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Abstract

This doctoral thesis is concerned with two-dimensional conformal field theories
(CFTs) that appear in the holographic dualities with higher spin theories on three-
dimensional anti-de-Sitter (AdS) space. The latter are generalisations of gravity
which include a tower of massless particles of spin larger than 2. The dual CFTs
can be formulated as coset models with W algebra symmetry. W algebras are
higher-spin generalisations of the Virasoro algebra describing conformal symmetry.

We will give an introduction to both sides of the original higher-spin AdS3/
CFT2 duality and explain the statement of the duality as well as the most important
pieces of evidence in its favour. In the process, the quantumW∞ algebra describing
the CFT side will be constructed by imposing algebraic consistency conditions.
These will turn out to determine its structure uniquely up to two free parameters,
one of which is the central charge of the CFT.

This analysis will then be carried over to a similar duality involving only even
spin fields. As in the previous case, the resulting W algebra is fully determined
up to two parameters by algebraic consistency. We will analyse the relationship of
this algebra to known constructions of CFTs, namely the coset construction and
the Drinfel’d-Sokolov reduction of the bulk symmetry algebra. This will provide
an interpretation as the asymptotic symmetry algebra of the quantised higher spin
gravity theory.

The second part of the thesis will aim at finding relations between an N = 2
supersymmetric version of the CFTs studied before and CFTs that can be con-
structed as orbifolds of free theories. This might be a first step towards embedding
the dual higher spin theories into string theory. First we will show that the CFT
admits a description as an orbifold of free bosons and fermions by the unitary group
U(N) in a certain limit. This continuous orbifold will then be shown to possess
an extension which is given by an orbifold under the symmetric group SN+1. The
structure of both orbifolds will be studied in detail.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit zweidimensionalen konformen Feldtheorien
(CFTs), welche in den holographischen Dualitäten mit Higher-Spin-Theorien im
dreidimensionalen Anti-de-Sitter-Raum (AdS) vorkommen. Letztere sind verallge-
meinerte Theorien der Gravitation, die masselose Teilchen mit Spin grösser als 2
beinhalten. Die dualen CFTs können als Nebenklassen-Modelle mit W-Algebren-
Symmetrie formuliert werden. W-Algebren sind Higher-Spin-Verallgemeinerungen
der Virasoro-Algebra, welche die konforme Symmetrie beschreibt.

Nach einer kurzen Einführung in beide Seiten der ursprünglichen AdS3/CFT2-
Dualität mit höheren Spins werden wir die Aussage der Dualität sowie die wichtig-
sten Argumente für ihre Richtigkeit vorstellen. In diesem Zusammenhang werden
wir auch die Quanten-W∞-Algebra mit Hilfe von algebraischen Konsistenzbedin-
gungen konstruieren, welche die Algebra bis auf zwei Parameter eindeutig bestim-
men werden, wovon einer die zentrale Ladung der CFT ist.

Diese Analyse wird dann auch auf eine ähnliche Dualität angewendet wer-
den, in der nur Felder mit geradem Spin vorkommen. Wie im zuvor behan-
delten Fall wird die so erzeugte W-Algebra durch ihre algebraische Konsistenz
bis auf zwei Parameter eindeutig bestimmt. Wir werden die Beziehung dieser
Algebra zu mehreren bekannten CFT-Konstruktionen analysieren, und zwar zur
Nebenklassen-Konstruktion und zur Drinfeld-Sokolov-Reduktion der Gravitations-
symmetriealgebra. Dies erlaubt es uns, sie als asymptotische Symmetriealgebra
der quantisierten Higher-Spin-Gravitationstheorie zu interpretieren.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Beziehung zwischen einer
N = 2 supersymmetrischen Version der vorher untersuchten CFTs und solchen
CFTs, die man mit Hilfe von Orbifold-Konstruktionen aus freien Theorien erhalten
kann. Dies könnte einen ersten Schritt in Richtung einer Einbettung der dualen
Higher-Spin-Theorien in die Stringtheorie darstellen. Dabei wird die CFT zunächst
in einem gewissen Limes als Orbifold einer freien Theorie bezüglich der unitären
Gruppe U(N) interpretiert werden. In einem zweiten Schritt wird gezeigt werden,
dass dieser kontinuierliche Orbifold eine Erweiterung besitzt, welche sich als Orbi-
fold unter der symmetrischen Gruppe SN+1 beschreiben lässt. Wir werden die
Struktur beider Orbifold-Theorien eingehend studieren.
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Chapter 1

Introduction

1.1 Why higher spin holography?

Since the early days of quantum mechanics and at the latest with the advent of
quantum field theory, it has been a major goal of theoretical physicists to find
a quantum theory of general relativity. While the original version of the theory
suffers from non-renormalisability, it might possess an ultraviolet completion which
overcomes this problem. String theory has been considered a strong candidate
for such a theory ever since its (re)discovery as a theory of gravity in the 1970s.
However, as of 2016, the puzzle of quantum gravity is still not resolved, nor is
string theory even understood to a satisfying degree. One major reason is that
string theory is inherently mathematically difficult. Indeed, as was discovered in
the 1990s, it is not only a theory of one-dimensional strings propagating in 10- or
26-dimensional spacetime, but also a theory of solitonic higher-dimensional objects
called D-branes; and moreover, much of the mathematics needed to describe the
theory have to be developed along the way.

Maldacena’s discovery, in 1997, of the AdS/CFT correspondence [130, 170]
sparked once again an enormous interest in string theory. He showed that super-
string theory on an AdS5 × S5 background is dual to a supersymmetric cousin
of quantum chromodynamics (QCD), N = 4 supersymmetric Yang-Mills (SYM)
theory living on the four-dimensional boundary of AdS5. The latter is a conformal
field theory (CFT), i.e. a field theory which is scale-invariant and whose symmetry
group is therefore an extension of the Poincaré group of ordinary relativistic field
theories. Although the original statement of the duality was formulated in the
’t Hooft limit where the number of colours becomes large, it is believed that it may
also hold away from that limit. This duality is of utmost importance for various
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reasons:
First, the duality shows that there is an intimate relationship between two

kinds of theories which had seemed incompatible for a long time, namely theories
of gravity on the one hand and (conformal) quantum field theories on the other
hand. The idea that gauge theories might be related to string theory in a particular
limit of infinitely many colours was first brought up by ’t Hooft [158] and made
explicit by Maldacena’s duality. Due to the quantum nature of the field theory
side, there is now even new hope that the duality might give us a hint on how to
quantise gravity.

Second, the AdS/CFT duality in its original version is a strong–weak duality:
in the (planar) ’t Hooft limit, it relates the strong coupling regime of the quantum
field theory to the low energy regime of string theory, which can be described by an
effective supergravity theory. Conversely, if the duality is to hold at all values of the
coupling, the (stringy) strong curvature regime of the bulk theory is mapped to the
perturbative regime of the boundary theory. This gives us perturbative computa-
tional access to originally non-perturbative problems. For instance, exploiting the
similarity between N = 4 SYM and QCD, one can use gravity methods to compute
a lower bound on the ratio of shear viscosity and entropy density of quark-gluon
plasma [138, 123], a quantity which used to be out of computational reach. The
agreement of the outcome with experiment (see, e.g., [2, 129, 104, 89]) is both
astonishing and encouraging.

Third, as more and more examples of dual theories are being found, the AdS/
CFT correspondence has become one of the most important playgrounds for theo-
retical physicists, relating gravity theories to condensed matter systems or to fluid
dynamics. While many of these so-called ‘dualities’ are only approximative in na-
ture (as is the case with AdS/QCD mentioned above), the abundance of recurring
structures in different areas all across physics clearly seems to indicate that there
may still be much left to discover.

Finally, the AdS/CFT correspondence also serves as an explicit incarnation of
’t Hooft’s and Susskind’s holographic principle [159, 155] (see also [26] and ref-
erences therein), which, inspired by the Bekenstein-Hawking entropy formula for
black holes, claims that the number of degrees of freedom of a gravitational theory
scales like an area rather than a volume. This suggests to think of the information
contained in the gravitational theory as stored on a holographic screen. If these
concepts are to be taken seriously, any sensible quantum theory of gravity should be
founded on this principle and formulated in such a way that the principle emerges
from it as an obvious consequence, very much in the same way in which Einstein’s
equivalence principle is a consequence of his formulation of general relativity. The
AdS/CFT correspondence already provides us with an explicit and suggestive dic-
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tionary that helps us translate gravity into a lower-dimensional non-gravitational
theory.

However, one fundamental shortcoming of most of the holographic dualities
found so far is that there has been little success in proving them, not least because
of the strong–weak nature and the poor understanding we have of both sides beyond
the perturbative regime. It was with the discovery of holographic dualities involving
higher spin theories on anti-de-Sitter space that progress in this direction could be
made.

Vasiliev’s higher spin theories [165] are gauge theories of infinitely many inter-
acting massless particles of arbitrarily high spin. This is a considerable extension
of gravity, which is a gauge theory containing the spin-2 graviton, and should be
described by gauging some infinite-dimensional extension of the Poincaré group.
For a long time it was thought that such a theory could only be consistently de-
fined if the fields of spin higher than 2 were either free or massive. This view was
supported by numerous no-go theorems such as the Coleman-Mandula theorem
[44], which however relies on S-matrix arguments that are not applicable to AdS
space (note, however, the generalisation [131, 132] to the higher spin case). Indeed,
higher spin theories rely heavily on a non-vanishing cosmological constant, which
serves both as a coupling constant and as an infrared cutoff. Other no-go theorems
can similarly be circumvented (see [16] for a review). In spacetime dimensions
larger than 3, the theory requires the presence of an infinite tower of particles of
ever increasing spin s = 2, 3, 4, . . . , or only even spins in a minimal version. In
particular, it contains the graviton as the spin-2 case, and particles of half-integer
spins s = 3/2, 5/2, . . . (where s = 3/2 corresponds to the gravitino) in its super-
symmetric versions. The construction of such a theory is not only an interesting
academic exercise, but also provides a novel view on extended theories of gravity.
Higher spin theories share some features with string theory such as non-locality
and the presence of higher spin particles, without sharing all of its complications;
after all, string theory contains an infinity of massive particles at each spin. Since
the spin spectrum is reminiscent of the leading Regge trajectory of string theory,
which consists of the lightest particle at each spin, it has been suggested that it
might be possible to embed higher spin theory into string theory in the limit of
tensionless strings, in which the particles become massless (see, e.g., [146] and
references therein). This is another interesting limit of string theory beside the
low-energy supergravity limit and might therefore elucidate string theory from a
new perspective. Accordingly, string theory at finite string tension would then be a
broken phase of an extended higher spin gauge theory, where the gauge symmetry
is spontaneously broken by a gigantic Higgs mechanism termed La grande bouffe
in [20].
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Bearing this putative connection with string theory in mind, one might expect
to find a CFT dual of higher spin theories as proposed by [154, 171, 133, 151],
at least if the AdS/CFT correspondence is to hold in all regions of string theory
parameter space. And indeed, the minimal version of Vasiliev theory on AdS4 was
found to be dual to the singlet sector of the 3-dimensional free or critical O(N)
vector model in the large N limit [120, 152, 92, 93] (see [94] for a review). Here N
is the number of colours. An important feature of these CFTs is that their number
of degrees of freedom scales with N , as opposed to the Yang-Mills theories in the
original version of the duality, where it scales like N2. This is reflected in the
bulk by the reduced spectrum of the higher spin theory with respect to full-fledged
string theory. Even more importantly, this duality can be formulated as a relation
between two weakly coupled theories, which opens up the possibility to perform
perturbative checks of the duality and improve our understanding of the underlying
mechanisms.

Later a lower-dimensional version of this duality was proposed [72, 81, 79, 73],
relating higher spin theory on AdS3 to a family of 2-dimensional coset minimal
model CFTs (see [74] for a review), the simplest and most well-known exponents of
which are the Virasoro minimal models such as the Ising model (cf. [39]). Conformal
field theories in 2 dimensions differ from their higher-dimensional counterparts by
the fact that their symmetry group (the conformal group or an extension thereof)
is infinite-dimensional. This leads to an infinity of conserved quantities, which re-
stricts the dynamics of the theory considerably and can in some cases even enable
us to solve the theory exactly. On the bulk side of the duality these constraints
are reflected by the absence of propagating degrees of freedom: as the Weyl ten-
sor vanishes identically in three dimensions, gravitational waves cannot exist and
the solutions to Einstein’s equations and their higher spin counterparts are fully
determined by the Ricci tensor and its higher spin generalisations. The only de-
grees of freedom are therefore located at the boundary. In spite of these heavy
restrictions, the theory does describe gravity and even contains black holes [13, 12]
which exhibit all the features one would expect from a 4-dimensional perspective,
notably a horizon, entropy, temperature, and Hawking radiation. A further inter-
esting aspect of the higher-spin dualities (both in 3 and 4 dimensions) is that they
do not necessarily involve supersymmetry, thereby showing that supersymmetry is
not an essential ingredient of the AdS/CFT correspondence. The simplifications
described above have helped tremendously in studying the duality over the past
years, and many variations of it have emerged: for instance, a proposal for a dual-
ity restricted to even spins was made in [3, 88]. This duality will lie at the heart
of chapter 3. An N = 2 extended supersymmetric generalisation was found in
[45] and will be briefly reviewed in chapter 4, as it will be the starting point for
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chapters 5 and 6. Later, dualities with N = 1 [46, 15] and (large) N = 4 supersym-
metry [75, 48, 38, 85, 14, 49] as well as matrix-extended versions [105, 75, 48, 38]
(see, however, [37]) of the standard N = 2 duality were identified, such that there
now exists a plethora of higher-spin dualities on AdS3 and it has become apparent
that they are far from merely being an interesting but irrelevant coincident.

In parallel, the higher-spin/CFT dualities also helped improve our understand-
ing of the relationship between higher spins and string theory. In [41] a gener-
alisation of the aforementioned higher spin theory on AdS4 that was dual to the
O(N) vector model was argued to be a small-coupling limit of string theory on an
AdS4 × CP3 background.

On the lower dimensional front it was argued in [76] that a certain limit of the
coset theory appearing in the large N = 4 duality of [75] could be described as
an orbifold of a CFT of free particles by the unitary group U(N), i.e. a theory
whose Hilbert space is restricted to those states that are invariant under the group
action. It was further shown that this continuous orbifold can be embedded into a
larger theory described by a discrete orbifold with respect to the symmetric group
SN+1. The latter theory in turn is believed to be dual to a system of D1- and D5-
branes in string theory on AdS3 × S3 × T4 (see [52] for a review). This cascade of
identifications and embeddings suggests that string theory might be an extension
of higher spin theory. Upon moving away from the limit in which the CFT is
described by the continuous orbifold, the AdS3 × S3 ×T4 background should turn
into AdS3×S3×S3×S1, which indeed exhibits the same large N = 4 symmetry as
the CFT and its higher spin dual. It is therefore suspected that the duality should
continue to hold and become stringy in this regime. Exploiting this relationship,
the expected symmetries of string theory could then be studied in some detail and
constructed as an extension of higher spin symmetries in [77, 78].

A similar orbifold analysis in the case of the N = 2 duality was carried out in
[83, 84] and has been incorporated into this thesis as chapters 5 and 6.

1.2 Objectives and structure of the thesis

This thesis studies two aspects of higher spin holography in detail: the structure
of W algebras and the orbifold constructions related to the N = 2 version of the
duality.

The goal of the first part is to understand the quantisation of the asymptotic
symmetry algebras of (classical) higher spin theories, which is a first step towards
a quantum formulation of the duality. In order to achieve this, we make a general
ansatz for a quantumW algebra and solve for the structure constants by imposing
the Jacobi identity. This is done in two cases: for the W∞ algebra underlying
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the original duality involving fields of all integer spins greater than 1, and for the
restriction to even spin fields described by the algebra We

∞. In both cases we find
that the algebra is uniquely determined up to the central charge and one additional
free parameter, which can be identified with the coupling constant of the higher
spin theory. In the first case, this yields a unique quantisation of the dual CFT
for any value of the coupling parameter, as could be shown in [73] on the basis
of our results. In the even spin case, however, there is a twofold ambiguity in the
quantisation, which will be analysed in depth.

In the second part, the CFTs that appear in the N = 2 version of the duality
will be studied and related to orbifold constructions similar to what was done in
[83, 84] for the N = 4 case. In a first step, the large level limit of these Kazama-
Suzuki coset models will be interpreted as a U(N) orbifold of a free theory. The
untwisted sector of the orbifold will be shown to contain the CFT states that
correspond to the perturbative sector of the holographically dual theory in the
bulk. The twisted sectors, on the other hand, correspond to states that have been
linked to non-perturbative conical defect solutions in the bulk. In a second step,
this orbifold will then be shown to possess an extension which can be described
as an orbifold by the symmetric group SN+1. In analogy to the N = 4 case, one
may hope to use this relationship to find a stringy extension of N = 2 higher
spin theories in the future and understand the symmetries of string theory on that
particular N = 2 background.

The thesis is structured as follows:

Chapter 2 gives a brief introduction to the most important topics covered in this
thesis. Notably, the standard bosonic higher spin theory on AdS3 and its symmetry
algebra hs[µ] are introduced in section 2.1. Section 2.2 introduces minimal model
CFTs, W algebras and the most important ways to construct them. In particular,
section 2.2.4 contains original material based on unpublished work in collaboration
with Constantin Candu, Matthias Gaberdiel and Carl Vollenweider on the explicit
construction of the algebra W∞[µ]. Section 2.3 then presents the main ideas and
the most important arguments in favour of the proposed duality linking the higher
spin theory from section 2.1 to the minimal models from section 2.2.

Chapter 3 is based on the paper [36] with Constantin Candu, Matthias Ga-
berdiel and Carl Vollenweider. Its main objective is to construct the algebra We

∞
underlying the CFT dual to the even spin bulk theory as proposed in [3, 88]. This
analysis is carried out in section 3.1.1 in analogy to the bosonic construction from
section 2.2.4. The exact relation to the even higher spin algebra of the bulk theory
is also found. Moreover, we present some hitherto unpublished comments on the
relation between We

∞ and the bosonic algebra W∞ in 3.1.3. The remainder of
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chapter 3 discusses the different construction methods of We
∞, either by means

of the Drinfel’d-Sokolov reduction (section 3.2), an introduction to which can be
found in 2.2.3, or by a variety of coset constructions (section 3.3).

Chapter 4 serves as a short interlude to explain some of the theoretical concepts
needed for the subsequent chapters, namely the simplest version of the N = 2
Kazama-Suzuki cosets and the orbifold construction of conformal field theory.

The material in chapter 5 is joint work with Matthias Gaberdiel and has been
published in [83]. It shows that the perturbative sector of the Kazama-Suzuki mod-
els which are the CFT duals of N = 2 higher spin theory on AdS3 can be rewritten
as the untwisted sector of a continuous orbifold of free bosons and fermions in the
large-level limit of the coset. This is the main result of section 5.1. The other,
non-perturbative states of the coset are shown to correspond to the various twisted
sectors in section 5.2, whose ground states are explicitly matched with certain coset
states. We also identify two BPS states in each twisted sector from general orbifold
considerations and find their counterparts on the coset side.

Chapter 6 presents the results of a follow-up project in collaboration with
Matthias Gaberdiel [84], in which we study the relation of the Kazama-Suzuki coset
from the previous chapter to the symmetric orbifold of free bosons and fermions.
The symmetric orbifold is an extension of the continuous orbifold and might pos-
sess a string dual in analogy to the N = 4 case. We decompose the untwisted
sector in terms of coset representations in section 6.1 and find the structure of
that sector to be given by multi-particle powers of a fundamental building block.
A similar analysis is carried out for the twisted sectors in section 6.2, where each
twisted sector now has its own building blocks.

We close with conclusions and an outlook in chapter 7. Four appendices contain
the more technical material from chapters 2, 3, 5, and 6.
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Chapter 2

Higher spin holography on AdS3

The first signs of AdS3/CFT2 dualities emerged long before Maldacena’s seminal
paper [130] brought holography into the focus of attention. Already in 1986, Brown
and Henneaux demonstrated [31] that the asymptotic symmetries of 3-dimensional
Einstein gravity form a Poisson algebra isomorphic to two copies of the Virasoro
algebra, and therefore describe a conformal field theory. This CFT has a finite
central charge given by

c = 3`
2G , (2.1)

where ` is the curvature radius of AdS space and G is Newton’s constant. It nev-
ertheless took more than two decades until the full bearing of this discovery could
be appreciated. After higher spin theories had been developed in the 1990s and
the first examples for the AdS/CFT correspondence had been found, the possible
existence of CFT duals to higher spin theories was soon brought up [171, 151].
A first explicit proposal for a higher spin version of an AdS4/CFT3 duality was
made by Klebanov & Polyakov [120], and Sezgin & Sundell [152]. As in the case
of Maldacena’s original AdS5/CFT4 correspondence [130], the duality was estab-
lished in a limit in which the number of colours (and degrees of freedom) in the
field theory becomes large. It is therefore a quasi-classical limit in which the (clas-
sical) gravity theories can be trusted. One distinguishing feature of those two kinds
of dualities is however that gauge fields in super Yang-Mills theory transform in
the adjoint representation of SU(N), and therefore their number scales like N2 for
large colour number N . On the other hand, the O(N) vector models whose singlet
sector was proposed to be dual to 4d minimal higher spin theory are constructed
out of N bosons (or fermions) transforming in the fundamental representation of
O(N). Hence the number of degrees of freedom only scales with N , which amounts
to a massive reduction in complexity. In the light of this duality the findings of
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Brown and Henneaux could then be seen from a new perspective and interpreted
as a potential sign for a lower-dimensional version of higher spin holography. The
asymptotic symmetries of specific higher spin theories were computed in [106, 33]
and found to be described by two copies of classical WN algebras, which are non-
linear extensions of the Virasoro algebra, to which they reduce in the special case
N = 2. The central charge of these algebras was found to be (2.1) as in the
pure gravity case. The analysis was found to work at the quantum level as well
[80]. Since the quantum versions of the WN algebras are the symmetry algebras of
known minimal model CFTs [11] described by the family of coset theories

su(N)k ⊕ su(N)1

su(N)k+1
, (2.2)

this paved the way towards the proposal by Gaberdiel & Gopakumar [72] of a
duality between theseWN minimal models in a specific large N, k limit and higher
spin theories on AdS3. The limit has to be taken in such a way that the ’t Hooft
coupling

λ = N

N + k
(2.3)

is kept fixed. Just like their higher-dimensional counterparts, these CFTs are
vector-like, i.e. the central charge scales like N . On the gravity side the parameter
N corresponds to the maximal spin of the theory. In the N = 2 case underlying
the original results of Brown & Henneaux, where the bulk theory is just spin-2
Einstein gravity and the boundary CFTs are the Virasoro minimal models, the
central charge of the CFT is small and we are therefore in a quantum regime of
the duality. An attempt towards a fully quantum formulation of the duality has
been made in [39].

In this chapter we will provide the basics of the Chern-Simons formulation of
3d higher spin gravity in section 2.1 and of W algebras and minimal model CFTs
in section 2.2. In section 2.3 we shall formulate the proposed duality and provide
a quick overview over the various checks that have been performed in its support.

2.1 Higher spin theories in three dimensions
The idea of finding a theory of particles with spin greater than 1 goes back to Fierz
and Pauli [60], who generalised the Dirac equation and found relativistic equations
of motion for massive particles of arbitrary spin.

This was later turned into a gauge theory of massless non-interacting higher
spin fields by Fronsdal [69] (see also [56] for the generalisation to half-integer spins
and, e.g., [110, 126] for pedagogical introductions), who found the linear equa-
tion of motion for a spin-s particle ϕµ1···µs (a totally symmetric tensor of rank s
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generalising the metric gµν) propagating on a Minkowski background,

Fµ1···µs ≡ �ϕµ1···µs − s ∂(µ1(∂ · ϕ)µ2···µs) + s(s− 1)
2 ∂(µ1∂µ2ϕ

′
µ3···µs) = 0 . (2.4)

Here parentheses around a set of indices denote their symmetrisation with weight
1 (i.e. the symmetrisation defines a projector), and we have made use of the defi-
nitions

(∂ · ϕ)µ2···µs = ∂µϕ
µ
µ2···µs , ϕ′µ3···µs = ϕµµµ3···µs . (2.5)

We also require ϕµ1···µs to satisfy the double-trace condition

ϕ′′µ1···µs−4
= 0 (2.6)

if s ≥ 4. Fµ1···µs is called the Fronsdal tensor and generalises the linearised Ricci
tensor to symmetric tensors of higher rank. The Fronsdal equation (2.4) is invariant
under the gauge transformation

δϕµ1···µs = s ∂(µ1ξµ2···µs) , (2.7)

where ξ is a traceless rank s− 1 tensor:

ξ′ = 0 . (2.8)

This condition does of course only make sense if s ≥ 3. For s = 1, equation (2.4)
reduces to the Maxwell equation in vacuum,

�Aµ − ∂µ(∂ ·A) = 0 , (2.9)

and for s = 2 it becomes the linearised vacuum Einstein equation:

�hµν − 2 ∂(µ(∂ · h)ν) + ∂µ∂νh
′ = 0 . (2.10)

Furthermore, equation (2.7) reduces to a linearised diffeomorphism in that case.
In the context of the AdS/CFT correspondence, it is relevant to generalise these
backgrounds to curved spaces with constant curvature and a cosmological constant
Λ, which are called de Sitter (dS) space in the case of positive cosmological constant
and anti-de-Sitter (AdS) space for Λ < 0. In the case of an (A)dSd background the
Fronsdal equation becomes [70, 57]

F̂µ1···µs + 2Λ
(d− 1)(d− 2)

[(
s2 + (d− 6)s− 2(d− 3)

)
ϕµ1···µs

+ s(s− 1)g(µ1µ2ϕ
′
µ3···µs)

]
= 0 , (2.11)
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where F̂ is the Fronsdal tensor F with all partial derivatives replaced by covariant
ones and contractions carried out with the (A)dS background metric gµν .

Although it was long thought that higher spin theories could not be interacting,
Vasiliev found a fully interacting (non-linear) theory in 4-dimensional dS and AdS
space [162, 163, 164]. As it turned out, the presence of one higher spin field requires
the presence of an infinite tower of them. These results were later extended to
higher dimensions as well as to dimension 3 [21, 141, 142, 165]. In this dimension
the Weyl tensor vanishes identically, and neither Einstein gravity nor higher spin
gravity have any propagating degrees of freedom in the bulk. They are completely
determined by their boundary dynamics and can be formulated as (topological)
Chern-Simons theories. A further particularity of dimension 3 is that certain values
of the coupling constant allow for a truncation of the theory to finitely many higher
spin fields. In the following we shall study higher spin gravity on AdS3 in more
detail.

2.1.1 Chern-Simons gravity in d = 2 + 1

According to general relativity, gravity can be described as the effect of a warped
spacetime on freely moving particles and their back-reaction on the structure of
spacetime. This dynamics in absence of matter or radiation is encoded in the
vacuum Einstein equations

Rµν −
1
2Rgµν + Λgµν = 0 , (2.12)

where gµν is the metric tensor describing the geometry of spacetime, Rµν the Ricci
tensor and R the Ricci scalar which describe curvature, and Λ the cosmological
constant. These equations are valid in any number of spacetime dimensions, but
we will restrict to d = 2 + 1 in the following. They can be derived from the
Einstein-Hilbert action

SEH = 1
16πG

∫
(R− 2Λ)

√
− det g d3x . (2.13)

There is an alternative formulation which makes use of a local vector frame (or
dreibein) instead of the metric formulation. Let us define a local frame of 1-forms
by eaµ, where µ = 0, 1, 2 is the spacetime index and a = 0, 1, 2 labels the basis
elements. We choose this frame to be orthonormal, which means

eaµe
b
νg
µν = ηab or eaµe

b
νηab = gµν , (2.14)

where ηab is the Minkowski metric with signature (−++). We can therefore express
the metric in terms of the dreibein. If we want to stick to that language, we also
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need to express the Christoffel symbols and the curvature tensor in terms of dif-
ferential forms. The analogue of the Christoffel symbols is given by the connection
1-form ωabµ defined by the covariant derivative of a vector field V a = V µeaµ:

DµV
a = ∂µV

a + ωabµ Vb . (2.15)

The indices a, b, c, . . . are raised and lowered using the Minkowski metric. By
requiring the connection to be compatible with the metric and torsion-free, we
obtain an explicit expression for the connection 1-form in terms of the dreibein:

ωabµ = 2eν[a∂[µe
b]
ν] − e

ν[aeb]ρeµc∂νe
c
ρ , (2.16)

where square brackets denote anti-symmetrisation. The curvature tensor can be
cast into the curvature 2-form

Rab = dωab + ωac ∧ ωcb . (2.17)

In 3 dimensions, it will prove useful to define the Hodge dual of the differential
forms introduced above with respect to the dreibein indices:

ωa = 1
2ε

a
bcω

bc ,

Ra = 1
2ε

a
bcR

bc = dωa + 1
2ε

a
bcω

b ∧ ωc . (2.18)

In this formalism, the Einstein-Hilbert action (2.13) becomes

SEH = 1
8πG

∫ (
ea ∧Ra −

Λ

6 εabce
a ∧ eb ∧ ec

)
. (2.19)

We now claim that up to boundary terms this can be written as a Chern-Simons
theory [1, 169], i.e. a topological field theory with action

SCS[A] = k

4π

∫
Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

(2.20)

and equation of motion
F ≡ dA+A ∧A = 0 . (2.21)

Here the gauge connection A is a 1-form which takes values in some Lie algebra g

and F is the curvature. (2.21) is therefore simply a flatness condition. As a special
case of interest to us let us define g to be generated by Ja, Pb for a, b = 0, 1, 2,
satisfying

[Ja, Jb] = ε c
ab Jc , [Ja, Pb] = ε c

ab Pc , [Pa, Pb] = −Λε c
ab Jc . (2.22)
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The Ja generate spacetime rotations and Pb generate translations, and the result-
ing Lie algebra is the algebra of isometries of a maximally symmetric Lorentzian
manifold. Depending on the sign of the cosmological constant, this is either flat
space, de Sitter space, or anti-de-Sitter space:

g =


so(3, 1) ∼= isom(dS3) for Λ > 0 ,
iso(2, 1) ∼= isom(R2,1) for Λ = 0 ,
so(2, 2) ∼= isom(AdS3) for Λ < 0 .

(2.23)

The trace defines a non-degenerate symmetric real bilinear form on g by

Tr(JaJb) = Tr(PaPb) = 0 , Tr(JaPb) = ηab . (2.24)

We can now define the gauge connection by

A = (eaµPa + ωbµJb) dxµ . (2.25)

From now on we will restrict ourselves to the AdS case, which is the one relevant
for the holographic duality, and define Λ = − 1

`2 , where ` > 0 is the AdS radius.
Then the terms in the Chern-Simons action (2.20) read∫

Tr(A ∧ dA) = 2
∫
ea ∧ dωa + boundary terms , (2.26)∫

Tr(A ∧A ∧A) =
∫ (3

2εabce
a ∧ ωb ∧ ωc − Λ

2 εabce
a ∧ eb ∧ ec

)
. (2.27)

Setting the Chern-Simons level to the value

k = `

4G , (2.28)

the full Chern-Simons action then becomes

SCS[A] = `

8πG

∫ (
ea ∧Ra −

Λ

6 εabce
a ∧ eb ∧ ec

)
+ boundary terms

= SEH + boundary terms . (2.29)

Now observe that our Lie algebra g is not simple. Indeed, we can write it as a
direct sum

so(2, 2) ∼= sl(2,R)+ ⊕ sl(2,R)− , (2.30)

where the ± just serve as an index to label the two copies of sl(2,R). This notation
enables us to define the generators of sl(2,R)± by

J±a = 1
2(Ja ± `Pa) (2.31)
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satisfying the expected commutation relations

[J±a , J±b ] = ε c
ab J

±
c , [J±a , J∓b ] = 0 . (2.32)

The symmetric bilinear form in turn splits as

Tr(J±a J±b ) = ± `2ηab , Tr(J+
a J
−
b ) = 0 . (2.33)

Furthermore, we can define chiral gauge connections

A±µ =
(
ωaµ ±

eaµ
`

)
J±a , (2.34)

leading to the identity
Aµ = A+

µ +A−µ . (2.35)

So the Chern-Simons action splits into two equivalent and independent parts

SCS[A] = SCS[A+]− SCS[A−] , (2.36)

and it will be sufficient to study one chiral copy. Here we have assumed that A±a
are two identical sets of generators with the same bilinear form. The relative sign
between the original bilinear forms in (2.33) then leads to the sign in (2.36).

2.1.2 Higher spin algebras
It seems natural to generalise the analysis of the previous section to algebras of
higher rank. Taking g = sl(3,R) leads to a Chern-Simons gravity theory which
contains a spin-3 particle in addition to the spin-2 graviton of sl(2,R). This is so
because the restriction of the adjoint representation to the principally embedded1

sl(2,R) ⊂ sl(3,R) decomposes into a spin-2 and a spin-3 multiplet:

sl(3,R)→ sl(2,R)⊕D3 . (2.37)

Similarly, sl(N,R) has particles of spin 2, 3, . . . , N :

sl(N,R)→ sl(2,R)⊕
N⊕
s=3

Ds , (2.38)

where Ds is the (2s − 1)-dimensional irreducible spin-s representation of sl(2,R).
This therefore suggests that the family of sl(N,R) Chern-Simons theories leads to

1The principal sl(2) embedding can be defined by the property that each representation Ds in
the decomposition (2.38) intersects the Cartan subalgebra of sl(N) non-trivially (cf. Thm. 5.2 in
[122]). While this is not the standard definition of the principal embedding, it is the easiest one
to generalise to infinite-dimensional Lie algebras.
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the 3d version of higher spin gravity. Indeed, it was shown in [33] that the linearised
version of these theories leads to the Fronsdal theory sketched in section 2.1.2

A generalisation of sl(N,R) to non-integer N can be constructed [63, 19] (see
also [74]) and will be called the higher-spin algebra hs[µ], where µ ∈ R is a free
parameter, and setting µ to a positive integer N leads to an algebra that admits a
truncation to sl(N,R). The first step is to construct an associative algebra

B[µ] := U(sl(2,R))
〈C2 − 1

4 (µ2 − 1)1〉
(2.39)

defined as the quotient of the universal enveloping algebra U(sl(2,R)) of sl(2,R)
and the two-sided ideal generated by the difference of the quadratic Casimir and
a constant. Choosing the generators of sl(2,R) as J0, J± satisfying

[J±, J0] = ±J± , [J+, J−] = 2J0 , (2.40)

the quadratic Casimir is given by

C2 = J2
0 −

1
2(J+J− + J−J+) , (2.41)

which is greater or equal than − 1
4 for unitary highest weight representations of

sl(2,R). This algebra is spanned by 2s − 1 modes of spin s for all integers s ≥ 1.
We will denote them by V sm, where m ranges from −s + 1 to s − 1. They can be
defined by

V sm = (−1)s−1−m (s− 1 +m)!
(2s− 2)! ad(J−)s−1−m Js−1

+ . (2.42)

Explicitly, the lowest-lying fields read

V 3
2 = J2

+ ,

V 2
1 = J+ , V 3

1 = J0J+ + 1
2J+ ,

V 1
0 = 1 , V 2

0 = J0 , V 3
0 = 1

3 (J−J+ + 2J2
0 + J0) ∼= J2

0 − 1
12 (µ2 − 1) ,

V 2
−1 = J− , V 3

−1 = J−J0 + 1
2J− ,

V 3
−2 = J2

− , (2.43)

where we have replaced C2 ∼= 1
4 (µ2−1) in the expressions for V 3

0 , V 3
−1, and V 3

−2. The
associative product ? on B[µ] is inherited from the universal enveloping algebra
U(sl(2,R)) and called the lone star product. A symmetric bilinear form can be
defined using the trace given by the coefficient of V 1

0 :

Tr(V sm) = δs1δm0 and linear extension. (2.44)
2This is also our reason for calling s the spin. Strictly speaking there is no spin in 3 dimensions.

