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Abstract

Managing short-term cloud-induced fluctuations in power out-
put of photo-voltaic power plants is one of the main challenges that
need to be solved in order to facilitate solar energy integration into the
power grid. Vision-based methods based on sky imagery for predict-
ing future state of the sky in intra-hour horizons has been an active
research topic in recent years to address this problem. However, mod-
eling the complex effect of clouds on irradiance components specifi-
cally diffuse irradiance (DHI) which usually requires expensive mea-
surement instruments is still far from a solved problem. In this study,
we use measurements of two irradiance sensors, one horizontal and
one tilted towards north to create an inexpensive soft sensor for DHI
and relate that to cloud state in sky images. We build on top of a
cloud segmentation algorithm to approximate direct irradiance (DNI).
Then by removing the effect of DNI from titled sensor observations,
we obtain DHI. After evaluating several non-image and image-based
features on different regression algorithms to estimate DHI, we show
that using both of the feature types together improves the estimation
accuracy by 40% compared to using only non-image features. Among
the evaluated regression methods, K-nearest-neighbor delivers the best
result with RMSE of 34.8 W/m2.
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Chapter 1

Introduction

Solar energy is one of the key alternative energy sources. The recent devel-
opments in solar panels and different business models around them made
the photo-voltaic(PV) power plants more economical. However, the variabil-
ity in PV output power makes the integration into main energy grid risky
and slow[27]. These fluctuations come from cloud states in sky, and it has
two different effects, one decreasing the power, the other one increasing the
power. Firstly, if the clouds cover the sun completely or partially, some area
of plant is shadowed and does not receive direct sunlight, causing a power
drop. On the other hand, if the clouds are not occluding the the sun com-
pletely or at all, based on their type, height, position and time, they can
re-reflect some part of the irradiation1 which is reflected by ground, back
into the power plant. In this case, the input irradiance2 and consequently
the output power increases. In the electricity grid, the stability of power is
vital. Therefore, if we want to integrate a PV power source into the grid we
need to compensate for any power drop by using other electricity sources,
and also restrain any excessive power. That is why we need to predict these
short-time power changes in advance to design better strategies for handling
them and ultimately provide a guaranteed stable power in the grid. In this
chapter, we first explain different approaches towards this prediction prob-
lem, then we describe overview of the setup used in this study, and finally
we talk about accuracy metrics for the result.

1.1 Power prediction approaches for a PV plant

The large variety of cloud characteristics such as motion, height, opacity
and spatial distribution makes the cloud-induced fluctuations difficult to

1Irradiation is the sum of irradiance over a time period, expressed in Wh/m2

2Irradiance is understood as instantaneous density of solar radiation incident on a given
surface, typically expressed in W/m2
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1. Introduction

predict. However, according to these comprehensive surveys[13, 19], solar
irradiance forecasting techniques have been successfully developed. These
include numerical weather models (NWPs)[22] using pattern recognition of
meteorological data for irradiance prediction, satellite-based forecasts using
cloud motion vectors to determine sun occlusion based on fixed velocity
model and predict power [16, 20, 11], statistical methods based on machine
learning applied on past several years trend[35] and time series analysis[25]
which are mostly developed for intra-day and day-ahead forecasts. How-
ever, for very short-term power prediction applications, the interest horizon
stretches up to 30 minutes ahead. And therefore, these methods fall behind
the required spatial or temporal resolution required on cloud-induced irra-
diance variability[13].

1.1.1 Ground whole-sky imagery

For achieving this high resolution forecasts, vision-based methods using
total-sky-cameras are developed. The earliest works use cameras for moni-
toring cloud cover characteristics[23, 7] and aerosol properties[21, 6]. In re-
cent years, using sky cameras for solar irradiance forecast has grown rapidly
and several successful works have been developed by analyzing motion, op-
tical and distribution of clouds in the whole-sky images captured by a fish-
eye lens camera ([9, 36, 34]). Using only one camera for data input, some
methods[34] predict sun occlusions perceived by the camera and therefore,
their forecast in only valid for the point very close to the camera, since areas
further away might be sunny or cloudy and camera’s point of view is not
covering that area. However, one can incorporate cloud base height to calcu-
late projection of clouds shadows on the ground. This information is usually
acquired by using a laser based cloud base sensor (ceilometer) and make the
area irradiance forecasts more accurate[36]. It is theoretically possible to use
two or more cameras in the site mounted with a distance about 50m and by
applying stereo algorithm, find the cloud height; however, this method has
not been investigated in practice yet. In this research we focus on ground
whole-sky imagery methods aimed for very short-term irradiance forecast.

1.2 Cloud segmentation, cloud tracking

For predicting the future state of clouds in the sky we need to first know
where the clouds are. This is done by applying a dynamic-threshold seg-
mentation algorithm on red to blue channel ratio of RGB images. Several
studies has shown that the red to blue ratio is a good criterion for cloud
segmentation, but the threshold for this ratio should be set in a way that
discriminate clouds locally but be smooth globally. For this purpose, im-
age pixels are mapped to a grid and threshold is determined for each grid
separately while maintaining the smoothness globally. This method handles
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1.3. Image irradiance estimation for power prediction

cloud color variation for different cloud types very well. This detail of the al-
gorithm for finding this optimal thresholds for every grid is out of the scope
of this study. One sample result of such segmentation is given in Figure 1.1.

Figure 1.1: Cloud segmentation sample

This is a binary segmentation, meaning that classification result for
every pixel is either cloud or not cloud (i.e. sky). If sun is visible in the
image, a small circle around the sun is excluded for segmentation, thus
does not have any class in the output. The same goes for pixels outside
of sky mask. After detecting the clouds in a sequence of images, we can
apply optical flow algorithm on some points of interest in the first image
and extract the cloud movement as motion vectors of optical flow. This
cloud tracking pipeline gives us the clouds position is the sky for very short
time in future. The result of experiment on several future time horizon has
shown that accuracy decreases considerably after 30 minutes, especially in
high speed cloud motions.

1.3 Image irradiance estimation for power prediction

The final step in power prediction is to associate a potential power estimate
to any time in several minutes ahead knowing the cloud positions and their
characteristic in that time. The generated power of a PV plant depends on
several factors including received irradiance, operational temperature and
panels’ specification. However, the only factor which changes rapidly and

7



1. Introduction

has a huge impact on the output power is irradiance. Therefore, in our
power prediction framework, we use a power prediction adaptation method
with recorded data of previous minutes to derive the power output from
future irradiance estimations. The scaling factor for the result is calculated
by diving the recorded power output and irradiance sensor measurements.
Thus, this power adaptation mechanism, separates and defines our main
problem as estimating the received irradiance from a clouds attributes in a
specific time and location.

1.4 Irradiance components

The total solar radiation -GHI3- which hits the surface of solar panels con-
sists of three basic components, direct -DNI4-, diffuse -DHI5- and reflected.
The direct part comes from the sunlight beams directly raying from sun
direction to the solar module. While passing through atmosphere, some
amount of sunlight scatters in every direction by dense particles. The por-
tion of this scattered light which hits the module forms the diffuse irradi-
ation for solar panels. Reflected irradiance represents sunlight that is re-
flected off the clouds or ground around the array of panels. The source of
this reflected radiation can be DNI or DHI. Rate of the reflection depends
on clouds coverage, size of the ground that is visible from the module and
their albedo coefficient6. The albedo coefficient for ground is typically 0.2,
though it can be higher during snowy periods in cold climates. The albedo
coefficient for clouds depends on their type, density, temperature and etc.
These components are shown in figure 1.2

Total irradiation is related to other three components with this for-
mula:

GHI = DNI × cos(Z) + DHI + re f lected

where Z is the solar zenith angle-the angle between the direction of the sun
and the line directly overhead. Since distinguishing between the reflected
and diffuse irradiation is practically hard and also there is not any ground
truth value for training, we decided to combine both of them as the diffuse
component. Thus, the formula changes to:

GHI = DNI × cos(Z) + DHI (1.1)

where DHI is sum of all non-direct irradiations.

3Global Horizontal Irradiation
4Direct Normal Irradiance
5Diffuse Horizontal Irradiance
6The portion of the incident irradiance that is reflected
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1.5. Accuracy metric

Figure 1.2: Irradiance components

1.5 Accuracy metric

For measuring accuracy of the result we can use popular error measure of
RMSE-Root Mean Square Error which is defined in Eq. 1.2.

