
Diss. ETH No. 23137

INCREASED AUTONOMY FOR QUADROCOPTER

SYSTEMS: TRAJECTORY GENERATION, FAIL-SAFE

STRATEGIES, AND STATE ESTIMATION

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Mark Wilfried Müller

M.Sc. ETH in Mechanical Engineering

born on 22 August 1986

citizen of South Africa

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, examiner

Prof. Dr. Manfred Morari, co-examiner

2016

Increased autonomy for quadrocopter

systems: trajectory generation, fail-safe

strategies, and state estimation

Mark Wilfried Müller

Institute for Dynamic Systems and Control

ETH Zurich

2016

Institute for Dynamic Systems and Control

ETH Zurich

Switzerland

c© 2016 Mark Wilfried Müller. All rights reserved.

Abstract
This thesis investigates three specific topics aimed at increasing the autonomy of quadro-

copter systems. Such systems have become popular as they provide relatively easy and

cheap access to the sky, allowing e.g. novel aerial perspectives, or the transportation of

goods. Their potential value to industry is derived in a large part by their autonomy:

their ability to safely and reliably execute tasks with minimal human intervention. The

three topics investigated in this thesis are trajectory generation, fail-safe strategies and

novel vehicles, and state estimation.

The trajectory generation algorithms investigated focus on achieving agile manoeuvres

at low computational cost. Two approaches are presented, of which the first can generate

and verify a candidate trajectory in approximately one microsecond on a normal laptop,

achieved by only verifying feasibility after the generation of the motion. The second

approach transforms the trajectory generation task into a convex optimisation problem,

and then uses modern, highly-optimised methods to solve for the trajectory, at the cost

of using conservative convex approximations of the feasible inputs.

The thesis investigates component failures that would break the global feedback con-

trol loop in an indoor aerial robotics testbed, and suggests strategies to mitigate the

effects of such a failure. In addition, a detailed analysis into the attitude dynamics of mul-

ticopters is presented, from which follow generic conditions for a multicopter to maintain

a “relaxed hover” (that is, remaining substantially at one place). This analysis is used

to derive controllers with which a quadrocopter can maintain flight despite the complete

loss of all but one of its propellers. Similarly, novel vehicles are designed that have fewer

than four propellers.

The research into state estimation presents two generic methods for state estimation of

a dynamic system, where the state includes an attitude. The two methods are extensions

of the extended and unscented Kalman filters, and build on existing methods that encode

the attitude to be estimated with a redundant representation (the system state vector

includes a three element representation, in addition to a separate “reference” attitude).

It is shown that, in contrast to existing methods, the methods are shown to keep track

of the covariance correctly.

Based on the desire to have cheap, reliable, and flexible localisation for flying vehicles,

work is also presented that fuses ultra-wideband ranging radios with the inertial sensors

on a quadrocopter to estimate the quadrocopter’s position, velocity, attitude, and angular

velocity. This estimator is computationally light-weight enough to be run on a standard

microcontroller, and the additional sensors are light and small enough to not significantly

impact the performance of the quadrocopter to which they are attached.

i

Kurzfassung
Die vorliegende Arbeit untersucht drei verschiedene Aspekte, die dazu dienen die Auto-

nomie von Quadrokoptersystemen zu verbessern. Solche Systeme haben an Popularität

gewonnen, da sie einen relativ einfachen und günstigen Zugang zum Luftraum bieten. Ihr

potentieller Wert für die Industrie liegt grösstenteils in ihren autonomen Eigenschaften,

welche es ermöglichen Aufgaben sicher und zuverlässig mit einem Minimum an mensch-

licher Unterstützung auszuführen. In dieser Arbeit werden speziell die drei folgenden

Aspekte untersucht: Generierung von Trajektorien, Sicherheitsstrategien und neue Vehi-

kel, und Zustandsschätzung.

Die entwickelten Algorithmen für die Trajektoriengenerierung haben das Ziel agi-

le Manöver mit möglichst geringem Rechenaufwand auszuführen. Dafür werden zwei

Ansätze präsentiert, wovon der erste in ungefähr einer Mikrosekunde auf einem Laptop

eine Trajektorie generieren und verifizieren kann. Dies wird dadurch ermöglicht, dass die

Durchführbarkeit der Trajektorie erst nach der Generierung überprüft wird. Der zweite

Ansatz transformiert die Trajektoriengenerierung in ein konvexes Optimierungsproblem

und benutzt moderne, hoch-optimierte Methoden um die Trajektorien zu lösen, was den

Nachteil hat, dass der Definitionsbereich der Systemeingänge nur durch konservative kon-

vexe Annäherungen beschrieben werden kann.

Der zweite Teil dieser Arbeit untersucht das Versagen einzelner Komponenten, die die

globale Rückkopplungsschleife eines Quadrokopter in einer geschlossen Testumgebung

unterbrechen würden und schlägt Strategien vor um die Effekte eines solchen Versagens

zu mindern. Weiterhin wird eine detaillierte Analyse von der Orientierungsdynamik von

Multikoptern präsentiert, woraus allgemeine Bedingungen folgen unter denen ein Mul-

tikopter im weiteren Sinn schweben kann (d.h. ungefähr an einer Stelle bleiben). Diese

Analyse wird dazu benutzt einen Regler zu entwickeln mit dem ein Quadrokopter trotz

des Verlustes von bis zu drei Propellern fliegen kann. In einer ähnlichen Weise werden

neue Flugvehikel entworfen, die weniger als vier Propeller besitzen.

Der letzte Teil dieser Arbeit behandelt die Zustandsschätzung und präsentiert zwei ge-

nerische Methoden um den Zustand von einem dynamischen System zu schätzen, der als

Zustand eine Orientierung beinhaltet. Diese Methoden sind Erweiterungen des sogenann-

ten “extended” und “unscented Kalman filter” und bauen auf existierende Methoden, die

es ermöglichen eine Orientierung zu encodieren (der Zustandsvektor enthält drei Orientie-

rungselemente und zusätzlich eine “Referenzorientierung”). Es wird bewiesen, dass diese

Methoden im Gegensatz zu existierenden Methoden die Kovarianz des Fehlers richtig

abschätzen.

Generell ist eine günstige, zuverlässige und flexible Lokalisierung für Fluggeräte er-

ii

strebenswert. In dieser Arbeit wird ein Quadrokopter präsentiert, der mit einem Ultrab-

reitbandradio ausgestattet ist, das (im Zusammenspiel mit Inertialsensoren) es ermöglicht

die Position, Geschwindigkeit, Orientierung, und Winkelgeschwindigkeit von Quadroko-

ptern zu schätzen. Dieser Zustandsschätzer braucht wenig Rechenleistung und läuft auf

einem Standardmikrokontroller. Das zusätzliche Radio ist so leicht und klein, dass es ohne

grossen Einfluss auf die Dynamik eines Quadrokopter montiert werden kann.

iii

iv

[This page intentionally left blank for this notice.]

[Diese Seite wurde absichtlich für diesen Satz leer gelassen.]

Acknowledgement
There are many people to whom I am grateful after these PhD years. Firstly, I would

like to thank Raff for his support, guidance, and enthusiasm. I have learnt much while

at the IDSC, I can hardly imagine a better environment to have been in. Thank you for

the trust you placed in me, and the opportunities you offered. I hope to pay it forward.

Secondly, I’d like to thank Prof. Morari for his willingness to act as co-examiner, for

his kind feedback, and support.

Throughout my time at the IDSC, I have had the pleasure of being surrounded by

smart and interesting people. I’ve gotten to be a co-author with the following folks:

Markus (H), Robin, Mike, Weixuan, Federico, Sergei, Angela, and Markus (W). I’d like

to thank the ‘old hands’, who helped me find my way at the beginning of my PhD (Sergei,

Angela, & Sebastian) and who continue to give me inputs and advice (Markus & Angela).

In 2014 we went to Cape Town to do a public lecture, thanks Robin, Dario, and Fede

for joining on this adventure. Working with you guys was always fun, it was a great team

to be part of.

Markus W.: thanks for all the chocolate; for teaching me that often “it’s just work”,

and I should stop complaining, sit down, and get it done; and for all the endless discussions

on the meaning of life.

I had the great pleasure of sharing offices with Max for over four years – thank you

for the (dubious?) German expressions you taught me, and for acting as translator on

my abstract (you said “wow, I didn’t know google translate was this bad” after you read

my attempt at a Kurzfassung).

Finally, the encouragement, support, love, and friendship of Elena, my family, and my

friends were invaluable.

Financial Support

This work was supported by the Swiss National Science Foundation (SNSF).

vii

viii

Contents

1. Introduction . 1

2. Contributions . 7

2.1 Trajectory generation . 7

2.2 Failsafe strategies and novel vehicles 9

2.3 State estimation . 12

2.4 List of publications . 14

2.5 Student supervision . 15

2.6 Outreach . 17

3. Future work . 21

References for Chapters 1-3 . 25

Part A. Trajectory generation . 29

Paper P1. A computationally efficient motion primitive for quadrocopter

trajectory generation . 31

1. Introduction . 32

2. System dynamics and problem statement 35

3. Motion primitive generation . 38

4. Determining feasibility . 42

5. Choice of coordinate system . 47

6. Guaranteeing feasibility . 47

7. Conservatism . 52

8. Computation times . 53

9. Example application and experimental results 54

10. Conclusion . 58

A. Solutions for different end states constraints 60

B. Derivation of acceleration bounds . 61

References . 65

Paper P2. A model predictive controller for quadrocopter state intercep-

tion . 69

1. Introduction . 70

2. Dynamic model . 71

ix

Contents

3. Trajectory generation . 74

4. Validation . 79

5. Outlook . 82

References . 83

Part B. Failsafe strategies and novel vehicles 87

Paper P3. Relaxed hover solutions for multicopters: application to algo-

rithmic redundancy and novel vehicles 89

1. Introduction . 90

2. Multicopter modelling . 92

3. Hover solutions . 95

4. Position and attitude control . 98

5. Quadrocopter actuator failsafe . 102

6. Quadrocopter centre of mass offsets 112

7. Novel vehicles . 114

8. Conclusion and outlook . 117

A. Index to multimedia extensions . 118

References . 118

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed 123

1. Introduction . 124

2. System overview . 125

3. Failure modes . 128

4. Fail-safe mechanism . 128

5. Experimental results . 132

6. Conclusion and Outlook . 135

References . 135

Part C. State estimation . 137

Paper P5. Kalman filtering with an attitude 139

1. Introduction . 140

2. Attitude representations . 143

3. Problem statement and solution approach 147

4. First order attitude reset . 149

5. Unscented attitude reset . 156

6. Algorithms . 161

7. Conclusion . 167

A. Comparison of EKFA and MEKF . 167

References . 170

Paper P6. Fusing ultra-wideband range measurements with accelerome-

ters and rate gyroscopes for quadrocopter state estimation 173

1. Introduction . 174

2. System dynamics . 175

x

3. Sensors . 177

4. State estimator . 178

5. Range measurement using time-of-arrival measurements 180

6. Experimental validation . 182

7. Conclusion . 186

References . 186

Curriculum Vitae . 191

xi

Foreword
This thesis documents the research carried out by the author during his doctoral stud-

ies under the supervision of Professor Raffaello D’Andrea at the Institute for Dynamic

Systems and Control (IDSC) at ETH Zurich between September 2011 and October 2015.

The work is presented in the form of a cumulative thesis: its main content consists

of six self-contained research articles (of which three are journal articles and three are

conference contributions) that have been published or submitted for publication during

the doctoral studies.

The work is divided into three parts: the generation of computationally light-weight

trajectories for quadrocopters (Part A), quadrocopter failsafe strategies and novel vehicles

(Part B), and state estimation (Part C).

The articles are put into context by three introductory chapters, which are structured

as follows: Chapter 1 introduces and motivates this work, including the problems consid-

ered, related work, and the approaches used. Chapter 2 describes the key contributions of

the research papers included in this thesis and how the individual papers relate to each

other. Chapter 3 then provides a discussion of potential extensions and new directions of

this research.

xiii

Contents

xiv

1

Introduction

Basic research is what I am doing

when I don’t know what I am doing

Wernher von Braun

Multicopters, and specifically quadrocopters, have evolved into versatile and popular

flight platforms. They offer a good combination of agility and mechanical simplicity, due

to having few moving parts (only the four motors for a quadrocopter). The outward

mounting of the motors (and the resulting large lever arm for the motor forces) results in

the ability to produce large torques and thus also large angular accelerations. Combining

this with typically large thrust-to-weight ratios gives the quadrocopter its exceptional

agility. Having only four moving parts means that mechanical maintenance and repair of

a quadrocopter is much easier than e.g. that of a helicopter (with its intricate swashplate

mechanism). These advantages have led to multicopters finding uses in a variety of fields,

notably as platforms to deliver packages [1], for whale monitoring [2], for weed research [3],

calibrating a radio telescope antenna [4], and construction of tensile structures [5].

Given the use of relatively low cost, off-the-shelf components, such aerial systems

become increasingly economically attractive the more autonomous they become. Ideally,

a flying vehicle can be used safely and reliably, with minimum human interaction, to

achieve a given goal. This autonomy should ideally not reduce or limit the system’s

capabilities, or the vehicle’s agility.

Multicopters and quadrocopters are also popular amongst researchers. Their dynam-

ics are well approximated by elegant, nonlinear, differential equations, such that they

motivate research into nonlinear control strategies. This has led to the creation of many

controls-focused indoor testbeds, typically equipped with motion capture systems allow-

ing for precise state estimation. Some examples of such systems are MIT Raven [6], Stan-

ford/Berkeley STARMAC [7], the University of Pennsylvania GRASP multiple micro-

UAV testbed [8], and the ETH Zurich Flying Machine Arena (FMA) [R1].

The measurement precision available in an indoor testbed such as the FMA, coupled

with the controlled nature of the environment, allows for isolating individual research

questions related to the performance of autonomous systems. In one extreme, using the

motion capture system’s measurement for the closed-loop state estimation means that

the system’s performance is determined primarily by the performance of the control

1

Chapter 1. Introduction

algorithms, and the physical capabilities of the experimental platform. On the other

extreme, if an alternative sensing modality is used, the motion capture system provides

accurate and reliable ground-truth data, and the controlled environment means that

(non-repeatable) external disturbances are kept to a minimum.

The research in this thesis is divided into three parts. In Part A strategies are pre-

sented for generating quadrocopter trajectories, with a strong emphasis on algorithms

with low computational cost. Part B discusses failsafe strategies and novel vehicles: the

failsafe strategies comprise control strategies allowing a quadrocopter to fly despite actua-

tor failure, and strategies allowing the system to deal with component failure (e.g. central

motion capture system). This part also discusses some novel vehicle designs which are

based on the same underlying theory as the actuator failsafe. State estimation is dis-

cussed in Part C, including theory related to applying Kalman filtering to systems whose

state includes an attitude, and the development of an estimator specifically for a quadro-

copter equipped with time-of-flight ultra-wideband ranging sensors. The context for each

part is presented below, while the contributions made in the thesis (and specifically the

contributions of the papers in this thesis) are discussed in Chapter 2.

1.1 Trajectory generation

A key requirement for the autonomous operation of a quadrocopter system is the ability to

reliably plan motions. In the simplest case, such motions consist of quasi-statically mov-

ing a position setpoint, and using a near-hover controller to track this. Such a strategy is

however feasible in only very few cases, exploits the dynamic capabilities of quadrocopters

only to a very limited extent, and may be very energy inefficient. An ideal trajectory gen-

eration algorithm can compute a trajectory to achieve some high-level goal in a short

amount of time. This trajectory must satisfy motion constraints (such as avoiding obsta-

cles) and input constraints, and ideally the trajectory can be objectively justified, e.g. by

optimising for a useful quantity (such as expended energy).

Much literature exists on trajectory generation techniques for quadrocopters. Trajec-

tory generation schemes may be roughly grouped into two categories: the first category

comprises those that decouple geometric and temporal planning, where in a first step a

(geometric) path is generated; in a second step a temporal profile is associated to the path

in order to guarantee feasibility with respect to the quadrocopter dynamics. Examples in

this category include using lines [9], polynomials [10], or splines [11].

The second group of algorithms exploits the differential flatness of the quadrocopter

dynamics in order to derive constraints on the trajectory, and then solve an optimiza-

tion problem. Examples of optimisation criteria used are minimum snap [12], minimum

time [13] and [14], shortest path under uncertain conditions [15], or combinations of posi-

tion derivatives [16]. In [17] a search over parameters is proposed for quadrocopter motion

planning, including trajectories where the position is described by polynomials in time.

2

1.1 Trajectory generation

This thesis investigates interception trajectories for quadrocopters, that is trajectories

with a fixed execution time, and with a (potentially only partially) defined end state.

Such trajectories are required whenever the system’s high-level goal is time-varying, for

example landing a quadrocopter on a moving platform, or catching a falling object.

A strong emphasis is placed on computational complexity. The time-varying examples

mentioned above are often subject to significant uncertainty, for example due to imper-

fect measurements and modelling – the ability to recompute trajectories in real time, in

response to new information, therefore allows the system to interact much more respon-

sively with its environment. Two complementary approaches that attempt to solve for

such trajectories are presented. Both approaches rely on the same underlying model of

the quadrocopter, where the dynamics are simplified by assuming that the vehicle angular

velocity can instantaneously track a given command. This simplification is physically mo-

tivated by a quadrocopter’s ability to produce large torques (due to the outward mounting

of the propellers) combined with low angular inertia, such that the quadrocopter can pro-

duce large angular accelerations. The model used for the path planning then treats the

angular velocity of the vehicle as an input, and an inner controller tracks these desired

angular velocities by commanding motor forces. This decoupling is described in more

detail in [R1]. Exploiting the differential flatness of the quadrocopter dynamics, it can

then be shown that the position needs to be differentiated only three times (that is, to

the jerk) until the inputs (angular velocity and total thrust) appear. The two approaches

also share the same optimisation goal: to minimize the jerk squared along the trajectory.

This is shown to be related to the inputs of the quadrocopter, such that a trajectory that

is optimal in this sense is also likely to have “nice” inputs; it is also amenable to analysis

and allows for a variety of simplifications.

The two presented approaches differ primarily in how they deal with constraints. The

first approach computes trajectories without regard to constraints in a first step, and then

in a second step tests the trajectory for feasibility. The second approach uses conservative

convex approximations of the constraints, and then poses the trajectory generation prob-

lem as a convex optimisation problem. Recent advances in creating specialised solvers for

convex optimisation problems (see e.g. [18]–[20]) mean that trajectories with time hori-

zons spanning up to 200 time steps can be solved for in real time on a laptop computer,

where “real time” is here taken to be on the order of 10 ms.

The first approach is computationally much more light-weight, and trajectories can

be computed and evaluated approximately ten thousand times faster than with the sec-

ond approach. This means that the first approach is especially useful if many potential

trajectories exist which solve a given problem, such that one may simply evaluate a large

number of them in the hope that at least some will test to be feasible. The first approach

is also able to test feasibility over the entire thrust feasible space, in contrast to the sec-

ond approach that requires a convex approximation thereof. However, because the second

approach uses the feasibility criteria in the generation stage, it may be able to compute

trajectories where the first fails.

Both approaches may be executed quickly enough to be used as implicit feedback laws,

3

Chapter 1. Introduction

similar to what is done in model predictive control, where an entire trajectory is planned

at every controller update step, and the initial inputs of the trajectory are applied to the

system.

1.2 Failsafe strategies and novel vehicles

A typical strategy to improve the safety of aerial systems is redundancy, where multiple

independent subsystems exist which can execute the same tasks. Examples of such re-

dundant systems in multicopters are the use of a backup safety pilot during autonomous

vehicle experiments (where the safety pilot can remotely take over control of the vehi-

cle if an anomaly is detected, see e.g. [21]), and the use of hexa- and octocopters (with

respectively six or eight propellers) that can fly with a minimal loss of capabilities after

the loss of one of their actuators (see e.g. [22], [23]).

Such redundancy often comes at significant cost: to be effective, safety pilots must be

highly skilled, and one pilot can be expected to monitor and control at most one aerial

vehicle, making their use for long-duration, multi-vehicle experiments expensive. The use

of mechanical redundancy, as in the case of the hexa- and octocopters, may also be prob-

lematic: adding the redundant components (which are by definition not needed in normal

operation) increases the mass of the vehicle (and thus also its power requirements in

operation). Although this mechanical redundancy reduces the probability of catastrophic

failure due to e.g. an actuator failure, it may increase the severity of a different type of

failure (e.g. a software glitch that causes the vehicle to fly into the ground).

This thesis investigates actuator failsafe strategies, which allow a quadrocopter to

maintain controlled flight despite the complete loss of one or more actuators. After such

a failure occurs, the quadrocopter can no longer maintain hover in the conventional sense,

but can instead enter a “relaxed hover” condition, where specifically the vehicle’s angular

velocity is allowed to be non-zero. Effectively, this means that the vehicle will rapidly

rotate about an axis, but can still fully control its position in space.

These relaxed hover solutions are also applied to the creation of novel, increasingly

under-actuated flying vehicles. As an example, it is shown that a controllable flying vehicle

can be constructed with only a single moving part (the rotation of an attached propeller),

and having only a single input (the propeller thrust) which is used to stabilise the vehicle.

Notably, the vehicle requires no passively stabilising aerodynamic surfaces.

The thesis also investigates system failsafe strategies for indoor testbeds such as the

Flying Machine Arena. For such systems, the failure of the central motion capture system

or the failure of the command radio system effectively breaks the global feedback control

loop. These systems are expected to be lightweight: they must be easily adapted to allow

for novel research. Thus strategies are investigated where the vehicles use their existing

onboard sensors to maintain a partial state estimate, allowing the vehicles to mitigate

the effect of a failure in the global feedback control loop.

4

1.3 State estimation

1.3 State estimation

State estimation is important in autonomous systems for at least two reasons [24]: the

system state may be desirable for its own sake, for example when monitoring a system’s

performance or compliance. Alternatively, the state estimate may be used in closed loop

by a controller to compute desired control inputs. When used in a feedback control setting,

the system’s achievable performance is often dictated by the quality of the state estimate.

The state estimation task for many systems, especially in robotics, is often complicated

by the presence of non-linearities. In such cases it is common to use non-linear extensions

of the Kalman filter, for example the extended Kalman filter (EKF) or the unscented

Kalman filter (UKF) [24].

A typical source of such non-linearity is attitude dependence in the system: for ex-

ample, a quadrocopter’s translational motion is primarily determined by the total thrust

force it produces, and gravity. The direction of the total thrust force is determined by the

quadrocopter’s attitude, which is itself a dynamic state. The estimation of attitudes is

however complicated by the inherent difficulties in their parametrisation, as an attitude

has three degrees of freedom, but no three dimensional parametrisation exists that is both

global and without singular points [25].

One approach is to have a three parameter “attitude error” parametrisation in the

Kalman filter state, coupled with an additional, redundant, “reference” attitude parametri-

sation. The attitude error in the filter state is to be kept small, and thus far away from sin-

gularities in the representation, while the reference attitude may be large. This attempts

to have the best of both worlds: the minimal error parametrisation in the filter reduces

computational cost when compared to higher order representations, and avoids the diffi-

culties associated with applying nonlinear constraints to the filter state. Nonetheless, the

use of a reference attitude to keep the attitude error small means that singularities may

be avoided. Such approaches date back to at least 1970, and may be found in e.g. [26],

[27].

These approaches require a periodic “reset”, where information is moved from the

filter’s attitude error state to the reference attitude, and the attitude error is reset to zero.

The difficulty here is that it is not clear how the attitude covariance must be adapted

during the reset. In Part C of this thesis it is shown that the approach common in the

literature (e.g. [27]–[31]) does not keep track of the covariance correctly to first order

during the reset step. Two covariance corrections are suggested, one which is shown to

keep track of the covariance correctly to first order, and another (based on the unscented

transform [32]) that is more accurate, but comes at a higher computational cost.

This research was motivated by efforts to create a localisation system for quadro-

copters that does not rely on the centralised motion capture system. The goal was to use

low-cost and low-mass components, which do not yield as much information as the motion

capture system but may be more flexible. Since such measurements may be expected to

be less informative, greater care must be taken to correctly track the estimate covariance.

A popular alternative sensing modality uses cameras on the vehicle itself, as in e.g. [33],

5

Chapter 1. Introduction

[34]. Such on-board vision systems have the advantage of allowing the autonomous sys-

tem to be fully contained in the quadrocopter, but they may be more sensitive to the

environment (e.g. lighting, sufficient environmental texture).

Instead, in this thesis, time-of-flight ultra-wideband radios are used, that allow the

quadrocopter to measure its distance to a set of anchors fixed in the world. These ra-

dios are very low-cost, have low mass, and therefore offer a cost-effective and flexible

alternative to centralised motion capture systems, as e.g. currently used in the Flying

Machine Arena. Additionally, the radio technology should be robust to external distur-

bances, such as external radio interference. This makes such a system attractive in safety

critical situations.

The following chapter presents the research done in this thesis, with a specific focus

on the six papers that make up this thesis.

6

2

Contributions

This chapter summarizes the scientific contributions for each of the papers that consti-

tute this thesis. In total, three journal publications, and three peer-reviewed conference

proceedings, are discussed. Furthermore, a list of other contributions such as results from

unpublished student projects and outreach activities are provided in this chapter.

2.1 Trajectory generation

[P1] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient

motion primitive for quadrocopter trajectory generation”, IEEE

Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015

Quadrocopters offer exceptional agility and can perform complex and highly dynamic

tasks. To exploit this agility in situations where the exact task or environment is not

known in advance requires the ability to plan agile motions in real time. In [P1] an algo-

rithm is presented allowing for the rapid generation and feasibility verification of motion

primitives for quadrocopters. These primitives are defined by the quadrocopter’s initial

state, and any combination of the quadrocopter’s desired state at a specified goal time.

By exploiting the problem structure, including the differential flatness of quadrocopter

dynamics, a computationally efficient algorithm is defined, allowing the generation and

evaluation of approximately one million motion primitives per second on a standard

laptop computer. The speed at which the primitives may be computed means that the

method may be applied especially in situations where there is considerable freedom in

the desired end state – in such a situation, the user may sample over a large number of

primitives which solve a given high-level goal, and then retain the ‘best’ that achieves the

goal and is input feasible.

Contribution The paper presents a quadrocopter motion primitive, based on a first-

principles model of the quadrocopter dynamics. Using the Pontryagin minimum principle,

an analytic solution is found for the translational motion that minimizes the integral of the

jerk squared along the quadrocopter’s trajectory (where the jerk is the third temporal

derivative of position). These trajectories are solved under the simplifying assumption

7

Chapter 2. Contributions

Figure 2.1 To validate the method of [P1], a quadrocopter with an attached net is tasked to
catch a ball thrown by a person.

that the quadrocopter’s angular dynamics are sufficiently fast that they may be neglected

compared to its translational dynamics. The optimal control problem is decoupled along

the three spatial axes, and solved in closed form for each axis as a function of the initial

state, and desired final state. It is shown that the decoupled solutions are also optimal

for the original, coupled problem. These closed form solutions are then used to derive

computationally efficient feasibility tests, allowing to test a given primitive for input

feasibility, and the violation of position box constraints. For the special case of rest-to-rest

trajectories, these solutions are considerably simplified. The approach is experimentally

validated by tasking a quadrocopter with an attached net to catch a thrown ball, as

shown in Fig. 2.1.

[P2] M. W. Mueller and R. D’Andrea, “A model predictive controller for

quadrocopter state interception”, in European Control Conference (ECC),

2013, pp. 1383–1389

The computational power offered by modern computers, coupled with recent advances in

the numerical solution of convex optimisation problems, means that it has become feasi-

ble to solve model predictive control problems in real time for highly dynamic systems.

In [P2] a highly optimized interior-point solver (based on FORCES [19]) is used to create

interception trajectories based on a discrete-time model of the quadrocopter dynamics.

Similarly to [P1], the trajectories are defined by the quadrocopter’s initial state, a desired

final state, and a desired trajectory duration.

The method is significantly slower at generating trajectories than that presented

in [P1], but is able to actively take constraints into account at the generation stage,

unlike [P1] where the primitive is first generated and subsequently tested for feasibility.

However, because the constraints must be decoupled per spatial axis and approximated

by convex constraints, the constraints that can be used for planning tend to be very

conservative. This means that, in practise, the method of [P1] appears to be preferable

to that of [P2].

8

2.2 Failsafe strategies and novel vehicles

Figure 2.2 Novel flying vehicles developed in this thesis,, from left to right: the mono-, bi-,
tri-, and quadspinner. The monospinner is described in [R2], the remainder in [P3].

Contribution The paper presents a first-principles dynamic model of a quadrocopter,

and constructs a per-axis optimal control problem for trajectory generation. This cost

function is similar to that used in [P1], with the major difference as to how the constraints

are encoded. This paper encodes the quadrocopter input constraints (taken to be angular

velocity and total thrust limits) using conservative per-axis box constraints. This means

that each axis may be solved for independently, and the resulting trajectory is guaranteed

to be input feasible (however, the solution may no longer be optimal for the original,

coupled problem). The problem is discretised in time, using timesteps equivalent to 50Hz,

and then numerically solved. The algorithm is then applied in experiment in the Flying

Machine Arena.

2.2 Failsafe strategies and novel vehicles

[P3] M. W. Mueller and R. D’Andrea, “Relaxed hover solutions for

multicopters: Application to algorithmic redundancy and novel vehicles”,

International Journal of Robotics Research, 2015

In paper [P3] an approach is developed to solve for “relaxed hover” equilibria of a multi-

copter. A conventional hover is for the multicopter to have a constant position (and thus

zero translational velocity), with constant attitude (and thus also zero angular velocity).

For a relaxed hover solution, the only requirement is that the vehicle’s position is approx-

imately constant, and that the solution may be described with constant parameters in a

body-fixed frame. Thus, it is allowed for the vehicle to rotate during flight. Such solutions

can be used to describe flight conditions for vehicles with as few as one propeller, allowing

for the design of novel vehicles (see Fig. 2.2), or to create fail-safe solutions for existing

multicopters (see Fig. 2.3 and 2.4).

9

Chapter 2. Contributions

Figure 2.3 A sequence of photos showing a quadrocopter experiencing the loss of a pro-
peller, and automatically recovering. (A) shows the quadrocopter in normal operation. In (B)
the propeller detaches due to vibrations, and the quadrocopter starts pitching over in (C)–(E).
In (F) the vehicle has regained control, and is flying stably. The stills are taken from the video
at www.mwm.im/l/VidFailsafe1.

Contribution The paper presents a detailed derivation of the effects acting on a multi-

copter at low translational speeds. This model is then used to derive general conditions

on hover solutions of multicopters where all propellers have a common thrust direction,

without assumptions on the number of propellers, their locations or the vehicle’s mass

distribution. A general framework for establishing whether the attitude of the multicopter

is controllable about a relaxed hover solution is then derived, which may then also be used

to compute a linear, time-invariant controller. These results are then applied to create

failsafe strategies for quadrocopters experiencing the loss of one or more propellers, and

to design novel vehicles with fewer than four propellers. It is furthermore shown that the

results can be used to control a quadrocopter with very large centre of mass offsets.

The theory developed has subsequently been applied to create a single moving part,

single input, controllable flying vehicle, shown in flight in Fig. 2.5 and described in [R2].

This is potentially the mechanically simplest, controllable, flying vehicle that exists, since

it conceptually consists of only a single propeller attached to a body.

Two patent applications follow from this work: [Pat1], [Pat2].

[P4] M. W. Mueller and R. D’Andrea, “Critical subsystem failure mitigation

in an indoor uav testbed”, in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2012, pp. 780–785

Many visitors attend demonstrations of the Flying Machine Arena in Zurich, and the

system has also been exhibited abroad, across four continents. This demanding demon-

stration schedule, coupled with the complexity of the system, motivates the development

of failure mitigation strategies. In Paper [P4] a strategy is developed to allow for the

mitigation of the effects of the failure of the Arena’s central measurement system, or

the failure of the radio system used to send commands to the vehicles. The centralised

10

2.2 Failsafe strategies and novel vehicles

Figure 2.4 A quadrocopter being flown by hand on the Züriberg after the simulated complete
failure of one propeller. This is a still taken from the video at www.mwm.im/l/VidFailsafe2.

Figure 2.5 The monospinner in flight [R2]. The monospinner is a controllable flying vehicle
with a single moving part (the rotating propeller), and a single input.

nature of the Flying Machine Arena, with a centralised measurement system capturing

the state of the vehicles’, and a single command radio broadcasting commands to all ve-

hicles (see [R1] for details) means that such failures effectively cut the high-level feedback

control loop, as the vehicles no longer have access to measurements of their position and

orientation.

Contribution The paper analyses the most relevant potential causes of failure in the

Flying Machine Arena, and presents algorithms with low computational cost that allow

the vehicles greater autonomy. The fundamental strategy is to periodically transmit to

the vehicle its current velocity and orientation, and then use the on-board rate gyroscope

to predict this state forward in time. If the motion capture system then fails (or the

command communication channel is cut), the vehicle can then attempt to control this

state to zero. If the fault is not repaired within a predefined period (after which the open-

loop state estimate may no longer be accurate), the vehicle attempts a soft crash-landing.

Experimental results are given, showing the successful reduction of the vehicle’s kinetic

energy after a failure, thus improving the safety of the system.

11

Chapter 2. Contributions

Figure 2.6 Some FMA events at which the failsafe system of [P4] was deployed, from left
to right: the Flight Assembled Architecture (where quadrocopters built a 6 m structure [R3]),
Prof. Raffaello D’Andrea giving a talk at TED (see www.ted.com/talks/raffaello_d_andrea_

the_astounding_athletic_power_of_quadcopters), and the filming of SPARKED (a short
film, see youtu.be/6C8OJsHfmpI). Photos by Markus Waibel, James Duncan Davison, and the
Sparked Team, respectively.

Remark The system currently implemented in the Flying Machine Arena is closely based

on [P4]. However, due to improvements in available onboard computational power, a more

detailed dynamic model and a more sophisticated estimator are used, which include aero-

dynamic effects and accelerometer measurements. The aerodynamic effects are described

in more detail in [P6].

2.3 State estimation

[P5] M. W. Mueller, M. Hehn, and R. D’Andrea, “Kalman filtering with an

attitude”, Zurich, Tech. Rep., 2016

A key requirement for autonomous operation is an accurate state estimate. In robotics

applications, it is common that the state to be estimated includes an attitude, or orien-

tation: system dynamics that include attitudes are typically nonlinear, and thus require

the use of nonlinear estimation techniques, such as the extended Kalman filter or the

unscented Kalman filter. The task is further complicated by the difficulties inherent in

representing attitudes: although an attitude has three degrees of freedom, no three ele-

ment parametrisation exists that is both global and without singularities. This chapter

presents two algorithms to estimate the state of a generic dynamic system, where the state

includes an attitude. The algorithms are based on the extended and unscented Kalman

filters.

Contribution The algorithms presented follow an approach similar to the widely used

“Multiplicative Extended Kalman Filter” [27] which uses a redundant attitude represen-

tation consisting of a three element attitude in the state vector, and a reference attitude.

The three element attitude is kept small (and thus far away from its singularities) by

12

2.3 State estimation

Figure 2.7 A quadrocopter uses measurements from a ranging radio to measure the distance
to a set of stationary radio anchors [P6]. An accelerometer effectively measures the static thrust
f and other aerodynamic effects fa, thereby providing information on the quadrocopter’s trans-
lational velocity. This allows the quadrocopter to estimate its state, using low-cost and flexible
infrastructure.

periodic reset operations, where the reference attitude is updated. In the chapter it is

shown that the reset method used in the literature fails to correctly track the estimated

covariance. Corrections are derived based on a first-order analysis, and based on the un-

scented transform, where the latter is shown to be significantly more accurate at the cost

of increased computational complexity. The algorithms are furthermore extended, such

that they may be easily applied to arbitrary systems (for which the usual assumptions

needed for extended/unscented Kalman filtering apply).

[P6] M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband

range measurements with accelerometers and rate gyroscopes for

quadrocopter state estimation”, in IEEE International Conference on

Robotics and Automation (ICRA), 2015

The centralised motion capture system in the Flying Machine Arena allows the system

to determine the position of the vehicles in the space. Such a localisation is an impor-

tant requirement for autonomous operations, but motion capture systems are expensive,

centralised (and thus represent a single point of failure), and are typically constrained to

small workspaces. There is thus considerable interest in alternative localisation systems.

Ultra-wideband radios are readily available at low cost, add little mass to a vehicle, and

therefore are promising candidates for creating low-cost localisation systems.

Contribution In this paper an estimation strategy is described that fuses accelerome-

ter and rate gyroscope measurements with distance measurements from a set of ultra-

wideband radio anchors, while exploiting a model of the quadrocopter’s aerodynamics.

These anchors have fixed, known positions in the world, and the range measurements are

fused using an extended Kalman filter, using a typical microcontroller. The system layout

is shown in Fig. 2.7.

Remark This work was done before [P5], and thus does not include the covariance

correction. Difficulties with tuning the Kalman filter (selecting noise variances) led to a

13

Chapter 2. Contributions

closer investigation of the assumptions made in the Kalman filter, and thus led to the

work described in [P5].

Remark The paper includes substantial contributions from the second author, Michael

Hamer: an algorithm to compute the range between two radios using simple messages,

as well as discussions about systematic delays in the radio system, and how to estimate

and mitigate them.

2.4 List of publications

Publications in this Thesis

[P1] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient mo-

tion primitive for quadrocopter trajectory generation”, IEEE Transactions on

Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[P2] M. W. Mueller and R. D’Andrea, “A model predictive controller for quadro-

copter state interception”, in European Control Conference (ECC), 2013, pp. 1383–

1389.

[P3] M. W. Mueller and R. D’Andrea, “Relaxed hover solutions for multicopters: Ap-

plication to algorithmic redundancy and novel vehicles”, International Journal

of Robotics Research, 2015.

[P4] M. W. Mueller and R. D’Andrea, “Critical subsystem failure mitigation in an in-

door uav testbed”, in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2012, pp. 780–785.

[P5] M. W. Mueller, M. Hehn, and R. D’Andrea, “Kalman filtering with an attitude”,

Zurich, Tech. Rep., 2016.

[P6] M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband range

measurements with accelerometers and rate gyroscopes for quadrocopter state

estimation”, in IEEE International Conference on Robotics and Automation

(ICRA), 2015.

Related publications

[R1] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.

D’Andrea, “A platform for aerial robotics research and demonstration: The Fly-

ing Machine Arena”, Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[R2] W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying vehicle

with a single moving part”, in IEEE International Conference on Robotics and

Automation (ICRA), 2016.

14

2.5 Student supervision

[R3] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S.

Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled ar-

chitecture installation: Cooperative construction with flying machines”, Control

Systems, IEEE, vol. 34, no. 4, pp. 46–64, 2014.

[R4] M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter de-

spite the complete loss of one, two, or three propellers”, in IEEE International

Conference on Robotics and Automation (ICRA), 2014, pp. 45–52.

[R5] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algo-

rithm for state-to-state quadrocopter trajectory generation and feasibility veri-

fication”, in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2013, pp. 3480–3486.

[R6] R. Ritz, M. W. Mueller, M. Hehn, and R. D’Andrea, “Cooperative quadro-

copter ball throwing and catching”, in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2012, pp. 4972–4978.

[R7] M. W. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2011, pp. 5113–5120.

Patent applications

[Pat1] M. W. Mueller, S. Lupashin, R. D’Andrea, and M. Waibel, “Controlled flight of

a multicopter experiencing a failure affecting an effector”, Patent pending, WO

2014/198641 A1, 2014.

[Pat2] M. W. Mueller, S. Lupashin, R. D’Andrea, and M. Waibel, “Volitant vehicle

rotating about an axis and method for controlling the same”, Patent pending,

WO 2014/198642 A1, 2014.

2.5 Student supervision

Masters thesis

The masters thesis is a six-month, full-time project.

[MT1] R. Ritz, “Cooperative quadrocopter ball play”, Masters thesis, ETH Zurich,

2011.

[MT2] S. Berger, “State estimation using ultra-wide band ranging radios and inertial

sensors”, Masters thesis, ETH Zurich, 2013.

[MT3] T. Kaegi, “Design, modelling, and control of a novel flying vehicle”, Masters

thesis, ETH Zurich, 2013.

15

Chapter 2. Contributions

[MT4] W. Zhang, “Design, modelling, and control of a single propeller vehicle”, Masters

thesis, ETH Zurich, 2015.

Semester project

The semester project is a semester-long, part-time project.

[SP1] P. Petit, “Integrating fixed-wing UAVs into the FMA”, Semester project, ETH

Zurich, 2012.

[SP2] S. Hubacher, “Improving the quadrocopter blind hover”, Semester project, ETH

Zurich, 2012.

[SP3] S. Berger, “Fault detection and user interface for the FMA”, Semester project,

ETH Zurich, 2012.

[SP4] A. Zanelli, “Catching rings on a quadrocopter”, Semester project, ETH Zurich,

2013.

[SP5] W. Zhang, “Randomised trajectory generation”, Semester project, ETH Zurich,

2014.

Bachelors thesis

The bachelors thesis is a three-month, full-time project.

[BT1] P. Puentener, “Improved filter for ball tracking/prediction”, Bachelors thesis,

ETH Zurich, 2011.

[BT2] M. Wermelinger, “Quadrocopter ball juggling optimization”, Bachelors thesis,

ETH Zurich, 2013.

[BT3] E. Kaufmann, “Using magnetometer during indoor flight”, Bachelors thesis,

ETH Zurich, 2014.

[BT4] L. Huber, “The tricoptercopter and state estimation”, Bachelors thesis, ETH

Zurich, 2014.

Studies on mechatronics

The Studies on Mechatronics is a literature review, comprising approximately eighteen

full work days. Note that the bachelors theses [BT1]–[BT3] also contained Studies on

Mechatronics: these are not listed here.

[SoM1] F. Metzler, “A survey on distance sensors”, Studies on mechatronics, ETH

Zurich, 2013.

Internship

[In1] A. Wilkinson, “Design of novel flying vehicles”, Internship, ETH Zurich, 2015.

16

2.6 Outreach

Figure 2.8 “Quadrocopter dynamics: a demonstration”, presented at the 19th World Congress
of the International Federation for Automatic Control, in Cape Town 2014, in front of an audience
of 500 people. Photo by Mark Rosenberg.

2.6 Outreach

Talks

Note that the talks at scientific conferences corresponding to the publications [P2], [P4],

[P6], [R4], [R5], [R7] are not listed. The talk at the IFAC World Congress, in August

2014, is shown in Fig. 2.8.

Mar. 2015 Systems Control Seminar (University of Toronto).

Feb. 2015 Lunch talk (California Institute of Technology).

Jan. 2015 Drones: From Technology to Policy, Security to Ethics (Zurich).

Jan. 2015 Future UAS Technologies Workshop (Thun).

Nov. 2014 Swiss Drone Day (Bern).

Oct. 2014 TEDxAirbus (Toulouse).

Aug. 2014 Public lecture, 19th World Congress of the International Federation

of Automatic Control (Cape Town), www.mwm.im/l/IFACTalk.

June 2014 Frontiers of Robotics and Autonomous Systems (Hong Kong Uni-

versity of Science and Technology).

Nov. 2013 Swiss-Kyoto Symposium (Zurich).

Oct. 2013 Computer Science Seminar, University of Witwatersrand (Univer-

sity of Johannesburg).

May 2013 Cooperation Forum: Advanced Driver Assistance Systems, Bayern

Innovativ (Aschaffenburg).

May 2012 General assembly, Swiss Association of Aeronautical Sciences

(Zurich).

17

Chapter 2. Contributions

Exhibitions

During the period of this thesis, the Flying Machine Arena was shown at the following

exhibitions. In all cases, to varying degrees, work contained in this thesis was used.

August 2014 Cape Town Public lecture, IFAC 2014

June 2013 Edinburgh TED Global

December 2012 Zurich Zurich.Minds

June 2012 San Francisco Google I/O after hours

April 2012 Hannover Hannover Messe

December 2011 Orléans Flight Assembled Architecture

In addition to the above, smaller demonstrations were also conducted during some

invited talks, where a vehicle was flown by a joystick whilst demonstrating the ability to

maintain controlled flight after the loss of one or two actuators.

Lab demonstrations

The Flying Machine Arena regularly hosts visitors, ranging from groups of primary school

students to distinguished professors. During such visits, different demonstrations are pre-

sented. Demonstrations stemming from, or including, work done in this thesis include:

• a quadrocopter with a rigidly attached badminton racket returning a ball thrown

by a person,

• a quadrocopter maintaining controlled flight after the complete removal of first one,

then two, of its propellers,

• the trispinner in flight, following a setpoint command given by a user with a pointer

(this demonstration, and the vehicle, were developed by Alex Wilkinson [In1]).