What we therefore mean by spin s in this context is a field that can be mapped to a symmetric
rank-s tensor in Fronsdal’s (or Vasiliev’s) 3d higher spin theory.
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The resulting bilinear form is non-degenerate for generic µ, but it degenerates for
µ = N integer [161] (see also [62]):

Tr(V sm ? A) = 0 for all s > |N |, A ∈ B[µ = N ] . (2.45)

Therefore the modes V sm with s > |N | span a two-sided ideal χN of B[N ],

χN = span{V sm : s > |N |} , (2.46)

the quotient by which is isomorphic to the algebra of |N | × |N | matrices:

B[N ]/χN ∼= R|N |×|N | . (2.47)

Having studied B[µ] enables us to define the higher-spin algebra for any µ by
turning B[µ] into a Lie algebra and removing the centre spanned by the identity:

hs[µ] = Lie(B[µ])
R · 1

. (2.48)

The V 2
m modes span an sl(2) subalgebra, which is the principal embedding of sl(2)

into hs[µ]. Their commutation relations with the other generators read

[V 2
n , V

s
m] = ((s− 1)n−m)V sn+m . (2.49)

V sm therefore has spin s, and hs[µ] decomposes into sl(2) modules as follows:

hs[µ]→ sl(2,R)⊕
∞⊕
s=3

Ds . (2.50)

A closed formula for general commutators exists as well and can be found in [139].
Therefore the Chern-Simons theory based on hs[µ] describes a theory involving

one massless particle for each spin s = 2, 3, . . . . A special feature of higher-
spin gravity in 3 dimensions is the possibility to truncate the theory to spins s =
2, . . . , N . As discussed earlier, the bilinear symmetric form degenerates for µ = N ,
and the quotient by the corresponding ideal now becomes

hs[N ]/χN ∼=
gl(N,R)
R · 1

∼= sl(N,R) , (2.51)

giving us back the spin N gravity introduced in the previous section.

2.2 W algebras
After this brief introduction to higher spin gravity in three dimensions we shall turn
to describe the two-dimensional conformal field theories that have been argued to be
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their holographic duals. Conformal field theories (CFTs) are quantum field theories
that are scale invariant and whose symmetry group is therefore an extension of the
Poincaré group, called the conformal group. In 2 dimensions this group becomes
infinite-dimensional and its Lie algebra, the (centrally extended) Virasoro algebra,3

is generated by the modes Ln (n ∈ Z) of the chiral stress-energy tensor L(z)
satisfying the commutation relations

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1) δm,−n . (2.52)

In the language of operator product expansions (OPEs) of the stress-energy tensor

L(z) =
∑
n

z−n−2Ln (2.53)

these commutators take the form

L(z)L(w) ∼ c/2
(z − w)4 + 2L(w)

(z − w)2 + ∂L(w)
z − w

. (2.54)

Here we have only written down the singular terms of the OPE, which we have
indicated by the ∼ sign, as only these are relevant for the commutators. The
regular terms can, however, be completely reconstructed from the singular ones.

The infinite-dimensional symmetry algebra leads to infinitely many conserved
charges, which in turn lead to relations between different correlators and can in
some cases even allow to solve the theory explicitly. Of special importance in the
study of CFTs are Virasoro-primary (or simply primary) fields Φh of conformal
dimension h, which are defined by their OPE with the stress tensor taking the
form

L(z)Φh(w, w̄) ∼ hΦh(w, w̄)
(z − w)2 + ∂wΦh(w, w̄)

z − w
. (2.55)

A quasi-primary field is one whose OPE with L agrees with (2.55) up to the third
order pole, but may in addition have non-vanishing poles at order 4 or higher
(the stress tensor itself is such an example). In the following we shall assume
some familiarity with 2-dimensional conformal field theories, but self-contained
introductions to the topic can be found, e.g., in [90, 24].

In the context of higher spin holography, the CFTs of interest to us have even
larger symmetry algebras which contain the Virasoro algebra as a subalgebra.
These extended conformal algebras are called W algebras (see [28] for a review).
A quantum W algebra is a meromorphic conformal field theory (i.e., one in which
OPEs have a pole structure like the one in equation (2.54)) spanned by a set of

3The actual symmetry algebra is a direct sum of two chiral copies of the Virasoro algebra, but
we will mostly consider only one chiral version for simplicity.



2.2 W algebras 19

Virasoro-primary conserved currents W i of integer or half-integer conformal di-
mension si, their derivatives and their normal-ordered products. W algebras arise,
for instance, as the symmetry algebras of coset theories and in the context of
asymptotic symmetries of (2 + 1)-dimensional theories of gravity. Before turning
to the explicit constructions of W algebras, let us give a simple example of such
an algebra.

2.2.1 An example: W3

The simplest non-trivial example of a W algebra is the algebra W3 found by
Zamolodchikov in [172]. It is linearly generated by the stress-energy tensor L
satisfying the Virasoro algebra, a primary field W of conformal dimension 3, and
the quasi-primary field

Λ(z) = LL(z)− 3
10∂

2L(z) (2.56)

of conformal dimension (or spin) 4. Here, LL denotes the normal-ordered product
of L with itself, defined by the constant (i.e. leading regular) term in the OPE
L ? L. The OPE of W with itself is uniquely fixed (up to an overall normalisation
constant) by associativity constraints, and reads

W (z)W (w) ∼ c/3
(z − w)6 + 2L(w)

(z − w)4 + ∂L(w)
(z − w)3 +

2βΛ(w) + 3
10∂

2L(w)
(z − w)2

+
β∂Λ(w) + 1

15∂
3L(w)

(z − w) (2.57)

with β = 16/(22 + 5c). In the following, we will write this in the more compact
form

W ?W ∼ c

3 I , (2.58)

which includes primary fields only. All other structure constants that are missing
in this notation can be derived from these using conformal invariance, i.e. the
associativity constraints that involve L:

L ? (L ?W ) = (L ? L) ? W , L ? (W ?W ) = (L ?W ) ? W . (2.59)

Note that the normal-ordered product fields LW and WW of spin 5 and 6, respec-
tively, cannot appear in the OPE above, for different reasons: WW has too high a
conformal dimension to appear in the singular part of W ?W , whereas LW cannot
appear because W ?W contains only quasi-primary fields of even conformal dimen-
sion. One can see this by using the bosonic property W (z)W (w) = W (w)W (z),
which implies that only fields with an odd number of derivatives can be present in
odd poles of the OPE. This excludes quasi-primaries of odd conformal dimension.
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In the following we shall study several ways to constructW algebras: the GKO
coset construction, the Drinfel’d-Sokolov reduction and the bootstrap approach.

2.2.2 WZW models and the GKO construction
The coset construction [95, 96] (see also [28]) is a way to construct a conformal
field theory starting from a Wess-Zumino-Witten (WZW) model. The WZW model
based on the semi-simple compact Lie group G at level k is defined by an action
principle

S = |k|
16π

∫
∂M

d2xTr(∂µg−1∂µg)

+ k

24πi

∫
M

d3x εµνρ Tr
(
g̃−1(∂µg̃)g̃−1(∂ν g̃)g̃−1(∂ρg̃)

)
, (2.60)

where M is some 3-dimensional manifold with 2-dimensional boundary ∂M , g is a
G-valued field on ∂M with extension g̃ to M , and εµνρ is the Levi-Civita tensor.
Moreover, the trace is defined in the fundamental representation and the level k
needs to be an integer for the Euclidean path integral of this theory to be well-
defined. The equations of motion derived from varying the action define conserved
currents J(z) and J̄(z̄) on ∂M :

∂z̄J = 0 , ∂zJ̄ = 0 , (2.61)

where
J(z) = −k(∂zg)g−1 , J̄(z̄) = kg−1∂z̄g . (2.62)

We will only consider the holomorphic currents J(z) from now on, but the analysis
is analogous for the anti-holomorphic ones. These currents take values in the Lie
algebra g of G, i.e. they can be expanded in a hermitian basis ta of g,

J(z) = Ja(z)ta , (2.63)

with
[ta, tb] = if c

ab tc and Tr(tatb) = dab . (2.64)

Here dab is the Killing metric of g, which is used to raise and lower indices. The
currents Ja(z) then satisfy the OPEs

Ja(z)Jb(w) ∼ kdab

(z − w)2 + ifabcJ
c(z)

z − w
, (2.65)

where dab is now the inverse Killing metric. Expressing the currents in terms of
their Laurent modes,

Ja(z) =
∑
n∈Z

Janz
−n−1 , (2.66)
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the mode algebra satisfies the commutation relations

[Jam, Jbn] = ifabc J
c
m+n + kmdab δm,−n . (2.67)

These define the affine Kac-Moody algebra gk. We may then define the stress-
energy tensor LG of the WZW model by the so-called Sugawara construction

LG(z) = 1
2(k + h∨) dab(J

aJb)(z) , (2.68)

where h∨ is the dual Coxeter number of g. For example, in the case of g = su(N)
we have h∨ = N , and for so(N) its value is h∨ = N − 2. One can check that LG
satisfies the Virasoro algebra with central charge

cG = k dimG

k + h∨
. (2.69)

Moreover, the Kac-Moody currents are primary of conformal dimension 1:

LG(z)Ja(w) ∼ Ja(w)
(z − w)2 + ∂Ja(w)

z − w
(2.70)

or
[Lm, Jan ] = −nJam+n . (2.71)

Each integrable highest-weight module of gk with highest weight µ corresponds to
a Virasoro-primary field of conformal dimension

h(µ) = (µ , µ+ 2ρ)
2(k + h∨) , (2.72)

where (· , ·) denotes the Killing form and ρ is the Weyl vector of g. This can also
be written in terms of the quadratic Casimir of g,

Cg
2 (µ) = 1

2(µ , µ+ 2ρ) . (2.73)

The formula for the conformal dimension then simply becomes

h(µ) = Cg
2 (µ)

k + h∨
. (2.74)

Starting from a Wess-Zumino-Witten model based on the group G, we can
gauge this theory by a subgroup4 H < G and denote the resulting theory by

G/H or gk
hk′

, (2.75)

4H need not be a normal subgroup of G.
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where h is the Lie algebra of H, and its level k′ is determined by the details of the
embedding h ⊂ g. The coset algebra is defined as the algebra of all normal-ordered
products of numerator currents and their derivatives which commute with the cur-
rents of the denominator theory. One can show that this satisfies the definition of a
W algebra. Suppose LG and LH are the Sugawara stress tensors of the numerator
and denominator theory, respectively, and Ja are the Kac-Moody currents of the
denominator (which are also contained in the numerator); then the stress tensors
act on these as

[(LG)m, Jan ] = −nJam+n ,

[(LH)m, Jan ] = −nJam+n , (2.76)

and therefore
LG/H ≡ LG − LH (2.77)

commutes with the denominator currents and is a coset field. On the other hand, on
any field in the numerator theory that commutes with all denominator currents,
LG/H acts exactly like LG, so we can interpret it as the coset stress tensor. It
follows that the central charge is given by the difference of central charges

cG/H = cG − cH . (2.78)

An irreducible highest-weight representation µ of gk naturally decomposes into
irreducible highest-weight representations ν of hk′ in the following manner:

µ→
⊕
ν

(µ; ν)⊗ ν . (2.79)

The multiplicity spaces (µ; ν) are then the representations of the coset, containing
all states in µ which are highest weight with respect to hk′ . Due to the form of the
stress tensor (2.77) their conformal dimensions are given by

h(µ; ν) = h(µ)− h(ν) + n , (2.80)

where n is the level at which ν appears inside µ. Note that by taking the trace of
the identity (2.79), we get the character branching

χµ(q, z) =
∑
ν

bνµ(q)χν(q, z′) . (2.81)

The branching function
bνµ(q) ≡ Tr(µ;ν) q

L0− c
24 (2.82)

is therefore the character of the coset representation (µ; ν), where the trace is taken
over all states in (µ; ν). The simplest case of such a representation is the one where
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both µ and ν are the ‘trivial’ representations whose highest weight state is the
vacuum. The resulting ‘vacuum representation’ (0; 0) is then precisely the module
generated by the coset algebra modes acting on the vacuum. By the operator–state
correspondence of conformal field theory, this is in one-to-one correspondence to
the coset algebra itself and the vacuum character therefore counts the fields in the
coset algebra (including descendants).

As an example for the coset construction, let us generalise the W3 algebra
studied earlier to the family WN for any integer N ≥ 2 (for N = 2, this is just
the Virasoro algebra). These are generated by the stress tensor L and one primary
field W s for each spin s = 3, . . . , N , as well as their normal-ordered products. For
certain discrete values c ≤ N − 1 of the central charge5 they arise as the symmetry
algebras of the coset WN,k minimal models [11] defined by the diagonal cosets

su(N)k ⊕ su(N)1

su(N)k+1
(2.83)

with central charge

cN,k = k(N2 − 1)
N + k

+ (N2 − 1)
N + 1 − (k + 1)(N2 − 1)

N + k + 1

= (N − 1)
[
1− N(N + 1)

(N + k)(N + k + 1)

]
≤ N − 1 . (2.84)

For the holographic duality we will take both N and k large, but keep the ratio λ
as defined in equation (2.3) constant. The central charge will then scale like

cN,k ∼ N(1− λ2) , (2.85)

hence the theory behaves like a vector model (rather than a matrix model) in this
limit. Again, for the specific value N = 2, we get the Virasoro algebra and the
Virasoro minimal models with central charges [68]

cm = 1− 6
m(m+ 1) , where m = k + 2 . (2.86)

For instance, the m = 3 case describes the critical Ising model.
The representations of the coset (2.83) are labelled by triples (µ, ρ; ν), where µ, ρ

and ν are integrable highest weights of su(N)k, su(N)1 and su(N)k+1, respectively.
Here, integrable means that the sum of the Dynkin labels must not exceed the level
(k, 1 or k + 1 in our case). It therefore follows that ρ has to be either trivial or a
representation with Dynkin labels ρ = [0n−1, 1, 0N−n−1] for some 1 ≤ n ≤ N − 1.
Actually, ρ is uniquely determined by µ and ν from the condition that µ + ρ − ν

5For c > N − 1, the WN algebras appear as the symmetry algebras of Toda theories.
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must lie in the root lattice. We will therefore often drop it from our notation. Note
that representations that are related by an outer automorphism of the affine su(N)
are isomorphic. The group of outer isomorphisms is in this case ZN , which acts on
the highest weights by cyclically shifting their Dynkin labels. It is generated by

J : [Λ0;Λ1, . . . , ΛN−1] 7→ [ΛN−1;Λ0, . . . , ΛN−2] . (2.87)

Here Λ0 is the affine Dynkin label, which is defined by the condition

k =
N−1∑
i=0

Λi for su(N)k. (2.88)

Therefore we have an identification of irreducible highest-weight representations

(Jµ, Jρ; Jν) ∼= (µ, ρ; ν) . (2.89)

The simplest coset representations are the minimal representations

(f; 0) , (f̄; 0) , (0; f) , (0; f̄) , (2.90)

where the fundamental and anti-fundamental representations of su(N) are given
by

f = [1, 0, . . . , 0] , f̄ = [0, . . . , 0, 1] . (2.91)

In the four representations (2.90), ρ is given by f̄, f, f and f̄, respectively. The
conformal dimensions can be computed using equations (2.74) and (2.80), where the
general formula for the quadratic Casimir of an su(N) highest-weight representation
Λ = [Λ1, . . . , ΛN−1],

C(N)(Λ) =
∑
i<j

ΛiΛj
i(N − j)

N
+ 1

2
∑
j

Λ2
j

j(N − j)
N

+
∑
j

Λj
j(N − j)

2 , (2.92)

can be useful. The conformal dimensions of the minimal representations can then
be computed to yield

h(f, f̄ ; 0) = h(f̄, f; 0) = N2 − 1
2N(N + k) + N2 − 1

2N(N + 1) = N − 1
2N

(
1 + N + 1

N + k

)
,

h(0, f; f) = h(0, f̄ ; f̄) = N2 − 1
2N(N + 1) −

N2 − 1
2N(N + k + 1) = (N − 1)k

2N(N + k + 1) . (2.93)

These representations are characterised by the property that they have the smallest
number of states at low level beside the vacuum representation.

The algebrasWN are actually a special case of an even larger family of algebras
calledW∞[µ], where µ is a real parameter. These are generated by the stress-energy
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tensor L and infinitely many primary conserved currents W s for each s ≥ 3. For
µ = N integer, these acquire an ideal and the corresponding quotient gives us back
WN . This is of course reminiscent of the higher spin algebras hs[µ], and indeed
we will see that there exists an intimate relationship between these two families
of algebras. The WN,k algebras thus constructed will be studied in more detail in
section 2.2.4.

2.2.3 The quantum Drinfel’d-Sokolov reduction

Another, purely algebraic method of constructing quantumW algebras is the quan-
tum Drinfel’d-Sokolov reduction, the classical version of which was first introduced
in [54]. Here we will follow the approach of [58] (see also [28] and references
therein). Our starting point is once more an affine Lie algebra gk, which we can
use to define a WZW model as in the last section, and an affine subalgebra hk′ by
which we gauge (or ‘reduce’) that model.

In the cases we are interested in it is sufficient to consider a special case of
hk′ (but more general constructions are possible in principle). This special choice
is induced by the principally embedded sl(2) subalgebra of g, under which the
adjoint representation of g decomposes into spin si modules of sl(2) similarly as in
equation (2.38),

g→
⊕
i

Dsi , (2.94)

where si−1 are the exponents of g and Dsi is the (2si−1)-dimensional irreducible
representation of sl(2). In particular, sl(2) is the spin-2 module D2 spanned by L1,
L0 and L−1. In general, we may take a basis T im of Dsi for m = −si + 1, . . . , si− 1
with

[Lm, T in] =
(
(si − 1)m− n

)
T im+n , (2.95)

and Lm = T 1
m. We can then define h as the nilpotent ‘upper triangular’ subalgebra

generated by the T im with m > 0 (i.e. the weight vectors eα corresponding to
positive roots α), and hk′ as its affinisation. A g-valued current with central charge
k can be expanded in this basis as follows:

J(z) =
∑
i

si−1∑
m=−si+1

Jmi (z)T im . (2.96)

Furthermore we may define a one-dimensional representation χ on hk′ by

χ
(
(Jmi )n

)
=
{

1 , for (i,m, n) = (1, 1,−1) ,
0 , otherwise ,

(2.97)
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where n is the affine mode number. Now we impose the first-class constraints
h ∼ χ(h) for all h ∈ hk′ , thereby setting J1

1 (z) to 1 and all other Jmi (z) with m > 0
and i 6= 1 to 0 (hence the name ‘reduction’). In the quantum case this is done
using the method of BRST cohomology. We therefore introduce b and c ghosts (of
ghost numbers −1 and +1, respectively) and construct the BRST charge Q of the
constraints. Q then acts on the space of all normal-ordered products of currents
in gk, ghosts, and their derivatives (the so-called Hecke algebra). As usual in the
BRST procedure, the ghost number introduces a Z-grading on the Hecke algebra,
and Q carries ghost number 1. Since Q is also nilpotent, Q2 = 0, Q indeed induces
a BRST cohomology on the Hecke algebra. The 0th cohomology then defines a W
algebra

WDS[g, k] ≡ H0
Q(gk, hk′ , χ) = Q-closed fields of ghost number 0

Q-exact fields of ghost number 0 , (2.98)

which is called the quantum Drinfel’d-Sokolov reduction of gk. It is generated by
a Virasoro generator and primary fields W i of conformal dimension si. One can
explicitly construct the Virasoro generator and obtain the central charge

c = rank g− 12|α+ρ+ α−ρ
∨|2 , (2.99)

where ρ and ρ∨ are, respectively, the Weyl vector and the dual Weyl vector of g,
and we have used the definitions

α± = ±(k + h∨)∓ 1
2 . (2.100)

The irreducible highest-weight representations of WDS[g, k] are characterised by
highest weights

Λ = α+Λ+ + α−Λ− , (2.101)

where Λ+ and Λ− are, respectively, dominant integral weights and dual dominant
integral weights of g. The conformal dimension of such a representation is then
given by

h(Λ) = 1
2
(
Λ , Λ+ 2(α+ρ+ α−ρ

∨)
)
. (2.102)

It is interesting to note that the Drinfel’d-Sokolov reduction of a simply-laced Lie
algebra g at level kDS coincides with the W algebra of the diagonal coset [28]

gk ⊕ g1

gk+1
, (2.103)

where the levels are related algebraically by

1
k + h∨

= 1
kDS + h∨

− 1 . (2.104)
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With this relation the central charges (2.84) and (2.99) agree, as one may see using
ρ = ρ∨ for g simply laced and the Freudenthal-de Vries strange formula

|ρ|2

2h∨ = dim g

24 . (2.105)

In particular, this relates the Drinfel’d-Sokolov reduction of sl(N) to the WN,k

coset models (2.83).

2.2.4 Bootstrap construction of W∞[µ]
The family WN of W algebras we have seen above can be generalised to non-
integer values of N , leading to a family W∞[µ]. These algebras are generated by
infinitely many primary fields W s with s = 3, 4, 5, . . . . Their classical versions
Wcl
∞ [61, 117, 118] are Poisson algebras that were obtained in [116, 81, 32] as the

asymptotic symmetry algebras of hs[µ] higher spin theories and we are therefore in-
terested in their quantisation. However, upon quantising them by replacing Poisson
brackets by commutators, the structure constants receive quantum corrections due
to the non-linear terms which need to be turned into normal-ordered products. In
principle W∞[µ] should be obtained from hs[µ] by a generalised Drinfel’d-Sokolov
reduction, since WN can be obtained from sl(N) in this way; and it should reduce
to WN for µ = N in the same way that hs[µ] reduces to sl(N). However, it is not
quite clear how to perform a Drinfel’d-Sokolov reduction on infinite-dimensional
Lie algebras.

In the following, we will therefore pursue a different path and construct these
algebras explicitly by studying the most general W algebra generated by primary
fields W s of spin s = 3, 4, 5, . . . . This section is based on a collaboration with
Constantin Candu, Matthias Gaberdiel and Carl Vollenweider. The results were
not published at first, but mentioned in [73] and rederived in [140], before the
original work was finally fully explained in [166].

The most general ansatz6 for the OPEs of these primaries reads

W 3 ? W 3 ∼ c433W
4 + n3I

W 3 ? W 4 ∼ c534W
5 + c334W

3

W 3 ? W 5 ∼ c635W
6 + a6

35A
6 + c435W

4

W 4 ? W 4 ∼ c644W
6 + a6

44A
6 + c444W

4 + n4I

W 3 ? W 6 ∼ a8,1
36 A

8,1 + c736W
7 + a7

36A
7 + c536W

5 + c336W
3

6Actually, an even more general ansatz would include more fields on the right-hand side, which
are however excluded by parity symmetry, as will be explained shortly. We have checked explicitly
that the additional structure constants in such an extended ansatz are forced to vanish by Jacobi
identities.
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W 4 ? W 5 ∼ a8,1
45 A

8,1 + c745W
7 + a7

45A
7 + c545W

5 + c345W
3

W 3 ? W 7 ∼ a9,1
37 A

9,1 + c837W
8 + a8,2

37 A
8,2 + a8,3

37 A
8,3 + a8,4

37 A
8,4

+ c637W
6 + a6

37A
6 + c437W

4

W 4 ? W 6 ∼ a9,1
46 A

9,1 + c846W
8 + a8,2

46 A
8,2 + a8,3

46 A
8,3 + a8,4

46 A
8,4

+ c646W
6 + a6

46A
6 + c446W

4

W 5 ? W 5 ∼ c855W
8 + a8,2

55 A
8,2 + a8,3

55 A
8,3 + a8,4

55 A
8,4

+ c655W
6 + a6

55A
6 + c455W

4 + n5I . (2.106)

The composite fields As are defined in terms of normal-ordered products of ele-
mentary primaries and corrections to make the fields primary:7

A6 = (W 3)2 + . . .

A7 = W 3W 4 + . . .

A8,1 = 4
7W

3 ′W 4 − 3
7W

3W 4 ′ + . . .

A8,2 = 3(c+48)
13c+516W

3 ′′W 3 − 7c+228
2(13c+516) (W 3 ′)2 + . . .

A8,3 = W 3W 5 + . . .

A8,4 = (W 4)2 + . . .

A9,1 = 5
8W

3 ′W 5 − 3
8W

3W 5 ′ + . . . . (2.107)

Notice that the ansatz (2.106) already incorporates three facts which seem to be
true for W∞[µ]: First, as already observed and explained in the discussion of the
W3 algebra in section 2.2.1, no primaries of odd conformal dimension can appear
in an OPE of a field W s with itself.

Second, we have used that in any CFT the identity I can only appear in OPEs
of two primary fields of the same conformal dimension.

Third, the parity map which sends

L 7→ L , W s 7→ (−1)sW s (2.108)

and respects the normal-ordered product is actually a Lie algebra automorphism.
Therefore the right-hand side of an OPE W s1?W s2 contains only fields8 with parity
charge (−1)s1+s2 . This explains why the OPEs W 3 ? W 6 and W 4 ? W 5 contain
only the odd composite primary of spin 8, A8,1, whereas W 3 ? W 7, W 4 ? W 6 and
W 5 ? W 5 contain only the even ones. Also, the even composite primaries of spin
9 cannot appear in the singular part of the OPEs (2.106), and are therefore not
explicitly listed here. Although we have checked that parity is enforced by Jacobi

7The full expressions can be found in appendix A.1.
8This is true for all fields appearing in the OPE, not just primary ones.
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identities up to the level to which we have constructed W∞[µ], an actual proof is
missing as of yet.

We now follow a bootstrap approach to determine all unknown structure con-
stants in the ansatz (2.106). By imposing Jacobi identities on the commuta-
tors of primary fields (as already done for some finitely generated W algebras
in [113, 22, 109])

[[W s1
m ,W s2

n ],W s3
l ] + [[W s2

n ,W s3
l ],W s1

m ] + [[W s3
l ,W s1

m ],W s2
n ] = 0 , (2.109)

we obtain constraints on the structure constants which determine all of them
uniquely, except for those that encode a field redefinition freedom, and a free
parameter γ = c433. The free structure constant γ is related to the parameter µ of
the algebra; and different values of γ2 lead, in general, to non-isomorphic algebras
(since multiplying W 4 by a minus sign also sends γ 7→ −γ, only γ2 is a real param-
eter of the algebra). As for field redefinitions, each elementary primary W s can
be rescaled by any non-zero value without affecting its OPE with the stress-energy
tensor. So for each W s, there is one normalisation constant which we may fix at
will and which is not determined by Jacobi identities. For s = 3, 4 we choose this
normalisation constant to be ns. Since n6, n7 and n8 do not make an appearance in
(2.106) yet, we choose c635, c736 and c837 as normalisation constants for W 6, W 7 and
W 8, respectively. For s = 5, it turns out that c534 is a good choice, whereas choos-
ing n5 would lead to solutions with several branches. In addition to this rescaling
freedom, we can redefine an elementary primary W s by adding a multiple of a
composite primary of the same conformal dimension and parity:

W 6 7→ Ŵ 6 ≡W 6 + αA6 ,

W 7 7→ Ŵ 7 ≡W 7 + βA7 ,

W 8 7→ Ŵ 8 ≡W 8 + γ2A
8,2 + γ3A

8,3 + γ4A
8,4 . (2.110)

Hence for each of the composite fields on the right-hand side of (2.110) we have an
undetermined structure constant which we may set to zero if we wish. We choose
these structure constants to be a6

35, a7
36, a8,2

37 , a8,3
37 , and a8,4

37 . For example, we can
set â6

35 = 0 by choosing α = a6
35/c

6
35. We would like to emphasise that this can be

done only once for each composite field. For instance, once we have set â6
35 to zero,

other structure constants such as â6
44 will be forced to take a specific value which

is in general different from zero. Also note that we do not have this additional
freedom for composite fields whose spin and parity do not agree. Indeed, the field
A8,1 can never appear in the same OPEs as W 8, and similarly for A9,1 and W 9,
which therefore makes it impossible to absorb these fields.

We can now turn to solving the Jacobi identities. Rather than doing this by
hand, we have used OPE language and the Mathematica packages OPEdefs and
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OPEconf by Thielemans (see [156, 157] for a documentation),9 following the analysis
of [109]. Writing [AB]n(z) for the nth order pole of the OPE of A and B, i.e.

A(z)B(w) =
∑

n≤hA+hB

[AB]n(w)
(z − w)n , (2.111)

the Jacobi identity may be re-expressed by the following OPE identity derived from
crossing symmetry of the fields [150] (see also [157]):

[A[BC]p]q = (−1)|A||B|[B[AC]q]p +
∞∑
l=1

(
q − 1
l − 1

)
[[AB]lC]p+q−l , (2.112)

where |A| and |B| are the fermion numbers of A and B, which vanish for the
bosonic algebra W∞[µ]. The q > 0 terms of this identity are equivalent to the
Jacobi identity and are implemented in the OPEJacobi function of the OPEdefs
package. This enables us to solve the Jacobi identities order by order. Any Jacobi
identity [W s1 ,W s2 ,W s3 ] requires OPEs W t1 ? W t2 up to

t1 + t2 ≤ s1 + s2 + s3 − 2 . (2.113)

On the other hand, it turns out that the set of Jacobi identities with s1+s2+s3 ≤ s
for some integer s determines all structure constants appearing in the OPEs with
t1 +t2 ≤ s−2, unless they are free in one of the senses explained above. Proceeding
in this way, we notice that the first Jacobi identity, [W 3,W 3,W 3], is trivially
satisfied by the ansatz (2.106). The remaining Jacobi identities [W s1 ,W s2 ,W s3 ]
with s1 + s2 + s3 ≤ 12 are then [W 3,W 3,W 4], [W 3,W 4,W 4], [W 3,W 3,W 5],
[W 3,W 3,W 6], [W 3,W 4,W 5], and [W 4,W 4,W 4]. They lead to 33 independent
equations. We started with 45 structure constants in (2.106), of which one, γ, is
a free parameter and 11 are unfixed field redefinition constants. Therefore all 33
remaining (non-free) structure constants can be solved for, and the solutions can be
found in appendix A. This leads to a 1-parameter familyW∞(γ) of non-isomorphic
algebras for each value of the central charge c.

2.2.5 Minimal representation and the triality relations

In the last section we found a 1-parameter family of W∞ algebras, where the free
parameter was the structure constant γ = c433. We would like to relate γ to the
parameter µ appearing in the family W∞[µ]. Following [73], this is most easily
done by analysing the algebra as acting on a specific representation, the simplest
examples being the minimal representations (2.90). As already mentioned in the

9We thank K. Thielemans for providing us with the packages.
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discussion of section 2.2.2, these are characterised by having the fewest states at
low level, aside from the vacuum representation. These representations consist of
a highest weight state φmin with conformal dimension h, its derivatives and its W
descendants. They therefore possess the character

χmin(q) = qh

1− q

∞∏
s=2

∞∏
n=s

1
1− qn = qh

(
1 + q + 2q2 + . . .

)
. (2.114)

Since the representation possesses only a single state at level 1, all states of the
form W s

−1φmin must be proportional to L−1φmin. Similarly, all states of the form
W s
−2φmin must be a linear combination of two linearly independent states, L−2φmin

and L2
−1φmin. This gives us an infinity of null relations, from which one can deduce

a relation between the conformal dimension hmin of the minimal representation and
the parameter γ. Now we know that for µ = N , our CFT reduces to theWN mini-
mal models, whose minimal representations (f; 0) and (0; f) are well-known. We can
then simply plug their µ-dependent conformal dimensions (where we analytically
continue N to µ) into the formula derived above and obtain the triality relation

γ2 =
144 (c+ 2)(µ− 3)

(
c(µ+ 3) + 2(4µ+ 3)(µ− 1)

)
n2

3

c(5c+ 22)(µ− 2)
(
c(µ+ 2) + (3µ+ 2)(µ− 1)

)
n4

. (2.115)

This equation is cubic in µ and therefore has three roots µ1,2,3 for any given value
of γ2 and c, which satisfy

W∞[µ1] ∼=W∞[µ2] ∼=W∞[µ3] . (2.116)

In particular, setting µ = N and c = cN,k (formally allowing N and k to take any
real value), the three roots read

µ1 = N , µ2 = N

N + k
, µ3 = − N

N + k + 1 . (2.117)

This triality relation shows that the symmetry algebra W∞[µ = N ] of the WN,k

coset model is equivalent to the algebra W∞[µ = λ], where λ is given by the ratio

λ = N

N + k
. (2.118)

This result will be of utter importance for the duality introduced in the follow-
ing section. It is also a conformation and generalisation of the level–rank duality
proposed in [125, 7]. The latter claims the equivalence of the cosets

su(N)k ⊕ su(N)1

su(N)k+1
∼=

su(M)l ⊕ su(M)1

su(M)l+1
, (2.119)
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where the positive integers N and M and the real numbers k and l are related by

k = N

M
−N , l = M

N
−M . (2.120)

Indeed, both pairs of parameters lead to the same central charge cN,k = cM,l, and
solving for M yields

M = N

N + k
, (2.121)

so this is just a special case of the triality stated above.

2.3 WN,k minimal model holography
We shall now formulate the holographic duality proposed in [72], thereby mostly
following the review [74]. Based on the asymptotic symmetry calculations of [106,
33], it was claimed that higher spin gravity described by the hs[λ] Chern-Simons
theory on AdS3 is holographically dual to the WN,k minimal model CFTs (2.83)
in the large N and k ’t Hooft limit where

λ = N

N + k
, 0 ≤ λ ≤ 1 (2.122)

is kept fixed and corresponds to the gravity coupling parameter. In order to match
the gravity spectrum with the one of the CFT, it was originally proposed in [72]
to couple the gravity theory to two complex scalars with mass

M2 = λ2 − 1 . (2.123)

However, as we will see in more detail below, it was later noted [74] that one of them
corresponds to a non-perturbative degree of freedom and should be removed from
the (perturbative) formulation of the duality. Therefore only one of the scalars was
retained.