RMSE =

√
∑n

i=1 (DHIobserved,i − DHIestimated,i)2

n
(1.2)

where n is the number of samples. This choice makes sense for our applica-
tion, plus it enables us to compare our results to other related works or vice
versa.

1.6 Thesis structure

This thesis organized in six chapters. In First chapter, we give in introduc-
tion to the PV plant power prediction pipeline and describe how the result
of this study will be used in a power prediction system. In chapter 2, we do
a quick survey on related works which have a focus on irradiance estimation
from sky images. Then, our approach, dataset and algorithms for tackling
this problem are explained in chapter 3. Afterwards, we show the result
of our method on the dataset in chapter 4 and discuss the performance of
different configurations using images. In chapter 5 some possible future im-
provements on this topic are mentioned. And finally the thesis is concluded
in chapter 6.
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Chapter 2

Related work

In this chapter we survey the studies which focus on problem of irradiance
estimation using sky images. The usage of ground-based cameras for study-
ing effect of clouds on irradiation has a long history, as early as 1977 when
Borkowski et al.[4] developed the first whole-sky camera system for investi-
gating effects of clouds on middle ultraviolet global radiation. In this study,
the degree of solar obstruction and cloud coverage were determined visually
from the images. Later in 1998, Jeff Sabburg and Joe wong[26] developed
and evaluated the first automated, ground-based, sun-centered sky camera
system for cloud assessment. However, since the purpose of study was the
clouds effect on UVB1 radiation they only considered a small area around
the sun for cloud and sun obstruction detection which is of paramount im-
portance for this rays. They use a threshold-based approach on gray scale
pixel intensities for cloud detection. They also use solar radiation measure-
ments in an image processing algorithm to reduce reflections from the sun
on the camera system being mistaken for cloud in the images.

2.1 Estimate irradiance from zone types in sky images

One of the recent researches done in this area is held as a collaboration
between Universitatea Transilvania din Braşov in Romania and Cyprus Uni-
versity of Technology[32, 33].This work uses sets of two consecutive images
taken by wide-view angle GoPro Hero2 camera (one with normal exposure
and the other one under-exposed) and extracts their RGB2, HSV3 compo-
nents. Then by learning several intensity ranges, they segment four zone
type in each image: sun, blue sky, thin clouds and thick clouds. One sample
of segmentation is shown in Figure 2.1.

1Ultraviolet B
2(Red, Green, Blue)
3(Hue, Saturation, Value)
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2. Related work

Figure 2.1: Three different zones identified in images (sun, cloud, sky)

The irradiance (direct, diffuse, and global) is recorded using the equip-
ment Kipp & Zonen, Solys2 at the same time of image capturing. Finally, a
regressor used to estimate direct irradiation (DNI) based on a feature vector
consisting the number of pixels of different zone types in the images. The
correlation in the result is shown in figure2.2.

Figure 2.2: Correlation between estimated DNI and recorded DNI.

2.2 Using clear sky irradiance model and binary cloud
mask

The work done by T. Schmidt et al.[30] at University of Oldenburg in Ger-
many is a very recent and relevant work on irradiance forecast using sky

12



2.2. Using clear sky irradiance model and binary cloud mask

imagery pictures. The experimental setup consists of a wide-view camera,
one ceilometer (cloud base height sensor) located close to the camera, and
a grid of 99 pyranometer distributed uniformly over 10km by 12km in the
area close to camera. The aim is to forecast irradiance of every pyranome-
ter up to 30 minutes. The training data is recorded from the pyranometers
and the camera for two months every 10 seconds during daytime. In order
to determine clouds projection on the ground, they apply a series of image
processing algorithms.

2.2.1 Cloud detection

Firstly, they use Red-to-Blue Ratio (RBR) threshold for cloud detection which
was first developed by Scripps Institution of Oceanography [14, 31] and is
been used in many sky-imager-based forecast applications such as [9]. The
RBR values close to 1 are usually cloud, and values very less than 1 are
blue sky, since the blue channel which is in denominator dominates the red
channel. However, since the RBR is not homogeneously distributed over
the whole field of view, using a fixed global threshold for cloud detection
brings a lot of misclassification for the areas close to the sun and also dark
thick clouds or very transparent clouds. Therefore, they correct the RBR
values based on clear-sky RBR values for each pixel. A Clear Sky Library
(CSL) is created from images of one clear day. Then, the closest distance
of current position and sun positions of CSL images is used to choose the
reference RBR image map. This RBR map is used in correction formula
2.1 to decrease RBR threshold in circumsolar area to counter effect of sun
saturation there. The correction also decreases RBR threshold for dark areas
and increases it for bright pixels of image in order to detect thick and thin
clouds.

Rmod,i,j = Rorig,i,j − RCSL,i,j × (a× S− b× (Ii,j − 200)) (2.1)

Where 0 < S < 1 is the average pixel intensity in circumsolar area. For more
detailed discussion on results, they also apply an image-based cloud type
classification using several visual cloud characteristics, and classify them
into 7 different cloud types.

2.2.2 Image un-distorion

Since the raw image is from a fisheye lens, they apply a transformation to
project it into geometric coordinates for convenience in other calculations.
For that, intrinsic parameters of camera are determined using Scaramuzza
Matlab toolbox [28] which solves a fifth-degree polynomial function of point-
mapping between fisheye image and plain image. The extrinsic parame-
ters are calculated as the best rotation which matches position of sun re-
projection (derived mathematically) and sun position in the image. They
calculate sun zenith and azimuth by using solar geometry2 algorithm[3].

13



2. Related work

2.2.3 Shadow mapping

In this step, shadow of cloud pixels are projected on the ground. For this,
besides incidence and azimuth angle of every cloud pixel (which is derived
using camera calibration function), cloud base height is needed. The cloud
base height is estimated using a ceilometer for every point in time. However,
to smooth th data, median of last 30 measurements is used. Even though the
ceilometer supports multi-layer clouds as well, in this work they only use
the lower-level cloud height. The distance of every cloud pixel to the camera
is derived using di,j = h× tan(θi,j). Given the distance di,j, incidence angle
θi, j, pixel’s azimuth angle ϕi,j) and current sun position angles, horizontal
distance of the cloud’s show on the ground from the camera is calculated
using Eq. 2.2.

dxi,j = h× tan(θi,j)× sin(ϕi,j) + h× tan(θsun)× sin(ϕsun)

dyi,j = h× tan(θi,j)× cos(ϕi,j) + h× tan(θsun)× cos(ϕsun)
(2.2)

The shadow pixel points are mapped to a grid of 20km to 20km with resolu-
tion of 20m, and coordinates are interpolated if the shadow map resolution
is lower than grid resolution, otherwise the central pixel of the dense shadow
area is used for that grid point. Finlay, a Gaussian filter is applied to smooth
the cloud edges for more realistic result.

2.2.4 Irradiance retrieval

Upon determining the shadowed and sunny grid points on the ground area
of experiment, they use the histogram of clear-sky index (k∗) to estimate the
GHI irradiance. The clear sky index is defined as ratio of measured global
horizontal irradiance GHImeas and a clear sky reference value GHIclear (Eq.
2.3).

k∗ =
GHImeas

GHIclear
(2.3)

Clear sky irradiance is obtained from the mode of Dumortier [10] and tur-
bidity values of Bourges [5] which is validated according to Ineichen’s work
[12]. For adapting to smooth changes of irradiance caused by factors other
than clouds, this histogram is generated with measurements of last 30 min-
utes. As it is shown in figure 2.3 this histogram usually has two peaks which
correspond to sunny and shadow states on the specified point of ground.

Now, for every point on the ground, based on its state (shadow, no-
shadow), the corresponding k∗ is used from the peaks of the histogram to
estimate GHI following Eq. 2.4. In case two distinct peaks could not be
detected in histogram due to homogeneous irradiance condition, default
values of 0.4 and 1, have been assigned for shadow and no-shadow states.