Youtube videos

The following videos were created for consumption by the general public, demonstrating

some of the research results.

[V1] R. Ritz, M. W. Mueller, M. Hehn, and R. D’Andrea, Cooperative quadrocopter

ball throwing and catching, Sep. 2012. [Online]. Available: https://youtu.be/

hyGJBV1xnJI.

[V2] M. W. Mueller, M. Hehn, and R. D’Andrea, Rapid trajectory generation for

quadrocopters, Oct. 2013. [Online]. Available: https://youtu.be/R8nX-cg-

WI0.

[V3] M. W. Mueller, M. Waibel, S. Lupashin, and R. D’Andrea, Quadrocopter failsafe

algorithm: Recovery after propeller loss, Dec. 2013. [Online]. Available: https:

//youtu.be/bsHryqnvyYA.

18

2.6 Outreach

[V4] M. W. Mueller, S. Berger, and R. D’Andrea, Onboard quadrocopter failsafe:

Flight after actuator failure, Mar. 2014. [Online]. Available: https://youtu.

be/ek0FrCaogcs.

[V5] M. W. Mueller and R. D’Andrea, The bicoptercopter: A preview, Oct. 2014.

[Online]. Available: https://youtu.bbe/csfAOCdkCdU.

Software resources

The following software resources were developed during the thesis, and are released under

the GPL license [35].

• www.github.com/markwmuller/RapidQuadrocopterTrajectories An implemen-

tation of the motion primitive algorithm described in [P1].

• www.github.com/markwmuller/controlpy A Python library implementing some

controls analysis and synthesis tools, e.g. computing controllability Gramian, system

H2 or H∞ norms, and synthesizing LQR controllers.

Selected media coverage

• “Quadrocopters — Tech Report”, television interview, ENCA South Africa, August

2014.

• “Quadrocopters; redefining the future of unmanned aerial vehicles”, television in-

terview, TechBusters, CNBC Africa, August 2014.

• “Quadcopters fascinate crowd in city”, Jan Cronje, Weekend Argus, August 2014.

• “When the drones go dancing”, Arthur Goldstuck, Mail and Guardian, August

2014.

• “Die tollkühnen Schweizer mit ihren fliegenden Drohnen”, Eva Raisig, Deutschland

Radio, March 2014.

• “Every quadrotor needs this amazing failsafe software”, Evan Ackerman, IEEE

Spectrum, March 2014.

• “Amazing quadcopter prop-loss recovery”, Chris Anderson, 3D robotics, March

2014.

• Live television interview on Dagbreek, October 2013.

• “Perfekte Teamarbeit in der Luft”, Frankfurter Allgemeine Zeitung, October 2012.

In addition to the above, the research carried out in the FMA has been widely pub-

licized. Demonstrations of the system have been shown on television by SRF, Tele Züri,

RTS, RSI, BBC, Discovery Channel, Fuji TV, NBC, RTL Aktuell, CNN, Canal+, Nippon

Television Network, France 2, Daily Planet, Deutsche Welle, CNBC Africa, TV Chosun,

19

Chapter 2. Contributions

Nine Network Australia, and CBC. Articles about our research have appeared in print

(Sonntagszeitung, c’t Magazine, Technology Review, engine, LOOP Magazine, CHIP,

Science et Vie, ICON Magazine, Globe, ETH life, Giornale del Popolo, Corriere del Ti-

cino, 20 Minuti, Blick am Abend, Zürichsee-Zeitung, New Scientist, Tracé, Die Burger,

Weekend Argus, and Wired Magazine).

20

3

Future work

This chapter provides an overview of potential future work based on the research pre-

sented in this thesis.

Randomised motion planning

The low computational cost of the motion primitive of [P1] makes it attractive for use

in randomised path planners, such as in a rapidly exploring random tree (RRT) or a

probabilistic roadmap (PRMs) [36]. Such methods, however, rely on the ability to rapidly

evaluate whether a motion is collision-free in a non-convex environment. The method

of [P1] allows to very quickly evaluate collisions with planes in space, such that it would

need to be extended for non-convex flight spaces.

Initial work [SP5] used the rest-to-rest trajectories of [P1] as primitives for an RRT*

search through a cluttered environment. Those trajectories appear to offer a good com-

promise between fast computation (the resulting trajectories are composed of straight

lines, and thus collision checks are greatly simplified) and fast execution. However, the

vehicle comes to rest during each trajectory segment. This could perhaps be improved by

adding an additional step to the algorithm, taking the result of [SP5] and attempting to

smooth the points where the quadrocopter comes to rest.

Libraries of evasive/alternative manoeuvres

The trajectories developed in [P1] may be evaluated in microseconds, and thus lend them-

selves to situations where the goal is to search over large sets of potential motions. The

experimental section of [P1] exploits this to interact with an unpredictable environment,

where specifically the task of catching a thrown ball implies that trajectories to catch the

ball need to be generated on time scales much lower than the flight time of a ball.

An alternative use of such computationally inexpensive algorithms is to generate a

comprehensive library of trajectories before the execution of a task, and then execute

motions from this library during task execution. As an example of this, consider fly-

ing a quadrocopter through a cluttered but only partially mapped environment. Using

a method such as RRT* [36] a nominal trajectory may be computed that guides the

quadrocopter from an initial to a final goal. Once the optimal trajectory has been found

that successfully avoids the known obstacles, a library of evasive manoeuvres and detours

can then be computed, for example computing a tree of evasive manoeuvres for every

21

Chapter 3. Future work

point along a discretised version of the nominal trajectory.

In flight, when executing the nominal trajectory, and when an obstacle is detected that

was not known before, the vehicle may then look in its library of evasive manoeuvres for a

trajectory that successfully avoids the newly detected obstacle, and execute this. Because

looking data up from the stored data may be much faster than generating the trajectories

in the first place (especially the collision detection is computationally expensive), such an

approach may allow for the vehicle to fly with lower on-board computational requirements,

reducing power and mass requirements and thus allowing for longer range and increased

agility.

Such an approach lends itself directly to cloud computing and cloud robotics [37],

where the quadrocopter may upload, for example, images of its flight space to the cloud,

which then creates a rough map, computes the nominal trajectory, and generates the li-

brary of evasive manoeuvres. The nominal trajectory and the library are then downloaded

to the vehicle, which proceeds to execute the trajectory.

Although such a library would not be generated in flight in real time, computational

complexity is still important: the faster an individual trajectory may be computed and

added to the library, the more detailed the library will be and thus also the more likely that

a successful trajectory has been generated in advance. Furthermore, if the quadrocopter

must wait for the generation of the library to accomplish the task, it is clear that the

faster the library may be generated, the faster the task may be accomplished.

State estimation for rotating vehicles

The rapidly rotating vehicles introduced in [P3] potentially offer some unique opportu-

nities for state estimation. As an example, consider the use of the magnetometer on a

flying vehicle. Experience has shown that a magnetometer experiences significant and

hard-to-predict disturbances when mounted near the vehicle’s power electronics, battery,

or motors. In such cases, use of the magnetometer in estimation is extremely problematic.

If, in contrast, the vehicle is rotating rapidly, such body-fixed disturbances may be easily

discriminated from world-fixed magnetic fields, from which the vehicle’s yaw angle may

be inferred.

Additionally, a position sensor attached to an extremity of such a vehicle would ef-

fectively measure points along a disk, centred about the vehicle’s centre of rotation. The

orientation of this disk of point measurements would allow to infer the vehicle’s tilt (the

Euler roll and pitch angles), while the phase allows to infer the vehicle’s yaw angle.

The vehicle may also be used as a rotating sensor platform: for example, by sweep-

ing a line-scanning camera the vehicle could be turned into an omnidirectional camera.

However, in such a situation, the camera would have to be capable of low shutter speeds

to minimise the effects of motion blur.

Extending the capabilities of the ultra-wideband system

Many directions exist for future work when combining the ultra-wideband radios with

flying vehicles. If such a system were to be used outdoors, the no-wind assumption made

22

in [P6] would no longer apply and an important aspect would be the investigation of

the effects of wind on the model, and methods for compensating for wind. One approach

would be to include the wind speed as an additional state in the estimator, where a likely

difficulty will be determining a suitable dynamic model for the wind (taking e.g. gusts

into account).

An alternative method would be to forego the aerodynamic model used in [P6] com-

pletely, and instead use a model based solely on the integration of the accelerometers and

rate gyroscopes. Such an estimator would be much more generic, and its performance

would not be influenced by physical interactions with the environment (as these will

be measured by the inertial sensors), at the cost of not exploiting the available model

knowledge.

Attitude discontinuous trajectories

The trajectories generated in [P1], [P2] are continuous in the vehicle’s attitude, but not

in its angular velocity. This is motivated by the angular agility of the vehicles, such that

the angular dynamics may be neglected to yield a simplified motion planning problem.

For certain tasks, and vehicle configurations, it could be interesting to extend this, and

to assume that the vehicle’s attitude can also be instantaneously changed, such that the

vehicle’s acceleration becomes a planning input (instead of the vehicle’s jerk). Although

clearly physically impossible, such trajectories could be much more computationally light-

weight than those proposed in [P1]. As such, they may be interesting to use as a first

step in randomised path planning, such as RRT* [36]. Once such a trajectory has been

generated, one could search for a physically feasible trajectory that closely approximates

it.

Trajectories for vehicles with alternative dynamics

The computational speed of the trajectories presented in [P1] is primarily due to exploita-

tion of structure in the quadrocopter’s dynamics, and the two step approach (generate a

motion without regards for constraints, then test for feasibility in a second step). It would

be interesting to investigate whether a similar approach could be useful to alternative ve-

hicles, for example ground-based vehicles, or aerial vehicles with different dynamics.

23

Chapter 3. Future work

24

References for Chapters 1-3

[1] R. D’Andrea, “Can drones deliver?”, IEEE Transactions on Automation Science

and Engineering, vol. 11, no. 3, pp. 647–648, 2014.

[2] W. Selby, P. Corke, and D. Rus, “Autonomous aerial navigation and tracking of

marine animals”, in Proceedings of the 2011 Australasian Conference on Robotics

and Automation, Australian Robotics & Automation Association, 2011, pp. 1–7.

[3] J. Rasmussen, J. Nielsen, F. Garcia-Ruiz, S. Christensen, and J. C. Streibig,

“Potential uses of small unmanned aircraft systems (UAS) in weed research”,

Weed Research, vol. 53, no. 4, pp. 242–248, 2013.

[4] J. R. Hörandel, S. Buitink, A. Corstanje, J. E. Enriquez, and H. Falcke, “The

LOFAR radio telescope as a cosmic ray detector”, in International Cosmic Ray

Conference, 2013.

[5] F. Augugliaro, A. Mirjan, F. Gramazio, M. Kohler, and R. D’Andrea, “Building

tensile structures with flying machines”, in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Nov. 2013, pp. 3487–3492.

[6] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-

tonomous vehicle test environment”, Control Systems, IEEE, vol. 28, no. 2,

pp. 51–64, Apr. 2008.

[7] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Precision flight

control for a multi-vehicle quadrotor helicopter testbed”, Control Engineering

Practice, vol. 19, no. 9, pp. 1023–1036, 2011.

[8] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multi-

ple micro-UAV testbed”, IEEE Robotics Automation Magazine, vol. 17, no. 3,

pp. 56–65, Sep. 2010.

[9] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter

trajectory tracking control”, in AIAA Guidance, Navigation and Control Con-

ference and Exhibit, Honolulu, Hawaii, USA, Aug. 2008, pp. 1–14.

[10] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A proto-

type of an autonomous controller for a quadrotor UAV”, in European Control

Conference (ECC), Kos, Greece, 2007, pp. 1–8.

25

REFERENCES FOR CHAPTERS 1-3

[11] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadro-

tor helicopter”, in Mediterranean Conference on Control and Automation, Jun.

2008, pp. 1258–1263.

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors”, in IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, 2011, pp. 2520–2525.

[13] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control”,

in IFAC World Congress, vol. 18, 2011, pp. 1485–1491.

[14] A. Boeuf, J. Cortes, R. Alami, and T. Siméon, “Planning agile motions for

quadrotors in constrained environments”, in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), IEEE, 2014, pp. 218–223.

[15] M. P. Vitus, W. Zhang, and C. J. Tomlin, “A hierarchical method for stochastic

motion planning in uncertain environments”, in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), IEEE, Villamoura, Portugal,

2012, pp. 2263–2268.

[16] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for quadrotor

flight”, in IEEE International Conference on Robotics and Automation (ICRA),

2013.

[17] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “Direct

method based control system for an autonomous quadrotor”, Journal of Intel-

ligent & Robotic Systems, vol. 60, no. 2, pp. 285–316, 2010.

[18] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded convex

optimization”, Optimization and Engineering, vol. 13, no. 1, pp. 1–27, 2012.

[19] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones, “Efficient in-

terior point methods for multistage horizons arising in receding horizon control”,

in IEEE Conference on Decision and Control (CDC), 2012, pp. 668–674.

[20] S. Richter, “Computational complexity certification of gradient methods for

real-time model predictive control”, PhD thesis, ETH Zurich, 2012.

[21] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Autonomous navi-

gation and exploration of a quadrotor helicopter in GPS-denied indoor environ-

ments”, in Robotics: Science and Systems Conference, Jun. 2008.

[22] M. C. Achtelik, K.-M. Doth, D. Gurdan, and J. Stumpf, “Design of a multi rotor

MAV with regard to efficiency, dynamics and redundancy”, in AIAA Guidance,

Navigation, and Control Conference, 2012, pp. 1–17.

[23] A. Marks, J. F. Whidborne, and I. Yamamoto, “Control allocation for fault

tolerant control of a VTOL octorotor”, in UKACC International Conference on

Control, IEEE, 2012, pp. 357–362.

[24] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear ap-

proaches. John Wiley & Sons, 2006.

26

REFERENCES FOR CHAPTERS 1-3

[25] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation group”,

SIAM review, vol. 6, no. 4, pp. 422–430, 1964.

[26] J. L. Farrell, “Attitude determination by Kalman filtering”, Automatica, vol. 6,

no. 3, pp. 419–430, 1970.

[27] F. L. Markley, “Attitude error representations for Kalman filtering”, Journal of

Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[28] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude es-

timation”, Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 536–

542, 2003.

[29] F. L. Markley, J. L. Crassidis, and Y. Cheng, “Nonlinear attitude filtering meth-

ods”, in AIAA Guidance, Navigation, and Control Conference, 2005, pp. 15–18.

[30] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude

estimation methods”, Journal of Guidance, Control, and Dynamics, vol. 30, no.

1, pp. 12–28, 2007.

[31] F. L. Markley and J. L. Crassidis, “Filtering for attitude estimation and cal-

ibration”, in Fundamentals of Spacecraft Attitude Determination and Control,

Springer, 2014, pp. 235–285.

[32] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation”,

Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[33] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R.

Siegwart, “Monocular vision for long-term micro aerial vehicle state estimation:

A compendium”, Journal of Field Robotics, vol. 30, no. 5, pp. 803–831, 2013.

[34] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Pollefeys,

“PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard

computer vision”, English, Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[35] GNU general public license, version 3, Free Software Foundation, Jun. 29, 2007.

[Online]. Available: http://www.gnu.org/licenses/gpl.html.

[36] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning”, The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–

894, 2011.

[37] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez, K.

Haussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schiessle, M. Tenorth, O.

Zweigle, and R. van de Molengraft, “RoboEarth: A world wide web for robots”,

IEEE Robotics & Automation Magazine, vol. 18, no. 2, pp. 69–82, 2011.

27

Part A

Trajectory generation

Paper P1

A computationally efficient motion primitive

for quadrocopter trajectory generation

Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea

Abstract

A method is presented for the rapid generation and feasibility verification of
motion primitives for quadrocopters and similar multirotor vehicles. The motion
primitives are defined by the quadrocopter’s initial state, the desired motion dura-
tion, and any combination of components of the quadrocopter’s position, velocity
and acceleration at the motion’s end. Closed form solutions for the primitives are
given, which minimize a cost function related to input aggressiveness. Computation-
ally efficient tests are presented to allow for rapid feasibility verification. Conditions
are given under which the existence of feasible primitives can be guaranteed a pri-
ori. The algorithm may be incorporated in a high-level trajectory generator, which
can then rapidly search over a large number of motion primitives which would
achieve some given high-level goal. It is shown that a million motion primitives
may be evaluated and compared per second on a standard laptop computer. The
motion primitive generation algorithm is experimentally demonstrated by tasking
a quadrocopter with an attached net to catch a thrown ball, evaluating thousands
of different possible motions to catch the ball.

Accepted for publication in IEEE Transactions on Robotics.

c©2015 IEEE. Reprinted, with permission, from Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea,
“A computationally efficient motion primitive for quadrocopter trajectory generation” IEEE Transactions
on Robotics, 2015.

31

Paper P1. A computationally efficient motion primitive

1. Introduction

Quadrocopters offer exceptional agility, with typically high thrust-to-weight ratios, and

large potential for angular acceleration due to the outward mounting of the propellers.

This allows them to perform complex and highly dynamic tasks, for example aerial ma-

nipulation [1.1] and cooperative aerial acrobatics [1.2]. The ability to hover, and the

safety offered by small rotors storing relatively little energy [1.3], make quadrocopters

attractive platforms for aerial robotic tasks that involve the navigation of tight, cluttered

environments (for example, [1.4], [1.5]).

A key feature required for the use of these vehicles under complex conditions is a

trajectory generator. The trajectory generator is tasked with computing flight paths that

achieve the task objective, while respecting the quadrocopter dynamics. The trajectory

must also be collision-free, and there could be additional requirements imposed on the

motion by the sensing modalities (for example, limits on the quadrocopter velocity im-

posed by an onboard camera). This trajectory planning problem is complicated by the

underactuated and nonlinear nature of the quadrocopter dynamics, as well as potentially

complex task constraints that may consist of variable manoeuvre durations, partially

constrained final states, and non-convex state constraints. In addition, dynamic environ-

ments or large disturbances may require the re-computation or adaptation of trajectories

in real time, thus limiting the time available for computation.

Active research in this field has yielded numerous trajectory generation algorithms,

focusing on different trade-offs between computational complexity, the agility of the pos-

sible motions, the level of detail in which manoeuvre constraints can be specified, and

the ability to handle complex environments.

Broadly speaking, a first group of algorithms handles the trajectory generation prob-

lem by decoupling geometric and temporal planning: in a first step, a geometric trajectory

without time information is constructed, for example using lines [1.6], polynomials [1.7],

or splines [1.8]. In a second step, the geometric trajectory is parametrised in time in order

to guarantee feasibility with respect to the dynamics of quadrocopters.

Motion
primitive
generator

Input constraints (thrust, body rates)

Initial state, motion duration,
end translational variables

Affine translational constraints

High-level
trajectory
generator

Quadrocopter motion primitive

Input constraint feasible?

Affine translational constraint feasible?

State estimate,
high level objective

Quadrocopter
trajectory

Figure 1.1. The presented algorithm aims to provide computationally inexpensive motion
primitives, which may then be incorporated by a high-level trajectory generator. The focus of
this paper is on the right-hand-side (unshaded) part of this diagram.

32

1. Introduction

A second group of algorithms exploits the differential flatness of the quadrocopter

dynamics in order to derive constraints on the trajectory, and then solves an optimiza-

tion problem over a class of trajectories, for example minimum snap [1.9], minimum

time [1.10], shortest path under uncertain conditions [1.11], or combinations of position

derivatives [1.5]. In [1.12] a search over parameters is proposed for quadrocopter motion

planning, including trajectories where the position is described by polynomials in time.

A dynamic inversion based controller is proposed in [1.13] to directly control a quadro-

copter’s position and orientation, and this controller is exploited in [1.14]. For a broader

discussion of differential flatness see e.g. [1.15], [1.16], and e.g. [1.17], [1.18] for generic

trajectory generation methods for differentially flat systems.

A common property of these methods is that they impose a rigid structure on the

end state, for example fixing the final state and allowing a fixed or varying manoeuvre

duration, or by specifying the goal state with convex inequalities. Many quadrocopter ap-

plications do not, however, impose such structured constraints; instead the set of states

that achieve the application might be non-convex, or even disjoint. Furthermore, the con-

ditions on the final state necessary to achieve a task may be time-dependent (for example

when the task objective involves interaction with a dynamic environment). Methods rely-

ing on convex optimisation furthermore require the construction of (conservative) convex

approximations of constraints, potentially significantly reducing the space of feasible tra-

jectories.

This paper attempts a different approach to multicopter trajectory generation, where

the constraints are not explicitly encoded at the planning stage. Instead, the focus is

on developing a computationally light-weight and easy-to-implement motion primitive,

which can be easily tested for constraints violation, and allows significant flexibility in

defining initial and final conditions for the quadrocopter. The low computational cost

may then be exploited by searching over a multitude of primitives to achieve some goal.

Each primitive is characterised by the quadrocopter’s initial state, a duration, and a set

of constraints on the quadrocopter’s position, velocity, and/or acceleration at the end of

the primitive.

The approach is illustrated in Fig. 1.1. The high-level trajectory generator is tasked

with evaluating motion primitives, and specifically with defining the constraints on the

motion primitives to solve the given high-level goal. The high-level trajectory generator

must also encode the behaviour for dealing with infeasible motion primitives. As an

example, the high-level trajectory generator may generate a large number of motion

primitives, with varying durations and end variables, to increase the probability of finding

a feasible motion primitive. These motion primitives are generated in a two-step approach:

First, a state-to-state planner is used to generate a motion while disregarding feasibility

constraints. In the second step, this trajectory is checked for feasibility. The first step is

solved for in closed form, while a computationally efficient recursive test is designed for

the feasibility tests of the second step.

The state-to-state motion primitives generated in the first step are closely related to

other algorithms exploiting the differential flatness of the quadrocopter dynamics to plan

33

Paper P1. A computationally efficient motion primitive

position trajectories that are polynomials in time (e.g. [1.5], [1.9], [1.12]). In this paper

an optimal control problem is solved, whose objective function is related to minimizing

an upper bound of the product of the quadrocopter inputs, to yield position trajectories

characterised by fifth order polynomials in time. A key property that is then exploited is

that the specific polynomials allow for the rapid verification of constraints on the system’s

inputs, and constraints on the position, velocity, and/or acceleration.

The benefits of this approach are twofold: first, a unified framework is given to generate

trajectories for arbitrary manoeuvre duration and end state constraints, resulting in an

algorithm which can be easily implemented across a large range of trajectory generation

problems. Secondly, the computational cost of the approach is shown to be very low, such

that on the order of one million motion primitives per second can be generated and tested

for feasibility on a laptop computer with an unoptimised implementation.

The algorithm therefore lends itself to problems with significant freedom in the end

state. In this situation, the designer can apply the presented approach to rapidly search

over the space of end states and trajectory durations which would achieve the high level

goal. This ability to quickly evaluate a vast number of candidate trajectories is achieved

at the expense of not directly considering the feasibility constraints in the trajectory

generation phase, but rather verifying feasibility a posteriori.

For certain classes of trajectories, explicit guarantees can be given on the existence

of feasible motion primitives as a function of the problem data. Specifically, for rest-to-

rest manoeuvres, a bound on the motion primitive duration is explicitly calculated as a

function of the distance to be translated and the system’s input constraints. Furthermore,

bounds on the velocity during the rest-to-rest manoeuvre are explicitly calculated, and it

is shown that the position feasibility of rest-to-rest trajectories can be directly asserted

if the allowable flight space is convex.

An experimental demonstration of the algorithm is presented where the motion prim-

itive generator is encapsulated in a high-level trajectory generation algorithm. The goal is

for a quadrocopter with an attached net to catch a thrown ball. The catching trajectories

must be generated in real time, because the ball’s flight is not repeatable. Furthermore,

for a given ball trajectory, the ball can be caught in many different ways (quadrocopter

positions and orientations). The computational efficiency of the presented approach is

exploited to do an exhaustive search over these possibilities in real time.

An implementation of the algorithm presented in this paper in both C++ and Python

is made available at [1.19].

This paper follows on previous work presented at conferences [1.20], [1.21]. A related

cost function, the same dynamics model, and a related decoupled planning approach were

presented in [1.20]. Preliminary results of the fundamental state-to-state motion primitive

generation algorithm were presented in [1.21]. This paper extends these previous results

by presenting

• conditions under which primitives are guaranteed to be feasible;

• an investigation into the completeness of the approach, by comparing rest-to-rest

34

2. System dynamics and problem statement

trajectories to the time optimal rest-to-rest trajectories; and

• presenting a challenging novel demonstration to show the capabilities of the ap-

proach.

The remainder of this paper is organised as follows: the quadrocopter model and

problem statement are given in Section 2, with the motion primitive generation scheme

presented in Section 3. A computationally efficient algorithm to determine feasibility

of generated trajectories is presented in Section 4. The choice of coordinate system is

discussed in Section 5. In Section 6 classes of problems are discussed where the existence

of feasible trajectories can be guaranteed. The performance of the presented approach

is compared to the system’s physical limits in Section 7. The computational cost of the

algorithm is measured in Section 8, and the demonstration of catching a ball is presented

in Section 9. A conclusion is given in Section 10.

2. System dynamics and problem statement

This section describes the dynamic model used to describe the quadrocopter’s motion,

including constraints on the quadrocopter inputs. A formal statement of the problem to

be solved in this paper is then given, followed by an overview of the solution approach.

2.1 Quadrocopter dynamic model

The quadrocopter is modelled as a rigid body with six degrees of freedom: linear transla-

tion along the orthogonal inertial axes, x = (x1, x2, x3), and three degrees of freedom de-

scribing the rotation of the frame attached to the body with respect to the inertial frame,

defined by the proper orthogonal matrix R. Note that the notation x = (x1, x2, x3) is

used throughout this paper to compactly express the elements of a column vector.

The control inputs to the system are taken as the scalar total thrust produced f , for

simplicity normalised by the vehicle mass and thus having units of acceleration; and the

body rates expressed in the body-fixed frame as ω = (ω1, ω2, ω3), as are illustrated in

Fig. 1.2. It is assumed that high bandwidth controllers are used to track these angular

rate commands. Then by separation of timescales, because of the vehicles’ low rota-

tional inertia and their ability to produce large torques, it is assumed that the angular

rate commands are tracked perfectly and that angular dynamics may be neglected. The

quadrocopter’s state is thus nine dimensional, and consists of the position, velocity, and

orientation.

Although more complex quadrocopter models exist that incorporate, for example,

aerodynamic drag [1.22] or propeller speeds [1.23], the preceding model captures the most

relevant dynamics, and yields tractable solutions to the trajectory generation problem.

Furthermore, in many applications (for example, model predictive control) such a simple

model is sufficient, with continuous replanning compensating for modelling inaccuracies.

35

Paper P1. A computationally efficient motion primitive

g

e3f

ω1

ω2

ω3

x3

x1 x2

Figure 1.2. Dynamic model of a quadrocopter, acted upon by gravity g, a thrust force f
pointing along the (body-fixed) axis e3; and rotating with angular rate ω = (ω1, ω2, ω3), with
its position in inertial space given as (x1, x2, x3).

The differential equations governing the flight of the quadrocopter are now taken as

those of a rigid body [1.24]

ẍ = R e3f + g (1.1)

Ṙ = R Jω×K (1.2)

with g the acceleration due to gravity as expressed in the inertial coordinate frame,

e3 = (0, 0, 1) a constant vector in the body-fixed frame, as illustrated in Fig. 1.2. Fi-

nally, Jω×K is the skew-symmetric matrix form of the vector cross product such that

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (1.3)

It should be noted that the preceding model may also be applied to other multirotor

vehicles, such as hexa- and octocopters. This is because the high-bandwidth angular rate

controller that maps angular velocity errors to motor forces effectively hides the number

and locations of the propellers.

1) Feasible inputs The achievable thrust f produced by the vehicle lies in the range

0 ≤ fmin ≤ f ≤ fmax (1.4)

where fmin is non-negative because of the fixed sense of rotation of the fixed-pitch pro-

pellers. The magnitude of the angular velocity command is taken to be constrained to lie

within a ball:

‖ω‖ ≤ ωmax (1.5)

36

2. System dynamics and problem statement

with ‖·‖ the Euclidean norm. This limit could be due, for example, to saturation limits of

the rate gyroscopes, or motion limits of cameras mounted on the vehicle. Alternatively,

a designer may use this value as a tuning factor, to encode the dynamic regime where

the low-order dynamics of (1.1)-(1.2) effectively describe the true quadrocopter. The

Euclidean norm is chosen for computational convenience, specifically invariance under

rotation.

2.2 Problem statement

Define σ(t) to be translational variables of the quadrocopter, consisting of its position,

velocity and acceleration, such that

σ(t) = (x(t), ẋ(t), ẍ(t)) ∈ R9. (1.6)

Let T be the goal duration of the motion, and let σ̂i be components of desired transla-

tional variables at the end of the motion, for some i ∈ I ⊆ {1, 2, . . . , 9}. Let the trajectory

goal be achieved if

σi(T) = σ̂i ∀i ∈ I. (1.7)

Furthermore, the quadrocopter is subject to Nc translational constraints of the form

aTj σ(t) ≤ bj for t ∈ [0, T] , j = 1, 2, . . . , Nc. (1.8)

An interpretation of these translational constraints is given at the end of this section.

The problem addressed in this paper is to find quadrocopter inputs f(t), ω(t) over [0, T],

for a quadrocopter starting at some initial state consisting of position, velocity, and orien-

tation, at time t = 0 to an end state at time T satisfying (1.7), while satisfying throughout

the trajectory:

• the vehicle dynamics (1.1)-(1.2),

• the input constraints (1.4)-(1.5), and

• the Nc affine translational constraints (1.8).

Discussion It should be noted that the nine quadrocopter state variables as described

in Section 2.1 (three each for position, velocity and orientation) are not the nine trans-

lational variables. Only eight components of the state are encoded in the translational

variables, consisting of the quadrocopter’s position, its velocity, and two components

of the orientation (which are encoded through the acceleration). These two orientation

components are those that determine the direction of the quadrocopter’s thrust vector

– given an acceleration value, the quadrocopter’s thrust direction Re3 can be recovered

through (1.1). These are the same components encoded by the Euler roll and pitch angles.

37

Paper P1. A computationally efficient motion primitive

The translational variables do not encode the quadrocopter’s rotation about the thrust

axis (the Euler yaw angle).

These variables are chosen because they are computationally convenient, whilst still

being useful to encode many realistic problems. Two example problems are given below:

(i) To-rest manoeuvre: let the goal be to arrive at some point in space, at rest, at

time T . Then all nine translational variables will be specified in (1.7), with specifically

the components corresponding to velocity and acceleration set to zero. Similarly, if the

goal is simply to arrive at a point in space, but the final velocity and acceleration do not

matter, only the first three components of σ̂ are specified.

(ii) Landing on a moving platform: to land the quadrocopter on a moving, possibly

slanted platform, the goal end position and velocity are set equal to those of the platform

at time T . The end acceleration is specified to be such that the quadrocopter’s thrust

vector e3 is parallel to the normal vector of the landing platform. Then the quadrocopter

will arrive with zero relative speed at the platform, and touch down flatly with respect

to the platform.

The affine translational constraints of (1.8) are also chosen for computational conve-

nience. They allow to encode, for example, that the position may not intersect a plane

(such as the ground, or a wall), or specify a box constraint on the vehicle velocity. Con-

straints on the acceleration, in conjunction with (1.4), can be interpreted as limiting the

tilt of the quadrocopter, by (1.1).

3. Motion primitive generation

Given an end time T and goal translational variables σ̂i, the dynamic model of Section 2.1

is used to generate motion primitives guiding the quadrocopter from some initial state to

a state achieving the goal translational variables. The input constraints, and the affine

state constraints, are ignored at this stage, and the motion primitives are generated in

the quadrocopter’s jerk. Each of the three spatial axes is solved for independently. The

generated motion primitive minimises a cost value for each axis independently of the

other axes, but the total cost is shown to be representative of the aggressiveness of the

true system inputs. Constraints on the input and state are considered in Sections 4 and 6.

3.1 Formulating the dynamics in jerk

We follow [1.10] in planning the motion of the quadrocopter in terms of the jerk along

each of the axes, allowing the system to be considered as a triple integrator in each axis.

By ignoring the input constraints, the axes can be decoupled, and motions generated for

each axis separately. These decoupled axes are then recombined in later sections when

considering feasibility. This subsection will describe how to recover the thrust and body

rates inputs from such a thrice differentiable trajectory.

Given a thrice differentiable motion x(t), the jerk is written as j =
...
x = (

...
x 1,

...
x 2,

...
x 3).

38

3. Motion primitive generation

The input thrust f is computed by applying the Euclidean norm to (1.1):

f = ‖ẍ− g‖ . (1.9)

Taking the first derivative of (1.1) and (1.9), yields

j = RJω×Ke3f + Re3ḟ (1.10)

ḟ = eT3 R−1j. (1.11)

After substitution, and evaluating the product Jω×Ke3, it can be seen that the jerk j

and thrust f fix two components of the body rates:

 ω2

−ω1

0

 =
1

f

1 0 0

0 1 0

0 0 0

R−1j. (1.12)

Note that ω3 does not affect the linear motion, and is therefore not specified. Throughout

the rest of the paper, it will be taken as ω3 = 0.

3.2 Cost function

The goal of the motion primitive generator is to compute a thrice differentiable trajectory

which guides the quadrocopter from an initial state to a (possibly only partially defined)

final state in a final time T , while minimizing the cost function

JΣ =
1

T

T∫
0

‖j(t)‖2 dt. (1.13)

This cost function has an interpretation as an upper bound on the average of a product

of the inputs to the (nonlinear, coupled) quadrocopter system: rewriting (1.12), and

taking ω3 = 0 gives

f 2 ‖ω‖2 =

∥∥∥∥∥∥f
 ω2

−ω1

0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1 0 0

0 1 0

0 0 0

R−1j

∥∥∥∥∥∥
2

≤ ‖j‖2 (1.14)

so that:

1

T

T∫
0

f(t)2 ‖ω(t)‖2 dt ≤ JΣ. (1.15)

39

Paper P1. A computationally efficient motion primitive

If multiple motion primitives exist that all achieve some high-level goal, this cost function

may thus be used to rank the input aggressiveness of the primitives. The cost function

is also computationally convenient, and closed form solutions for the optimal trajectories

are given below.

3.3 Axes decoupling and trajectory generation

The nonlinear trajectory generation problem is simplified by decoupling the dynamics

into three orthogonal inertial axes, and treating each axis as a triple integrator with

jerk used as control input. The true control inputs f and ω are then recovered from the

jerk inputs using (1.9) and (1.12). The final state is determined from the goal end state

components σ̂i relevant to each axis, and the duration T is given.

The cost function of the three dimensional motion, JΣ, is decoupled into a per-axis

cost Jk by expanding the integrand in (1.13).

JΣ =
3∑

k=1

Jk, where Jk =
1

T

T∫
0

jk(t)
2 dt (1.16)

For each axis k, the state sk = (pk, vk, ak) is introduced, consisting of the scalars

position, velocity, and acceleration. The jerk jk is taken as input, such that

ṡk = fs(sk, jk) = (vk, ak, jk) . (1.17)

Note again that the input constraints of Section 2.1 are not considered here, during

the planning stage, but are deferred to Sections 4 and 6.

For the sake of readability, the axis subscript k will be discarded for the remainder of

this section where only a single axis is considered. The time argument t will similarly be

neglected where it is considered unambiguous.

The optimal state trajectory can be solved straightforwardly with Pontryagin’s min-

imum principle (see e.g. [1.25]) by introducing the costate λ = (λ1, λ2, λ3) and defining

the Hamiltonian function H(s, j, λ):

H(s, j, λ) =
1

T
j2 + λTfs(s, j)

=
1

T
j2 + λ1v + λ2a+ λ3j (1.18)

λ̇ = −∇sH(s∗, j∗, λ) = (0,−λ1,−λ2) (1.19)

where j∗k and s∗k represent the optimal input and state trajectories, respectively.

The costate differential equation (1.19) is easily solved, and for later convenience the

40

3. Motion primitive generation

solution is written in the constants α, β and γ, such that

λ(t) =
1

T

 −2α

2αt+ 2β

−αt2 − 2βt− 2γ

 . (1.20)

The optimal input trajectory is solved for as

j∗(t) = arg min
j(t)

H(s∗(t), j(t), λ(t))

=
1

2
αt2 + βt+ γ (1.21)

from which the optimal state trajectory follows from integration of (1.17):

s∗(t) =

 α
120
t5 + β

24
t4 + γ

6
t3 + a0

2
t2 + v0t+ p0

α
24
t4 + β

6
t3 + γ

2
t2 + a0t+ v0

α
6
t3 + β

2
t2 + γt+ a0

 (1.22)

with the integration constants set to satisfy the initial condition s(0) = (p0, v0, a0).

The remaining unknowns α, β and γ are solved for as a function of the desired end

translational variable components σ̂i as given in (1.7).

1) Fully defined end translational state Let the desired end position, velocity, and ac-

celeration along this axis be s(T) = (pf , vf , af), given by the components σ̂i. Then the

unknowns α, β and γ are isolated by reordering (1.22):

 1
120
T 5 1

24
T 4 1

6
T 3

1
24
T 4 1

6
T 3 1

2
T 2

1
6
T 3 1

2
T 2 T

αβ
γ

 =

∆p

∆v

∆a

 (1.23)

where ∆p

∆v

∆a

 =

pf − p0 − v0T − 1
2
a0T

2

vf − v0 − a0T

af − a0

 . (1.24)

Solving for the unknown coefficients yields

αβ
γ

 =
1

T 5

 720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4

∆p

∆v

∆a

 . (1.25)

Thus, generating a motion primitive only requires evaluating the above matrix multiplica-

41

Paper P1. A computationally efficient motion primitive

tion for each axis, after which the state along the primitive is found by evaluating (1.22).

2) Partially defined end translational state Components of the final state may be left

free by σ̂. These states may correspondingly be specified as free when solving the optimal

input trajectory, by noting that the corresponding costates must equal zero at the end

time [1.25]. The closed form solutions to the six different combinations of partially defined

end states are given in Appendix A – in each case solving the coefficients reduces to

evaluating a matrix product.

3) Motion primitive cost The per-axis cost value of (1.16) can be explicitly calculated

as below. This is useful if multiple different candidate motion primitives are evaluated

to achieve some higher-level goal. In this case, the primitive with the lowest cost can be

taken as the ‘least aggressive’ in the sense of (1.14).

J = γ2 + βγT +
1

3
β2T 2 +

1

3
αγT 2 +

1

4
αβT 3 +

1

20
α2T 4 (1.26)

Note that this cost holds for all combinations of end translational variables.

4. Determining feasibility

The motion primitives generated in the previous section did not take the input feasibility

constraints of Section 1 into account – this section revisits these and provides computa-

tionally inexpensive tests for the feasibility/infeasibility of a given motion primitive with

respect to the input constraints of (1.4) and (1.5). This section also provides a compu-

tationally inexpensive method to calculate the extrema of an affine combination of the

translational variables along the primitive, allowing to test constraints of the form (1.8).

In Section 6 conditions are given under which feasible motion primitives are guaranteed

to exist.

4.1 Input feasibility

Given some time interval T = [τ1, τ2] ⊆ [0, T] and three triple integrator trajectories

of the form (1.22) with their corresponding jerk inputs jk(t), the goal is to determine

whether corresponding inputs to the true system f and ω, as used in (1.1) and (1.2),

satisfy feasibility requirements of Section 1. The choice of T is revisited when describing

the recursive implementation, below. The tests are designed with a focus on computa-

tional speed, and provide sufficient, but not necessary, conditions for both feasibility and

infeasibility – meaning that some motion primitives will be indeterminable with respect

to these tests.

42

4. Determining feasibility

1) Thrust The interval T is feasible with respect to the thrust limits (1.4) if and only

if

max
t∈T

f(t)2 ≤ f 2
max and (1.27)

min
t∈T

f(t)2 ≥ f 2
min. (1.28)

Squaring (1.9) yields

f 2 = ‖ẍ− g‖2 =
3∑

k=1

(ẍk − gk)2 (1.29)

where gk is the component of gravity in axis k. Combining (1.27)-(1.29), the thrust

constraints can be interpreted as spherical constraints on the acceleration.

By taking the per-axis extrema of (1.29) the below bounds follow.

max
t∈T

(ẍk(t)− gk)2 ≤ max
t∈T

f(t)2 for k ∈ {1, 2, 3} (1.30)

max
t∈T

f(t)2 ≤
3∑

k=1

max
t∈T

(ẍk(t)− gk)2 (1.31)

min
t∈T

f(t)2 ≥
3∑

k=1

min
t∈T

(ẍk(t)− gk)2 (1.32)

These bounds will be used as follows: if the left hand side of (1.30) is greater than fmax,

the interval is definitely infeasible, while if both the right hand side of (1.31) is less

than fmax and the right hand side of (1.32) is greater than fmin, the interval is definitely

feasible with respect to the thrust constraints.

Note that the value ẍk − gk as given by (1.22) is a third order polynomial in time,

meaning that its maximum and minimum (denoted ¯̈xk and ẍk, respectively) can be found

in closed form by solving for the roots of a quadratic and evaluating ẍk − gk at at most

two points strictly inside T , and at the boundaries of T . The extrema of (ẍk − gk)2 then

follow as

max
t∈T

(ẍk(t)− gk)2 = max {¯̈x2
k, ẍ

2
k} (1.33)

min
t∈T

(ẍk(t)− gk)2 =

{
min {¯̈x2

k, ẍ
2
k} if ¯̈xk · ẍk ≥ 0

0 otherwise,
(1.34)

where ¯̈xk · ẍk < 0 implies a sign change (and thus a zero crossing) of ẍk(t)− gk in T .

43

Paper P1. A computationally efficient motion primitive

Thus, from (1.30), a sufficient criterion for input infeasibility of the section is if

max {¯̈x2
k, ẍ

2
k} > fmax. (1.35)

Similarly, from (1.31)-(1.32), a sufficient criterion for feasibility is if both

3∑
k=1

max {¯̈x2
k, ẍ

2
k} ≤ fmax and (1.36)

3∑
k=1

min {¯̈x2
k, ẍ

2
k} ≥ fmin (1.37)

hold. If neither criterion (1.35) nor (1.36)-(1.37) applies, the section is marked as inde-

terminate with respect to thrust feasibility.

2) Body rates The magnitude of the body rates can be bounded as a function of the

jerk and thrust as below:

ω2
1 + ω2

2 ≤
1

f 2
‖j‖2 . (1.38)

This follows from squaring (1.12), and using the following induced norm:

∥∥∥∥∥∥
1 0 0

0 1 0

0 0 0

∥∥∥∥∥∥ ≤ 1. (1.39)

The right hand side of (1.38) can be bounded from above by ω̄2, defined as below,

which then also provides an upper bound for the sum ω2
1 + ω2

2. The terms in the denom-

inator are evaluated as in (1.34).

ω2
1 + ω2

2 ≤
1

f 2
‖j‖2 ≤ ω̄2 =

3∑
k=1

max
t∈T

jk(t)
2

3∑
k=1

min
t∈T

(ẍk(t)− gk)2

(1.40)

Using the above equation, and assuming ω3 = 0, the time interval T can be marked

as feasible w.r.t. the body rate input if ω̄2 ≤ ω2
max, otherwise the section is marked as

indeterminate.