As already alluded to at the end of section 2.2.4, the triality relation (2.117) has
an interesting consequence for the duality at finite central charge: by virtue of the
triality, the algebras W∞[µ = λ] and W∞[µ = N ], where λ is given by (2.122) and
both algebras are taken at the same value of c = cN,k, are in fact isomorphic. But
W∞[µ = N ] ∼=WN is the symmetry algebra of the coset (2.83) at finite N , which
truncates at spin N . This enables us to conjecture the nature of the holographic
duality away from the ’t Hooft limit, and in particular in the quantum regime at
finite N and k, where c = cN,k is now also finite. Since the classical algebraWcl

∞[µ]
possesses a unique quantisation at any value of µ as shown in section 2.2.4, the
hs[λ] theory should then be dual to theWN,k minimal models even at the quantum
level, where once more λ = N/(N + k).
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The holographic conjecture has passed several non-trivial tests, which we are
going to summarise in the following:

Asymptotic symmetries: It was shown by Brown and Henneaux [31] that the
asymptotic symmetries of sl(2) Chern-Simons gravity on an AdS3 background
as described in section 2.1.1 are given by two copies of the Virasoro algebra
with central charge

c = 3`
2G , (2.124)

where ` is the AdS radius and G is the 3-dimensional Newton constant. This
result was generalised to higher spin gravity in [106, 33] and [81, 32] (see
also [116] for earlier work), where it was shown that the chiral asymptotic
symmetry algebra of hs[µ] Chern-Simons gravity on AdS3 is the classical
Wcl
∞[µ] algebra, which coincides with the quantum W∞[µ] algebra in the

semiclassical limit c→∞. The central charge of the boundary CFT is given
by (2.124) as before.

Algebraically, one can in principle obtain W∞[µ] from hs[µ] by a generalisa-
tion of the quantum Drinfel’d-Sokolov reduction to infinite-dimensional Lie
algebras. The inverse operation has been described by Bowcock and Watts
in [30] and consists in taking c→∞ and restricting to wedge modes |m| < s.
We therefore call the original algebra the ‘wedge algebra’ of the asymptotic
symmetry algebra. Note that for finite c, the wedge algebra need not be a
subalgebra. Indeed, it was shown in [81] that the wedge algebra of Wcl

∞[µ]
is hs[µ], but it is not a subalgebra for µ 6= ±1 and finite c due to the non-
linearities which are suppressed by powers of 1/c.

Spectrum: If the duality between the higher spin theory on AdS3 and the minimal
models is to hold, their partition functions need to agree. In order to evaluate
the perturbative partition function of the gravity theory, it was shown in [80]
(based on the techniques from [51]) that the 1-loop partition function on
thermal AdS3 receives the contribution

Z1-loop
(s) =

∞∏
n=s

1
|1− qn|2 (2.125)

from the spin s field. The total gauge contribution to the perturbative par-
tition function is then the product of all spins s ≥ 2,

Z1-loop
hs =

∞∏
s=2

∞∏
n=s

1
|1− qn|2 ≡ |M̃(q)|2 , (2.126)
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where we have defined the modified MacMahon function

M̃(q) =
∞∏
n=2

1
(1− qn)n−1 =

∞∏
s=2

∞∏
n=s

1
1− qn . (2.127)

This function corresponds exactly to the vacuum character of the CFT, χ(0;0),
as one can see by counting the states

W s1
n1
· · ·W sm

nm Ω (2.128)

in the Poincaré-Birkhoff-Witt basis, where s1 ≥ · · · ≥ sm and ni ≤ −si, and
Ω is the vacuum state.

The CFT also contains higher representations, which can be described by
pairs (Λ+;Λ−), where Λ+ is a representation of the factor su(N)k in the
numerator and Λ− is a representation of the denominator su(N)k+1. The
representation of the su(N)1 factor is then uniquely determined by these two
as explained in section 2.2.2. The simplest representations of this kind are
then the minimal representations

(f; 0) , (0; f) , (2.129)

as well as their conjugates (f̄; 0) and (0; f̄). In the ’t Hooft limit their confor-
mal dimensions as computed in (2.93) become

h(f; 0) = h(f̄; 0) ∼=
1
2(1 + λ) , h(0; f) = h(0; f̄) ∼=

1
2(1− λ) . (2.130)

Making contact with the higher spin theory at λ = ±N , one may be tempted
to take the so-called semiclassical limit, where N is kept fixed while c → ∞
(this corresponds formally to taking k to −(N + 1), or λ = −N). While this
limit seems illegal from the point of view of the coset construction, it makes
perfect sense from the perspective of the algebraW∞[µ = N, c], which can be
seen as an analytic continuation of WN,k. In this limit, (2.93) now becomes

h(f; 0) = h(f̄; 0) ∼ −1
2(N − 1) , h(0; f) = h(0; f̄) ∼ − c

2N2 . (2.131)

Only h(f; 0) remains finite, whereas h(0; f) scales as −c. We therefore view
(f; 0) as a perturbative state generating an infinity of higher states (Λ+; 0).
The coset representation (0; f) and its tensor powers (0;Λ−), on the other
hand, are non-perturbative in this regime and are believed to correspond to
bound states of conical defect (or surplus) solutions with perturbative states
in the bulk [40, 137].
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We will therefore only keep the minimal representations (f; 0) and (f̄; 0) in
the perturbative spectrum. On the bulk side we can add a complex scalar to
the higher spin theory (see [141, 142]), whose mass is fixed to be10

M2 = λ2 − 1 . (2.132)

This mass is therefore related to the conformal dimension ∆ = h+ h̄ = 1 +λ

of (f; 0) or (f̄; 0) by
M2 = ∆(∆− 2) , (2.133)

which corresponds precisely to the relation between mass and boundary con-
formal dimensions in the AdS/CFT dictionary.11 The 1-loop partition func-
tion of this complex scalar in the bulk can be computed [91] to be

Z1-loop
scalar (q) =

∞∏
n,n′=0

1
|1− qh+nq̄h+n′ |2

. (2.134)

The perturbative CFT partition function, on the other hand, can be defined
by

ZCFT
pert =

∑
Λ

|χ(Λ;0)|2 , (2.135)

where the sum is over all Young diagrams that have a finite number of boxes
and antiboxes as N, k → ∞. In the ’t Hooft limit, these characters simplify
considerably and the CFT partition function can be shown [79] to read

ZCFT
pert = |M̃(q)|2 ·

∞∏
n,n′=0

1
|1− qh+nq̄h+n′ |2

(2.136)

in this limit. This corresponds exactly to the 1-loop partition function in the
bulk, which is an important piece of evidence for the proposed duality.

Correlation functions: Having compared the symmetries and the spectrum of
the two theories, it is a much more non-trivial check of the proposed duality
to compare their correlation functions. For the 3-point functions between the
perturbative complex scalar O = (f; 0), its conjugate Ō and a spin-s current
J (s) in the ’t Hooft limit,

〈O(z1)Ō(z2)J (s)(z3)〉 , (2.137)
10Although this mass square is negative for λ < 1, it satisfies the Breitenlohner-Freedman

bound M2 ≥ −1 on AdS3. Note that we have set the AdS radius to ` = 1.
11Note that the conformal dimension ∆ = h+ h̄ = 1−λ of the non-perturbative representation

(0; f) also solves this equation, which led to the original proposal with two complex scalars.
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agreement with the corresponding boundary 3-point function of the higher
spin theory was shown in [10] at arbitrary coupling λ (see also [42, 4] for
earlier work).

The higher-point functions of the CFT seem to factorise for large N [136, 43],
therefore reducing to the case of 2- and 3-point functions. In particular, the
perturbative states of the form (Λ; 0) form a closed subsector of the theory
and behave like multi-particle states of the minimal representation (f; 0) at
large N . This agrees nicely with the behaviour of the perturbative matter
states in the bulk, which are also multi-particle states of the complex scalar.

Black hole entropy: Another non-trivial check of the holographic duality is the
comparison of the higher spin version of BTZ black holes to the CFT (for a
review of black holes in 3-dimensional higher spin gravity see [9]). In higher
spin gravity diffeomorphism-invariant quantities such as geodesic length and
the Ricci scalar are not invariant under general gauge transformations, and
neither are the existence of a horizon or even the causal structure. It is
therefore not clear a priori how to define black holes using these concepts. A
way out has been found by generalising the BTZ solution [13, 12] of a black
hole in ordinary 3d gravity, which is constructed as an orbifold of AdS3. This
solution looks locally like AdS3, but has all the features of a black hole such as
mass, charge, angular momentum, a horizon, entropy and temperature. Since
the BTZ black hole is also a solution of higher spin gravity, a sensible and
gauge invariant definition for a higher spin black hole was argued to be that
the holonomies of the gauge connection around a contractible Euclidean time
cycle should be equal to the ones of the BTZ black hole. With this definition,
black holes dressed with additional higher spin charges could be constructed
in [99, 124]. Any solution defined in this way exhibits a smooth horizon after
a suitable gauge transformation [8], which is a necessary condition for a black
hole to satisfy the first law of thermodynamics.

The partition function of the WN,k minimal model CFT in the ’t Hooft limit
with insertion of the spin-3 chemical potential α is

ZCFT(τ̂ , α) = Tr
(
q̂L0− c

24 yW0
)
, q̂ = e2πiτ̂ , y = e2πiα . (2.138)

Here W0 is the zero-mode of the spin 3 field, and the complex modular
parameter τ̂ is proportional to the inverse of the temperature T ,

τ̂ ∝ 1
T
. (2.139)

This partition function was computed perturbatively up to the 6th power in
y and in the high temperature (τ̂ → 0) limit in [82]. The result matches
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precisely the result from the bulk side as computed in [124]. Matching the
partition function is tantamount to matching the entropy

S = (1− β∂β) logZ , (2.140)

which therefore also agrees. The computation hence generalises the Cardy
formula for the entropy of a CFT to a higher spin setup.

This agreement of the partition functions is a further noteworthy check of the
duality, in particular because it takes place at a different point in parameter
space than the previous checks and the bulk side contains a non-perturbative
object (the black hole). Moreover, it also shows that the large-temperature
limit of the bulk is dominated by black holes.
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Chapter 3

Even spin holography

In the last chapter we have given an introduction to the minimal model holography
relating a higher spin theory on 3-dimensional anti-de-Sitter space, based on hs[λ]
and coupled to a complex boson, to the WN,k minimal models in the ’t Hooft
limit. In this chapter we will extend these results to the higher spin theory on
AdS3 that contains only gauge fields of even spin. This is the natural analogue
of the Klebanov & Polyakov proposal, which involves the smallest (or minimal)
higher spin theory on AdS4. For the case of AdS3, the gauge symmetry can be
described by a Chern-Simons theory based on a suitable subalgebra of hs[µ], and
it was argued in [3, 88] (see also [5]) that it should be dual to the SO(N) coset
theories of the form

so(N)k ⊕ so(N)1

so(N)k+1
.

While the (classical) asymptotic symmetry algebra of the bulk theory has not
yet been determined explicitly, it is clear that it will be described by a classical W
algebra that is generated by one field for every even spin s = 2, 4, . . . . One expects
on general grounds that it will be non-linear, and hence the quantisation will exhibit
the same subtleties as described above. As a consequence, it is actually simpler
to approach this problem by constructing directly the most general quantum W
algebra We

∞[µ] with this spin content. As in the case of W∞[µ], one finds that the
successive Jacobi identities fix the structure constants of all commutators in terms
of a single parameter γ, as well as the central charge. For a suitable identification
of γ and µ, we can then think of these algebras as the quantum Drinfel’d-Sokolov
reduction of some subalgebra of hs[µ], which turns out to be the hse[µ] algebra
of [88]. However, compared to the W∞[µ] analysis of [73], there is an unexpected
subtlety in that there are two natural ways in which one may identify γ and µ at
finite c — the two identifications agree in the quasiclassical c→∞ limit, but differ
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in their 1/c corrections. This reflects the fact that hse[µ] truncates for µ = N

to either sp(N) (if N is even), or so(N) (if N is odd), and that the Drinfel’d-
Sokolov reduction of these non-simply-laced algebras are Langlands dual rather
than equivalent (i.e. their Dynkin diagrams can be obtained from one another by
exchanging short and long roots).

Since the quantum algebraWe
∞[µ] is the most generalW algebra with the given

spin content, we can also identify the so and sp cosets (or rather their orbifolds)
with these algebras. In this way we obtain again non-trivial identifications between
quantum We

∞ algebras that explain and refine the holographic conjectures of [3]
and [88], see equations (3.56) and (3.57) below. Furthermore, there are again non-
trivial quantum equivalences between the algebras for different values of µ, which
can be interpreted in terms of level–rank dualities of so coset models that do not
seem to have been noticed before, see equation (3.54).

This chapter is based on a joint paper with Constantin Candu, Matthias Ga-
berdiel and Carl Vollenweider [36]. It is organised as follows. In section 3.1 we
construct the most general quantum We

∞ algebra, and explain how the different
structure constants can be determined recursively from the Jacobi identities. We
also consider various truncations to finitely generated algebras that have been stud-
ied in the literature before (see section 2.2), and explain that the wedge algebra of
We
∞ is indeed the hse[µ] algebra of [88]. Section 3.2 is devoted towards identifying
We
∞[µ] as a Drinfel’d-Sokolov reduction of hse[µ]. As in [73] the relation between

the two algebras can be most easily analysed by studying some simple represen-
tations of the two algebras. It turns out that there is no canonical identification,
but rather two separate choices that we denote by WB∞[µ] and WC∞[µ], respec-
tively; this nomenclature reflects the origin of this ambiguity, namely that hse[µ]
truncates to either Cn = sp(2n) or Bn = so(2n+ 1), depending on whether µ = N

is even or odd.
In section 3.3 we apply these results to the actual higher spin holography. In

particular, we show that the (subalgebras of the) so cosets fit into this framework,
and hence deduce the precise relation between WB∞[µ] or WC∞[µ] and the so

coset algebras at finite N and k. We comment on the fact that the matching of
the partition functions requires that we consider a non-diagonal modular invariant
with respect to the orbifold subalgebra of the so cosets (see section 4.6). We also
explain that the non-trivial identifications among the We

∞ algebras imply a level–
rank duality for the so cosets themselves, and that also the cosets based on sp(2n)
and osp(1|2n) can be brought into the fold. Finally, we show that, as in the case
of the su(N) cosets, only one of the two real scalars in the bulk theory should be
thought of as being perturbative. Some of the more technical material has been
collected in appendix B.
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3.1 The even spin algebra

3.1.1 Construction
In this section we analyse the most general W∞ algebra We

∞ that is generated by
the stress energy tensor L and one Virasoro-primary field W s for each even spin
s = 4, 6, . . . . As we shall see, the construction allows for one free parameter in
addition to the central charge.

The strategy of our analysis is as follows. First we make the most general
ansatz for the OPEs of the generating fields W s with each other. In a second step
we then impose the constraints that come from solving the various Jacobi identities.
Actually, instead of working directly in terms of modes and Jacobi identities, it is
more convenient to do this analysis on the level of the OPEs. Then the relevant
condition is that the OPEs are associative, as explained in 2.2.4.

3.1.1.1 Ansatz for OPEs

We know on general grounds that the conformal symmetry, i.e. the associativity of
the OPEs involving the stress energy tensor L, fixes the coefficients of the Virasoro-
descendant fields in the OPEs in terms of the Virasoro-primary fields. In order to
make the most general ansatz we therefore only have to introduce free parameters
for the coupling to the Virasoro-primary fields. Thus we need to know how many
Virasoro-primary fields the algebra We

∞ contains. This can be determined by
decomposing the vacuum character of We

∞

χ∞(q) = Tr0q
L0 =

∏
s∈2N

∞∏
n=s

1
1− qn = χ0(q) +

∞∑
h=4

d(h)χh(q) , (3.1)

in terms of the Virasoro characters corresponding to the vacuum representation
χ0(q), and to a highest-weight representation with conformal dimension h

χ0(q) =
∞∏
n=2

1
1− qn , χh(q) = qh

∞∏
n=1

1
1− qn . (3.2)

Note that since we are working at a generic central charge, there are no Virasoro
null-vectors. The coefficients d(h) in (3.1) are then the number of Virasoro-primary
fields of conformal dimension h. Their generating function equals

P (q) =
∞∑
h=4

d(h)qh = (1−q)(χhs(q)−1) = q4+q6+2q8+3q10+q11+6q12+· · · , (3.3)

where χhs(q) = χ∞(q)/χ0(q) denotes the contribution of the higher-spin fields to
the character χ∞.
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The most general ansatz for the OPEs is then

W 4 ? W 4 ∼ c644W
6 + c444W

4 + n4I ,

W 4 ? W 6 ∼ c846W
8 + a8

46A
8 + c646W

6 + c446W
4 ,

W 4 ? W 8 ∼ a11
48A

11 + c10
48W

10 + a10,1
48 A10,1 + a10,2

48 A10,2 + c848W
8 + a8

48A
8

+ c648W
6 + c448W

4 ,

W 6 ? W 6 ∼ c10
66W

10 + a10,1
66 A10,1 + a10,2

66 A10,2 + c866W
8 + a8

66A
8 + c666W

6

+ c466W
4 + n6I ,

(3.4)

where we have only written out the contributions of the Virasoro primaries to
the singular part of the OPEs. (As mentioned before, the conformal symmetry
fixes the contributions of their Virasoro descendants uniquely.) Furthermore, A8,
A10,1, A10,2, A11 are the composite primary fields at level 8, 10, 11, respectively,
as predicted by (3.3). They are of the form

A8 =
(
W 4)2 + · · · , A10,1 = W 4′′W 4 − 9(48 + c)

8(64 + c)W
4′W 4′ + · · · ,

A10,2 = W 4W 6 + · · · , A11 = W 4W 6′ − 3
2W

4′W 6 + · · · . (3.5)

Here the ellipses denote Virasoro descendants that have to be added in order to
make these fields primary. Note that the construction of the even algebra is sim-
plified with respect to W∞ by the fact that we do not need to worry about parity
symmetry; indeed, all fields are parity even by construction.

3.1.1.2 Structure constants

Next we want to determine the structure constants appearing in (3.4) by requir-
ing the associativity of the multiple OPEs W s1 ? W s2 ? W s3 . Note that in this
calculation, we need to work with the full OPEs, rather than just their singular
parts. The full OPE is in principle uniquely determined by its singular part, but
the actual calculation is somewhat tedious. To do these computations efficiently we
have therefore once more used the Mathematica packages OPEdefs and OPEconf
of Thielemans.

More explicitly, we start by defining the OPE W 4 ? W 4 by the first line of
(3.4), which does not contain any composite fields. We can then use this ansatz to
compute the composite field A8, and thus make an ansatz for the OPE W 4 ? W 6.
At this step, we can already check the associativity of W 4 ? W 4 ? W 4, using the
built-in function OPEJacobi.

The next step consists in computing the composite fields made from W 4 and
W 6, i.e. the remaining composite fields in (3.5). Then we can make an ansatz for
the remaining OPEs in (3.4), and check the associativity of W 4 ? W 4 ? W 6.
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It should now be clear how we continue: in each step we first compute all the
composite primary fields made of products of fundamental fields whose OPE we
have already determined. This then allows us to make an ansatz for the next ‘level’
of OPEs. Then we can check the associativity of those triple products where all
intermediate OPEs are known. Proceeding in this manner, we have computed the
constraints arising from the associativity of the OPEs W s1 ?W s2 ?W s3 up to the
total level s1 + s2 + s3 ≤ 16. The resulting relations are (for the sake of brevity
we only give the explicit expressions up to total spin s1 + s2 + s3 ≤ 14 that can be
calculated from the OPEs given explicitly in (3.4))

n4 = c(c−1)(c+24)(5c+22)
12(2c−1)(7c+68)2

(
c646
)2 − 7c(c−1)(5c+22)

72(2c−1)(7c+68)c
6
46c

4
44 + c(5c+22)

72(c+24)
(
c444
)2

,

c644c
4
46 = − 8(c−1)(c+24)(5c+22)(c2−172c+196)

(2c−1)2(7c+68)3

(
c646
)2

+ 28(c−1)(5c+22)(c2−172c+196)
3(2c−1)2(7c+68)2 c444c

6
46 + 4(c−1)(5c+22)(11c+656)

9(c+24)(2c−1)(7c+68)
(
c444
)2

,

c846a
11
48 =

(
888

65c+2580 −
40

7c+68

)
c646 −

2(13c+918)
65c+2580 c

6
44a

8
46 + 224

15(c+24)c
4
44 ,

c848 = 192−31c
26c+1032c

6
44a

8
46 + 8(c(33c+1087)+11760)

(7c+68)(13c+516) c646 − 2c444 ,

c644c
8
46a

8
48 = 192−31c

26c+1032
(
c644
)2 (

a8
46
)2 − 4(165c3+10763c2+140036c+38568)

3(c+24)(c+31)(55c−6) c444c
6
44a

8
46

− 896(3c+46)(5c+3)((c−172)c+196)
(c+31)(2c−1)(7c+68)2(55c−6)

(
c646
)2

+ 3136(3c+46)(5c+3)((c−172)c+196)
3(c+24)(c+31)(2c−1)(7c+68)(55c−6)c

4
44c

6
46

+ 8(33c2+1087c+11760)
(7c+68)(13c+516) c644a

8
46c

6
46 + 448(3c+46)(5c+3)(11c+656)

9(c+24)2(c+31)(55c−6) (c444)2 ,

c846c
6
48 = − 35(c+50)(2c−1)(7c+68)

3(c+24)(c+31)(55c−6) c
4
44c

6
44a

8
46 + 8(25c3+615c2−88272c+102332)

3(c+24)(c+31)(55c−6) c444c
6
46

+ 16(425c4+15145c3+233766c2+6507708c−7565544)
(c+31)(7c+68)(13c+516)(55c−6)

(
c646
)2

+ 7840(c+50)(2c−1)(7c+68)
9(c+24)2(c+31)(55c−6)

(
c444
)2 + 604−4c

13c+516c
6
44c

6
46a

8
46 ,

c644c
8
46c

4
48 = − (c−1)(c+24)(5c+22)(65c4+8637c3+364470c2+2897944c+36384)

2(2c−1)(3c+46)(5c+3)(7c+68)2(13c+516) c644a
8
46
(
c646
)2

+ 7(c−1)(5c+22)(65c4+8637c3+364470c2+2897944c+36384)
12(2c−1)(3c+46)(5c+3)(7c+68)(13c+516) c644a

8
46c

4
44c

6
46

− 5(c−1)(c+50)(5c+22)(715c4+90933c3+2851076c2+21154896c+6967008)
12(c+24)(c+31)(3c+46)(5c+3)(13c+516)(55c−6)

×
(
c444
)2
c644a

8
46

− 32(c−151)(c−1)(c+24)(5c+22)(c2−172c+196)
(2c−1)2(7c+68)3(13c+516)

(
c646
)3

− 56(c−1)(5c+22)(c2−172c+196)(20c3+24807c2+765640c−185172)
3(c+31)(2c−1)2(7c+68)2(13c+516)(55c−6) c444

(
c646
)2

+ 4(c−1)(5c+22)(5605c4−408494c3−70820464c2−1703657536c+1312613664)
9(c+24)(c+31)(2c−1)(7c+68)(13c+516)(55c−6)
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×
(
c444
)2
c646

+ 140(c−1)(c+50)(5c+22)(11c+656)
27(c+24)2(c+31)(55c−6)

(
c444
)3

,

c644c
10
66 = 3

4c
8
46c

10
48 ,(

c644
)2
a10,1

66 = 3
4c

6
44c

8
46a

10,1
48 + 5(c+64)(c+76)(5c+22)(11c+232)

3(c+24)(c+31)(17c+944)(55c−6)c
6
44a

8
46c

4
44

+ 1120(c+64)(11c+656)(47c−614)
9(c+24)2(c+31)(17c+944)(55c−6)

(
c444
)2

+ 7840(c+64)(47c−614)(c2−172c+196)
3(c+24)(c+31)(2c−1)(7c+68)(17c+944)(55c−6)c

6
46c

4
44

− 2240(c+64)(47c−614)(c2−172c+196)
(c+31)(2c−1)(7c+68)2(17c+944)(55c−6)

(
c646
)2

,

c644a
10,2
66 = 6(c+64)(13c+248)

(13c+516)(17c+944)c
6
44a

8
46 + 192(c+64)(81c+1274)

(7c+68)(13c+516)(17c+944)c
6
46

− 224(c+64)
(c+24)(17c+944)c

4
44 + 3

4c
8
46a

10,2
48 ,

c644c
8
66 = 4(4c+61)

7c+68 c846c
6
46 −

(11c+656)
6(c+24) c

8
46c

4
44 ,(

c644
)2
a8

66 = − 11c+656
6(c+24) c

4
44c

6
44a

8
46 + 784((c−172)c+196)

3(c+24)(2c−1)(7c+68)c
4
44c

6
46

− 224((c−172)c+196)
(2c−1)(7c+68)2

(
c646
)2 + 4(4c+61)

7c+68 c646c
6
44a

8
46 + 112(11c+656)

9(c+24)2

(
c444
)2

,

c644c
6
66 = 20(92c5+2389c4+39632c3+4060c2−212032c+193984)

(2c−1)2(7c+68)3

(
c646
)2

+ 10(28c5−5425c4−525974c3+387728c2+3726976c−3870208)
9(c+24)(2c−1)2(7c+68)2 c646c

4
44

− 20(13c4−1637c3−113622c2+32168c+859328)
27(c+24)2(2c−1)(7c+68)

(
c444
)2

,(
c644
)2
c466 = − 8(c−1)(c+24)(5c+22)((c−172)c+196)

(1−2c)2(7c+68)3

(
c646
)3

+ 28(c−1)(5c+22)((c−172)c+196)
3(1−2c)2(7c+68)2 c444

(
c646
)2

+ 4(c−1)(5c+22)(11c+656)
9(c+24)(2c−1)(7c+68)

(
c444
)2
c646 ,(

c644
)2
n6 = − 2(c−1)2c(c+24)2(5c+22)2((c−172)c+196)

3(2c−1)3(7c+68)5

(
c646
)4

+ (c−1)c(5c+22)2(11c+656)
162(c+24)2(2c−1)(7c+68)

(
c444
)4

+ 14(c−1)2c(c+24)(5c+22)2((c−172)c+196)
9(2c−1)3(7c+68)4 c444

(
c646
)3

− (c−1)c(5c+22)2(c(c(17c−13105)+25330)−12092)
54(2c−1)3(7c+68)3

(
c444
)2 (

c646
)2

− 7(c−1)c(5c+22)2(c(8c+1161)−1244)
162(1−2c)2(c+24)(7c+68)2

(
c444
)3
c646 . (3.6)

Let us comment on the implications of these results. Of the 23 structure constants
that appear in (3.4), 8 remain undetermined by the above relations; for example, a
convenient choice for the free structure constants is n4, n6, c846, c10

48, as well as a8
46,

a10,1
48 , a10,2

48 and c444. The first 4 of these just account for the freedom to normalise
the fields W 4,W 6,W 8 and W 10, respectively. The appearance of a8

46, a10,1
48 , and
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a10,2
48 reflects the freedom to redefine W 8 and W 10 by adding to them composite

fields of the same spin as explained for the case of W∞ in section 2.2.4. Note that
this freedom implies that the relations (3.6) must satisfy interesting consistency
conditions. For example, if we redefine Ŵ 8 in this manner, the structure constant
a11

48 in the OPE W 4?Ŵ 8 becomes â11
48 = a11

48 + a8
46
c846

2(13c+918)
65c+2580 c

6
44, which then satisfies

indeed the third equation of (3.6) with â8
46 = 0. For example, we can set â8

46 = 0
by redefining W 8 7→ Ŵ 8 ≡W 8 + a8

46/c
8
46A

8, and similarly in the other two cases.
Thus, at least up to the level to which we have analysed the Jacobi identities

and up to field redefinitions, all structure constants are completely fixed in terms
of c and the single fundamental structure constant c444. Note that for a given choice
of n4, the sign of c444 is again not determined since n4 only fixes the normalisation
of W 4 up to a sign. It seems reasonable to believe that this structure will con-
tinue, i.e. that all remaining structure constants are also uniquely fixed (up to field
redefinitions) in terms of the central charge c and

γ =
(
c444
)2

. (3.7)

The situation is then analogous to what was found forW∞[µ] before: the resulting
algebra depends on one free parameter (in addition to the central charge c), and
whenever we want to emphasise this dependence, we shall denote it by We

∞(γ).
In a next step we want to relate We

∞(γ) to the Drinfel’d-Sokolov reduction of
hse[µ]. Before doing so, we can however already perform some simple consistency
checks on the above analysis.

3.1.2 Truncations
Since our ansatz is completely general, it should also reproduce the various finite
evenW algebras that have been constructed in the literature before [113, 22]. More
specifically, we can study for which values of γ, We

∞ develops an ideal such that
the resulting quotient algebra becomes a finitely generated W algebra.

3.1.2.1 The algebra W(2, 4)

The simplest case is the so-called W(2, 4) algebra, which is generated by a single
Virasoro-primary field W 4 in addition to the stress-energy tensor. Thus we need
to find the value of γ for which W 6, W 8, etc. lie in an ideal. Imposing c446, c466, c448,
and n6 to vanish we obtain

γ = 216(c+ 24)(c2 − 172c+ 196)n4

c(2c− 1)(7c+ 68)(5c+ 22) . (3.8)

The resulting quotient algebra is then in agreement with e.g. [113]. Note that A8

does not lie in the ideal since the OPE of W 4 with A8 contains terms proportional
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to W 4 which are non-vanishing for generic c. Thus we also need to require that
a8

46 = 0 (but c846 need not be zero), which is automatically true by the above
conditions. We have also analysed the consistency of the resulting algebra directly,
i.e. repeating essentially the same calculation as in [113].

3.1.2.2 The algebras W(2, 4, 6)

The next simplest case is the so-called W(2, 4, 6) algebra, which should appear
from We

∞ upon dividing out the ideal generated by W 8, W 10, etc. This requires
that we set c448, c

6
48 and n8 to zero. Furthermore, since the composite fields A8,

A10,1, A10,2 and A11 have a non-trivial image in the quotient (for generic c), we
should expect that also a8

48, a10,1
48 , a10,2

48 and a11
48 vanish. Solving equations (3.6)

together with these constraints then yields the two values for γ

γ = 2n4

[
(18025c6 + 1356090c5 + 16727763c4 − 537533674c3

− 5470228116c2 + 8831442312c− 300564000)

± (c− 1)(5c+ 22)2(11c+ 444)(13c+ 918)
√
c2 − 534c+ 729

]
×
[
c(2c− 1)(3c+ 46)(4c+ 143)(5c+ 3)(5c+ 22)(5c+ 44)

]−1
. (3.9)

Up to a factor of 1
2 , this agrees with two of the four solutions found in [113];

incidentally, they are the ones which were claimed to be inconsistent in [121]. We
have again also analysed the consistency of the resulting algebra directly, i.e. by
working with an ansatz involving only W 4 and W 6.

As a matter of fact, there are two additional solutions that appear if we enlarge
the ideal by also taking A11 to be part of it. Then we do not need to impose that
a11

48 = 0, and the resulting algebras agree with the other two solutions1 of [113], i.e.
they are characterised by

γ = − 4(5c2 + 309c− 14)2 n4

c(c− 26)(5c+ 3)(5c+ 22) (3.10)

and
γ = 216(10c2 + 47c− 82)2 n4

c(4c+ 21)(5c+ 22)(10c− 7) , (3.11)

respectively. In the case of (3.10), the OPEs of W 4 and W 6 with A11 show that
no additional field of dimension smaller than 11 needs to be included in the ideal.
However, in the case of the algebra described by (3.11), the ideal also contains a
certain linear combination of A10,1 and A10,2.

1Incidentally, there is a typo in [113]: the structure constant a8
46 in the W(2, 4, 6) algebra

satisfying (3.11) should be given by (a8
46)2 = 256(2c−1)(5c+3)2(3c+46)2(7c+68)n6

(31c−192)2(c+11)(14c+11)(5c+22)(c+24)n4
.
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3.1.3 Relation to W∞

In section 2.2.4 we saw the construction of the larger algebraW∞ and noticed that
it possesses a parity automorphism multiplying all W s with s odd by −1. The
kernel of that map is an even spin subalgebra W̃e

∞ of W∞, containing (a priori)
the primary fields

W 4,W 6, A6,W 8, A8,2, A8,3, A8,4, . . . (3.12)

This algebra seems to be larger than We
∞, since it also contains even products

of odd spin fields such as A6, A8,2 and A8,3. However, one might be tempted to
think that there may exist a suitable field redefinition such that these fields are
completely absorbed by the elementary primaries W s, as is possible in specific
OPEs we have studied above. In that case the uniqueness of We

∞ would ensure
that W̃e

∞ and We
∞ are isomorphic upon a suitable identification of γ, so We

∞(γ′)
would be a subalgebra ofW∞(γ) for some value of γ′. We are going to demonstrate
that this is not the case for generic values of γ.

The idea of our proof is to restrict the algebra to a suitable truncation, where
the number of structure constants is finite and completely under control. It is
important to leave all free structure constants (except γ) unfixed for now, as they
might be compatible withWe

∞ only at specific values. Let us take the value µ = N

at which W∞[µ] possesses an ideal χN containing all elementary fields W s for
s > N . The restriction of that ideal to W̃e

∞[N ],

χ̃N = χN ∩ W̃ e
∞[N ] , (3.13)

is then an ideal of W̃ e
∞[N ] and can be factored out. Explicitly, we will choose µ = 6,

i.e. we factor out all W s with s > 6. Therefore, if W̃e
∞ and We

∞ were isomorphic
the quotient would have to be one of the W(2, 4, 6) algebras constructed in the
previous section. By demanding theW∞ structure constants c437 and c637 to vanish,
we obtain the value2 of c433:(

c433
)2 = 243(c+ 2)(c+ 30)n2

3
c(2c+ 25)(5c+ 22)n4

. (3.14)

This agrees precisely with (2.115) for µ = 6. Given this value of c433 we can then
also determine the structure constant c444 of W∞[µ = 6], which turns out to be

(
c444
)2 =

(
17c2 + 1233c− 710

)2
n4

3c(c+ 2)(c+ 30)(2c+ 25)(5c+ 22) . (3.15)

This is not part of the (exhaustive) list of possible W(2, 4, 6) algebras found in
[113] and characterised by (3.9), (3.10), and (3.11). More precisely, (3.15) agrees

2There is a second solution to these constraints, which might or might not correspond to some
other ideal of W∞.
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with (3.9) (choosing the negative sign) to leading order as c → ∞, but differs at
the first subleading order. Similarly, for µ = 7 the value of

(
c444
)2 agrees with the

other solution in (3.9) only to leading order in 1/c.
As a further check, note that in W∞[µ] it is not possible to simultaneously

set a6
44 and a6

46 to 0 unless µ = ±1. This is a proof by itself that A6 cannot
consistently be absorbed into W 6 by field redefinition. It thus becomes clear that
we have truncated W̃e

∞ to an algebra of type W(2, 4, 6, 6) above, where the second
field of spin 6, A6, is suppressed by 1/c. That is why our structure constants reduce
to the ones of a W(2, 4, 6) algebra in the large c limit, but differ at finite c.