GHI = k∗hist × GHIclear (2.4)
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2.3. Retrieval of direct and diffuse irradiance from sky images

Figure 2.3: Histogram of clear-sky index

2.2.5 Irradiance forecast

For forecasting the cloud map, they use optical flow algorithm (Lucas-Kanade)
on cloud edges and corners (Shi-Tomasi method) in the past 2 minutes to ex-
tract clouds’ motion vector. Then, by applying that motion vector to current
cloud state, cloud map at different time horizons is estimated, and ray trac-
ing from sun position at that times through cloud maps gives the shadow
map on the ground. After determining shadow or no-shadow states for
points on the ground, forecast GHI is estimated using Eq. 2.4. They com-
pare results of using GHI histogram from the nearest pyranometer station
versus using only the pyranometer close to the camera as a representation
for the whole area. These comparison is separately done for different cloud
types, and the results shows for cumulus clouds using one pyranometer
close to camera is enough to forecast irradiance for up to 2km radius. How-
ever, the forecast skill is highly varies depending on cloud types and overall
does not do better than persistent model which uses median of past several
minutes’ irradiance.

2.3 Retrieval of direct and diffuse irradiance from sky
images

In another recent work, T. Schmidt et al.[29] aims to estimate components
of irradiance (direct, diffuse) instead of just GHI from the sky images using
machine learning on image features. They hope this kind of irradiance detail
helps in estimating GHI in cloudy and partial sunny states more accurately.
The Experimental setup includes a fish-eye camera with sample rate of 10
sec and a pyranometers package next to it that records direct, diffuse and

15



2. Related work

global irradiance every second.

2.3.1 Image features

As image features they calculate several local and global features including:

• Texture properties of the Grey Level Co-occurrence Matrix (GLCM)

• Color statistics (RGB space)

• Inter-color relations (e.g. Red-Blue-Ratio)

• Statistics of saturated pixels in circumsolar area in RGB and HSV color
space

• Derived features like cloud coverage

• Solar elevation angle

For prediction, two k-nearest-neighbor (kNN) models are trained that es-
timate the clear sky index of diffuse horizontal (k∗DHI) and direct normal
(k∗DNI) components which are defined as ratio of each component to their
clear-sky values obtained from Ineichen’s algorithm[12]. Since the initial fea-
ture list contained 37 features, for reducing computation time and avoiding
over-fitting they apply a feature selection using decision tree feature ranking
algorithm to choose the optimal feature set among them.

2.3.2 irradiance estimation

The result of KNN predication for DHI and DNI clear-sky indexes compared
to measured values shows a correlation around .085 in Figure 2.4. In fore-
cast applications, GHI can be derived from predicted irradiance components
using 1.1. However, predictability of some of the used image features such
as color statistics in this method is not robust enough. This leads to some
errors in irradiation forecast.

Figure 2.4: Comparing estimated k∗DHI and k∗DNI to measured values. source:[29]
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Chapter 3

Estimating Diffuse Horizontal
Irradiance (DHI) from sky image

In this chapter, a new approach that we developed for estimating DHI from
sky images is explained. First, our experimental setup and data is presented,
then we talk about clear-sky model used here, and why estimating DHI
is very important in predicting GHI. Furthermore, DHI estimation using
the irradiance sensors and also sky-images is discussed. Afterwards, ma-
chine learning regression methods for obtaining DHI from sky-image are
discussed.Finally, our dataset for training and testing is defined.

3.1 Experimental Setup

This study is conducted on one of the photovoltaic (solar) power plants
operated by ABB company. This PV plant which is located in Cavriglia
region in Italy is chosen as a pilot site for the ”forecasting power prediction
using sky-imagery” project. Therefore, it is equipped with the following
instruments for recording irradiation and sky images:

• A customized wide-angle high resolution (4MP) camera system with
a fisheye lens covering 185 degrees of field of view. The camera is in a
packaging attached to a pole on rooftop of the building next to the site.
Figure 3.1 shows the camera and its position next to the PV plates.

• Two GHI pyranometer (total irradiance sensor); located close to the
camera on rooftop. One of the sensors is horizontally facing sky, and
the other one facing north with around 40 degrees angle to the hor-
izontal plane. It’s worth mentioning that the PV plates are titled to
south with a fixed angle around 30 degrees to get more sun exposure.
Th sensors are depicted in Figure 3.2.
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• A thermometer for recording the temperature at the site. However, we
are not using temperature data in our method.

• A PC which is connected to the camera, pyranometers and thermome-
ter via their software interfaces in order to configure sample rates and
store taken images and irradiance measurements. The data of power
generated by the PV plant is also sampled and stored for every day. All
the data recorded during each day is been automatically transferred to
the company samba sever at midnight using a control software run-
ning on the PC.

Figure 3.1: wide-angle camera system used at Carviglia site

Figure 3.2: Two pyranometers (one horizontal, one 45 degrees titled to north) located close to
the camera location
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3.2. Acquired Data

3.2 Acquired Data

The camera system captures several images from the whole-sky every 8
seconds with different narrow exposure ranges. These images which are
labeled according to capture time, are combined to create an HDR (High
Dynamic Range) image for every sample time. The original narrow expo-
sure images are generally deleted except the images at each hour time (i.e.
around 7:00, 8:00, 9:00 etc.). Since capturing images at night is not useful
for power prediction applications, camera is instructed to only take pictures
during daytime (i.e. sunrise to sunset) which is obtained for that specific lo-
cation for each day using mathematical models. Nevertheless, according to
the captures images, this is not enough and still there are some black images
taken at the minutes before sunrise and after sunset. Therefore, while pro-
cessing the images on the application side, we exclude those images using a
threshold on average pixel intensity of each image. This threshold is deter-
mined empirically. The images are further filtered against a sky mask which
is been designed to exclude nearby mountains and buildings in the field of
view and also limit the field of view to 170 degrees since transforming the
points which are further in horizon is not accurate enough and the sun light
is not negligible when the sun is in those points. It is worth mentioning that
using HDR images in the image processing step is one of the key advantages
of this study to related works specifically [29].

The pyranometers measure GHI values with the sample rate of 6 sec-
onds. The temperature is also recorded with the same sample rate. However,
the generate power is measured and logged every 3 seconds. These different
sample rate make it necessary to interpolate the available data to find the
estimated data for a time which there is no data available. Therefore, we
can assign total irradiance, temperature and generated power to any given
image using its capture time. This data acquisition setup has been running
since 7th July 2015 until present. However, there are some short periods of
time (usually lasting several days up to two weeks) which one of the sen-
sors (pyranometers or the camera) had problems or the power plant was not
working to produce power data. Considering the relatively small sample
rate (less than 8 seconds), the amount of recorded data is big enough to
make those off-days negligible in data processing steps. The data used in
this study spans from 15th July to 10 February, meaning that many summer,
autumn and winter days are available in the dataset to make it a good rep-
resentation for the whole year. The range of acquired data can be seen in
Figure 3.3.
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Figure 3.3: Irradiance measurement from sensor 1

3.3 Sun positions and sun states in image

Knowing position of sun is very important both in cloud segmentation and
in irradiance estimation. First of all, since our images are from a wide-
angle fisheye lens, they need to be transformed into geometric coordinates
by an un-distortion algorithm to make them ready for further image process-
ing steps including sun position, cloud segmentation and etc. This can be
done by multiplying the raw image coordinates to camera transformation
matrix which consists of intrinsic and extrinsic parameters of the camera
system. As described in section 2.2.2, intrinsic parameters are calculated us-
ing image of a chessboard[28] and extrinsic parameters are estimated using
Kabsch algorithm[15] based on position of the sun appeared in the image
versus the expected position of sun in image. The theoretical sun positions
are calculated for the location of our PV plant site at every image time-stamp
using NREL algorithm [24] in Matlab represented in unit sphere polar coor-
dinates. As shown in Figure 3.4 this position is described as two angles
(zenith and azimuth) which are converted to Cartesian coordinates using
sphere to Cartesian conversion and later on are scaled to the image size to
correspond with an image pixel. That pixel will be assumed as center of the
sun.

In cloud segmentation, which is not the focus of this study, sun posi-
tion is used to treat pixels close to sun according to different threshold than
other pixels. Furthermore, a sun state detection inspect the area around sun
position to classify sun state in the image into following 4 categories:

• sun flag=4: indicating the sun is visible in the image and it appears as
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Figure 3.4: Sun position angles. source:[1]

a star shape emitting 6 symmetric strong rays.

• sun flag=3: indicating the sun is visible in the image and it appears as
a star shape but with 5 or less symmetric strong rays.

• sun flag=2: indicating the sun is visible in the image but it does not
appear as a star shape. Instead, it appears as a small black dot with no
strong rays.