3) Recursive implementation The feasibility of a given time interval T ⊆ [0, T] is tested

by applying the above two tests on T . If both tests return feasible, T is input feasible and

the algorithm terminates; if one of the tests returns infeasible, the algorithm terminates

44

4. Determining feasibility

fmin

fmax

fmin

fmax

T
h

ru
st

fmin

fmax

0 T

Time

fmin

fmax

Figure 1.3. Visualisation of the recursive implementation of the thrust feasibility test: The
vehicle thrust limits fmin and fmax are shown as dashed lines, and the thrust trajectory is the
dotted curve. First, the minimum and maximum bounds of (1.36) and (1.37) are calculated for
the entire motion primitive, shown as the dash-dotted lines in the top plot. Because these bounds
exceed the vehicle limits, the section is halved, and the tests are applied to each half (second
plot). The left hand side section’s bounds are now within the limits, so this section is marked
feasible with respect to the thrust bounds (shown shaded in the plot), while the second half is
again indeterminate. This is halved again, in the third plot, and a section is yet again halved
in the fourth plot. Now, all sections are feasible with respect to the thrust limits, and the test
terminates. Note that, in the implementation, the thrust infeasibility test of (1.35) and the body
rate feasibility test (1.40) will be done simultaneously.

with the motion over T marked as input infeasible. Otherwise, the section is divided in

half, such that

τ 1
2

=
τ1 + τ2

2
(1.41)

T1 = [τ1, τ 1
2
], T2 = [τ 1

2
, τ2]. (1.42)

If the time interval τ 1
2
− τ1 is smaller than some user defined minimum ∆τ , the

algorithm terminates with the primitive marked indeterminable. Otherwise, the algorithm

is recursively applied first to T1: if the result is feasible, the algorithm is recursively applied

to T2. If T2 also terminates as a feasible section, the entire primitive can be marked as

feasible, otherwise the primitive is rejected as infeasible/indeterminable. Thus, the test

returns one of three outcomes:

• the inputs are provably feasible,

45

Paper P1. A computationally efficient motion primitive

>

>

>

>

Figure 1.4. Example trajectory demonstrating non-convexity of the feasible acceleration
space. The trajectory moves an initially stationary quadrocopter 10 m horizontally, ending at
zero velocity and with final acceleration af = −2g in 2 s (i.e. the quadrocopter is upside down at
the end). The left-most plot shows the position trajectory of the vehicle, the middle plots show
the inputs during the trajectory (with the shaded regions being infeasible). The right-hand side
plot shows the acceleration trajectory in the acceleration space, where the two concentric circles
represent the minimum and maximum thrust limits (and are centred at g) for ẍ2 = 0. The axes
are chosen such that x3 points opposite to gravity, and there is no motion along x2. Note the
non-convexity of the feasible acceleration space.

• the inputs are provably infeasible, or

• the tests were indeterminate, feasibility could not be established.

Note that the interval upper bound of (1.33) is monotonically nonincreasing with de-

creasing length of the interval T , and similarly the lower bound of (1.34) is monotonically

nondecreasing.

Furthermore, note that as τ 1
2
− τ1 tends to zero the right hand sides of (1.31)-(1.32)

converge and the thrust feasibility test becomes exact. This does not, however, apply to

the body rate feasibility test due to the induced norm in (1.39).

The recursive implementation of the sufficient thrust feasibility tests of (1.36)-(1.37)

is visualised for an example motion primitive in Fig. 1.3.

4) Remark on convex approximations of thrust-feasible region The feasible acceleration

space of the vehicle follows from (1.27)-(1.29), and is non-convex due to the positive min-

imum thrust value. This is visualised in Fig. 1.4. Nonetheless, in the limit, the presented

recursive thrust input test allows for testing feasibility over the entire thrust feasible

space. This is an advantage when compared to approaches that require the construction

of convex approximations of the feasible space (e.g. [1.20]). Consider, for example, a tra-

jectory that begins with zero acceleration and ends with a final acceleration of −2g (i.e.

the quadrocopter is upside down at the end of the manoeuvre) – such an example is

shown in Fig. 1.4. The straight line connecting the initial and final accelerations crosses

through the acceleration infeasible zone due to minimum thrust. Therefore no convex

approximation can be constructed in the acceleration space in which to evaluate this

46

5. Choice of coordinate system

trajectory.

4.2 Affine translational variable constraints

Referring to (1.22), it can be seen that calculating the range of some linear combination

of the system’s translational variables σ(t) (of the form (1.8)) can be done by solving for

the extrema of a polynomial of order at most five. This involves finding the roots of its

derivative (a polynomial of order at most four) for which closed form solutions exist [1.26].

This is useful, for example, to verify that the quadrocopter does not fly into the ground,

or that the position of the quadrocopter remains within some allowable flight space.

Specifically, any planar position constraint can be specified by specifying that the inner

product of the quadrocopter’s position with the normal of the plane is greater than some

constant value. It can also be used to calculate a bound on the vehicle’s maximum velocity,

which could be useful in some computer vision applications (e.g. [1.27]). Furthermore, an

affine bound on the vehicle’s acceleration can be interpreted as a bound on the tilt of the

quadrocopter’s e3 axis, through (1.1).

5. Choice of coordinate system

Because the Euclidean norm used in the cost (1.13) is invariant under rotation, the

optimal primitive for some given problem will be the same when the problem is posed in

any inertial frame, despite the axes being solved for independently of one another.

The Euclidean norm is also used in the feasibility tests of Section 4. In the limit, as the

length of the time interval T tends to zero, both the thrust and body rates feasibility tests

become invariant under rotation, and thus independent of the choice of coordinate system.

The affine constraints of Section 4.2 can be trivially transformed from one coordinate

system to another, such that there exists no preferred coordinate system for a set of

constraints. This allows the designer the freedom to pose the motion primitive generation

problem in the most convenient inertial coordinate system.

6. Guaranteeing feasibility

For some classes of trajectory, the existence of a feasible motion primitive can be guar-

anteed a priori, without running the tests described in the preceding section.

For the specific case of primitives starting and ending at rest (zero velocity, zero accel-

eration, and a given end point), a bound on the end time T will be explicitly calculated in

dependence of the translation distance, such that any end time larger than this bound is

guaranteed to be feasible with respect to the input constraints. Furthermore, the position

trajectory for such rest-to-rest primitives is shown to remain on the straight line segment

between the initial and final positions. Thus, given a convex allowable flight space, all

47

Paper P1. A computationally efficient motion primitive

primitives that start and end at rest and within the allowable flight space will remain

within the allowable flight space for the entire trajectory.

The input feasibility of general motion primitives, with arbitrary initial and final

accelerations and velocities, is also briefly discussed. It should be noted that those motion

primitives which can be guaranteed to be feasible a priori will be a conservative subset

of the primitives which can be shown to be feasible a posteriori using the recursive tests

described in Section 4. Further discussion is provided in Section 7.

6.1 Rest-to-rest primitives

First, an upper bound on the lowest end time T at which a rest-to-rest primitive becomes

feasible with respect to the input constraints is calculated in dependence of the translation

distance. Without loss of generality it is assumed that the quadrocopter’s initial position

coincides with the origin, and the problem is posed in a reference frame such that the

final position is given as (pf , 0, 0), with pf being the distance from the origin to the final

location, such that pf ≥ 0.

From (1.25) it is clear that the optimal position trajectory along x2 and x3 has zero

position for the duration of the primitive, and therefore also zero acceleration and velocity.

1) Input feasibility The acceleration trajectory along axis 1 is calculated by solving the

motion coefficients with (1.25), and then substituting into (1.22), such that

ẍ1(t) = 60
t

T 3
pf − 180

t2

T 4
pf + 120

t3

T 5
pf . (1.43)

Introducing the variable ξ ∈ [0, 1] such that t = ξT , and substituting for the above

yields

ẍ1(ξT) =
60pf
T 2

(
ξ − 3ξ2 + 2ξ3

)
(1.44)

for which the extrema lie at

ξ∗ =
1

2
±
√

3

6
(1.45)

ẍ1(ξ∗T) = ∓10
√

3pf
3T 2

. (1.46)

Exploiting the observation that |ẍ(ξ∗T)| decreases monotonically with increasing T ,

an upper bound Tfmin
for the end time at which such a primitive becomes feasible with

respect to the minimum thrust constraint can be calculated. This is done by substituting

(1.46) for the sufficient criterion of (1.32), under the worst case assumption that the

motion is aligned with gravity, i.e. the acceleration in the directions perpendicular to

48

6. Guaranteeing feasibility

gravity are zero. Then

Tfmin
=

√
10pf√

3 (‖g‖ − fmin)
. (1.47)

Similarly, an upper bound Tfmax for the end time at which the primitive becomes

feasible with respect to the maximum thrust constraint can be calculated by substituting

the maximum acceleration bound of (1.46) into the sufficient criterion of (1.31). Again,

the worst case occurs when the motion is aligned with gravity, and the final time can be

calculated as

Tfmax =

√
10pf√

3 (fmax − ‖g‖)
. (1.48)

Finally, an upper bound Tωmax for the end time at which the primitive satisfies the

body rates constraint is calculated as follows. First, the jerk along axis 1 is solved for

with (1.21), and t = ξT is substituted as before, to give

j1(ξT) =
60pf
T 3

(
6ξ2 − 6ξ + 1

)
. (1.49)

This has extrema at ξ ∈ {0, 1
2
, 1}, and the maximum of |j1(ξT)| occurs at ξ∗ ∈ {0, 1}, so

that

max
t∈[0,T]

|ji(t)| = |ji(ξ∗T)| = 60pf
T 3

. (1.50)

Again, this maximum is monotonically decreasing for increasing end time T .

This value is then substituted for the numerator of (1.40), and it is assumed that the

primitive satisfies the minimum thrust constraint, so that fmin can be substituted for the

denominator. This makes the conservative assumption that the maximum jerk value is

achieved at the same time as the minimum thrust value. Equating the result to ωmax, and

solving for Tωmax yields

Tωmax = 3

√
60pf

ωmaxfmin

. (1.51)

Note that this requires fmin to be strictly positive (instead of non-negative as specified

in (1.4)).

Combining (1.47), (1.48), and (1.51), any rest-to-rest primitive within a ball of ra-

dius pf is guaranteed to be feasible with respect to the input constraints of Section 1 if

49

Paper P1. A computationally efficient motion primitive

the end time T is chosen to satisfy the below bound.

T ≥ max{Tfmin
, Tfmax , Tωmax}. (1.52)

The conservatism of this bound is investigated in Section 7.

2) Position feasibility It will be shown that the position along a rest-to-rest primitive

remains on the straight line segment between the initial and final positions, independent

of the end time T . Solving the full position trajectory as given in Section 1 and substi-

tuting p0 = 0, v0 = vf = 0 and a0 = af = 0, the position trajectory in axis 1 is given

by

x1(t) = pf

(
6
t5

T 5
− 15

t4

T 4
+ 10

t3

T 3

)
(1.53)

with pf ≥ 0 the desired displacement along axis 1. Substituting again for ξ = t/T such

that ξ ∈ [0, 1], the position trajectory can be rewritten as

x1 (ξT) = pf
(
6ξ5 − 15ξ4 + 10ξ3

)
(1.54)

It is now straight forward to show that the extrema of x1(ξT) are at ξ∗ ∈ {0, 1}, and

specifically that

x1(t) ∈ [0, pf] . (1.55)

Axes 2 and 3 will remain at zero, so that the rest-to-rest primitive will travel along

the straight line segment connecting the initial and final positions in three dimensional

space. Therefore, given a convex allowable flight space, if the initial and final position are

in the allowable flight space, all rest-to-rest primitives will remain within the allowable

flight space.

3) Maximum velocity In some applications it is desirable to limit the maximum velocity

of the vehicle along the motion, most notably where the quadrocopter’s pose is estimated

with onboard vision [1.27]. For rest-to-rest primitives of duration T , the maximum speed

occurs at t = T/2, and equals

max
t∈[0,T]

‖ẋ(t)‖ = max
t∈[0,T]

|ẋ1(t)| = 15

8

pf
T
. (1.56)

Thus, given some maximum allowable velocity magnitude and a distance to translate,

the primitive end time T at which this maximum velocity will not be exceeded can be

readily calculated from the above.

50

Algorithm overview

6.2 Guarantees for general primitives

For general primitives, with nonzero initial and/or final conditions, and with possibly

unconstrained end states, it is harder to provide conditions under which feasible primitives

can be guaranteed. Indeed, cases can be constructed which are input feasible for some

specific end times, but become infeasible if the time is extended. It can however be stated

for a motion primitive along an axis k (with arbitrary initial and final conditions and

with any combination of final translational variable constraints in the goal state) that as

the end time T tends to infinity:

• the magnitude of the jerk trajectory tends to zero, and

• the magnitude of the acceleration trajectory becomes independent of both initial

and final position and velocity constraints, and can be bounded as

lim
T→∞

max
t∈[0,T]

ẍk(t) ≤ max{|ak0| , |akf |} (1.57)

lim
T→∞

min
t∈[0,T]

ẍk(t) ≥ −max{|ak0| , |akf |}. (1.58)

If the final acceleration is not specified, the acceleration bounds are

lim
T→∞

max
t∈[0,T]

ẍk(t) ≤ |ak0| (1.59)

lim
T→∞

min
t∈[0,T]

ẍk(t) ≥ − |ak0| . (1.60)

The calculations to show this can be found in Appendix B.

This knowledge can then be combined with the input feasibility constraints (similar to

the rest-to-rest primitives, above), to guarantee the existence of an input feasible motion

primitive based on the values of |a0| and |af |, at least as the end time is extended to

infinity. Furthermore, by expanding the acceleration trajectory from (1.22) and applying

the triangle inequality, the magnitude of the acceleration for finite end times can also be

bounded. This bound can then be used to calculate an upper bound on the end time T

at which the primitive will be feasible with respect to the inputs, however this bound will

typically be very conservative.

Algorithm overview

The focus in the three preceding sections is on the generation and feasibility verification

for a quadrocopter motion primitive, with an arbitrary initial state, to a set of goal end

translational variables σ̂i in a given time T . The resulting acceleration trajectory, along

51

Paper P1. A computationally efficient motion primitive

any axis, is a cubic polynomial in time. These trajectories minimize an upper bound

representative of a product of the inputs, and computationally convenient methods are

presented to test whether these trajectories are feasible with respect to input constraints,

and with respect to bounds on linear combinations of the translational variables. Guar-

antees on feasible trajectories are given, with a specific focus on rest to rest trajectories.

In the following section the set end times and goal end translational variables for which

feasible trajectories can be found with the presented approach is compared to the total set

of feasible trajectories, for the class of rest to rest trajectories. The computational cost of

the presented approach is investigated in Section 8. Section 9 describes an experimental

demonstration, where the presented primitives are incorporated into a larger trajectory

generator.

7. Conservatism

If the motion primitive computed with the presented approach is not feasible, it does not

imply that no feasible trajectory is possible. There are two reasons for this:

• the trajectories generated in Section 3 are restricted to have accelerations described

by cubic polynomials in time, and

• the feasibility verification of Section 4 is sufficient, but not necessary.

This section attempts to give an indication of the space of end times T and end trans-

lational variables σ̂i for which a quadrocopter could fly a trajectory, but the presented

method is unable to find a feasible motion primitive. This section will specifically consider

rest-to-rest motions.

In [1.28] an algorithm is given to compute minimum time trajectories which satisfy

Pontryagin’s minimum principle, for the quadrocopter system dynamics and input con-

straints of Section 2.1. These trajectories represent the surface of the feasible region for

quadrocopter rest-to-rest trajectories: given a desired final translation, a feasible trajec-

tory exists with any end time larger than the time optimal end time (e.g. by executing the

time optimal trajectory, and then simply waiting). By definition, no feasible trajectory

exists for shorter end times.

Fig. 1.5 compares this feasible region to those trajectories that can be found with the

methods of Section 3 and Section 4. The system limits were set as in [1.28], with fmin =

1 m/s2, fmax = 20 m/s2, ωmax = 10 rad/s. For a given translation distance d, the desired

end translational variables are defined such that all components are zero, except the

position in the direction of motion which is set to d.

For each distance d, the space of feasible end times was determined as follows. A set

of end times was generated, starting at zero and with increments of 1 ms. For each end

time, a motion primitive was generated, and the set of end distances and end times (T, d)

52

8. Computation times

0 3 6 9 12 15

Horizontal distance [m]

0

2

4

E
n

d
ti

m
e

[s
]

0 2 4 6 8 10

Vertical distance [m]

0

2

4
E

n
d

ti
m

e
[s

]

Figure 1.5. The set of horizontal/vertical final displacements for which the presented algo-
rithm is able to find input feasible trajectories (the lightly shaded area above the dashed line),
and the set of final displacements and end times for which no trajectories are possible (the darkly
shaded area, with the boundary as given by the time optimal trajectories of [1.28]). The dotted
line is the conservative end time guarantee as calculated in Section 6.1. The white area represents
displacements that could be reached by the vehicle, but where the presented method cannot find
a feasible motion primitive.

for which an input feasible trajectory was found is shown in Fig. 1.5. For the sake of

comparison, the guaranteed feasible end time given in Section 6.1 is also plotted.

The fastest feasible manoeuvre found with the presented algorithm requires on the

order of 50% longer than the time optimal trajectory of [1.28] when translating vertically,

and on the order of 20% longer when translating horizontally. From the figure it can be

seen that the guaranteed feasible end time of Section 6 is quite conservative, requiring the

order of three times longer for the manoeuvre than the time optimal trajectory. However,

these trajectories can be computed at very low cost, specifically requiring no iterations

to determine feasibility.

8. Computation times

This section presents statistics for the computational cost of the presented algorithm

when implemented on a standard laptop computer, and on a standard microcontroller.

The algorithm was implemented in C++. Except for setting the compiler optimisation to

maximum, no systematic attempt was made to optimise the code for speed. To evaluate

the time required to compute the motion primitives described in this paper, primitives

were generated for a quadrocopter starting at rest, at the origin, and translating to a final

position chosen uniformly at random in a box with side length 4 m, centred at the origin.

The target end velocity and acceleration were also chosen uniformly between −2 m/s

53

Paper P1. A computationally efficient motion primitive

and 2 m/s, and −2 m/s2 and 2 m/s2, respectively. The end time was chosen uniformly at

random between 0.2 s and 10 s. The algorithm was implemented on a laptop computer

with an Intel Core i7-3720QM CPU running at 2.6GHz, with 8GB of RAM, with the

solver compiled with Microsoft Visual C++ 11.0. The solver was run as a single thread.

For one hundred million such motion primitives, the average computation time per

primitive was measured to be 1.05 µs, or approximately 950’000 primitives per second.

This includes

• generating the primitive,

• verifying that the inputs along the trajectory are feasible (with the recursive test

of Section 3, for fmin = 5 m/s2, fmax = 25 m/s2, and ωmax = 20 rad/s, and

• verifying that the position of the quadrocopter stays within a 4 × 4 × 4m box

centred at the origin (that is, six affine constraints of the form (1.8) as described in

Section 4.2).

Of the primitives, 91.6% tested feasible with respect to the inputs, 6.4% infeasible,

and the remaining 2.0% were indeterminate.

If the position feasibility test is not performed, the average computation time drops

to 0.74 µs, again averaged over the generation of one hundred million random primitives,

or approximately 1.3 million per second.

The algorithm was also implemented on the STM32-F4 microcontroller, which costs

approximately EUR 10 and is, for example, used on the open-source PX4 autopilot sys-

tem [1.29]. One million random primitives were generated, with the same parameters

as above. The average execution time was 149 µs per primitive (or approximately 6’700

primitives per second), including trajectory generation, input feasibility, and position fea-

sibility tests. If the position feasibility test is not performed, the average computation

time drops to 95 µs per primitive, or approximately 10’500 per second.

9. Example application and experimental results

This section presents an example of a high level trajectory generator that uses the motion

primitives to achieve a high level goal (as illustrated in Fig. 1.1). The high-level goal is for

a quadrocopter, with an attached net, to catch a ball thrown by a person. This task was

chosen due to its highly dynamic three-dimensional nature, the requirement for real-time

trajectory generation, and the existence of a variety of trajectories which would achieve

the goal of catching the ball. All the presented data is from actual flight experiments.

The algorithm is applied in a näıve brute force approach, to illustrate the ease with

which a complex, highly dynamic, quadrocopter task may be encoded and solved. The

multimedia attachment contains a video showing the quadrocopter catching the ball.

To catch the ball, the motion primitive generator is used in two different ways:

54

9. Example application and experimental results

• to generate trajectories to a catching point, starting from the quadrocopter’s current

state and ending at a state and time at which the ball enters the attached net, and

• to generate stopping trajectories, which are used to bring the quadrocopter to rest

after the ball enters the net.

The experiments were conducted in the Flying Machine Arena, a space equipped

with an overhead motion capture system which tracks the pose of the quadrocopters

and the position of the balls. A PC processes the motion capture data, and generates

commands that are transmitted wirelessly to the vehicles at 50 Hz. More information

on the system can be found in [1.30]. The quadrocopter used is a modified Ascending

Technologies “Hummingbird” [1.31], with a net attached approximately 18 cm above the

vehicle’s centre of mass (see Fig. 1.6).

1) Catching trajectories The computational speed of the presented approach is exploited

to evaluate many different ways of catching the ball. This is done with a näıve brute force

approach, where thousands of different primitives are generated at every controller step.

Each primitive encodes a different strategy to catch the ball, of which infeasible primitives

are rejected and the ‘best’ is kept from the remainder. This is done in real-time, and used

as an implicit feedback law, with one controller cycle typically involving the evaluation

of thousands of candidate motion primitives. This task is related to that of hitting a

ball with a racket attached to a quadrocopter, as was previously investigated in [1.32]

and [1.21].

The catching task is encoded in the format of Section 2.2 by stipulating that the centre

of the net must be at the same position as the ball, and the velocity of the quadrocopter

perpendicular to the ball’s flight must be zero. The requirement on the velocity reduces

the impact of timing errors on the system. Because the centre of the net is not at the

centre of the quadrocopter, the goal end state must also include the quadrocopter’s normal

Figure 1.6. A quadrocopter with attached catching net, as used to demonstrate the algorithm.
The centre of the net is mounted above the vehicle’s centre of mass in the quadrocopter’s e3

direction.

55

Paper P1. A computationally efficient motion primitive

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Horizontal distance [m]

0

1

2

3

4

5

H
ei

g
h
t

[m
]

0.8

1.2

1.6

2.0

H
ei

g
h
t

[m
]

0.0 0.5 1.0 1.5 2.0 2.5

Horizontal distance [m]

0.4

0.8

1.2

1.6

H
ei

g
h
t

[m
]

Figure 1.7. Sampled motion primitives at one time step of a catching manoeuvre: On the left
is shown the quadrocopter’s centre of mass for 81 candidate primitives to catch a thrown ball.
The primitives are shown as solid lines, starting at the position (0, 1)m, and the ball’s predicted
trajectory is shown as a dash-dotted line, moving from left to right in the figure. The ball’s
position at each of three candidate catching instants is shown as a solid circle. Each candidate
primitive places the centre of the net at the ball, with the quadrocopter’s velocity at that instant
parallel to the ball’s velocity. Note that the final orientation is a parameter that is searched over,
as is the thrust value at the catching instant. A total of 2’812 candidates were evaluated at this
time instant, which required 3.05 ms of computation. The primitives shown passing through the
ground (at 0 m height) are eliminated when the position boundaries are evaluated. The right
most two plots show detail of some of these primitives, showing the quadrocopter’s orientation
along the primitives. At the top-right plot, three candidate primitives are shown with different
end orientations (and only showing orientations lying in the plane of the plot). The lower right
plot shows primitives to the same orientation, but with varying end thrusts.

direction e3 – given some ball position, there exists a family of quadrocopter positions

and normal directions which will place the centre of the net at the ball’s position. The

desired end translational variables σ̂ thus contains the quadrocopter’s position, its normal

direction (thus acceleration), and its velocity components perpendicular to the ball’s

velocity (thus specifying eight of the nine possible variables). The strategy for specifying

these eight variables is described below.

The ball is modelled as a point mass with quadratic drag, and at every controller

update step its trajectory is predicted until it hits the floor. This is discretized to generate

a set of possible catching times T (k), with the discretization time step size chosen such

that at most 20 end times are generated, and that the time step size is no smaller than

the controller update period.

For each of these possible catching times T (k), a set of candidate desired end transla-

tional variables σ̂(j,k) is generated as follows. The quadrocopter’s goal normal direction is

generated by generating 49 candidate end normals, centred around the direction opposing

the ball’s velocity at time T (k). To convert these candidate end normals to goal accelera-

tions it is necessary to further specify an end thrust value for each. The goal acceleration

56

9. Example application and experimental results

can then be calculated with (1.1). For each of the orientations generated, ten candidate

final thrust values are used, spaced uniformly between fmin and fmax.

Given an end normal direction, the required quadrocopter position at the catching

instant can be calculated as that position placing the centre of the net at the ball (for the

49 different normal direction candidates, the end location of the vehicle centre of mass

will be located on a sphere centred at the ball’s position).

The quadrocopter’s velocity is required to be zero in the directions perpendicular

to the ball’s velocity at the catching time, while the quadrocopter velocity component

parallel to the ball’s velocity is left free. Thus eight components of the end translational

variables in (1.7) are specified.

For each of the candidate catching instants, there are 490 candidate end states to be

evaluated. Because the number of end times is limited to 20, this means that there are

at most 9’800 catching primitives of the form
(
T (k), σ̂(j,k)

)
calculated at any controller

update step.

Next the candidate primitive is tested for feasibility with respect to the inputs as

described in Section 4.1, with the input limits set to fmin = 5 m/s2, fmax = 25 m/s2

and ωmax = 20 rad/s. Then the candidate is tested for position feasibility, where the

position trajectory is verified to remain inside a safe box as described in Section 4.2 –

this is to remove trajectories that would either collide with the floor or the walls. If the

primitive fails either of these tests, it is rejected.

Some such candidate motion primitives are visualised in Fig. 1.7.

For each candidate catching primitive remaining, a stopping trajectory will be searched

for (described in more detail below). If no stopping trajectory for a candidate catching

primitive is found that satisfies both the input feasibility constraints and position con-

straints, that catching candidate is removed from the set.

Now, each remaining candidate is feasible with respect to input and position con-

straints, both for catching the ball, and the stopping manoeuvre after the ball is caught.

From this set, that candidate with the lowest cost JΣ (as defined in Section 3) is selected

as the best.

2) Stopping trajectories At the catching instant, a catching candidate trajectory will

generally have a nonzero velocity and acceleration, making it necessary to generate tra-

jectories from this state to rest. For these stopping trajectories, the goal end state trans-

lational variables specify that the velocity and acceleration must be zero, but leave the

position unspecified. The primitive duration is sampled from a set of 6 possibilities, rang-

ing from 2 down to 0.25 seconds. The search is terminated after the first stopping primitive

is found that is feasible with respect to the inputs and the position constraints. Two such

stopping primitives are shown in Fig. 1.8.

3) Closed loop control Each remaining candidate catching primitive is feasible with

respect to the input constraints, the position box constraints, and has a feasible stopping

primitive. From these, the catching candidate with the lowest cost value is then selected as

57

Paper P1. A computationally efficient motion primitive

1.0

1.2

1.4

H
ei

g
h
t

[m
]

0.5 1.0 1.5 2.0 2.5

Horizontal distance [m]

1.0

1.2

1.4

H
ei

g
h
t

[m
]

Figure 1.8. Sampled stopping motion primitives: Two candidate stopping primitives bringing
the quadrocopter to rest, starting at the catching instant of the optimal catching primitive from
Fig. 1.7. The quadrocopter moves from right to left in both figures. The upper stopping candidate
brings the quadrocopter to rest in 2 s, the lower in 1 s.

the best. This algorithm is then applied as an implicit feedback law, as in model predictive

control [1.33], such that the entire process is repeated at the controller frequency of 50 Hz

– thus the high level trajectory generator must run in under 20 ms. This allows the system

to implicitly update the trajectories as the prediction of the ball’s flight becomes more

precise, as well as compensate for disturbances acting on the quadrocopter.

If no candidate catching primitive remains, the last feasible trajectory is used as

reference trajectory, tracked under feedback control. This typically happens at the end of

the motion, as the end time goes to zero. After the ball is caught, the stopping primitive is

executed. The stopping primitive is used as a reference trajectory tracked by the controller

described in [1.30].

The completed catching trajectory corresponding to the candidates of Fig. 1.7 is shown

in Fig. 1.9. The catching manoeuvre lasted 1.63 s, during which a total of 375’985 motion

primitives were evaluated (including both catching and stopping manoeuvres). To catch

the ball, the quadrocopter translated a distance of 2.93 m, having started at rest.

The attached video shows that the quadrocopter manages to catch thrown balls,

validating the brute-force approach used to encode this problem. The video also shows

the acrobatic nature of the resulting manoeuvres.

10. Conclusion

This paper presents a motion primitive that is computationally efficient both to generate,

and to test for feasibility. The motion primitive starts at an arbitrary quadrocopter state,

and generates a thrice differentiable position trajectory guiding the quadrocopter to a

set of desired end translational variables (consisting of any combination of components of

the vehicle’s position, velocity, and acceleration). The acceleration allows to encode two

components of the vehicle’s attitude. The time to calculate a motion primitive and apply

input and translational feasibility tests is shown to be on the order of a microsecond on

58

10. Conclusion

Figure 1.9. The actual trajectory flown to catch the ball shown in Fig. 1.7. The top-most
plot shows the ball’s flight shown as a dash-dotted line, and the ball’s position at the catching
instant shown as a solid circle. Note that the offset between the vehicle and the ball at the
catching instant is due to the net’s offset from the quadrocopter’s centre of mass. The three
lower plots show the manoeuvre history, until the catching instant, with (from top to bottom)
the quadrocopter’s velocity, attitude, and thrust commands. The attitude of the vehicle is shown
using the conventional 3-2-1 Euler yaw-pitch-roll sequence [1.24]. The bottom plot shows the
thrust command, which can be seen to be within the limits of 5 to 25 m s−2. It should be noted
that the motion primitives are applied as an implicit feedback law, and thus the flown trajectory
does not correspond to any single planned motion primitive.

a standard laptop computer.

The algorithm is experimentally demonstrated by catching a thrown ball with a

quadrocopter, where it is used as part of an implicit feedback controller. In the ap-

plication, thousands of candidate primitives are calculated and evaluated per controller

update step, allowing the search over a large space of possible catching manoeuvres.

The algorithm appears well-suited to problems requiring to search over a large trajec-

tory space, such as probabilistic planning algorithms [1.34], or the problem of planning

for dynamic tasks with multiple vehicles in real time, similar to [1.35]. The algorithm

59

Paper P1. A computationally efficient motion primitive

may be especially useful if the high-level goal is described by non-convex constraints.

The presented motion primitive is independent of the quadrocopter’s rotation about

it’s thrust axis (the Euler yaw angle). This is reflected in that the resulting commands do

not specify a yaw rate, ω3. A useful extension would be to compute an input trajectory

for the quadrocopter yaw rate to achieve a desired final yaw angle.

It is shown that constraints on affine combinations of the quadrocopter’s position,

velocity, and acceleration may be tested efficiently. An interesting extension would be to

investigate efficient tests for alternative constraint sets, for example more general convex

sets.

Implementations of the algorithm in both Python and C++ can be found at [1.19].

A. Solutions for different end states constraints

Here the solutions for each combination of fixed end state is given in closed form for

one axis. The states can be recovered by evaluating (1.22), and the trajectory cost from

(1.26). The values ∆p, ∆v and ∆a are calculated by (1.24).

Fixed position, velocity, and acceleration

αβ
γ

 =
1

T 5

 720 −360T 60T 2

−360T 168T 2 −24T 3

60T 2 −24T 3 3T 4

∆p

∆v

∆a

 (1.61)

Fixed position and velocity

αβ
γ

 =
1

T 5

 320 −120T

−200T 72T 2

40T 2 −12T 3

[∆p
∆v

]
(1.62)

Fixed position and acceleration

αβ
γ

 =
1

2T 5

 90 −15T 2

−90T 15T 3

30T 2 −3T 4

[∆p

∆a

]
(1.63)

Fixed velocity and acceleration

αβ
γ

 =
1

T 3

 0 0

−12 6T

6T −2T 2

[∆v
∆a

]
(1.64)

60

B. Derivation of acceleration bounds

Fixed position

αβ
γ

 =
1

T 5

 20

−20T

10T 2

∆p (1.65)

Fixed velocity

αβ
γ

 =
1

T 3

 0

−3

3T

∆v (1.66)

Fixed acceleration αβ
γ

 =
1

T

0

0

1

∆a (1.67)

B. Derivation of acceleration bounds

In Section 6.2 the claim is made that the acceleration can be bounded as the end time T

tends to infinity. This is shown here for each of the different combination of end transla-

tional variable constraints. The constraints will be divided into those that constrain the

final acceleration, and those that do not.

B.1 Constrained final acceleration

If the final acceleration is specified, it will be shown that the acceleration can be bounded

as in (1.57)-(1.58).

1) Fixed position, velocity, and acceleration Substituting for the parameters α, β, and γ

from (1.61) into (1.22), the acceleration trajectory for a fully specified set of end trans-

lational variables is

ẍ(t) =a0 −
9a0

T
t+

3af
T
t+

18a0

T 2
t2 − 12af

T 2
t2 − 36t

T 2
v0 −

24t

T 2
vf −

10a0

T 3
t3

+
10af
T 3

t3 − 60p0

T 3
t+

60pf
T 3

t+
96v0

T 3
t2 +

84vf
T 3

t2 +
180p0

T 4
t2 − 180pf

T 4
t2

− 60v0

T 4
t3 − 60vf

T 4
t3 − 120p0

T 5
t3 +

120pf
T 5

t3.

(1.68)

61

Paper P1. A computationally efficient motion primitive

Introducing the variable ξ := t/T ∈ [0, 1] and letting T →∞, yields

lim
T→∞

ẍ(ξT) =− 10a0ξ
3 + 18a0ξ

2 − 9a0ξ + a0 + 10afξ
3 − 12afξ

2 + 3afξ. (1.69)

The above does not contain the initial and final position or velocity, as was claimed

in Section 6.2. This means that in the limit as the duration T tends to infinity, the accel-

eration trajectory becomes independent of the position and velocity, for a fully defined

end state. Next, it will be shown that (1.57) and (1.58) hold.

To do this, three cases will be examined independently:

• Case 1: a0 = af = 0,

• Case 2: |af | ≤ |a0|, and

• Case 3: |af | > |a0|.

For Case I, trivially, the right hand side of (1.69) goes to zero, such that

lim
T→∞

ẍ(ξT) = 0. (1.70)

For Case II, we define the ratio ρ2 = af/a0 ∈ [−1, 1]. It will be shown that the ratio

between the maximum acceleration along the trajectory and the initial acceleration a0 is

in the range [−1, 1]. Substituting into (1.69), yields the acceleration ratio as a function

φ2(ξ, ρ2) of two variables:

φ2(ξ, ρ2) := lim
T→∞

ẍ(ξT)|af=ρ2a0

a0

=ξ3 (10ρ1 − 10) + ξ2 (−12ρ1 + 18) + 3ξ (ρ1 − 3) + 1 (1.71)

The extrema of φ2 over ξ ∈ [0, 1] and ρ2 ∈ [−1, 1] can be calculated straight-forwardly,

and the minimum and maximum value of φ2 calculated. From this can be calculated

φ2(ξ, ρ2) ∈ [−1, 1] (1.72)

from which then follows that ∀ξ ∈ [0, 1], |af | ≤ |a0|:

lim
T→∞

|ẍ(ξT)| ≤ max{|a0| , |af |}. (1.73)

For Case III, we define the ratio ρ3 = a0/af ∈ (−1, 1). It will be shown that the ratio

between the acceleration extrema along the trajectory and the acceleration af is in the

range [−1, 1].

Substituting into (1.69), again yields the acceleration ratio as a function of two vari-

62

B. Derivation of acceleration bounds

ables φ3(ξ, ρ3):

φ3(ξ, ρ3) := lim
T→∞

ẍ(ξT)|a0=ρ3af

af

=ρ2 + ξ3 (−10ρ2 + 10) + ξ2 (18ρ2 − 12)− 3ξ (3ρ2 − 1) (1.74)

Similar to case 2 before, the extrema of φ3 over ξ ∈ [0, 1] and ρ3 ∈ [−1, 1] can be

calculated. Note that the closed interval is used for ρ3, for convenience. Then

φ3(ξ, ρ3) ∈ [−1, 1] (1.75)

from which follows that ∀ξ ∈ [0, 1], |af | > |a0|:

lim
T→∞

|ẍ(ξT)| ≤ max{|a0| , |af |}. (1.76)

2) Fixed velocity and acceleration If only the velocity and acceleration are fixed, the

same procedure can be used as above, specifically evaluating the same three cases. Anal-

ogously to (1.68) the acceleration trajectory is

ẍ(t) =a0 −
4a0

T
t− 2af

T
t+

3a0

T 2
t2 +

3af
T 2

t2 − 6t

T 2
v0 +

6t

T 2
vf +

6v0

T 3
t2 − 6vf

T 3
t2. (1.77)

Analogously to (1.69) the limit can be taken, and the variable ξ introduced:

lim
T→∞

ẍ(ξT) = 3a0ξ
2 − 4a0ξ + a0 + 3afξ

2 − 2afξ (1.78)

Applying the same three cases as before, (1.57)-(1.58) follow.

3) Fixed acceleration If only the end acceleration is specified, the acceleration trajectory

is

ẍ(t) =a0 −
a0t

T
+
af t

T
. (1.79)

From this, and noting that t/T ∈ [0, 1], (1.57)-(1.58) follow trivially.

B.2 Unconstrained final acceleration

If the final acceleration is not fixed, the procedure of Section 1 must be modified slightly.

63

Paper P1. A computationally efficient motion primitive

1) Fixed position and velocity Analogously to (1.69) the acceleration in this case is

ẍ(t) =a0 −
8a0

T
t+

14a0

T 2
t2 − 28t

T 2
v0 −

12t

T 2
vf −

20a0t
3

3T 3

− 40p0

T 3
t+

40pf
T 3

t+
64v0

T 3
t2 +

36vf
T 3

t2 +
100p0

T 4
t2

− 100pf
T 4

t2 − 100t3v0

3T 4
− 20vf

T 4
t3 − 160p0t

3

3T 5
+

160pf t
3

3T 5
.

(1.80)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting T →∞, yields

lim
T→∞

ẍ(ξt) = −20a0

3
ξ3 + 14a0ξ

2 − 8a0ξ + a0 (1.81)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0, the above can be refactored,

and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT)

a0

= −20

3
ξ3 + 14ξ2 − 8ξ + 1 ∈

[
−29

75
, 1

]
(1.82)

From this follow (1.59)-(1.60).

2) Fixed position The acceleration trajectory in this case is

ẍ(t) =a0 −
5a0

T
t+

5a0

T 2
t2 − 10t

T 2
v0 −

5a0t
3

3T 3
− 10p0

T 3
t+

10pf
T 3

t

+
10v0

T 3
t2 +

10p0

T 4
t2 − 10pf

T 4
t2 − 10t3v0

3T 4
− 10p0t

3

3T 5
+

10pf t
3

3T 5
.

(1.83)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting T →∞, yields

lim
T→∞

ẍ(ξT) = −5a0

3
ξ3 + 5a0ξ

2 − 5a0ξ + a0 (1.84)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0, the above can be refactored,

and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT)

a0

= −5

3
ξ3 + 5ξ2 − 5ξ + 1 ∈

[
−2

3
, 1

]
. (1.85)

From this follow (1.59)-(1.60).

64

Acknowledgement

3) Fixed velocity The acceleration trajectory in this case is

ẍ(t) =a0 −
3a0

T
t+

3a0t
2

2T 2
− 3t

T 2
v0 +

3t

T 2
vf +

3t2v0

2T 3
− 3t2vf

2T 3
. (1.86)

Introducing again the variable ξ = t/T ∈ [0, 1] and letting T →∞, yields

lim
T→∞

ẍ(ξT) =
3a0

2
ξ2 − 3a0ξ + a0. (1.87)

For a0 = 0, the right hand side is trivially zero. For a0 6= 0, the above can be refactored,

and for ξ ∈ [0, 1]:

lim
T→∞

ẍ(ξT)

a0

=
3

2
ξ2 − 3ξ + 1 ∈

[
−1

2
, 1

]
. (1.88)

From this follow (1.59)-(1.60).

Acknowledgement

The Flying Machine Arena is the result of contributions of many people, a full list of

which can be found at http://flyingmachinearena.org/.

This research was supported by the Swiss National Science Foundation (SNSF).

References

[1.1] S. Bellens, J. De Schutter, and H. Bruyninckx, “A hybrid pose/wrench con-

trol framework for quadrotor helicopters”, in IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2012, pp. 2269–2274.

[1.2] R. Ritz, M. W. Mueller, M. Hehn, and R. D’Andrea, “Cooperative quadro-

copter ball throwing and catching”, in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), IEEE, 2012, pp. 4972–4978.

[1.3] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor heli-

copter flight dynamics and control: Theory and experiment”, in AIAA Guidance,

Navigation, and Control Conference, 2007, pp. 1–20.

[1.4] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous indoor quadro-

tor”, IEEE Transactions on Robotics, vol. 28, no. 1, pp. 90–100, 2012.

[1.5] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for quadrotor

flight”, in IEEE International Conference on Robotics and Automation (ICRA),

2013.

65

Paper P1. A computationally efficient motion primitive

[1.6] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter

trajectory tracking control”, in AIAA Guidance, Navigation and Control Con-

ference and Exhibit, Honolulu, Hawaii, USA, Aug. 2008, pp. 1–14.

[1.7] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A proto-

type of an autonomous controller for a quadrotor UAV”, in European Control

Conference (ECC), Kos, Greece, 2007, pp. 1–8.

[1.8] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadro-

tor helicopter”, in Mediterranean Conference on Control and Automation, Jun.

2008, pp. 1258–1263.

[1.9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors”, in IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, 2011, pp. 2520–2525.

[1.10] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control”,

in IFAC World Congress, vol. 18, 2011, pp. 1485–1491.

[1.11] M. P. Vitus, W. Zhang, and C. J. Tomlin, “A hierarchical method for stochastic

motion planning in uncertain environments”, in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), IEEE, Villamoura, Portugal,

2012, pp. 2263–2268.

[1.12] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “Direct

method based control system for an autonomous quadrotor”, Journal of Intel-

ligent & Robotic Systems, vol. 60, no. 2, pp. 285–316, 2010.

[1.13] J. Wang, T. Bierling, L. Höcht, F. Holzapfel, S. Klose, and A. Knoll, “Novel

dynamic inversion architecture design for quadrocopter control”, in Advances in

Aerospace Guidance, Navigation and Control, Springer, 2011, pp. 261–272.

[1.14] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inversion based direct

position control and trajectory following for micro aerial vehicles”, in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), IEEE, 2013,

pp. 2933–2939.

[1.15] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-

linear systems: Introductory theory and examples”, International journal of con-

trol, vol. 61, no. 6, pp. 1327–1361, 1995.

[1.16] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechani-

cal control systems: A catalog of prototype systems”, in ASME International

Mechanical Engineering Congress and Exposition, 1995.

[1.17] N. Faiz, S. Agrawal, and R. Murray, “Differentially flat systems with inequality

constraints: An approach to real-time feasible trajectory generation”, Journal

of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 219–227, 2001.

[1.18] C. Louembet, F. Cazaurang, and A. Zolghadri, “Motion planning for flat systems

using positive b-splines: An lmi approach”, Automatica, vol. 46, no. 8, pp. 1305–

1309, 2010.

66

REFERENCES

[1.19] M. W. Mueller, “Quadrocopter trajectory generator”, (online) github. com/

markwmuller/ RapidQuadrocopterTrajectories , 2015.

[1.20] M. W. Mueller and R. D’Andrea, “A model predictive controller for quadro-

copter state interception”, in European Control Conference, 2013, pp. 1383–

1389.

[1.21] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algo-

rithm for state-to-state quadrocopter trajectory generation and feasibility veri-

fication”, in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2013, pp. 3480–3486.

[1.22] P. Martin and E. Salaün, “The true role of accelerometer feedback in quadro-

tor control”, in IEEE International Conference on Robotics and Automation

(ICRA), 2010, pp. 1623–1629.

[1.23] R. Mahony, V. Kumar, and P. Corke, “Aerial vehicles: Modeling, estimation,

and control of quadrotor”, IEEE robotics & automation magazine, vol. 19, no.

3, pp. 20–32, 2012.

[1.24] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics Second

Edition. AIAA, 2007.

[1.25] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I. Athena

Scientific, 2005.

[1.26] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, ser. Grad-

uate Texts in Mathematics Series. Springer, 1995.

[1.27] M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “Path planning for motion

dependent state estimation on micro aerial vehicles”, in IEEE International

Conference on Robotics and Automation (ICRA), 2013, pp. 3926–3932.

[1.28] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of quadrotor

systems using time-optimal control”, Autonomous Robots, vol. 33, pp. 69–88, 1

2012.

[1.29] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Pollefeys,

“PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard

computer vision”, English, Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[1.30] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.

D’Andrea, “A platform for aerial robotics research and demonstration: The Fly-

ing Machine Arena”, Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[1.31] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus,

“Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz”, in

IEEE International Conference on Robotics and Automation (ICRA), Apr. 2007,

pp. 361–366.

67

Paper P1. A computationally efficient motion primitive

[1.32] M. W. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2011, pp. 5113–5120.

[1.33] C. E. Garćıa, D. M. Prett, and M. Morari, “Model predictive control: Theory

and practice–a survey”, Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[1.34] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for agile

autonomous vehicles”, Journal of Guidance Control and Dynamics, vol. 25, no.

1, pp. 116–129, 2002.