We have therefore established that We
∞ is not a subalgebra of W∞ for generic

value of µ. This changes at µ = ±1 however, where W∞[µ] becomes the linear
algebra3 studied in [139], which is just the (centrally extended) continuation of
hs[1] beyond the wedge. W∞[1] has the c444 structure constant

(
c444
)2 = 216(3c+ 2)2 n4

c(c+ 2)(5c+ 22) , (3.16)

and since its even subalgebra has the correct field content4 and our construction
of We

∞ was unique, it corresponds to We
∞ at this value of c444 (this has also been

checked in [109]).

3.1.4 Identifying the wedge algebra

We expect from the analysis of [88] that We
∞(γ) should arise as the Drinfel’d-

Sokolov reduction of the even higher spin algebra. However, as was also explained
in [88], it is not clear which higher spin algebra is relevant in this context, and
two possibilities, hse[µ] and hso[µ], were proposed. Here, hse[µ] is spanned by
the modes V sm from section 2.1.2 for which s is even, and hso[µ] by the V sm with
m+ s even. In order to decide which of the two algebras is relevant, it is sufficient
to determine the wedge algebra of We

∞(γ), i.e. the algebra that is obtained by
restricting the modes to the wedge |m| < s, and taking c → ∞. (The reason for
this is that restricting to the wedge algebra is in a sense the inverse of performing
the Drinfel’d-Sokolov reduction, see [30, 81] for a discussion of this point.) As
it turns out, the wedge algebra commutators of We

∞(γ), as obtained from (3.4)
together with (3.6), agree with the hse[µ] commutators (B.12) of appendix B.2

3Strictly speaking W∞[±1] contains a linear subalgebra generated by L and quasi-primary
fields W̃ s for s = 3, 4, 5, . . ., without any composite fields.

4The argument is actually more subtle because the basis in which W∞[1] becomes linear is
non-primary, whereas we assumed all W s to be primary. To make contact with our construction
ofWe

∞, we need to make them primary again, thereby reintroducing the even spin quasi-primaries
that have previously been absorbed into W̃ s.
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provided we identify c444 = √γ with µ as

c444 = 12√
5

(µ2 − 19) +O(c−1) . (3.17)

Furthermore, we normalise our fields as

n4 = c(µ2 − 9)(µ2 − 4) , n6 = c(µ2 − 25)(µ2 − 16)(µ2 − 9)(µ2 − 4) , (3.18)

c846 = −8
√

210
143 , c10

48 = −20
√

6
17 ,

and take the field redefinition parameters to be a8
46 = a10,1

48 = a10,2
48 = 0. Thus

we conclude that the We
∞(γ) algebra can be interpreted as the quantum Drinfel’d-

Sokolov reduction of hse[µ], where µ and γ are related as in (3.17); this will be
further elaborated on in section 3.2.

We should mention in passing that hse[µ] and hso[µ′] are not isomorphic (even
allowing for some general relation between µ and µ′), since they possess different
finite-dimensional quotient algebras, see [88]. Thus the above analysis also proves
that the wedge algebra of We

∞ is not isomorphic to hso[µ] for any µ, and hence
that We

∞ is not the quantum Drinfel’d-Sokolov reduction of hso[µ] for any µ.

3.1.5 Minimal representation

Our next aim is to determine the exact c dependence of (3.17). This can be done
using the same trick as in [73] and [35], following the original analysis of [109]. The
main ingredient in this analysis is a detailed understanding of the structure of the
‘minimal representations’ ofWe

∞. Recall that the duality of [88] suggests thatWe
∞

possesses two minimal representations whose character is of the form

χmin(q) = qh

1− q
∏
s∈2N

∞∏
n=s

1
1− qn , (3.19)

and for which h is finite in the ’t Hooft limit. It follows from this character formula
that the corresponding representation has (infinitely) many low-lying null-vectors;
this will allow us to calculate h as a function of c and γ.

Let us denote the primary field of the minimal representation by P 0. First, we
need to make the most general ansatz for the OPEs W s ? P 0. In order to do so
we have to enumerate the number of Virasoro-primary states in the minimal We

∞
representation. Decomposing (3.19) in terms of irreducible Virasoro characters as

χmin(q) =
∞∑
n=0

dmin(n)χh+n(q) , (3.20)
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where χh(q) was defined in (3.2), dmin(n) equals then the multiplicity of the Vi-
rasoro primaries of conformal dimension h + n. It follows from (3.20) that the
corresponding generating function is

∞∑
n=0

dmin(n) qn =
∞∏
s=2

∞∏
n=2s

1
1− qn = 1 + q4 + q5 + 2q6 + · · · . (3.21)

Then the most general ansatz for the OPEs W 4 ? P 0 and W 6 ? P 0 is

W 4 ? P 0 ∼ w4P 0 , W 6 ? P 0 ∼ w6P 0 + a4P 4 + a5P 5 , (3.22)

where P 4 and P 5 are the primary fields of conformal dimension h + 4 and h + 5,
respectively. Note that these fields are unique, as follows from (3.21); explicitly,
they are of the form

P 4 = W 4P 0 + · · · , P 5 = h

4 + h
W 4′P 0 − 4

4 + h
W 4P 0′ + · · · , (3.23)

where the ellipses stand for Virasoro descendants that are required to make these
fields primary. As in [35], the condition that P 0 defines a representation of We

∞ is
now equivalent to the constraint that all OPEsW s1?W s2?P 0 are associative. While
we cannot test all of these conditions, imposing the associativity of W 4 ?W 4 ? P 0

implies already

w4 = 12h(c2(9−2(h−1)h)+3c(h((49−12h)h−40)+2)−2h(h(12h+5)−14))
c(5c+22)(c(h−2)(2h−3)+h(4h−5))

n4

c444
,

w6 = 8(c−1)(5c+22)h(c(h+2)+15h2−26h+8)(c(2h+3)+4h(12h−7))
3c(c+24)(2c−1)(7c+68)(c(h−2)(2h−3)+h(4h−5))

n4

c644
,

a4 = 16(5c+22)(4h−9)(c(h+2)+15h2−26h+8)
(c+24)((c−7)h+c+3h2+2)(2ch+c+2h(8h−5))

w4

c644
,

a5 = 20(5c+22)(h−4)(h−1)(c(2h+3)+4h(12h−7))
(c+24)h((c−7)h+c+3h2+2)(2ch+c+2h(8h−5))

w4

c644
, (3.24)

up to a sign ambiguity of the self-coupling c444 = ±√γ. Furthermore, the conformal
dimension h is determined by the equation

γ = 144[c2(−9−2h+2h2)+3c(−2+40h−49h2+12h3)+2h(−14+5h+12h2)]2
c(5c+22)[c(1+h)+2−7h+3h2][(1+2h)c−10h+16h2][(6−7h+2h2)c−5h+4h2] n4 . (3.25)

Given γ and c, this is a sextic equation for h. We also note that our result is
consistent with the one obtained in [109]. Moreover, we have checked that we
arrive at the same result using commutators instead of OPEs; this calculation,
which is analogous to the one performed in [73] for the algebraW∞[µ], is presented
in appendix B.1.
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We should stress that the above constraints are necessary conditions for the
minimal representation to exist, but do not prove that they are actually compatible
with the full We

∞ structure. Furthermore, since we have only used the low-lying
OPEs, our analysis actually holds for any algebra of type W(2, 4, . . . ) with no
simple field of spin 5, and for any representation whose character coincides with
(3.19) up to q5, see also [109].

3.2 Drinfel’d-Sokolov reductions
As we have seen in section 3.1.4, the wedge algebra of We

∞(γ) is hse[µ], where
γ = (c444)2 is identified with a certain function of µ, see equation (3.17). Thus
we should expect that the quantum We

∞[µ] algebras (where we now label We
∞

in terms of µ rather than γ) can be thought of as being the Drinfel’d-Sokolov
reduction of hse[µ]. Actually, as we shall shortly see, the situation is a little bit
more complicated. The subtlety we are about to encounter is related to the fact
that hse[µ] is in some sense a non-simply-laced algebra.5

Since Drinfel’d-Sokolov reductions of infinite-dimensional Lie algebras are com-
plicated, we shall first (as in [73]) consider the special cases when µ is a positive
integer. Then hse[µ] can be reduced to finite-dimensional Lie algebras; indeed, as
was already explained in [88], we have

hse[N ]/χN =
{
so(N) for N odd
sp(N) for N even,

(3.26)

where χN is the ideal of hse[µ] that appears for µ = N ∈ N. Note that in both
cases, the resulting algebra is non-simply-laced, suggesting that hse[µ] should be
thought of as being non-simply-laced itself.

As in [73] we should now expect that the quantum Drinfel’d-Sokolov reduction
of hse[µ] agrees, for µ = N , with the quantum Drinfel’d-Sokolov reduction of
Bn = so(2n + 1) or Cn = sp(2n), respectively. The representation theory of
these WBn and WCn algebras is well known, and thus, at least for these integer
values of µ, we can compare the conformal dimension of the corresponding minimal
representations with what was determined above, see equation (3.25). This will
allow us to deduce an exact relation between γ and µ = N (for all values of the
central charge). Analytically continuing the resulting expression to non-integer µ
should then lead to the precise relation between γ and µ, for all values of µ.

5Note, however, the situation is also complicated by the fact that hse[µ] is infinite dimensional,
and the construction of [28] only applies to finite-dimensional Lie algebras. On the other hand,
given that things worked nicely [73] for the infinite-dimensional algebra hs[µ], we suspect that
the infinite-dimensionality of hse[µ] is not the origin of the subtlety.
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3.2.1 The Bn series approach
According to [28], the Drinfel’d-Sokolov reduction of so(2n + 1), which we shall
denote by WBn, is an algebra of type W(2, 4, . . . , 2n) with central charge

cB = n− 12|α+ρB + α−ρ
∨
B |2 (3.27)

and spectrum

hΛ = 1
2 (Λ,Λ+ 2α+ρB + 2α−ρ∨B) , Λ ∈ α+P+ + α−P

∨
+ . (3.28)

Here ρB and ρ∨B are the so(2n+ 1) Weyl vector and covector, respectively, and P+

and P∨+ are the lattices of so(2n+1) dominant weights and coweights, respectively.
We work with the convention that the long roots have length squared equal to 2,
and α± are defined as in (2.100) by

α− = −
√
kB + 2n− 1 , α+ = 1√

kB + 2n− 1
, (3.29)

so that α+α− = −1. Furthermore kB is the level that appears in the Drinfel’d-
Sokolov reduction. Note that the dual Coxeter number of so(2n+ 1) equals gB =
2n− 1. Plugging in the expressions for α± into (3.27), the central charge of WBn
takes the form

cB(µ, kB) = −n[kB(2n+ 1) + 4n2 − 2n][2kB(n+ 1) + 4n2 − 3]
kB + 2n− 1 (3.30)

= (1− µ)(kBµ+ µ2 − 3µ+ 2)[kB(1 + µ) + µ2 − 2µ− 2]
2(kB + µ− 2) ,

where in the second line we have replaced n = µ−1
2 . The minimal representations of

WBn arise for Λ = Λ+ = α+f, and Λ = Λ− = α−f∨, where f is the highest weight
of the fundamental so(2n+ 1) representation, and f∨ the corresponding coweight.
The conformal dimensions of these two representations are

h+ = hΛ+ = −n(kB + 2n− 2)
kB + 2n− 1 , h− = hΛ− = kB

(
n+ 1

2
)

+n(2n− 1) . (3.31)

They are both solutions of equation (3.25), provided γ = γB(µ, kB) with γB equal
to

γB = 144 (240− 420kB + 210k2
B − 30k3

B + 1188µ− 1520kBµ+ 773k2
Bµ

− 190k3
Bµ+ 19k4

Bµ− 2138µ2 + 2237kBµ2 − 818k2
Bµ

2 + 107k3
Bµ

2 + 264µ3

+ 614kBµ3 − 703k2
Bµ

3 + 220k3
Bµ

3 − 20k4
Bµ

3 + 1107µ4 − 1516kBµ4

+ 615k2
Bµ

4 − 75k3
Bµ

4 − 644µ5 + 462kBµ5 − 51k2
Bµ

5 − 12k3
Bµ

5 + k4
Bµ

5
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+ 67µ6 + 43kBµ6 − 36k2
Bµ

6 + 4k3
Bµ

6 + 39µ7 − 36kBµ7 + 6k2
Bµ

7 − 12µ8

+ 4kBµ8 + µ9)2 n4 /
[
cB(µ− 3)(3kB + kBµ− 6 + µ2)

× (8− 2kB − 5µ+ kBµ+ µ2)(1− kB − 4µ+ kBµ+ µ2)
× (1− 3µ+ kBµ+ µ2)(kB + kBµ− 4− 2µ+ µ2)
× (2kB − 2− µ+ kBµ+ µ2)(108− 54kB − 74µ+ 25kBµ− 5k2

Bµ− 20µ2

+ 5kBµ2 + 55µ3 − 30kBµ3 + 5k2
Bµ

3 − 30µ4 + 10kBµ4 + 5µ5)
]
, (3.32)

where we have again replaced n = µ−1
2 . For each µ, we therefore obtain a family

of We
∞ algebras that depend on kB ; these algebras will be denoted by WB∞[µ]

(where we suppress the explicit kB dependence). Note that, for fixed µ, these
algebras really depend on kB , rather than just on cB : for a fixed c and µ, there
are always two solutions k(i)

B , i = 1, 2, for c = c(µ, k(i)
B ), see (3.30). However, in

general the corresponding γ values do not agree, γB(µ, k(1)
B ) 6= γB(µ, k(2)

B ), and
hence the two solutions for kB do not lead to isomorphic We

∞ algebras. This is
different than what happened for W∞ in [73], and closely related to the fact that
hse[µ] is non-simply-laced, see below.

By construction, the algebrasWB∞[µ] truncate, for µ = 2n+1, toWBn. (Note
that also WBn depends actually on the level kB , and not just on c.) We have also
checked that, for n = 2, γB(2n + 1, kB) agrees with the γ given in equation (3.8)
at c = cB(2n + 1, kB). Similarly, for n = 3, γB(2n + 1, kB) agrees with the γ of
equation (3.9) at c = cB(2n + 1, kB). (For n = 3, the two algebras corresponding
to the two different solutions for kB correspond to the choice of the branch cut in
the square root of equation (3.9).)

3.2.2 The Cn series approach

The analysis for the Drinfel’d-Sokolov reduction of sp(2n), which we shall denote
by WCn, is essentially identical. Also WCn is an algebra of type W(2, 4, . . . , 2n),
and its central charge equals

cC = n− 12|α+ρC + α−ρ
∨
C |2 , (3.33)

where now ρC and ρ∨C are the Weyl vector and covector of sp(2n), respectively.
The spectrum is described by the analogue of equation (3.28), where6

α− = −
√
kC + 2n+ 2 , α+ = 1√

kC + 2n+ 2
. (3.34)

6In our conventions, the short roots of Cn = sp(2n) have length squared equal to 2.
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Expressed in terms of n and kC , the central charge then takes the form

cC(µ, kC) = −n[kC(2n+ 1) + 4n2 + 4n)][kC(2n− 1) + 4n2 − 3]
kC + 2n+ 2 (3.35)

= −µ[(kC + 2)µ+ kC + µ2][kC(µ− 1) + µ2 − 3]
2(kC + µ+ 2) ,

where we have, in the second line, replaced n = µ
2 . The conformal dimensions of

the minimal representations are now

h+ = hΛ+ = kC(1− 2n)− 4n2 + 3
2kC + 4n+ 4 , h− = hΛ− = n(kC + 2n+ 1) , (3.36)

and they are both solutions of equation (3.25) provided γ = γC(µ, kC) equals

γC = 144(−224− 520kC − 340k2
C − 68k3

C − 888µ− 1064kCµ− 161k2
Cµ

+ 114k3
Cµ+ 19k4

Cµ− 372µ2 + 687kCµ2 + 946k2
Cµ

2 + 227k3
Cµ

2 + 730µ3

+ 1390kCµ3 + 377k2
Cµ

3 − 100k3
Cµ

3 − 20k4
Cµ

3 + 553µ4 + 134kCµ4

− 315k2
Cµ

4 − 85k3
Cµ

4 − 34µ5 − 326kCµ5 − 129k2
Cµ

5 + 4k3
Cµ

5 + k4
Cµ

5

− 111µ6 − 83kCµ6 + 12k2
Cµ

6 + 4k3
Cµ

6 − 19µ7 + 12kCµ7 + 6k2
Cµ

7 + 4µ8

+ 4kCµ8 + µ9)2n4 /
[
cC(µ− 2)(kCµ− 5− kC + µ2)(kCµ− 1 + µ+ µ2)

× (kCµ− 3kC − 5− 2µ+ µ2)(kCµ+ 4 + 3kC + 4µ+ µ2)
× (kCµ− 2 + kC + 2µ+ µ2)(kCµ+ 4 + 2kC + 3µ+ µ2)
× (−88− 44kC − 44µ− 15kCµ− 5k2

Cµ− 30µ2 − 25kCµ2 − 15µ3

+ 10kCµ3 + 5k2
Cµ

3 + 10µ4 + 10kCµ4 + 5µ5)
]
, (3.37)

where we have again replaced n = µ
2 . For each µ, we therefore obtain a family

of We
∞ algebras that depend on kC ; these algebras will be denoted by WC∞[µ]

(where we suppress as before the explicit kC dependence). Again, these algebras
actually depend on kC , rather than just cC . By construction, WC∞[µ] has the
property that it truncates to WCn for µ = 2n. We have also checked that, for
n = 2, γC(2n, kC) agrees with the γ of equation (3.8) at c = cC(2n, kC). Similarly,
for n = 3, γC(2n, kC) agrees with the γ of equation (3.9) at c = cC(2n, kC), where
again the two solutions for kC correspond to the two signs in front of the square
root in equation (3.9).

3.2.3 Langlands duality
Naively, one would have expected that the two quantum algebras WB∞[µ] and
WC∞[µ] should be equivalent, but this is not actually the case: if we fix µ and c,
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and determine k(i)
B , i = 1, 2, and k

(j)
C , j = 1, 2, by the requirement that

c = cB(µ, k(i)
B ) = cC(µ, k(j)

C ) , (3.38)

then none of the four different algebras we obtain from WB∞[µ] for kB = k
(i)
B and

WC∞[µ] for kC = k
(j)
C are equivalent to one another. Thus there is not a ‘unique’

quantisation of We
∞[µ]!

The two constructions are, however, closely related to one another since we
have the identifications

cB(µ+ 1, kB) = cC(µ, kC)
γB(µ+ 1, kB) = γC(µ, kC)

when (kB + µ− 1)(kC + µ+ 2) = 1 . (3.39)

This relation is the ‘analytic continuation’ of the Langlands duality that relates
Bn = so(2n+ 1) and Cn = sp(2n). Indeed, the Dynkin diagrams of Bn and Cn are
obtained from one another upon reversing the arrows, i.e. upon exchanging the roles
of the long and the short roots. Correspondingly, the root system of one algebra
can be identified with the coroot system of the other (provided we scale the roots
and coroots appropriately — this is the reason for our non-standard normalisation
convention for the roots of Cn). It is then manifest from the above formulae that
the central charge and spectrum is the same provided we also exchange the roles
of α+ and α−. In terms of the levels kB and kC , this is then equivalent to the
requirement that (kB + µ− 1)(kC + µ+ 2) = 1 for µ = 2n. Thus we can think of
WB∞[µ+ 1] and WC∞[µ] to be related by Langlands duality for all µ.

The ambiguity in the definition of the quantum algebra associated with We
∞[µ]

therefore simply reflects that Langlands duality acts non-trivially on hse[µ], i.e.
that hse[µ] is non-simply-laced. This is to be contrasted with the case of W∞[µ]
where the two solutions of k for a given µ and c actually gave rise to equivalentW∞
algebras, see equation (2.9) of [73], reflecting the fact that hs[µ] can be thought of
as being ‘simply-laced’.

3.2.4 Classical limit
In the semiclassical limit of large levels, the two quantum algebras WB∞[µ] and
WC∞[µ] actually become equivalent. More concretely, if we choose the normalisa-
tion of n4 as in section 3.1.4, we have in the semiclassical limit

cB ∼ − 1
2µ(µ2 − 1)kB +O(k0

B) , cC ∼ − 1
2µ(µ2 − 1)kC +O(k0

C) , (3.40)
γB ∼ 144

5 (µ2 − 19)2 +O(k−1
B ) , γC ∼ 144

5 (µ2 − 19)2 +O(k−1
C ) . (3.41)

In particular, the central charges agree, and the parameter γ is of the form predicted
by equation (3.17), recalling that γ = (c444)2. Thus both quantum algebrasWB∞[µ]
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and WC∞[µ] define consistent quantisations of the classical Poisson algebra, and
both can be thought of as Drinfel’d-Sokolov reductions of hse[µ]. However, as
mentioned before, the O(c−1) corrections in equation (3.41) are different, reflecting
the non-trivial action of Langlands duality as described by equation (3.39).

3.2.5 Self-dualities

While the parameters µ and k are well-suited for characterising the classical limits
of the algebrasWB∞[µ] andWC∞[µ], they do not directly parametrise the inequiv-
alent We

∞ algebras. (The following discussion is directly parallel to the analogous
analysis for the case of W∞[µ] in [73].) Indeed, as was stressed in section 3.1.1.2,
the parameters distinguishing between different We

∞ algebras are c and γ. It fol-
lows from equation (3.32) that there are 12 different combinations (µi, k(i)

B ) that
give rise to the same quantum algebra WB∞[µ], and likewise for WC∞[µ], see
equation (3.37). Six of these identifications can be written down simply, while the
other six require cubic roots; the simple identifications for WB∞[µ] relate (µ, kB)
to (

µ2, k
(2)
B

)
=
(
µ2 + µ(kB − 2) + kB − 1 , 3− 1

µ+kB−2 − µ2
)(

µ3, k
(3)
B

)
=
(
µ2 + µ(kB − 4)− kB + 4 , 1

µ+kB−3 + 3− µ3
)(

µ4, k
(4)
B

)
=
(µ(µ+kB−3)

µ+kB−2 , −µ− kB + 5− µ4
)(

µ5, k
(5)
B

)
=
( 2
µ+k−3 + µ+ 1 , 1

µ+kB−2 + 2− µ5
)(

µ6, k
(6)
B

)
=
(
− kB
µ+kB−2 − µ+ 2 , 2− 1

µ+kB−3 − µ6
)
.

(3.42)

Note that all of these identifications are generated by the two primitive transfor-
mations (µ, kB) 7→ (µ2, k

(2)
B ) and (µ, kB) 7→ (µ3, k

(3)
B ). Similarly, for WC∞[µ] the

simple identifications relate (µ, kC) to

(
µ2, k

(2)
C

)
=
(
µ2 + µ(kC + 2) + kC , 1

µ+kC+1 − 1− µ2
)(

µ3, k
(3)
C

)
=
(
µ2 + µkC − kC − 3 , − 1

µ+kC+2 − 1− µ3
)(

µ4, k
(4)
C

)
=
(
−µ(µ+kC+1)

µ+kC+2 , −µ− kC − 3− µ4
)(

µ5, k
(5)
C

)
=
(
− 2
µ+kC+1 + µ− 1 , 1

µ+kC+2 − 2− µ5
)(

µ6, k
(6)
C

)
=
(
− kC
µ+kC+2 − µ , −

1
µ+kC+1 − 2− µ6

)
.

(3.43)

Again, all of these identifications are generated by the two primitive transforma-
tions (µ, kC) 7→ (µ2, k

(2)
C ) and (µ, kC) 7→ (µ3, k

(3)
C ).
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3.3 The coset constructions

It was proposed in [3, 88] that the higher spin theory on AdS3 based on the even
spin algebra — from what we have said above, it is now clear that the relevant
algebra is in fact hse[λ] — should be dual to the ’t Hooft limit of the so(2n) cosets

WDn,k = so(2n)k ⊕ so(2n)1

so(2n)k+1
, (3.44)

where the ’t Hooft limit consists of taking n, k →∞ while keeping the parameter

λ = 2n
2n+ k − 2 fixed. (3.45)

This therefore suggests that the corresponding quantum We
∞ algebras should be

isomorphic. Given that there are two different quantisations of the Drinfel’d-
Sokolov reduction of hse[µ] (see section 3), there should therefore be two iden-
tifications, relating WDn,k to either WB∞[λ] or WC∞[λ]. In this section we want
to explain in detail these different relations. As in the case of W∞[µ] studied in
[73], the (correctly adjusted) correspondences will actually turn out to hold even
at finite n and k.

3.3.1 The Dn cosets

In a first step we need to understand the structure of the W algebra underlying
the cosets (3.44). By the usual formula we find that its central charge equals

cso(2n, k) = n

[
1− (2n− 2)(2n− 1)

(k + 2n− 2)(k + 2n− 1)

]
. (3.46)

In order to determine the spin spectrum of the W algebra we can use that Dn

is simply laced, and hence that (3.44) is isomorphic [28] to the Drinfel’d-Sokolov
reduction of Dn, which we denote by WDn; this algebra is of type W(2, 4, . . . ,
2n − 2, n). In the ’t Hooft limit, i.e. for n → ∞, the spin spectrum of WDn
involves all even spins (with multiplicity one), and hence becomes a We

∞ algebra,
but for finite n, this is not the case because of the additional spin n generator,
which we shall denote by V . However, as was already explained in [108, 23], WDn
possesses an outer Z2 automorphism σ — this is actually the automorphism that is
inherited from the spin-flip automorphism of so(2n) — under which the generators
of spin 2, 4, . . . , 2n−2 are invariant, while the spin n generator V is odd. Then, the
‘orbifold’ subalgebra WDσn, i.e. the σ-invariant subalgebra of WDn, has the right
spin content. It is generated, in addition to the σ-invariant generators of WDn of
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spin 2, 4, . . . , 2n − 2, by the normal-ordered product of spin 2n V V , as well as its
higher derivatives that are schematically of the form V ∂2lV , see [23].7

These arguments imply that we can generate WDσn by (a subset of) the fields
contained in We

∞. Hence, WDσn is a quotient of We
∞ and we can characterise it

again in terms of the central charge c, and the parameter γ = (c444)2. As before, a
convenient method to compute γ is by comparing the conformal dimension of the
‘minimal’ representations. Since WDσn is a subalgebra of WDn, each representa-
tion of WDn defines also a representation of WDσn. In particular, the ‘minimal’
representations of WDn that are labelled by (v; 0) and (0; v) — see [88] for our
conventions — are also minimal for WDσn, and their conformal dimensions equal

h(v; 0) = 1
2

[
1 + 2n− 1

k + 2n− 2

]
, h(0; v) = 1

2

[
1− 2n− 1

k + 2n− 1

]
. (3.47)

Both solve equation (3.25) for γ = γso(N, k), where N = 2n and

γso = 144
(
−224 + 744k − 860k2 + 408k3 − 68k4 + (376− 1336k

+ 1267k2 − 386k3 + 19k4)N + (−124 + 857k − 599k2 + 76k3)N2

+ (−52− 252k + 94k2)N3 + (24 + 36k)N4)2n4 /
[
cso(2 + k)(N − 1)

× (2k − 4 +N)(k − 5 + 2N)(3k − 4 + 2N)(2k − 2 + 3N)(3k − 5 + 4N)

× (88− 132k + 44k2 − 132N + 73kN + 5k2N + 44N2 + 10kN2)
]
. (3.48)

It is interesting that also h = n solves equation (3.25) for γ = γso(2n, k), thus
implying that also the field V generates a minimal representation of WDσn.

3.3.2 The Bn cosets

A closely related family of cosets is obtained from (3.44) by considering instead
the odd so algebras, i.e.

WB(0, n)(0) = so(2n+ 1)k ⊕ so(2n+ 1)1

so(2n+ 1)k+1
. (3.49)

These W algebras can be identified with the bosonic subalgebra of the Drinfel’d-
Sokolov reduction of the superalgebras osp(1|2n) or B(0, n), see [28]. The latter is
a W algebra of type W(2, 4, . . . , 2n, n + 1

2 ), and we shall denote it by WB(0, n).
7The counting of the quasiprimary higher spin states is essentially equivalent to the counting

of the higher-spin fields of a theory of a single real boson, see e.g. [120]. Note that, as is also
explained in [23], the resulting algebra is neither freely generated nor infinitely generated, i.e.
there are relations between the We

∞ type generators that effectively reduce these generators to a
finite set.
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Since the field of conformal weight n + 1
2 is fermionic — we shall denote it by

S in the following — the bosonic subalgebra does not include S, but contains
instead the normal-ordered products S∂2l+1S with l = 0, 1, . . . — since SS = 0
we now always have an odd number of derivatives.8 Thus the generating fields
include, in addition to the bosonic generating fields ofWB(0, n) of spin 2, 4, . . . , 2n,
fields of spin 2n + 2, 2n + 4, . . . ; in particular, WB(0, n)(0) is therefore again a
quotient of We

∞, and can be characterised in terms of γ and c. The analysis is
essentially identical to what was done for the so(2n) case above — indeed, the
central charge, as well as the conformal dimensions of the minimal representations
are obtained from (3.46) and (3.47) upon replacing 2n 7→ 2n + 1, and thus γ is
simply γ = γso(N, k), where N = 2n+1 and γso was already defined in (3.48). Thus
these two families of cosets are naturally analytic continuations of one another.

As an additional consistency check we note that the algebra WB(0, 1)(0) is of
type W(2, 4, 6), see [27], and its structure constants are explicitly known [107].
In section 3.1.2.2 we have reproduced this algebra as a quotient of We

∞. The
corresponding value of γ, given in equation (3.11), agrees indeed with γso(3).

3.3.3 Level–rank duality
The expressions (3.46) and (3.48) are invariant under the transformation

N 7→ N , k 7→ −2N − k + 3 . (3.50)

For even N = 2n this is a consequence of the Langlands self-duality of Dn, which
in turn follows from the fact that Dn is simply laced, implying that the Drinfel’d-
Sokolov reduction has the symmetry α± 7→ −α∓. As a result, WDn actually only
depends on c, rather than directly on k. This is reflected in the fact that γso can
be written as an unambiguous function of N and c as

γso = 72
(
2c2(N2 − 2N − 18) + 3c(6N3 − 49N2 + 80N − 8)

+ 2N(6N2 + 5N − 28)
)2
n4/
[
(5c+ 22)c(c(N2 − 7N + 12) + 2N2 − 5N)

× (c(N + 1) + 4N2 − 5N)(2c(N + 2) + 3N2 − 14N + 8)
]
. (3.51)

Note that, in the large c limit, WDσn becomes a classical Poisson algebra, which
can be identified with the σ-invariant classical Drinfel’d-Sokolov reduction of Dn.
In fact, taking n4 as in equation (3.18), it follows from equation (3.51) that the
corresponding γ parameter equals

γso = 144
5 (µ2 − 19)2 +O(c−1) , where µ = 2n− 1 . (3.52)

8The counting of the quasiprimary higher spin fields is in this case analogous to that of counting
the higher spin fields of a single free fermion.
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Note that this ties in with the fact that the wedge algebra ofWDσn is the σ-invariant
subalgebra of so(2n), which in turn equals so(2n − 1). This explains why (3.52)
agrees with (3.41) for µ = 2n− 1.

Next we observe that equation (3.51) is a polynomial equation of order 6 in
N , with coefficients that are functions of γ and c, and hence there is a six-fold
ambiguity in the definition of N . If we parametrise c = cso(N, k), then the algebra
associated with (N, k) is equivalent to the one associated with

(N2, k2) =
(k + 2N − 3
k +N − 2 ,

k

k +N − 2

)
,

(N3, k3) =
( k

k +N − 1 ,
2N + k − 3
k +N − 1

)
, (3.53)

while the other three solutions involve cubic roots. Obviously, we can also replace
k 7→ −2N − k + 3 without modifying the algebra, see (3.50), and thus, expressed
in terms of N and k, there are 12 different pairs (Ni, ki) that define the same
algebra. We should also mention that the third solution above is obtained by
applying the map (N, k) 7→ (N2, k2) twice. This fundamental transformation has
a nice interpretation in terms of a level–rank type duality rather similar to the one
appearing for su(N) in section 2.2.5:(

so(N)k ⊕ so(N)1

so(N)k+1

)σ
∼=
(
so(M)l ⊕ so(M)1

so(M)l+1

)σ
, (3.54)

where
k = N − 1

M − 1 −N + 2 , l = M − 1
N − 1 −M + 2 , (3.55)

and the superscript σ means that we take the σ-invariant subalgebra if N or M
are even integers. Obviously, as a true level–rank duality, this only makes sense if
M and N are positive integers. As far as we are aware, this level–rank duality has
not been noticed before.

3.3.4 Holography
With these preparations we can now return to the main topic of this section,
the precise relation between the σ-even subalgebra of the so(2n) cosets of equa-
tion (3.44), and the quantum algebrasWB∞[µ] andWC∞[µ]. As we have explained
before, all three algebras are in general (quotients of) We

∞ algebras, and hence are
uniquely characterised in terms of γ and c. By comparing the relations (3.30) and
(3.32) for WB∞[µ] with (3.46) and (3.48) for the so(2n) cosets, we conclude that
we have the identification

WDσn,k ∼=WB∞[λB ] , with λB = 2n− 2
k + 2n− 2 , kB = k+2n+1−λB . (3.56)
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Similarly, for the case of WC∞[µ] we find instead from (3.35) and (3.37) that

WDσn,k ∼=WC∞[λC ] , with λC = 2n
k + 2n− 2 , kC = k+2n−3−λC . (3.57)

Obviously, using the self-duality relations of the various algebras, see equations
(3.42), (3.43) and (3.53), there are also other versions of these identifications, but
the above is what is relevant in the context of minimal model holography: the
above analysis shows that the (σ-even subalgebra of the) so cosets9 are equivalent
to the quantum Drinfel’d-Sokolov reduction of the hse[λB/C ] algebras with λB/C
given above. Note that λC agrees exactly with λ given in (3.45) above, see also [88],
while for λB the difference is immaterial in the ’t Hooft limit. These statements
are now true even at finite n and k, hence giving the correct quantum version of
the even spin holography conjecture.

3.3.5 The semiclassical behaviour of the scalar fields

With our detailed understanding of the symmetry algebras at finite c, we can now
also address the question of whether the duals of the two minimal coset fields of
[3, 88] should be thought of as being perturbative or non-perturbative excitations of
the higher spin bulk theory. As in the case studied in [73], this issue can be decided
by studying the behaviour of their conformal dimensions in the semiclassical limit,
i.e. for c→∞.

Let us consider then the WDσn coset at fixed n. If c takes one of the actual
minimal model values, c = cso(2n, k) with k ∈ N, see equation (3.46), the algebra
has the two minimal representations (v; 0) and (0; v), whose conformal dimensions
are given in equation (3.47). Written in terms of n and c (rather than n and k),
they take the form

h±(n, c) = 1
2

(
1 +

n− c±
√

(c− n) (c− (3− 4n)2n)
4(n− 1)n

)
, (3.58)

where h(v; 0) = h+(n, c) and h(0; v) = h−(n, c). Since we know that the alge-
bra WDσn depends only on c (rather than k), it is then clear that (3.58) are the
conformal weights of minimal representations for any value of c.