• sun flag=1: indicating the sun is not visible in the image and it is
either covered by clouds or the sun position is out of field of view in
the image.

• sun flag=-1: indicating there is an unexpected situation around sun po-
sition, for example star shape sun is detected far away from expected
sun position which could be because of strange cloud formations.

One sample for each one of these categories is depicted in Figure 3.5. We
are able distinguish between this states thanks to HDR images, otherwise
this fine classification would not be possible.

Figure 3.5: Different sun states, from left to right: sun flag=4, 3, 2, 1 respectively.

The variation of sun color in the images is so much that using Support
Vector Machine for detecting sun is works very poorly. This issue is visible
in Figure 3.6 which shows some clear sun samples from the images. There-
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fore, another approach using gray-scale images and geometrical symmetry
detection is employed.

Figure 3.6: Variation of sun appearance in the images.

Using these sun states along with the sun position in cloud segmen-
tation algorithm, will lead to better segmentation results close to sun that is
particularly a difficult area for cloud segmentation due to highly saturated
pixels with different sky or cloud colors. In irradiance estimation which
is the main focus of this study, sun position is used to create two specific
feature vectors in a bounding circle around the sun. These features are ex-
plained section 3.6 in detail.

3.4 Clear-sky irradiance model

Before dealing with the problem of irradiance estimation from cloudy im-
ages we should know first know how much the irradiance would be at any
time in clear sky conditions when there is no cloud in the sky at all. Fortu-
nately, there are a few number of models which provide irradiance compo-
nents at each given time for many locations on the Earth. In this study we
investigate two of the these methods, Ineichen [10] and McClear [18]. Both
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of these methods use location coordinates (latitude, longitude) and query
time (consisting of year,day,month,day,minute,second) to calculate sun an-
gles internally and return the irradiation based on optic formulas which
determine how much sun should reach the ground in as direct sunlight and
how much should be scattered in hemisphere and forms the diffuse irradi-
ance. The amount of scattered sunlight is varying throughout the year and
also depends on the location, ground albedo1 and aerosol parameters includ-
ing pressure, ozone column content, water vapour column content, optical
depth and Angstrom coefficient.

3.4.1 Ineichen method

Ineichen model statistically and physically relates some irradiance measure-
ments to the aforementioned parameters as turbidity profiles which are avail-
able for different locations. We used the default turbidity values which come
as a separate file in PV-Lib toolbox [17] in Matlab and is representative for
most locations in Europe. However, one might need to use other appropriate
turbidity profiles for other locations to get more accurate results.

3.4.2 McClear method

On contrary to this approach, McClear uses a fully physical model that ex-
ploits recent aerosol properties, total column content in water vapour and
ozone produced by the MACC project (Monitoring Atmosphere Composi-
tion and Climate). The MACC project, funded by the European Commission,
uses data of many Numerical Weather Prediction (NWP) centers distributed
around the world to provide a global aerosol property forecasts together
with physically consistent total column content in water vapour and ozone.
In other words, since McClear uses synthetic data of NWP’s, it does not de-
pend on any local atmospheric observations for irradiance prediction. For
the sake of speed, McClear irradiance estimates are pre-computed for the
the location of these measurement centers and are interpolated for all other
point on th Earth using a look-up table approach. Of course the closer we
are to one of these measurement centers, the more accurate McClear esti-
mate will be. The McClear irradiance estimates are available worldwide for
every minutes from 2004 to present with 2 days lag under this web service
[2]. This means that if we want to get the irradiance for today, we need to
interpolate data of several days or weeks before to get an estimate for the
current time. Nevertheless, one can use the original data of past 2 days for
current time as well, since irradiance does not change considerably in two
days.

1The fraction of solar energy (shortwave radiation) which is reflected from the Earth back
into space. It is a measure of the reflectivity of the earth’s surface. Ice, especially with snow
on top of it, has a high albedo.
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3.4.3 Comparison of clear-sky simulation results

To evaluate performance of these two clear-sky models we choose several
days which have a significant clear part during the day (just because com-
plete clear days are very rare). The chosen days should be from different
months of year in order to represent performance of models for the whole
year better. After observing the irradiance logs and images for verification,
the following days were selected for comparison: 2015/07/19, 2015/08/03,
2015/09/21, 2015/10/24, 2015/11/24 and 2016/02/05. As an example, sim-
ulated GHI of three days are plotted in Figure 3.7 next to the observation.

As it can be seen, both methods can predict the shape of irradiance
curve very accurately around the year, but both have biases in the result such
that the simulated values are always smaller than observed ones. During the
summer days, McClear and Ineichen results are biased almost equally, and
as we get closer to winter days, the bias of McClear gets smaller and bias of
Ineichen get slightly bigger. Figure 3.8 shows the correlation of simulated
GHI of both models plotted with respect to the actual measurements of all
of the examined days.

This plot again shows that the bias of McClear and Ineichen for large
values of GHI is the same, and for small GHI values McClear result is closer
to the observed irradiance. however, it also suggests that since Ineichen
method has lower variation in terms of bias, this bias can be compensated
with a scaling factor more easily than the bias of McClear which shows
larger variation throughout the year. Note that, the outliers in this figure
are representing cloudy times. Furthermore, this bias of Ineichen method
is strongly related to the turbidity factors that are not considered in our
tests by using the default values. It would be not surprising to see smaller
bias if one uses turbidity factors which are verified for the location of PV
plant. The correlation of DNI and DHI values of both methods is illustrated
in Figure 3.9. One can see that DNI is predicted much higher in Ineichen
method and DHI is also simulated slightly higher than McClear values. This
behavior is intensified during autumn for DNI, but it is not varying a lot
for DHI. Since we do not have observation values of DHI and DNI, we
cannot compare correlation of methods’ results to the observed values in
this figure. However, we can assume that during a complete sunny day, if at
a very short time (i.e. seconds) a cloud covers the sun completely, the direct
irradiance (DHI) is almost zero and all the irradiation only comes from DHI
source which is the scattered light in the sky. Therefore, we can use our GHI
irradiance observations as DHI and compare it to the DHI simulated values
for that particular time.

In Figure 3.10 this has been shown for a moment around 13:00 which
sun is occluded by a small thick cloud and therefore, GHI is dropped rapidly
to a value close to 150 which is very close to simulated DHI values from Mc-
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Figure 3.7: GHI estimation of McClear vs Ineichen vs observation
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Figure 3.8: Correlation of GHI simulation of McClear and Ineichen with observations on selected
days

Clear and Ineichen methods. Also, there is no other cloud in the sky to
influence the DHI component. Furthermore, the simulated DHI values are
very close to each other at any time and resemble the shape of GHI relatively
well during whole day. Thus, we can conclude that these models can pre-
dict DHI with good accuracy, and since DNI is a function of GHI and DHI
according to Eq 1.1, DNI values calculated from McClear and Ineichen mod-
els are also accurate enough and for our application. This hypothesize has
been verified by looking at many other data points where GHI observation
gets very close to DHI simulation values and there is a cloud obstructing the
direct sun light.

We know that DNI should be always larger than DHI during clear-
sky condition between sunrise and sunset. Looking at Figure 3.11, pattern
of changes in the simulated values of DNI and DHI during a day confirms
this condition too.
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Figure 3.9: DNI and DHI correlation of McClear to Ineichen

3.4.4 Choosing the clear-sky model

As we discuss in this chapter, McClear and Ineichen models both predict the
clear-sky irradiance components relatively accurately,however the bias for In-
eichen method is more robust and manageable than McClear bias. Further-
more, obtaining the McClear values requires downloading the irradiance
files from their web service since there is not offline library for calculating
them. All this considered together, we decided to use Ineichen as the clear-
sky irradiance model for this study. The scaling factor for compensating
the bias in Ineichen is set to 1.08 which is empirically calculated based on
several clear day observations.