[1.35] M. Sherback, O. Purwin, and R. D’Andrea, “Real-time motion planning and

control in the 2005 cornell robocup system”, English, in Robot Motion and Con-

trol, ser. Lecture Notes in Control and Information Sciences, K. Kozlowski, Ed.,

vol. 335, Springer London, 2006, pp. 245–263.

68

Paper P2

A model predictive controller for

quadrocopter state interception

Mark W. Mueller and Raffaello D’Andrea

Abstract

This paper presents a method for generating quadrocopter trajectories in real
time, from some initial state to a final state defined by position, velocity and ac-
celeration in a specified amount of time. The end state captures the attitude to
within a rotation about the thrust axis. Trajectory generation is done by formulat-
ing the trajectory of the quadrocopter in its jerk, in discrete time, and then solving
a convex optimisation problem on each decoupled axis. Convex bounds are derived
to include feasibility constraints with respect to the quadrocopter’s total allowable
thrust and angular rates.

Published in Proceedings of the 2013 European Control Conference.

c©2013 EUCA. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the European Control Association (EUCA).

69

Paper P2. A model predictive controller for quadrocopter state interception

1. Introduction

Quadrocopters are an active area of research, owing to their agility, mechanical simplicity

and robustness. They are capable of diverse tasks, and have been used as platforms to

study vision-based pose estimation [2.1], nonlinear control [2.2], and learning [2.3], for

example. Furthermore, they are useful as tools for solving practical problems such as

surveillance [2.4] and inspection [2.5].

Various trajectory generation strategies have been proposed, depending on the goal to

be achieved. Trajectory generation is complicated by the underactuated and nonlinear na-

ture of the quadrocopter dynamics, and by difficult-to-model aerodynamics (see, e.g. [2.6],

[2.7] for discussions on aerodynamic effects and [2.3] for a learning-based compensation

strategy).

In [2.8] a strategy for generating state interception trajectories is presented, where the

trajectory is broken down into a sequence of five phases, each part of which is assigned

a different controller. These phases consist of: precise hover; 3D path following; attitude

control to desired attitude; attitude recovery to zero angles; and finally, soft hover control

for recovery.

The strategy presented in [2.9] involves exploiting the differential flatness of the

quadrocopter dynamics, and is used to generate trajectories between so-called “keyframes”,

which are defined as positions in space and yaw angles. The generated trajectories then

pass through keyframes at specified times, while minimizing the snap (fourth derivative

of position) squared. These trajectories are solved using either a normalised time, or

distance, and are then scaled to the problem at hand.

Pontryagin’s minimum principle is exploited in [2.10] and [2.11] to generate: 1) bang-

singular to-rest quadrocopter trajectories, and 2) bang-singular position interception tra-

jectories, where the goal is to reach a given position at a given time, while minimizing

the time required to stop after the intercept. These methods are computationally fast,

with solution times on the order of microseconds.

The differential flatness of the quadrocopter dynamics was also exploited in [2.2] to

generate trajectories, where the authors make the simplification that the roll-pitch-yaw

Euler angle accelerations are control inputs. The optimisation is done on a weighted sum

of the fuel cost (approximated as average speed) and deviation from desired arrival time.

Trajectories are then solved for by choosing accelerations as polynomials in time, with

the degree of the polynomial being a function of the number of boundary conditions, and

then solving for the polynomial coefficients.

In [2.12] collision-free trajectories are generated to guide a fleet of UAVs from initial

states to final states, guaranteeing that the trajectories maintain a minimum distance

whilst minimising the total thrust produced by the quadrocopters. The solutions are

found using sequential convex programming, with solution times on the order of seconds.

A learning-based model predictive controller (MPC) is presented in [2.13], with the

Euler angles taken as inputs; a cascaded MPC is designed for a quadrocopter in [2.14],

with the dynamics of the quadrocopter captured by piecewise affine equations, separating

70

2. Dynamic model

control of the attitude and planar motions; while MPC is combined with robust control

in [2.15]. In each case, MPC is used to track a given state trajectory.

This paper builds on a previously presented scheme for generating trajectories for

generating trajectories for a quadrocopter hitting a ball with an attached racket [2.16].

That method required that the vehicle maintain small pitch and roll angles, with the end

state restricted to the position, one component of the velocity, and the direction of the

racket normal.

Here, a scheme is presented for generating state interception trajectories for quadro-

copters; that is, trajectories starting from an arbitrary state and achieving a (reduced)

end state in a specified amount of time, whilst satisfying input constraints. The desired

end state is specified as the position, velocity and acceleration of the vehicle, i.e. fixing

the attitude of the vehicle to within a rotation about the vehicle’s thrust axis. The to-

tal thrust and body rates are bounded by convex functions, allowing the problem to be

written as a convex constrained optimisation problem, which can be solved in real time

on a typical desktop computer, and which allows the trajectory generator to be used as

a diminishing horizon model predictive controller.

This method extends the state of the art by calculating state interception trajecto-

ries in real time, using sophisticated optimisation techniques to explicitly include input

constraints in the trajectory generation problem.

The quadrocopter model is presented in Section 2, with the trajectory generation

scheme given in Section 3. Section 4 discusses implementation and experimental results,

and an outlook is given in Section 5.

2. Dynamic model

The quadrocopter is modelled as a rigid body with six degrees of freedom: linear trans-

lation along the inertial x1, x2 and x3 axes, and three degrees of freedom describing the

rotation of the frame attached to the body with respect to the inertial frame, which is

taken here to be the proper orthogonal matrix R. The control inputs to the system are

taken as the total thrust produced f , for simplicity normalised by the vehicle mass and

thus having units of acceleration; and the body rates expressed in the body-fixed frame

as ω = (ω1, ω2, ω3). These are illustrated in Fig. 2.1.

The mixing of these inputs to individual motor thrust commands is done on board

the vehicle, using feedback from gyroscopes. It is assumed that the time constant of the

onboard controllers is low enough to have negligible influence on the algorithm presented

here. Because of their low rotational inertia, quadrocopters can achieve extremely high

rotational accelerations (on the order of 200 rad s−2 [2.10]) about the ω1 and ω2 axes, while

it will be shown that the rotation about ω3 is not needed for the trajectories considered

here. For example, [2.17] presents a scheme for mixing these inputs to motor commands.

The differential equations governing the flight of the quadrocopter are now taken as

71

Paper P2. A model predictive controller for quadrocopter state interception

those of a rigid body [2.18]

ẍ = R e3f + g (2.1)

Ṙ = R Jω×K (2.2)

with e3 = (0, 0, 1) and Jω×K the skew-symmetric matrix form of the vector cross product

such that

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.3)

and g = (0, 0,−g) the acceleration due to gravity. Note the distinction between the vector

g and scalar g.

2.1 Reformulation in jerk

We follow [2.10] in considering the trajectories of the quadrocopter in terms of the jerk

of the axes, allowing the system to be considered as a triple integrator in each axis and

simplifying the trajectory generation task.

It is assumed that a thrice differentiable trajectory x(t) is available, where the jerk

is written as j =
...
x = (

...
x 1,

...
x 2,

...
x 3). The input thrust f is then found by applying the

Euclidean norm ‖·‖ to (2.1),

f = ‖ẍ− g‖ . (2.4)

Squaring the above, taking the derivative and substituting for (2.1) yields

2fḟ = 2 (ẍ− g)T j = 2 (Re3f)T j (2.5)

ḟ = eT3 RTj. (2.6)

g

e3f

ω1

ω2

ω3
x3

x1 x2

Figure 2.1. Dynamic model of a quadrocopter, acted upon by gravity g, a thrust force f
pointing along the (body-fixed) axis e3; and rotating with angular rate ω = (ω1, ω2, ω3), with
its position in inertial space given as (x1, x2, x3).

72

2. Dynamic model

Taking the first derivative of (2.1) yields

j = RJω×Ke3f + Re3ḟ . (2.7)

After substitution, and evaluating the product Jω×Ke3, it can be seen that the jerk j

and thrust f values fix two components of the body rates:

 ω2

−ω1

0

 =
1

f

1 0 0

0 1 0

0 0 0

RTj. (2.8)

That the third component of body rates, ω3, does not appear can be understood by

noting that a rotation about the e3 axis does not affect the translational acceleration

(2.1).

Using (2.4) and (2.8), the system inputs are given for a trajectory described in its

jerk, with one remaining degree of freedom in ω3. This could be fully specified if the

full attitude of the quadrocopter were also known (specifically, the rotation about the

thrust axis). For simplicity, here it will be assumed that ω3 = 0 and that this rotation is

unimportant.

2.2 Feasibility constraints and decoupled axes

A quadrocopter trajectory described by (2.1) and (2.2) is considered to be feasible if the

thrust and the magnitude of the body rates lie in some feasible set, defined as

0 < fmin ≤ f ≤ fmax (2.9)

‖ω‖ ≤ ωmax. (2.10)

Note that fmin > 0 for fixed-pitch propellers with a fixed direction of rotation, and, specif-

ically, that the requirement on the thrust input is non-convex. These limits are translated

to limits on the jerk trajectory by squaring (2.4) and writing it in its components:

f 2
min ≤ ẍ2

1 + ẍ2
2 + (ẍ3 + g)2 ≤ f 2

max. (2.11)

The following conservative box constraints are applied to yield convex constraints:

ẍmin{1} = −ẍmax{1} ≤ ẍ1 ≤ ẍmax{1} (2.12)

ẍmin{2} = −ẍmax{2} ≤ ẍ2 ≤ ẍmax{2} (2.13)

ẍmin{3} = fmin − g ≤ ẍ3 ≤ ẍmax{3}. (2.14)

73

Paper P2. A model predictive controller for quadrocopter state interception

Figure 2.2. A cross-section of the feasible acceleration sets for a quadrocopter. The lightly
shaded, non-convex, doughnut defines the true thrust limits of the vehicle, while the darker
rectangular area defines the decoupled per-axis acceleration limits used here. Note that the
circle of radius fmax is truncated in the graphic.

The resulting trajectories are guaranteed to be feasible with respect to the thrust limit if

ẍ2
max{1} + ẍ2

max{2} +
(
ẍmax{3} + g

)2 ≤ f 2
max (2.15)

as visualised for two axes in Fig. 2.2.

By taking the (induced) norm of (2.8), an upper bound for the body rates can be

found as a function of the jerk, as

‖ω‖ ≤ 1

f
‖j‖ ≤ 1

fmin

‖j‖ . (2.16)

Applying the limit (2.10) to the above, and rearranging yields and upper bound on

the allowable jerk per axis

jmax =
1√
3
fmin ωmax (2.17)

under the worst case that all three axes produce the maximum allowable jerk jmax at the

same time as the minimum thrust fmin is achieved.

3. Trajectory generation

Considering the system input to be the three-dimensional jerk, the quadrocopter dynam-

ics become a set of three triple integrators, one in each axis, with states position, velocity

and acceleration. The trajectory generation is rewritten as an optimal control problem,

74

3. Trajectory generation

with boundary conditions defined by the quadrocopter’s initial and (desired) final states.

The cost function to minimize is chosen as

Jcoupled =

T∫
0

(
j1(t)2 + j2(t)2 + j3(t)2

)
dt. (2.18)

Note that, by rearranging (2.16), this cost function can be interpreted as an upper

bound for a product of the inputs, since

f 2 ‖ω‖2 ≤ j2
1 + j2

2 + j2
3 . (2.19)

This implies that the cost function (2.18) can be split, such that each axis is minimized in-

dependently, while remaining meaningful in the context of the coupled three-dimensional

trajectory.

3.1 Discrete time formulation

The trajectory generation problem for each decoupled axis is rendered finite dimensional

by discretizing the time with uniform steps of size ∆t. Each axis is then a discrete time

linear, time invariant system in the state z, consisting of position, velocity and acceler-

ation, with scalar jerk input j =
...
x , where the axis subscripts have been neglected for

convenience.

j[k] =
...
x (k∆t) (2.20)

z[k] =
[
x(k∆t) ẋ(k∆t) ẍ(k∆t)

]T
(2.21)

z[k + 1] = Adz[k] +Bdj[k] (2.22)

Ad =

1 ∆t 1
2
∆t2

0 1 ∆t

0 0 1

 (2.23)

Bd =
[

1
6
∆t3 1

2
∆t2 ∆t

]T
(2.24)

The optimal control problem is to minimize the cost function

J =
N∑
k=0

j[k]2 (2.25)

subject to the above dynamics, satisfying the boundary conditions defined by the initial

and final positions (x0 and xf , respectively), velocities (ẋ0 and ẋf) and accelerations (ẍ0

75

Paper P2. A model predictive controller for quadrocopter state interception

and ẍf):

z[0] =
[
x0 ẋ0 ẍ0

]T
(2.26)

z[N] =
[
xf ẋf ẍf

]T
(2.27)

with the end stage calculated from the end time T as N = Round(T/∆t).

The constraints on acceleration of (2.12) - (2.14) and the jerk limit (2.17) are affine

functions of the state z[k] and input j[k] (where n is the axis under consideration):

[
0 0 1

0 0 −1

]
z[k] ≤

[
ẍmin{n}
ẍmax{n}

]
(2.28)[

1

−1

]
j[k] ≤

[
jmax

−jmax

]
. (2.29)

The quadratic cost function (2.25) with the linear equality constraints (2.22), (2.26)

and (2.27), and the affine inequality constraints of (2.28) and (2.29), together define a

convex optimisation problem. This is a special case of model predictive control [2.19]

with a fixed end constraint, and with a diminishing rather than receding horizon (i.e. the

trajectory is only planned to intercept).

There exist efficient methods for solving problems of this sort, with CVXGen [2.20],

FORCES [2.21] and FiOrdOs [2.22] presenting techniques for creating C-code based

solvers for specific instances of convex optimization problems.

Here, solvers are generated using the FORCES software of [2.21], which was able to

generate solvers for large problems (here trajectories up to N = 200 are considered).

FORCES uses efficient interior point methods tailored to convex multistage problems, as

are typical in model predictive control applications, and allows for high-speed implemen-

tation with good numerical stability properties [2.21].

The generated solvers either return a solution that solves the problem to within some

acceptable residuals, or returns that no solution is found. In reality, failure to find a

solution can mean that:

• a solution exists, but the solver failed to find it due to reaching an internal limit;

• no solution exists to the conservatively constrained decoupled problem;

• no solution exists to the fully coupled nonlinearly constrained problem.

An example trajectory is shown in Fig. 2.3, where a one-dimensional trajectory is

generated over a translation of 1.25 m from rest at the origin to rest in 1 s (or 50 steps

at 50 Hz). The acceleration limits are set to ẍmax = −ẍmin = 7 m s−2 and the jerk limit

to jmax = 70 m s−3. The minimum and maximum acceleration limits, and the maximum

jerk limit, are active for portions of this trajectory.

76

3. Trajectory generation

Figure 2.3. Example one-dimensional constrained trajectory solution, starting at rest at
the origin and ending at xf = 1.25 m, ẋf = ẍf = 0 in T = 1 s, with acceleration limits
ẍmax = −ẍmin = 7 ms−2 and jmax = 70 ms−3. Each step represents 0.02 s.

3.2 Solution time

The statistical performance of the trajectory generator is investigated by solving trajec-

tories from rest, for interception times varying from 0.2 to 4 s, in 20 ms intervals (i.e. 10

to 200 steps). For each trajectory length, 1000 end states are chosen uniformly at random

in the range xf ∈ [−3, 3] m, ẋf ∈ [−2, 2] m s−1 and ẍf ∈ [−5, 5] m s−2, and applying the

constraints ẍmax = −ẍmin = 7 m s−2 and jmax = 70 m s−3. The mean solution time over

all 191000 trajectories was 1.5 ms, with a maximum of 13.7 ms.

These were calculated on a PC running Windows 7, with an Intel Core i7-2620M CPU

at 2.70 GHz, with 4 GB RAM. The solver was compiled into a dynamically linked library

using the Intel C++ Composer XE Windows: 2011.8.278, which was subsequently linked

to an executable using Visual Studio 2008. In each case the optimisations were set to

maximise speed.

3.3 Completeness

Because the generated solver does not check for feasibility, it does not distinguish between

infeasible trajectories and those that hit iteration limits of the solver. The frequency of oc-

currence of these false negatives is investigated by generating one-dimensional trajectories

from rest to end states of positions in the range [0, 3.5]m, speeds in the range [0, 5]m s−1,

and zero acceleration; with an end time of 1 s (50 steps) and limits as in the exam-

ple trajectory above. The problem was also modelled in Yalmip [2.23], and solved as a

quadratic program, allowing the detection of infeasible problems. Note that completeness

here refers only to the decoupled triple integrator, not the fully coupled quadrocopter

model; a discussion of the latter can be found in [2.24].

The results are visualised in Fig. 2.5: of 10’000 end states evaluated, 5278 were found

to be feasible; of these feasible end states, the proposed solver found 85.0%.

77

Paper P2. A model predictive controller for quadrocopter state interception

Figure 2.4. Performance of the constrained triple integrator trajectory solver, with trajectories
generated from rest to a uniformly distributed random final state. The top plot shows a histogram
of the solution times, using the data for all trajectory lengths, while the middle plot shows
the execution time as a function of horizon length, and the bottom plot shows the fraction of
randomly generated end states for which a trajectory could be found as a function of horizon
length. The reduction in mean solution time at T ≈ 1 s can be explained by noting that, for
shorter end times, almost all trajectories failed to find a solution.

Figure 2.5. Completeness of the trajectory solver, showing whether a one-dimensional trajec-
tory was found from rest to a specified end state within 1 s for 10’000 different end states. The
middle grey area represents feasible end states for which the solver hit an internal limit, and
failed to find a trajectory.

78

4. Validation

Figure 2.6. Resulting flight for the “easy” trajectory; refer to Section 4.1, where the goal is
a rest-to-rest translation of 1m in x1. The plot shows the trajectory for each axis (from left to
right: x1, x2 and x3) separately. The solid line shows the actual flown trajectory, and the dashed
lines indicate the planned acceleration trajectories, as replanned at each stage. Note that, from
approximately 0.8s onwards, feasible trajectories can no longer be found and the vehicle flies in
feedback on the last valid trajectory.

4. Validation

The Flying Machine Arena (FMA) at the ETH Zurich is a platform for design and

validation of autonomous aerial systems, and consists of a large motion capture volume

and a fleet of quadrocopters. Commands for the three body rates and the collective

thrust are sent at 50Hz over a wireless channel, and an onboard controller uses rate gyro

measurements to generate motor thrust commands. The motion capture system is used

to measure the position and attitude of the quadrocopter, fused into a full state estimate

to be used for control.

The trajectory generator is implemented as a model predictive controller, solving a

trajectory to intercept at each time step from the vehicle’s current state, and applying

the first input to the system. If the trajectory generator fails, the trajectory from the

previous time step is followed using a feedback controller. Since the axes are independent,

the constrained solution for each axis can be solved for in parallel, implying that a worst-

case run-time of 13.7 ms (from the above statistical analysis) would still fit in the 20 ms

control period.

The thrust and body rates are limited as below, where these values have been observed

to match the FMA vehicles well.

fmin = 5 m s−2 (2.30)

fmax = 20 m s−2 (2.31)

ωmax = 25 rad s−1 (2.32)

4.1 Easy trajectory

An “easy” trajectory is examined first, where the goal is to translate 1 m in the x1

direction, starting at rest and ending at rest. The upper thrust limit is divided amongst

all axes equally, and this trajectory is considered “easy” because the planned trajectories

79

Paper P2. A model predictive controller for quadrocopter state interception

Figure 2.7. Resulting trajectories for the “hard” trajectory of Section 4.2: a quadrocopter
starting at rest at the origin, and flying to an end state of xf = (3,−3, 2) m, ẋf = (5, 0, 0) ms−1

and ẍf = (0, 4.9, 0) ms−2 in T = 1.5 s. Each plot shows the trajectory along a different axis in
inertial space. The thick lines represent the actual trajectory as followed by the quadrocopter,
while the thin broken line is the solution to the trajectory generation problem as obtained at
the first time instant. Up to approximately 0.6 s, a new trajectory is generated at each time step
(not shown), but from then onwards feasible trajectories can no longer be found and feedback is
done using the last valid trajectory as reference. Refer to Fig. 2.8 for the corresponding inputs.

at time 0 does not have any active input constraints.

ẍmax{1} = ẍmax{2} = ẍmax{3} ≈ 7.31 m s−2 (2.33)

The resulting flight is shown in Fig. 2.6, specifically, the system reached the end

state to within state errors of 49 mm in position, 0.10 m s−1 in velocity and 1.1 m s−2

in acceleration, while remaining inside the feasibility constraints. The figure also shows

that, although the initially planned trajectory does not hit any input constraints, later

replanning results in trajectories that do have active constraints, due to disturbances.

4.2 Hard trajectory

Next, a “hard” trajectory is considered, one which involves active input constraints in

each axis. As with the easy trajectory, the upper thrust limit was split equally amongst all

axes. The quadrocopter starts at rest at the origin, with a target end state characterised

by

xf = (3,−3, 2) m, (2.34)

ẋf = (5, 0, 0) m s−1, (2.35)

ẍf = (0, 4.9, 0) m s−2; (2.36)

in a time of T = 1.5 s. These end constraints can be interpreted as trying to pass through

a window approximately 4.69 m away, with a speed of 5 m s−1 at an attitude at 30◦ from

the horizontal with no vertical acceleration at the end.

80

4. Validation

A resulting trajectory is shown in Fig. 2.7, with the achieved end state

xf = (2.89,−2.75, 1.89) m, (2.37)

ẋf = (4.65, 0.28, 0.44) m s−1, (2.38)

ẍf = (−0.49, 5.96, 0.78) m s−2; (2.39)

or a position error of 0.29 m, velocity error of 0.63 m s−1. The direction of thrust at the end

differs from the desired by an angle of 3.6◦. The position error equates to approximately

6% of the total translation, and the velocity error to 13% of the total velocity change.

From approximately 0.6 s onwards, no feasible trajectories can be found from the vehicle’s

current position, and the last valid trajectory is flown in feedback. This is possible because

the constraints used for trajectory generation are conservative, especially as the true

feasible regions are non-convex.

The inputs applied during this trajectory are shown in Fig. 2.8, where it can be seen

that the inputs stay within the thrust and body rate constraints. The individual axes do

briefly violate the acceleration constraints during the period where no feasible trajectory

could be found from the current position (therefore the vehicle was flying on feedback

with the last valid trajectory as reference). The conservative nature of the body rate

limits of (2.17) can be also seen: the commanded body rates are generally very low, rising

only under trajectory following feedback control near intercept.

4.3 Box constraint selection

If additional information on the trajectory is available in advance, or sufficient planning

time is available, the convex bounds on the accelerations and jerk can be chosen more

efficiently (refer to Fig. 2.2). Similarly, if the trajectory is solved for off line, the bounds

can be iterated on to make use of them more efficiently.

As an example, consider a rest-to-rest motion, translating 4 m along the x1 axis. Using

the general limits as above, the fastest end time for which a feasible trajectory is found

is 1.60 s. However, because the motion is only along one axis, the box constraints on the

acceleration of the other two axes can be tightened. Specifically, limiting the accelerations

in the x2 and x3 axes to ±1 m s−2 (to maintain the ability to compensate for disturbances),

the limits for x1 can be raised to ±16.80 m s−2. Furthermore, the minimum thrust value

can be raised to 8.81 m s−2, allowing the jerk limit to be raised to 127.16 m s−3 by (2.17).

Using these limits, the trajectory generator finds a solution for an end time of 1.24 s, an

improvement of 22.5%. Note that these bounds are still conservative, due to the non-

convex nature of the true feasible region.

81

Paper P2. A model predictive controller for quadrocopter state interception

Figure 2.8. Inputs for the hard trajectory of Section 4.2. Note that the thrust limits are hit,
but the magnitude of the body rate command stays well below the maximum allowed. This due
to the conservative nature of the limit (2.17).

5. Outlook

This paper presents a method for calculating state interception trajectories for quadro-

copters, from arbitrary initial conditions to a desired end state characterised by a position,

velocity and acceleration, resulting in commands of thrust and two components of the

body rates. The end acceleration constraint can be viewed as defining the attitude of the

vehicle to within a rotation about the thrust axis. A possible extension to this research

would be calculating an input trajectory for the third component of the body rates, such

that the final degree of freedom of the attitude can also be specified.

The constrained trajectory generation problem is posed as a convex optimisation

problem for each decoupled axis, which can be solved in real time. Therefore this technique

is suitable for use in feedback as a model predictive controller; it also naturally handles

cases where the desired end state evolves over time, such as when trying to hit an uncertain

target where the target prediction evolves in real time.

The convex optimisation problem could be easily modified to achieve different goals,

e.g. by removing the equality constraint on end velocity and acceleration, and adding

the magnitude of the end velocity to the cost function, one solves a problem somewhat

similar to that of [2.11].

Given some initial and final states, it would also be very useful to have an analytical

method of calculating what the minimum required time horizon is. One possible solution

would be to calculate the bang-bang trajectories as in [2.10].

The conservative nature of the jerk bounds means that only a fraction of the allow-

able body rates is typically used. Further work could be done to improve these bounds,

e.g. using the unconstrained solution to find a better bound for the lowest thrust value

produced along the trajectory. Alternatively, the optimisation problems could be solved

in series and using the acceleration values from one solution to provide tighter (time

varying) bounds for the next axis.

By combining all three axes into one optimisation problem that would now have

12 primary optimisation variables per stage, the constraints could be made even less

82

Acknowledgement

conservative. The maximum thrust constraint (the right-hand side of (2.11)) can be

encoded directly, noting that this is a convex quadratic constraint, which can also be

solved efficiently. This would also allow rewriting the box constraint on jerk, (2.17), as

a norm constraint, making it somewhat less conservative. Furthermore, by combining all

axes in the optimisation problem, it becomes straight forward to define e.g. zones where

the quadrocopter is allowed to fly (using the decoupled axes presented here, only zones

aligned with the axes could be used). This has the major drawback of having to solve

one large optimisation problem, instead of three small problems.

The problem can be made much less restrictive by allowing the end state to lie in a

region “near” the desired end state, rather than equalling exactly the desired end state.

The choice of the size of this region now becomes a design variable, and will depend on

the application.

Acknowledgement

The Flying Machine Arena is the result of contributions of many people, a full list of

which can be found at http://flyingmachinearena.org.

Specifically, we would like to thank Markus Hehn for the many discussions on optimal

control and quadrocopter dynamics. We would also like to thank Alex Domahidi and

Stephan Richter for their discussions on convex optimisation.

This research was supported by the Swiss National Science Foundation through grant

agreement number 138112.

References

[2.1] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed pose

estimation and sensor self-calibration for an autonomous MAV”, in IEEE In-

ternational Conference on Robotics and Automation (ICRA), 2012, pp. 31–38.

[2.2] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A proto-

type of an autonomous controller for a quadrotor UAV”, in Proceedings of the

European Control Conference, Kos, Greece, 2007, pp. 1–8.

[2.3] S. Lupashin, A. Schoellig, M. Sherback, and R. D’Andrea, “A simple learning

strategy for high-speed quadrocopter multi-flips”, in IEEE International Con-

ference on Robotics and Automation (ICRA), 2010, pp. 1642–1648.

[2.4] K. Alexis, G. Nikolakopoulos, A. Tzes, and L. Dritsas, “Coordination of he-

licopter UAVs for aerial forest-fire surveillance”, in Applications of intelligent

control to engineering systems, Springer, 2009, pp. 169–193.

[2.5] N. E. Serrano, “Autonomous quadrotor unmanned aerial vehicle for culvert

inspection”, PhD thesis, Massachusetts institute of technology, 2011.

83

Paper P2. A model predictive controller for quadrocopter state interception

[2.6] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor

helicopter flight dynamics and control: Theory and experiment”, in Proc. of the

AIAA Guidance, Navigation, and Control Conference, 2007, pp. 1–20.

[2.7] P. Martin and E. Salaün, “The true role of accelerometer feedback in quadro-

tor control”, in IEEE International Conference on Robotics and Automation

(ICRA), 2010, pp. 1623–1629.

[2.8] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control

for precise aggressive maneuvers with quadrotors”, in Int. Symposium on Ex-

perimental Robotics, 2010.

[2.9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and con-

trol for quadrotors”, in International Conference on Robotics and Automation,

Shanghai, China, 2011, pp. 2520–2525.

[2.10] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control”,

in IFAC World Congress, vol. 18, 2011, pp. 1485–1491.

[2.11] M. Hehn and R. DÁndrea, “Real-time trajectory generation for interception

maneuvers with quadrocopters”, in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), 2012.

[2.12] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-

free trajectories for a quadrocopter fleet: A sequential convex programming

approach”, in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2012.

[2.13] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive con-

trol on a quadrotor: Onboard implementation and experimental results”, in

IEEE International Conference on Robotics and Automation (ICRA), 2012,

pp. 279–284.

[2.14] K. Alexis, C. Papachristos, G. Nikolakopoulos, and A. Tzes, “Model predictive

quadrotor indoor position control”, in Control & Automation (MED), 2011 19th

Mediterranean Conference on, 2011, pp. 1247–1252.

[2.15] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “MPC with nonlinear Hinf con-

trol for path tracking of a quad-rotor helicopter”, in Proc. of the IFAC World

Congress, 2008, pp. 8564–8569.

[2.16] M. W. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2011, pp. 5113–5120.

[2.17] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor

micro quadrotor”, in IEEE International Conference on Robotics and Automa-

tion (ICRA), vol. 5, 2004, pp. 4393–4398.

[2.18] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics Second

Edition. American Institute of Aeronautics and Astronautics, 2007.

84

REFERENCES

[2.19] M. Morari and J. H. Lee, “Model predictive control: Past, present and future”,

Computers and chemical engineering, vol. 23, no. 4-5, pp. 667–682, 1999.

[2.20] J. Mattingley and S. Boyd, “CVXGen: A code generator for embedded convex

optimization”, Optimization and Engineering, vol. 13, no. 1, pp. 1–27, 2012.

[2.21] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones, “Efficient in-

terior point methods for multistage horizons arising in receding horizon control”,

in IEEE Conference on Decision and Control (CDC), 2012.

[2.22] F. Ullman, “A Matlab toolbox for C-code generation for first order methods”,

Master’s thesis, ETH Zurich, Zurich, Switzerland, 2011.

[2.23] J. Lofberg, “YALMIP : A toolbox for modeling and optimization in MATLAB”,

in IEEE International Symposium on Computer Aided Control Systems Design,

2004, pp. 284–289.

[2.24] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of quadrotor

systems using time-optimal control”, Autonomous Robots, vol. 33, pp. 69–88, 1

2012.

85

Part B

Failsafe strategies and novel
vehicles

Paper P3

Relaxed hover solutions for multicopters:

application to algorithmic redundancy and

novel vehicles

Mark W. Mueller and Raffaello D’Andrea

Abstract

This paper presents a relaxed definition of hover for multicopters with propellers
pointing in a common direction. These solutions are found by requiring that the
multicopter remain substantially in one position, and that the solutions be constant
when expressed in a coordinate system attached to the vehicle. The vehicle’s angu-
lar velocity is then shown to be either zero or parallel to gravity. The controllability
of a vehicle’s attitude about these solutions is then investigated. These relaxed
hover solutions may be applied as an algorithmic failsafe, allowing for example a
quadrocopter to fly despite the complete loss of one, two, or three of its propellers.
Experimental results validate the quadrocopter failsafe for two types of failure (a
single propeller, and two opposing propellers failing), and a nonlinear simulation
validates the remaining two types of failure (two adjacent, and three propellers fail-
ing). The relaxed hover solutions are also shown to allow a multicopter to maintain
flight in spite of extreme centre of mass offsets. Finally, the design and experimental
validation of three novel vehicles is presented.

Accepted for publication in the International Journal of Robotics Research.

c©2015 The Authors.

89

Paper P3. Relaxed hover solutions

1. Introduction

Multicopters have found broad use as research platforms, used e.g. for vision based pose

estimation with quadrocopters [3.1] and hexacopters [3.2], and also as platforms allowing

for new capabilities. For example, the use of both quadrocopters and hexacopters for

whale monitoring is investigated by [3.3], and hexacopters are used by [3.4] for weed

research; a team of quadrocopters is used to carry a slung load by [3.5] and an octocopter

is used to calibrate radio telescope antennae by [3.6]. Multicopters also hold promise as

goods delivery vehicles [3.7].

These vehicles typically consist of an even number of propellers all pointing in a

common direction, with half of the propellers having the opposite handedness from the

remainder, and thus also rotating in the opposite direction. The propellers are then

mechanically arranged such that the torques they produce can be made to sum to zero

while the propeller thrusts support the vehicle’s weight. Differences between propeller

thrusts allow the vehicle’s attitude to be changed, and the sum of the thrusts is used

to accelerate the vehicle. This paper will only consider multicopters where all propellers

have parallel axes of rotation (note however, that alternative designs exist where this is

not the case, e.g. [3.8] or [3.9]).

Amongst others, a motivation for using a multicopter with six or more propellers,

instead of a four propeller quadrocopter, is that the vehicle is able to maintain normal

flight if one of the propellers fails (see e.g. [3.10] for a hexacopter design and [3.11] for an

octocopter rotor failure strategy). The need for having more than four propellers follows

from the requirement that the vehicle be able to hover with zero angular velocity even

after the failure of one of the actuators.

In this paper, this requirement of having zero angular velocity is relaxed, and instead

hover solutions are searched for during which the position remains approximately con-

stant, and where the solutions may be described with constant parameters: these relaxed

hover solutions form a superset of those typically used for multicopters. This means that

the vehicle may rotate at a constant velocity in hover. They allow for the design of novel

hover-capable vehicles, and may also be employed to offer redundancy for multicopters

experiencing an actuator failure. Since the solutions are constant in the body frame the

powerful techniques of linear time invariant systems theory may be applied for analysis

and control design.

An approach is presented to formulate and solve for such relaxed hover solutions,

and for designing linear, time invariant controllers to control a hovering vehicle. This

approach is used to compute solutions for a quadrocopter experiencing any combination

of up to three complete propeller failures. For two of the cases, experimental validation

is provided, while the approach for the remaining two types of failure are validated in a

nonlinear simulation. The case of losing two opposing propellers is investigated in detail,

with a specific focus on vehicle mass and aerodynamic properties that would render the

vehicle uncontrollable.

The approach may also be used to control a multicopter where the centre of mass

90

1. Introduction

is located far from the propellers’ geometric centre. A specific example is given for a

quadrocopter with an eccentric centre of mass, where the conventional hover solution of

zero angular velocity requires infeasible motor forces. However, by allowing the vehicle to

rotate, a feasible solution is found, even if the centre of mass lies outside of the propellers’

convex hull.

The methods presented are also applied to design novel, rotating body vehicles. A

family of such vehicles, called “spinners”, is presented, where each vehicle comprises a

number of propellers arranged in a rotationally symmetric pattern about the vehicle’s

centre of mass, and all propellers have the same handedness and rotate in the same direc-

tion. At hover these vehicles rotate at a high angular velocity, in the opposite direction

of their propellers. A two, three, and four propeller spinner is presented. In addition to

their dynamic properties, when equipped with a camera, such a vehicle could be used as

a low-cost omnidirectional flying camera, similar to e.g. [3.12] or [3.13] – note however

that the spinners tend to rotate at higher velocity than the vehicles in these references,

such that motion blur might present a problem.

1.1 Related work

A survey on fault detection and diagnosis and fault-tolerant control strategies for un-

manned rotary wing vehicles is given by [3.14], and examples of commercial solutions

are the emergency parachutes of [3.15] or those described by [3.16]. Partial failure of a

quadrocopter actuator is investigated for example in [3.17], [3.18] and [3.19]. Complete

propeller failure of a single propeller of a quadrocopter is investigated in [3.20], [3.21],

and [3.22], where the strategy is to give up controlling the vehicle’s yaw angle, and use

the remaining propellers to achieve a horizontal spin. A flight strategy to cope with an

actuator failure on an octocopter is presented in [3.11], and a hexacopter design with a

focus on actuator redundancy is presented in [3.23].

The failsafe method presented in this paper extends those above by finding solutions

when using fewer than three propellers. Furthermore, this paper presents a family of solu-

tions when using only three propellers (such as a quadrocopter having lost one propeller)

– the user may thus select the solution most appropriate to the vehicle and the situation.

The controllability of a flying, rotating vehicle with three mutually orthogonal pro-

pellers is analysed in [3.24], and a circular flight path for this vehicle is designed for it

in [3.25] – the vehicle concept uses forward tilted propellers to induce rotation of the ve-

hicle, so that the vehicle then also spins about an axis similarly to the spinners proposed

in this work.

This paper will focus on vehicles that do not rely on aerodynamic effects (apart from

drag and the propellers) for their stability – this is in contrast to maple-seed-like vehicles

such as the Samara [3.26], or vehicles like the Spincopter [3.27].

This work follows on a conference paper published previously [3.28], and extends the

results by

• presenting a more detailed derivation of the salient effects acting on a multicopter,

91

Paper P3. Relaxed hover solutions

• deriving general conditions of the hover solutions without assumptions on the num-

ber of propellers, the locations of the propellers, or the mass distribution of the

vehicle,

• likewise deriving a general framework for establishing attitude controllability,

• considering additionally the failure case of a quadrocopter losing two adjacent pro-

pellers,

• showing how the relaxed hover solutions may be applied to multicopters with large

centre of mass offsets, and

• presenting the design of three novel multicopters.

1.2 Notation

Boldface symbols like g are used throughout this paper to denote vectors in three-

dimensional space, while non-boldface symbols like m will generally be used for scalars,

with exceptions made explicit. The coordinate system in which a vector is expressed will

be denoted by a superscript, for example gE expresses g in coordinate system E. Where

possible, vectors will be left without expressing them in any coordinate system. A sub-

script will be used to express a relationship or attribute, for example ωBE represents the

angular velocity of B with respect to E. The short-hand notation (p, q, r) will be used to

compactly denote a column vector.

1.3 Organisation

This paper is organised as follows: in Section 2 the dynamic model of a generic multicopter

is presented. Hover solutions are derived in Section 3 and the controllability of the vehicle

about these solutions is investigated in Section 4. The approach is applied as an actuator

failsafe for quadrocopters in Section 5, and applied to a quadrocopter with a large centre

of mass offset in Section 6. A novel family of multicopters is presented in Section 7, and

the paper concludes in Section 8.

2. Multicopter modelling

This section derives the equations of motion for a multicopter, with a special focus on the

attitude dynamics. A model for the thrust force, reaction torque, and mechanical power

consumption of a propeller is also presented. The equations are used in later sections to

solve for hover solutions, and the power consumption of the propellers is used to compare

different solutions.

Fig. 3.1 shows a multicopter with Np = 3 propellers. The multicopter has a total

mass m (including propellers), and its position relative to some point fixed in an inertial

frame is expressed as d. The mass moment of inertia of the multicopter excluding the

92

2. Multicopter modelling

Figure 3.1. A multicopter with three propellers, showing the definition of the symbols used
to derive its dynamics equations. The axes of rotation of the propellers are parallel, and are fixed
with respect to the body.

propellers is IB, and the multicopter is rotating at an angular velocity ωBE with respect

to the inertial frame.

The scalar thrust force fPi of each propeller i points in the body-fixed direction zB,

and a body-fixed coordinate system B is defined so that zBB = (0, 0, 1). A perpendicular

vector xBB = (1, 0, 0) is also defined, pointing towards propeller 1. Each thrust force i

acts at a displacement rPi from the multicopter’s centre of mass. The angular velocity of

propeller i with respect to the inertial frame is written as ωPiE.

In addition to thrust, each propeller produces a scalar reaction torque τPi opposing the

propeller’s angular velocity and parallel to zB, as a result of aerodynamic drag acting on

the propeller blade. The mass moment of inertia of propeller i is IPi . As a simplification,

because the propellers rotate much faster than the vehicle’s body, the propellers will be

treated as symmetric about their axes of rotation; their moment of inertia is then con-

stant when expressed in a body-fixed frame, independent of the propeller’s instantaneous

rotation angle.

It will be assumed that the vehicle travels at low translational velocities, such that

translational drag forces may be neglected. For a discussion of such effects see e.g. [3.29].

As a result of the multicopter’s angular velocity, a drag torque τd acts on the multicopter.

Gravity acts on the vehicle as a force mg.

The translational dynamics of the vehicle, expressed in the inertial coordinate sys-

tem E, may now be composed as [3.30]

md̈E = zEB

Np∑
i=1

fPi +mgE. (3.1)

The orientation of the body with respect to the inertial reference frame is captured

by the coordinate transformation matrix CEB, such that a vector transforms as vE =

93

Paper P3. Relaxed hover solutions

CEBvB. The differential equation for this matrix is [3.30]

ĊEB = CEBJωBBEK (3.2)

where JaK represents the skew-symmetric matrix form of the cross product, so that JaKb =

a×b for any 3D vectors a and b. Recall that ωBBE represents the vehicle’s angular velocity

with respect to the inertial frame ωBE, as expressed in the body-fixed frame B. The

angular dynamics expressed in the body-fixed coordinate system are [3.30]

IBB ω̇
B
BE +

Np∑
i=1

IBPiω̇
B
PiE

+ JωBBEK

(
IBBω

B
BE +

Np∑
i=1

IBPiω
B
PiE

)

=

Np∑
i=1

(
JrBPiKz

B
BfPi + zBBτPi

)
+ τBd .

(3.3)

The first two terms are the time derivative of respectively the vehicle’s and the propellers’

angular velocities with respect to the inertial frame, as expressed in the body-fixed frame.

The third term expresses the cross-coupling of the angular momentum in the system, due

to taking the derivative in a non-inertial frame. The right-hand side of the equation

represents all the moments acting upon the body, consisting of the propeller forces acting

at a distance from the centre of mass, the propeller reaction torques, and the vehicle drag

torque.

2.1 Propeller model

It is assumed that the pitch of each of the propellers is fixed and that a given propeller’s

thrust and torque are functions only of the propeller’s angular velocity with respect to the

air. Specifically, these functions are taken to be proportional to the square of the angular

velocity [3.31], and the air is assumed to be stationary with respect to the inertial frame.

The thrust and torque are then characterised by the propeller coefficients κfi and κτi as

follows:

fPi = κfi (ωPiE · zB) |ωPiE · zB| (3.4)

τPi = −κτi (ωPiE · zB) |ωPiE · zB| (3.5)

with ωPiE = ωPiB + ωBE the rotational velocity of the propeller with respect to the air,

and · denoting the vector inner product. The torque coefficient κτi is positive, and the

sign of κfi is a function of the propeller’s handedness.

The propeller’s scalar speed ΩPi with respect to the body is typically controlled by

94

3. Hover solutions

an electronic speed controller, so that

ωPiB = ΩPizB. (3.6)

Note that this is a very simple propeller model, neglecting for example the translation

of the propeller’s centre. An example of a more complicated model is given by [3.29],

where a relationship between a quadrocopter’s translational motion and a horizontal

propeller force is given. Such effects are here assumed to be small disturbances, which

will be compensated by feedback control.

1) Power consumption The mechanical power consumed by a propeller may be com-

puted as the product of the torque it produces and the angular velocity of the propeller

with respect to the body, as given below.

PPi = −τPiΩPi . (3.7)

The mechanical power is used in later sections to compare the efficiency of different

hover solutions. This model may be extended, for example, with information about the

electrical efficiency of the vehicle’s powertrain to compute the power required for the

vehicle to hover.

2.2 Rotational drag model

The aerodynamic drag torque τd will in general be very hard to model, and will be

a function of the geometry of the vehicle, the angular velocity of the vehicle, and the

angular velocities of the propellers. The model used here is based on the form drag of a

translating object, where the magnitude of the drag force is quadratic in the magnitude

of the translational velocity [3.32].

Here it is assumed that the magnitude of the torque is quadratic in the vehicle’s

angular velocity:

τd = −‖ωBE‖KdωBE (3.8)

where Kd is expressed as a constant 3× 3 matrix in a body-fixed coordinate system, and

the Euclidean norm of a vector is written as ‖·‖.

3. Hover solutions

The conventional hover condition for a multicopter is at zero acceleration and zero angu-

lar velocity, with the thrust vector pointing opposite to gravity. For a symmetric quadro-

copter in hover, for example, this implies that each motor produces a force equal to one

95

Paper P3. Relaxed hover solutions

quarter of the vehicle’s weight. The propellers’ angular momenta then sum to zero, so

that the vehicle also has zero total angular momentum in hover. In this situation, the

cross coupling in (3.3) disappears and the vehicle’s dynamics in the three translational

directions decouple to first order at the equilibrium. An example of a control design for

a quadrocopter can be found in [3.33].

The definition of hover is relaxed to include flight conditions where the vehicle re-

mains substantially at one point in space, where the vehicle may have non-zero angular

velocity. The translational acceleration may likewise be non-zero, but must average to

zero for the vehicle to remain substantially in the same position. Only solutions which

are constant when described in a body-fixed frame will be considered, with specifically

the propellers’ angular velocity and the vehicle’s angular velocity being constant. These

solutions are then time-invariant, allowing for the design of time invariant controllers.

