. The constraint β+γ ≤ 1 ensures
that the number of infrastructure antennas per node does not
grow without bound. The scaling of the network area is as
proposed by [6] to model a continuum of operating regimes
between dense (ν = 0) and extended (ν = 1) networks. We
introduce the bandwidth scaling exponent ψ as shown in (1).
Note that ψ < 1 represents that bandwidth per node decreases
as the number of nodes increases, while ψ > 1 represents
asymptotically infinite bandwidth per node.

We consider BSs that are placed at fixed distances of each
other, dividing the network area in regular hexagonal cells
around each BS with radius rcell with asymptotically n

m nodes
each. The downlink from the BS to the nodes and the uplink
from the nodes to the BS operate independently in alternate
time division duplex (TDD) frames. This imposes a 1

2 penalty
in rate but otherwise does not alter the scaling of capacity
with n. Note that BSs cannot receive in the downlink phase
or transmit in uplink, while nodes can do both.

Due to random node placement, the rate achievable by any
individual user is a random variable which depends on the
particular downlink or uplink protocol used. The following
definitions are adapted from [3].

Definition 1. A downlink (uplink) rate of RDL(n) (RUL(n))
bits per second per node is feasible in a realization of the
cellular network if there exists a protocol that achieves in all
nodes.

The feasible rate is evaluated on a realization of the random
node locations, and feasibility of some rates will depend on
distances in a specific layout. In the following definition we
remove the randomness of Def. 1 by requiring a rate scaling
at the frontier of feasible rates with probability one.

Definition 2. The downlink (uplink) per node throughput
capacity scaling CDL(n) (CUL(n)) of a set of random cellular
networks is of the order Θ(f(n)) bits per second per node if
there are constants c1 < c2 such that.

lim
n→∞

P (RDL(n) = c1f(n)) = 1 (2)

lim
n→∞

P (RDL(n) = c2f(n)) < 1 (3)

Table I
SCALING EXPONENTS OF NETWORK PARAMETERS

Exponent Range Parameter (vs. no. of nodes n)
ψ [0,∞) Bandwidth W = W0nψ

ν [0, 1] Area A = A0nν

β [0, 1] No. of BSs m = m0nβ

γ [0, 1− β] No. of BS antennas ` = `0nγ

B. Channel Model

Between a transmitter t and receiver r, we consider a MIMO
additive white Gaussian noise channel with deterministic full
rank matrix Ht,r ∈ C`t×`r . Each entry of the channel matrix
has unit gain and an arbitrary phase, h(i,j)t,r = e2πjθi,j , so that
the channel squared norm satisfies |H|2 = `r`t. The distance
between transmitter and receiver, dt,r, defines the macroscopic
pathloss gain d−

α
2

t,r . Average transmission power constraints of
nodes and BSs are P , and PBS, respectively. Our results can
be extended to random fading models with moderate effort.
The signal at the receiver is given by

yr = d
−α2
t,r Ht,rxt + zr (4)

where xt is the signal transmitted by t with period Ts = 1/W ,
satisfying E

[
|xt|2

]
≤ Pt

W . Here Pt depends on the type of
transmitter and the fraction of its power dedicated towards r.
The thermal noise at the receiver is zr ∼ CN (0, N0I`r).

In practice it is expected that mmWave channels do not have
a rich enough scattering to display full rank channel matrices
in the physical arrays, but our results apply all the same to
these non-full rank channels by appropriately projecting the
dimensions of the antenna arrays to a smaller subspace and a
small-dimensional full rank matrix that captures the equivalent
effective array dimensions. Hereafter, we will use the term
“number of antennas `” to refer to the effective independent
antenna array dimensions and represent by `t and `r the
effective number of transmit and receive antennas.

The upper bounds developed in this paper consider cuts sep-
arating one transmitter from the rest of the network, applying
this channel model to one virtual transmitter and one virtual
receiver containing all the antennas on each side of the cut.
As we argue in Sec. IV, the upper bound is achievable in a
scaling law sense and, even though we do not consider full BS
cooperation, it represents the scaling with perfect interference
suppression. The achievable schemes that illustrate this were
presented originally for non-coherent fading channels in [10];
here they have been adapted to follow the channel model
(4) with proper modifications to incorporate interference from
other cells.

IV. CHARACTERIZATION OF CAPACITY SCALING

In this section we first present an upper bound to the
throughput capacity scaling of large cellular networks, and
we next illustrate that an adaptation of the multi-hop protocol
presented in [10] for fading channels to our channel model
achieves this scaling.