3.5 Estimating diffuse from pyranometers

After picking the suitable clear-sky model, we can predict the irradiance
components for any given day in clear-sky conditions, but for determining
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Figure 3.10: Comparison of DHI of McClear and Ineichen to observed GHI

Figure 3.11: Variation of irradiance components during day

the irradiation in cloudy conditions we need to first detect them and then
find a relation between cloud states in the sky and the observed irradiance.
Since GHI is composed of DHI and DNI, and because we want to get some
hints from the images for determining GHI, the reasonable approach is to
first estimate DNI and DHI values and then construct the GHI from them
using sun zenith angle and Eq 1.1. Thus, for the learning algorithm we
need DNI and DHI observations to relate them to image features. Ideally,
we would have DHI and DNI observations separately along the GHI values
from an advanced irradiance sensor2, but in our experimental setup only

2This type of pyranometers such as Zonen CM11 have a dynamic shade-band along
the sun path to make sure that the sensor is always in shadow, this recording only DHI
component. Then DNI can be computed from GHI and DHI or by using another type of
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GHI values are observed in horizontal and 40 degrees north. The idea be-
hind putting one of the pyranometers tilted towards north is that based on
sun path from an observant in that regions of the world, tilted surfaces to-
ward the north do not get direct sun light during most of the day. That’s
why the PV plates are tilted towards the south to get more sunlight. The sun
path at Cavriglia can be seen in Figure 3.12. There is a simple geometric rule
that confirms this idea. If the angle between sun and the normal vector of
a surface is greater than or equal to 90 degrees, sun rays which are coming
straight from sun will not hit the surface. This condition will hold for many
times during a day for the sensor with around 40 degrees tilt toward north.

Figure 3.12: The sun path during a spring day at Cavriglia, Italy, location of ABB PV plant.

Anyways, the sun path changes during the year, for example during
the summer two edges of this path come higher towards north, and in winter
they go lower towards south. This brings more direct sunlight to the tilted
pyranometer in early morning and late evening than the rest of the day
during summer time. However, during winter and most of the autumn
and spring, the tilted sensor is in complete shadow and does not receive
direct sun irradiance (DNI). As a result and since the diffuse irradiance is
mostly equal in all directions, we can safely assume that during those times,
the values recorded by this tilted sensor represent the diffuse irradiance
component. This can be seen more clearly in Figure 3.13. In this picture, the
dark blue curve represents irradiance observations of tilted sensor (sensor
1) during a sunny summer day -3th August. As one can see, around the

pyranometer such as Eppley NIP.
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morning and evening when the sun has a stronger shine on the sensor, there
is a bump in the irradiance. However, during rest of the day that the angle
between sensor normal and sun increases, the irradiance gets closer to clear
sky DHI. As we expect, during the winter the tilted sensor will be always
shadowed, thus should not have any DNI part in its measurement during
the whole day. Looking at Figure 3.14 confirms this idea, since there is no
bump in the morning and evening records.

Figure 3.13: Irradiance comparison of horizontal sensor (1) and tilted sensor (2) for a summer
day

Figure 3.14: Irradiance comparison of horizontal sensor (1) and tilted sensor (2) for a winter
day

Therefore, if we deduct the direct irradiance component from sensor
observations, we can obtain diffuse component which is required for our
learning algorithm. We previously have shown in 3.4.3 that our DHI and
DNI values obtained from clear-sky model have enough accuracy for this
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application. But for calculating the effective direct irradiance on tilted sensor
we need to find the angle between sun and surface of the sensor at any time,
since this angle is different than sun zenith. According to Figure we can
use sun azimuth and sun zenith angles to locate the sun vector. The normal
vector of tilted sensor surface can also be defined based on its zenith and
azimuth angles. Then using this linear algebra equation 3.1 we can find the
angle between two vectors in 3D space.

θ = Arctan2(‖a⊗ b‖, a · b) (3.1)

where Arctan2 is four quadrant arc-tangent of the elements.

However, for the horizontal sensor the effective direct irradiance can
be simply computed as DNI × cos(zenith). We have shown in Figure 3.9
that DNI is almost zero (0) when the cloud obstructs the sun completely.
This case correspond to sun f lag = 1 as we explained in 3.3. And if the
sun is completely shining like a star, resulting in full DNI, it corresponds
to sun f lag = 4. For other sun states where the sun is partially obstructed,
the DNI is not the same as clear sky DNI. We hypothesize that the DNI for
sun-flag=2 and 3 is somewhere between 0 and clear-sky DNI. However, for
the sake of simplicity we do not consider these states in this study. In other
words, we only try to estimate the DHI for the conditions that either sun is
completely occluded (DNI = 0) or it is completely visible and shining (i.e.
DNI = DNIclear sky. With this simplification we can compute the DHI for
each irradiance sensor by re-writing Eq 1.1 as:

DHI =

{
GHI − DNI × cos(angle), if sun f lag = 4
GHI if sun f lag = 1

(3.2)

where GHI is the observed total irradiance by the sensor, angle = θ
for tilted sensor and angle = zenithsun for the horizontal sensor. Note that
our experiment dataset is pruned to only contain image samples from these
two sun-states. Furthermore, we do not consider images for early morning
(i.e before 8) and very late evening (i.e. after 19) for our training, since that
the appearance of sun in the horizon widely varies and results in unusual
errors in our algorithms. Furthermore, the GHI in those moments is very
low -less than 100- which makes them insignificant for power generation and
not interesting for our application. Since the exact tilt angle of sensor 2 and
its azimuth to the north is not given for sure, we need to evaluate a range
of possible values to find the angles that bring results with less error during
sunny days compared to DHIclear sky. The optimal angles found to be 57.5
degrees for zenith and -0.7 degrees for azimuth. In Figure 3.15, calculated
DHI values for a sunny summer and a sunny winter day are shown.
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Figure 3.15: Calculated DHI

Interestingly, one can see two horn shape anomalies in the morning
and evening on calculated DHI of a summer day. One hypothesize is that
reflection of light from nearby mountains are causing this extra irradiance
which is no accounted for in our model. Anyways, as we can see the DHI
values of tilted sensor show more robustness compared to values of horizon-
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tal sensor. The reason is some complex effects of clouds on DNI which we
are not considering so far. The tilted sensor is more immune to this DNI
variation. Even though during the winter days, the calculated DHI for hori-
zontal sensor is closer to clear-sky DHR, but the DHI of tilted sensor shows
more robustness to cloud condition variations. Therefore, we decided to use
DHI of titled sensor as actual DHI for both sensors on further calculations.

We also experimented reconstruction of observed irradiances (GHI)
for both sensors based on calculated DHI values (from tilted sensor), as-
sumed DNI values and respective angles using Eq 3.3 .

[
GHI1
GHI2

]
=

[
a1 × cos(zenith) b1

a2 ×max(0, cos(θ)) b2

]
×
[

DNI
DHI

]
(3.3)

where GHI1 is irradiance reconstructed for horizontal senor (1), GHI2
is the tilted sensor irradiance, θ is the angle between sun and tilted sensor
normal, a1, a2, b1, b2 are constant values needed to be tuned for the best fit
in result. For reconstruction we evaluated different values in range of 5
to 60 to find zenith and azimuth of the tilted sensor which result in best
fit. Also, for the constant parameters the following values worked best:
a1 = 0.9, a2 = 1, b1 = 1.14, b2 = 0.78. The optimal angles found to be 56.5
degrees for zenith and 11.5 degrees for azimuth which is different for the
azimuth we used for obtaining the DHI values before (i.e. -0.7). However,
we are only interested in reconstructing GHI for the horizontal sensor which
does not depend on tilted sensor azimuth according to the aforementioned
equation.

The correlation of reconstruction result to actual GHI values is shown
in Figure 3.16 and proves that GHI values of horizontal (and tilted) sensor
can be estimated using a simple DNI model and DHI of tilted sensor.

The hypothesis was that by using the tuned version of Eq 3.3 and
feeding it with GHI measurements of both irradiance sensors (GHI1 and
GHI2), we would be able to estimate DNI and DHI by multiplying GHI to
inverse of coefficient matrix. In other word, we would be able to determine
DHI and DNI for any situation including sun-flag=2 and sun-flag=3 which
we excluded earlier for convenience. However, the results of this experiment
was not satisfactory to hold our hypothesis. This could partially be due to
the fact we are using DHI of tilted sensor instead of DNI of sensor 1 in this
equation. Anyways, the result of DHI and DNI for sun-flag=1 and 4 is still
valid and we try to estimate these values from images.

The idea is that as we limit the effect of clouds on DNI by assuming
DNI = 0 or DNI = DNIclear sky in occlusion or not occlusion situations,
the only way that clouds can affect GHI is through DHI variations. In next
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Figure 3.16: Calculated GHI based on DHI and DNI for both sensors

section we investigate characteristic of clouds in images to understand this
effect better.