We are interested in the semiclassical limit, which consists of taking c → ∞
at fixed n. There is obviously an ambiguity in how precisely c is analytically
continued, but taking c, say, along the positive real axis to infinity, we read off

9For n ∈ N + 1
2 , the left hand side of equations (3.56) and (3.57) should be understood as

the chiral algebra of the cosets (3.49). Coset interpretations exist also when n is a negative
half-integer, see section 3.3.7.
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from (3.58) that

h(v; 0) = h+(n, c) = 1− µ
2 +O(c−1) , (3.59)

h(0; v) = h−(n, c) = c

µ2 − 1 +O(1) , (3.60)

where µ = 2n − 1, see equation (3.52). In this limit h(v; 0) remains finite, while
h(0; v) is proportional to c. Thus we conclude that only the coset representation
(v; 0) corresponds to a perturbative scalar of the higher spin theory based on hse[µ],
while (0; v) describes a non-perturbative excitation. This is directly analogous to
what happened in [73].

3.3.6 The full orbifold spectrum

Now that we have understood the relation between the symmetries in the duality
conjecture of [3, 88] we can come back to the comparison of the partition functions
that was performed in [88]. It was shown there that the spectrum of the charge
conjugate modular invariant of the WDn,k algebra coincides, in the ’t Hooft limit,
with the bulk 1-loop partition function of a suitable higher spin theory on thermal
AdS3.

As we have seen above, at finite n and c, the relevant symmetry algebra is actu-
ally notWDn,k, but only the σ-invariant subalgebraWDσn,k. Every representation
of WDn,k defines also a representation of WDσn,k, and hence the charge conjuga-
tion (or A-type) modular invariant of the WDn,k algebra also defines a consistent
partition function with respect to WDσn,k. However, from the latter point of view,
it is not the charge conjugation modular invariant, but rather of what one may call
‘D-type’.

It is then natural to ask whether the charge conjugation (A-type) modular
invariant ofWDσn,k also has a bulk interpretation. We shall not attempt to answer
this question here, but we shall only show that it leads to a different partition
function in the ’t Hooft limit. Thus, if the charge-conjugation modular invariant
ofWDσn,k also has a consistent AdS3 dual, this must be a different theory than the
one considered in [3, 88].

In the charge conjugation (A-type) modular invariant of the WDσn,k algebra,
every untwisted representation ofWDσn,k appears once. Obviously, not all represen-
tations of WDσn,k arise as subrepresentations of untwisted WDn,k representations.
In particular, each σ-twisted representation of WDn,k (for which V is half-integer
moded) also leads to an untwisted representation of WDσn,k. Since σ is inherited
from the outer automorphism of so(2n), these twisted representations of WDn,k
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can be described via the cosets

so(2n)(2)
k ⊕ so(2n)(2)

1

so(2n)(2)
k+1

, (3.61)

where so(2n)(2)
k is the twisted affine algebra, see e.g. [97] for an introduction. The

representations of so(2n)(2)
k are labelled by so(2n − 1) dominant highest weights

Ξ, satisfying certain integrability conditions, and the corresponding conformal di-
mensions equal

h
so(2n)(2)

k

(Ξ) = C(Ξ)
2(k + 2n− 2) + k(2n− 1)

16(k + 2n− 2) , (3.62)

where C is the Casimir of so(2n − 1). The conformal dimension of the represen-
tations of (3.61) can then be obtained from (3.62) by the usual coset formula. In
particular, the twisted vacuum, where we take Ξ to be the vacuum representation
(Ξ = 0) of so(2n− 1) for all 3 factors in equation (3.61), has conformal dimension

1
16

[
1− (2n− 1)(2n− 2)

(k + 2n− 2)(k + 2n− 1)

]
. (3.63)

This state does not appear in the 1-loop bulk higher spin calculation of [88], and
thus the dual of the charge conjugation modular invariant of WDσn,k must be a
different bulk theory than the one considered in [88].

3.3.7 Other minimal models

Let us close this discussion with a comment about other minimal models one may
consider. As we have seen in sections 3.3.1 and 3.3.2, the dual of the even higher
spin theories on AdS can be identified with the cosets of either the so(even) or the
so(odd) algebras. It is then natural to ask how the cosets of the sp algebras fit
into this picture. Using the field counting techniques of [34] (see also [46]) one can
show that the cosets10

sp(2n)k ⊕ sp(2n)−1

sp(2n)k−1
(3.64)

possess a We
∞ symmetry in the ’t Hooft limit. The essential points of this calcula-

tion are (i) that sp(2n)−1 has a free field realisation in terms of n βγ-systems; and
(ii) that the coset vacuum character can be computed by counting sp(2n) invariant
products of βγ-fields and their derivatives, using standard arguments of classical
invariant theory.

10In our conventions, the short roots of sp(2n) have length squared equal to 2.
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It is then natural to ask what We
∞ algebras the cosets (3.64) lead to when

analytically continued in n and k. The answer can be schematically formulated as

sp(2n)k ⊕ sp(2n)−1

sp(2n)k−1
∼=
(
so(−2n)−k ⊕ so(−2n)1

so(−2n)−k+1

)σ
, (3.65)

where both cosets stand for the corresponding We
∞ algebras (or their quotients),

and the equality means that both the analytically continued central charge and the
self-coupling γ agree.

Incidentally, there is an independent check for our claim that the cosets (3.64)
are quotients of We

∞. For n = 1, the coset (3.64) is known to be of type W(2, 4, 6),
see [25],11 and its structure constants have been computed explicitly in [55], coin-
ciding with the solution given in equation (3.10) of section 3.1.2.2. We also note
that the corresponding value of γ agrees indeed with γso(−2), as required by (3.65).

The above arguments apply similarly for the cosets

osp(1|2n)k ⊕ osp(1|2n)−1

osp(1|2n)k−1
, (3.66)

for which the emergence of a We
∞ symmetry in the ’t Hooft limit can be proven

using analogous methods, in particular, noting that osp(1|2n)−1 has a free field
realisation in terms of a single Majorana fermion and n βγ-systems. In this case,
the analogue of (3.65) is

osp(1|2n)k ⊕ osp(1|2n)−1

osp(1|2n)k−1
∼=

so(−2n+ 1)−k ⊕ so(−2n+ 1)1

so(−2n+ 1)−k+1
. (3.67)

11We thank the authors of [46] for drawing our attention to this reference.
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Chapter 4

The supersymmetric duality and
orbifold constructions

4.1 The N = 2 supersymmetric duality

Having discussed holographic dualities involving the su(N) and so(N) minimal
models, we would now like to turn to the supersymmetric case. In particular, we
will be concerned with the special case of N = 2 supersymmetry for the rest of
this thesis, which lies halfway between the bosonic cases we have studied in the
previous sections and the maximal N = 4 supersymmetry. This is an important
step towards understanding the N = 4 holographic duality [75] and its relation to
string theory [76, 77, 78]. In the following we shall give a brief introduction to the
N = 2 generalisation of the original bosonic duality that has first been proposed
in [45]. Parts of this overview are directly taken from our paper [83].

4.1.1 Kazama-Suzuki models

Let us first describe the family of conformal field theories which have been related in
[45] to theN = 2 supersymmetric Vasiliev theory on AdS3 described in [141]. These
are N = 2 superconformal field theories (SCFTs), which means that their vacuum
sector contains an extension of the conformal algebra, the N = 2 superconformal
algebra (SCA). It consists of the stress-energy tensor L of spin 2 generating a
Virasoro subalgebra, two supercharges G± of spin 3

2 and a U(1) current J of spin
1. They satisfy the OPEs

L ? L ∼ c
2I , L ? J ∼ J , L ? G± ∼ 3

2 G
± ,

J ? J ∼ c
3I , J ? G± ∼ ±G± ,
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G+ ? G− ∼ 2 J + 2c
3 I , G± ? G± ∼ 0 . (4.1)

The N = 2 SCFTs obtained by a coset construction have been classified by Kazama
and Suzuki [114, 115]. The simplest examples of such cosets are of the form

su(N + 1)(1)
N+k+1

su(N)(1)
N+k+1 ⊕ u(1)(1)

κ

∼=
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
. (4.2)

Here the first description is in terms of N = 1 superalgebras, where the superscript
‘(1)’ means that we have supersymmetrised the Kac-Moody algebra such that for
each (spin-1) current of the algebra we also have a Majorana fermion of spin 1

2 .
The second expression is in terms of bosonic affine algebras, where we have used
that the fermions decouple and become free after a suitable change of basis of the
superalgebras. Out of the N2 +2N free fermions of the numerator, only 2N survive
the coset construction. These can be represented as the lowest states in the vector
representation of so(2N)1. Since we only consider the NS sector of the theory, the
so(2N)1 factor in the coset only stands for the vacuum and vector representations.
Furthermore, the level of the u(1) factor equals κ = N(N + 1)(N + k+ 1), and the
central charge of the coset is

c = (N − 1) + Nk(N + 2)
N + k + 1 −

(N2 − 1)(k + 1)
N + k + 1 = 3Nk

N + k + 1 . (4.3)

These cosets have manifest N = 1 supersymmetry, but Kazama and Suzuki showed
[114, 115] that they actually even exhibit N = 2 supersymmetry. In order to un-
derstand the coset construction in detail, we need to explain how the denominator
algebra sits inside the numerator. At the level of Lie groups, the denominator
SU(N)×U(1) is ‘embedded’ into SU(N + 1) via the (N -to-one) mapping

(v, w) 7→
(
w̄v 0
0 wN

)
, (4.4)

where w ∈ U(1) is a phase, while v ∈ SU(N) is an N × N matrix. Similarly,
the ‘embedding’ into SO(N,N) (whose complexified Lie algebra agrees with the
complexification of so(2N)) is defined by

(v, w) 7→
(
w̄N+1v 0

0 wN+1v̄

)
. (4.5)

At the level of Lie algebras the embedding works accordingly. Our conventions
are chosen so that the free fermions and bosons have U(1) charge ±(N + 1). An
explicit construction of the spin-1 and spin-2 currents can be found in appendix D
(see also [34] and [37]).
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The sW∞ algebra of this coset has been studied in detail in [35] (see also [6]).
It is generated by the SCA and one N = 2 multiplet W (s) for each integer s ≥ 2,
where W (s) consists of the Virasoro-primary fields

W s0 , W s± = G±− 1
2
W s0 , W s1 = 1

4 (G+
− 1

2
G−− 1

2
−G−− 1

2
G+
− 1

2
)W s0 (4.6)

of conformal dimensions s, s + 1
2 and s + 1, respectively. In terms of Virasoro-

primary fields (or quasi-primary in the case of L itself), the algebra is therefore
generated by one field of spin 1 and two fields for each integer or half-integer spin
s > 1. The fields in (4.6) then satisfy the following OPEs with the SCA:

L ?W s0 ∼ sW s0 , L ? W s± ∼
(
s+ 1

2
)
W s± , L ? W s1 ∼ (s+ 1)W s1 ,

J ? W s0 ∼ 0 , J ? W s± ∼ ±W s± , J ? W s1 ∼ sW s0 ,

G± ? W s0 ∼ ∓W s± , G± ? W s1 ∼ (s+ 1
2 )W s± ,

G± ? W s± ∼ 0 , G± ? W s∓ ∼ 2W s1 + 2sW s0 .

It was shown in [35] that any N = 2 sW∞ algebra with the field content mentioned
above is fixed by the Jacobi identities up to two free parameters: the central charge
c and the self-coupling of the supermultiplet W (2), γ = (c222)2. The wedge algebra
is

shs[µ]⊕ R = U (osp(1|2))
〈Cosp − 1

4µ(µ− 1)1〉
. (4.7)

This construction is analogous to the bosonic higher-spin algebra defined by (2.39)
and (2.48), but this time it is based on the universal enveloping algebra of osp(1|2),
owing to the fact that N = 2 supergravity on AdS3 can be described as a Chern-
Simons theory based on osp(1|2) ⊕ osp(1|2) [1]. By definition we have shs[µ] =
shs[1−µ]. Furthermore, for −µ = N ∈ N, shs[µ] acquires a maximal ideal χN and
truncates to

shs[−N ]/χN ∼= sl(N + 1|N) . (4.8)

For the identification of the wedge algebra, one can find a relation between γ and
µ using the minimal representation technique introduced in section 2.2.5 and finds

γ = 8(c+ 3)2(c− 2cµ− 3µ2)2 n2

c(c− 1)(c− 3 + 6µ)(µ+ 1)(c− 3µ)(2c+ 3µ− cµ) , (4.9)

where n2 is the central term in the OPE of W 20 with itself. We see that the right-
hand side of equation (4.9) is quartic in µ, which leads to a quadrality relation (as
opposed to the triality found in the original bosonicW∞ algebra). This quadrality
leads to the isomorphism of N = 2 sW∞ algebras

sW∞[µ1] ∼= sW∞[µ2] ∼= sW∞[µ3] ∼= sW∞[µ4] , (4.10)
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where the different values of µ are related by

µ1 = µ , µ2 = c(1− µ)
c+ 3µ , µ3 = c+ 3µ

3(µ− 1) , µ4 = − c

3µ . (4.11)

The representations of the coset are labelled by (Λ+;Λ−, `), where Λ+ is an
integrable weight of su(N + 1)k and Λ− an integrable weight of su(N)k+1, while `
denotes the u(1) charge. The selection rule is

|Λ+|
N + 1 −

|Λ−|
N
− `

N(N + 1) ∈ Z , (4.12)

where |Λ| =
∑
j jΛj , and we have the field identification

(Λ+;Λ−, `) ∼=
(
J (N+1) Λ+; J (N) Λ−, `− (k +N + 1)

)
, (4.13)

where J denotes the outer automorphism of equation (2.87), i.e., it maps (for the
case of su(N + 1))

Λ = [Λ0;Λ1, . . . , ΛN ] 7→ J (N+1) Λ = [ΛN ;Λ0, Λ1, . . . , ΛN−1] . (4.14)

Since the field identification acts simultaneously on a weight in su(N + 1) and
su(N), it has order N(N + 1); this then ties together with the fact that the u(1)
charge ` is defined modulo κ = N(N + 1)(N + k + 1).
The conformal dimension of the representation (Λ+;Λ−, `) equals

h(Λ+;Λ−, `) = C(N+1)(Λ+)
N + k + 1 −

C(N)(Λ−)
N + k + 1 −

`2

2N(N + 1)(N + k + 1) + n , (4.15)

where n is a half-integer, describing the level at which (Λ−, `) appears in the
representation Λ+, and C(N)(Λ) is the quadratic Casimir of the su(N) weight Λ.
Finally, the U(1) charge (with respect to the U(1) generator of the superconformal
N = 2 algebra) equals

q(Λ+;Λ−, `) = `

N + k + 1 + s , (4.16)

where s ∈ Z denotes the charge contribution of the descendants. For example, the
representation

(f; 0, N) : h = N

2(N + k + 1) , q = N

N + k + 1 , (4.17)

where f denotes the fundamental representation of su(N + 1), describes a chiral
primary, as does

h(0; f,−(N+1)) = 1
2−

(N2 − 1)
2N(N + k + 1)−

(N + 1)
2N(N + k + 1) = k

2(N + k + 1) , (4.18)
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for which the U(1) charge equals

q(0; f,−(N + 1)) = −(N + 1)
N + k + 1 + 1 = k

N + k + 1 . (4.19)

Here the additional terms in (4.18) and (4.19) appear because for (0; f,−(N + 1))
the representation of the denominator arises only at the first excited level.

4.1.2 N = 2 holography
In close analogy to the bosonic cases, the Kazama-Suzuki coset models (4.2) were
shown to be dual to a supersymmetric higher spin theory based on shs[λ] [141, 142]
defined in (4.7) in the large N, k ’t Hooft limit where

λ = N

N + k + 1 (4.20)

is kept constant [45, 34]. This theory is coupled to two N = 2 matter multiplets,
each one consisting of two complex scalars of masses

(MB
λ )2 = −1 + λ2 , (MB

1−λ)2 = −1 + (1− λ)2 , (4.21)

and two Dirac fermions of mass

(MF )2 =
(
λ− 1

2

)2
. (4.22)

These are then dual to the perturbative coset representations whose lowest expo-
nents are the minimal representations

(f; 0, N) , (f̄; 0,−N) , (0; f,−(N + 1)) , (0; f̄, N + 1) (4.23)

of conformal dimensions

h(f; 0, N) = h(f̄; 0, N) = N

2(N + k + 1)
∼=
λ

2 ,

h(0; f,−(N + 1)) = h(0; f̄, N + 1) = k

2(N + k + 1)
∼=

1− λ
2 . (4.24)

This duality has undergone several non-trivial checks: First, the asymptotic
symmetries of shs[λ] (for the case of sl(N + 1|N), this had already been done in
[111]) were shown to agree with the coset algebra [105, 101]; it was also shown
in [35] that the structure constants of sW∞[µ] reduce to those of shs[µ] on the
wedge and in the limit c→∞. Furthermore, the perturbative partition functions
of the two theories were shown to agree in the ’t Hooft limit in [34], and three-point
functions were matched in [47].
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4.2 Orbifolds

The orbifold construction is a procedure to obtain a new conformal field theory out
of some original CFT by making it invariant under a group G acting on the target
space manifold (see [90, 24] for pedagogical introductions). 2-dimensional CFTs
such as the ones found in string theory usually live on Riemann surfaces describing
the world sheet, the most important example beyond tree level being the torus.
In the AdS/CFT case that is of interest to us, the CFT lives on the boundary
of (thermal) AdS3, which is also a torus. We will therefore assume our CFT to
be defined on a torus with modular parameter τ . For the sake of simplicity, we
will also assume the group G to be finite, but we will see examples of (compact)
continuous groups acting on target space in chapter 5.

The Hilbert space of the untwisted sector consists of all states of the original
theory that are invariant under the group action. The projector onto this sector
can be written as

P (U) = 1
|G|

∑
g∈G

g . (4.25)

It is straightforward to see that (P (U))2 = P (U) and that g · (P (U) ξ) = P (U) ξ

for any state ξ and group element g, which shows that (P (U) ξ) is indeed in the
untwisted sector. The untwisted partition function is then given by the trace over
the Hilbert space of the original CFT with insertion of the projector P (U):

Z(U)(τ, τ̄) = TrH
(
P (U) qL0− c

24 q̄L̄0− c̄
24

)
, q = e2πiτ . (4.26)

In order to make the theory modular invariant, however, one needs to include
twisted sectors as well. The fields X(z) in this sector are defined on the torus, but
pick up a twist h ∈ G when going around the space cycle:

X(z + 1) = hX(z) . (4.27)

These fields should also be invariant under some group action g; indeed, acting on
(4.27) with some g ∈ G and assuming invariance, we obtain

ghX(z) = gX(z + 1) = X(z + 1) = hX(z) = hgX(z) . (4.28)

Hence we can only demand invariance under all g ∈ G which commute with h.
These form the centraliser subgroup Ch < G. So the partition function of the
h-twisted sector reads

Z(h)(τ, τ̄) = TrHh
(
P (h) qL0− c

24 q̄L̄0− c̄
24

)
, (4.29)
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where P (h) is now the projector onto the Ch-invariant subspace of the h-twisted
space Hh, i.e.

P (h) = 1
|Ch|

∑
g∈Ch

g . (4.30)

Note that for any field X in the h-twisted sector and g ∈ G, gX is in the h′-twisted
sector for h′ = ghg−1 since

(gX)(z + 1) = ghX(z) = ghg−1(gX)(z) . (4.31)

Moreover, the centralisers of h and h′ are isomorphic: if a commutes with h, then
a′ = gag−1 commutes with h′. It follows that for any h′ that is conjugate to h,
the h′-twisted sector and the h-twisted sector are in fact equivalent and we need
to include only one of them into our theory. The twisted sectors therefore have to
be labelled by conjugacy classes [h] rather than elements of G. The full orbifold
partition function then reads

Zorb(τ, τ̄) =
∑

[h]⊂G

1
|C [h]|

∑
g∈Ch

TrHh
(
g qL0− c

24 q̄L̄0− c̄
24

)
. (4.32)

The untwisted sector corresponds to the conjugacy class [e] consisting only of the
neutral element e ∈ G. If G is an abelian group, the centraliser of any element
is the whole group, and each conjugacy class consists of only one element. The
partition function (4.32) therefore simplifies to

Zorb(τ, τ̄) = 1
|G|

∑
g,h∈G

TrHh
(
g qL0− c

24 q̄L̄0− c̄
24

)
(4.33)

in that case.
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Chapter 5

The continuous orbifold of
N = 2 minimal models

In this chapter we will study the N = 2 Kazama-Suzuki cosets
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)N(N+1)(N+k+1)
(5.1)

that were introduced in section 4.1.1 in the limit where the level k is taken to
infinity, while N is large but fixed. It will turn out that the limit theory has
an interpretation as a U(N) orbifold of 2N free fermions and bosons that both
transform as N⊕N̄ under U(N).1 This is the natural generalisation of the bosonic
analysis of [87], where it was shown that the cosets

su(N)k ⊕ su(N)1

su(N)k+1
(5.2)

admit a description in terms of an orbifold of N − 1 free bosons by the Lie group
SU(N). In each of these cases the limit is taken in the spirit of [145] (rather than
say [144]), see also [64, 67] for other instances where this kind of construction has
been considered. Note that this orbifold picture is the natural 2d analogue of the
U(N) (or O(N)) singlet sector of a theory of free bosons or fermions in 3d that
appears in the duality with higher spin theories on AdS4 [120, 152].

We shall consider the usual charge conjugation modular invariant of the coset
(5.1). In particular, we shall see in section 5.1 that the part of the CFT spectrum
that corresponds to the perturbative higher spin degrees of freedom

Hpert =
⊕
Λ

H(0;Λ) ⊗H(0;Λ∗) (5.3)

1The idea that the limit theory has such an interpretation was already mentioned in [143],
following on from the analysis of [65], where this was shown explicitly for N = 1.
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can be identified, for k →∞, with the subspace of the free field theory of 2N bosons
and fermions that are singlets with respect to U(N), i.e., with the untwisted sector
of the continuous orbifold. The remaining coset primaries, i.e., those of the form
(Λ+;Λ−) with Λ+ 6= 0, can then be interpreted in terms of the various twisted
sectors of the continuous orbifold, as shall be shown in section 5.2. In fact, as
has been mentioned in section 4.2 for usual orbifolds, the untwisted sector is not
modular invariant by itself, and the twisted sectors are required in order to restore
modular invariance. For the case at hand where we have supersymmetry, the
identification of the different coset primaries with the twisted sectors can be worked
out in detail, and a number of non-trivial consistency checks can be performed. In
particular, we have compared the conformal dimension of the twisted sector ground
states with that calculated from the coset viewpoint; we have also determined the
fermionic excitation spectrum directly from the coset perspective.

The material in this chapter is based on a collaboration with Matthias Gaberdiel
and has been published in [83] (see also [66] for related work). A similar analysis
for the case of another class of Kazama-Suzuki cosets, given by

so(2N + 2)(1)
2N+k

so(2N)(1)
2N+k ⊕ so(2)(1)

κ

, (5.4)

was later carried out in [59].

5.1 The untwisted sector of the continuous orbifold

We are interested in taking the k →∞ limit of the cosets

su(N + 1)(1)
k+N+1

su(N)(1)
k+N+1 ⊕ u(1)(1)

κ

∼=
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
, (5.5)

which were introduced in section 4.1. For the case N = 1 with c = 3, this was
worked out in some detail in [65], where it was shown that the resulting theory
can be interpreted in terms of a continuous U(1) orbifold. Here we want to extend
the discussion to general N . The idea that the limit theory may be interpreted in
terms of a U(N) orbifold was already sketched in [143]; in the following, we shall
pursue a somewhat different approach and be much more explicit.

The discussion of [34] as well as the analogous analysis in [87] suggests that the
underlying free theory consists of 2N free bosons and free fermions that transform
as

N−(N+1) ⊕ N̄N+1 (5.6)
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with respect to su(N) ⊕ u(1) in the denominator. The relevant orbifold group is
therefore SU(N) × U(1), or equivalently U(N),2 where the group acts simultane-
ously on both left- and right-movers.

One reason in favour of this idea is that the central charge approximates in this
limit

c = 3Nk
N + k + 1

∼= 3N , (5.7)

in agreement with a description in terms of 2N free bosons and fermions. Further-
more, the ground states of the representations (0; f,−(N + 1)) and (0; f̄, (N + 1))
can be identified with the N+N̄ free fermions since their conformal dimension and
u(1) charge become in this limit

h(0; f,−(N + 1)) = h(0; f̄, (N + 1)) = 1
2 , (5.8)

as well as
q(0; f,−(N + 1)) = +1 , q(0; f̄, (N + 1)) = −1 . (5.9)

Each of these representations has two N = 2 descendants with h = 1, which can
in turn be identified with the free bosons. For the actual coset partition function,
left- and right-movers are grouped together, i.e., (0; f,−(N+1)) for the left-movers
appears together with (0; f̄, (N + 1)) for the right-movers, etc., and this is precisely
what the U(N) singlet condition achieves.

Concretely, we therefore claim that the untwisted sector of the U(N) orbifold of
2N free bosons and fermions, transforming as in (5.6), corresponds to the subsector
of the coset theory

H0 =
⊕
Λ,u

H(0;Λ,u) ⊗ H̄(0;Λ∗,−u) (5.10)

in the limit k → ∞. Here the sum runs over all representations Λ that appear
in finite tensor powers of the fundamental or anti-fundamental representation of
su(N) — in the limit k →∞, the k-dependent bound on the integrable su(N)k+1

representations disappears — and Λ∗ denotes the representation conjugate to Λ.
Furthermore, umust satisfy the selection rule that (N+1)|Λ|+u = 0 modN(N+1).

In the following we will give strong evidence in favour of this claim by showing
that the partition functions agree. In section 5.2 we shall then also explain how
the twisted sectors of the continuous orbifold can be understood from the coset
viewpoint.

2The discrete subgroup of SU(N) × U(1) that needs to be factored out to obtain U(N) acts
trivially.
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5.1.1 The partition function from the coset
We want to show that the spectrum of the untwisted sector of the U(N) orbifold
coincides with equation (5.10) by comparing partition functions. In order to do so,
we need to understand the character of the coset representations (0;Λ, u) in the
limit k →∞. For large k, the character of an affine representation Λ of su(N)k is
given by

chN,kΛ (v; q) =
qh

N,k
Λ

[
chNΛ (v) +O(qk−

∑
i
Λi+1)

]
∞∏
n=1

[
(1− qn)N−1 ∏

i 6=j
(1− viv̄jqn)

] . (5.11)

Here vi are the eigenvalues of v ∈ SU(N), chNΛ (v) is the character of Λ restricted
to the zero-mode subalgebra su(N), Λi are the Dynkin labels of Λ, and we define

hN,kΛ = C(N)(Λ)
N + k

, (5.12)

where C(N)(Λ) is, as before, the quadratic Casimir of Λ. For example, the vacuum
character chN+1,k

0 (v, w; q) of su(N + 1)k with v ∈ SU(N) and w ∈ U(1) embedded
into SU(N + 1) as in (4.4) equals

chN+1,k
0 = 1 +O(qk+1)

∞∏
n=1

[
(1− qn)N

∏
i6=j

(1− viv̄jqn)
N∏
i=1

[
(1− w̄N+1viqn)(1− wN+1v̄iqn)

]] .
(5.13)

Moreover, the representations of the so(2N)1 factor in the numerator are the vac-
uum and vector representation, as well as either of the two spinor representations.
In terms of the free fermions (that are equivalent to so(2N)1), the former two
correspond to the NS sector, while the latter are accounted for in terms of the
R sector. In the following we shall concentrate on the NS sector3 for which the
contribution of the 2N free fermions equals

θ(v, w; q) =
∞∏
n=1

N∏
i=1

(1 + w̄N+1viq
n− 1

2 )(1 + wN+1v̄iq
n− 1

2 ) . (5.14)

The characters of the denominator, on the other hand, are given in that limit by

chN,k+1
Λ,u (v, w; q) =

qh
N,k+1
Λ

+u2
2κ
(
wu +O(q κ2−|u|)

)(
chNΛ (v) +O(qk−

∑
i
Λi+2)

)∏∞
n=1
[
(1− qn)N

∏
i 6=j(1− viv̄jqn)

] .

(5.15)
3In the duality to the higher spin theory on AdS3 only the NS-NS sector plays a role since

the conformal dimension of the RR sector states is proportional to the central charge, see the
discussion in [88].



5.1 The untwisted sector of the continuous orbifold 77

The coset character associated to (0;Λ, u) is then given by the branching function
bN,k0;Λ,u(q), which is defined by

chN+1,k
0 (v, w; q) θ(v, w; q) =

∑
Λ,u

bN,k0;Λ,u(q) chN,k+1
Λ,u (v, w; q) . (5.16)

Combining the explicit expressions given above, the branching functions take the
form (see also [34])

bN,k0;Λ,u(q) = q−h
N,k+1
Λ

−u2
2κ

[
aN0;Λ,u(q) +O(qk−

∑
i
Λi+2) +O(q κ2−|u|)

]
, (5.17)

where aN0;Λ,u(q) is the multiplicity of wuchNΛ (v) in

∑
Λ,u

aN0;Λ,u(q)wuchNΛ (v) =
∞∏
n=1

N∏
i=1

(1 + w̄N+1viq
n− 1

2 )(1 + wN+1v̄iq
n− 1

2 )
(1− w̄N+1viqn)(1− wN+1v̄iqn) . (5.18)

It therefore follows that the partition function Z0 of (5.10) equals for k →∞

Z0 = lim
k→∞

(qq̄)− c
24
∑
Λ,u

|bN,k0;Λ,u(q)|2 = (qq̄)−N8
∑
Λ,u

|aN0;Λ,u(q)|2 , (5.19)

where we sum over all finite Young diagrams Λ of at least N − 1 rows, and u must
be of the form u = (N + 1)(−|Λ| + nN) with n ∈ Z. In the second equality, we
have used that since Λ and u are finite (and do not grow with k), the prefactor in
equation (5.17), hN,k+1

Λ + u2

2κ , vanishes in the limit, and the higher-order terms in
the bracket become irrelevant.

5.1.2 Comparison with the untwisted orbifold sector
We shall now compare this result to the U(N) orbifold of 2N free fermions and
bosons that transform as N⊕ N̄ of U(N), cf., equation (5.6). Labelling again the
elements of U(N) in terms of SU(N)×U(1) via the ‘embedding’

ı : (v, w) 7→ w−(N+1) · v = w̄(N+1) · v , (5.20)

the partition function with the insertion of these group elements takes the form

ı(v, w) · Zfree = (qq̄)−N8
∞∏
n=1

N∏
i=1

|1 + w̄(N+1)viq
n− 1

2 |2|1 + wN+1v̄iq
n− 1

2 |2

|1− w̄(N+1)viqn|2|1− wN+1v̄iqn|2
, (5.21)

where we have used that the central charge equals c = 3N . The untwisted sector of
this orbifold theory consists of the states that are U(N) invariant. Put differently,
the untwisted sector is therefore the multiplicity space of the trivial representation
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of U(N) acting on the free theory with partition function Zfree. Since (5.21) is, up
to the prefactor, just the charge-conjugate square of the coset numerator character
(5.18), this amounts to finding the trivial representation in

(0;Λ1, u1)⊗ (0;Λ2, u2) (5.22)

for some representations (Λi, ui) (i = 1, 2) of su(N) ⊕ u(1), where the first factor
corresponds to the left-movers and the second one to the right-movers. This tensor
product contains the trivial representation if and only if Λ1 = Λ∗2 and u1 = −u2,
where Λ∗2 is the representation conjugate to Λ2, and it always does so with multi-
plicity one. Thus we conclude that the partition function of the untwisted sector
equals

ZU = (qq̄)−N8
∑
Λ,u

|aN0;Λ,u(q)|2 , (5.23)

matching precisely (5.19). This yields convincing evidence that the coset subsector
of states (0;Λ, u) can indeed be described by the untwisted sector of the U(N)
orbifold introduced above.

5.2 Twisted sectors of the continuous orbifold

The remaining states, i.e., those with Λ+ 6= 0, should then arise from the twisted
sector of the continuous orbifold. In the following we shall be able to make this
correspondence rather concrete. The main reason why we can be much more ex-
plicit (see equation (5.28) below) than in the corresponding bosonic analysis of [87]
is that the N = 2 superconformal symmetry is quite restrictive and in particular
implies that the ground state energy of the twisted sectors is linear in the twist.

To begin with, let us briefly review the basic logic of the continuous orbifold
approach of [87]. As was explained there, continuous compact groups (such as
U(N)) behave in many respects like finite groups, and one may therefore believe
that an orbifold by a continuous compact group can be constructed essentially as
in the familiar finite case. In particular, the untwisted sector just consists of the
invariant states of the original theory, while the twisted sectors are labelled by the
conjugacy classes of the orbifold group. Finally, in each such twisted sector, only
the states that are invariant with respect to the centraliser of the twist element
survive.

For the case of U(N), the conjugacy classes are labelled by the elements in the
Cartan torus U(1)N modulo the action of the Weyl group, i.e., the permutation
group SN . Furthermore, the centraliser of a generic element of the Cartan torus
is again just the Cartan torus itself, i.e., the orbifold projection in the twisted
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sector will just guarantee that the partition function is invariant under the T -
transformation, τ 7→ τ + 1.
Let us parametrise the elements of the Cartan torus by the diagonal matrices

diag(e2πiα1 , . . . , e2πiαN ) , − 1
2 < αi ≤ 1

2 (i = 1, . . . , N) . (5.24)

Since the Weyl group permutes these entries, the conjugacy classes (and thus the
twisted sectors) can actually be labelled by

α = [α1, . . . , αN ] , (5.25)

where now, in addition, αi ≤ αj for i < j. In this section, we will argue that the
ground state of the sector with twist α can be identified, in the limit k →∞, with
the coset representative (

Λ+(α);Λ−(α), u(α)
)
, (5.26)

where m ∈ {0, . . . , N} is chosen such that

αi ≤ 0 for i ≤ m and αi ≥ 0 for i > m , (5.27)

and we define

Λ+(α) = [k(α2 − α1), . . . , k(αm − αm−1),−kαm, (5.28)
kαm+1, k(αm+2 − αm+1), . . . , k(αN − αN−1)] ,

Λ−(α) = [k(α2 − α1), . . . , k(αN − αN−1)] , u(α) = k

N∑
i=1

αi , (5.29)

where each entry of the weights is projected onto the integer part (and we also
adjust u(α) correspondingly). These weights are then allowed at level k since we
have

N+1∑
j=1

[
Λ+(α)

]
j

=
N∑
j=1

[
Λ−(α)

]
j

= k(αN − α1) ≤ k . (5.30)

One also easily checks that (5.26) satisfies the selection rule (4.12). Conversely,
for every coset primary (Λ+;Λ−, u), we can write, after a suitable field redefinition
if necessary, Λ+ ≡ Λ+(α) for some α of the form (5.25) with − 1

2 < αi ≤ 1
2 and

αi ≤ αj for i < j; indeed, the corresponding α may be taken to be

α = 1
k

[
−

m∑
i=1

Λi,−
m∑
i=2

Λi, . . . ,−Λm, Λm+1,

m+2∑
i=m+1

Λi, . . . ,

N∑
i=m+1

Λi

]
, (5.31)

where we choose m such that
m∑
i=1

Λi <
k

2 , and
N∑

i=m+1
Λi ≤

k

2 . (5.32)
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We will give three main pieces of evidence for this identification: we will show in
section 5.2.1 that the conformal dimension of the coset primary (5.26) agrees with
the ground state energy of the α-twisted state; we will confirm that the fermionic
excitation spectrum of the coset primary has the expected form (see section 5.2.2);
and we shall show in section 5.2.3 that the twisted sector has BPS descendants
precisely as suggested by the orbifold picture.