Theorem 1. The downlink throughput capacity scaling
CDL(n) of random cellular networks is upper bounded by

Θ
(
nβ+γ−1+min(ψ,(1−ν)α2 )

)
, (5)

and the uplink throughput capacity scaling CUL(n) by

Θ
(
nmin(ψ,(1−ν)α2 )

)
, (6)

both with probability 1 as n→∞.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

187



Proof. We introduce the detailed analysis for downlink. Up-
link follows similarly.

Since our network model assumes no cooperation between
BSs, we obtain an upper bound of the sum-rate of the users
served by each BS by considering a cut separating that BS
from the rest of the network. At the receiving side of the
cut there is perfect cooperation among n receiver nodes and
another m − 1 BS transmitters, resulting in perfectly-known
interference that can be canceled.

This reduces the communication problem into a point-to-
point MIMO channel consisting of a single transmitter-receiver
pair with dimensions `t = ` `r = n. We represent the distance
from each node r to BS t in a diagonal matrix Dt , {Dii

t =

d
−α2
t,i }, and write the signals from all BSs to all nodes by

extending (4) as

y = DtHtxt +
∑
t′ 6=t

Dt′Ht′xt′︸ ︷︷ ︸
known to all receivers

+ z (7)

where Ht refers to the small scale fading channel matrix
between BS t and all receivers. All nodes and the other BSs
cooperate perfectly, canceling the second term and leaving a
non-interfering point-to-point MIMO channel.

Hence, the DL sum rate on the cell of BS t ∈ [1,m], denoted
by TDL−t(n) is bounded by

TDL−t(n) ≤ max
Qxt

W log det

(
In +

1

WN0
DtHtQxtH

H
t DH

t

)
(8)

where we represent by Qxt the normalized covariance ma-
trix of the transmitted signal xt, with its power constraint
expressed as tr{Qxt} ≤ PBS.

By the assumption that channel matrices are full rank and
` ≤ n, following standard arguments in [2, (7.10)], it can be
shown that the upper bound in (8) can be expressed as a power
allocation over the eigenvalues λi of the matrix DtHt

TDL−t(n) ≤ max
Pi

W
∑̀
i=1

log

(
1 +

Piλ
2
i

WN0

)
(9)

We can use the trace of the matrix to upper bound each
eigenvalue separately λ2i ≤

∑`
i=1 λ

2
i = tr{DtHtH

H
t DH

t } ≤
`
∑n
r=1 d

−α
t,r . Due to the fact that all terms in this upper

bound are equal and the convexity of the logarithm, the power
allocation P ∗i = PBS

` maximizes this upper bound. Hence

TDL−t(n) ≤W` log

(
1 +

PBS

WN0

n∑
r=1

d−αt,r

)
(10)

Notice that if limn→∞
PBS

∑n
r=1 d

−α
t,r

WN0
= ∞, then the upper

bound in (10) becomes degrees-of-freedom-limited. In this
regime (10) scales as Θ(W`).

Conversely, only if all links produce a low power at
the same time, satisfying limn→∞

PBS

∑n
r=1 d

−α
t,r

WN0
= 0, the

network is in the power-limited regime and (10) scales as
Θ(`PBS

∑n
r=1 d

−α
t,r ).

The sum
∑n
r=1 d

−α
t,r can be calculated using the exponential

stripping method described in [15]. Consider a series of con-
centric rings centered at the BS t with inner radius ri = n

ν
2 e
−i
2

and outer radius ri−1. Recall that the user density scales as
n1−ν and network area as nν , thus the number of nodes
contained in each disc is Si ≤ ne1−i with high probability.
Using this, we can upper bound the sum over n by summing
over these discs and lower-bounding distance in each disc by
the inner radius. Moreover, we have that an area of nν−1 is
the smallest that contains one node w.h.p. so the sum ends
at i ≤ blog nc + 1, assigning distance r

ν−1
2 to the last term

instead.
n∑
r=1

d−αt,r ≤
blognc+1∑
i=1

Sir
−α
i

≤

blognc∑
i=1

ne1−in−ν
α
2 e+i

α
2

+ en(1−ν)
α
2

≤ n−ν α2
[
log ne1+

α
2 log(n)

]
+ n(1−ν)

α
2 e

≤ (log n+ 1)n(1−ν)
α
2 e

(11)

where the third inequality is due to e+i
α
2 ≤ emax(i)α2 .