3.6 Key factors influencing DHI

As we have shown in Figure 3.11 all the irradiance components including
DHI follow a bell-shape curve during a clear day and this curve varies
throughout a year -lower in winter, higher in summer. We call these factors,
non-image features as they are not obtained from images and are indepen-
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dent of cloud characteristics. We formulate these features as following:

• DHIclear-sky

• Zenith angle of the sun; between around 20 up to around 80 degrees

Even though DHIclear-sky is dependent on zenith angle, but we included both
to evaluate their mutual relation to diffuse irradiance as well.

Besides non-image features, we extract some visual features from sky
images to help estimating DHI in not-clear-sky situations. For image-based
features there are several intuitions about what factors might affect DHI
most. These includes cloud coverage, cloud type, shininess of sun, cloud
color and etc. However, using cloud color features is not a good idea for
our application, since they vary a lot even in very short-time ahead and
predicting cloud color is not accurate enough. And since the aim of this
study is to forecast irradiance for predicted cloud states in several minutes
ahead, we restrict our image-based features to highly predictable features.
This includes:

• sun-flag; as we explained in section 3.3, it is an integer number be-
tween 1 and 4. However, we only consider states 1 and 4.

• Semi-local cloud coverage; defined as the percentages of cloud pixels
(i.e. image pixels which are classified as cloud) in four parts of the
image separately, i.e. top right, top left, bottom right, bottom left. For
each region, 100% indicates full cloud coverage and 0 means no cloud.
More information is given in section 3.6.1.

• Cloud coverage around the sun; defined as the percentage of image
pixels in a small circle around the sun which are classified as cloud.
This feature is explained in more detail in section 3.6.1.

• Saturation factor; defined as the percentage of saturated cloud pixels
(i.e. with very high brightness). For complete description of this fea-
ture refer to section 3.6.2.

3.6.1 Cloud coverage features

For designing a cloud feature we took several issues into consideration.
Firstly, this feature should be not too sensitive to the position of clouds,
since clouds are very dynamic and position sensitivity will lead to not con-
sistent feature vectors for actually similar cases in terms of DHI. Secondly,
the relative position of clouds should be taken into account in the feature,
for example clouds which are close to sun are most probable to reflect the
irradiation than clouds in other parts. As a middle-ground for this two
conditions we initially designed a feature vector that is sensitive to clouds
position but not too much. For that, the image is divided into four equal
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parts by connecting the central point to middle of each side. Then, a feature
vector with four elements is created consisting of cloud coverage percentage
for each part. However, this feature does not put enough emphasis on cloud
variations around the sun which we think has more effect in irradiance re-
flection situations. Therefore, another feature is created for cloud coverage
in a circle around the sun. Since this circle is small (40 pixels radius), posi-
tion of clouds is not likely to cause considerable difference on DHI, thus we
calculate the cloud percentage in this circle around the sun as a one value fea-
ture between 0 and 100. Note that pixels that are classified as neither cloud
nor sky, are most probably sun. Therefore, these pixels are not included in
total number of pixels when calculating the cloud coverage percentage. The
intuition is that cloud coverage around the sun is more important that total
cloud coverage for DHI, since those clouds usually reflect more sunlight to
the ground. The areas for extracting cloud coverage features are illustrated
in Figure 3.17.

Figure 3.17: Regions of interest for extracting cloud coverage features

3.6.2 Saturation factor

In some images that sun is occluded by a relatively thin cloud, we can see
some pixels around position of sun, which are in fact part of the cloud but
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are very much illuminated by the sunlight which is passing through them.
One example of this effect is shown in Figure 3.18.

Figure 3.18: One example of saturated cloud pixels

Even though, the sun is not directly visible in these images, result-
ing in DNI=0, our DHI observations are considerably higher in such cases.
Therefore, we hypothesize than measuring this saturated pixels can be valu-
able feature vector for DHI estimation. Depending on the cloud type, and
sun position these saturated areas can be predicated in very close future.
That makes such feature valid for our forecast application. For calculating
this feature we visually inspected many samples and realized that in all of
them there is a very height brightness band around the saturated regions
which is even brighter than the saturated pixels. Based on this observa-
tion we designed the following algorithm for measuring saturation factor
in any image. Firs, we crop a 120X120 pixel area around the sun as the
only place saturation can occur. We convert this RGB patch into gray-scale
and then find the pixels with intensity values more than 215. This thresh-
old is been set empirically. These pixels are representing a contour for the
saturated area. Since there are some discontinuity is this contour, we do
the following approximation to find area inside. Every pixel in the patch is
considered inside the contour, if that pixel or one of its side-neighbors (i.e.
right or left) is bounded by at least 3 contour pixels in different directions
(top,down,left,right). The results show that approximates saturated area is
very close to actual area in the images. Finally, the saturation factor feature
is calculated as the percentage of saturated pixels with respect to total patch
pixels. This percentage is bounded to 60% to comply with visual observa-
tion and reduce effect of errors in the detection algorithm. One example of
detected saturated area is depicted in Figure 3.19.

Our final feature vector for each sky image consists of all the non-
image and image-based features, resulting in a 9-element vector. Due to
time limitation, we did not investigate cloud type or cloud texture pattern
features.
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Figure 3.19: Detected saturated area in a patch around sun

3.7 Dataset

As it was mentioned in section 3.2, we have data records and images from
August 2015 until present for every 8 seconds during the day. Since we
created our feature vector dataset in February 2016, the time span of images
are from August 2015 to February 2016. As we showed in Figure 3.15, HDI
calculated values in the morning and evening are not accurate, therefore we
skip these times in our final dataset. Furthermore, since estimating DNI
for images with sun-flag 2 and 3 is too difficult and there is not ground-
truth information for verifying results, we decided to restrict our data to
only images with sun-flag 1 and 4, which corresponds to sun not visible
and complete shining sun visible, respectively. This restriction reduces our
usable data sample around 30%. We also prune our data set to remove data
samples that are too close to each other both in time and cloud conditions.
For that, we iterate through images of each day for sampling a data set, but
change the sampling rate by amount of change in cloud coverage from last
sampled image to current one. This means that if there is long steady sunny
condition during a day, we only sample handful of them. The same goes
for continues full cloud coverage times during a day. On the other hand,
when the cloud condition is changing a lot, we take more data samples to
diversify our dataset and include as many variation of cloud situation as we
can. The final data set after all these pruning, includes around 44,000 data
samples from many different cloud conditions and many days from summer
to winter.

3.8 Learning the relation between image features and
DHI

In previous sections we approximated DHI from the pyranometers and also
created a feature vector representing an image. Now, we need to find a way
to relate them to each other in order to be able estimate DHI values from a
given feature vector. Since DHI values are real numbers, this is a regression
problem. Therefore, we used several regression methods for solving that
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to find the best performing method on this particular problem. Because
the domain value of our feature elements is different, we normalize every
feature to [0, 1] range before feeding it in any regression algorithm.

3.8.1 Linear Regression

We tried linear regression to determine if DHI can be written as a polynomial
function of feature vectors lile in Eq 3.4.

yi = β1xi1 + . . . + βpxip + ε i (3.4)

Where yi is DHI and xi is a feature vector. Also, square (x2) and square
root (

√
(x)) of features are added to the feature list to evaluate non-linear

relation of features to target as well. To consider mutual relation of features,
interaction of features (i.e. xixj) were added to final feature list, resulting in
63 element feature vector. To prevent cluttering the features any further, we
did not evaluate logarithmic or exponential of features.

3.8.2 K-nearest-neighbors (K-NN) Regression

Another approach that we tried was K-NN regression. This method aims
to find unknown target value of a feature vector by calculating a weighted
average of target values from K training feature vectors that are most closest
(i.e. neighbors) to the query feature vector in the feature space. In other
word, K-NN assumes that if two feature vector are very similar to each
other based on a similarity measure, then their target should be similar
too. And this is a valid assumption for our application. These neighbors
of input vector are weighted by the inverse of their distance for averaging.
The distance between feature vectors can be defined arbitrarily, but popular
distance choices for continues variables are Euclidean, Manhattan Eq. 3.5
and Minkowski Eq. 3.6. We experimented all three of these distances to
find the one with least error. Note that Minkowski distance is equal to
Manhattan for q = 1 and equal to Euclidean for q = 2. To reduce the noise
in data, usually the number of neighbors (K) for averaging should be 10 or
more. However, the best K can vary depending on the data set. Therefore,
we have tried several values to tune this parameter.