5.2.1 Conformal dimension
In the α-twisted sector the free fermions and bosons are simultaneously twisted (as
they transform in the same representation of U(N), see equation (5.6) above). As
a consequence, the ground state energy of the α-twisted sector should simply be

h(α) = 1
2

N∑
i=1
|αi| . (5.33)

(We have outlined the calculation of the twisted sector ground state energy in
appendix C.1, see in particular equation (C.14).) We therefore need to show that
the conformal dimension of (5.26) agrees with (5.33).

In order to determine the conformal dimension of (5.26), we use (4.15) and note
that the quadratic Casimir of a weight Λ of su(N) is given by

C(N)(Λ) =
∑
i<j

ΛiΛj
i(N − j)

N
+ 1

2
∑
j

Λ2
j

j(N − j)
N

+
∑
j

Λj
j(N − j)

2 . (5.34)

The key step of the computation is to calculate the difference of the Casimirs,
which turns out to equal

∆C = C(N+1)(Λ+(α)
)
−C(N)(Λ−(α)) =

(
k
∑N
i=1 αi

)2

2N(N + 1) + k

2

[
−

m∑
i=1

αi +
N∑

i=m+1
αi

]
.

(5.35)
It then follows that the conformal dimension is indeed given by

h
(
Λ+(α);Λ−(α), u(α)

)
= ∆C
N + k + 1 −

u(α)2

2N(N + 1)(N + k + 1) (5.36)

= k

2(N + k + 1)

(
−

m∑
i=1

αi +
N∑

i=m+1
αi

)
∼=

1
2

N∑
i=1
|αi|

in the limit k → ∞. Here we have used that the excitation number n in (4.15)
vanishes because the representation Λ−(α) appears in the branching of Λ+(α) from
su(N + 1) to su(N), as follows from the discussion in appendix C.2.
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We should also mention that the U(1) charge of the coset primary equals

q
(
Λ+(α);Λ−(α), u(α)

)
= u(α)
N + k + 1

∼=
N∑
i=1

αi , (5.37)

which also agrees with what one expects based on the twisted sector analysis. Note
that the ground state is a chiral primary if all twists are positive, and an anti-chiral
primary if all twists are negative; we shall come back to a more detailed analysis
of the BPS states in the twisted sectors in section 5.2.3.

5.2.2 The fermionic excitation spectrum
We can test the above correspondence further by calculating the actual excitation
spectrum of the fermions in the twisted sector. Recall that the free fermions cor-
respond to the coset primaries (0; f,−(N + 1)) and (0; f̄, (N + 1)), respectively. We
can therefore determine the ‘twist’ of these fermions by evaluating the change in
conformal dimension upon fusion with these fields. As a by-product of this analy-
sis we will also be able to show that the above coset primaries are indeed ground
states.

More specifically, suppose that (Λ+;Λ−, u) is the (ground) state of a twisted
sector. Then we consider the fusion products

(Λ+;Λ−, u)⊗
(
0; f,−(N + 1)

)
=
N−1⊕
l=0

(
Λ+;Λ−(l)

− , u− (N + 1)
)
, (5.38)

where Λ−(l) with l = 0, . . . , N − 1 denotes the N different weights that appear in
the tensor product Λ⊗ f. Similarly we define

(Λ+;Λ−, u)⊗
(
0; f̄, (N + 1)

)
=
N−1⊕
l=0

(
Λ+;Λ+(l)

− , u+ (N + 1)
)
, (5.39)

where Λ+(l) labels the weights that appear in Λ⊗ f̄ ; a closed formula for both cases
is given by

Λ
ε(l)
j =


Λj + ε j = l

Λj − ε j = l + 1
Λj otherwise.

(5.40)

Here ε = ±, and we have assumed that all Λj 6= 0 so that all N fusion channels
Λε(l) are indeed allowed. (We will comment on the situation when this is not the
case at the end of this subsection.)

Now the ‘twist’ of the fermionic excitations of the twisted sector state (Λ+;Λ−,
u) can be determined by calculating the difference of conformal dimension of the
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coset primaries that appear in (5.38) and (5.39), relative to the original state.
Indeed, generically, there will be N different such twists, corresponding to the N
different fusion channels in (5.40), and this ties in with the fact that there are N
fundamental fermions (as well as their conjugates). One cross-check of our analysis
will be that the twists of the fermions and their conjugates will be opposite, and
this will indeed turn out to be the case.

In order to calculate this difference of conformal dimension we note that it
follows from (4.15) that

δh(l) ≡ h
(
Λ+;Λε(l)− , u+ ε(N + 1)

)
− h(Λ+;Λ−, u)

= 1
N + k + 1

(
C(N)(Λ−)− C(N)(Λε(l)− )

)
− 1

2N(N + 1)(N + k + 1)

(
2εu(N + 1) + (N + 1)2

)
+ n . (5.41)

The difference of Casimir operators turns out to equal

δC(l) = C(N)(Λ−)− C(N)(Λε(l)− )

= − ε

N

N−1∑
i=1

i Λi + ε

N−1∑
j=l+1

Λj + 1
2N
(
εN2 − 2lεN − εN + 1−N

)
, (5.42)

where Λj are the Dynkin labels of Λ−. Thus we find that

δh(l) = n+ 1
N + k + 1

[
− ε

N

(N−1∑
i=1

i Λi + u
)

+ ε

N−1∑
j=l+1

Λj

]
+ 1

2(N + k + 1)(εN − 2lε− (2 + ε)) . (5.43)

In the limit k →∞, the second line can be ignored (since none of the terms in the
numerator can depend on k), and hence we get approximately

δh(l) ∼= n+ ε

N + k + 1

[ N−1∑
j=l+1

Λj −
1
N

(N−1∑
i=1

i Λi + u
)]

. (5.44)

Applying this formula to the state (5.26) and using (5.28) yields then

δh(l) ∼= n− ε αl+1 , (5.45)

where αl+1 denotes the different components of the twist in (5.25). For the free
fermions,4 the selection rule of the so(2N)1 factor implies that n = 1

2 . Thus, the
4Technically, this means we have to consider the so-called ‘even’ fusion of the associated coset

fields, see [134, 135], as well as [71]. In order to analyse the bosonic descendants (that sit in the
same N = 2 representation), we then have to consider the ‘odd’ fusion rules.
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excitations of the fermions are shifted away from the untwisted NS value δh = 1
2

by the twist αl+1. Furthermore, this twist is opposite for the fermions and the
anti-fermions, i.e., it is proportional to ε. This then agrees precisely with what
should be the case for the α-twisted sector.

It is worth stressing that the derivation of (5.44) was completely general, and
did, in particular, not assume any specific properties of the state (Λ+;Λ−, u). Thus
we can use it to read off the twist of any coset state, which therefore equals

αj ∼= −
1

N + k + 1

[N−1∑
i=j

Λj −
1
N

(N−1∑
i=1

i Λi + u
)]

, (5.46)

where the Λj are, as before, the Dynkin labels of Λ−. Note that finite excitations
only change the Λi and u by a finite amount, which can be neglected in the limit
k →∞. We therefore conclude that finitely excited states live in the same twisted
sector as the corresponding ground state. Again, this is what should be the case
for the α-twisted sector.

Finally, we comment on the special situation for which some of the Λj = 0. In
that case, there are actually fewer fermionic excitations since some of the l in (5.40)
are not allowed. This phenomenon also has a very natural interpretation from the
continuous orbifold perspective: because of equation (5.28), Λj = 0 implies that
αj+1 = αj . Then the centraliser of the corresponding element of the Cartan torus
(5.24) is bigger than just the Cartan torus itself, since it includes, in particular, the
SU(2) subgroup that rotates the two twists αj and αj+1 into one another. This
means that actually fewer fermionic excitations survive the orbifold projection in
the twisted sector, in perfect agreement with the fact that we also have fewer coset
descendants. The analysis works similarly if more than one Λj = 0, etc.

It remains to show that the coset states (5.26) actually correspond to the ground
states of the α-twisted sector. For the fermionic excitations with n = 1

2 this is
obvious from the above (given that, by construction, each |αj | ≤ 1

2 ). The argument
for the bosonic descendants (for which n = 0 is possible) requires more work and
is spelled out in appendix C.3.

5.2.3 BPS descendants

Finally, we want to analyse the BPS descendants of the twisted sector ground
states. For the case with N = 4 superconformal symmetry, it is well known from
the analysis of the symmetric orbifold, see e.g. [127], that each twisted sector of the
symmetric orbifold contains a BPS descendant that is obtained from the twisted
sector ground state upon applying all fermionic generators whose mode number is
less than 1/2. For the case at hand, i.e., the situation with N = 2 superconformal
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symmetry, we expect that each twisted sector should contain two BPS states, one
chiral primary that is obtained by applying all q = +1 fermionic modes whose
mode number is less than 1/2 to the twisted sector ground state; and one anti-
chiral primary that is obtained by applying all q = −1 fermionic modes whose
mode number is less than 1/2. Actually, as we shall see, this expectation is borne
out; quite surprisingly, the relevant chiral and anti-chiral states remain BPS even
at finite N and k.

To be more specific, let us consider the twisted sector ground state defined in
equation (5.26). In order to obtain the chiral primary descendant we have to apply
the fermionic modes associated to (0; f,−(N + 1)) whose mode numbers are less
than 1/2. Thus we should consider the descendant where we add a box to each of
the first m rows, i.e., the coset primary(

Λ+(α);Λ−(α)(BPS), u(α)(BPS)
)
, (5.47)

where, for m ≥ 1,

Λ−(α)(BPS) =
[
k(α2 − α1), . . . , k(αm+1 − αm) + 1, . . . , k(αN − αN−1)

]
, (5.48)

and

u(α)(BPS) = k

N∑
i=1

αi −m(N + 1) . (5.49)

We now claim that this defines a chiral primary operator, even for finite N and
k.5 Similarly, the anti-chiral primary is obtained by applying the fermionic modes
associated to (0; f̄, (N+1)) whose mode numbers are less than 1/2, i.e., by removing
a box in each of the rows m + 1, . . . , N . The corresponding anti-chiral primary is
then (

Λ+(α);Λ−(α)(BPS), u(α)(BPS)
)
, (5.50)

where, for m < N ,

Λ−(α)(BPS) =
[
k(α2−α1), . . . , k(αm+1−αm)+1, . . . , k(αN−αN−1)

]
=Λ−(α)(BPS),

(5.51)
but now

u(α)(BPS) = k

N∑
i=1

αi + (N −m)(N + 1) . (5.52)

Note that both states satisfy the selection rule (4.12) because

|Λ+(α)| = −k
N∑
i=1

αi + (N + 1)kαN (5.53)

5One way to see this is to note that, up to a field identification, this coset primary satisfies
Λ− = PΛ+, where P is the restriction to the first N − 1 Dynkin labels. We thank Stefan
Fredenhagen for pointing this out to us.
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and

|Λ−(α)(BPS)| = |Λ−(α)(BPS)| = −k
N∑
i=1

αi +NkαN +m . (5.54)

To show that these states are indeed chiral and anti-chiral primaries, we again first
compute the difference of the Casimirs; using the result from (5.35) we obtain

∆C = C(N+1)(Λ+(α)
)
− C(N)(Λ−(α)(BPS))

= C(N+1)(Λ+(α)
)
−C(N)(Λ−(α)

)
+k

m∑
i=1

αi−
mk

N

N∑
i=1

αi−
N + 1

2N m(N −m)

=
[
u(α)(BPS)]2
2N(N + 1) + 1

2u(α)(BPS) . (5.55)

Equations (4.15) and (4.16) then directly lead to

h
(
Λ+(α);Λ−(α)(BPS), u(α)(BPS)

)
= u(α)(BPS)

2(N + k + 1) + m

2 (5.56)

= 1
2 q
(
Λ+(α);Λ−(α)(BPS), u(α)(BPS)

)
,

so these states are indeed chiral primary. Similarly, using

u(α)(BPS) = u(α)(BPS) −N(N + 1) (5.57)

we compute

h
(
Λ+(α);Λ−(α)(BPS), u(α)(BPS)

)
= − u(α)(BPS)

2(N + k + 1) + N −m
2 (5.58)

= −1
2 q
(
Λ+(α);Λ−(α)(BPS), u(α)(BPS)

)
,

and thus these states are anti-chiral primary as claimed.
Note that for m = 0, all twists are non-negative, and so by (5.36) and (5.37)

already the ground state is chiral primary. Similarly, the ground state with m = N

is anti-chiral primary since all twists are non-positive.
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Chapter 6

The symmetric orbifold of
N = 2 minimal models

Having shown in chapter 5 how to relate the Kazama-Suzuki coset models in the
large k limit to a continuous orbifold of 2N free bosons and fermions, let us now
take this analysis one step further and compare the coset to a much bigger theory,
namely the symmetric orbifold of T2. The motivation for studying this construction
is its possible relation to string theory on AdS3.

In one dimension higher the so-called ABJ triality [41] suggests a relation be-
tween a higher spin theory on AdS4, a 3d CFT and a string theory in a certain
limit. For the case of AdS3 a somewhat different proposal was made in [76], where
theN = 4 superconformal generalisation [75] of the original bosonic minimal model
holography of chapter 2 was shown to define a subtheory of the symmetric orb-
ifold of T4, which is believed to be dual to string theory on an AdS3 × S3 × T4

background, see [52] for a review. More precisely, the CFT duals of the N = 4
higher spin theories on AdS3 are described by the so-called Wolf space cosets (see
[149, 147, 153, 98, 160, 148] for some early literature on this subject). In the
limit where the level k tends to infinity, these cosets simplify in a way completely
analogous to the discussion of chapter 5, viz. they become a theory of 4(N + 1)
free bosons and fermions subject to a U(N) singlet constraint. They then form a
natural subsector of the untwisted sector of the symmetric orbifold where the same
free theory is only subjected to a singlet constraint under the permutation group
SN+1 ⊂ U(N). The relations between these theories and the possible embedding
of N = 4 higher spin theory into string theory are sketched diagrammatically in
figure 6.1.

It is obviously tempting to believe that this sort of relation is not just restricted
to the maximally supersymmetric setting, but that the less supersymmetric higher-



88 Chapter 6: The symmetric orbifold of N = 2 minimal models

Wolf space cosets

(T4)N+1/U(N)
orbifold

(T4)N+1/SN+1

orbifold

N = 4 higher spin
theory on AdS3

String theory
on AdS3 × S3 × S3 × S1

String theory
on AdS3 × S3 × T4

large level

dual

?

large radius

dual

Figure 6.1: A schematic overview of N = 4 higher spin and stringy dualities.
The duality between the Wolf space cosets and N = 4 higher spin theory is
to be restricted to the perturbative sector, and the orbifold theories need to
be restricted to the untwisted sector for the embedding to make sense. Upon
identification of the large N = 4 symmetries, a large level of the Wolf space
cosets corresponds to a large radius of one of the S3 factors in string theory on
AdS3×S3×S3×S1. The latter then looks like AdS3×S3×T4 when restricting
to states without winding and momentum.

spin/CFT dualities may also be related naturally to string theory. This is quite
plausible following the general philosophy of [102], see also [100, 17, 18] for sub-
sequent work. A candidate for a possible stringy extension of N = 2 higher spins
has, however, yet to be found.

This chapter is based on the paper [84] with Matthias Gaberdiel. It is organised
as follows. In section 6.1 we define the symmetric orbifold in question, and explain
how the large level limit of the relevant KS models describe a sub-sector of this
theory. In particular, we study the embedding in detail for the untwisted sector,
where we can give very concrete decompositions in terms of the representations
of the N = 2 sW∞ algebra. Section 6.2 is devoted to understanding how the
twisted sector states of the symmetric orbifold can be similarly described in terms
of these representations; we study in detail the (2)-cycle, as well as the (2)2-cycle
twisted sector, for which we give detailed decomposition formulae; we also explain
how the structure of a general twisted sector can be understood in similar terms.
Finally, we undertake (in section 6.2.4) first steps towards characterising the higher
spin representations that are relevant for the description of the twisted sector,
generalising the discussion of [78] to the N = 2 case. Some aspects of sections 6.2.4
and 6.2.5 are based on an initial collaboration with Shouvik Datta. A self-contained
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description of the low-lying bosonic generators of the sW∞ algebra in terms of the
KS cosets can be found in appendix D.

6.1 The untwisted sector of the symmetric orbifold
In the last chapter the coset

su(N + 1)(1)
N+k+1

su(N)(1)
N+k+1 ⊕ u(1)(1)

κ

∼=
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
(6.1)

was shown to agree with an orbifold theory of N free complex bosons and fermions
by the continuous orbifold group U(N) in the limit where the level k → ∞. A
similar approach was applied to the N = 4 Wolf space cosets in [76], where it was
shown that the corresponding coset algebra is a natural subalgebra of the chiral
algebra of the symmetric orbifold; in turn the symmetric orbifold is believed to
be dual to string theory on AdS3, thus exhibiting how the higher spin theory is
embedded into string theory. In this chapter we want to analyse how the N = 2
cosets (6.1) can be related to an N = 2 symmetric orbifold. This should be a first
step towards understanding the string theory interpretation of the corresponding
N = 2 higher spin theory.

Recall that the continuous orbifold describes the theory of N free complex
bosons and fermions transforming in the fundamental (and anti-fundamental)
representation of U(N). Thus it can be represented as the continuous orbifold
(T2)N/U(N).1 The untwisted sector consists of the states that are invariant under
the action of U(N). The full orbifold theory includes also a twisted sector for each
conjugacy class of U(N).

As in the N = 4 case one may then consider, instead of the U(N) action, the
permutation action of SN+1 ⊂ U(N). To explain this, it is natural to start with a
theory of N + 1 free bosons and fermions, on which SN+1 acts by permutations.
This action is not irreducible since the sum of all bosons (or fermions) is invariant
under the permutation action,

N + 1 ∼= N ⊕ 1 . (6.2)

Here and in the following, normal font is used to denote representations of SN+1,
while bold font is reserved for representations of U(N). The N -dimensional repre-

1Strictly speaking the relevant orbifold is (R2)N/U(N), since the U(N) action is not compatible
with discrete momenta. However, we shall usually refer to it as the torus orbifold since the zero
momentum sector (which is what we shall be considering) is independent of the radius of the
torus.
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sentation on the right hand side is irreducible and is called the standard represen-
tation of SN+1. In a suitable basis this representation acts on only N copies of T2,
so the orbifold of N + 1 copies decomposes in fact as

(T2)N+1/SN+1 ∼= (T2)N/SN+1 ⊕ T2 . (6.3)

The free torus which transforms as a singlet under SN+1 is not of much interest to
us and we will often drop it; in the following we shall therefore mainly concentrate
on the non-trivial part of the symmetric orbifold. This will be the symmetric
orbifold theory which will be related to the KS models.

In order to see the relation to the KS models we recall that the standard repre-
sentation ρ of SN+1 acting on the N tori maps permutations to unitary (actually
even orthogonal) N × N matrices. Thus we can view ρ(SN+1) as a finite sub-
group of U(N), and since the standard representation is faithful, that subgroup
is isomorphic to SN+1. Furthermore, as discussed in [76], the fundamental (and
anti-fundamental) representation of U(N) branches down to the standard represen-
tation of SN+1. Thus the U(N)-invariant states of the free theory form a consistent
subsector of the SN+1 invariant states, and hence the untwisted sector of the con-
tinuous orbifold is a subsector of the untwisted sector of the symmetric orbifold.

In the rest of this section we shall analyse the untwisted sector of the symmetric
orbifold from the viewpoint of the continuous orbifold. The twisted sectors of the
symmetric orbifold will be discussed in the following section.

6.1.1 Perturbative decomposition of the untwisted sector

The untwisted sector of the symmetric orbifold by SN+1 contributes to the partition
function as

Z(U)(q, q̄, y, ȳ) = |Zvac(q, y)|2 +
∑
R

|Z(U)
R (q, y)|2 , (6.4)

where Zvac denotes the vacuum character, and R labels the non-trivial irreducible
representations of SN+1. In order to avoid having to write repeatedly N + 1, we
now change notation and replace the N from (6.1), (6.2) and (6.3) by Ñ , and define
N ≡ Ñ+1; in any case, we shall always be considering the large N (and hence large
Ñ limit) for which this distinction is immaterial. In their analysis [53], Dijkgraaf,
Moore, Verlinde and Verlinde computed the partition function of the symmetric
orbifold XN/SN in the R-R sector with insertion of (−1)F+F̄ , which reads

∞∑
N=0

pN Z̃R(SN (X)) =
∞∏
m=1

∏
∆,∆̄,`,¯̀

1(
1− pmq ∆m q̄ ∆̄m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀) . (6.5)
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Here we have indicated by the tilde that we have inserted a factor of (−1)F+F̄ ,
and c(∆, ∆̄, `, ¯̀) are the expansion coefficients of the R-R partition function (with
insertion of (−1)F+F̄ ) of the base manifold X,

Z̃R(X) =
∑

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀) q∆q̄∆̄y`ȳ ¯̀

. (6.6)

In our case, X = T2 and the partition function factorises into its chiral parts, with
c(∆, ∆̄, `, ¯̀) = c(∆, `)c(∆̄, ¯̀). The chiral partition function reads (as in [76] we will
be ignoring the momentum and winding states)

Z̃
(chiral)
R (T2) = i

ϑ1(z, τ)
η3(τ) = −(y 1

2 − y− 1
2 )
∞∏
n=1

(1− yqn)(1− y−1qn)
(1− qn)2

= −y 1
2 + y−

1
2 + q(y 3

2 − 3y 1
2 + 3y− 1

2 − y− 3
2 )

+ 3 q2(y 3
2 − 3y 1

2 + 3y− 1
2 − y− 3

2 )

+ q3(−y 5
2 + 9y 3

2 − 22y 1
2 + 22y− 1

2 − 9y− 3
2 + y−

5
2 ) +O(q4) , (6.7)

where

ϑ1(z, τ) = i(y 1
2 − y− 1

2 )q 1
8

∞∏
n=1

(1− qn)(1− y qn)(1− y−1 qn) . (6.8)

In our analysis we will only be concerned with the NS-NS sector. The partition
function in that sector can be obtained from (6.5) by spectral flow

y → y q
1
2 , ȳ → ȳ q̄

1
2 , p→ p q

1
8 q̄

1
8 y

1
2 ȳ

1
2 . (6.9)

This leads to an overall factor of (qq̄)−N8 = (qq̄)− c
24 , which we will suppress

throughout this chapter for better readability. (Effectively, this is equivalent to
multiplying the right-hand side of the last replacement in (6.9) by an additional
factor of (qq̄) 1

8 .) We then obtain the symmetric orbifold generating function in the
NS-NS sector (without a (−1)F+F̄ insertion)
∞∑
N=0

pNZ(SN (X))

=
∞∏
m=1

∏
∆,∆̄
`,¯̀

1(
1− (−1)`+¯̀+1pmq

∆
m+ `

2 +m
4 q̄

∆̄
m+ ¯̀

2 +m
4 y`+

m
2 ȳ

¯̀+m
2

)c(∆,∆̄,`,¯̀) . (6.10)

Now the generating function of the untwisted sector corresponds to the m = 1
factor of (6.10),
∞∑
N=0

pNZ(U)(SN (X))=
∏
∆,∆̄
`,¯̀

1(
1− (−1)`+¯̀+1p q∆+ `

2 + 1
4 q̄∆̄+ ¯̀

2 + 1
4 y`+

1
2 ȳ

¯̀+ 1
2

)c(∆,∆̄,`,¯̀) ,
(6.11)
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and the chiral vacuum character (the partition function of the W algebra) of the
orbifold (T2)Ñ+1/SÑ+1 can be found from (6.11) by setting ∆̄ = 0, ¯̀ = − 1

2 and
taking N large enough so that the coefficients stabilise; it is given by

Z ′vac = 1 + q
1
2 (y + y−1) + 4q + 6q 3

2 (y + y−1) + 4q2(y2 + 6 + y−2)

+ q
5
2 (y3 + 37y + 37y−1 + y−3) + 7q3(4y2 + 17 + 4y−2) +O(q 7

2 ) . (6.12)

In order to obtain the vacuum character of the orbifold (T2)Ñ/SÑ+1 ≡ (T2)N−1/

SN , we have to divide this by the chiral partition function of T2, which means we
neglect the torus that transforms as a singlet under SN ≡ SÑ+1 and corresponds
to the trivial factor in the permutation representation of SÑ+1, see equation (6.2).
Since this torus partition function is given by

Z
(chiral)
NS (T2) =

∞∏
n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)
(1− qn)2 , (6.13)

where we have once more suppressed the prefactor q− 1
8 , we obtain the modified

vacuum character

Zvac(q, y) = Z ′vac

Z
(chiral)
NS (T2)

= 1 + q + 2q 3
2 (y + y−1) + q2(y2 + 8 + y−2) + 10q 5

2 (y + y−1)

+ q3(5y2 + 32 + 5y−2) + q
7
2 (2y3 + 47y + 47y−1 + 2y−3)

+ q4(y4 + 37y2 + 142 + 37y−2 + y−4) +O(q 9
2 ) . (6.14)

This vacuum character counts the chiral states that transform trivially under SN ,
and hence includes, in particular, the character of the N = 2 coset sW∞ algebra
(in the limit k → ∞). Thus the vacuum sector should decompose into the coset
characters as

Zvac(q, y) =
∑
Λ

n(Λ)χ(0;Λ)(q, y) . (6.15)

Indeed, by comparing both sides of the equation order by order in q, we find
explicitly

Zvac(q, y) = χ(0;0)(y, q) + χ(0;[2,0,...,0])(q, y) + χ(0;[0,0,...,0,2])(q, y)
+ χ(0;[3,0,...,0,0])(q, y) + χ(0;[0,0,0,...,0,3])(q, y)
+ χ(0;[2,0,...,0,1])(q, y) + χ(0;[1,0,0,...,0,2])(q, y)
+ 2 · χ(0;[4,0,...,0,0])(q, y) + 2 · χ(0;[0,0,0,...,0,4])(q, y)
+ χ(0;[0,2,0,...0,0])(q, y) + χ(0;[0,0,...0,2,0])(q, y)
+ χ(0;[3,0,...,0,1])(q, y) + χ(0;[1,0,0,...,0,3])(q, y)
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+ 2 · χ(0;[2,0,0,...,0,2])(q, y)
+ χ(0;[2,1,0,...,0,1])(q, y) + χ(0;[1,0,...,0,1,2])(q, y)
+ χ(0;[0,2,0,...,0,1])(q, y) + χ(0;[1,0,...,0,2,0])(q, y)
+ 3 · χ(0;[3,0,...,0,2])(q, y) + 3 · χ(0;[2,0,...,0,3])(q, y)
+ χ(0;[1,1,0,...,0,2])(q, y) + χ(0;[2,0,...,0,1,1])(q, y)
+ χ(0;[3,1,0,...,0])(q, y) + χ(0;[0,...,0,1,3])(q, y)
+ 2 · χ(0;[4,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,4])(q, y)
+ χ(0;[2,1,0,...,0,1,0])(q, y) + χ(0;[0,1,0,...,0,1,2])(q, y)

+ χ(0;[1,1,0,...,0,1,1])(q, y) +O(q 9
2 ) . (6.16)

As in [76], this is precisely of the form (6.15), with n(Λ) denoting the multiplicity
of the SN singlet representation in the U(N − 1) representation Λ, where we think
of Λ as a SÑ+1 ≡ SN representation using the embedding SÑ+1 ⊂ U(Ñ).2

Furthermore, as in [77], we can identify the single-particle generators that gen-
erate this extended W algebra; if we had not divided out by the diagonal T2, the
generating function of the single-particle generators would have been (see [77])∑

s,l

d̃(s, l)qsyl = (1− q)
[
Z

(chiral)
NS (T2)(q, y)− 1

]

= (1− q)
[ ∞∏
n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)
(1− qn)2 − 1

]
, (6.17)

where the factor of (1 − q) removes the derivatives, and d̃(s, l) are the number of
single-particle generators of spin s and charge l. Dividing out by the diagonal torus
removes just the contribution coming from the two free fermions and bosons; thus
the actual generating function equals

∑
s,l

d(s, l)qsyl = (1− q)
[
Z

(chiral)
NS (T2)(q, y)−

(
1 + q

1
2 (y + y−1)
(1− q) + 2 q1

(1− q)

)]
= q + 2q 3

2 (y + y−1) + q2(6 + y2 + y−2) + 6q 5
2 (y + y−1) + · · · .

(6.18)

These single-particle generators generate then the W algebra in the sense that

Zvac(q, y) =
∏
s,l

∞∏
n=0

1
(1− ylqs+n)(−1)2sd(s,l) . (6.19)

2We thank Marco Baggio for helping us compute these multiplicities.
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They should sit in wedge representations of the N = 2 sW∞ algebra, and one
finds, analogously to [77], that we have the decomposition

∑
s,l

d(s, l)qsyl = (1− q)
∞∑′

m,n=0
χ

(wedge)
(0;[m,0,0,...,0,0,n])(q, y) , (6.20)

where the prime indicates that the terms with (m,n) = (0, 0), (1, 0), (0, 1) are not
included in the sum. Note that the term with m = n = 1 accounts precisely for
the generators of the original sW∞ algebra. We have checked these identities up
to order q15, and it should be straightforward to prove them using the techniques
of [77].

We can similarly extract the characters corresponding to the second sum in
(6.4). For example, the representation that contains, among others, the coset
states

(0; f) , (0; f̄) , (6.21)

is associated to R being the standard representation of SN . The corresponding
character Z1 is obtained from the coefficient of q̄(ȳ+ ȳ−1) in Z(U), from which one
has to subtract the contribution from |Z ′vac|2 and then divide by the torus partition
function again. This character turns out to be given by

Z1 = Z
′
vac(Z(chiral)

NS (T2)− 1)
Z

(chiral)
NS (T2)

= Z ′vac −Zvac

= q
1
2 (y + y−1) + 3q + 4q 3

2 (y + y−1) + q2(3y2 + 16 + 3y−2)

+ q
5
2 (y3 + 27y + 27y−1 + y−3) + q3(23y2 + 87 + 23y−2)

+ 5q 7
2 (2y3 + 29y + 29y−1 + 2y−3)

+ q4(3y4 + 141y2 + 433 + 141y−2 + 3y−4) +O(q 9
2 ) . (6.22)

It can be decomposed into coset characters in the k →∞ limit according to

Z1(q, y) = χ(0;[1,0,...,0])(q, y) + χ(0;[0,...,0,1])(q, y)
+ χ(0;[2,0,...,0])(q, y) + χ(0;[0,...,0,2])(q, y)
+ χ(0;[1,0,...,0,1])(q, y)
+ 2 · χ(0;[3,0,...,0])(q, y) + 2 · χ(0;[0,...,0,3])(q, y)
+ χ(0;[1,1,0,...,0])(q, y) + χ(0;[0,...,0,1,1])(q, y)
+ 2 · χ(0;[2,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,2])(q, y)
+ 3 · χ(0;[4,0,...,0])(q, y) + 3 · χ(0;[0,...,0,4])(q, y)
+ 2 · χ(0;[2,1,0,...,0])(q, y) + 2 · χ(0;[0,...,0,1,2])(q, y)
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+ χ(0;[0,2,0,...,0])(q, y) + χ(0;[0,...,0,2,0])(q, y)
+ 4 · χ(0;[3,0,...,0,1])(q, y) + 4 · χ(0;[1,0,...,0,3])(q, y)
+ 2 · χ(0;[1,1,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,1,1])(q, y)
+ 5 · χ(0;[2,0,...,0,2])(q, y)
+ χ(0;[2,0,...,0,1,0])(q, y) + χ(0;[0,1,0...,0,2])(q, y)
+ 4 · χ(0;[3,1,0,...,0])(q, y) + 4 · χ(0;[0,...,0,1,3])(q, y)
+ χ(0;[0,1,1,0,...,0])(q, y) + χ(0;[0,...,0,1,1,0])(q, y)
+ 7 · χ(0;[4,0,...,0,1])(q, y) + 7 · χ(0;[1,0,...,0,4])(q, y)
+ 4 · χ(0;[2,1,0,...,0,1])(q, y) + 4 · χ(0;[1,0,...,0,1,2])(q, y)
+ 3 · χ(0;[0,2,0,...,0,1])(q, y) + 3 · χ(0;[1,0,...,0,2,0])(q, y)
+ 9 · χ(0;[3,0,...,0,2])(q, y) + 9 · χ(0;[2,0,...,0,3])(q, y)
+ 2 · χ(0;[3,0,...,0,1,0])(q, y) + 2 · χ(0;[0,1,0,...,0,3])(q, y)
+ 5 · χ(0;[1,1,0,...,0,2])(q, y) + 5 · χ(0;[2,0,...,0,1,1])(q, y)
+ χ(0;[1,1,0,...,0,1,0])(q, y) + χ(0;[0,1,0,...,0,1,1])(q, y)
+ χ(0;[2,0,1,0...,0,1])(q, y) + χ(0;[1,0,...,0,1,0,2])(q, y)
+ 3 · χ(0;[2,1,0,...,0,1,0])(q, y) + 3 · χ(0;[0,1,0,...,0,1,2])(q, y)
+ χ(0;[1,0,1,0,...,0,2])(q, y) + χ(0;[2,0,...,0,1,0,1])(q, y)

+ 6 · χ(0;[1,1,0,...,0,1,1])(q, y) +O(q 9
2 ) . (6.23)

This time, the coefficients of the coset characters χ(0;Λ) correspond precisely to the
multiplicity of the (N − 1)-dimensional standard representation of SN inside Λ.3

This is obviously in line with the fact that the Ñ = N −1 boson and fermion fields
(that give rise to the representations (6.21)) transform precisely in this represen-
tation of the permutation group.

6.1.2 The building blocks of the untwisted sector
Having identified the lowest two representations of SN by explicitly evaluating
the orbifold partition function order by order in q, we will now turn to a more
systematic analysis of the untwisted sector. We will show that it organises itself
in terms of multi-particle powers of the ‘minimal representation’ Z1, in parallel to
what was observed in [78].