The rich literature and powerful tools available for the design and analysis of linear time

invariant systems may then be applied. Such a hover solution can be fully described

by Np + 6 variables: the Np propeller speeds, three components of the vehicle’s angular

velocity, and three components of the vehicle’s orientation.

3.1 Non-zero angular velocity during hover

If a multicopter’s angular velocity with respect to the inertial frame ωBE is zero then

zEB is constant, and by (3.1) the thrust direction zB must point opposite to gravity. The

total thrust force must then equal the weight of the vehicle, so that the vehicle has zero

acceleration in hover. Furthermore, by (3.3) the moments produced by the propellers

must also sum to zero – this is the conventional hover solution.

For a constant non-zero angular velocity the orientation of the body with respect to

an inertial frame at time t may be solved for in closed form from (3.2) as

CEB(t) = CEB(0) exp
(
Jω̄BBEtK

)
(3.9)

where exp(·) is the matrix exponential. An overbar will be used to denote variables that

are constant at the hover solution, such as ω̄BBE.

Using Rodrigues’ formula [3.34] and interpreting ω̄BBEt as a rotation vector of constant

direction and increasing magnitude, (3.9) can be solved for explicitly as

exp
(
Jω̄BBEtK

)
= I +

1

‖ω̄BBE‖
sin
(∥∥ω̄BBE∥∥ t) Jω̄BBEK

+
1

‖ω̄BBE‖
2

(
1− cos

(∥∥ω̄BBE∥∥ t)) Jω̄BBEK2
(3.10)

with I the identity matrix. This is periodic, with period Thvr = 2π/ ‖ω̄BE‖.
Since all other quantities are constant, the acceleration of the vehicle in hover must

also be periodic, with period Thvr. The average acceleration of the vehicle can be calculated

96

3. Hover solutions

by averaging (3.1) over one period, where the time varying quantities have been made

explicit below:

1

Thvr

Thvr∫
0

md̈E(t) dt =
1

Thvr

Thvr∫
0

(
zEB(t)

Np∑
i=1

f̄Pi +mgE

)
dt (3.11)

Transforming zEB(t) into the body-fixed frame, setting the above equal to zero (so that

the average acceleration is zero) and simplifying yields

−mgE =
1

Thvr

Thvr∫
0

CEB(t) dt zBB

Np∑
i=1

f̄Pi . (3.12)

The integral on the right hand side may be thought of as the average coordinate

transformation of the vehicle, and can be solved for by substituting (3.9)-(3.10):

1

Thvr

Thvr∫
0

CEB(t) dt = CEB(0)

(
I +

1

‖ω̄BBE‖
2 Jω̄BBEK2

)
. (3.13)

Substituting and simplifying yields

−mgE =

(
zB · ω̄BE
‖ω̄BE‖2

Np∑
i=1

f̄Pi

)
CEB(0)ω̄BBE. (3.14)

A requirement on the total thrust produced can be derived from the above by applying

the Euclidean norm:

Np∑
i=1

f̄Pi =
m ‖g‖ ‖ω̄BE‖
|zB · ω̄BE|

. (3.15)

Note that this assumes that the sum of the propeller forces is positive.

Substituting (3.15) into (3.14) yields the condition that the angular velocity must be

parallel to gravity in hover at time 0:

sgn (zB · ω̄BE)

‖ω̄BE‖
CEB(0)ω̄BBE = − 1

‖g‖
gE (3.16)

where sgn(·) is the signum function returning the sign of its argument. As it is constant,

for any hover solution with constant angular velocity and constant motor forces, the

97

Paper P3. Relaxed hover solutions

angular velocity always remains parallel to gravity. This also implies that the vehicle’s

vertical acceleration is always zero in hover.

Given some angular velocity ω̄BBE, the total thrust force produced is constrained by

(3.15), and (3.16) constrains the vehicle’s attitude so that the angular velocity is parallel

to gravity. Additionally, the angular acceleration is required to be zero at hover, so that

three additional constraints appear from (3.3):

Jω̄BBEK

(
IBB ω̄

B
BE +

Np∑
i=1

IBPiω̄
B
PiE

)
=

Np∑
i=1

(
JrBPiKz

B
B f̄Pi + zBB τ̄Pi

)
+ τBd (3.17)

with f̄Pi and τ̄Pi solved from Section 2.1, and τBd from Section 2.2.

There are then seven constraints for the Np + 6 unknowns, leaving Np − 1 degrees of

freedom for the hover solution. These degrees of freedom may be determined, for example,

by finding the hover solution that requires a minimum of input power, by symmetry

considerations, or by considerations related to the controllability of the system.

3.2 Position trajectory

The vehicle’s acceleration in hover will either be constant, or be periodic with period Thvr.

Specifically, if the vehicle’s thrust axis zB is not parallel to the hover angular velocity ω̄BE,

a component of the total thrust must point perpendicular to gravity. Because the vehicle

has zero vertical acceleration, the component of the thrust in the direction of the weight

must equal the vehicle’s weight. The horizontal acceleration component āh may then be

calculated as:

(māh)
2 + (m ‖g‖)2 =

(
Np∑
i=1

f̄Pi

)2

. (3.18)

This can be rewritten as a centripetal acceleration of radius r̄hvr at vehicle’s angular

velocity. Substituting the hover forces from (3.15), and simplifying yields:

r̄hvr =
‖g‖
‖ω̄BE‖2

√(
‖ω̄BE‖
zB · ω̄BE

)2

− 1. (3.19)

The vehicle will thus move along a horizontal circle of this radius at the hover solution.

4. Position and attitude control

A given hover solution is only useful if the vehicle can enter the solution, and maintain

it in the face of disturbances. In this section an approach is given to investigate the

98

4. Position and attitude control

Figure 3.2. An example cascaded control strategy, where an outer position controller defines a
desired acceleration, and an inner controller controls the vehicle’s attitude so that the acceleration
is achieved.

controllability of the vehicle about a hover solution. The problem is broken into two

sections for ease of analysis: first it is argued that attitude control under constant total

thrust is sufficient for position control. An approach is then given for determining the

controllability of the attitude system, where the problem is reduced to investigating the

controllability of a linear time invariant system with 5 states and NP − 1 inputs. An

example cascaded controller is shown in Fig. 3.2.

4.1 Position control

If both the angular velocity and the total thrust force are constant over one rotation,

the average acceleration ã(t) of the vehicle may be defined, similar to what was done in

Section 3.1, by averaging d̈ over one rotation. The goal is then to control this average

acceleration, and thereby the position of the vehicle.

Rather than directly finding an equation for ã(t), the exposition can be simplified by

introducing two unit vectors. A constant body-fixed vector n is introduced, which lies

parallel to the angular velocity of the vehicle in hover, and is oriented so that it has a

positive component in the direction zB. This vector may be thought of as the vehicle’s

thrust direction, averaged over one period of rotation.

The second unit vector ndes is defined through the vehicle’s desired acceleration.

Introducing the short-hand fΣ(t) for the total thrust force, the vehicle’s acceleration

averaged over one rotation ãdes(t) may be written as below, from which ndes(t) and fΣ(t)

may be solved:

ãdes(t) =
(zB · n

m
fΣ(t)

)
ndes(t) + g. (3.20)

Note that the factor (zB · n/m) is constant. These vectors are visualised in Fig. 3.3.

Therefore, if the body-fixed vector n can be controlled to point along some given ndes

while the vehicle produces a total thrust force fΣ, the vehicle’s average acceleration will

track the desired, and the vehicle’s position can be controlled.

4.2 Reduced attitude control

Only the two attitude degrees of freedom relevant to the vehicle’s translational motion

are controlled, i.e. the unit vector n. For convenience a control coordinate frame C is

99

Paper P3. Relaxed hover solutions

Figure 3.3. The relationships of the vectors introduced for the position control, where the
desired acceleration vector ãdes is computed by the position controller, and from this follows
the desired normal ndes through (3.20). The goal of the attitude controller is then to rotate the
body-fixed vector n into ndes.

introduced which is fixed with respect to the body-fixed frame B and where

nC = CCBnB = (0, 0, 1) . (3.21)

The remaining degree of freedom of CCB (that is, a rotation about n) may be chosen

arbitrarily. The components αi of the angular velocity are introduced, so that

ωCBE = CCBωBBE = (α1, α2, α3) . (3.22)

The time derivative of nCdes follows from the product rule and (3.2):

ṅCdes = −JωCBEKnCdes +CCEṅEdes. (3.23)

The change in direction of the desired acceleration vector from (3.20) is captured by ṅEdes.

The components ηi are introduced, such that nCdes = (η1, η2, η3). The attitude control

goal is then to drive nCdes to (0, 0, 1), and drive ṅCdes to zero. This can be formalised by

introducing the state deviation

ξ = (η1, η2, α1, α2, α3)− (0, 0, 0, 0,n · ω̄BE) . (3.24)

If ξ is stabilisable for some given fΣ, the vehicle is stabilisable about the desired

acceleration. 1

1) Selecting input variables Because the total thrust is fixed at fΣ, there are Np − 1

free input variables remaining, which may be used to control the attitude. These may

1A stabilisable system is one which can be made asymptotically stable by appropriate state feedback
[3.35], i.e. any uncontrollable modes are asymptotically stable.

100

4. Position and attitude control

be specified by introducing the input vector u, and then specifying the motor forces as

below:

fPi = f̄Pi + ui, for i ∈ {1, . . . , Np − 1} (3.25)

fPNp = f̄PNp −
Np−1∑
i=1

ui. (3.26)

The propeller speeds (instead of thrusts) may alternatively be used as inputs, through

the relationships of Section 2.1. The inputs may also be based on symmetry properties

of a specific vehicle, so that e.g. independent torques are used as inputs, from which the

required propeller speeds are recovered (as is commonly done when controlling quadro-

copters, e.g. [3.33]).

2) Linearised system The time derivative ξ̇ follows from (3.3) and (3.23). For the anal-

ysis it will be assumed that ṅEdes = 0, i.e. that the desired average vehicle acceleration

in (3.20) is constant. In practise, a cascaded control strategy as shown in Fig. 3.2 may

be employed, with an outer position controller computing ndes. If the dynamics for this

outer controller are sufficiently slow, the term ṅEdes in (3.23) may be neglected.

The effect of the angular acceleration of the propellers with respect to the body, ω̇BPiB,

may be included through a model of the motor dynamics. Alternatively, if the angular

inertia of the propellers IBPi is sufficiently small, this term may be neglected.

Linearising about the hover solution yields a system as below:

ξ̇ ≈

0 ±‖ω̄BE‖ 0 −1 0

∓‖ω̄BE‖ 0 1 0 0

0 0 a11 a12 a13

0 0 a21 a22 a23

0 0 a31 a32 a33

 ξ +Bu (3.27)

where aij, B and u depend on the specific vehicle configuration, and follow in part

from (3.3).

The requirement that (3.27) be stabilisable adds an additional criterion to the search

for suitable hover solutions for a vehicle, in addition to the seven algebraic constraints

derived in Section 3. Furthermore, (3.27) may serve as a basis for linear time invariant

controller design: in Section 5 controllers are designed for a quadrocopter experiencing

propeller failures, and in Section 7 controllers are designed for novel vehicles.

101

Paper P3. Relaxed hover solutions

5. Quadrocopter actuator failsafe

Quadrocopters are popular as research testbeds, toys, and sensor platforms (e.g. for aerial

photography). Compared to hexa- or octocopters, which have six or eight propellers,

quadrocopters are mechanically simpler and have to carry less structural mass (which in

turn may make them more efficient). However, they do not offer an obvious hardware

redundancy if a propeller fails (that is, they cannot hover at zero angular velocity after

losing a propeller).

In this section it is shown that quadrocopters can maintain a hover as defined in

Section 3, after the complete loss of a propeller. In fact, under some restrictions on the

vehicle’s mass distribution and aerodynamic properties, the vehicle remains controllable

after the loss of any number of propellers, as long as a single propeller remains operable.

Five different quadrocopter failure scenarios are considered:

• no failure,

• failure of a single propeller,

• failure of two opposing propellers,

• failure of two adjacent propellers, and

• failure of three propellers.

The hover solutions will first be presented for each, followed by controller design, and

then each scenario is validated in a non-linear simulation, For losing a single propeller, and

losing two opposing propellers, the simulation is validated by experiment. Extension 1

shows a video of a quadrocopter in flight after the loss of a single, and two opposing

propellers.

This section focuses on controlled flight near hover in a controlled environment, rather

than discussing practical implementation issues related to using these hover solutions on

an actual quadrocopter in the field. For fault detection strategies, the reader is referred

to the references in the introduction. Low-cost and robust sensing/estimation strategies

for rapidly rotating vehicles and robust transitions from one flight mode to another may

be promising areas of future research.

5.1 Platform

The work is validated using quadrocopters based on the Ascending Technologies Hum-

mingbird [3.36], in the Flying Machine Arena [3.37], which will be referred to here simply

as “the quadrocopter”. Such a quadrocopter is shown in Fig. 3.4.

The vehicle’s mass was measured to be 0.50 kg, and the distance from the centre of

mass to the centre of the propellers is 0.17 m. The quadrocopter’s inertia was determined

from a CAD model, and validated by measuring its period of oscillation when suspended

102

5. Quadrocopter actuator failsafe

Figure 3.4. The quadrocopter used for the experiments, maintaining controlled flight despite
the complete loss of one propeller.

around three different axes. The inertia matrix was estimated to be

IBB = diag (2.7, 2.7, 5.2)× 10−3kgm2. (3.28)

The propeller inertia about its axis of rotation was estimated by approximating the

propeller and motor rotor as disks and cylinders, respectively. The remainder of the

inertia matrix is neglected, so that the propeller’s inertia is constant when expressed in

the body-fixed frame:

IBP = diag (0, 0, 1.5)× 10−5kgm2. (3.29)

The propellers used were characterised using a force-torque sensor, and the thrust

and reaction torque coefficients were estimated as |κfi | = 6.41 × 10−6N s2 rad−2 and

κτi = 1.1× 10−7N m s2 rad−2, respectively. On a static test bench, the propellers are able

to produce thrust forces in the range of 0.2 N to 3.8 N.

The aerodynamic drag torque acting on the body was estimated to be diagonal in the

body-fixed frame, with entries experimentally identified as below.

KB
d = diag (0.7, 0.7, 1.4)× 10−4Nms2/rad2 (3.30)

5.2 Hover solutions

Two short-hand notations will be used in this section: the total mechanical power con-

sumed by the propellers will be expressed as PΣ = PP1 + PP2 + PP3 + PP4 . The propeller

speeds ΩPi will be collected into the vector Ω = {−ΩP1 ,ΩP2 ,−ΩP3 ,ΩP4}, where the signs

of the entries are changed so that all entries are positive if the propellers spin in their

intended directions.

103

Paper P3. Relaxed hover solutions

Figure 3.5. Hover solutions for different failure scenarios, from left to right: failure of a single
propeller, failure of two opposing propellers, and failure of two adjacent propellers. The graphs
depict how the hover solutions vary as a function of the ratio of angular velocities of the remaining
motors. For the single failure, solutions may also be found where the odd propeller turns faster
than the two propellers with the same handedness – these are not shown as they consume much
more power than the solutions shown. For both scenarios of two propellers failing only half
of the possible solutions are shown with the remainder following by symmetry – e.g. for two
opposing propellers failing, hover solutions exist with Ω̄3/Ω̄1 > 1. The angular velocity is plotted
as expressed in the body-fixed coordinate system, where ω̄BBE = (p, q, r). Note that the propeller
speeds shown are absolute.

All configurations with more than one remaining functional propeller have at least

one degree of freedom in selecting a hover solution. In such cases, numerical optimisation

is used to find the hover solution that uses least mechanical power, as computed in Sec-

tion 1. Depending on the application, minimising other variables may be more useful, e.g.

minimising the vehicle’s total rotation rate, or maximising the minimum distance from

the equilibrium propeller speeds to the actuator limits.

1) No failure For the quadrocopter with no propellers having failed there are 3 degrees

of freedom for finding a hover solution. As expected, the minimum power solution is to

104

5. Quadrocopter actuator failsafe

have all propellers turning at angular velocities of equal magnitude, and specifically

Ω̄ = (438, 438, 438, 438) rad s−1 (3.31)

ω̄BBE = (0, 0, 0) rad s−1 (3.32)

P̄Σ = 36.9 W (3.33)

r̄hvr = 0 mm. (3.34)

2) Failure of a single propeller Without loss of generality it will be assumed that pro-

peller 4 has failed, that is the propeller pointing to the right if looking at the quadrocopter

from the top. In this case the constraint Ω̄4 = 0 is added and two degrees of freedom

remain for the hover solution. Through numerical optimisation the following solution was

found to consume least power in hover:

Ω̄ = (585, 362, 585, 0) rad s−1 (3.35)

ω̄BBE = (0.2, 4.3, 19.5) rad s−1 (3.36)

P̄Σ = 46.8 W (3.37)

r̄hvr = 6 mm. (3.38)

Some intuition for this may be gained by constraining Ω̄1 = Ω̄3, and performing a line

search over the ratio Ω̄2/Ω̄1. This is illustrated in Fig. 3.5.

3) Failure of two opposing propellers Here it will be assumed that the left and right

hand side propellers have failed, so that Ω̄4 = Ω̄2 = 0. Now there is only one degree of

freedom for the hover solution, which may be explored with a line search over the ratio of

the remaining propeller speeds: Ω̄3/Ω̄1. This line search is illustrated in Fig. 3.5. The least

power solution is for zB to point opposite to gravity, with the two remaining propellers

rotating at equal speeds:

Ω̄ = (643, 0, 643, 0) rad s−1 (3.39)

ω̄BBE = (0, 0, 24.5) rad s−1 (3.40)

P̄Σ = 54.1 W (3.41)

r̄hvr = 0 mm. (3.42)

4) Failure of two adjacent propellers If both the right hand side and rear propellers have

failed, the two added constraints are Ω̄4 = Ω̄3 = 0. Again, only one degree of freedom

remains in the hover solution, which is also explored with a line search in Fig. 3.5. In this

case, no hover solution exists for the two remaining propellers rotating at equal speed.

Thus, it will be assumed that the magnitude of propeller 1’s velocity is larger than that

105

Paper P3. Relaxed hover solutions

of propeller 2. The least power solution is then:

Ω̄ = (1067, 218, 0, 0) rad s−1 (3.43)

ω̄BBE = (26.0, 0, 23.3) rad s−1 (3.44)

P̄Σ = 129 W (3.45)

r̄hvr = 9 mm. (3.46)

Note that a symmetric solution exists for
∣∣Ω̄P2

∣∣ > ∣∣Ω̄P1

∣∣, consuming the same power, but

where the vehicle rotates in the opposite direction.

5) Failure of three propellers If all but one propeller have failed, there are no degrees of

freedom remaining in the hover solution. It will be assumed that only the front propeller

remains, and the hover solution is then

Ω̄ = (1103, 0, 0, 0) rad s−1 (3.47)

ω̄BBE = (28.0,−1.6, 24.5) rad s−1 (3.48)

P̄Σ = 141 W (3.49)

r̄hvr = 8 mm. (3.50)

Note that it is unlikely that any practical quadrocopter has sufficient excess thrust

that a single propeller is able to produce the force required.

5.3 Control and validation

The controllability of the vehicle about the hover solution is investigated for each of the

five different failure cases presented above. If at least two propellers remain the method

of Section 4 was used directly. For the case of losing three propellers (and thus only a

single propeller remaining), the method was modified to use the single remaining force

as input. In this case, the total force cannot be controlled independently of the attitude.

The layout of the controller is shown in Fig. 3.6, showing the arrangement of the cascaded

position and attitude controllers. The controllers are described in more detail below.

1) Position control A position controller was created which calculates a desired ac-

celeration based on the vehicle’s current position and velocity, such that the vehicle’s

position behaves as a damped second order system [3.38]. This desired acceleration can

then be substituted for the desired average acceleration in (3.20), and be transformed into

a desired vehicle direction ndes and total thrust fΣ. The second order system’s natural

frequency and damping ratio were set to 1.5 rad s−1 and 0.7, respectively.

2) Attitude control Given a linearised attitude system of the form (3.27), a linear

quadratic regulator (LQR) controller [3.39] was designed for the attitude system. The

106

5. Quadrocopter actuator failsafe

Figure 3.6. The feedback structure used for the experiments. The position controller computes
a desired average acceleration ãEdes, which is then converted into a desired total thrust fΣ and
direction nEdes according to (3.20). The attitude controller’s outputs ui are combined with the
desired total thrust force to compute the desired individual propeller forces as in (3.25)-(3.26).

same LQR weights are used for each failure scenario. The cost on deviations from the

desired normal was set to 20, and the cost on the angular rates set to zero. The input

cost was set to the identity matrix of the appropriate size, with units N−2.

The five dimensional attitude subsystem (3.27) is stabilisable for each scenario, and

is controllable in each case except for two opposing propellers failing. In this case, for

the given hover solution, the vehicle’s angular velocity about zB is uncontrollable. Note

that this may be avoided by selecting a different hover condition – this would however

increase the hover power consumption and does not actually affect the vehicle’s hover

performance.

3) Simulation results The control strategy is validated in a nonlinear simulation for each

of the different failure scenarios. No sensor noise or external disturbances are simulated.

The actuators are simulated to have additional dynamics, so that the propeller speeds

respond as a first order system with time constant 15 ms.

A comparison of the flight performance for each failure scenario in simulation is shown

in Fig. 3.7. The data starts with the vehicle at the hover attitude, but with a 1 m horizontal

position offset. In each scenario, the vehicle is able to stabilise its position at the origin.

5.4 Experimental validation

The simulation is validated by comparing it to data collected from flight experiments in

the Flying Machine Arena. The vehicle’s state is estimated using position and orientation

measurements from a motion capture system, and inertial sensors on the vehicle. A video

of such experiments can be found in Extension 1. These experiments are only possible

for the scenarios of no failure, failure of a single propeller, and failure of two opposing

propellers – for the remaining cases (two adjacent propellers failing or three propellers

failing) the quadrocopter of Section 5.1 can not produce sufficient thrust to compensate

for the vehicle’s weight. The data for a single propeller failure are compared in Fig. 3.8,

and for the failure of two opposing propellers in Fig. 3.9.

107

Paper P3. Relaxed hover solutions

Figure 3.7. Simulation results for a quadrocopter recovering from a 1 m horizontal position
error for different failure scenarios. Each column represents a different failure condition, from
left to right: no failure (nominal operation), failure of a single propeller, failure of two opposing
propellers, failure of two adjacent propellers, failure of three propellers. Note that the angular
velocity is expressed in the control frame C, so that two components must be zero at equilibrium.
The position is expressed as dE = (d1, d2, d3), with d3 pointing opposite to gravity. The simu-
lation is validated by experiment in Section 5.4. Each row shares its legend. The steady-state
vertical offset for the failure of two adjacent propellers and the failure of three propellers is due
to a steady state attitude error, as can also be seen in the corresponding steady-state errors of
the angular velocity. This error could be explained by interaction between the attitude controller
and the position control, and higher-order dynamic effects not compensated for by the linear
controller strategy. The steady-state position offsets may be readily compensated for, e.g. by
adding an integral term to the position control.

For a single failure the experimental data differs somewhat from the simulated data,

most notably for the steady-state angular velocity. In experiment, the vehicle has an

angular velocity component perpendicular to the n axis of approximately 4.1 rad s−1.

The angular velocity component about n is also lower in experiment than expected from

the simulation (15.8 rad s−1 compared to 19.9 rad s−1). This discrepancy may be due to

additional torques acting on the vehicle, specifically torques generated by the translation

of the centres of the propellers. Further characterisation of the aerodynamic effects acting

on the vehicle at high rotational velocities represent a possibly interesting area of future

research.

Furthermore, the vehicle has an approximately 0.8 m vertical offset in experiment for

108

5. Quadrocopter actuator failsafe

Figure 3.8. Comparison of experimental (left column) and simulated (right column) data for
a quadrocopter with a single failed propeller, and an initial 1 m horizontal position error. The
angular velocity is as expressed in the control frame C, and the position is expressed as dE =
(d1, d2, d3). The steady-state vertical position offset of approximately 0.8 m in the experiment is
discussed in the text.

Figure 3.9. Comparison of experimental (left column) and simulated (right column) data
for a quadrocopter with two opposing failed propellers, and an initial 1 m horizontal position
error. The angular velocity is as expressed in the control frame C, and the position is expressed
as dE = (d1, d2, d3).

a single failure. This may be partially explained by the angular velocity offset of the

experiments w.r.t. the simulation – in the experiment, the quadrocopter’s thrust axis is

tilted farther away from gravity, and thus the feed-forward thrust to compensate for the

vehicle’s weight from (3.20) will be too low. This could be readily compensated by e.g.

109

Paper P3. Relaxed hover solutions

adding an integral control term to the position controller, or by refining the model to

allow for better prediction of the vehicle’s angular velocity equilibrium. Nonetheless, the

controller successfully stabilises the vehicle about the hover solution, and the vehicle’s

horizontal error is controlled to zero as expected.

For the case of two failed opposing propellers, the simulation matches the experimental

data well. It is notable that the two motors do not produce equal force in experiment

after the transients have died away – this may be explained by a centre of mass offset of

the experimental vehicle, or an imperfection in one of the two actuators.

5.5 Special cases for controllability

Some intuition for when it is possible to control a quadrocopter having lost one or more

propellers may be gained by analysing the hover conditions and controllability require-

ments of Sections 3 and 4 under some simplifying assumptions, especially for the case of

losing two opposing propellers.

Specifically, it will be assumed that the vehicle’s mass moment of inertia expressed in

the body frame is diagonal, with only two unique entries. The inertia of the propeller is

assumed to be zero except about its axis of rotation:

IBB = diag (IB,xx, IB,xx, IB,zz) (3.51)

IBP = diag (0, 0, IP,zz) (3.52)

where furthermore IP,zz � IB,zz. The propellers are assumed identical except for their

handedness, so that

κfi = (−1)iκf (3.53)

κτi = κτ . (3.54)

It is assumed that the vehicle’s angular velocity with respect to the inertial frame is

much smaller than the propellers’ angular velocity with respect to the body, i.e ‖ωBE‖ �
‖ωPiB‖ for each remaining propeller i. The propellers are mounted at a distance l from

the vehicle’s centre of mass.

The vehicle’s drag torque coefficient is given below, again with only two unique entries:

KB
d = diag (Kd,xx, Kd,xx, Kd,zz) . (3.55)

Defining the components of the vehicle angular velocity as ωBBE = (p, q, r), and applying

110

5. Quadrocopter actuator failsafe

the simplifications, it follows that:

ṗIB,xx = (IB,xx − IB,zz) qr −Kd,xxp ‖ωBE‖+

lκf
(
Ω2

2 − Ω2
4

)
− qIP,zz (Ω1 + Ω2 + Ω3 + Ω4)

(3.56)

q̇IB,xx = (−IB,xx + IB,zz) pr −Kd,xxq ‖ωBE‖+

lκf
(
Ω2

1 − Ω2
3

)
+ pIP,zz (Ω1 + Ω2 + Ω3 + Ω4)

(3.57)

ṙIB,zz = −Kd,zzr ‖ωBE‖−
κτ (|Ω1|Ω1 + |Ω2|Ω2 + |Ω3|Ω3 + |Ω4|Ω4) .

(3.58)

Considering specifically the loss of two opposing motors, such that Ω2 = Ω4 = 0, and

constraining the hover solution so that Ω̄1 = Ω̄3, the hover solution follows as

p̄ = q̄ = 0 (3.59)

r̄ =

√
κτm ‖g‖
κfKd,zz

(3.60)

Ω̄1 = Ω̄3 = −

√
m ‖g‖

2κf
. (3.61)

The attitude controllability can now be analysed as described in Section 4, by intro-

ducing the scalar attitude input u and requiring that the total force remain constant; it

follows that u = (fP1 − fP3) /2. The control frame C is selected to coincide with the body

frame B. The entries aij of the linearised dynamics matrix (3.27) and the input matrix B

are then as follows:

a11 = a22 = −Kd,xxr̄

IB,xx
(3.62)

a33 = −2Kd,zz r̄

IB,zz
(3.63)

a12 = −a21 =

√
2m ‖g‖IP,zz√
κfIB,xx

+
(IB,xx − IB,zz) r̄

IB,xx
(3.64)

a13 = a23 = a31 = a32 = 0 (3.65)

B =
2l

IB,xx

[
0 0 0 1 0

]T
. (3.66)

It is clear that r is an exponentially stable, uncontrollable mode of the linearised

attitude system, and it will be neglected for the remainder of the analysis. A reduced,

four state system remains with a single input. The controllability of this system may

be determined by computing the determinant of the 4 × 4 controllability matrix of the

111

Paper P3. Relaxed hover solutions

system and ensuring that this is non-zero [3.35].

After some tedious algebra it emerges that there are two plausible conditions where

this system is uncontrollable. Firstly, if (3.67) holds, the cross-coupling in the attitude

dynamics (3.3) disappears and the vehicle’s roll rate p is uncontrollable:

IP,zz
√

2Kd,zz = (IB,zz − IB,xx)
√
κτ . (3.67)

If, instead, the following two conditions hold, the system is also uncontrollable:

Kd,xx = 0 and (3.68)

IP,zz
√

2Kd,zz = (IB,zz − 2IB,xx)
√
κτ . (3.69)

In this case there are two uncontrollable modes, which correspond to p+ a12η1 and η2.

These two conditions may be used to determine whether a quadrocopter’s attitude

will be close to uncontrollable with two opposing propellers, given its physical parame-

ters. Unfortunately, the aerodynamic drag parameters Kd,xx and Kd,zz may be hard to

accurately predict.

If only a single propeller has failed, the same hover solution may be selected as when

two opposing propellers have failed with p̄ = q̄ = 0. Then the system has an additional

input which directly actuates the roll rate p, and it will be controllable for all mass

distributions.

1) Further simplifications The preceding results may be given a more intuitive geomet-

ric interpretation by further assuming that the propellers have zero inertia, i.e. IP,zz = 0.

The first case for being uncontrollable then simplifies from (3.67) to the requirement

that IB,xx = IB,zz (recall that by assumption also IB,xx = IB,yy). This happens if the ve-

hicle’s mass distribution is symmetric, i.e. similar to that of a sphere. The second case for

being uncontrollable simplifies from (3.69) to IB,zz = 2IB,xx = 2IB,yy – this corresponds

to the mass distribution of a two-dimensional object, e.g. a flat plate with the propellers’

thrust axes pointing along the plate’s normal.

6. Quadrocopter centre of mass offsets

If a quadrocopter’s centre of mass is not located at its geometric centre the propeller forces

will no longer all be equal when the vehicle hovers at zero angular velocity. Specifically,

for the input torques of (3.3) to balance, propellers closer to the centre of mass must

produce larger forces.

For large centre of mass offsets the required propeller forces may be close to (or even

exceed) the propeller limits, leaving little or no control authority for feedback control. In

112

6. Quadrocopter centre of mass offsets

Figure 3.10. Hover solutions for a quadrocopter with an additional mass mounted at varying
distances from the vehicle’s geometric centre, showing the solution at which the vehicle has zero
angular velocity, and a relaxed hover solution of Section 3 that minimizes power consumption.
Note that the abscissa is the distance of the centre of mass to the geometric centre, normalised
by the quadrocopter’s arm length. Because of the mass ratio, the additional mass is placed
six times farther from the propellers’ geometric centre than the resulting centre of mass. The
top four graphs plot for each propeller the ratio of each required propeller speed to that speed
required if the centre of mass coincides with the geometric centre. The bottom graph shows the
three components of the vehicle’s angular velocity in the relaxed hover solution expressed in the
body-fixed frame, where ωBBE = (p, q, r).

such a situation, the approach of Sections 3-4 may be used to find a hover solution where

the nominal motor forces are further away from the actuator limits.

As an extreme example: for a quadrocopter with propellers distributed on the corners

of a square, if the centre of mass is located halfway between the geometric centre of the

propellers and one propeller, the propeller farthest from the centre of mass must produce

zero force for the input torques to balance. If the centre of mass moves further away from

the geometric centre, the far propeller must produce a negative thrust. In this situation,

the vehicle will consume significantly more power than if the centre of mass coincides

113

Paper P3. Relaxed hover solutions

with the geometric centre. Furthermore, specific hardware may not be able to produce

negative thrust.

If however the vehicle is allowed to rotate during hover, one may search e.g. for a

hover solution that minimizes the required mechanical power, or maximizes the distance

from the propellers’ thrust in hover to the actuator saturation limits.

As an example, consider the quadrocopter of Section 5 carrying an additional load

of 0.1 kg at some distance ρ from the geometric centre of the propellers. As the mass

is shifted farther from the vehicle’s geometric centre, the vehicle’s centre of mass also

moves farther from the geometric centre. The ratio of vehicle mass to the additional mass

implies that the centre of mass is located at a distance ρ/6 from the geometric centre.

The mass moment of inertia of the vehicle with the added mass may be computed using

Huygen’s theorem [3.30]. For the simplicity of analysis, it is assumed that the vehicle’s

drag matrix Kd remains unchanged with the added mass and the resulting shifted centre

of mass.

Fig. 3.10 compares the motor speeds and power requirements of the quadrocopter

as the mass is moved farther away from the geometric centre, for both the conventional

hover solution (with zero angular velocity) and the relaxed hover solution of Section 3.

The mass is moved from the geometric center along the axis pointing towards propeller 1.

For the conventional hover solution, the power required increases significantly as the mass

is moved outwards, and at distances of ρ > 0.51 m the propeller farthest from the added

mass must rotate in the direction opposite to the usual.

The figure also shows the results if the vehicle is allowed to rotate, and a search is

done to find motor speeds that minimise the mechanical power in hover. The vehicle’s

mechanical power remains within 5% of the nominal power, even with displacements up

to ρ = 1.2 m. The motor speeds also remain close to the nominal speeds, even at large

displacements. Note that for ρ > 1.02 m the centre of mass lies outside of the convex hull

of the four propellers.

Thus, if the propeller’s direction of rotation is fixed, a quadrocopter may be operated

under a much wider range of centre of mass positions with the relaxed hover conditions

compared to the restriction that the vehicle’s angular velocity is zero at hover.

7. Novel vehicles

A novel class of hover-capable vehicles may also be designed using the approach of Sec-

tion 3. Here, three examples are given, with novel vehicles having two, three, or four

propellers arranged symmetrically about the vehicle’s centre of mass. The propellers are

mounted such that their thrust axes are parallel, and all propellers have the same hand-

edness.

This family of vehicles is dubbed “spinners”, allowing a prefix for the number of pro-

pellers. A quadspinner, trispinner, and bispinner are shown in Fig. 3.11, and Extension 2

114

7. Novel vehicles

Figure 3.11. A novel class of flying vehicles, from left to right: bispinner, trispinner, and
quadspinner. For each vehicle, all propellers rotate in the same direction, causing the vehicle to
rotate in the opposite direction in hover. Extension 2 contains a video showing each of these
vehicles flying.

contains a video showing each vehicle in flight. Because of their symmetries, the hover

equilibria are chosen such that all propellers have the same rotational speed.

Each vehicle is controlled similarly to the quadrocopter in Fig. 3.6, where the posi-

tion and attitude control are separated. A desired attitude is generated by the position

controller, which makes the position behave like a second order damped system. An LQR

controller is created for the attitude, based on the first order model of Section 4.

The notation of Section 5.2 will be used to describe the hover solutions, and again so

that all entries in Ω̄ are nominally positive: Ω̄ =
{
−ΩP1 , . . . ,−ΩPNp

}
. The motors and

propellers used are the same as those of Section 5.1.

7.1 Quadspinner

A normal quadrocopter may easily be converted into a quadspinner, by reversing the

direction of rotation of two motors (and accordingly replacing the propellers). The quad-

spinner shown in Fig. 3.11 has the same physical properties as the quadrocopter presented

in Section 5.1, except for the propellers’ handedness.

It will then hover at the following condition:

Ω̄ = (462, 462, 462, 462) rad s−1 (3.70)

ω̄BBE = (0, 0, 24.2) rad s−1 (3.71)

P̄Σ = 38.9 W. (3.72)

7.2 Trispinner

A three propeller vehicle was also created, with the propellers mounted at intervals of 120◦.

Conceptually, this trispinner is very similar to the quadspinner, as the propellers can

produce a torque in any direction in the plane perpendicular to the thrust vector, for

some given total thrust value.

115

Paper P3. Relaxed hover solutions

Visually similar tri-rotor vehicles exist (see for example [3.40], [3.41]) that use a servo

motor in addition to the three propellers, where the servo motor can rotate one of the

vehicle’s arms and thus vector the thrust of one propeller. These vehicles can then fully

control their attitudes in addition to their total thrust. The trispinner, in comparison,

does not attempt to control its orientation about the thrust axis, and has the advantage

of being mechanically simpler.

The vehicle depicted in Fig. 3.11 has a mass of 0.44 kg, with the propellers mounted 0.17 m

from the vehicle’s centre of mass. The vehicle’s inertia matrix and drag characteristics

are then given below:

IBB = diag (2.4, 2.3, 4.4)× 10−3kg m2 (3.73)

KB
d = diag (0.55, 0.55, 1.1)× 10−4Nms2/rad2 (3.74)

and the hover condition is then

Ω̄ = (498, 498, 498) rad s−1 (3.75)

ω̄BBE = (0, 0, 26.1) rad s−1 (3.76)

P̄Σ = 36.6 W. (3.77)

7.3 Bispinner

Finally, a bispinner was created, by removing two complete arms from a quadrocopter.

The vehicle has a mass of 0.38 kg, and the inertia matrix and drag characteristics are as

below:

IBB =

270 65 0

65 3300 0

0 0 3400

× 10−6kg m2 (3.78)

KB
d = diag (0, 3.6, 7.2)× 10−5Nms2/rad2. (3.79)

Note that the vehicle’s inertia about the axis connecting the motors is an order of mag-

nitude smaller than the other terms on the diagonal. The off-diagonal terms follow as a

result of the battery being positioned at an angle.

The hover condition for this vehicle is

Ω̄ = (567, 567) rad s−1 (3.80)

ω̄BBE = (0,−0.1, 29.7) rad s−1 (3.81)

P̄Σ = 36.1 W. (3.82)

Because of its mass distribution, this vehicle has some unique dynamic properties

116

8. Conclusion and outlook

Figure 3.12. Experimental data for a bispinner at hover, where the motors (and thus attitude
control) are switched off at time 0. The open loop exponential instability of the angular velocity
is clearly visible, and angular accelerations up to 450 rad s−2 are measured by the vehicle’s rate
gyroscopes.

compared to the tri- and quadspinner. The matrices of the linearised attitude system,

computed with the method of Section 4, are as below:

A =

0 29.7 0 −1 0

−29.7 0 1 0 0

0 0 1.6 54.1 −0.2

0 0 22.8 −2.0 0

0 0 0 0 −1.3

 (3.83)

B =
[
0 0 24.9 −103.5 0.3

]T
. (3.84)

This linearised system has a single exponentially unstable mode, with eigenvalue

at 35.2. This open loop instability can be clearly seen in Fig. 3.12.

8. Conclusion and outlook

This paper presents a broadened definition of hover for multicopters, where specifically

the vehicle is not constrained to have zero angular velocity when hovering. The class

of vehicles that can achieve these hover conditions are a superset of conventional multi-

copters.

By allowing a conventional multicopter to hover at non-zero angular velocity, it is

shown that the vehicle can maintain controlled flight despite the complete loss of all but

one propeller. This seems particularly relevant in the case of quadrocopters, as this negates

one of the main arguments for using hexacopters or octocopters instead of quadrocopters.

As such, the use of the proposed failsafe solutions may allow for a more widespread use

117

Paper P3. Relaxed hover solutions

(and greater public acceptance of) quadrocopters. The extended hover solutions are also

shown to allow a quadrocopter to maintain flight under large centre of mass disturbances.

Novel vehicles may also be conceived, such as the spinners presented herein. These

vehicles could be used as novel hobbyist platforms or toys, or could be used as novel

sensing platforms. For example, by mounting a line scanner to such a vehicle, and using

the vehicle’s angular velocity to sweep the sensor over the environment, a mechanically

simple omnidirectional sensor can be created from a line scanner.

Acknowledgements

The Flying Machine Arena is the result of contributions of many people, a full list of

which can be found at www.flyingmachinearena.org. The authors would like to thank

Alex Wilkinson for his help designing the trispinner.

Funding

This research was supported by the Swiss National Science Foundation (SNSF), under

grant application 138112.

A. Index to multimedia extensions

The multimedia extensions to this article are at: www.ijrr.org.
Ext. Media type Description URL

1 Video Quadrocopter failsafe flight experiments www.mwm.im/l/Relaxed1

2 Video Novel vehicles flight experiments www.mwm.im/l/Relaxed2

References

[3.1] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, and M.

Pollefeys, “Vision-based autonomous mapping and exploration using a quadro-

tor MAV”, in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, 2012, pp. 4557–4564.

[3.2] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R.

Siegwart, “Monocular vision for long-term micro aerial vehicle state estimation:

A compendium”, Journal of Field Robotics, vol. 30, no. 5, pp. 803–831, 2013.

118

REFERENCES

[3.3] W. Selby, P. Corke, and D. Rus, “Autonomous aerial navigation and tracking of

marine animals”, in Proceedings of the 2011 Australasian Conference on Robotics

and Automation, Australian Robotics & Automation Association, 2011, pp. 1–7.

[3.4] J. Rasmussen, J. Nielsen, F. Garcia-Ruiz, S. Christensen, and J. C. Streibig,

“Potential uses of small unmanned aircraft systems (UAS) in weed research”,

Weed Research, vol. 53, no. 4, pp. 242–248, 2013.

[3.5] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control for coopera-

tive manipulation and transportation with aerial robots”, International Journal

of Robotics Research, vol. 30, no. 3, pp. 324–334, 2011.

[3.6] J. R. Hörandel, S. Buitink, A. Corstanje, J. E. Enriquez, and H. Falcke, “The

LOFAR radio telescope as a cosmic ray detector”, in International Cosmic Ray

Conference, 2013.

[3.7] R. D’Andrea, “Can drones deliver?”, IEEE Transactions on Automation Science

and Engineering, vol. 11, no. 3, pp. 647–648, 2014.

[3.8] R. Voyles and G. Jiang, “Hexrotor UAV platform enabling dextrous interac-

tion with structures - preliminary work”, in IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), IEEE, 2012, pp. 1–7.

[3.9] H. Efraim, A. Shapiro, and G. Weiss, “Quadrotor with a dihedral angle: On the

effects of tilting the rotors inwards”, Journal of Intelligent & Robotic Systems,

pp. 1–12, 2015.

[3.10] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopoulos, A.

Martinelli, M. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, D. Gurdan, L.

Heng, G. H. Lee, S. Lynen, M. Pollefeys, A. Renzaglia, R. Siegwart, J. Stumpf,

P. Tanskanen, C. Troiani, S. Weiss, and L. Meier, “Vision-controlled micro fly-

ing robots: From system design to autonomous navigation and mapping in

gps-denied environments”, IEEE Robotics Automation Magazine, vol. 21, no.

3, pp. 26–40, Sep. 2014.

[3.11] A. Marks, J. F. Whidborne, and I. Yamamoto, “Control allocation for fault

tolerant control of a VTOL octorotor”, in UKACC International Conference on

Control, IEEE, 2012, pp. 357–362.

[3.12] T. Haus, M. Orsag, and S. Bogdan, “Omnidirectional vision based surveillance

with spincopter”, in IEEE International Conference on Unmanned Aircraft Sys-

tems (ICUAS), 2013, pp. 326–332.

[3.13] H. Youngren, S. Jameson, and B. Satterfield, “Design of the SAMARAI monow-

ing rotorcraft nano air vehicle”, in Proceedings of the American Helicopter So-

ciety AHS 65th Annual Forum and Technology Display, 2009.

[3.14] Y. Zhang, A. Chamseddine, C. Rabbath, B. Gordon, C.-Y. Su, S. Rakheja, C.

Fulford, J. Apkarian, and P. Gosselin, “Development of advanced FDD and FTC,

techniques with application to an unmanned quadrotor helicopter testbed”,

Journal of the Franklin Institute, vol. 350, no. 9, pp. 2396–2422, 2013.

119

Paper P3. Relaxed hover solutions

[3.15] Fruity chutes, “Multicopter, quadcopter, drone, RC aircraft recovery and res-

cue chutes”, (Accessed 29 Nov. 2014) http: // www. fruitychutes. com/

uav_ rpv_ drone_ recovery_ parachutes/ multicopter_ quadcopter-rc_

aircraft_ recovery_ and_ rescue_ chutes. htm , 2014.