Manhattan =
k

∑
i=1
|xi − yi| (3.5)

Minkowski = (
k

∑
i=1

(|xi − yi|)q)1/q (3.6)
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3.8.3 Support Vector Machine Regression (SVR)

Even though Support Vector Machine[8] is best known for classification
problem, but one can use a modified version of that for regression too with
almost all the benefits of normal SVM. In SVR formulation two maximum
margin hyperplanes are found between negative and positive errors between
a polynomial function of input features and the target values. In the soft-
margin SVM which we are using, the ε parameter helps to tolerate small
errors and find better support vectors. Slack variables help to ensure exis-
tence of a convex solution as well as reducing the effect of noise in data.
Kernels in SVR map the feature space to a higher dimensional space that
might be more suitable for finding those separating hyperplanes. Since we
are working with images and there is a lot of noise in features as well, a
Radial Basis Function (RBF) kernel is used which can help smoothing these
noise and find better hyperplanes. The gamma parameter (γ) in RBF kernel
defines how far the influence of a single training example reaches, with low
values meaning far and high values meaning close. The gamma parameters
can be seen as the inverse of the radius of influence of samples selected by
the model as support vectors.

3.8.4 Training and test datasets

To solve a learning problem we need to have separate training and testing
datasets. Since usually Linear Regression and K-NN need large training set
size to avoid over-fitting and also smooth the noise in data, we dedicate 40%
of our data samples for training set, and the rest for testing. This means the
training dataset has around 18,000 data samples and test dataset has around
26,000 data samples. For the case of Support Vector Machine Regression,
there is no need for such a big training size due to ε and slack variables as
well as kernel non-linear mapping. However, for the sake of comparability
of results, we use the same training and test sets for all three methods. The
distribution of DHI (target) values in our dataset is not uniform. There are
many more samples at low values of DHI than high values. Therefore, to
make sure that there is enough sample from every DHI range in the training
and test sets, we partition the DHI values into 5 ranges, [0,100], [100,200],
[200,300], [300,400], [400,500]. Then in any range we choose N/5 of samples
randomly for training where N is total number of training. If the number
of samples in a range is less than N/5 we take 70% of the sample in that
range as training and the rest as test. Using this sampling trick, we provide
enough samples from every DHI range in order to be able to estimate values
in that range later with regression. In next chapter, we show some results
of this three regression method on test set after being trained with training
data.
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Chapter 4

Results and Discussion

In this chapter, we show results of applying the regression algorithms on our
dataset for estimating DHI (Diffuse Horizontal Irradiance) from sky images.
As the metric for comparison between methods, Root Mean Square Error
(RMSE) is used. We will also discuss where the algorithms perform poorly
by showing cases.

4.1 Feature Selection

Since the correlation of each feature element to DHI is not strong enough,
we need to do a feature selection in order to select the most relevant fea-
tures and discard the ones that are not helpful enough. For that purpose,
we use a Forward-Selection algorithm on the feature set for each method.
This approach assumes an empty feature vector initially, and at every itera-
tion evaluates the error of estimation after adding each one of the available
feature elements to current feature set. The feature set with least error will
be chosen and removed from available feature elements. However, the dif-
ference of last error and current error has to be more than a threshold for
adding that feature element. This helps to exclude random improvements
caused by features and don’t add them to final feature set. This threshold
has been set empirically to 0.7 in RMSE -60% of inverse of chi-square cumu-
lative distribution function for 1 degree of freedom. To verify the advantage
of using image-based features along non-image features in the feature vec-
tor, we evaluate these two cases separately in each regression method. The
non-image feature set consists of [clear-sky-DHI, sun-zenith]. The full fea-
ture vector includes: [sun-state, saturation factor, cloud coverage of region
1, region 2, region 3, region 4, clear-sky-DHI, sun-zenith, cloud coverage of
circumsolar area]. Also for diminishing the effect of randomness in training
data selection, we repeated each experiment configuration three times and
averaged the results.
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4.2 Linear Regression

As we mentioned in 3.8.1, feature list for linear regression includes square
and square root of base features too in order to account for non-linear re-
lation of DHI to one of base features. First, we evaluated performance of
non-image features for DHI estimation using linear regression. Feature se-
lection algorithm suggests that the only important feature in non-image list
is clear-sky DHI value. The RMSE on test data set was 60.7 W/m2 which is
around 16% of range of DHI values, [30,400]. This indicates a poor perfor-
mance for our application. The RMSE of the same configuration for training
data was 64.4 which is even bigger than error on test data. However, nor-
mally we expect to see lower errors on the training set. This might suggest
that the features are not representing intrinsic characteristics of data well.
Figure 4.1 shows correlation between result of linear regression and target
DHI values for non-image features. The vertical lines in this plot indicate
that the learned model does not account for changes in cloud coverage and
always predict the same clear-sky-DHI for them. Therefore, for any clear-sky
DHI there are many measured DHI values.

Figure 4.1: Linear regression result using only non-image features

In next step, we included all the features (non-image and image-
based) for regression training. The feature selection algorithm only chose
12 features out of 27 features (i.e. 9 + 9 + 9 for base features, square and
square root). The selected features are indexes of [1 2 4 5 7 11 14 17 20 21
22 23] in the feature vector. This indicates that there is some non-linearity in
the relation of base features to targets. The result of linear regression on this
feature vector shows an RMSE of 44.7 W/m2 on the test data set and 47.4 for
training set. The result for only using image-based features is always worse
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than non-image features by a distance of around 5%. Thus, it is clear that
there is a considerable improvement (26%) in regression performance when
using both non-image and image features. The slightly better performance
on test data can be indicating that linear regression can’t model this dataset
well or there is a bias in errors of training. We also have tried a training
set two times bigger than test set, but the same pattern was observed. The
correlation of estimated DHI to target values is illustrated in Figure 4.2.

Figure 4.2: Linear regression result using both feature types

To investigate distribution of errors, we have plotted the histogram
of training and test errors for both non-image and full feature set in Figure
4.3. One can see that error when using all the feature elements is clearly
lower than when using only non-image features. Also, the training error is
usually below the test error, except in the right edge of the plot that training
error frequency exceeds the test error. This can indicate an underestimating
bias in the training set which is due to relatively higher number of low-DHI
samples in the data set.

4.3 K-NN regression

For K-NN method, the non-image and full feature experiments are repeated
as well. After trying different values of neighbors (K), K=10 showed the least
error and is been used for the rest of experiments. For distance measure, we
evaluated Manhattan distance and also q = 2 (i.e. Euclidean) and q = 3 for
Minkowski. The results showed that Manhattan distance perform better for
this application. This suggests that importance rank of features is very close
to each other. The feature selection on non-image features only selects clear-
sky-DHI and exclude sun-zenith due to its slightly less importance. The
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Figure 4.3: Error histogram for linear regression

table 4.1 displays the errors obtained using K-NN regression on training
and test data. And the Figure 4.4 shows correlation of results for non-image
feature set.

non-image features both feature types
Training set 58.2 35.7
Test set 57.2 34.8

Table 4.1: Regression errors of K-NN on non-image and full feature vectors

One can see that using both non-image and image-based features
reduces RMSE by around 40% from only using non-image based features.

Running the feature selection on base features for K-NN regressor re-
sults in leaving out the saturation factor feature. This indicates its negligible
correlation to DHI which was not obvious at the time of creating feature list.
This low importance can be due to the fact that for many images where sun
is completely visible, the saturation factor (which is only defined for cloud
pixels around sun) is trivially zero. And these images correspond to high
DHI values while having zero saturation. However, there are many cloudy
images where sun is not visible but because of thick clouds, the saturation
factor is again zero and DHI value is low. Therefore, we can see that the
relation of DHI to saturation factor is more complex than linear or simple
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Figure 4.4: K-NN estimation result using only non-image features

non-linear models. Thus, deriving a more sophisticated feature from satura-
tion factor, sun-state and circumsolar cloud coverage could be more relevant
to diffuse irradiance. The correlation of K-NN result to DHI while using the
selected features is depicted in Figure 4.5 .

The error histogram of result for K-NN method is illustrated in Figure
4.6. This figure confirms that the error when using both feature types is
almost always below the error of non-image features alone. The training
error is also below the test error except in the most right side of the plot
where it goes above test error. The slightly higher training error in Table 4.1
can be related to this parts of the error histogram.