Examining Table I this leads to

TDL−t(n) =

{
Θ
(
nγ+ψ

)
ψ ≤ α

2 (1− ν)

Θ
(
nγ+

α
2 (1−ν)) ψ > α

2 (1− ν)
(12)

Now, by symmetry, each of the m single-BS cuts gives the
same upper bound to the rate of the users served by that BS.
By the requirement that feasible rate is guaranteed to all users,
the throughput capacity of the network is upper bounded by

RDL(n) ≤ m

n
min
t
TDL−t(n) = Θ(nβ+γ−1+min(ψ,(1−ν)α2 ))

completing the proof of Theorem 1 for DL.
A similar set of arguments lead to the bound for the uplink.

In this case we consider n cuts, each separating one user node
from the rest of the network. In this cut, all the BSs and
the remaining n − 1 nodes are receivers, and their mutual
interference canceled. Due to the fact that the transmitting
node has a single antenna (eigenvalue), the degrees of freedom
are Θ(W ); and the sum term over all receiving devices
(equivalent of (11)) is

n−1∑
r=1

d−αt,r + `

m∑
r=1

d−αt,r = Θ(n(1−ν)
α
2 ).

Then the upper bound on uplink feasible rate becomes

RUL(n) ≤ min
t
TUL−t(n) = Θ

(
nmin(ψ,(1−ν)α2 )

)
(13)

The next theorem shows that, after adapting the throughput
scaling to the channel model in this paper, the Infrastructure
Multi-Hop (IMH) protocol introduced in [10, Th. 2] can
achieve the upper bound.
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Theorem 2. The IMH protocol achieves the upper bound in
Theorem 1 and characterizes downlink throughput capacity as

CDL(n) = Θ
(
nβ+γ−1+min(ψ,(1−ν)α2 )

)
(14)

and when β + γ = 1 the uplink throughut capacity as

CUL(n) = Θ
(
nmin(ψ,(1−ν)α2 )

)
(15)

The downlink rate of Infrastructure Single-Hop
(ISH) using direct transmissions [10, Th. 1] is only
Θ
(
nβ+γ−1+min(ψ,(β−ν)α2 )

)
for the channel model used in

this paper, and only achieves capacity if the single-receiver
power at cell edge is high, when ψ < (β − ν)α2 , or in
the particular case of maximum BS density β = 1. Both
achievable schemes and the capacity scaling upper bound
are compared in Fig. 1 for downlink transmission. A similar
relation between the protocols and the bound exists for
uplink.

Comparing the two cases of the capacity scaling on Theo-
rem 2, we can distinguish two operating regimes.

Bandwidth limited regime: If ψ < α
2 (1 − ν), the network

capacity grows with W . It must be noted that this regime
of the capacity scaling relies on the received power at all
nodes in the network at once, and does not guarantee that any
specific single node can receive a high-SNR in the absence of
receiver cooperation. Indeed, as we argue above, the use of
independent direct transmissions as in ISH protocol does not
always achieve capacity scaling.

Power limited Regime: If ψ > α
2 (1 − ν), the network

capacity does not grow with W . Network capacity scaling is
bounded by the power that can be transfered from one BS to
all nodes in the network at once. The distances between BSs
and the nodes are sufficiently far that the SNR in (10) goes to
zero. In this regime no node can receive degrees-of-freedom
limited rates even with cooperation.

Finally, note that these scaling laws make intuitive sense
because, with probability 1 as n → ∞, a disc with radius
Θ(n(

(ν−1)
2 )) around a BS contains one node, which combined

with array gain nγ gives the best-case transfer of power
between a single BS and the rest of the network. Also, the
degrees of freedom of the cellular network cannot exceed
Θ (Wm`).

V. CONCLUSIONS

As cellular networks evolve, the node density, number of BS
antennas and bandwidth increase. Wireless network capacity
scales with these increasing degrees of freedom only if re-
ceived power is not overspread. In this paper we have provided
a characterization of cellular capacity scaling that exhibits a
bandwidth-limited and a power-limited regime. Moreover, only
in a fraction of the first regime capacity is achievable using
independent non-cooperative direct transmission between the
BS and each node in its cell, whereas for sufficiently large
bandwidth cooperation or multi-hop is essential to achieve
throughput capacity scaling. While traditional cellular net-
works typically operate in the bandwidth-limited regimes,

IMH

ISH

Bandwidth limited Power limited

Upper Bound

Figure 1. Exponents of downlnk rates vs bandwidth.

future cellular networks with large bandwidth could experience
power-limited scaling regimes, therefore necessitating multi-
hop communications.
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