Let us first introduce the wedge character χ1 pertaining to Z1 by stripping off
the modes outside of the wedge,

Z1 = Zvac · χ1 or χ1 = Z
(chiral)
NS (T2)− 1 , (6.24)

3Once more we thank Marco Baggio for helping us compute these multiplicities.
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where Zvac is the vacuum character (that counts the modes outside the wedge);
explicitly, we have

χ1(q, y) =
∑
(∆,`)
6=(0,− 1

2 )

|c(∆, `)| q∆+ `
2 + 1

4 y`+
1
2

= q
1
2
(
y + y−1)+ 3 q + 3 q 3

2
(
y + y−1)+ q2 (y2 + 9 + y−2)+O(q 5

2 ) .
(6.25)

Then we claim that the full partition function of the untwisted sector for N →∞
can be written as

Z(U)(q, q̄, y, ȳ) = |Zvac(q, y)|2
(

1 +
∑
Λ

|χΛ(q, y)|2
)
, (6.26)

where Λ runs over all Young diagrams, and χΛ(q, y) is the Λ-symmetrised power
of χ1(q, y) given by (see e.g. [128])

χΛ(q, y) = 1
m!

∑
ρ∈Sm

χΛm(ρ)
m∏
k=1
Fk−1χ1

(
qk, yk

)ak(ρ)
. (6.27)

Here m = |Λ| is the number of boxes of Λ, χΛm(ρ) is the character of Λ seen as an
Sm-representation, ak(ρ) is the number of k-cycles in the permutation ρ, and F is
the involutive mapping that acts on a character or partition function by insertion
of (−1)F+F̄ . So denoting Fχ1 by χ̃1, the first few characters read

χ (q, y) = χ1(q, y) ,

χ (q, y) = 1
2
(
χ1(q, y)2 + χ̃1(q2, y2)

)
,

χ (q, y) = 1
2
(
χ1(q, y)2 − χ̃1(q2, y2)

)
,

χ (q, y) = 1
6
(
χ1(q, y)3 + 3χ1(q, y)χ̃1(q2, y2) + 2χ1(q3, y3)

)
,

χ (q, y) = 1
6
(
χ1(q, y)3 − 3χ1(q, y)χ̃1(q2, y2) + 2χ1(q3, y3)

)
,

χ (q, y) = 1
3
(
χ1(q, y)3 − χ1(q3, y3)

)
. (6.28)

A proof of (6.26) will be given at the end of section 6.2.3. We have checked
agreement of equations (6.11) and (6.26) for up to three boxes and up to order
O(q2)O(q̄2), which is the lowest order to which the Young diagrams Λ with four
boxes contribute.
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6.2 Twisted sectors of the symmetric orbifold
The twisted sectors are labelled by conjugacy classes [g] of SN , and consist of those
states which are invariant under Cg, the centraliser of g in SN . The conjugacy
classes of SN can be labelled by cycle structures

(1)N1(2)N2(3)N3 · · · (m)Nm , where
m∑
i=1

Ni = N . (6.29)

The conjugacy class labelled by such a string consists of all elements of SN that can
be decomposed into N2 2-cycles, N3 3-cycles, etc. The centraliser of this conjugacy
class is then

C(1)N1 (2)N2 ···(m)Nm ∼= SN1 × (SN2 n ZN2
2 )× · · · × (SNm n ZNmm ) . (6.30)

The n free fermions and bosons corresponding to an n-cycle have twists of i/n, for
i = 1, . . . , n, and the corresponding Zn acts by the usual phases on them. On the
other hand, the SNn factors in the semi-direct products permute the Nn different
n-cycles among each other.

Since states are tensor products of left- and right-moving states, the action of
the centraliser on these chiral states need not be trivial (only the combined action
on left- and right-movers must be). The partition function of the [g]-twisted sector
will thus have the structure

Z [g] =
∑
R

|Z [g]
R |

2 , (6.31)

where R labels the different irreducible representations of the centraliser C [g]. We
will see examples of this below.

6.2.1 The 2-cycle twisted sector
We will start our analysis of the twisted sector with the subsector corresponding
to a 2-cycle twist, which is the simplest example. The partition function of the
2-cycle twisted sector in the ordinary symmetric orbifold can be obtained from the
generating function; more specifically, the R-R sector expression can be extracted
from the m = 1 and m = 2 factors of (6.5),

∞∑
N=0

pN Z̃
(2)
R (SNT2) = p2

∑′

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀)q∆2 q̄ ∆̄2 y`ȳ ¯̀

×
∏

∆,∆̄,`,¯̀

1
(1− p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀)

, (6.32)
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where the prime at the sum indicates that ∆ − ∆̄ has to be even. Flowing to
the NS-NS sector and considering the stabilising limit of large N we find for the
partition function without (−1)F+F̄ insertion

Z(2)(SNT2) =
∑′

∆,∆̄,`,¯̀
|c(∆, ∆̄, `, ¯̀)| q 1

2 (∆+`+1)q̄
1
2 (∆̄+¯̀+1)y`+1ȳ

¯̀+1

×
∏

(∆,∆̄,`,¯̀)
6=(0,0,− 1

2 ,−
1
2 )

1(
1− (−1)`+¯̀+1q∆+ `

2 + 1
4 q̄∆̄+ ¯̀

2 + 1
4 y`+

1
2 ȳ

¯̀+ 1
2

)c(∆,∆̄,`,¯̀) .
(6.33)

We then obtain the partition function we are interested in by dividing by the left-
and right-moving torus partition function ZNS(T2) = |Z(chiral)

NS (T2)|2,

Z(2)(q, q̄, y, ȳ) = q
1
4 q̄

1
4

y
1
2 ȳ

1
2

[
1 + yȳ + (yȳ2 + 3y + 3ȳ + ȳ−1)q̄ 1

2

+ (y2ȳ + y + ȳ + y−1)q 1
2

+ 2(y2ȳ2 + 2y2 + 5yȳ + 2ȳ2 + 5 + 2yȳ−1

+ 2y−1ȳ + y−1ȳ−1)q 1
2 q̄

1
2 + · · ·

]
. (6.34)

Since the centraliser of this sector (ignoring the N − 2 sectors that are not affected
by the twist — invariance with respect to this subgroup will just guarantee that
the remaining factors give rise to a factor equal to the untwisted sector Z(U) for
large N) is simply S2 ∼= Z2, there are two representations that contribute, namely

Z+(q, y) = Zvac ·
∑

∆ even,`
|c(∆, `)| q 1

2 (∆+`+1)y`+1

= y
1
2 q

1
4 + (y 3

2 + 3y− 1
2 )q 3

4 + (10y 1
2 + 3y− 3

2 )q 5
4

+ (12y 3
2 + 27y− 1

2 + y−
5
2 )q 7

4 +O(q 9
4 ) , (6.35)

and

Z−(q, y) = Zvac ·
∑

∆ odd,`
|c(∆, `)| q 1

2 (∆+`+1)y`+1

= y−
1
2 q

1
4 + (3y 1

2 + y−
3
2 )q 3

4 + (3y 3
2 + 10y− 1

2 )q 5
4

+ (y 5
2 + 27y 1

2 + 12y− 3
2 )q 7

4 +O(q 9
4 ) . (6.36)

Defining the wedge characters χ(2)
± by

Z± = Zvac · χ(2)
± , (6.37)



6.2 Twisted sectors of the symmetric orbifold 99

the whole sector can then simply be written as

Z(2) = Z(U) ·
(
|χ(2)

+ |2 + |χ(2)
− |2

)
= |Zvac|2 ·

(
1 +

∑
Λ

|χΛ(q, y)|2
)
·
(
|χ(2)

+ |2 + |χ(2)
− |2

)
. (6.38)

The two wedge characters χ± have the same leading q behaviour, and their lowest
terms are described by the coset representations [83]

([k/2, 0, . . . , 0]; [k/2, 0, . . . , 0]) and ([k/2, 0, . . . , 0]; [k/2 + 1, 0, . . . , 0])
(6.39)

for large k, respectively, i.e., have twist ξ = [−1/2, 0, . . . , 0] in the continuous
orbifold picture. One of these states can be obtained from the other by acting on
it with a fermionic zero-mode. In fact, both χ± can be written in terms of coset
representations (for k →∞), and we have checked that up to order q2 we have

Z+(q, y) = χ([k/2,0,...,0];[k/2+1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2−1,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2+3,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2,1,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2+1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2,1,0,...,0,1])(q, y)
+ χ([k/2,0,...,0];[k/2−2,1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+3,0,...,0,1])(q, y)
+ χ([k/2,0,...,0];[k/2−1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+2,1,0,...,0])(q, y)
+ 2 ·χ([k/2,0,...,0];[k/2−1,2,0,...,0])(q, y) + 2 ·χ([k/2,0,...,0];[k/2+1,0,...,0,2])(q, y)

+ 2 · χ([k/2,0,...,0];[k/2−2,1,0,...,0,1])(q, y) +O(q 9
4 ) ,

Z−(q, y) = χ([k/2,0,...,0];[k/2,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+2,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2−1,1,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2−1,1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+1,1,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2+2,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+1,1,0,...,0,1])(q, y)
+ χ([k/2,0,...,0];[k/2−2,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+4,0,...,0])(q, y)
+ 2 · χ([k/2,0,...,0];[k/2,0,...,0,2])(q, y) + 2 · χ([k/2,0,...,0];[k/2−2,2,0,...,0])(q, y)
+ χ([k/2,0,...,0];[k/2−3,1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2−2,0,...,0,1])(q, y)

+O(q 9
4 ) . (6.40)

As in [76], we can understand the multiplicities in these decompositions sys-
tematically: Z± contains all those coset representations

([k/2, 0, . . . , 0]; [k/2 + l0, Λ
′]) (6.41)
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for which l0 +
∑
i Λ
′
i is odd or even, respectively.4 This is due to the fact that

l0 +
∑
i Λ
′
i counts the number of twisted modes by which the ground state

(Λ+;Λ−) = ([k/2, 0, . . . , 0]; [k/2, 0, . . . , 0]) (6.42)

has been excited. Each of these twisted modes has odd parity under the Z2 in the
centraliser. In addition, each state has to be invariant under the SN−2 factor of
the centraliser — the states that are not invariant are accounted for by the middle
factor in (6.38). For the boxes in the first row of Λ−, this is automatically true, so
the overall multiplicity with which (Λ+;Λ−) contributes to Z± is determined by the
multiplicity of the trivial SN−2 representation inside the SU(N −2) representation
Λ′. Using the (by now) standard embedding SN−2 ⊂ U(N − 3) ⊂ SU(N − 2), we
obtain the decompositions

(N− 2)SU(N−2) → (N − 3)SN−2 ⊕ 1SN−2 ,

(N− 2)SU(N−2) → (N − 3)SN−2 ⊕ 1SN−2 . (6.43)

Hence states with Λ′ = or Λ′ = have multiplicity 1. Moreover, the symmet-
ric product of two boxes contains two SN−2 singlets, whereas the antisymmetric
product contains none. This explains why states with Λ′ = do not appear in
the decomposition, whereas states with Λ′ = appear with multiplicity 2. The
tensor product of a box with an antibox, ⊗ , contains two singlets, but one of
them corresponds to the sW∞ generators and hence does not give rise to a new
representation; the resulting multiplicity in the coset decomposition is therefore
again 1.

6.2.2 The twisted sector with two 2-cycles

The next, slightly more complicated step is to study the sector whose twist cor-
responds to the conjugacy class of permutations which have two 2-cycles. This
means that two of the free bosons and fermions are twisted, while all the others
are untwisted. We are interested in this sector because it contains the operators
corresponding to exactly marginal deformations of the theory, which should, in
particular, allow us to study the behaviour upon switching on the string coupling
constant, compare [86]. By the same reasoning as before, we can obtain the gen-

4Here we sum only over the first few Dynkin labels of Λ′, such that anti-boxes and their tensor
powers do not contribute to the Z2 parity. Actually, we should treat Λ′ as a U(N−2) rather than
SU(N − 2) representation, since an anti-box of U(N − 2) differs from [0, . . . , 0, 1] of SU(N − 2) by
its U(1) charge, which we have suppressed in our notation.
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erating function of the partition function from (6.10)

∞∑
N=0

pNZ(2)2
(SNT2) = p4

2

[( ∑′

∆,∆̄,`,¯̀
|c(∆, ∆̄, `, ¯̀)|q 1

2 (∆+`+1)q̄
1
2 (∆̄+¯̀+1)y`+1ȳ

¯̀+1
)2

+
∑′

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀)q∆+`+1q̄∆̄+¯̀+1y2`+2ȳ2¯̀+2

]

×
∏

∆,∆̄,`,¯̀

1
(1− pq∆+ `

2 + 1
4 q̄∆̄+ ¯̀

2 + 1
4 (−y)`+ 1

2 (−ȳ)¯̀+ 1
2 )c(∆,∆̄,`,¯̀)

.

(6.44)

In the first term, a factor of (−1)`+¯̀+1 has again been absorbed into the absolute
value |c(∆, ∆̄, `, ¯̀)|, whereas the second term contains a factor of (−1)2(`+¯̀+1) = 1.
As before, the partition function for our symmetric orbifold can be obtained by
taking N large, and dividing by the partition function of the free T2 theory. We
thus obtain

Z(2)2
= q

1
2 q̄

1
2 (1 + yȳ + y−1ȳ−1) + q

1
2 q̄1(yȳ + y−1ȳ−1 + 3(y + y−1) + 4(ȳ + ȳ−1)

)
+ q1q̄

1
2
(
yȳ + y−1ȳ−1 + 4(y + y−1) + 3(ȳ + ȳ−1)

)
+ q1q̄1(38 + 3(y2ȳ2 + y−2ȳ−2) + 17(y + y−1)(ȳ + ȳ−1)

+ 7(y2 + ȳ2 + ȳ−2 + y−2)
)

+ · · · . (6.45)

The centraliser of this sector is

C(2)2
= SN−4 × (S2 n Z2

2) . (6.46)

Again, we can ignore the action of the SN−4 part — this will only ensure that the
N−4 untwisted bosons and fermions from the directions that are unaffected by the
twist reproduce again the contribution from the untwisted sector. The remaining
group S2 nZ2

2
∼= D8 (the dihedral group of order 8) has five irreducible representa-

tions, four of dimension 1, and one of dimension 2. In order to describe them, we
first note that the abelian Z2×Z2 subgroup has 4 different one-dimensional repre-
sentations that are characterised by the eigenvalues (± , ±) of the two non-trivial
Z2 generators. In D8, both (+ ,+) and (− ,−) give rise to two one-dimensional rep-
resentations each that differ by the sign under the exchange of S2 — this accounts
for the 4 one-dimensional representations. The two-dimensional representation of
D8 is spanned by the two states with mixed charges (± , ∓) that are exchanged
under the action of S2.

The simplest way to describe the contribution of these representations to the
twisted sector is in multi-particle form. It follows from the derivation from equa-
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tion (6.44) that the (2)2 sector has the partition function

Z(U) · 1
2

[(∣∣∣ ∑
∆ even,

`

|c(∆, `)| q 1
2 (∆+`+1)y`+1

∣∣∣2 +
∣∣∣ ∑
∆ odd,

`

|c(∆, `)| q 1
2 (∆+`+1)y`+1

∣∣∣2)2

+
∣∣∣ ∑
∆ even,

`

c(∆, `)q∆+`+1y2`+2
∣∣∣2 +

∣∣∣ ∑
∆ odd,

`

c(∆, `)q∆+`+1y2`+2
∣∣∣2] . (6.47)

Since the wedge characters of the 2-cycle twisted sector, see equation (6.37), are
given by

χ
(2)
± =

∑
∆ even/odd,

`

|c(∆, `)| q 1
2 (∆+`+1)y`+1 , (6.48)

the above (2)2-sector partition function can then be written as

Z(2)2
= Z(U) ·

[∣∣(χ(2)
+ )

∣∣2 +
∣∣(χ(2)

+ )
∣∣2 +

∣∣(χ(2)
− )

∣∣2 +
∣∣(χ(2)
− )

∣∣2 +
∣∣χ(2)

+ χ
(2)
−
∣∣2] ,
(6.49)

where

(χ(2)
± ) / (q, y) = 1

2
(
χ

(2)
± (q, y)2 ± χ̃±(q2, y2)

)
= 1

2

[( ∑
∆ even/odd,

`

|c(∆, `)| q 1
2 (∆+`+1)y`+1)2
±

∑
∆ even/odd,

`

c(∆, `) q∆+`+1y2`+2
]
. (6.50)

Each of the terms in (6.49) corresponds to one of the five irreducible representations
of D8, and can be organised in terms of coset representations. In order to describe
this in detail, let us start from the ground state that has the eigenvalues (+ , +)
with respect to the two Z2 factors; it appears in the (χ(2)

− ) sector,5 is an element
of the coset representation(

Λ+;Λ−
)

=
(
[0, k/2, 0, . . . , 0]; [0, k/2, 0, . . . , 0]

)
, (6.51)

and therefore has the twist ξ = [−1/2,−1/2, 0, . . . , 0]. All other states of the (2)2-
twisted sector can be obtained by adding boxes to Λ− (while leaving Λ+ invariant),
yielding

Λ− = [l1, k/2 + l2, Λ
′] , (6.52)

5Our convention for the definition of χ(2)
± follows [76], and is motivated by the fact that

± corresponds to even/odd in equation (6.48); this then leads to the somewhat strange (but
inevitable) conclusion that the corresponding Z2 eigenvalue is ∓, see also equation (7.17) and
(7.18) of [76].



6.2 Twisted sectors of the symmetric orbifold 103

where l1, l2 ∈ Z, and Λ′ denotes the remaining N − 4 Dynkin labels. For example,
l1 = 0, l2 = 1 contains the ground state transforming as (− ,−) with respect to the
two Z2 factors — it appears in the sector (χ(2)

+ ) — while l1 = 1, l2 = 0 contains
the ground state with eigenvalues (+,−), which appears in the sector χ(2)

+ χ
(2)
− . The

other two dihedral representations only contribute at order q1; in terms of coset
representations we have the decompositions

Zvac · (χ(2)
+ ) = χ([0,k/2,0,...,0];[0,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[2,k/2−1,0,...,1]) + 2 · χ([0,k/2,0,...,0];[0,k/2,1,0,...,1])

+ χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0,1])

+O(q2) ,

Zvac · (χ(2)
+ ) = χ([0,k/2,0,...,0];[2,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,0,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[0,k/2,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0,1])

+ 2 ·χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + 2 ·χ([0,k/2,0,...,0];[2,k/2−1,0,...,1])

+O(q2) ,

Zvac · (χ(2)
− ) = χ([0,k/2,0,...,0];[2,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,0,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2,0,...,1])

+ 2 · χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1])

+O(q2) ,

Zvac · (χ(2)
− ) = χ([0,k/2,0,...,0];[0,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−2,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[2,k/2,0,...,1]) + 2 · χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,1])
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+ χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1])

+O(q2) ,

Zvac · χ(2)
+ χ

(2)
− = χ([0,k/2,0,...,0];[1,k/2,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[1,k/2−1,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[1,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[1,k/2−1,0,...,0]) + χ([0,k/2,0,...,0];[1,k/2+1,0,...,0])

+ 2 ·χ([0,k/2,0,...,0];[1,k/2−2,1,0,...,0]) + 2 ·χ([0,k/2,0,...,0];[1,k/2−1,0,...,1])

+ 4 · χ([0,k/2,0,...,0];[1,k/2−1,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[1,k/2−1,0,1,0,...,0]) + χ([0,k/2,0,...,0];[1,k/2,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[1,k/2,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[1,k/2+1,0,...,0,1])

+ 2 · χ([0,k/2,0,...,0];[3,k/2,0,...,0]) + 2 · χ([0,k/2,0,...,0];[3,k/2−1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[3,k/2−2,0,...,0]) +O(q2) . (6.53)

The systematics of the decompositions are analogous to the 2-cycle twist case,
see the discussion following equation (6.42) above, but are somewhat more compli-
cated. Each box appended to the first two rows of Λ− of the ground state (6.51)
has odd parity under one of the two Z2’s. As a consequence, the states that ap-
pear in the mixed sector χ(2)

+ χ
(2)
− are precisely those that have an odd number of

them, i.e., for which l1 is odd. Conversely, the other four representations contain
the states with l1 even, but the selection rules among them are more subtle, and
indeed, the same coset representation can appear in different D8 decompositions.
For example, the lowest state in the representation

Λ− = [2, k/2, 0, . . . , 0] (6.54)

can be constructed as an excitation of the twisted sector ground state with a
fermionic zero-mode and a bosonic (− 1

2 )-mode involving the same twisted coordi-
nate. Then the state has (+ , +) charge under Z2

2, and we can either symmetrise
or anti-symmetrise it with respect to the S2 factor. That is why this state appears
both in (χ(2)

− ) and in (χ(2)
− ) . But we can also construct the lowest state of (6.54)

by exciting the twisted sector ground state with a fermionic zero-mode from one
twisted coordinate, and a bosonic (− 1

2 )-mode from the other, and symmetrise with
respect to S2.6 In this case the charge is (− , −) under Z2

2, and the state is even
under the S2; thus the representation (6.54) also appears in the decomposition of
(χ(2)

+ ) .

6The antisymmetric combination is actually a supersymmetric descendant of the excitation by
the two fermionic zero-modes and is therefore part of ([0, k/2, 0, . . . , 0]; [0, k/2 + 1, 0, . . . , 0]).
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6.2.3 Sectors of arbitrary twist

While the detailed description of the decompositions into sW∞ characters becomes
more and more cumbersome, some aspects of the twisted sector can be described
quite generally. In particular, the partition function of any twisted sector can be
written in ‘multiparticle’ form, generalising equation (6.49).7 Let us first explain
this for the twisted sectors (2)n corresponding to multiple 2-cycle twists. By the
DMVV formula (6.5), the generating function for this part of the partition function
in the R-R sector equals

∞∑
N=0

pNZ
(2)n
R (SNT2) =

∏′

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣
p2n

× p2n
∏

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀) .

(6.55)

We recognise the second factor as the untwisted partition function of SN−2n, which
is indistinguishable from the untwisted partition function of SN as N → ∞. The
first factor, on the other hand, can be expressed in terms of sums of squares of
all possible symmetrisations of the elementary characters χ(2)

± . To see this, let us
write

∏′

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣
p2n

=

= exp

−∑′

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀) log

(
1− (−1)`+¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ

¯̀
)∣∣∣∣∣∣

p2n

= exp

 ∑′

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀)

∞∑
k=1

p2k

k
(−1)k(`+¯̀+1)q

k∆
2 q̄

k∆̄
2 yk`ȳk

¯̀

∣∣∣∣∣∣
p2n

.

Changing the order of summation and flowing to the NS-NS sector, this becomes

exp

 ∞∑
k=1

p2k

k

∑′

∆,∆̄,`,¯̀
c(∆, ∆̄, `, ¯̀)(−1)k(`+¯̀+1)q

k
2 (∆+`+1)q̄

k
2 (∆̄+¯̀+1)yk(`+1)ȳk(¯̀+1)

∣∣∣∣∣∣
p2n

7This observation was recently also made in [112].
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= exp
[ ∞∑
k=1

p2k

k

(
|Fk−1χ

(2)
+ (qk, yk)|2 + |Fk−1χ

(2)
− (qk, yk)|2

)]∣∣∣∣∣
p2n

=
n∑

m=0
exp

[
m∑
k=1

p2k

k
|Fk−1χ

(2)
+ (qk, yk)|2

]∣∣∣∣∣
p2m

· exp
[
n−m∑
k=1

p2k

k
|Fk−1χ

(2)
− (qk, yk)|2

]∣∣∣∣∣
p2(n−m)

.

Next we note that

exp

 m∑
j=1

p2j

j
|F j−1χ(qj , yj)|2

∣∣∣∣∣∣
p2m

=
∑

k1,...,km≥0∑
j
jkj=m

1∏m
i=1 i

kiki!

m∏
j=1
|F j−1χ(qj , yj)|2kj

= 1
m!

∑
ρ∈Sm

m∏
j=1
|F j−1χ(qj , yj)|2aj(ρ)

=
∑
Λ∈Ym

|χΛ(q, y)|2 . (6.56)

In the second equality, we have used that m!/
∏m
i=1 i

kiki! is the number of elements
in the conjugacy class Ck1,...,km of Sm, which consist of ki cycles of length i. On
the other hand, the last equality follows from (6.27) and the column orthogonality
of Sm characters, ∑

Λ∈Ym

(
χΛm(ρ)

)2 = m!
|Cρ|

for any ρ ∈ Sm . (6.57)

Here the sum is over all Young diagrams of m boxes or all irreducible representa-
tions of Sm. It follows that

Z(2)n(SNT2) = Z(U)(SN−2nT2)·
n∑
k=0

∑
Λ1∈Yk

|(χ(2)
+ )Λ1(q, y)|2

∑
Λ2∈Yn−k

|(χ(2)
− )Λ2(q, y)|2 ,

(6.58)
thus generalising (6.49) to the case n > 2.

So far we have only dealt with multiple 2-cycles, but the analysis is fairly anal-
ogous for the twist (m)n consisting of n non-overlapping m-cycles. The analogue
of equation (6.55) for m ≥ 2 is now

∞∑
N=0

pNZ
(m)n
R (SNT2) =

∏
∆,∆̄,`,¯̀
m|(∆−∆̄)

1(
1− (−1)`+¯̀+1pm q

∆
m q̄

∆̄
m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣∣∣
pmn
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× pmn
∏

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀) .

(6.59)

The analysis goes through essentially unmodified, and we find that we can express
the partition function of this sector in terms of the elementary characters

χ
(m)
i (q, y) =

∑
∆,`

∆≡i (mod m)

|c(∆, `)| q ∆m+ `
2 +m

4 y`+
m
2 for i = 1, . . . ,m (6.60)

as

Z(m)n(SNT2) = Z(U)(SN−mnT2) ·
∑

k1,...,km≥0∑
j
kj=n

m∏
i=1

∑
Λ∈Yki

|(χ(m)
i )Λ(q, y)|2 . (6.61)

In particular, in the sector whose twist is just one cycle of length m, we have n = 1
and thus

Z(m)(SNT2) = Z(U)(SN−mT2) ·
m∑
i=1
|χ(m)
i (q, y)|2 . (6.62)

It remains to combine these statements to cover the general case of a twist
with cycle structure (1)N1(2)N2 · · · (n)Nn , i.e., Ni cycles of length i for i = 1, . . . , n,
where

∑
i iNi = N . By the DMVV formula (6.5), the R-R partition function

factorises into n components pertaining to the different cycle lengths

Z
(1)N1 ···(n)Nn
R (SNT2) =

n∏
m=1

∏
∆,∆̄,`,¯̀
m|(∆−∆̄)

1(
1− (−1)`+¯̀+1pm q

∆
m q̄

∆̄
m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣∣∣
pmNm

,

(6.63)
and correspondingly for the NS-NS sector. Plugging in our results from above, we
obtain

Z(1)N1 ···(n)Nn (SNT2) =
n∏

m=1

∑
k1,...,km≥0∑

j
kj=Nm

m∏
i=1

∑
Λ∈Yki

|(χ(m)
i )Λ(q, y)|2

= Z(U)(SN1T2) ·
n∏

m=2

∑
k1,...,km≥0∑

j
kj=Nm

m∏
i=1

∑
Λ∈Yki

|(χ(m)
i )Λ(q, y)|2 .

(6.64)
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Thus we can think of the entire twisted sector as consisting of the ‘multiparticle’
contributions of the fundamental building blocks (6.60).

As was already alluded to before, essentially the same techniques also allow us
to prove the identity equation (6.26) for the untwisted sector partition function.
Since χ(1)

1 (q, y) = Z
(chiral)
NS (T2)(q, y) = 1 + χ1(q, y) and

Z ′vac(q, y) =
∏

(∆,`)
6=(0,− 1

2 )

1(
1− q∆+ `

2 + 1
4 (−y)`+ 1

2

)c(∆,`) , (6.65)

we get, for N →∞,

Z(U)(SNT2)(q, q̄, y, ȳ) =
∏

(∆,∆̄,`,¯̀)
6=(0,0,− 1

2 ,−
1
2 )

1(
1− q∆+ `

2 + 1
4 q̄∆̄+ ¯̀

2 + 1
4 (−y)`+ 1

2 (−ȳ)¯̀+ 1
2

)c(∆,∆̄,`,¯̀)
= |Z ′vac(q, y)|2 · exp

∞∑
k=1

1
k
|Fk−1χ1(qk, yk)|2

= |Z ′vac(q, y)|2
∞∑
m=0

∑
Λ∈Ym

|χΛ(q, y)|2 , (6.66)

which reproduces (6.26) upon dividing by ZNS(T2), see equation (6.14).

6.2.4 Twisted representations of the wedge algebra

Given the multiparticle structure of the entire twisted sector, see (6.64), it only re-
mains to understand the structure of the building blocks χ(m)

i (that account for the
individual ‘particles’). These wedge characters count states that sit in representa-
tions of the wedge subalgebra shs[µ] of sW∞[µ]. In this section we undertake first
steps to understand the structure of these higher-spin representations. This should
shed light on the ‘particle’ structure of the stringy extension of the higher spin
theory; in [78] the relevant analysis was done for the bosonic toy model consisting
of a single boson, here we explain the N = 2 generalisation.

As was explained at the beginning of this chapter, the m-cycle twisted sector
is generated by complex fermions and bosons of twist ξi = i

m , where i = 1, . . . ,m.
Since the sW∞ generators are neutral bilinears in the currents (and since their
mode numbers continue to be integers or half-integers depending on the statistics),
the contribution coming from the individual twisted (complex) bosons and fermions
decouple from one another, and we can think of the representation as consisting of
an m-fold tensor product of the individual twist-ξi contributions. Apart from one
untwisted component corresponding to i = m — this does not contribute to the
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wedge character — the other (m−1) components all lead to representations whose
wedge character is of the form (see also [78])

χξ(q, y) = qh
∞∏
n=1

(1 + zyqn−
1
2−ξ)(1 + z−1y−1qn−

1
2 +ξ)

(1− zqn−ξ)(1− z−1qn−1+ξ)

∣∣∣∣∣
zp

. (6.67)

Here we have assumed that 0 < ξ < 1
2 , and z keeps track of the twist, i.e., the

terms with a given power of zp pick up the same phase under the cyclic group Zm
in the centraliser. In the following, we shall concentrate on the z0 case, for which
the states transforms trivially under Zm. The q-expansion of this character is

χξ(q, y) = qh
(
1 + yq

1
2 + 2q + (3y + y−1)q 3

2

+ (y2 + 6)q2 + (8y + 3y−1)q 5
2 + . . .

)
. (6.68)

For ξ < 1
2 < 1 there is a similar answer where y is replaced by y 7→ y−1; the case

ξ = 1
2 is a bit special since there are then fermionic zero modes.

Each such representation has a single descendant at level 1/2, and is therefore
a special case of what one may like to call a ‘level-1/2 representation’, compare the
terminology of [78]. Thus we can learn about the structure of the twisted sector
by studying general level-1/2 representations, and this is what we shall be doing
in the following.

Suppose φ is the ground state of a level-1/2 representation. Let us assume for
definiteness that φ is annihilated by G−−1/2 (rather than G+

−1/2), i.e.,

G−−1/2φ = 0 , (6.69)

as well as by all the other negative-charge fermionic spin-s supercharges, i.e.,

W s−
−1/2φ = 0 for s = 2, 3, . . . . (6.70)

(This is the situation that is relevant for (6.68); the conjugate solution arises for
1
2 < ξ < 1.) Here we have denoted the generators of the spin-s multiplet by (see
e.g., [35])

W s0 , W s± , W s1 (6.71)

of spin s, s+ 1
2 , and s+ 1, respectively. The corresponding modes then transform

in a representation of the superconformal algebra

[G±r ,W s0
n ] = ∓W s±

r+n

{G±r ,W s±
r } = 0

{G±r ,W s∓
r } = ±

(
(2s− 1)r − t

)
W s0
r+t + 2W s1

r+t

[G±r ,W s1
n ] =

(
sr − 1

2 n
)
W s±
r+n . (6.72)
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Let us denote the eigenvalues of the zero-modes W s0
0 and W s1

0 on the ground
state φ by ws0 and ws1, respectively. Then it follows from (6.70) that

0 = G+
1/2W

s−
−1/2 φ =

(
sws0 + 2ws1

)
φ (6.73)

and hence
ws1 = −1

2sw
s0 . (6.74)

Note that for s = 1 this reduces to the familiar chiral primary condition, namely
that h = − 1

2q, where q = w10 is the U(1) charge with respect to the spin-1 field in
the N = 2 supermultiplet, and h = w11 is the conformal dimension.

The other condition that follows from the level-1/2 condition is that all the
states generated by the W s+

−1/2 modes from the ground state are proportional to
G+
−1/2φ, i.e.,

W s+
−1/2φ = α(s)G+

−1/2φ . (6.75)

Applying G−1/2 to this relation and using the above commutation relations, we find
that

α(s) = −sw
s0

2h , (6.76)

where we have used (6.74).
In order to obtain a relation between the different quantum numbers α(s), we

finally apply the W 20
0 mode to both sides of equation (6.75). For example, for the

case where s = 2 and using the [W 20
m ,W 2+

r ] commutation relation, we conclude
that

α(3) = −8q3(5ν2 − 8
√

3να(2)− 15(8α(2)2 + 3))
9(ν − 5) , (6.77)

where ν = 2µ− 1 and q3 is a normalisation constant of W 30. This determines α(3)
as a function of α(2). Continuing in this manner, we obtain a recursion relation for
all α(s). This shows that all higher quantum numbers ws0 and ws1 are recursively
determined. Thus the assumption that there is a single state at level 1/2 implies
that the most general level-1/2 representation is characterised by only two quantum
numbers

h ≡ w11 and α(2) ≡ −w
20

h
. (6.78)

6.2.5 A relation between the parameters
As in the bosonic analysis of [78], it seems that the actual ξ-twisted representation
is a special type of level-1/2 representation, and has in fact one fewer state at
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level 3/2 than a generic level-1/2 representation.8 One should therefore expect
that it is characterised by a special relation between the two eigenvalues in (6.78).
In order to work out what this relation should be, we can use that the ξ-twisted
representation is described, in the coset language, by the large k limit of the coset
representation ([ξk, 0, . . . , 0]; [ξk, 0, . . . , 0]) [83]. In order to evaluate the eigenvalues
of L and W 20 on this coset state, we have worked out the form of the spin-2 fields
in the coset; this is discussed, in some detail, in the appendix. With the notation
of appendix D, in particular, (D.19), (D.21), (D.23) and (D.26), we find that in
the (large c and ν = −1) ’t Hooft limit

L = Lb + Lf + 3
2c J

2 ,

W 20 = 1√
3

(−Lb + 2Lf) . (6.79)

The mode expansions of the stress tensor of a single free boson and fermion are
given by (the fermion has NS boundary conditions)

(Lb)m =
∞∑
n∈Z

: ᾱm−nαn : ,

(Lf)m = 1
2

∞∑
r∈Z+1/2

(2r −m) : ψ̄m−rψr : . (6.80)

Here the bosonic and fermionic modes satisfy the usual commutation relations

[αm, αn] = 0 = [ᾱm, ᾱn] , [αm, ᾱn] = mδm,−n ,

{ψr, ψs} = 0 = {ψ̄r, ψ̄s} , {ψr, ψ̄s} = δr,−s . (6.81)

In the ξ-twisted sector, the boson and fermion mode numbers get shifted, and the
zero mode of the stress tensor picks up a normal-ordering contribution

(Lb)0 =
∑
r∈Z+ξ

: ᾱ−rαr : + 1
2 ξ (1− ξ) ,

(Lf)0 =
∑

s∈Z+ 1
2 +ξ

s : ψ̄−sψs : + ξ2

2 . (6.82)

For large c we then find for the eigenvalues of L0 and W 20
0

h = ξ

2 , w20 = 1
2
√

3
ξ(3ξ − 1) . (6.83)

8This will be discussed in more detail in [50].
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Eliminating ξ from the above equations yields

α(2) = −w
20

h
= − 1√

3
(3ξ − 1) = − 6h− 1√

3
. (6.84)

This is therefore the additional relation which characterises the special level-1/2
representations that arise in the twisted sector.
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Chapter 7

Conclusions and outlook

Since it was first proposed in 2010, the duality between higher spin theories on
AdS3 and minimal model CFTs [72] has gone a long way towards a better un-
derstanding of the AdS/CFT correspondence on the one hand and the relation
between higher spin theories and string theory on the other hand. It has become
apparent over the last years that the original duality is not just an isolated and
peculiar coincident, but, quite on the contrary, just one example of an impressive
family of such dualities.