4.4 SVR

The performance of support vector regression is highly dependent on C, ε
and γ parameters which define the tradeoff between model complexity (i.e.
number of support vectors) and regression error and control influence of
support vectors. Therefore, it is very important to tune these parameters
on our specific dataset through k-fold cross validation. We are using 5-fold
validation based on our training sample size. Thus, we randomly divide our
training set into 5 equal sized partitions. Then for each parameter combina-
tion we use one of the folds for testing and the rest for training set. The final
error of a parameter combination comes from averaging the errors for all
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Figure 4.5: K-NN estimation result using all the features

Figure 4.6: Error histogram for K-NN estimation result

the folds (5). After cross validation on possible ranges for C and ε and γ pa-
rameters, the best values are selected to be 250, 9 and 8 respectively. Besides
RBF, linear and sigmoid kernels have been evaluated for this task, but RBF
outperformed other kernel types and was selected for further experiments
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on SVR. The popular libsvm toolbox is used for training an SVM model and
predicting DHI values. We have not applied feature selection directly on
SVR due to its long runtime, however, we manually removed some feature
elements such as saturation factor and circumsolar cloud coverage, and the
error was decreased to 38.0. Therefore, we excluded them from features list
for further experiments on SVR. The result of SVR is summarized in the
table 4.2. It shows an improvement of 38% when using both non-image and
image-based features. This can also be seen in Figures 4.7 and 4.8 which
depicts correlation of SVR results to DHI values. Again, the vertical lines
in Figure 4.7 indicate a strong indifference of the learned model to cloud
coverage conditions.

non-image features both feature types
Training set 62.0 38.4
Test set 62.7 38.0

Table 4.2: Regression errors of SVR on non-image and both feature types

Figure 4.7: SVR result using only non-image features

The error histogram of SVR is plotted in Figure 4.9. This shows more
clearly the improvement of using image-based features. It also proves that
the learned model from SVR method is relying on key features that are
showing consistent behavior in training and test sets.

4.5 Some error cases

As we see in the error histograms, the range of error values in all regression
methods is considerable and between -200 to 200 W/m2. However, the num-
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Figure 4.8: SVR result using both feature types

Figure 4.9: Error histogram for SVR result

ber of these high value errors are very small and some of them can be even
seen as outliers in statistical analysis. After looking at the corresponding im-
ages and their feature vectors we realized that the reason for such abnormal
regression result is either failure in cloud segmentation algorithm or mis-
classifying sun-state. For example, Figure 4.10 shows an image where the
predicted DHI is around 300W/m2 but observed value is around 20. The rea-
son for this off prediction is the rain drops on the camera which prevented
the cloud in circumsolar area to be detected. The strange color in horizon is
also contributing to this challenge. Therefore, the K-NN matches this image

48



4.6. Comparison

to other images with clear area around the sun and consequently results in
high DHI prediction. Handling rain drops in images is a challenging task
which is outside of the scope of this thesis.

Figure 4.10: An image sample of large estimation error

Another bad prediction is displayed in Figure 4.11 where sun-state
is detected as 1 which means sun is not visible at all in the image, but we
can clearly see the sun passing the light through a thin cloud. However,
the saturation factor is been calculated correctly for this image. The reason
for misclassifying sun-state is that the sun detection algorithm looks for a
big enough black dot in circumsolar area that is surrounded with bright
pixels up to a specific radius. But the black dot of sun in this image is not
big enough to be detected by that algorithm. By adjusting the threshold, this
case can be correctly classified, but some other false positive instances might
appear in other images.

Again in another false prediction case, Figure 4.12 shows an image
with strange colors in the horizon and clouds. Therefore, cloud segmen-
tation failed to detect those clouds and reported 3% cloud coverage, thus
predicting a high DHI while the actual value is around 17.

4.6 Comparison

As we saw before, using image-based features along non-image features
improves the regression accuracy considerably. Now, for choosing the best
performing method among the three regression algorithms, we compare the
RMSE of their result for the case where both feature types were used. As
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Figure 4.11: An image sample of large estimation error

Figure 4.12: An image sample of large estimation error

Table 4.3 clarifies, K-NN method outperforms linear regression by 20% and
support vector regression by around 9% improvement.

Linear Regression K-NN SVR
Test error 44.7 34.8 38.0

Table 4.3: Comparison of RMSE for all three regression methods using both feature types

However, bigger training set can reduce these errors. It’s specifically
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more beneficial for K-NN since it relies on finding similar cases in training
data for every test instance. On the other hand, by using other kernel types
or a better feature selection, we might be able to improve the performance
of SVR, but it’s not guaranteed. Therefore, we choose K-nearest-neighbor
with full feature list as the best method for DHI prediction for our appli-
cation which achieves around 40% improvement compared to using only
non-image features. Since no other work exists with similar experimental
setup and clear algorithm, we could not compare result of our work to other
recent research in this area.
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Chapter 5

Future Work

Even though the estimation accuracy we achieved for DHI is acceptable
for this application, but there is still room for improvement in some areas.
For example, we know that different cloud types have different cloud-base-
height as Figure 5.1 shows. They also have different reflection albedo and
behavior of sunlight on each one is unique. Therefore, knowing which cloud
type is dominant in the sky at each image can help us to define better cloud
segmentation strategies, classify the sun-state more accurately and finally
estimate the diffuse irradiation with less error range. The approximated
cloud-base-height from cloud type can also be used for projecting clouds to
the PV plant site in order to find correct shadow map which is very helpful
when converting estimated total irradiation to power output.

Figure 5.1: Cloud types and their base-heights

Another area for future work is sun-states. Since in this study we
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only used sun-states=1 and4 there are still many images with sun-states of 2
and 3 which need to be correctly handled in terms of effective DNI and DHI
for them. Figure 5.2 shows examples of these images where sun is either
visible behind a thin cloud or partially covered by a thick cloud, respectively.
Estimating DNI and DHI target values based on observed irradiances in
sensor 1 (horizontal) and sensor 2 (titled) is another task which will help in
this area.

Figure 5.2: An example of sun-state=2 (left) and sun-state=3 (right)

As it was mentioned in SVR result discussion, developing new de-
rived features from the base features can help increase the correlation of
features to the targets, thus improving the estimation accuracy. Finally, the
reflection coming from surrounding structures such as mountains needs to
investigated specifically in the morning and evening when these contribu-
tions seem to be more significant than other times of the day.
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Chapter 6

Conclusion

Following the global movement for increasing the share of green energy
sources in energy market, photovoltaic (PV) power plants gained major at-
tention. However, the short-time cloud-induced fluctuations in the output
power of a PV which are largely unpredicted, makes the integration of solar
energy into electrical grid difficult and risky. In the recent decade, many
researches aimed to predict these short-time changes using sky imagery.
Complexity of effect of clouds on direct (DNI) and diffuse (DHI) irradia-
tion components brings a lot of challenges. These works usually determine
the cloud map in the sky and by finding the cloud motion vectors try to
forecast cloud map in intra-hour time horizons. Using such cloud maps and
the characteristics of images, these methods try to estimate total irradiation
(GHI) which will hit the PV plant in those times which is highly correlated
with the generated power. However, most of them require advanced and
expensive irradiation measurement instruments.

This work specifically is concerned about estimating diffuse (non-
direct) component of irradiance from sky images. We use data of two ir-
radiance sensors, one horizontal and one tilted towards north, as well as a
fisheye lens camera images of sky. A simplified binary approach is used for
estimating DNI based on sun-state (i.e.either sun shining or sun not visible),
meaning that the value is either equal to clear-sky DNI or zero. By removing
the effect of DNI from titled sensor we get a soft sensor for DHI. We build on
top of already existing cloud segmentation work at ABB to extract meaning-
ful features from sky images and related them to DHI. We evaluated several
non-image and image-based features to find the best performing feature set
for predicting DHI. As the learning algorithm, the results of Linear Regres-
sion, K-nearest-neighbor (K-NN) and Support Vector Regression methods
are compared. The results show K-NN outperforms other two methods and
also that including both clear-sky DHI and cloud coverage features for re-
gression improves the estimation accuracy by 40% compared to using only
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non-image features. The best achieved RMSE is about 34.8 W/m2.

For future work, one needs to extend our binary DNI model to in-
clude other more complicated sun-states as well. Using cloud classification
as a feature vector and also for estimating cloud-base-height is another area
to work on.
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