[3.16] Dronologista, “DJI dropsafe system”, (Accessed 29 Nov. 2014) http: // robohub.

org/ dji-dropsafe-system/ , Oct. 2014.

[3.17] M. Ranjbaran and K. Khorasani, “Fault recovery of an under-actuated quadro-

tor aerial vehicle”, in IEEE Annual Conference on Decision and Control (CDC),

IEEE, 2010, pp. 4385–4392.

[3.18] H. A. Izadi, Y. Zhang, and B. W. Gordon, “Fault tolerant model predictive

control of quad-rotor helicopters with actuator fault estimation”, in Proceedings

of the 18th IFAC World Congress, 2011, pp. 6343–6348.

[3.19] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join, and D. Theilliol, “Flatness-

based trajectory planning/replanning for a quadrotor unmanned aerial vehi-

cle”, IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4,

pp. 2832–2848, 2012.

[3.20] A. Freddi, A. Lanzon, and S. Longhi, “A feedback linearization approach to

fault tolerance in quadrotor vehicles”, in Proceedings of the 18th IFAC World

Congress, 2011, pp. 5413–5418.

[3.21] A. Akhtar, S. Waslander, and C. Nielsen, “Fault tolerant path following for a

quadrotor”, in IEEE Annual Conference on Decision and Control (CDC), Dec.

2013, pp. 847–852.

[3.22] A. Lanzon, A. Freddi, and S. Longhi, “Flight control of a quadrotor vehicle

subsequent to a rotor failure”, Journal of Guidance, Control, and Dynamics,

vol. 37, no. 2, pp. 580–591, 2014.

[3.23] M. C. Achtelik, K.-M. Doth, D. Gurdan, and J. Stumpf, “Design of a multi rotor

MAV with regard to efficiency, dynamics and redundancy”, in AIAA Guidance,

Navigation, and Control Conference, 2012, pp. 1–17.

[3.24] Y. Kataoka, K. Sekiguchi, and M. Sampei, “Nonlinear control and model anal-

ysis of trirotor uav model”, in Proceedings of the 18th IFAC World Congress,

IFAC, vol. 18.1, 2011, pp. 10 391–10 396.

[3.25] Y. Kataoka, K. Sekiguchi, and M. Sampei, “Circle motion control of trirotor

uav via discrete output zeroing”, in IEEE Annual Conference on Decision and

Control (CDC), IEEE, 2013, pp. 226–231.

[3.26] E. R. Ulrich, J. S. Humbert, and D. J. Pines, “Pitch and heave control of robotic

samara micro air vehicles”, Journal of Aircraft, vol. 47, no. 4, pp. 1290–1299,

2010.

[3.27] M. Orsag, J. Cesic, T. Haus, and S. Bogdan, “Spincopter wing design and flight

control”, English, Journal of Intelligent & Robotic Systems, vol. 70, no. 1-4,

pp. 165–179, 2013.

120

REFERENCES

[3.28] M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter de-

spite the complete loss of one, two, or three propellers”, in IEEE International

Conference on Robotics and Automation (ICRA), 2014.

[3.29] P. Martin and E. Salaün, “The true role of accelerometer feedback in quadro-

tor control”, in IEEE International Conference on Robotics and Automation

(ICRA), 2010, pp. 1623–1629.

[3.30] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics Second

Edition. American Institute of Aeronautics and Astronautics, 2007.

[3.31] P. Pounds, R. Mahony, P. Hynes, and J. Roberts, “Design of a four-rotor aerial

robot”, in Australasian Conference on Robotics and Automation, vol. 27, 2002,

p. 29.

[3.32] B. W. McCormick, Aerodynamics Aeronautics and Flight Mechanics. John Wiley

& Sons, Inc, 1995.

[3.33] R. Mahony, V. Kumar, and P. Corke, “Aerial vehicles: Modeling, estimation,

and control of quadrotor”, IEEE Robotics & Automation Magazine, vol. 19, no.

3, pp. 20–32, 2012.

[3.34] M. D. Shuster, “A survey of attitude representations”, The Journal of the As-

tronautical Sciencies, vol. 41, no. 4, pp. 439–517, 1993.

[3.35] F. Callier and C. Desoer, Linear System Theory, ser. Springer Texts in Electrical

Engineering. Springer, 1994.

[3.36] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus,

“Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz”, in

IEEE International Conference on Robotics and Automation (ICRA), Apr. 2007,

pp. 361–366.

[3.37] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.

D’Andrea, “A platform for aerial robotics research and demonstration: The Fly-

ing Machine Arena”, Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[3.38] R. Dorf and R. Bishop, Modern Control Systems, Eleventh Edition. Prentice-

Hall, 2008.

[3.39] B. D. Anderson and J. B. Moore, Optimal control: Linear quadratic methods.

Courier Dover Publications, 2007.

[3.40] S. Salazar-Cruz, F. Kendoul, R. Lozano, and I. Fantoni, “Real-time control of

a small-scale helicopter having three rotors”, in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), IEEE, 2006, pp. 2924–2929.

[3.41] J.-T. Zou, K.-L. Su, and H. Tso, “The modeling and implementation of tri-rotor

flying robot”, Artificial Life and Robotics, vol. 17, no. 1, pp. 86–91, 2012.

121

Paper P4

Critical subsystem failure mitigation in an

indoor UAV testbed

Mark W. Mueller and Raffaello D’Andrea

Abstract

An autonomous safety mechanism is presented, as implemented in an indoor fly-
ing vehicle research testbed. The safety mechanism relies on integration of onboard
gyroscope measurements and thrust commands to estimate the vehicle state for
short lengths of time. It is used in the case of loss of external control signal or loss
of external measurement data, to reduce the likelihood of a vehicle crash, or at least
reduce the severity of an unavoidable crash. As UAVs move into ever more main-
stream applications with increased public interaction, such safety systems become
more critical.

Published in Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS).

c©2012 IEEE. Reprinted, with permission, from Mark W. Mueller and Raffaello D’Andrea, “Critical sub-
system failure mitigation in an indoor UAV testbed”, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012.

123

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

1. Introduction

The Flying Machine Arena (FMA) is a testbed for aerial vehicle research, with a unique

mix of fundamental research and public engagement. Research and demonstrations are

done using a fleet of flying vehicles, and the correct functioning of the system relies on a

high-precision motion capture system, and a low-latency command radio link. Failure of

either of these subsystems renders the vehicles effectively blind, except for their inertial

sensors – this paper describes a strategy to reduce the impact of such a failure.

The FMA is a 10×10×10m space, covered by netting on the sides and padding on the

floor. The vehicles used in research are quadrocopters, control of which is split into two

layers (onboard the vehicle and offboard on a ground station), which are connected by

wireless links. Testbeds similar to the FMA are GRASP at the University of Pennsylvania

[4.1]; Stanford/Berkley Starmac [4.2] and MIT Raven [4.3].

The FMA has become well known for regular interactive demonstrations to the pub-

lic, including dancing to music [4.4], balancing an inverted pendulum [4.5] and juggling

balls [4.6]. During 2011, 44 events were held, during which 430 visitors attended demon-

strations. Examples of demonstrations are shown in Fig. 4.1, where the mobile version

of the FMA infrastructure is also shown. This mobile infrastructure allows the system to

be deployed at temporary sites – the first external demonstration of the FMA was for

the Flight Assembled Architecture project at an exhibition in Orléans, France. The fully

autonomous construction of a 6 m structure consisting of 1500 foam bricks was done over

four days, in front of (and directly above) a large crowd. This mix of research and public

engagement places a high demand on the safety features of the system, where it is needed

that the system be safe to operate at demonstrations with lay-people, without restricting

the performance of the system, and still allowing the system to be flexible enough to

allow for the rapid development of new projects.

Traditional safety mechanisms, e.g. safety pilot are not applicable here: the relatively

small working space implies little time to react, while flying with a large number of

vehicles would necessitate a large number of safety pilots. For example, in [4.7] the risk

reduction strategy requires two safety operators: one to monitor a ground station, and

an emergency pilot to take over manual control in the case of an emergency. In this

paper, algorithms with low computational cost are developed allowing the vehicle greater

autonomy from the ground station, without requiring additional bulky hardware (such

as laser scanners, or cameras). It is important to note that the scope of this not as broad

as e.g. completely autonomous flight using vision [4.8] or laser scanners [4.9].

The paper is organised as follows: Section 2 describes the system and its components,

in 3 the failure modes are discussed, while the mechanism is discussed in Section 4, with

results given in 5. A conclusion is given in Section 6.

124

2. System overview

2. System overview

2.1 Vehicle dynamics

The vehicles of choice in the FMA are modified Ascending Technologies Hummingbird

quadrocopters, as shown in Fig. 4.1 and 4.2, each with four alternately rotating propellers.

By mixing the thrusts fi from each propeller i, the vehicle can generate moments about

all the body axes, and a total thrust force fT . The position, velocity and acceleration of

the vehicle in the inertial frame are written as xI , ẋI and ẍI , respectively. The rotation

of the vehicle body frame w.r.t. the inertial frame is RIB, and the body rates (in the

body frame) are ωB = (p, q, r). The inertia of the vehicle, expressed about its axes, is IBB
and the mass of the vehicle is mB.

The rigid body dynamics of the vehicle are given by

ẍI = RIBcB + gI (4.1)

ṘIB = RIB
[
ωB×

]
(4.2)

IBB ω̇
B = IBB l

B −
[
ωB×

]
IBBω

B, (4.3)

where
[
ωB×

]
is the skew-symmetric 3× 3 matrix representation of the cross product of

ωB = (p, q, r)[4.10]. The mass-normalised thrust force cB and moment lB produced by

Figure 4.1. Close interaction with the public places high demands on the safety systems of
the Flying Machine Arena. At the top, a primary school class attending a demonstration, and at
the bottom picture a quadrocopter placing a brick as part of the Flight Assembled Architecture
project.

125

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

3I

1I 2I
gI

f1

f2

f3

f4
3B

1B
2B

Figure 4.2. Dynamics of a quadrocopter, with the triple
(
1I ,2I ,3I

)
defining the ground-

fixed inertial frame, and
(
1B ,2B ,3B

)
the body-fixed frame, related by the rotation RIB and

translation xI – see also (4.1).

the propellers are expressed in the body frame as [4.1]

lB =

 l(f2 − f4)

l(f3 − f1)

κ(f1 − f2 + f3 − f4)

 (4.4)

cB = (0, 0, c) (4.5)

c = (f1 + f2 + f3 + f4) /mB (4.6)

gI = (0, 0,−g) . (4.7)

The moment is a function of the thrusts, propeller distance from the body centre l and

an experimentally determined constant κ.

The rotation matrix RIB can be be characterised by three Euler angles: here the yaw,

pitch, roll sequence is used; rotating consecutively about the inertial z axis by the yaw

angle ψ, then about the (new) y axis by the roll angle θ and finally about the (resulting)

x axis by the roll angle φ, to get the rotated body frame. The rotation matrix is then

characterised as RIB(ψ, θ, φ) = R3(ψ)R2(θ)R1(φ) [4.10], where

R1(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (4.8)

R2(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (4.9)

R3(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (4.10)

126

2. System overview

2.2 Communication

There are two communication channels linking the vehicle to the ground station, which

will be called the command and the data channel. The command channel is a low-latency,

simplex channel, while the data channel is a high-bandwidth, variable latency duplex

channel. The output of the high-level controller is transmitted to the vehicle over the

command channel, while the data channel is used for non-critical data such as send-

ing offboard state estimates (as described in this paper), and also vehicle feedback and

parameter read/write commands from the ground station.

2.3 Control

Control of the quadrocopter is split into two parts, see Fig. 4.3: firstly a high-level con-

troller generating desired normalised thrust and desired body rates on the ground station,

in order to achieve some high-level goal (e.g. tracking a trajectory to balance a pendulum

[4.5]). This loop runs at approximately 60 Hz, and the commands are sent to the vehi-

cle over the command channel. The high-level controller performs feedback on a state

estimate of the vehicle, using pose measurements from the motion capture system.

The second part is the low-level controller, running onboard the vehicle, which controls

the motor speeds to achieve the desired body rates and total thrust, using rate gyro

measurements in feedback. The onboard controller is run at 800 Hz. For the purposes of

this paper, the control of the motor speeds is ignored, and assume that individual motor

thrusts are directly controlled.

Each vehicle is marked with a unique configuration of three markers, which are visible

to a motion capture system. This system measures the position and attitude of each

vehicle, with a precision of approximately 0.1 mm and 0.1◦, respectively, at a rate of

200 Hz. These measurements are then used to estimate the state of the vehicle.

Gyroscopes

Command
channel

Ground station Onboard

Motion capture system

Pose
measurements

High-level
controller

Motors

Low-level
controller

Emergency
controlle r

Estimator

Data
channel

Data
radio

Data
radio

Estimator

Data
processing

Command
radio

Command
radio

Observations

Figure 4.3. System layout of the Flying Machine Arena. Critical paths are marked in red,
radio connections are marked with dash-dotted lines.

127

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

Further details of the FMA can be found in [4.11].

3. Failure modes

We wish to guard against failures of the offboard system, which would result in its inability

to control the vehicle normally. Specifically, we are concerned with the red lines of Fig. 4.3;

loss of the motion capture data and a loss of the command channel.

Loss of the motion capture data can be due to loss of data for a specific vehicle (e.g.

occlusion), or complete loss of motion capture data (e.g. software crash). Upon losing the

motion capture data, the offboard system is rendered blind and can no longer estimate

the dynamic state of the vehicle. The second mode of failure is loss of the command

channel: in this case the offboard commands can no longer reach the vehicles.

Loss of only the data channel would mean that the failsafe mechanism cannot take

over if a critical system were to also fail (as the offboard updates are needed so that the

vehicle has a reliable onboard estimate). If a failure of the data channel is detected, the

vehicle is landed (using the regular offboard systems) until the data channel is restored.

4. Fail-safe mechanism

Here a mechanism is developed to delay a vehicle crash in the event of a critical subsystem

failure so that the system may recover; or if a crash is inevitable, to mitigate its severity

and allow sufficient warning for any people inside the arena. An emergency controller

to achieve hover for short periods of time is developed, controlling on a state estimated

using inertial sensors and occasional offboard updates.

It is assumed that the vehicle is in near-hover such that the angles φ and θ are small

and that the yaw angle remains constant, so that dynamics decouple along the axes

defined by a yawed reference frame:

xY = R3(ψ)TxI (4.11)

ẋY = R3(ψ)T ẋI = (vx, vy, vz) (4.12)

ẍY = R3(ψ)T ẍI = (v̇x, v̇y, v̇z) (4.13)(
φ̇, θ̇, ψ̇

)
≈ (p, q, 0) . (4.14)

Note that the yaw angle is typically controlled explicitly to some constant angle by the

offboard high level controller.

Because gI lies along the axis of rotation of R3, and is thus expressed the same in

128

4. Fail-safe mechanism

both frames, rewriting (4.1) yields

ẍY ≈ R2(θ)R1(φ)cB +R3(ψ)TgI (4.15)v̇xv̇y
v̇z

 ≈

sin θ cosφ

− sinφ

cos θ cosφ

 c+

 0

0

−g

 . (4.16)

Because the axes are assumed to decouple, only the strategy for estimating and con-

trolling vx, θ and q are described; the analogue for vy, φ and p being straightforward to

derive.

4.1 Onboard lateral state estimate

Via the data channel, the current off-board estimates of vx and θ are periodically sent,

denoted with v̄x(tn) and θ̄(tn), respectively, valid at time tn.

The procedure to estimate the speed vx of the quadrocopter is then as follows, where

v̂ denotes the onboard estimate of a variable v. The body rate is estimated directly from

the gyroscopes, using a simple predict-correct estimator. Let ∆t represent the period of

the onboard loop (in reality, ∆t = 1.25 ms), q̂0 the estimate of the gyro bias, q̌[k] the gyro

output at time step k, and Ixx is the moment of inertia of the body about the body x

axis:

q̂−[k + 1] = q̂[k] + ∆t l (f2 − f4) /Ixx (4.17)

q̂[k + 1] = λ q̂−[k + 1] + (1− λ) (q̌[k]− q̂0) , (4.18)

with λ a filter parameter. The rate estimate is then integrated for the angle estimate,

using simple Euler integration. The acceleration is calculated from (4.16), and integrated

for the velocity estimate, where θ̂[k|n] is the estimate at step k, using an external update

number n,

θ̂[k + 1|n] = θ̂[k|n] + q̂[k]∆t (4.19)

v̂x[k + 1|n] = v̂x[k|n] + c[k] sin θ̂[k|n]∆t. (4.20)

If a new external estimate is received at step k, the estimate is updated as follows:

θ[k|n+ 1] = θ̄[n+ 1] +
k∑

l=k−N
q̂[k]∆t (4.21)

v̂x[k|n+ 1] = v̄x[n+ 1] +
k∑

l=k−N
c[k] sin θ̂[k]∆t, (4.22)

129

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

where N is age of the offboard estimate in time steps, which is the delay between the data

being captured from which the offboard estimate is formed, and its arrival onboard. This

means the last N steps of rate and angle estimates, as well as the collective acceleration

command, need to be stored.

Upon loss of the motion capture data, or the data channel, the estimates would be

propagated using only the gyroscopes, i.e. (4.19)-(4.20). The estimation error is discussed

more fully below.

4.2 Emergency control strategy

Here the control strategy to bring the vehicle to hover is developed, i.e. lateral speeds to

zero. Initially, he distinction between true state and the estimate thereof is disregarded,

and we neglect the effects of discretization and design the controller in continuous time.

The controller is designed by linearising (4.16) about hover, and it is desired that the

vertical acceleration be zero, so that differentiating yields

c ≈ g, ċ ≈ 0, v̈x ≈ θ̇g, sin θ ≈ θ, (4.23)

where θ̇ = qc is taken as system input. Choosing a feedback law

qc = −2ζωnθ −
ω2
n

g
vx (4.24)

results in the differential equation for velocity

v̈x + 2ζωnv̇x + ω2
nvx = 0, (4.25)

by which the speed should be driven to zero like a second order system with damping

ratio ζ and natural frequency ωn.

By (4.3) it is clear that qc = q is not directly controlled, but only q̇, which is controlled

through the low-level controller with the proportional feedback law

q̇ = kq (qc − q) , (4.26)

which combined with the above feedback law of (4.24) introduces a third pole to the

system, giving
1

kq

...
v x + v̈x + 2ζωnv̇x + ω2

nvx = 0. (4.27)

If kq ≥ 10|ζωn|, the response of the system can be approximated by the dominant

roots of the second order system [4.12]. The values used in the FMA are kq = 100 /s,

ζ = 0.7 and ωn = 2 rad/s, justifying the neglect of the effects of rotational inertia.

In reality we do not have access to the true variables, but only their estimates q̂, θ̂ and

130

4. Fail-safe mechanism

v̂x. These will have some initial error and be further corrupted by measurement errors,

which can will be modelled as a constant bias error eq = q[k] − q̂[k], and some zero-

mean noise whose effect is neglected. We define the error variable ev[k] = vx[k] − v̂x[k],

eθ[k] = θ[k]− θ̂[k], so that

eθ[k + 1] = eθ[k] + eq t = eθ[0] + eq∆tk (4.28)

ev[k + 1] = ev[k] + g eθ[k]∆t

= ev[0] + g eθ[0]∆tk +
1

2
g eq∆t

2k(k + 1). (4.29)

This implies that, although the feedback law acts to drive v̂x to zero (and therefore

θ̂ too), an initial error will cause the true angle θ to settle at a non-zero value, while vx
will grow linearly. A gyro bias will cause θ to linearly diverge, and the speed to grow

with k2. By implication, therefore, the position will grow with k3. This clearly shows

the importance of well calibrated gyros, and unbounded errors mean that this strategy

cannot hold the vehicle in a hover indefinitely.

To maintain zero inertial z acceleration,

c[k] =
g

cos θ̂[k] cos φ̂[k]
(4.30)

is applied, from (4.16), instead of (4.23). Here it should be noted c[k] ≥ g, i.e. the effects

of noise on the angle estimate will be visible in the vehicle accelerating upwards. In the

implementation, (4.24) is limited such that |θ| < 60◦.

4.3 Switching logic

The emergency controller is triggered when the vehicle stops receiving external commands

via the command channel, or the commands indicate (by an explicit flag) that the external

controller has stopped receiving measurements from the motion capture system. When

the emergency controller is run for the first time, the vehicle evaluates its state estimate:

firstly, the last update needs to be less than 2 s old, and the estimated angles need

to be less than 60◦, and the speed less than 10 m/s. These values were chosen based on

experiments, as limits of a “good” estimate. If the onboard estimate does not satisfy all of

these criteria, the vehicle immediately switches off all propellers, and will fall ballistically.

The idea here is that it is safer to just fall than to control the vehicle on a bad estimate.

The vehicle will then fly using the onboard emergency controller for a period of 2 s,

after which it will enter a “crash landing” mode, where the total thrust is reduced to

c = g − 1 m/s2 such that the vehicle will accelerate downwards at 1 m/s2. The duration

of the crash landing manoeuvre is calculated as the time required to descend at 1 m/s2

from the last measured vehicle height. When the crash landing period is completed, the

vehicle switches off its motors and enters an idle mode. At any point, if the cause of

the emergency procedure is resolved (i.e. the command channel comes back online, or

131

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

Switch off
propellers

Internal
estimate OK?

Start clock, t=0
calculate descent time t*

Run emergency
controller

t<2+t*?

Maintain
height

t<2?

Y

Have commands
and measurements?

Descend at
1 m/s2

Execute
commands

Y

Have
measurements?

NHave
commands?

Y

Y

Y Y

N

N

N N

N

Figure 4.4. Emergency controller switching logic.

the motion capture data returns), control is immediately handed back to the offboard

controller. This is illustrated in Fig. 4.4.

5. Experimental results

5.1 Experimental setup

To test the emergency algorithm, a complete loss of data from the motion capture system

is triggered. The vehicle is flown horizontally along the inertial x-axis at constant speed,

using feedback on the motion capture system and external commands sent through the

command channel, while external state updates are sent to the vehicle at 10 Hz through

the data channel. When the vehicle passes through x = 0, the motion capture data is

cut off, and the vehicle is commanded to fly using only onboard estimates. The external

state updates also stop. For two seconds, the vehicle uses the controller of Section 4.2

to attempt a level hover, after which it will descend at 1 m/s2 for the time necessary to

descend from its last observed height.

The damping ratio for the emergency controller is set to ζ = 0.7, and the natural

frequency to ωn = 2 rad/s. The age of the offboard estimate is set to N = 21 internal

cycles (or about 27 ms) – this is an estimate of the mean total time elapsed between the

motion capture frame grab and corresponding update arriving at the vehicle, and is the

sum of the motion capture image processing, offboard estimation processing and data

channel communication times.

5.2 Calibration

It is clear from Section 4.2 that the emergency control strategy relies on a well-calibrated

vehicle, i.e. with correctly identified gyroscope biases and the ability to accurately follow

motor thrust commands. To this end a static calibration routine has been developed in

the FMA, which identifies the gyroscope biases and a thrust mapping factor for each

rotor.

132

5. Experimental results

The initial guess for the gyroscope biases p̂0 is formed by integrating the gyro output

for the first two seconds after the vehicle has been switched on, and taking the mean

value. A further calibration is performed when the vehicle is in hover (as determined by

the motion capture system), and the gyroscope outputs are again averaged over a similar

time period. During the hover periods, the system also calibrates for a static measure-

ment frame misalignment, noting that the thrust vector during hover must point exactly

opposite gravity and thus any pitch or roll angles measured are the frame misalignments.

Since direct control of the total thrust is assumed in (4.23), the propellers must be

characterised: due to e.g. motor and propeller wear, the individual motors will not produce

exactly the expected forces. To compensate for this, a static thrust correction factor γi for

each propeller i is calibrated for, which relates the thrust output fi to the desired motor

thrust f ci by fi = γif
c
i . Combining this with (4.4) and (4.6) and setting the moments to

zero and total thrust to gravity yields
0 lf c2 0 −lf c4
−lf c1 0 lf c3 0

κf c1 −κf c2 κf c3 −κf c4
fc1
m

fc2
m

fc3
m

fc4
m

γ1

γ2

γ3

γ4

 =

0

0

0

g

 . (4.31)

Calibration is automatically performed whenever the vehicle is in stationary hover through-

out a flight.

5.3 Results

The trajectory results for a series of experiments are shown in Fig. 4.5. Over ten runs

the average velocity magnitude at the end of 2 s of emergency onboard control is 0.3 m/s

when starting from hover, 0.6 m/s when starting with a lateral speed of 1 m/s, 1.1 m/s

when starting with at 2 m/s and 2.0 m/s when starting with at 4 m/s. When starting at

8 m/s, the vehicle will hit the floor before 2 s, but the velocity magnitude at that time

is on average 3.5 m/s, which represents an 80% decrease in vehicle kinetic energy – i.e.

even though a crash is not prevented, its severity is hugely decreased. Furthermore, the

crash is delayed by some time, allowing warning of any people in the flying space; and

crucially if the failure is quickly resolved, the external control can resume control of the

vehicle in the air, thereby avoiding a crash altogether.

Notable also is that the vehicle consistently overshoots its velocity target, i.e. the final

velocity achieved points in the direction opposite the initial velocity. There are two likely

explanations for this error: firstly, the propellers are more efficient during the initial

phases of the braking manoeuvre, due to an increased angle of attack [4.13], meaning

that the produced thrust during braking exceeds the desired thrust. Secondly, the vehicle

experiences aerodynamic drag for which the emergency controller does not compensate.

The effect of the drag can be seen in the history plot when starting at 4 m/s in Fig. 4.5,

where the vehicle has an initial large pitch angle (ca. 10◦), but is not accelerating, i.e.

133

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

−0.5

0

0.5

1

−0.5

0

0.5

1

1.5
0.5

1

1.5

2

2.5

3

x [m]y [m]

z
[m

]

−2
−1.5

−1
−0.5

0
0.5

−0.5

0

0.5

1
0.5

1

1.5

2

2.5

x [m]

From hover Start at 1m/s Start at 4m/s

y [m]
z

[m
]

Data loss:
Switch to
emergency mode

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6
0.5

1

1.5

2

2.5

x [m]y [m]

z
[m

]Experiment starts:
Normal flight,
external control,
1m/s

2 seconds: Switch to
emergency crash landing

−1

0

1

2

3

−1

0

1

2

3

−2

0

2

4

6

−0.2

−0.1

0

0.1

−0.4

−0.2

0

0.2

−0.4

−0.2

0

0.2

0.4
−2

−1

0

1

−10

−5

0

5

−30

−20

−10

0

10

20

0 1 2 3 4
0.5

1

1.5

2

2.5

Time [s]
0 1 2 3 4

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

Emergency controller Crash landing

Trajectories projected
onto ground

Experiment ends
(crash landed)

Truth (external control)
Truth (emergency controller)
Truth (crash landing)

−0.2

−0.1

0

0.1

−0.5

0

0.5

1

−2

0

2

4
Internal estimate

Truth

External state update Truth

Onboard estimate

External update

From hover Start at 1m/s Start at 4m/s

Experiments start at hover,
approx. 0m/s

Experiment starts,
4m/s

R
ol

l a
ng

le

φ
[d

e
g

]
P

it
ch

 a
ng

le
θ

[d
e

g
]

H
ei

gh
t [

m
]

 v
y

[m
/s

]
S

pe
ed

v
x

[m
/s

]
S

pe
ed

R
ol

l a
ng

le
φ

[d
e

g
]

P
it

ch
 a

ng
le

θ
[d

e
g

]
H

ei
gh

t
[m

]
v

y
[m

/s
]

S
pe

ed
v

x
[m

/s
]

S
pe

ed

Time [s] Time [s]

Figure 4.5. The top row of plots show vehicle trajectories under emergency onboard control,
for three different initial conditions: starting at hover (left), with 1 m/s initial lateral velocity,
and 4 m/s (right). Each plot shows ten trajectories, each divided into three stages: external
control is marked blue, emergency hover red and the emergency descent crash landing in green.
The experiment terminates at a height of 0.5 m. For ease of interpretation, the paths are also
projected onto the x−y plane in black. The lower plots show time histories of a typical trajectory
for each starting speed, also showing the onboard estimate. Note that the colours of the “truth”
line correspond to those of the top plots, and the differing scales for the lower plots. Data from
the motion capture system is used as “truth”.

the lateral components of the thrust are needed to balance out the drag force. The final

velocity then represents the total impulse imparted by the drag force.

In Fig. 4.5 we see that the vehicle consistently accelerates slightly upwards when

entering the emergency controller from a hover. This is most likely due to the effects of

zero-mean noise on the angle estimate, as noted in Section 4.2, (4.30). The systematic

tendency to turn to the left from speed is most likely due to vehicle mis-calibration, e.g.

the left propeller producing less thrust than the opposing propeller.

134

6. Conclusion and Outlook

6. Conclusion and Outlook

The strategy described in this paper allows for much greater confidence when using the

FMA. They allow the system to recover from short-term failures which would otherwise

render the vehicles uncontrollable, and reduce the severity of long-term failures. The

strategy is implemented in such a way to be transparent to the user, allowing individual

users to rapidly implement new controllers and run experiments, without in each case

needing to be concerned with additional safety aspects.

This system is currently deployed, and runs in the background whenever a demonstra-

tion or experiment is in progress. One notable example of its use was during the architec-

ture project where the mobile infrastructure of the FMA was deployed in Orléans, France

(see Fig. 4.1). During operations, the commercial motion capture software crashed while

a vehicle was flying – the emergency controllers kicked in and an alarm sounded. The

emergency controller allowed sufficient time for an operator to grab a vehicle, protecting

it from what would otherwise have been a fall of approximately 2 m onto a bare concrete

floor.

Further improvements are possible to the emergency controller, especially if additional

onboard sensors can be incorporated. Use of accelerometers, particularly, could be useful:

both in feedback on lateral accelerations, taking advantage of aerodynamic effects to

stabilise lateral speeds [4.14], and in feedback on the body z acceleration, reducing the

effects of relative airflow on total produced thrust. Finally, the systematic nature of the

errors seen in Fig. 4.5 suggest that a learning strategy might greatly improve the hovering

performance.

7. Acknowledgements

This work builds on contributions to the FMA by many individuals, and particularly the

authors would like to thank Sergei Lupahshin, Markus Hehn, Angela Schöllig and Federico

Augugliaro for their discussions and feedback during the implementation of this work;

Christoph Wegmüller, Guillaume Ducard and Markus Hehn for their work on vehicle

calibration; and Michael Sherback and Thomas Kägi.

References

[4.1] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-

uav testbed”, Robotics Automation Magazine, IEEE, vol. 17, no. 3, pp. 56–65,

Sep. 2010.

135

Paper P4. Critical subsystem failure mitigation in an indoor UAV testbed

[4.2] G. Hoffmann, D. Rajnarayan, S. Waslander, D. Dostal, J. Jang, and C. Tomlin,

“The stanford testbed of autonomous rotorcraft for multi agent control (STAR-

MAC)”, in Digital Avionics Systems Conference, 2004.

[4.3] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-

tonomous vehicle test environment”, Control Systems Magazine, IEEE, vol. 28,

no. 2, pp. 51–64, Apr. 2008.

[4.4] A. Schoellig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchronizing the

motion of a quadrocopter to music”, in Robotics and Automation, 2010 IEEE

International Conference on, May 2010, pp. 3355–3360.

[4.5] M. Hehn and R. D’Andrea, “A flying inverted pendulum”, in Proceedings of the

IEEE International Conference on Robotics and Automation, 2011.

[4.6] M. W. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011.

[4.7] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Autonomous navi-

gation and exploration of a quadrotor helicopter in GPS-denied indoor environ-

ments”, in Robotics: Science and Systems Conference, Jun. 2008.

[4.8] S. Weiss, M. Achtelik, M. Chli, and R. Siegwart, “Versatile distributed pose

estimation and sensor self-calibration for an autonomous MAV”, in IEEE In-

ternational Conference on Robotics and Automation, 2012.

[4.9] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system for

autonomous indoor flying”, in IEEE International Conference on Robotics and

Automation, 2009.

[4.10] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics Second

Edition. AIAA, 2007.

[4.11] S. Lupashin, A. Schoellig, M. Sherback, and R. D’Andrea, “A simple learning

strategy for high-speed quadrocopter multi-flips”, in IEEE International Con-

ference on Robotics and Automation, 2010, pp. 1642–1648.

[4.12] R. Dorf and R. Bishop, Modern Control Systems, Eleventh Edition. Prentice-

Hall, 2008.

[4.13] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Precision flight

control for a multi-vehicle quadrotor helicopter testbed”, Control engineering

practice, vol. 19, pp. 1023–1036, June 2011.

[4.14] P. Martin and E. Salaün, “The true role of accelerometer feedback in quadrotor

control”, in IEEE International Conference on Robotics and Automation, 2010.

136

Part C

State estimation

Paper P5

Kalman filtering with an attitude

Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea

Abstract

This paper presents two generic algorithms for estimating a dynamic state that
includes an attitude, one based on the extended Kalman filter, and the other on the
unscented Kalman filter. The algorithms follow an approach popular in the current
state of the art by implementing a minimal three dimensional attitude error in the
filter state, and an additional reference attitude, where only the attitude error is
assigned a covariance. The mean of the attitude error is kept small, while the refer-
ence attitude can be of any magnitude. This formulation avoids having redundant
states in the filter, and the need to apply constraints to the state estimate. During
a reset step, performed after each Kalman filtering step, the reference attitude is
adjusted so that the attitude error is zero in expectation and thus far away from
singularities. Two approaches for the reset step are proposed, one based on a first
order analysis and the other on the unscented transform. In contrast to the cur-
rent state of the art, the reset steps transform the estimate covariance. The reset
steps are validated using Monte Carlo sampling. The algorithms may be applied to
any system whose state includes an attitude or rotation, and where the dynamics
and measurement equations are sufficiently smooth for the extended or unscented
Kalman filters to be applied.

c©2015 The Authors.

139

Paper P5. Kalman filtering with an attitude

1. Introduction

For many systems, especially in robotics, the state to be estimated includes the attitude,

or orientation, of one reference frame with respect to another. The estimation for such

systems is often done with a Kalman filter, and, if the underlying system is sufficiently

nonlinear, with an extended Kalman filter or an unscented Kalman filter. The extended

Kalman filter applies the Kalman filter to a first-order approximation of the underlying

nonlinear system, with the approximation evaluated at the current state estimate. The

unscented Kalman filter instead uses a set of deterministically chosen points which ap-

proximate the underlying distribution, and these points are then transformed through

the full nonlinear equations [5.1].

System dynamics that include attitudes are typically nonlinear. The task of state esti-

mation with attitudes is further complicated by the inherent difficulties in parametrising

attitudes: a rigid body has three degrees of freedom in rotation, however no three di-

mensional parametrisation of attitude exists that is both global and without singular

points [5.2].

One approach when implementing a Kalman filter whose state includes an attitude

representation is to choose a minimal three parameter representation, which has the

disadvantage of singular points. An alternative approach is to use a higher dimensional

representation in the filter state, thus avoiding singularities at the cost of coupling the

states through constraints.

A third approach uses a redundant attitude representation, where both a reference

attitude and an attitude error are used and their composition represents the attitude

estimate: the attitude error is encoded with a minimal representation in the stochastic

state (i.e. it has an associated covariance), and the reference attitude is updated to keep

the attitude error small (but has no associated covariance). This avoids issues with the

first two approaches: if the attitude were encoded using only three elements in the esti-

mator state (i.e. without the reference attitude) the filter state would have discontinuous

jumps at the singular points of the chosen representation; if instead a higher-dimensional

representation is used in the stochastic state additional constraints need to be enforced.

A recent practical example of the minimal three parameter approach is given by [5.3],

where three Euler angles are used for visual tracking of rigid objects. An example of the

second approach is given in e.g. [5.4], where the goal is to track the 6DOF motion of a

camera: a 13 state extended Kalman filter is used, with the attitude encoded in the state

through the four-dimensional Euler symmetric parameters2. The symmetric parameters

are constrained to have unit norm, and the constraint is enforced at each step of the filter.

The use of nonlinear constraints in Kalman filtering is discussed in [5.6], where the au-

thors present methods for applying constraints, including the use of pseudo-measurements

(where a zero-noise measurement of the constraint violation is used to enforce the con-

2The Euler symmetric parameters are often referred to as a “quaternion of rotation”. This is unfortu-
nate, as their invention predates the invention of quaternion algebra [5.5], and invoking four-dimensional
hypercomplex numbers seems both unnecessary and distracting.

140

1. Introduction

straint) and projection methods, and discuss the difficulties that arise specifically for

nonlinear constraints. The example given is of estimating a dynamic state including an

attitude, where the attitude is represented using the four dimensional symmetric param-

eters (and thus subject to a unit norm constraint). Norm constraints in Kalman filtering

are specifically discussed in [5.7].

In addition to the difficulties of enforcing nonlinear constraints in a Kalman filtering

setting, higher dimensional representations have the disadvantage of increasing the filter’s

computational complexity. The computational cost of a Kalman filter is approximately

proportional to n3, where n is the greater of the number of states and the number of

measurements [5.8, p. 210].

An early example of the third approach, using a minimal attitude representation in

the filter state to represent an attitude error in addition to having a reference attitude,

is given in [5.9], where the goal is to estimate the attitude and angular velocity of a

spacecraft using an extended Kalman filter, where the filter state includes three Euler

angles which are reset to zero after each measurement update and thus kept far from their

singularities. Another influential example is [5.10], where the resulting algorithm is called

the Multiplicative Extended Kalman Filter (MEKF). The MEKF is also the inspiration

for this work (note that the MEKF traces its origins to [5.11]). In [5.10] the problem

of estimating the attitude and rate gyroscope bias of a spacecraft is addressed, and the

presented algorithm uses a minimal three dimensional attitude error in a Kalman filter,

in addition to a reference attitude. Information from the attitude error is moved to the

reference attitude after each measurement update, in a so-called reset step. The authors

claim that the reset step does not affect the filter covariance, specifically [5.10]: “The

reset does not modify the covariance because it neither increases nor decreases the total

information content of the estimate; it merely moves this information from one part of

the attitude representation to another.” Similar algorithms (with similar reset steps) are

presented in [5.12]–[5.16], where similar claims are made that the reset does not modify

the estimate covariance.

Unfortunately, this statement that the covariance is unchanged during the reset is

incorrect, even to first order in the attitude error. One of the main goals of this work is

to derive corrections for the attitude error mean and covariance during the reset. Two

such corrections are derived: the first is computationally inexpensive, and based on a first-

order approximation of the attitude error during the reset. This first order approximation

is in line with the general philosophy behind the extended Kalman filter, of using first-

order approximations of the system equations to approximate the conditional probability

distributions of the state estimate, and the resulting covariance correction is of a similar

form to the familiar Kalman filter prediction step. The second correction uses sigma-

points computed with an unscented transform, and may be easily combined with an

unscented Kalman filter. For each of the two corrections, a full Kalman filter algorithm

is presented for estimating the state of a dynamic system including an attitude. These

two algorithms are called the Extended Kalman Filter with an Attitude (EKFA) and the

Unscented Kalman Filter with an Attitude (UKFA).

141

Paper P5. Kalman filtering with an attitude

That something is amiss with the MEKF of [5.10] has been noted previously in the

literature, specifically in [5.7], [5.17], and [5.18]. In [5.17] a filter is presented for es-

timating an attitude based on bias-free rate gyroscope measurements and unit vector

measurements; and specifically a covariance correction is suggested similar to the one

presented herein (see (28) and (29) of [5.17] – note however, that the assumptions made

for the derivation are somewhat different). A second-order covariance correction is pro-

posed in [5.7], but it is however still stated that no correction to the covariance is necessary

to first order. Furthermore, in [5.15, p. 243] the reset of [5.10] is stated as being correct,

with the caveat that “Not everyone agrees with this statement”.

The approach of [5.10] has inspired many other works, such as [5.19]–[5.21], which

also fail to do the reset correctly. The method of [5.10] with the incorrect reset has also

been used on physical systems, such as the Radio Aurora Explorer satellite [5.22] or a

balloon-borne telescope [5.23].

Further examples where a minimal three element representation is used in a Kalman

filter with an additional reference attitude are [5.24] and [5.25], however no specific men-

tion is made as to how information is moved from the filter state to the reference attitude.

There is also a rich literature on attitude estimation using frameworks other than

Kalman filtering: an overview is given in [5.26], [5.27].

1.1 Contribution

The contribution of this paper is as follows:

1. To propose two algorithms which allow to estimate the dynamic state of a system

(where the state includes an attitude), by making use of a reference attitude and

an attitude error. One algorithm is an extension to the extended Kalman filter, the

other an extension to the unscented Kalman filter, called respectively the Extended

Kalman filter with an Attitude (EKFA), and the Unscented Kalman Filter with

an Attitude (UKFA). Both algorithms may be directly applied to systems with

arbitrarily complicated dynamics, including, for example, angular velocity dynamics

dependent on other states.

2. To show that the widely used method presented in e.g. [5.10], [5.12]–[5.15] does not

keep track of the estimate statistics correctly, even to first order.

3. To demystify the attitude reset step, used to move information from the small error

rotation to the reference attitude, and to propose two alternative corrections for

adapting the attitude error statistics during the reset.

1.2 Organisation

This paper is organised as follows: the next section presents the attitude representations

and the related definitions and manipulations that are required throughout this work. In

Section 3 the estimation problem is stated, and an outline of the estimation approach is

presented, as well as a formal statement of the attitude reset problem. A reset step, where

142

2. Attitude representations

information is moved from the minimal attitude representation in the filter state to the

reference attitude, based on a first-order analysis is presented in Section 4. An alternative

reset step, using the unscented transform, is presented in Section 5. Sections 4 and 5

both include Monte Carlo analyses to validate the approximations. Section 6 presents

the resulting algorithms EKFA and UKFA, and the paper concludes in Section 7. In

Appendix A a more detailed comparison is given of the EKFA and the MEKF of [5.10].

2. Attitude representations

For all derivations in this work the fundamental representation of attitude is the 3× 3

rotation matrix, so that the transformation of a vector by an attitude from one reference

frame to another is a matrix multiplication. Furthermore, the composition of consecutive

attitude transformations is a matrix product.

This is best illustrated through an example: let u be a fixed vector in space, and let A,

B, and C represent three reference frames in which u may be expressed; let u(A) be the

expression of u in frame A, and similarly u(B) and u(C) respectively for frames B and C.

Let R(AB) be the matrix representation of the attitude of frame A with respect to B, and

define similarly R(AC) and R(BC). The expressions of u in the reference frames is then

related by

u(C) = R(CB) u(B) (5.1a)

= R(CB) R(BA) u(A) (5.1b)

= R(CA) u(A). (5.1c)

This makes it clear that the composition of the rotations R(CB) and R(BA) is simply the

matrix product R(CA) = R(CB)R(BA).

Different representations may however be used in the implementation of the resulting

algorithm, which may offer practical benefits such as improved numerical stability or

computational speed – for example the Euler symmetric parameters. Then the matrix

multiplications, which represent composition of attitudes for the rotation matrix, are

replaced by the composition rule for the chosen representation.

In the following, operators are defined that are used throughout this paper, followed

by the definitions of two minimal attitude representations which may be used to encode an

attitude as a three element vector (the rotation vector and the Rodrigues parameters).

Finally, the relevant equations governing kinematics of attitude are presented. These

representations (and their kinematics) are used in deriving and analysing the reset step.

2.1 Operator definitions

The skew-symmetric matrix form of the cross product S(v) of a vector v = (v1, v2, v3) is

143

Paper P5. Kalman filtering with an attitude

defined as3

S(v) :=

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (5.2)

The notation (v1, v2, v3) is used to compactly denote the elements of a column vector.

Proposition 1. The spectrum of the skew-symmetric matrix is spec (S(v)) = {±i |v| , 0};
where i2 = −1 and |·| represents the Euclidean norm.

Proof. By direct computation.

Proposition 2. Let R be a rotation matrix. Then for a vector v

S(Rv) = R S(v)R−1. (5.3)

Proof. Follows from Fact 3.10.1 xxxvii) of [5.28], and noting that the determinant of a

rotation matrix is unity.

The operator exps(·) and the Cayley transform rot(·) are defined as

exps(v) := exp(S(v)) (5.4)

rot(v) := (I + S(v)) (I − S(v))−1 (5.5)

where I is the identity matrix of appropriate dimension and exp(M) is the matrix expo-

nential of a square matrix M , defined as

exp(M) :=
∞∑
k=0

1

k!
Mk. (5.6)

It will be shown that both exps(v) and rot(v) are rotation matrices.

Proposition 3. The Cayley transform (5.5) may be rewritten as an infinite sum if |v| <
1:

rot(v) = I + 2
∞∑
k=1

S(v) k. (5.7)

3Note the sign difference compared to the operator [[·]] defined in (44) of [5.5]. Note also the use
“passive” rotations here, rather than the “active” rotations of [5.5]. The two forms are related through
an inverse.

144

2. Attitude representations

Proof. If |v| < 1, by Proposition 1 the spectral radius of S(v) is less than one and (by

Fact 9.4.13 of [5.28])

(I − S(v))−1 =
∞∑
k=0

S(v)k. (5.8)

Substituting now (5.8) into (5.5), (5.7) follows.

Fact 1 (see (204) in [5.5]). The inverse operation rot−1(·) of the Cayley transform (5.5)

from a rotation matrix R to a vector is given by:

rot−1(R) =
1

1 + tr (R)

R32 −R23

R13 −R31

R21 −R12

 (5.9)

where tr (·) is the matrix trace, and Rjk the (j, k)th element of R.

2.2 Rotation vector

An attitude may be expressed using a rotation vector v ∈ R3, where the unit vector in

the direction of v represents the axis of rotation, and the magnitude of v represents the

angle of rotation.

Fact 2 (see (112) in [5.5]). The rotation matrix corresponding to the rotation vector may

be computed as exps(v). Note that this matrix exponential can be readily computed in

closed form using Euler’s formula, see [5.5, eq. (96)-(99)].

Proposition 4. The following relationships hold for the matrix inverse of exps(v)

exps(v) −1 = exps(v) T = exps(−v) . (5.10)

Proof. Follows directly from (5.4), and applying the fact that S(v) T = −S(v) for any

vector v.

Proposition 5. Any vector v is unchanged by the rotation exps(v), i.e.

exps(v) v = v (5.11)

Proof. By direct computation S(v) v = 0 for all vectors v, from (5.2). The proposition

follows by applying this to the infinite expansion of exps(v).

2.3 Rodrigues parameters

The Rodrigues parameters (also known as the Gibbs parameters) δ ∈ R3 are another way

145

Paper P5. Kalman filtering with an attitude

to parametrise attitude, related to a rotation vector v by

δ :=

tan
(
|v|
2

)
1
|v|v if v 6= 0

0 otherwise.
(5.12)

Fact 3 (see (203) in [5.5]). The rotation matrix corresponding to the Rodrigues parame-

ters δ is given by rot(δ).

Proposition 6. The first order relationship between the rotation vector and the Rodrigues

parameters may be expressed as

exps(v) = rot
(

1
2
v
)

+ o(|v|) (5.13)

where the Landau symbol o(x) is used to represent higher-order terms, i.e. a quantity for

which the following holds:

lim
x→0

o(x)

x
= 0. (5.14)

Proof. Follows by substituting the definition of the Rodrigues parameters (5.12) for the

infinite expansion (5.7) and comparing to the infinite expansion of the matrix exponen-

tial (5.6) and (5.4).

2.4 Kinematics of rotation

Fact 4 (see (261) of [5.5]). If two reference frames are moving with respect to one another,

with the time varying rotation matrix R(t) representing their relative orientation and the

vector ω(t) representing their relative angular velocity (with ω(t) expressed in the reference

frame associated with the attitude R(t)), the differential equation governing R(t) is as

below:

d

dt
R(t) = R(t) S(ω(t)) . (5.15)

Note that if the angular velocity ω is constant over some time period t ∈ [t0, t1], the above

is a linear, time-invariant differential equation whose solution is

R(t1) = R(t0) exps((t1 − t0)ω) . (5.16)

Fact 5 (see (330) of [5.5]). The time derivative of the Rodrigues parameters δ(t), again

146

3. Problem statement and solution approach

as a function of the angular velocity ω(t), is given by

d

dt
δ(t) =

1

2

(
ω(t) + S(δ(t)) ω(t) +

(
ω(t)T δ(t)

)
δ(t)

)
. (5.17)

Remark. The Rodrigues parameters have the advantage over the rotation vector that

their kinematic differential equation is continuous at zero (compare the above to (276)

in [5.5]). This fact will be used in deriving the attitude reset.

3. Problem statement and solution approach

The problem considered is that of estimating the dynamic state of a system using mea-

surements, a model for the state dynamics, a model of the measurement system, and

information about the dynamic states’ initial distributions. The system’s dynamic state

includes an attitude R and other states collected into the vector ξ ∈ Rnξ , where the

attitude R is taken to be a rotation matrix (although alternative representations may

be used). The state evolves in discrete time steps k according to the following dynamic

equations, with η[k] process noise (assumed white, independent of the initial condition,

and zero-mean):

ξ[k] = f̄1 (k−1, ξ[k−1], R[k−1], η[k−1]) (5.18)

R[k] = f̄2 (k−1, ξ[k−1], R[k−1], η[k−1]) . (5.19)

If the underlying system dynamics are continuous, rather than in discrete time, the above

equations may be taken as the integrals of the continuous equations over one sampling

interval. These may then be approximated by e.g. an Euler discretisation.

Measurements z[k] are available at discrete times, as a function of the state and the

measurement noise variable ζ[k] (also assumed white, zero mean, and independent of both

the initial condition and η):

z[k] = h̄ (k, ξ[k], R[k], ζ[k]) . (5.20)

The goal is to estimate the system’s state ξ[k] and R[k] recursively from the mea-

surement sequence z, information about their initial conditions, and the dynamic and

measurement models.

This is done by introducing the stochastic state x[k] ∈ Rnξ+3, partitioned such

that x[k] = (ξ[k], δ[k]) where δ[k] ∈ R3 represents a (small) attitude error parametrised

through Rodrigues parameters. The attitude R[k] associated with the system is written

147

Paper P5. Kalman filtering with an attitude

as the composition of a reference attitude Rref[k] and the attitude error δ[k]:

R[k] =: Rref[k] rot(δ[k]) . (5.21)

This representation introduces a redundant attitude, and this redundancy is exploited to

avoid issues relating to singularities and constraints in attitude representations. It should

be noted that this redundant formulation is not novel, and can be found in e.g. [5.10], or

in a somewhat different form using Euler angles in [5.9].

The system dynamics (5.18)-(5.19) are now combined and rewritten to use the stochas-

tic state x[k] and the reference attitude Rref[k] so that

x[k] = f(k−1, x[k−1], Rref[k−1], η[k−1]) (5.22)

where specifically the change in attitude of (5.19) now affects only the attitude error δ[k],

and not the reference attitude Rref[k]. Rewriting these equations requires compositions

and kinematics of attitudes using the Rodrigues parameters, such as those in Section 2.

The measurement equation is likewise rewritten as a function of the new state vari-

ables:

z[k] = h(k, x[k], Rref[k], ζ[k]). (5.23)

The proposed algorithms use these rewritten equations: the EKFA based on the ex-

tended Kalman filter (see e.g. [5.1], [5.29]), and the UKFA based on the unscented Kalman

filter (see e.g. [5.30]). Both introduce two additional steps to correct the attitude error

statistics. The recursive estimation strategy then consists of four steps:

1. A Kalman prediction step, that uses the process equation (5.22) to propagate the es-

timate through the dynamics. During this step, the reference attitude is unchanged.

2. A prediction reset step, where the reference attitude is changed such that the post-

reset attitude error estimate has zero expectation, i.e. the attitude error variable is

maximally far from its singularities.

3. A Kalman measurement update, that uses the measurement model (5.23) to correct

the estimate with a given measurement. During this step, the reference attitude is

again unchanged.

4. A measurement reset step, where again the reference attitude is adapted such that

the estimate of the post-reset attitude error is reset to zero.

The two alternative methods for achieving the reset steps (and their derivation) are

novel compared to the methods of [5.10], [5.12]–[5.15], as is the applicability of the method

to systems of any dynamics that can be expressed in the form (5.18)-(5.20).

148

4. First order attitude reset

3.1 Attitude error reset

The reset step modifies the reference attitude Rref and the attitude error estimate δ, so

that the post-reset attitude error estimate has zero expectation, i.e. the attitude error

variable is maximally far from its singularities. Furthermore, the actual attitude remains

unchanged, so that the composition of Rref and δ is unchanged by the reset.

Problem 1. Let the pre-reset reference attitude be Rref,pre, and the pre-reset attitude

error be δpre with associated mean and covariance:

E(δpre) =: µpre (5.24)

Var(δpre) =: Σpre (5.25)

We similarly define the post-reset variables Rref,post, and δpost with mean and covari-

ance µpost and Σpost. The problem is to compute Rref,post and Σpost subject to the following

two equalities:

Rref,post rot(δpost) = Rref,pre rot(δpre) (5.26)

E(δpost) = µpost = 0. (5.27)

Two approximate solutions are presented to Problem 1. The first is based on a first-

order approximation of the reset analysed as a continuous operation, derived in the next

section. The second approach is based on the unscented transform and is presented in Sec-

tion 5.

4. First order attitude reset

In this section an approximate solution to Problem 1 is derived based on studying the

reset operation as a continuous rotation, whose effects are analysed to first order in the

attitude error.

4.1 Solution approximation

Theorem 1. To first order in the attitude error δpre, the solution to Problem 1 is:

Rref,post = Rref,pre rot(µpre) (5.28)

Σpost = rot
(
−1

2
µpre

)
Σpre rot

(
−1

2
µpre

)
T . (5.29)

Proof. The pseudo-time t ∈ [0, 1] is introduced, and the reset is considered as a con-

tinuous operation starting at t = 0 and ending at t = 1. The time-varying reference

attitude Rref(t) and δ(t) are introduced, which have to satisfy the boundary conditions

149

Paper P5. Kalman filtering with an attitude

δ(0) = δpre, Rref(0) = Rref,pre, δ(1) = δpost, and Rref(1) = Rref,post. Given these boundary

conditions, a sufficient condition for satisfying (5.26) is

d

dt
(Rref(t) rot(δ(t))) = 0. (5.30)

Applying the derivative product rule, and substituting the kinematic equation for the

rotation matrix (5.15) yields

Rref(t) S(ωref(t)) rot(δ(t)) +Rref(t) rot(δ(t)) S(ωδ(t)) = 0 (5.31)

where ωref(t) and ωδ(t) are angular velocities, with specifically ωref(t) = ωref taken as a

deterministic constant, to be computed. This then yields

S(ωδ(t)) = −rot(δ(t)) −1S(ωref) rot(δ(t)) (5.32)

or, by simplifying (see Proposition 2),

ωδ(t) = −rot(−δ(t)) ωref . (5.33)

Substituting (5.33) for the angular velocity in the kinematic equation of the Rodrigues

parameters (5.17), assuming that |δ| < 1 to allow substitution of the infinite series (5.7)

for rot(δ), and expanding gives

d

dt
δ(t) = −1

2
ωref −

1

2
S(ωref) δ(t) + o(|δ(t)|) . (5.34)

Neglecting the higher order terms, (5.34) represents an affine, time-invariant, differ-

ential equation in δ(t), with ωref a deterministic constant, the solution to which is

δ(1) = exps
(
−1

2
ωref

)
δ(0)− 1

2
ωref + o(|δ(0)|) . (5.35)

The simple closed-form solution follows from the fact that S(ω) ω = 0 for all ω.

Neglecting again the higher order terms, and noting that δpost = δ(1), and δpre = δ(0),

it follows that

E(δpost) ≈ exps
(
−1

2
ωref

)
E(δpre)− 1

2
ωref (5.36)

Var(δpost) ≈ exps
(
−1

2
ωref

)
Var(δpre) exps

(
−1

2
ωref

)
T . (5.37)

Rearranging (5.36), exploiting Proposition 5, and enforcing the requirement that

150

4. First order attitude reset

E(δpost) = 0 yields

ωref = 2E(δpre) . (5.38)

From this follows, to first order,

µpost = exps(−µpre) µpre − µpre = 0 (5.39)

Var(δpost) = exps(−µpre) Σpre exps(−µpre)
T . (5.40)

From (5.38) the post-reset reference Rref,post can be computed, by noting that during

the reset

d

dt
Rref(t) = Rref(t) S(ωref) . (5.41)

Substituting (5.16), it follows that

Rref,post = Rref,preexps(ωref) (5.42a)

= Rref,pre exps(2µpre) . (5.42b)

Using Proposition 6 it follows that, to first order, (5.39), (5.40), and (5.42b) may be

rewritten using operator rot(·) which is naturally associated with the Rodrigues param-

eters δ, rather than exps(·).

Remark. Note that Theorem 1 contradicts the assertions made in [5.10], [5.12]–[5.15]

that a reset step does not affect the estimate covariance. Without a transformation of

the form (5.29) any Kalman filter implementation will fail to estimate the error statistics

correctly, even to first order.

Remark. Although the derivation approach is different, the result of Theorem 1 is re-

lated to the result of [5.17, eq. (28)-(29)]. For Theorem 1, however, the correction to

the reference attitude (5.42b) is shown to follow as a consequence of the requirement

that E(δpost) = 0, rather than being taken as an assumption.

4.2 Validation

The accuracy of the reset step may be quantified by Monte Carlo sampling, where samples

from an initial attitude distribution are transformed through the proposed reset step. The

sample mean and covariance of the transformed samples is then compared to the mean

and covariance as computed in Theorem 1. First, a single example is analysed, which is

then followed by an ensemble of Monte Carlo tests to allow for statistical evaluation of

performance.

151

Paper P5. Kalman filtering with an attitude

1) Single example Consider the following example, where the pre-reset variables are

taken as below:

Rref,pre = I, µpre = (0.1, 0, 0) (5.43)

Σpre =

0 0 0

0 10 0

0 0 0

× 10−2. (5.44)

It should be noted that there are two directions with zero uncertainty: this was chosen

because the effects of the reset are made more obvious.

Pre-reset particles δmc,pre[i] are sampled independently from a normal distribution

N (µpre,Σpre), with mean µpre and covariance Σpre. They are transformed to post-reset

particles δmc,post[i], with

δmc,post[i] := rot−1
(
R−1

ref,post rot(δmc,pre[i])
)

(5.45)

where Rref,post is computed as in Theorem 1 using the mean µpre. This implies that the

pre- and post-reset particles, with the given Rref,post, satisfy (5.26).

A set of 109 pre-reset samples δmc,pre[i] were transformed, and the sample mean and

covariance of δmc,post[·] were computed as:

E(δmc,post[·]) ≈ (0,−1.92,−0.19)× 10−8 (5.46)

Var(δmc,post[·]) ≈

0 0 0

0 9.803 −0.980

0 −0.980 0.098

× 10−2. (5.47)

For 109 pre-reset samples from a normal distribution with variance 0.1, the standard

deviation of the sample mean equals 10−5, and the standard deviation of the sample

variance equals approximately 4.4×10−6 [5.31, Example 7.3.3], so that a similar standard

deviation may be expected for the the post-reset sample covariance.

The post-reset statistics computed with Theorem 1 are:

µpost = (0, 0, 0) (5.48)

Σpost ≈

0 0 0

0 9.901 −0.993

0 −0.993 0.100

× 10−2. (5.49)

Two dimensionless scalar error measures are defined for comparing the post-reset

sample mean and covariance to the predicted mean and covariance: εµ is a normalised

indication of the error in the mean, and εΣ is a normalised indication of the error in the

152

4. First order attitude reset

covariance:

εµ(µ̄) :=
|E(δmc,post[·])− µ̄|

|µpre|
(5.50)

εΣ(Σ̄) :=
σ̄
(
Var(δmc,post[·])− Σ̄

)
σ̄ (Σpre)

(5.51)

where σ̄ (·) represents the maximum singular value of its matrix argument.

For the post-reset estimates as computed in (5.48)-(5.49), the mean and covariance

errors are εµ ≈ 1.9× 10−7 and εΣ ≈ 9.9× 10−3, respectively. For this example, the mean

error has a lower order of magnitude than the standard deviation of the pre-reset sample

mean (normalised by the initial mean). The covariance error, however, is larger than the

standard deviation of the pre-reset sample covariance – this is explained by the first-order

approach to the analysis of the reset approximation, where terms of order o(|δpre|) were

neglected, meaning also that higher-order moments of δ do not affect the estimated mean

and covariance.

Remark. If the covariance is left unchanged in the reset, as is claimed correct in [5.10],

[5.12]–[5.15], the covariance error is εΣ ≈ 104× 10−3, or more than ten times larger than

with the proposed method. Furthermore, the post-reset covariances in the third row and

column would be estimated as zero.

2) Ensemble validation The preceding Monte Carlo analysis may be extended by com-

puting the error statistics εµ[j] and εΣ[j] over an ensemble of initial attitude distributions,

where each instance j in the ensemble consists of a large number of individual Monte Carlo

samples δmc,pre[j, i].

Let the variable ρ represent a magnitude, which will be used to quantify the magnitude

of an ensemble: for each instance j in the ensemble, a pre-reset mean µpre[j] is sampled

from N (0, (ρ π/180) I), and a pre-reset covariance Σpre[j] is generated as

Σpre[j] =
3∑

k=1

sk[j]sk[j]
T (5.52)

where the sk[j] are also independently sampled from N (0, (ρ π/180) I). The pre-reset

reference attitude is taken as identity in all instances. A million samples δmc,pre[j, i] are

generated from N (µpre[j],Σpre[j]), similarly to in Section 1, and are subsequently trans-

formed to post-reset particles δmc,post[j, i] analogously to (5.45).

Ten thousand instances j are generated in each ensemble, and for each instance the

sample mean and covariance of the transformed particles are compared to the values com-

puted with Theorem 1, similar to what was done for the single example. The distribution

of the resulting errors εµ and εΣ are shown in Fig. 5.1. The figure shows the results for

ensemble magnitudes ρ ∈ {1, 5, 10, 20}. The estimation errors are shown to increase as

153

Paper P5. Kalman filtering with an attitude

Figure 5.1. First order reset performance: The mean and covariance errors for ensembles
of different magnitudes ρ, when comparing the post-reset sample mean and covariance to the
predicted mean and covariance computed with the first order attitude reset. The icons are used
to indicate the magnitude ρ across all sub-plots. Sub-plot (a) shows the distribution of the mean
error εµ as defined in (5.50). The covariance error εΣ as defined in (5.51) is shown in sub-plot (b)
for the proposed method as solid lines, and with the reset step as in [5.10] as dotted lines (where
the covariance is left unchanged during the reset step). For an ensemble with ρ = 1, for example,
for 95% of the instances the error εΣ was below 0.005 with the proposed method (as compared
to 0.039 when not changing the covariance during the reset step). Sub-plot (c) shows the ratio
of the covariance error εΣ for the method of [5.10] to that of the proposed method.

154

4. First order attitude reset

the ensemble magnitude ρ is increased: this is to be expected as for larger vales of ρ the

higher-order terms neglected in the derivation of Theorem 1 have a larger influence.

Remark. Fig. 5.1(c) compares the performance of the reset of Theorem 1 to that pro-

posed in [5.10], [5.12]–[5.15] where the covariance is left unchanged. The covariance error

is shown to be significantly lower with the proposed method than if the covariance is

unchanged during the reset – in 10% of the cases (over all values ρ) the covariance error

is at least a factor 5 larger if the covariance is unchanged during the reset. For the en-

semble with ρ = 1, the error is at least a factor 5 larger in 86% of the cases, and at least

a factor 20 larger in 20% of the cases.

4.3 Extension to full state

The reset of Theorem 1 may be extended to apply to the full estimator state x = (ξ, δ)

and Rref . The extended reset transformation matrix Treset(·) is introduced as

Treset (δ) := diag
(
I, rot

(
−1

2
δ
))

(5.53)

with diag (·) returning a block diagonal matrix.

The pre-reset state xpre = (ξpre, δpre) is introduced, which is transformed to a post-reset

state xpost as follows:

xpost := Treset(E(δpre))xpre − (0,E(δpre)) (5.54)

from which follows

E(xpost) = (E(ξpre) , 0) (5.55)

Var(xpost) = Treset(E(δpre))Var(xpre)Treset(E(δpre))
T (5.56)

Rref,post = Rref,pre rot(E(δpre)) . (5.57)

All covariances related to the attitude error are affected through (5.56), i.e. the last

three rows and columns of the covariance matrix. Note however that the trace of the

covariance is left unchanged.

Remark. The rotation applied to the covariance through (5.56) is half the rotation applied

to the reference attitude Rref in (5.57).

Remark. The change of the covariances in (5.56) should not be thought of as a coordinate

transformation due to the change of Rref , as no quantities in the state ξ are expressed in

the reference frame represented by Rref . Instead, components of ξ may be expressed in

the attitude defined by the composition of Rref and δ, which remains unchanged during

the reset operation to first order in the variable δ.

155

Paper P5. Kalman filtering with an attitude

5. Unscented attitude reset

An alternative approximate solution to Problem 1 may be computed through the un-

scented transformation, which is founded on the intuition that [5.30] “it is easier to

approximate a probability distribution than it is to approximate an arbitrary nonlinear

function or transformation”. The unscented transformation proceeds by deterministically

choosing a set of sigma-points, so that these points have a given mean and covariance.

Each sigma point is then transformed through the given nonlinear function, and the mean

and covariance of the transformed points are computed as approximations of the mean

and covariance of the random variable transformed through the function.

Given an initial distribution with mean µ ∈ Rn and covariance Σ, one set s[·] of

sigma-points s[i] may be selected as follows [5.1]:

s[i] = µ+
(√

nΣ
)T
i

s ∈ {1, . . . , n} (5.58)

s[n+i] = µ−
(√

nΣ
)T
i

s ∈ {1, . . . , n} (5.59)

where
√
nΣ is a matrix square root such that

(√
nΣ
)T √

nΣ = nΣ, and (·)i is the ith row

of its matrix argument. Note that alternative schemes exist for selecting sigma-points,

see e.g. [5.30].

The mean and covariance, respectively, of a set of sigma-points may be computed

using the functions Eσ(·) and Varσ(·), defined as:

Eσ

(
s[·]) :=

1

2n

2n∑
i=1

s[i] (5.60)

Varσ
(
s[·]) :=

1

2n

2n∑
i=1

(
s[i]−Eσ

(
s[·])) (s[i]−Eσ

(
s[·]))T . (5.61)

These may be used as approximations for the true mean and covariance. It can be shown

that this approximated mean matches the true mean of a transformed random variable

correctly to second order [5.30, p. 406].

5.1 Solution approximation

Problem 1 may now be reformulated in terms of sigma-points, as follows:

Problem 2. Let the pre-reset reference attitude be Rref,pre, and the pre-reset attitude

error δpre be described by a set of sigma-points δ
[·]
pre so that

Eσ

(
δ[·]

pre

)
= µpre (5.62)

Varσ
(
δ[·]

pre

)
= Σpre. (5.63)

156

5. Unscented attitude reset

For each pre-reset sigma point, define a post-reset point as follows, where Rref,post is a

post-reset reference attitude. Each pair of points must satisfy (5.26), so that

Rref,post rot
(
δ

[i]
post

)
= Rref,pre rot

(
δ[i]

pre

)
(5.64)

or, by solving for δ
[i]
post:

δ
[i]
post = rot−1

(
R−1

ref,postRref,pre rot
(
δ[i]

pre

))
. (5.65)

The problem is to compute Rref,post subject to

Eσ

(
δ

[·]
post

)
= 0. (5.66)

A solution Rref,post and δ
[·]
post to Problem 2 is then an approximate solution to Prob-

lem 1, with

Σpost = Varσ

(
δ

[·]
post

)
. (5.67)

Numerical methods may be used to compute solutions to Problem 2, by for example

defining the decision variable v ∈ R3 so that Rref,post = exps(v), and minimizing the

error
∣∣∣Eσ

(
δ

[·]
post

)∣∣∣.
In Procedure 1 an iterative approach to approximating a solution for Problem 2 is

presented as an alternative.

1) Approximation iteration A straight-forward approach to finding an approximate so-

lution to Problem 2 is given in Procedure 1, based on the intuition of recursively applying

Theorem 1. The maximum number of iterations allowed is Nmax, emin is a termination

threshold, and κ is a non-increasing step size. The output is an updated reference atti-

tude, and a set of sigma-points from which the post-reset covariance may be recovered

through Varσ(·).
It should be noted that Procedure 1 has the following properties by construction:

• because the first iteration of the while-loop applies Theorem 1, the mean error∣∣∣Eσ

(
δ

[·]
best

)∣∣∣ of the result of Procedure 1 can be no larger than the mean error of

Theorem 1,

• the procedure terminates after at most Nmax steps.

5.2 Validation

As with the first-order reset, the accuracy of the unscented reset using Procedure 1 may

be quantified by Monte Carlo sampling.

157

Paper P5. Kalman filtering with an attitude

Procedure 1 Unscented reset iteration

Input a set of sigma points δ
[·]
pre, and Rref,pre.

Initialise Rref,post ← Rref,pre; δ
[·]
best ← δ

[·]
pre; κ← 1; i← 1

repeat
i← i+ 1

R← Rref,post rot
(
κEσ

(
δ

[·]
best

))
#transformed sigma points

for k ∈ {1, . . . , 2n} do

δ
[k]
post ← rot−1

(
R−1Rref,pre rot

(
δ

[k]
pre

))
end for
#compare current estimate mean

if
∣∣∣Eσ

(
δ

[·]
post

)∣∣∣ < ∣∣∣Eσ

(
δ

[·]
best

)∣∣∣ then

#improvement

δ
[·]
best ← δ

[·]
post

Rref,post ← R
else

#reduce step

κ← 1
2
κ

end if
until

∣∣∣Eσ

(
δ

[·]
best

)∣∣∣ ≤ emin or i ≥ Nmax

Return δ
[·]
best, Rref,post

1) Single example The example used for the first order reset in Section 1 is revisited,

with the pre-reset values taken as before, repeated here from (5.43)-(5.44) for ease of

comparison:

Rref,pre = I, µpre = (0.1, 0, 0) (5.68)

Σpre =

0 0 0

0 10 0

0 0 0

× 10−2. (5.69)

Procedure 1 is run with the error threshold emin = 10−9, and the procedure terminates

after one step (i.e. for this problem, Procedure 1 computes the same Rref,post as Theo-

rem 1). The statistics of the post-reset samples are computed as below. Note that, because

for this example the Rref,post computed by Procedure 1 is the same as that compute by

Theorem 1, the post-reset particles are the same and thus the sample statistics are also

158

5. Unscented attitude reset

the same as given in (5.46)-(5.47).

E(δmc,post[·]) ≈ (0,−1.92,−0.19)× 10−8 (5.70)

Var(δmc,post[·]) ≈

0 0 0

0 9.8033 −0.9803

0 −0.9803 0.0980

× 10−2 (5.71)

This can be compared to the values computed with Procedure 1:

µpost = (0, 0, 0) (5.72)

Σpost ≈

0 0 0

0 9.8030 −0.9803

0 −0.9803 0.0980

× 10−2. (5.73)

The mean and covariance errors for this estimate, using the errors defined in (5.50)-

(5.51), are εµ = 1.9 × 10−7 and εΣ = 3.6 × 10−5, respectively. The covariance error is

approximately a factor 270 lower than the covariance error of the estimate computed with

the first order correction in Section 1 in (5.46)-(5.47), and approximately a factor 2800

lower than if the covariance is left unchanged during the reset.

2) Ensemble validation As for the first order reset, an ensemble of Monte Carlo runs

may be used to compute error statistics over an ensemble of initial conditions. The in-

stances and samples are generated as described in Section 2, again as a function of the

magnitude ρ ∈ {1, 5, 10, 20}.
The results are shown in Fig. 5.2, which compares the performance of the unscented

reset computed with Procedure 1 to the first order reset of Theorem 1. Especially for

larger magnitudes ρ, the unscented reset significantly outperforms the first order reset,

both for the mean error εµ and the covariance error εΣ.

5.3 Extension to full state

The unscented attitude reset may be extended to apply to the full estimator state x =

(ξ, δ) and Rref , given a set of sigma-points x[i] capturing the state mean and covariance.

First, Problem 2 is extended to the full state:

Problem 3. Let the pre-reset reference attitude be Rref,pre, and the pre-reset state xpre =

(ξpre, δpre) be described by a set of sigma-points x
[i]
pre =

(
ξ

[i]
pre, δ

[i]
pre

)
so that

Eσ

(
x[·]

pre

)
= E(xpre) (5.74)

Varσ
(
x[·]

pre

)
= Var(xpre) . (5.75)

For each pre-reset sigma point, define a post-reset point as follows, where Rref,post is a

159

Paper P5. Kalman filtering with an attitude

Figure 5.2. Unscented reset performance: The mean and covariance errors for ensembles of
different magnitudes ρ, when comparing the post-reset sample mean and covariance to the pre-
dicted mean and covariance computed with the unscented attitude reset through Procedure 1.
The iteration limit was set to Nmax = 10, and the error threshold was set to emin = 10−9. The
icons are used to indicate the magnitude ρ across all sub-plots. Sub-plot (a) shows the distri-
bution of the mean error εµ as defined in (5.50). The covariance error εΣ as defined in (5.51)
is shown in sub-plot (b) for the unscented attitude reset as solid lines, and with the first order
attitude reset as dotted lines for comparison. The ratio of the covariance error made by the first
order reset to the covariance error made by the unscented reset is shown in sub-plot (c).

160

6. Algorithms

post-reset reference attitude:

δ
[i]
post = rot−1

(
R−1

ref,postRref,pre rot
(
δ[i]

pre

))
(5.76)

x
[i]
post =

(
ξ[i]

pre, δ
[i]
post

)
. (5.77)

The problem is to compute Rref,post subject to

Eσ

(
δ

[·]
post

)
= 0. (5.78)

The mean and covariance of the post-reset particles may then be approximated

as Eσ

(
x

[·]
post

)
and Varσ

(
x

[·]
post

)
, respectively. This may again be solved by a numerical

minimisation scheme. Alternatively, Procedure 1 may be extended to the full state, to

compute an approximate solution to Problem 3, to yield Procedure 2. This takes as input

a set of full-state sigma points and a reference attitude, and returns a post-reset set of

sigma-points and a post-reset reference attitude. These post-reset sigma-points may be

used to compute the post-reset covariance.

Procedure 2 Full state unscented reset

Input a set of sigma points x
[·]
pre, where x

[k]
pre =

(
ξ

[k]
pre, δ

[k]
pre

)
and Rref,pre.

#generate post-reset attitude sigma points

δ
[·]
post, Rref,post ← Procedure 1

(
δ

[·]
pre, Rref,pre

)
for k ∈ {1, . . . , 2n} do

x
[k]
post =

(
ξ

[k]
post, δ

[k]
post

)
end for
Return x

[·]
post, Rref,post

6. Algorithms

For the sake of completeness, the problem setup from Section 3 and some key results are

repeated here, followed by the algorithms EKFA and UKFA.

6.1 Preliminaries

The underlying system state contains an attitude R and other states ξ ∈ Rnξ . The

stochastic state x = (ξ, δ) ∈ Rnξ+3 is introduced, where δ ∈ R3 represents an attitude

error parametrised through Rodrigues parameters. The attitude R associated with the

system is written as the composition of a reference attitude Rref and the attitude error δ:

R =: Rref rot(δ) . (5.79)

161

Paper P5. Kalman filtering with an attitude

The system dynamics (5.18)-(5.19) are combined and rewritten so that

x[k] = f(k−1, x[k−1], Rref[k−1], η[k−1]) (5.80)

where specifically the change in attitude of (5.19) affects only the attitude error δ, and

not the reference attitude Rref . Rewriting these equations requires compositions and kine-

matics of attitudes using the Rodrigues parameters, such as those in Section 2.

The measurement equation (5.20) is likewise rewritten as a function of the new state

variables:

z[k] = h(k, x[k], Rref[k], ζ[k]). (5.81)

Let x̂m[k−1] represent the mean estimate of the state at time k−1, where specifi-

cally δ̂m[k−1] = 0, and the associated covariance of the state is P̂m[k−1]. Let Rref,m[k−1]

be the associated reference attitude. These variables represent estimates of the mean and

covariance of the state conditioned on all measurements up to and including time k−1.

6.2 Extended Kalman Filter with an Attitude (EKFA)

Step 0: Initialisation The filter state is initialised at time k = 0 using an initial mean x0 =

(ξ0, 0), covariance Σ0, and reference attitude Rref,0:

x̂m[0] = x0 (5.82)

P̂m[0] = Σ0 (5.83)

Rref,m[0] = Rref,0 (5.84)

Step 1:Prediction The first step of the algorithm is the usual extended Kalman filter

prediction step, as can be found in e.g. [5.29]. For the sake of completeness, the main ideas

are presented here. This step propagates the estimate x̂m[k−1] and P̂m[k−1] through the

dynamic equations, to yield predicted estimates x̂p[k] and P̂p[k], respectively. Important

is that the reference attitude is left unchanged in this step.

x̂p[k]:=f(k−1, x̂m[k−1], Rref,m[k−1], 0) (5.85)

P̂p[k]:=F [k−1]P̂m[k−1]F [k−1]T+G[k−1]Ση[k−1]G[k−1]T (5.86)

Rref,p[k]:=Rref,m[k−1] (5.87)

162

6. Algorithms

where

F [k] :=
∂f

∂x

∣∣∣∣
x=x̂m[k],Rref=Rref,m[k],η[k]=0

(5.88)

G[k] :=
∂f

∂η

∣∣∣∣
x=x̂m[k],Rref=Rref,m[k],η[k]=0

(5.89)

Ση[k] := Var(η[k]) . (5.90)

Step 2: Prediction reset After the prediction step, the state estimate x̂p[k] will in gen-

eral contain a non-zero attitude error δ̂p[k]. The goal of this step is to move the in-

formation from this attitude error into the reference attitude, following the method of

Theorem 1. This yields the mean estimate x̂q[k], associated covariance P̂q[k] and reference

attitude Rref,q[k]:

x̂q[k] := x̂p[k] −
(

0, δ̂p[k]
)

(5.91)

P̂q[k] := Treset(δ̂p[k])P̂p[k]Treset(δ̂p[k])T (5.92)

Rref,q[k] := Rref,p[k]rot
(
δ̂p[k]

)
(5.93)

where

Treset (δ) := diag
(
I, rot

(
−1

2
δ
))
. (5.94)

Step 3: Measurement update This step is the usual Kalman filter measurement update

step, again repeated here for completeness from [5.29]. Again, the reference attitude is

left unchanged in this step.

L[k]:=P̂q[k]H[k]T
(
H[k]P̂q[k]H[k]T+M[k]Σζ[k]M[k]T

)−1

(5.95)

x̂r[k] := x̂q[k] + L[k] (z[k] − h(k, x̂q[k], Rref,q[k], 0)) (5.96)

P̂r[k] := (I − L[k]H[k])P̂q[k] (5.97)

Rref,r[k] := Rref,q[k] (5.98)

163

Paper P5. Kalman filtering with an attitude

where

H[k] :=
∂h

∂x

∣∣∣∣
x=x̂r[k],Rref=Rref,q[k],ζ[k]=0

(5.99)

M[k] :=
∂h

∂ζ

∣∣∣∣
x=x̂m[k],Rref=Rref,m[k],ζ[k]=0

(5.100)

Σζ[k] := Var(ζ[k]) . (5.101)

Step 4: Measurement reset After the measurement update step, the state estimate x̂r[k]

will again in general contain a non-zero attitude error δ̂r[k]. This is again moved to the

reference attitude using the method of Theorem 1. This yields the mean estimate x̂m[k],

associated covariance P̂m[k] and reference attitude Rref,m[k] that may be used for the next

prediction step:

x̂m[k] := x̂r[k] −
(

0, δ̂r[k]
)

(5.102)

P̂m[k] := Treset(δ̂r[k])P̂r[k]Treset(δ̂r[k])T (5.103)

Rref,m[k] := Rref,r[k]rot
(
δ̂r[k]

)
. (5.104)

The algorithm continues from Step 1.

6.3 Unscented Kalman Filter with an Attitude (UKFA)

The unscented Kalman filter offers much flexibility for encoding problems, e.g. allowing

to encode process or measurement noise that enters the system in a nonlinear manner.

For the sake of simpler exposition, here only the most straight-forward case will be used

for the presentation of the UKFA: it will be assumed that the process noise η enters

the dynamics in a purely additive way and that the dimension of η is the same as the

state x, so that its effect on the covariance estimate is captured by a simple addition.

Likewise, it is assumed that the measurement noise ζ enters in a purely additive way.

If these assumptions do not hold, the algorithm may be straight-forwardly modified, see

e.g. [5.30].

Step 0: Initialisation The filter state is initialised at time k = 0 using an initial mean x0 =

(ξ0, 0), covariance Σ0, and reference attitude Rref,0:

x̂m[0] = x0 (5.105)

P̂m[0] = Σ0 (5.106)

Rref,m[0] = Rref,0 (5.107)

164

6. Algorithms

Step 1: Prediction The first step of the algorithm is a modification of the usual un-

scented Kalman filter prediction step, as can be found in e.g. [5.1]. This step propagates

the estimate x̂m[k−1] and P̂m[k−1] through the dynamic equations, to yield predicted

estimates x̂p[k] and P̂p[k], respectively. Important is that the reference attitude is left

unchanged in this step.

First a set of sigma-points x̂
[·]
p is computed as

x̂[·]
m[k−1]:=GenerateSigmaPoints

(
x̂m[k−1], P̂m[k−1]

)
(5.108)

where GenerateSigmaPoints (µ,Σ) is a function that generates a set of sigma points as

follows, where n is the dimension of µ:

s[i] = µ+
(√

nΣ
)T
i

s ∈ {1, . . . , n} (5.109)

s[n+i] = µ−
(√

nΣ
)T
i

s ∈ {1, . . . , n}. (5.110)

Each sigma-point is then propagated through the nonlinear dynamics equation as

x̂[i]
p [k]:=f(k−1, x̂[i]

m[k−1], Rref,m[k−1], 0). (5.111)

Step 2: Prediction reset After the prediction step, the sigma-points x̂
[·]
p [k] will in general

contain a non-zero mean attitude error. The goal of this step is to move the information

from this attitude error into the reference attitude, following the method derived in

Procedure 2, such that for each particle x̂
[i]
p a new particle x̂

[i]
q is computed, as well as the

reference attitude Rref,q. The effect of the process noise η is also taken into account.

x̂[·]
p , Rref,q = Procedure 2

(
x̂[·]
p , Rref,p

)
(5.112)

From this, the estimated predicted statistics follow as

x̂q[k]:=Eσ

(
x̂[·]
q [k]

)
(5.113)

P̂q[k]:=Varσ
(
x̂[·]
q [k]

)
+ Ση[k−1] (5.114)

where

Ση[k]:=Var(η[k]) . (5.115)

Step 3: Measurement update This step is a modification of the usual unscented Kalman

filter measurement update step, as can be found in [5.1]. Again, the reference attitude is

165

Paper P5. Kalman filtering with an attitude

left unchanged in this step.

A set of sigma-points x̂
[·]
r is generated as

x̂[·]
r [k−1]:=GenerateSigmaPoints

(
x̂q[k−1], P̂q[k−1]

)
. (5.116)

Note that this may be omitted, and the sigma points from the previous step directly used,

at the cost of reduced performance [5.1].

Each sigma-point is then propagated through the nonlinear measurement equation as

ẑ[i][k]:=h(k, x̂[i]
q [k], Rref,q[k], 0). (5.117)

These sigma-points are combined to yield the predicted measurement statistics:

ẑ[k]:=Eσ

(
ẑ[·]) (5.118)

P̂z[k]:=Varσ
(
ẑ[·])+ Σζ[k] (5.119)

where

Σζ[k]:=Var(ζ[k]) . (5.120)

The cross covariance between x̂r and ẑ is estimated as

P̂xz[k]:=
1

2n

2n∑
i=1

(
x̂[i]
r [k]−Eσ

(
x̂[·]
r [k]

)) (
ẑ[i][k]−Eσ

(
ẑ[·][k]

))T
(5.121)

The measurement z[k] is then used as

L[k]:=P̂xzP̂
−1
z (5.122)

x̂r[k] := x̂q[k] + L[k] (z[k] − ẑ[k]) (5.123)

P̂r[k] := P̂q[k] − L[k]P̂z[k]L[k]T (5.124)

Rref,r[k] := Rref,q[k]. (5.125)

Step 4: Measurement reset After the measurement update step, the state estimate x̂r[k]

will again in general contain a non-zero attitude error δ̂r[k]. This is again moved to the

reference attitude by generating a new set of sigma-points, and using Procedure 2. The

result of the reset step is the mean estimate x̂m[k], the variance estimate P̂m[k], and

the reference attitude Rref,m[k]. These are used in the next iteration, and the algorithm

continues from Step 1.

166

7. Conclusion

6.4 Alternative estimator structures

In addition to the presented EKFA and UKFA algorithms, alternative combinations are

also possible. For example, the first order reset of Theorem 1 may be used in an unscented

Kalman filter, or the unscented reset of Procedure 2 may be used with an extended

Kalman filter. Alternatively, one form of reset may be used for the prediction reset,

another for the measurement reset.

7. Conclusion

The presented algorithm is a generic framework for applying the extended or unscented

Kalman filter to systems whose dynamic state includes an attitude. A three element

attitude error is used in the estimate state vector (which has an associated covariance),

in addition to a reference attitude (which does not have associated covariance). A key

requirement for such an algorithm is a mathematical basis for moving information from

the attitude error to the reference attitude, in a reset step. This is done by keeping track

of the attitude error statistics during the reset step. Two approximations to the reset step

are proposed, based on a first-order analysis and the unscented transform. Monte Carlo

sampling is used to validate the reset steps, and it is shown that the first order reset

has significantly lower errors than the method in the prior art. Furthermore, at the cost

of increased computational complexity, the reset step based on the unscented transform

is shown to significantly out-perform the first-order reset. These reset steps are used in

two novel estimation algorithms, the Extended Kalman Filter with an Attitude (EKFA),

and the Unscented Kalman Filter with an Attitude (UKFA). The reset steps may be

extended straight-forwardly to problems containing multiple attitudes, e.g. a robotic arm

with multiple serial joints.

Funding

This research was supported by the Swiss National Science Foundation (SNSF), under

grant application 138112.

A. Comparison of EKFA and MEKF

This appendix compares the EKFA to the MEKF of [5.10]. It is shown that, for the system

considered by the MEKF, the prediction step of the MEKF is equivalent to the prediction

step of the EKFA. This section will not, however, attempt a detailed description of the

MEKF.

167

Paper P5. Kalman filtering with an attitude

A.1 Problem statement

The problem considered is to estimate an attitude of a rigid body, where the attitude R

represents the transformation from a body-fixed frame to an inertial, world-fixed frame.

The process model consists of integrating the output of a rate gyroscope g (which differs

from the true angular velocity by a bias b). Additional vector measurements, used in the

Kalman filter measurement update, are available. However, because the focus is on the

Kalman prediction step, these are ignored here. Noise on the rate gyroscope output, and

noise driving the bias, are also neglected here for simplicity.

The differential equation governing the dynamics of the bias and the orientation are

then

d

dt
b(t) = 0 (5.126)

d

dt
R(t) = R(t) S(g(t)− b(t)) . (5.127)

Using Fact 4, the above may be discretised over a time period ∆t � 1 by assuming

that the angular velocity is constant over the sampling period, to yield

b[k] = b[k−1] (5.128)

R[k] = R[k−1] exps((g[k] − b[k−1]) ∆t) . (5.129)

A.2 MEKF

The MEKF state vector is six dimensional, and includes a three-dimensional attitude

error representation δ, and a three dimensional rate gyroscope bias b. The derivation

in [5.10] is done on a continuous time process model: to aid comparison to the EKFA,

the MEKF is here discretised with a zero-order hold over the time step ∆t. The rate

gyroscope output at time k is g[k], and the state estimate is x̂ =
(
b̂, δ̂
)

.

It should be noted that in [5.10] the reference attitude is encoded using the Euler

symmetric parameters, this however has no effect on the following. Furthermore, the

attitude error is encoded using twice the Rodrigues parameters, so that some factors of

a half appear additionally below.

The prediction of the MEKF may then be written as below, using the per-step symbols

of Section 6:

x̂q,M[k] :=
(
b̂m,M[k−1], 0

)
(5.130)

Rref,q,M[k] = Rref,p,M[k]exps
((
g[k] − b̂q,M[k]

)
∆t
)

(5.131)

That is, the bias estimate remains constant, the attitude error remains zero, and the ref-

erence attitude is updated using the bias-corrected rate gyroscope output. The covariance

168

A. Comparison of EKFA and MEKF

prediction is:

P̂q,M[k] = FM(g[k] − b̂m,M[k−1])P̂P,M[k]FM(g[k] − b̂m,M[k−1])T (5.132)

where FM(ω) is given as below [5.10, see (38)]

FM(ω) :=

[
I 0

−1
2
I∆t I − S(ω∆t)

]
. (5.133)

A.3 EKFA

This can be compared to the prediction step of the EKFA, from Section 6: The first step

(prediction) yields the below, using again a first-order Euler sampling to discretise the

dynamics:

x̂p[k]:=
(
b̂m[k−1], rot−1

(
exps

((
g[k] − b̂m[k−1]

)
∆t
)))

(5.134)

P̂p[k]:=F [k−1]P̂m[k−1]F [k−1]T (5.135)

Rref,p[k]:=Rref,m[k−1] (5.136)

where F is defined as below, using the differential equation (5.17) for the partial deriva-

tives

F [k] :=

[
I 0

−1
2
I∆t I − 1

2
S
((
g[k] − b̂[k−1]

)
∆t
)] . (5.137)

The prediction reset step then follows as

x̂q[k]:=
(
b̂p[k], 0

)
=
(
b̂m[k−1], 0

)
(5.138)

P̂q[k]:=Treset

(
δ̂p[k]

)
P̂p[k]Treset

(
δ̂p[k]

)T
:=TresetF [k]

(
δ̂p[k]

)
P̂m[k−1]F [k]TTreset

(
δ̂p[k]

)T
(5.139)

Rref,q[k]:=Rref,p[k−1]rot
(
δ̂p[k]

)
= Rref,pexps

((
g[k] − b̂m[k−1]

)
∆t
)

(5.140)

169

Paper P5. Kalman filtering with an attitude

where rot
(
δ̂[k]
)

can be approximated to first order, yielding

rot
(
δ̂[k]
)

= I − S
(
g[k] − b̂[k−1]

)
∆t+ o(∆t) (5.141)

Treset

(
δ̂[k]
)
F [k] =

[
I 0

−1
2
I∆t I − S

(
g[k] − b̂[k−1]

)
∆t

]
+ o(∆t) . (5.142)

A.4 Comparison

By comparing (5.133) and (5.142) it can be seen that the MEKF contains an implicit

covariance reset in the prediction step, equivalent to that of Theorem 1. Therefore, for this

system, the MEKF and the EKFA are equivalent for the prediction step. Note, however,

that the EKFA contains an additional reset after the measurement update. Furthermore,

the reset of Theorem 1 may be straight-forwardly extended to alternative dynamic models,

with more complex state vectors.

Remark. The innovation (measurement residual) sequence for a Kalman filter is a zero-

mean, white sequence [5.8, Sec. 5.2.6]. Because the state updates due to the measurements

are linear in the innovations, the state update sequence is thus also zero-mean and white.

Therefore, for a properly tuned MEKF, with “slow” dynamics and low uncertainty (so

that nonlinear effects are negligible), the measurement covariance reset will be zero-mean

and white, so that failure to do the measurement reset may be expected to have a small

effect. If instead the process/measurement noise characteristics are not known exactly,

or nonlinear effects are significant, the state updates will no longer be white (and may

also be non-zero mean), so that the measurement reset step may significantly improve

performance.

Acknowledgements

The authors would like to thank Mark Psiaki and Landis Markley for their feedback and

helpful comments to this paper.

References

[5.1] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear ap-

proaches. John Wiley & Sons, 2006.

[5.2] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation group”,

SIAM review, vol. 6, no. 4, pp. 422–430, 1964.

170

REFERENCES

[5.3] Y. Yoon, A. Kosaka, and A. C. Kak, “A new Kalman-filter-based framework

for fast and accurate visual tracking of rigid objects”, IEEE Transactions on

Robotics, vol. 24, no. 5, pp. 1238–1251, 2008.

[5.4] A. J. Davison, “Real-time simultaneous localisation and mapping with a sin-

gle camera”, in International Conference on Computer Vision, IEEE, 2003,

pp. 1403–1410.

[5.5] M. D. Shuster, “A survey of attitude representations”, Journal of the Astronau-

tical Sciences, vol. 41, no. 4, pp. 439–517, 1993.

[5.6] S. J. Julier and J. J. LaViola Jr, “On Kalman filtering with nonlinear equality

constraints”, IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2774–

2784, 2007.

[5.7] R. Zanetti, M. Majji, R. H. Bishop, and D. Mortari, “Norm-constrained Kalman

filtering”, Journal of guidance, control, and dynamics, vol. 32, no. 5, pp. 1458–

1465, 2009.

[5.8] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to

tracking and navigation. John Wiley & Sons, 2004.

[5.9] J. L. Farrell, “Attitude determination by Kalman filtering”, Automatica, vol. 6,

no. 3, pp. 419–430, 1970.

[5.10] F. L. Markley, “Attitude error representations for Kalman filtering”, Journal of

Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[5.11] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering for spacecraft

attitude estimation”, Journal of Guidance, Control, and Dynamics, vol. 5, no.

5, pp. 417–429, 1982.

[5.12] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude es-

timation”, Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 536–

542, 2003.

[5.13] F. L. Markley, J. L. Crassidis, and Y. Cheng, “Nonlinear attitude filtering meth-

ods”, in AIAA Guidance, Navigation, and Control Conference, 2005, pp. 15–18.

[5.14] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude

estimation methods”, Journal of Guidance, Control, and Dynamics, vol. 30, no.

1, pp. 12–28, 2007.

[5.15] F. L. Markley and J. L. Crassidis, “Filtering for attitude estimation and cal-

ibration”, in Fundamentals of Spacecraft Attitude Determination and Control,

Springer, 2014, pp. 235–285.

[5.16] S. Steffes, J. P. Steinbach, and S. Theil, “Investigation of the attitude error

vector reference frame in the INS EKF”, in Advances in Aerospace Guidance,

Navigation and Control, Springer, 2011, pp. 345–357.

171

Paper P5. Kalman filtering with an attitude

[5.17] R. G. Reynolds, “Asymptotically optimal attitude filtering with guaranteed con-

vergence”, Journal of guidance, control, and dynamics, vol. 31, no. 1, pp. 114–

122, 2008.

[5.18] F. L. Markley, “Lessons learned”, English, The Journal of the Astronautical

Sciences, vol. 57, no. 1-2, pp. 3–29, 2009.

[5.19] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude esti-

mation”, University of Minnesota, Deptartment of Computer Science & Engi-

neering, Report 2005-002, Jan. 2005.

[5.20] J. K. Hall, N. B. Knoebel, and T. W. McLain, “Quaternion attitude esti-

mation for miniature air vehicles using a multiplicative extended kalman fil-

ter”, in IEEE/ION Position, Location and Navigation Symposium, IEEE, 2008,

pp. 1230–1237.

[5.21] N. Filipe, M. Kontitsis, and P. Tsiotras, “Extended Kalman filter for spacecraft

pose estimation using dual quaternions”, Journal of Guidance, Control, and

Dynamics, 2015.

[5.22] J. C. Springmann, A. J. Sloboda, A. T. Klesh, M. W. Bennett, and J. W. Cutler,

“The attitude determination system of the RAX satellite”, Acta Astronautica,

vol. 75, pp. 120–135, 2012.

[5.23] M. D. Truch, P. A. Ade, J. J. Bock, E. L. Chapin, M. J. Devlin, S. R. Dicker,

M. Griffin, J. O. Gundersen, M. Halpern, P. C. Hargrave, et al., “The balloon-

borne large aperture submillimeter telescope (BLAST) 2006: Calibration and

flight performance”, The Astrophysical Journal, vol. 707, no. 2, p. 1723, 2009.

[5.24] F. M. Mirzaei, S. Roumeliotis, et al., “A Kalman filter-based algorithm for IMU-

camera calibration: Observability analysis and performance evaluation”, IEEE

Transactions on Robotics, vol. 24, no. 5, pp. 1143–1156, 2008.

[5.25] A. Mourikis, N. Trawny, S. Roumeliotis, A. E. Johnson, A. Ansar, L. Matthies, et

al., “Vision-aided inertial navigation for spacecraft entry, descent, and landing”,

IEEE Transactions on Robotics, vol. 25, no. 2, pp. 264–280, 2009.

[5.26] M. D. Shuster, “Constraint in attitude estimation part I: Constrained estima-

tion”, Journal of the Astronautical Sciences, vol. 51, no. 1, pp. 51–74, 2003.

[5.27] M. D. Shuster, “Constraint in attitude estimation part II: Unconstrained esti-

mation”, Journal of the Astronautical Sciences, vol. 51, no. 1, pp. 75–102, 2003.

[5.28] D. S. Bernstein, Matrix mathematics: Theory, facts, and formulas. Princeton

University Press, 2009.

[5.29] B. D. O. Anderson and J. B. Moore, Optimal filtering. Prentice-Hall, 1979.

[5.30] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation”,

Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[5.31] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific Grove, CA,

2002, vol. 2.

172

Paper P6

Fusing ultra-wideband range measurements

with accelerometers and rate gyroscopes for

quadrocopter state estimation

Mark W. Mueller, Michael Hamer, and Raffaello D’Andrea

Abstract

A state estimator for a quadrocopter is presented, using measurements from an
accelerometer, angular rate gyroscope, and a set of ultra-wideband ranging radios.
The estimator uses an extended aerodynamic model for the quadrocopter, where the
full 3D airspeed is observable through accelerometer measurements. The remain-
ing quadrocopter states, including the yaw orientation, are rendered observable by
fusing ultra-wideband range measurements, under the assumption of no wind. The
estimator is implemented on a standard microcontroller using readily-available, low-
cost sensors. Performance is experimentally investigated in a variety of scenarios,
where the quadrocopter is flown under feedback control using the estimator output.

Published in Proceedings of the 2015 IEEE International Conference on Robotics and

Automation (ICRA).

c©2015 IEEE. Reprinted, with permission, from Mark W. Mueller, Michael Hamer, and Raffaello D’Andrea,
“Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter
state estimation”, IEEE International Conference on Robotics and Automation (ICRA), 2015.

173

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

1. Introduction

Quadrocopters offer agile and mechanically simple testbeds for research on flying robots.

They also promise to be useful for commercial applications, for example as package de-

livery robots [6.1] or as mobile sensing platforms.

State estimation is a fundamental requirement for the autonomous operation of these

vehicles. Typical estimation strategies fuse a variety of sensors, typically combining iner-

tial measurement units with sensors providing absolute measurements.

A number of solutions for absolute state measurement currently exist. Off-board vision

is often used to measure the position and orientations of flying vehicles, using either

commercial motion-capture systems [6.2]–[6.4], or lower-cost cameras [6.5], [6.6]. On-

board vision systems are also very popular, with [6.7]–[6.9] being examples of monocular-,

and [6.10], [6.11] of stereo-vision systems. Finally, many outdoor systems rely on GPS

systems for position measurements, as e.g. [6.12]. These different localisation solutions

present different trade-offs between cost, measurement accuracy, robustness to external

influences, computational burden, and ease of deployment.

A relatively new method of indoor localization utilizes low cost, low power, ultra-

wideband (UWB) radio modules to estimate inter-module distance by measuring the

transmission and reception time of UWB pulses, see e.g. [6.13]–[6.15]. This paper presents

a quadrocopter state estimation strategy, which uses these range measurements to localize

the quadrocopter. This is enabled by a mobile UWB radio connected to the quadrocopter

and a set of fixed modules with known position (anchors) placed in the environment.

Inter-module distance is measured using a time-of-arrival (TOA) approach. The layout

of the system is illustrated in Fig. 6.1.

This paper demonstrates that closed loop control of a quadrocopter during agile ma-

noeuvres is possible using UWB range measurements fused with a dynamic model of

the quadrocopter and with measurements from on-board accelerometers and rate gyro-

scopes. The state estimator, controller, and trajectory generator all run on-board the

quadrocopter’s microcontroller.

Figure 6.1. A quadrocopter uses time of flight measurements from an UWB radio to measure
the distance to a set of stationary UWB anchors in a round-robin fashion. An accelerometer
effectively measures the static thrust f and other aerodynamic effects fa, thereby providing
information on the quadrocopter’s translational velocity. Rate gyroscopes are used to measure
the quadrocopter’s angular velocity.

174

2. System dynamics

The remainder of this paper is organised as follows: the dynamics of the quadrocopter

are presented in Section 2, with a special focus on aerodynamic effects. Section 3 then

presents sensor models for each of the three sensors used, and Section 4 presents a state

estimator fusing these measurements with a dynamic model of the quadrocopter. An

algorithm to estimate the range between two UWB radios is then given in Section 5. The

approach is validated in experiment in Section 6, and the paper concludes with Section 7.

2. System dynamics

This section presents the equations of motion governing the flight of a quadrocopter. These

equations will later be used in the prediction step of the state estimator. Furthermore,

specific attention will be paid to an accelerometer model, showing how the vehicle’s three

dimensional velocity may be directly inferred from the accelerometer measurement.

The quadrocopter is modelled as a rigid body, governed by the Newton-Euler equa-

tions [6.16]. Denoting the quadrocopter’s position in an inertial reference frame with x

and the orientation of the quadrocopter’s body with respect to the inertial reference

frame with R, the equations of motion of the quadrocopter are as below. The total thrust

produced by the propellers is written as f , and the acceleration due to gravity is ex-

pressed as g. All remaining aerodynamic effects are captured in the vector fa, whose

components are expressed in the body-fixed frame. The vehicle’s mass is given by m,

and e3 = (0, 0, 1). The notation (x, y, z) will be used throughout this paper to compactly

express the elements of a vector. The forces are illustrated in Fig. 6.1.

mẍ = R (fe3 + fa) +mg (6.1)

Ṙ = R Jω×K (6.2)

Note that this uses the matrix form of the cross product, given by

Jω×K =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (6.3)

where ω = (ω1, ω2, ω3) is the angular velocity of the quadrocopter as expressed in the

body fixed frame.

The angular acceleration of the quadrocopter evolves as a function of the torques

acting on the vehicle, the current angular velocity, and the quadrocopter’s inertia. These

equations are given for example in [6.17], and will not be repeated here as these equations

are not required for the estimator design in Section 4.

175

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

2.1 Static thrust force

It is assumed that the angular velocity θ̇i of each propeller i is known, for example as

a measurement returned by the electronic speed controller. The thrust produced by a

stationary propeller may be modelled as quadratic in its angular velocity, with propor-

tionality constant κ [6.18], so that the total thrust of the the vehicle is

f =
4∑
i=1

κθ̇2
i . (6.4)

This static thrust points along the propellers’ axis of rotation.

2.2 Aerodynamic effects

The force generated by a propeller translating with respect to the free stream will typically

be significantly different from the static thrust force f . This deviation is given by fa, which

is taken to be a function of the quadrocopter’s relative airspeed.

The effect of the component of the airspeed in the rotor plane is well documented,

e.g. [6.17], [6.19]–[6.21]. Typically, blade flapping is invoked to motivate a linear depen-

dence between the quadrocopter’s velocity in the rotor plane to the components of fa in

the rotor plane.

There is rich literature on the aerodynamics of propellers translating along their axial

directions [6.22], typically in the context of large, fixed-wing aeroplanes. The dependence

of the thrust produced by a quadrocopter translating in the thrust direction has also been

studied in the literature, for example [6.23], [6.24].

Here, the aerodynamic force is modelled as an interaction between the rotating pro-

pellers, and the vehicle’s airspeed. The force is assumed to be linear in the product of the

airspeed and the propeller speeds, with κ⊥ the proportionality constant for the force in

the plane of the rotors, and κ‖ the proportionality constant in the direction of the thrust

vector. It is assumed that there is no wind, so that the quadrocopter’s relative airspeed

equals the quadrocopter’s velocity with respect to the inertial frame.

The force can then be calculated as

fa = Kaero θ̇Σ R−1ẋ (6.5)

where

Kaero = diag
(
κ⊥, κ⊥, κ‖

)
(6.6)

θ̇Σ =
4∑
i=1

∣∣∣θ̇i∣∣∣. (6.7)

176

3. Sensors

3. Sensors

The estimator presented in Section 4 relies on the measurements of three distinct types

of sensors: angular rate gyroscopes, accelerometers, and UWB range sensors. Each of

these sensors will be briefly discussed here, and the sensor output will be linked to the

quadrocopter dynamics of Section 2.

3.1 Angular rate gyroscopes

The angular rate gyroscopes measure the quadrocopter’s angular velocity in the body

frame. The measurement will be modelled here as

zgyro = ω + ηgyro (6.8)

where ηgyro is assumed to be zero-mean white noise. More complete models exist, which

include for example scale errors or biases [6.25], here however it will be assumed that the

sensor is well calibrated and these effects may be neglected.

3.2 Accelerometers

An accelerometer measures the specific acceleration of a body, that is the difference

between the acceleration and gravitational acceleration, as expressed in the body frame.

A good tutorial may be found in [6.21].

The accelerometer measurements are assumed to be corrupted by zero-mean white

noise ηacc so that the accelerometer measurement can be derived from (6.1) as

zacc = R−1 (ẍ− g) + ηacc =
1

m
(e3f + fa) + ηacc. (6.9)

Thus, given knowledge of the propellers’ angular velocities and through (6.4) the static

thrust force f , the accelerometer yields information about the aerodynamic force fa. This

will be exploited in the design of the estimator, as it renders all three components of the

vehicle’s airspeed observable.

3.3 UWB range measurements

The UWB radio mounted on the quadrocopter uses a TOA-based algorithm, presented

in Section 5, to calculate the distance between the quadrocopter at position x and an

anchor i at position puwb,i. This measurement is assumed to be a perfect measurement of

distance, corrupted by zero mean white noise ηuwb, such that the measurement is given

as

zuwb,i = ‖puwb,i − x‖+ ηuwb (6.10)

where ‖·‖ represents the Euclidean norm.

177

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

4. State estimator

An extended Kalman filter is used to estimate the state of the quadrocopter in flight.

This section will present the necessary equations for the Kalman filter, derived from the

system’s dynamic model of Section 2 and the sensor models of Section 3.

To estimate the state of the quadrocopter the estimator will use sensor measurements

from the accelerometer, angular rate gyroscope, and the UWB range sensors, and combine

these with the motor commands. Throughout this section, a caret will be used to indicate

an estimate, for example ω̂ is the estimate of the body’s angular velocity.

The goal of the estimator is to estimate the twelve-dimensional state of the rigid

body, consisting of the quadrocopter’s position, velocity, orientation, and angular velocity.

The estimation is split into two parts: estimating the vehicle’s angular velocity, and

estimating the remaining states. As the computational complexity of a Kalman filter

scales approximately as n3, where n is the number of states [6.26], this reduces the

computational cost to estimate the twelve states by more than 50%.

For the sake of brevity, the standard Kalman filter equations available in a standard

reference (such as [6.26]) will not be repeated in this paper. Instead the focus will be on

the system dynamics equations, and on the measurement equations.

The angular rate gyroscope measurement is used directly as the estimate of the

quadrocopter’s angular velocity, so that

ω̂ = zgyro. (6.11)

This bases on the assumption that the measurement noise of the rate gyroscopes is

negligible. The covariance of this estimate is equal to the covariance of ηgyro.

An extended Kalman filter is used to estimate the quadrocopter’s position, velocity,

and orientation. The estimator has a nine-dimensional stochastic state ξ:

ξ = (x,ρ, δ) . (6.12)

where x is the quadrocopter’s position expressed in the inertial coordinate system, and

ρ = R−1ẋ is the velocity of the quadrocopter expressed in the body frame. The three

dimensional vector δ is an attitude error representation, used to encode the uncertainty

about the vehicle’s orientation.

In addition to the stochastic state, the estimator also contains a reference orienta-

tion Rref. The reason for this parametrisation is as follows: although the orientation of

one frame with respect to another contains only three degrees of freedom, there exists no

global three-dimensional representation without singular points [6.27]. Thus, when using

a three dimensional representation alone (such as Euler angles), the estimator will have to

deal with singularities. However, using parametrisations with more than three elements

(such as the four dimensional Euler symmetric parameters, or the nine dimensional rota-

178

4. State estimator

tion matrix) requires applying constraints, which would in turn imply rank deficiency in

the associated covariance matrix [6.28]. Higher dimensional representations also imply a

higher computational cost.

For this reason, the estimated attitude is encoded using both the reference orienta-

tion and the three attitude error components. The error components are assumed to be

infinitesimal, and then the estimator’s attitude estimate is given as below [6.16], where

all orientations are expressed with rotation matrices:

R̂ = R̂ref

(
I + Jδ̂×K

)
(6.13)

with I ∈ R3×3 the identity matrix. This formulation is sometimes referred to as a mul-

tiplicative Kalman filter, and the key idea is to maintain the orientation estimate in

the reference attitude, use the three attitude error components to encode the covariance

associated with the orientation. After each Kalman filter step, the reference rotation is

updated with the attitude errors, and δ̂ is reset to zero. The covariance is left unchanged

during this reset step. More information on this approach can be found in e.g. [6.29].

4.1 Prediction equations

During the Kalman filter prediction step, the estimated states evolve as follows, from

Section 2:

˙̂x =R̂ref

(
I + Jδ̂×K

)
ρ̂ (6.14)

˙̂ρ =
1

m
fe3 +

(
1

m
Kaeroθ̇Σ − Jω̂×K

)
ρ̂− ‖g‖

(
I− Jδ̂×K

)
R̂−1

refe3 (6.15)

˙̂
δ =ω̂ (6.16)

˙̂
Rref =0 (6.17)

The angular rate gyroscope is used as an input to this system, entering through (6.16).

The zero-mean noise on the rate gyroscope is then trivially encoded as process noise

using the standard extended Kalman filter formulation [6.26]. Additionally, a zero-mean

acceleration is assumed to act on the system, so that an additional three dimensional

process noise is taken to act upon ρ.

By stacking (6.14)-(6.16), taking the derivative with respect to ξ, and evaluating at

the filter’s current estimate ξ̂ and R̂ref, the Jacobian necessary for performing the Kalman

filter covariance prediction can be computed.

4.2 Accelerometer measurement update equation

The accelerometer allows to infer the vehicle’s airspeed, through the aerodynamic forces.

It is assumed that the propellers’ angular rates θ̇i are known, so that the static thrust f

can be computed. This can then be subtracted from the accelerometer measurement, so

179

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

that the result z̃acc is a measurement of fa, scaled by the vehicle mass and corrupted by

noise, by (6.9) and (6.5):

z̃acc = zacc −
1

m
e3κ

4∑
i=1

θ̇i =
1

m
fa + ηacc

=
1

m
Kaero θ̇Σ ρ+ ηacc

(6.18)

which is linear in the quadrocopter’s airspeed, and may thus be easily encoded in the

Kalman filter.

4.3 UWB range measurement update equation

A range measurement to an anchor can be modelled by (6.10). This may again easily be

linearised about the estimator’s current state, and incorporated in the filter.

1) Ranging outlier rejection Outliers from the UWB ranging radios may be detected

by computing likelihood of a given ranging measurement. Because the measurements are

scalar, the resulting innovation covariance [6.26] will also be scalar, and may thus be

inverted at low computational cost. Squaring the difference between the actual range

measurement and the measurement expected given the current state estimate, and mul-

tiplying by the inverse innovation yields a squared normalised distance called the Ma-

halanobis distance [6.26]. The larger this normalised distance the less likely a particular

measurement is to result from the statistical properties of the expected error. A mea-

surement with a distance larger than some given threshold may thus be rejected as an

outlier.

5. Range measurement using time-of-arrival measurements

As discussed in Section 3.3, a UWB radio mounted to the quadrocopter is used to measure

distances to anchors placed within the environment. Many different methods exist to

measure distance using UWB radio [6.13], [6.30]–[6.32]; for the purposes of this paper, a

TOA-based method known as two way ranging is used[6.31].

5.1 The two way ranging algorithm

The high temporal resolution of UWB pulses enables accurate range measurement; how-

ever, it also poses challenges, such as compensating for clock frequency differences be-

tween UWB modules [6.13], [6.30]. Compensating for these differences is achieved using

a variation of the two way ranging algorithm, which employs a repeated reply to allow

measurement of anchor delay relative to the quadrocopter’s clock [6.31].

180

5. Range measurement using time-of-arrival measurements

Figure 6.2. A two-way ranging with repeated reply algorithm is used to measure the time of
flight between a quadrocopter and an anchor. By subtracting the locally-measured processing
time (QRxM2

−QRxM1
) from the round-trip time (QRxM1

−QTxM0
), the time of flight (f) can be estimated

in the quadrocopter’s local clock.

1) Measurement of clock frequency difference As shown in Fig. 6.2, after sending its

first reply, the anchor waits for a predetermined amount of time δA = δ, where δ is a

predefined constant, here chosen as 1 ms. After this time delay, the anchor’s reply message

is repeated, allowing the anchor’s delay to be measured by the quadrocopter as

zδQ = δQ + n2 − n1 = QRx
M2
−QRx

M1
, (6.19)

where ni are samples of a noise distribution and affect the reception timestamp. Fig. 6.3

shows the difference between the anchor’s delay and the expected delay, as measured by

the quadrocopter (δQ−δ). This measurement is time-varying due to clock frequency drift

and is affected by noise.

It is assumed that the noise term n2 − n1 is zero mean, and thus δQ tracks the

mean of the time-varying measurements. By applying a low-pass filter over successive

measurements, δQ can thus be estimated as δ̂Q. Analysing the distribution of the noise

term n2−n1 around this estimate showed that this term is uncorrelated between distance

measurements and distributed with standard deviation 0.17 ns. Fig. 6.3 further shows the

existence of outliers, which motivates the inclusion of outlier detection as previously

discussed in Section 4.3.

2) Time of flight measurement Using the estimate δ̂Q, the quadrocopter is able to mea-

181

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

Figure 6.3. A plot showing the difference between the anchor’s delay and the expected delay,
as measured by the quadrocopter. In the ideal case, this would equal zero; the discrepancy is due
to a difference in clock frequencies between the quadrocopter and anchor. This function is time
varying, due to clock frequency drift, and is corrupted by an uncorrelated noise with standard
deviation 0.17 ns. Note that 1 ns corresponds to a distance measurement error of 30 cm.

sure the time of flight f as

zTOF = f +
n1 + n0

2
=
QRx
M1
−QTx

M0
− δ̂Q

2
. (6.20)

Multiplying the time of flight by the speed of light c and comparing with (6.10) yields

zuwb = cf +
c

2
(n1 + n0)

= ‖puwb,i − x‖+ ηuwb (6.21)

Assuming the noise term n1+n0 has the same statistical properties as n2−n1, we conclude

that ηuwb is zero mean with standard deviation 0.025 m. This result was experimentally

verified by recording range measurements at a constant distance and calculating their

statistical properties. Furthermore, this result reflects a similar analysis performed in

[6.32].

6. Experimental validation

The estimation approach is validated in experiment in the Flying Machine Arena [6.4].

Ascending Technologies Hummingbird quadrocopters [6.33] are used, modified to use the

Pixhawk PX4 flight management unit [6.10]. The estimator is implemented in C++ and

runs on the microcontroller on the flight management unit.

The flight management unit features a three axis accelerometer and gyroscope, each

sampled at 1000Hz for the estimator.

Six UWB radios were used for the experiments: one mounted on the quadrocopter,

182

6. Experimental validation

Figure 6.4. Three experiments evaluating the quadrocopter performance under feedback con-
trol using the estimator, from left to right: the quadrocopter hovers at a position for 13 minutes;
the quadrocopter flies a slow vertical manoeuvre; and the quadrocopter flies a fast horizontal
manoeuvre. Gravity points along negative Z. For the hover experiment, the results were com-
parable in both horizontal directions, therefore only the Y-Z plane is shown – a history of the
estimation errors is given in Fig. 6.5. The standard deviation of the estimation error during the
hover experiment was 36 mm horizontally, and 53 mm vertically, with the corresponding mean
values of 50 mm and 244 mm, respectively. The setpoint was moved at a constant 1 m s−1 dur-
ing the slow manoeuvre, and the result clearly shows systematic biases present in the system,
especially along the lower edge of the trajectory. The maximum speed along the fast trajectory
was 3.4 m s−1. Eleven sequential rounds of the fast trajectory were flown, however only one is
shown. The attached video shows each of the experiments.

and five used as anchors. Of the anchors, three were placed in an approximately isosceles

triangle on the floor, and two were placed at a height of approximately 1.7 m above the

ground. At 200 Hz the quadrocopter requests a range to an anchor, starting at the first

anchor and proceeding sequentially.

A controller also runs on the microcontroller, which computes desired motor angular

velocities as a function of the estimator’s state, and a desired state. A position setpoint

is periodically transmitted to the vehicle from a base station over a dedicated wireless

channel.

The Flying Machine Arena is additionally equipped with an overhead motion capture

system, which measures the position and orientation of the quadrocopter at 200Hz, with

precision on the order of millimetres and degrees, respectively. The output from this

motion capture system is used as ground truth for these experiments. Note that the

quadrocopter’s closed loop control is based solely on the output of the presented estimator,

and the motion capture system is used exclusively for performance evaluation.

6.1 Estimator parameters

The quadrocopter has a mass of 0.56 kg. The propeller force coefficient is given by κ =

6.41 µN s2 rad−2.

The aerodynamic force coefficients κ‖ and κ⊥ were estimated by analysing data from

183

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

quadrocopter flights in the Flying Machine Arena. The coefficients are estimated as:

κ⊥ = −0.000 11 N s2 rad−1 m (6.22)

κ‖ = −0.000 23 N s2 rad−1 m. (6.23)

The noise covariance for the angular rate gyroscope and the accelerometer were set

as follows:

Var (ηgyro) = diag (0.01, 0.01, 0.25) rad2 s−2 (6.24)

Var (ηacc) = diag (9, 9, 81) m2s−4 (6.25)

These covariances are partly based on experimental data, which showed a significantly

higher accelerometer noise in the direction of the quadrocopter’s thrust, and partly on ex-

perimental tuning. The observed higher noise in the direction of the thrust could possibly

be explained by the quadocopter’s asymmetric mechanical structure, and the transmission

of vibrations.

The covariance of the UWB range measurements was set to Var (ηuwb) = 0.0625 m2.

This is an order of magnitude larger than suggested in Section 5, however due to a

possible unmodelled measurement bias (discussed further in this section), was necessary

for smooth flight. The Mahalanobis distance for rejecting a UWB range measurement

was set to 3.

The acceleration process noise acting to increase the estimator’s covariance in the

prediction state of the Kalman filter was set to 9 I m2/s−4.

6.2 Experiments

Three different experiments were performed: hovering in one spot for an extended period

of time, flying a slow vertical manoeuvre, and flying a fast horizontal manoeuvre. The

experiments are shown in Fig. 6.4, and each experiment is shown in the attached video.

Errors are quantified by their mean (εµ) and standard deviation (εσ) – these are related

to the root-mean-squared (RMS) error (εRMS) as ε2RMS = ε2µ + ε2σ [6.26].

1) Hovering The quadrocopter was commanded to hold a position in space for a period

of 13 minutes. The quadrocopter’s yaw angle (that is, the rotation about the thrust axis)

was commanded to be constant throughout this period.

The mean position estimation error was approximately 50 mm in the horizontal direc-

tion, and 244 mm in the vertical direction. The standard deviation of the error was 36 mm

horizontally and 53 mm vertically.

The RMS closed loop position tracking error was 302 mm, and the RMS closed loop

yaw tracking error was 5.3◦.

184

6. Experimental validation

Figure 6.5. The estimation error over approximately 13 minutes of hovering. The actual and
estimated position trajectories are shown in Fig. 6.4. The attitude error is reported as differences
in the true and estimated Z-Y-X yaw-pitch-roll angles [6.16].

2) Slow vertical manoeuvre A second experiment was performed where the quadro-

copter flies along a vertically oriented rectangle of size 3.5 × 3 m. The position setpoint

was moved along slowly at 1 m s−1 to minimize the influence dynamic effects, and in-

teractions of the controller. The quadrocopter flew twelve times along the rectangle. A

discussion of the system’s performance is given below.

3) Fast horizontal manoeuvre The performance of the estimator during more dynamic

trajectories was investigated by having the quadrocopter fly along a 4 × 3 m horizontal

rectangle. Trajectories to the corners were generated using the method of [6.34], with

the quadrocopter commanded to start and end at rest, at the corners. The duration

along the long edge of the rectangle was 2.2 s, and along the short edge 1.9 s, so that the

maximum commanded velocity along the trajectory is 3.4 m s−1. Over 11 rounds around

the rectangle, the position estimation error had a mean of 41 mm, and standard deviation

of 123 mm. One such round around the rectangle is shown in Fig. 6.4, and the attached

video visualises an ensemble of such rounds.

4) Discussion and interpretation The experimental results show that the quadrocopter’s

full state is observable to the state estimator. Specifically it appears that the quadro-

copter’s corrective motions when holding a constant position set point are sufficient for

observing the quadrocopter’s orientation about its thrust axis, also over prolonged periods

of time.

Both the hover experiment, and the slow vertical experiment, showed significant non-

zero-mean estimation errors in position. For the vertical rectangle, as can be clearly seen

in Fig. 6.4, there is a significant systematic vertical estimation error along the lower

edge of the rectangle. The relatively large mean position estimation errors (on the or-

der of 250 mm) stand in contrast to the much lower standard deviation on the position

estimate (64 mm when hovering, and 123 mm along the fast horizontal rectangle).

185

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

These systematic estimation errors are most likely explained by systematic errors

in the UWB ranging system. Systematic ranging errors could be due to the effects of

occlusion and multi-path on the radio signal [6.35], however the experimental setup had

no occlusions. An alternative explanation is given in [6.14], [6.36], where the group-delay

of an antenna, corresponding to a time-delay of the signal, is a function of antenna

orientation. This appears to match the observation that the magnitude and direction of

the estimation errors vary as a function of the position in space.

7. Conclusion

The strategy presented in this paper utilises accelerometers, gyroscopes, and ultra-wideband

radios to estimate the dynamic state of a quadrocopter, under the assumption of no wind.

The estimator is shown to perform sufficiently well for the quadrocopter to maintain a

position for an extended period of time, and to fly dynamic manoeuvres. Furthermore,

the computational complexity is low enough that the estimator may be run on a typical

microcontroller.

Inertial measurement sensors are already widely used on flying vehicles, and ultra-

wideband radios may be added at low cost and at little additional mass. This system

thus appears to be a low-cost, easily-implementable method to improve the autonomy of

quadrocopter systems.

Acknowledgement

The Flying Machine Arena is the result of contributions of many people, a full list of

which can be found at http://flyingmachinearena.org.

This research was supported by the Swiss National Science Foundation (SNSF) and

the NCCR Digital Fabrication (Agreement # 51NF40-141853), also funded by the SNSF.

References

[6.1] R. D’Andrea, “Can drones deliver?”, IEEE Transactions on Automation Science

and Engineering, vol. 11, no. 3, pp. 647–648, 2014.

[6.2] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-

tonomous vehicle test environment”, IEEE Control Systems Magazine, vol. 28,

no. 2, pp. 51–64, Apr. 2008.

[6.3] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multi-

ple micro-UAV testbed”, IEEE Robotics Automation Magazine, vol. 17, no. 3,

pp. 56–65, Sep. 2010.

186

REFERENCES

[6.4] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.

D’Andrea, “A platform for aerial robotics research and demonstration: The Fly-

ing Machine Arena”, Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[6.5] S. Klose, J. Wang, M. Achtelik, G. Panin, F. Holzapfel, and A. Knoll, “Marker-

less, vision-assisted flight control of a quadrocopter”, in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, 2010, pp. 5712–

5717.

[6.6] C. Martinez, P. Campoy, I. Mondragon, and M. A. Olivares-Mendez, “Trinoc-

ular ground system to control UAVs”, in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), IEEE, 2009, pp. 3361–3367.

[6.7] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R.

Siegwart, “Monocular vision for long-term micro aerial vehicle state estimation:

A compendium”, Journal of Field Robotics, vol. 30, no. 5, pp. 803–831, 2013.

[6.8] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost

quadrocopter”, in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), IEEE, 2012, pp. 2815–2821.

[6.9] I. Sa and P. Corke, “100Hz onboard vision for quadrotor state estimation”, in

Australasian Conference on Robotics & Automation, 2012.

[6.10] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Pollefeys,

“PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard

computer vision”, English, Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[6.11] K. Schauwecker and A. Zell, “On-board dual-stereo-vision for autonomous quadro-

tor navigation”, in International Conference on Unmanned Aircraft Systems

(ICUAS), IEEE, 2013, pp. 333–342.

[6.12] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Precision flight

control for a multi-vehicle quadrotor helicopter testbed”, Control engineering

practice, vol. 19, pp. 1023–1036, June 2011.

[6.13] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z.

Sahinoglu, “Localization via ultra-wideband radios: A look at positioning as-

pects for future sensor networks”, IEEE Signal Processing Magazine, vol. 22,

no. 4, pp. 70–84, 2005.

[6.14] M. Mahfouz, C. Zhang, B. Merkl, M. Kuhn, and A. Fathy, “Investigation of high-

accuracy indoor 3-D positioning using UWB technology”, IEEE Transactions

on Microwave Theory and Techniques, vol. 56, no. 6, pp. 1316–1330, 2008.

[6.15] A. Prorok, A. Arfire, A. Bahr, J. R. Farserotu, and A. Martinoli, “Indoor nav-

igation research with the Khepera III mobile robot: An experimental baseline

with a case-study on ultra-wideband positioning”, in International Conference

on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2010, pp. 1–9.

[6.16] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics Second

Edition. AIAA, 2007.

187

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

[6.17] R. Mahony, V. Kumar, and P. Corke, “Aerial vehicles: Modeling, estimation,

and control of quadrotor”, IEEE Robotics & Automation Magazine, vol. 19, no.

3, pp. 20–32, 2012.

[6.18] P. Pounds, R. Mahony, P. Hynes, and J. Roberts, “Design of a four-rotor aerial

robot”, in Australasian Conference on Robotics and Automation, vol. 27, 2002,

p. 29.

[6.19] P. Martin and E. Salaun, “The true role of accelerometer feedback in quadro-

tor control”, in IEEE International Conference on Robotics and Automation

(ICRA), IEEE, 2010, pp. 1623–1629.

[6.20] D. Abeywardena, S. Kodagoda, G. Dissanayake, and R. Munasinghe, “Improved

state estimation in quadrotor MAVs: A novel drift-free velocity estimator”,

IEEE Robotics & Automation Magazine, pp. 32–39, 2013.

[6.21] R. Leishman, J. Macdonald, R. Beard, and T. McLain, “Quadrotors and ac-

celerometers: State estimation with an improved dynamic model”, Control Sys-

tems, IEEE, vol. 34, no. 1, pp. 28–41, 2014.

[6.22] B. W. McCormick, Aerodynamics Aeronautics and Flight Mechanics. John Wiley

& Sons, Inc, 1995.

[6.23] H. Huang, G. Hoffmann, S. Waslander, and C. Tomlin, “Aerodynamics and

control of autonomous quadrotor helicopters in aggressive maneuvering”, in

IEEE International Conference on Robotics and Automation (ICRA), May 2009,

pp. 3277–3282.

[6.24] M. Bangura, H. Lim, H. Kim, and R. Mahony, “Aerodynamic power control for

multirotor aerial vehicles”, in IEEE International Conference on Robotics and

Automation (ICRA), May 2014, pp. 529–536.

[6.25] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude

estimation methods”, Journal of Guidance, Control, and Dynamics, vol. 30, no.

1, pp. 12–28, 2007.

[6.26] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to

tracking and navigation: Theory algorithms and software. John Wiley & Sons,

2004.

[6.27] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation group”,

SIAM review, vol. 6, no. 4, pp. 422–430, 1964.

[6.28] M. D. Shuster, “Constraint in attitude estimation Part I: Constrained estima-

tion”, Journal of the Astronautical Sciences, vol. 51, no. 1, pp. 51–74, 2003.

[6.29] F. L. Markley, “Attitude error representations for Kalman filtering”, Journal of

guidance, control, and dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[6.30] H. Soganci, S. Gezici, and H. Poor, “Accurate positioning in ultra-wideband

systems”, IEEE Wireless Communications, vol. 18, no. 2, pp. 19–27, 2011.

188

REFERENCES

[6.31] R. Dalce, “Comparison of indoor localization systems based on wireless commu-

nications”, Wireless Engineering and Technology, vol. 02, no. 04, pp. 240–256,

2011. [Online]. Available: http://www.scirp.org/journal/PaperDownload.

aspx?DOI=10.4236/wet.2011.24033.

[6.32] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless

networks”, Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009. [Online].

Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4802193.

[6.33] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus,

“Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz”, in

IEEE International Conference on Robotics and Automation (ICRA), Apr. 2007,

pp. 361–366.

[6.34] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algo-

rithm for state-to-state quadrocopter trajectory generation and feasibility veri-

fication”, in IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), 2013, pp. 3480–3486.

[6.35] A. Shahi, A. Aryan, J. S. West, C. T. Haas, and R. C. G. Haas, “Deterioration

of UWB positioning during construction”, Automation in Construction, vol.

24, pp. 72–80, 2012. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0926580512000246.

[6.36] W. Soergel and W. Wiesbeck, “Influence of the antennas on the ultra-wideband

transmission”, EURASIP J. Appl. Signal Process., vol. 2005, pp. 296–305, 2005.

189

Paper P6. Fusing UWB range measurments with IMU for quadrocopters

190

Curriculum Vitae

Mark Wilfried Mueller

born 22 August 1986

2011 – 2015 ETH Zurich, Switzerland
Ph.D. Candidate at the Institute for Dynamic Systems and Control (ad-

viser: Prof. Raffaello D’Andrea), Department of Mechanical and Process

Engineering.

2011 I3S, Sophia Antipolis, France
Academic internship.

2009 – 2011 ETH Zurich, Switzerland
Master studies in Mechanical Engineering; graduated with M.Sc. ETH

Mechanical Engineering.

2009 Denel Dynamics, Centurion, South Africa
Junior software practitioner.

2007 Rensselaer Polytechnic Institute, Troy NY, USA
Exchange semester.

2005 – 2008 University of Pretoria, South Africa
Bachelor studies in Mechanical Engineering; graduated with B.Eng. Me-

chanical Engineering.

191

Curriculum Vitae

List of publications

Journal publications

• M. W. Mueller and R. D’Andrea, “Relaxed hover solutions for multicopters: Applica-

tion to algorithmic redundancy and novel vehicles”, International Journal of Robotics

Research, 2015

• M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient motion prim-

itive for quadrocopter trajectory generation”, IEEE Transactions on Robotics, vol. 31,

no. 6, pp. 1294–1310, 2015

• F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S. Will-

mann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled architecture

installation: Cooperative construction with flying machines”, Control Systems, IEEE,

vol. 34, no. 4, pp. 46–64, 2014

• S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D’Andrea,

“A platform for aerial robotics research and demonstration: The Flying Machine Arena”,

Mechatronics, vol. 24, no. 1, pp. 41–54, 2014

• M. W. Mueller, L. Liebenberg, E. H. Mathews, and P. W. Young, “Quick estimates

for analysis and prediction of the flight mechanics of unmanned aerial vehicles”, In-

ternational Journal of Mechanical Engineering Education, vol. 40, no. 2, pp. 121–145,

2012

Conference proceedings (peer-reviewed)

• W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying vehicle with a

single moving part”, in IEEE International Conference on Robotics and Automation

(ICRA), 2016

• M. W. Mueller, M. Hamer, and R. D’Andrea, “Fusing ultra-wideband range measure-

ments with accelerometers and rate gyroscopes for quadrocopter state estimation”, in

IEEE International Conference on Robotics and Automation (ICRA), 2015

• M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter despite the

complete loss of one, two, or three propellers”, in IEEE International Conference on

Robotics and Automation (ICRA), 2014, pp. 45–52

• M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient algorithm

for state-to-state quadrocopter trajectory generation and feasibility verification”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013,

pp. 3480–3486

• M. W. Mueller and R. D’Andrea, “A model predictive controller for quadrocopter state

interception”, in European Control Conference (ECC), 2013, pp. 1383–1389

192

List of publications

• M. W. Mueller and R. D’Andrea, “Critical subsystem failure mitigation in an indoor

uav testbed”, in IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2012, pp. 780–785

• R. Ritz, M. W. Mueller, M. Hehn, and R. D’Andrea, “Cooperative quadrocopter ball

throwing and catching”, in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2012, pp. 4972–4978

• M. W. Mueller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011,

pp. 5113–5120

Patents

• M. W. Mueller, S. Lupashin, R. D’Andrea, and M. Waibel, “Controlled flight of a mul-

ticopter experiencing a failure affecting an effector”, Patent pending, WO 2014/198641

A1, 2014

• M. W. Mueller, S. Lupashin, R. D’Andrea, and M. Waibel, “Volitant vehicle rotating

about an axis and method for controlling the same”, Patent pending, WO 2014/198642

A1, 2014

193