The aim of this thesis was twofold. The first aim was to study the quantum
symmetries of the minimal model CFTs believed to be dual to 3d higher spin
theories. In particular, it could be shown in section 2.2.4 that the classical Wcl

∞[λ]
algebras which arise as the asymptotic extensions of the bulk symmetries admit a
unique quantisation for any value of λ and central charge c. This analysis could
then be carried over to the algebra We

∞ restricted to even spins, which was the
subject of chapter 3, where we also showed that the first few commutators of
the wedge algebra of We

∞ agree with those of the even spin subalgebra hse[µ] of
hs[µ]. This was an important confirmation of the proposal of [3, 88] that the dual
higher spin theory on AdS3 should be described in terms of a Chern-Simons theory
based on hse[µ]. Furthermore, given the usual relation between wedge algebras and
Drinfel’d-Sokolov reductions, We

∞ should be thought of as the quantum Drinfel’d-
Sokolov reduction of hse[µ]. As we have explained, there are actually two different
quantisations of the classical Drinfel’d-Sokolov reduction of hse[µ], which we called
WB∞ and WC∞, respectively. We have argued that this ambiguity is closely
related to the fact that hse[µ] is non-simply-laced. We also saw, in close analogy
with [73], that only one of the ‘scalar’ excitations should be thought of as being
perturbative, while the other should correspond to a non-perturbative classical
solution.
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The second goal of the thesis was to use the holographic duality in order to
understand the relation between higher spins and strings from the CFT point of
view. This was done in the N = 2 setting, which lies halfway between the less
complicated bosonic cases and the N = 4 cases where the string theories are under
better control.

As a first step, we gave evidence in chapter 5 that the large level limit of
the SU(N) Kazama-Suzuki coset models could be understood as a U(N) orbifold
theory of N free complex bosons and fermions. In particular, the subsector of the
coset theory consisting of the states of the form (0;Λ, u) — these are dual to the
excitations of one complex scalar multiplet of the higher spin theory — corresponds
to the untwisted sector of this orbifold, as followed from the comparison of the
partition functions. We also identified the twisted sector ground states from the
coset perspective, and showed that their conformal dimension, their excitation
spectrum and their BPS descendants match the orbifold prediction. In particular,
the BPS states are generated from the ground states by exciting them with all
fermions or antifermions whose twist has the same sign. This analysis could also
be carried over to Kazama-Suzuki models of SO-type [59] and to the N = 4 Wolf
space cosets [76] by other authors.

As a second step, we ‘embedded’ this theory into the symmetric orbifold of T2

in chapter 6 by showing that the latter is a (quite substantial) modular extension
of the former. This is the N = 2 analogue of the N = 4 construction of [76]
where the relevant symmetric orbifold is known to be dual to string theory on
AdS3×S3×T4. It is therefore tempting to believe, in particular given the discussions
of [102, 100, 17, 18], that also the symmetric orbifold of T2 should be dual to some
string theory on AdS3. This will be an interesting topic to study in the future.

A possible generalisation of our analysis could also be to study the N = 2
Kazama-Suzuki cosets

su(N +M)(1)
k+N+M

su(N)(1)
k+N+M ⊕ su(M)(1)

k+N+M ⊕ u(1)(1)
κ

, (7.1)

of which our cosets were the special case with M = 1. These cosets can be viewed
as a ‘matrix-like’ extension of the M = 1 case, similar to what was considered for
the case of AdS4 in [41]. Understanding their correct AdS3 dual (see [49] for first
steps in this direction) and a possible relation to a symmetric orbifold construction
could lead to a more obvious connection with string theory, which might also have
some common traits with the ABJ triality [41].

These generalisations will hopefully lead to a more detailed understanding of the
exact relationship between higher spins and string theory. This should ultimately
pave the way towards a new approach to string theory and lead to new insights
about nature and consequences of that theory.
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Appendix A

Explicit results on W∞

A.1 Composite primary fields
The composite primary fields ofW∞ can be computed using the OPEPPole function
in the Mathematica package OPEconf by Kris Thielemans [156]. In terms of the
fields and OPEs introduced in section 2.2.4 they are explicitly given by

A6 = W 3W 3 − (5c+76) c433
36(c+24) W

4 ′′ − 22 c433
3(c+24)LW

4 − 16(191c+22)n3
c(2c−1)(5c+22)(7c+68)L(LL)

− 6(67c2+178c−752)n3
c(2c−1)(5c+22)(7c+68)L

′′L− 3(225c2+1978c+776)n3
2c(2c−1)(5c+22)(7c+68)L

′L′

+ (−5c3−20c2+476c+32)n3
2c(2c−1)(5c+22)(7c+68) L

(4) (A.1)

A7 = W 3W 4 − 94 c534
11c+350LW

5 − 4(257c+83) c334
(c+23)(5c−4)(7c+114)L(LW 3)

+ (−437c3−9089c2−22454c+76152) c334
12(c+2)(c+23)(5c−4)(7c+114) L′′W 3

+ (−1565c3−35801c2−142046c−65208) c334
36(c+2)(c+23)(5c−4)(7c+114) L′W 3 ′

+ (−355c3+329c2+52214c+12072) c334
18(c+2)(c+23)(5c−4)(7c+114) LW 3 ′′

− (c+19) c534
11c+350 W

5 ′′ − (25c4−930c3−17157c2+115358c+26904) c334
432(c+2)(c+23)(5c−4)(7c+114) (W 3)(4) (A.2)

A8,1 = 4
7W

3 ′W 4 − 3
7W

3W 4 ′ − 3 c534
7(c+7)L

′W 5 + 6 c534
35(c+7)LW

5 ′

− 6(127c+18) c334
7(c+2)(5c−4)(7c+114)L

′(LW 3) + 4(127c+18) c334
7(c+2)(5c−4)(7c+114)L(LW 3 ′)

+ (323c2+1578c−608) c334
42(c+2)(5c−4)(7c+114)L

′′′W 3 + (151c2+336c−796) c334
7(c+2)(5c−4)(7c+114)L

′′W 3 ′

+ (245c2+396c+244) c334
14(c+2)(5c−4)(7c+114)L

′W 3 ′′ + 5(43c2−261c−34) c334
42(c+2)(5c−4)(7c+114)LW

3 ′′′

+ (5c+32) c534
210(c+7) W

5 ′′′ + (5c3−245c2+616c+92) c334
280(c+2)(5c−4)(7c+114) (W 3)(5) (A.3)

A8,2 = 3(c+48)
13c+516W

3 ′′W 3 + (−7c−228)
2(13c+516)W

3 ′W 3 ′ − 108
13c+516L(W 3W 3)
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+ 12(1927c−3543) c433
(c+31)(13c+516)(55c−6)L(LW 4)− 18(4c2+211c−4083) c433

(c+31)(13c+516)(55c−6)L
′′W 4

+ 18(5c2−218c−4218) c433
(c+31)(13c+516)(55c−6)L

′W 4 ′ + (805c2+18649c+28254) c433
(c+31)(13c+516)(55c−6) LW

4 ′′

+ 144(1919c−642)n3
c(3c+46)(5c+3)(5c+22)(13c+516)L(L(LL))

+ 24(1861c2+14814c+50184)n3
c(3c+46)(5c+3)(5c+22)(13c+516)L

′′(LL)

+ 6(6895c2+80424c−67212)n3
c(3c+46)(5c+3)(5c+22)(13c+516)L

′(L′L)

+ (805c3+29516c2+197676c+169488)n3
2c(3c+46)(5c+3)(5c+22)(13c+516) L(4)L

+ (935c3+61940c2+793908c+767376)n3
2c(3c+46)(5c+3)(5c+22)(13c+516) L(3)L′

+ 9(149c3+6116c2+77580c−85392)n3
4c(3c+46)(5c+3)(5c+22)(13c+516) L

′′L′′

+ (35c3+1883c2+31434c−36504) c433
16(c+31)(13c+516)(55c−6) (W 4)(4)

+ (175c4+15990c3+178120c2−721656c−19152)n3
240c(3c+46)(5c+3)(5c+22)(13c+516) L(6) (A.4)

A8,3 = W 3W 5 − 122 c635
13c+516LW

6 − 122 a6
35

13c+516L(W 3W 3)

− (5c+114) a6
35

39c+1548
(
W 3 ′′W 3 +W 3 ′W 3 ′)− (5c+114) c635

78c+3096 W 6 ′′

+ 4(671(55c2+1699c−186) a6
35c

4
33−3(6123c2+245662c+104232) c435)

3(c+24)(c+31)(13c+516)(55c−6) L(LW 4)

+
(
22(1375c4 + 79875c3 + 1288610c2 + 4134612c− 466488) a6

35c
4
33

− 3(22945c4 + 1741388c3 + 39639076c2 + 260703456c− 158539968)
× c435

)
× [18(c+ 24)(c+ 31)(5c+ 22)(13c+ 516)(55c− 6)]−1

L′′W 4

+
(
176(1375c4 + 79875c3 + 1288610c2 + 4134612c− 466488) a6

35c
4
33

− 3(85475c4 + 6323680c3 + 138838124c2 + 904228176c+ 441415296)
× c435

)
× [72(c+ 24)(c+ 31)(5c+ 22)(13c+ 516)(55c− 6)]−1

L′W 4 ′

+
(
2(114125c4 + 5992175c3 + 84458440c2 + 258686332c− 29233248)
× a6

35c
4
33

− 3(15925c4 + 589200c3 − 7046892c2 − 214236368c− 84029568) c435
)

× [36(c+ 24)(c+ 31)(5c+ 22)(13c+ 516)(55c− 6)]−1
LW 4 ′′

+
(
4(1375c5 + 82625c4 + 1448360c3 + 6711832c2 + 7802736c− 932976)
× a6

35c
4
33

+ 3(−325c5 + 3740c4 + 1053340c3 + 11335552c2 − 170758272c
− 69449472) c435

)
× [432(c+ 24)(c+ 31)(5c+ 22)(13c+ 516)(55c− 6)]−1 (W 4)(4)
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+ 1952(191c+22) a6
35n3

c(2c−1)(5c+22)(7c+68)(13c+516)L(L(LL))

+ 4(14171c2+76342c−132600) a6
35n3

c(2c−1)(5c+22)(7c+68)(13c+516)L
′′(LL)

+ (56455c2+712118c+182136) a6
35n3

c(2c−1)(5c+22)(7c+68)(13c+516)L
′(L′L)

+ 2(680c3+19829c2+122c−233112) a6
35n3

3c(2c−1)(5c+22)(7c+68)(13c+516) L(4)L

+ (2915c3+163162c2+1041168c+56928) a6
35n3

6c(2c−1)(5c+22)(7c+68)(13c+516) L′′′L′

+ 45(15c3+372c2+724c+912) a6
35n3

2c(2c−1)(5c+22)(7c+68)(13c+516)L
′′L′′

+ (225c4+20670c3+106475c2−1346498c+35544) a6
35n3

360c(2c−1)(5c+22)(7c+68)(13c+516) L(6) (A.5)

A8,4 = W 4W 4 − 134
13c+516

(
c644 LW

6 + a6
44 L(W 3W 3)

)
− (7c+216)

52c+2064
(
c644W

6 ′′ + 2a6
44
(
W 3 ′′W 3 +W 3 ′W 3 ′))

+ 4(737(55c2+1699c−186) a6
44c

4
33−7(3497c2+143471c+185244) c444)

3(c+24)(c+31)(13c+516)(55c−6) L(LW 4)

+
(
11(385c3 + 23773c2 + 365682c− 40176) a6

44c
4
33

− 2(2977c3 + 186817c2 + 2459172c− 10551168) c444
)

× [6(c+ 24)(c+ 31)(13c+ 516)(55c− 6)]−1
L′′W 4

+
(
22(385c3 + 23773c2 + 365682c− 40176) a6

44c
4
33

− (10075c3 + 695962c2 + 12258696c+ 20136384) c444
)

× [6(c+ 24)(c+ 31)(13c+ 516)(55c− 6)]−1
L′W 4 ′

+
(
(15565c3 + 816867c2 + 10328252c− 1136460) a6

44c
4
33

− (8320c3 + 494391c2 + 6176258c− 13466568) c444
)

× [9(c+ 24)(c+ 31)(13c+ 516)(55c− 6)]−1
LW 4 ′′

+
(
2(385c4 + 24543c3 + 413228c2 + 691188c− 80352) a6

44c
4
33

− (455c4 + 21219c3 − 111446c2 − 9024216c+ 14935104) c444
)

× [144(c+ 24)(c+ 31)(13c+ 516)(55c− 6)] (W 4)(4)

+ 16
(
134(2865c3 + 45979c2 + 31616c+ 3036) a6

44n3

− 3(64922c3 + 2721945c2 + 5753619c− 134676)n4
)

× [c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1

× L(L(LL))
+ 8
(
3(43695c4 + 1096227c3 + 6433406c2 − 1772840c− 3148608) a6

44n3

− (75478c4 + 3555117c3 + 20414771c2 − 70417080c+ 12489264)n4
)

× [c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L′′(LL)

+
(
3(386565c4 + 13116359c3 + 115756152c2 + 85517140c+ 12421104)
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× a6
44n3

− 4(253565c4 + 14040162c3 + 163680028c2

+ 233430552c+ 1572768)n4
)

× [c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L′(L′L)

+
(
3(19395c5 + 934857c4 + 10600112c3 + 4580428c2

− 128888208c− 76811904) a6
44n3

+ 2(−16250c5 − 853312c4 − 5725441c3 + 114072166c2

+ 527210784c+ 229314528)n4
)

× [6c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L(4)L

+
(
3(61215c5 + 4070129c4 + 66914380c3 + 296660444c2

+ 103648384c− 30677952) a6
44n3

− 4(45955c5 + 2563084c4 + 29966096c3 + 24033944c2

− 37436544c+ 203840640)n4
)

× [12c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L′′′L′

+ 3
(
45(315c5 + 15369c4 + 188088c3 + 444268c2 + 599568c+ 238464)

× a6
44n3

− 2(6916c5 + 322963c4 + 1583702c3 − 10458112c2

+ 119173176c− 19257120)n4
)

× [4c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L′′L′′

+
(
3(4725c6 + 400785c5 + 6619040c4 + 4856722c3 − 310076664c2

− 183843960c+ 1543392) a6
44n3

− 2(4550c6 + 246120c5 + 1939005c4 − 41511678c3

− 628847552c2 − 934493328c+ 3244608)n4
)

× [720c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)(13c+ 516)]−1
L(6)

(A.6)

A9,1 = 5
8W

3 ′W 5 − 3
8W

3W 5 ′

+ 5c+42
48(7c+68)

(
c635W

6 ′′′ + 2 a6
35W

3 ′′′W 3 + 6 a6
35W

3 ′′W 3 ′)
+ 23

12(7c+68)
(
3c635 L

′W 6 + c635 LW
6 ′ + 3a6

35 L
′(W 3W 3) + 2a6

35 L(W 3 ′W 3)
)

+ 253(5c2+17c−22) a6
35c

4
33−3(665c2+6642c+1768) c435

18(c−1)(c+24)(5c+22)(7c+68)
(
2L′(LW 4)− L(LW 4 ′)

)
− 22(75c3+1115c2+2594c−3784) a6

35c
4
33−3(861c3+18290c2+96648c+2176) c435

432(c−1)(c+24)(5c+22)(7c+68) L′′′W 4

− 88(25c3+295c2+604c−924) a6
35c

4
33−3(1099c3+18390c2+55112c−192576) c435

192(c−1)(c+24)(5c+22)(7c+68) L′′W 4 ′
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− 4(215c2+809c−1024) a6
35c

4
33−3(455c2+4812c+3808)c435

576(c−1)(c+24)(7c+68) L′W 4 ′′

− 16(235c3+2589c2+5052c−7876) a6
35c

4
33+3(−889c3+2158c2+107656c+27200) c435

864(c−1)(c+24)(5c+22)(7c+68) LW 4 ′′′

−
(
2(175c4 + 765c3 − 11112c2 − 37876c+ 48048) a6

35c
4
33

− 3(35c4 − 2054c3 − 11552c2 + 117056c+ 32640) c435
)

× [17280(c− 1)(c+ 24)(5c+ 22)(7c+ 68)]−1 (W 4)(5)

− (1111c−438) a6
35n3

6c(2c−1)(5c+22)(7c+68)L
′′′(LL)− 141(17c+14) a6

35n3
4c(2c−1)(5c+22)(7c+68)L

′′(L′L)

+ 5(7c+114) a6
35n3

8c(2c−1)(5c+22)(7c+68)L
′(L′L′)− (175c2+348c−3684) a6

35n3
80c(2c−1)(5c+22)(7c+68)L

(5)L

− (95c2+634c−752) a6
35n3

16c(2c−1)(5c+22)(7c+68)L
(4)L′ − 75(3c2+6c+8) a6

35n3
16c(2c−1)(5c+22)(7c+68)L

′′′L′′

− (135c3+264c2−7550c−156) a6
35n3

20160c(2c−1)(5c+22)(7c+68) L(7) . (A.7)

A.2 Structure constants
The structure constants in the ansatz (2.106) for W∞ are determined by Jacobi
identities, which can be implemented using the function OPEJacobi in Thielemans’
Mathematica package OPEdefs (we also used OPEconf in order to be able to work
with primary fields only). The resulting expressions are collected below:1

c334 = c433n4
n3

,

c435 = 5(c+7)(5c+22) (c433)2n4
(c+2)(7c+114) c534n3

− 60n3
c c534

,

c644 = 4 c534c
6
35

5 c433
,

a6
44 = 4 c534a

6
35

5 c433
+ 30(5c+22)n4

(c+2)(7c+114)n3
,

c444 = 3(c+3) c433n4
(c+2)n3

− 288(c+10)n3
c(5c+22) c433

,

a8,1
36 = (3c+116) a6

35c
4
33

3(c+24) c635
+ 1920(2c−1)n3

c(c+24)(5c+22) c534c
6
35
− 160(c+7)(2c−1) (c433)2n4

(c+2)(c+24)(7c+114) c534c
6
35n3

,

c536 = − (7c−8) c433c
5
34a

6
35

6(c+24) c635
− 960(c+10)2 n3

c(c+24)(5c+22) c635
+ 35(c+7)(7c2+122c+688) (c433)2n4

4(c+2)(c+24)(7c+114) c635n3
,

c336 = − 2(c−97) (c433)2a6
35n4

9(c+24) c635n3
− 4(c+2)(c+23)(5c−4)(7c+114) a6

35n3
c(2c−1)(5c+22)(7c+68) c635

+ 5(c+7)(5c+22)(7c−8) (c433)3(n4)2

6(c+2)(c+24)(7c+114) c534c
6
35(n3)2 − 10(7c−8) c433n4

c(c+24) c534c
6
35

,

a8,1
45 = 240(c+7) c433n4

(c+2)(7c+114) c534n3
− 2880n3

c(5c+22) c433c
5
34
,

c745 = 2 c635c
7
36

3 c433
,

a7
45 = 4(c+13) a6

35
3(c+24) + 2 c635a

7
36

3 c433
− 6720(c+10)n3

c(c+24)(5c+22) c433c
5
34

+ 560(c+7)(c+10) c433n4
(c+2)(c+24)(7c+114) c534n3

,

1Incidentally, the expression for c6
46 in [166] has a typo in one of the signs.
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c545 = 5(c+7)(17c+126) c433n4
2(c+2)(7c+114)n3

− 720(c+10)n3
c(5c+22) c433

,

c345 = 5(c+7)(5c+22) (c433)2(n4)2

(c+2)(7c+114) c534n
2
3
− 60n4

c c534
,

a9,1
37 = 4(c+13)(11c+820) c433c

5
34a

6
35

5(c+24)(11c+350) c635c
7
36

+ 2(11c+820) c534a
7
36

5(11c+350) c736
+ 2304(73c2+1149c−850)n3

c(c+24)(5c+22)(11c+350) c635c
7
36

− 3(3797c3+82090c2+387832c−306880) (c433)2n4
(c+2)(c+24)(7c+114)(11c+350) c635c

7
36n3

,

c637 = (1372c4+57159c3+985274c2+8331408c+27861120) (c433)2n4
(c+2)(c+24)(7c+114)(11c+350) c736n3

− 2(29c−60)(2(c+13)a6
35c

4
33+(c+24)a7

36c
6
35)c534

5(c+24)(11c+350) c736

− 18(1323c3+52400c2+759236c+3957600)n3
c(c+24)(5c+22)(11c+350) c736

,

a6
37 = 15(c+7)(2c−1)(5c+22)(7c+68)(167c2+2186c−1392) (c433)3(n4)2

4(c+2)2(c+23)(c+24)(5c−4)(7c+114)2 c534c
6
35c

7
36(n3)2 − 2(29c−60) c534a

6
35a

7
36

5(11c+350) c736

− 4(c+13)(29c−60) c433c
5
34(a6

35)2

5(c+24)(11c+350) c635c
7
36
− 18(1323c3+52400c2+759236c+3957600) a6

35n3
c(c+24)(5c+22)(11c+350) c635c

7
36

+ (6090c6+353824c5+8034345c4+98606461c3+679706700c2+1790854612c−2216076240)
(c+2)(c+23)(c+24)(5c−4)(7c+114)(11c+350)

× (c433)2a6
35n4

c635c
7
36n3

− (c+51)(2c−1)(5c+22)(7c+68) a7
36c

4
33n4

2(c+2)(c+23)(5c−4)(7c+114) c736n3
− 45(2c−1)(7c+68)(167c2+2186c−1392) c433n4

c(c+2)(c+23)(c+24)(5c−4)(7c+114) c534c
6
35c

7
36
,

c437 = 5(c+7)(5c+22)(6860c5+233021c4+2210045c3+2684318c2−18804472c+11668160) (c433)4(n4)2

12(c+2)2(c+23)(c+24)(5c−4)(7c+114)(11c+350) c534c
6
35c

7
36(n3)2

− (5c+22)(457c3−2188c2−156865c+78820)(2(c+13) c433a
6
35+(c+24) c635a

7
36) (c433)2n4

18(c+2)(c+23)(c+24)(5c−4)(11c+350) c635c
7
36n3

− (103700c6+5037443c5+82080149c4+484133372c3+156571028c2−4060675888c+2813946240)
c(c+2)(c+23)(c+24)(5c−4)(7c+114)(11c+350)

× 5(c433)2n4
c534c

6
35c

7
36

+ 23040(c+10)2(29c−60) (n3)2

c2(c+24)(5c+22)(11c+350) c534c
6
35c

7
36

− (11c2+626c+32880)(2(c+13)a6
35c

4
33+(c+24)a7

36c
6
35)n3

c(c+24)(11c+350)c635c
7
36

,

a9,1
46 = 117(3c+26) c433n4

(c+2)(7c+114) c635n3
+ 6 c534a

6
35

5 c635
− 6912n3

c(5c+22) c433c
6
35
,

c846 = 4c736c
8
37

7c433
,

a8,2
46 = 640(c+7)(2c−1)(5c+22)(29c2+533c−870) (c433)2(n4)2

21(c+2)2(c+24)(5c−4)(7c+114)2 c534c
6
35(n3)2

− 4(5c+22)((3c+116)(29c2+533c−870) c433a
6
35−(c+24)(9c2+37c+1788) c635a

7
36)n4

63(c+2)(c+24)(5c−4)(7c+114) c635n3

− 2560(2c−1)(29c2+533c−870)n4
7c(c+2)(c+24)(5c−4)(7c+114) c534c

6
35

+ 4 a8,2
37 c

7
36

7 c433
,

a8,3
46 = 15(8611c3+301020c2+3170988c+11305504) c433n4

7(c+2)(c+24)(7c+114)(11c+350) c635n3
− 11520(c+10)(169c+3370)n3

7c(c+24)(5c+22)(11c+350) c433c
6
35

− 22(3c2+314c+5024) c534a
6
35

7(c+24)(11c+350) c635
+ 4(11c+68) c534a

7
36

7(11c+350) c433
+ 4 c736a

8,3
37

7 c433
,
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a8,4
46 = 4(c(5c+22)c534(2(3c+116) (c433)2a6

35+3(c+24) c635(c433a
7
36+c736a

8,4
37 ))+11520(2c−1) c433n3)

21c(c+24)(5c+22) c433c
5
34c

6
35

− 1280(c+7)(2c−1) (c433)2n4
7(c+2)(c+24)(7c+114) c534c

6
35n3

,

c646 = (147c3+4237c2+46786c+181360) c433n4
2(c+2)(c+24)(7c+114)n3

− (17c−32) c534a
6
35

15(c+24) − 192(7c2+195c+1628)n3
c(c+24)(5c+22) c433

,

a6
46 = 120(c+7)(2c−1)(5c+22)(7c+68) (c433)2(n4)2

(c+2)2(c+24)(7c+114)2 c534c
6
35(n3)2 + (119c3+2691c2+35054c+187616) c433a

6
35n4

2(c+2)(c+24)(7c+114) c635n3

− 1440(2c−1)(7c+68)n4
c(c+2)(c+24)(7c+114) c534c

6
35
− (17c−32) c534(a6

35)2

15(c+24) c635
− 192(7c2+195c+1628) a6

35n3
c(c+24)(5c+22) c433c

6
35

,

c446 = 5(c+7)(5c+22)(7c2+82c+288) (c433)3(n4)2

(c+2)2(c+24)(7c+114) c534c
6
35(n3)2

− 2(c−9)(5c+22) (c433)2a6
35n4

3(c+2)(c+24) c635n3
− 60(113c3+3100c2+26724c+77632) c433n4

c(c+2)(c+24)(7c+114) c534c
6
35

+ 46080(c+10)2 (n3)2

c2(c+24)(5c+22) c433c
5
34c

6
35

+ 8(23c3−2674c2−40088c+33664) a6
35n3

c(c+24)(2c−1)(7c+68) c635
,

c855 = 10 c635c
7
36c

8
37

21 c433c
5
34

,

a8,2
55 = 10(5c+22)(9c2+37c+1788)(2(c+13) c433a

6
35+(c+24) c635a

7
36)n4

189(c+2)(c+24)(5c−4)(7c+114) c534n3

− 400(193c3−12430c2−299960c+243744)n4
21c(c+2)(c+24)(5c−4)(7c+114) (c534)2

+ 100(c+7)(5c+22)(193c3−12430c2−299960c+243744) (c433)2(n4)2

63(c+2)2(c+24)(5c−4)(7c+114)2 (c534)2(n3)2 + 10 c635c
7
36a

8,2
37

21 c433c
5
34

,

a8,3
55 = 20(c+13)(11c+68) a6

35
21(c+24)(11c+350) + 10(11c+68) c635a

7
36

21(11c+350) c433
+ 10 c635c

7
36a

8,3
37

21 c433c
5
34

− 9600(c+10)(169c+3370)n3
7c(c+24)(5c+22)(11c+350) c433c

5
34

+ 25(3343c3+92550c2+614104c+2418752) c433n4
7(c+2)(c+24)(7c+114)(11c+350) c534n3

,

a8,4
55 = 20(c+13) c433a

6
35

21(c+24)c534
+ 10 c635a

7
36

21 c534
+ 10 c635c

7
36a

8,4
37

21 c433c
5
34

+ 400(c+7)(11c+166) (c433)2n4
7(c+2)(c+24)(7c+114) (c534)2n3

− 4800(11c+166)n3
7c(c+24)(5c+22) (c534)2 ,

c655 = 5(37c2+425c+2202) c433c
6
35n4

3(c+2)(7c+114) c534n3
− 60(19c+218) c635n3

c(5c+22) c433c
5
34

,

a6
55 = 5(37c2+425c+2202) c433a

6
35n4

3(c+2)(7c+114) c534n3
− 60(19c+218) a6

35n3
c(5c+22) c433c

5
34
− 450(39c+178)n4

c(c+2)(7c+114) (c534)2

+ 75(c+7)(5c+22)(39c+178) (c433)2(n4)2

2(c+2)2(7c+114)2 (c534)2(n3)2 ,

c455 = 25(c+7)2(5c+22)(17c+126) (c433)3(n4)2

2(c+2)2(7c+114)2 (c534)2(n3)2 − 150(c+7)(41c+366) c433n4
c(c+2)(7c+114) (c534)2

+ 43200(c+10) (n3)2

c2(5c+22) c433(c534)2 ,

n5 = 5(c+7)(5c+22)(c433)2(n4)2

(c+2)(7c+114) (c534)2n3
− 60n3n4

c (c534)2 . (A.8)

A.3 W∞ in terms of commutators

We are now going to describe the algebra W∞ in terms of commutators between
the lowest fields. We will work in the conventions of [81, 73], which differ from
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the ones we used in the previous analysis. In particular, the normalisation of the
fields W s for s ≥ 4 is fixed by setting cs3 s−1 = s (which also fixes c433 = 4), and the
free parameter of the algebra is now given by a function of N3 and N4, which are
defined as follows:

N3 = 6
5c n3 , N4 = 6

7c n4 . (A.9)

The explicit structure constants in these conventions then read

[Lm, Ln] = (m− n)Lm+n + c

12 m(m2 − 1) δ0,m+n

[Lm,W 3
n ] = (2m− n)W 3

m+n

[Lm,W 4
n ] = (3m− n)W 4

m+n

[Lm,W 5
n ] = (4m− n)W 5

m+n

[W 3
m,W

3
n ] = (m− n)

(
2W 4

m+n + 40N3

5c+ 22 Q
4
m+n

)
+ N3

12 (m− n)
(
2m2 −mn+ 2n2 − 8

)
Lm+n

+ N3c

144 m(m2 − 1)(m2 − 4) δ0,m+n ,

[W 3
m,W

4
n ] = 84N4

25(c+ 2)N3
Q6,1
m+n + (3m− 2n)

(
W 5
m+n + 1456N4

N3(175c+ 2850)Q
5
m+n

)
+ N4

15N3

(
−5m3 + 5m2n+ 17m− 51mn2 + n3 − 9n

)
W 3
m+n ,

[W 3
m,W

5
n ] =

(
1792(c+ 7)N4

15(c+ 2)(7c+ 114)N3
− 160N3

15c+ 66

)
Q7,1
m+n

+ (2m− n)
(

2W 6
m+n + a6

35
3 A6

m+n

+
16
(
56(5c2 + 57c+ 154)N4 − 25(7c2 + 128c+ 228)N2

3
)

15(c+ 2)(c+ 24)(7c+ 114)N3
Q6,2
m+n

)
−
(
−28m3 + 21m2n+m

(
88− 9n2)+ 2n

(
n2 − 16

))
×
(

14(c+ 7)(5c+ 22)N4

225(c+ 2)(7c+ 114)N3
− N3

36

)
W 4
m+n ,

[W 4
m,W

4
n ] = 3(m− n)

(
W 6
m+n +

(a6
35
6 + 7(5c+ 22)N4

(c+ 2)(7c+ 114)N3

)
A6
m+n

+
8
(
49(c+ 3)(5c+ 22)N4 − 175(c+ 2)(c+ 10)N2

3
)

15(c+ 2)(c+ 24)(5c+ 22)N3
Q6,2
m+n

− 7(19c− 524)N4

54(2c− 1)(7c+ 68)Q
6,3
m+n + 56(72c+ 13)N4

3(2c− 1)(5c+ 22)(7c+ 68)Q
6,4
m+n

)
+ (m− n)

(
m2 −mn+ n2 − 7

)
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×
((

7(c+ 3)N4

15(c+ 2)N3
− 5(c+ 10)N3

15c+ 66

)
W 4
m+n + 49N4

9(5c+ 22)Q
4
m+n

)
+ N4

360(m− n)
(
3m4 − 2m3n+m2 (4n2 − 39

)
− 2mn

(
n2 − 10

)
+ 3(n4 − 13n2 + 36)

)
Lm+n

+ N4c

4320 m(m2 − 1)(m2 − 4)(m2 − 9) δ0,m+n , (A.10)

where we have used the composite quasi-primary fields

Q4 = LL− 3
10 L

′′ ,

Q5 = LW 3 − 3
14 W

3 ′′ ,

Q6,1 = L′W 3 − 2
3LW

3 ′ + 1
12W

3 ′′′ ,

Q6,2 = LW 4 − 1
6W

4 ′′ ,

Q6,3 = L′L′ − 4
5L
′′L− 1

42L
(4) ,

Q6,4 = LQ4 − 1
6Q

4 ′′ ,

A6 = W 3W 3 − 5
126

(
14W 4 ′′ + 7 40N3

5c+ 22Q
4 ′′ + 3N3

4 L(4)
)
− 88

3(c+ 24)Q
6,2

+ 5(43c− 844)N3

36(2c− 1)(7c+ 68)Q
6,3 − 40(191c+ 22)N3

3(2c− 1)(5c+ 22)(7c+ 68)Q
6,4 ,

Q7,1 = L′W 4 − 1
2LW

4 ′ + 1
20W

4 ′′′ . (A.11)

The primary field A6 agrees with the one defined in equation (A.1). Note that
L, Q4, Q6,3, and Q6,4 are all descendants of 1 and can therefore only appear in
commutators of two fields of the same conformal dimension.
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Appendix B

The even spin algebra hse[µ]

B.1 Minimal representations of hse[µ]
using commutators

In section 3.1.5 we computed the structure constant c444 in terms of the conformal
dimension h of minimal representations. The calculation was carried out using
OPEs. An alternative, but equivalent approach uses commutators rather than
OPEs and shall be sketched in this appendix.
We will need the following commutators of We

∞:

[Lm, Ln] = (m− n)Lm+n + c
12m(m2 − 1)δ0,m+n ,

[Lm,W 4
n ] = (3m− n)W 4

m+n

[W 4
m,W

4
n ] = 1

2(m− n)
(
c644W

6
m+n + q6,1

44 Q
6,1
m+n + q6,2

44 Q
6,2
m+n + q6,3

44 Q
6,3
m+n

)
+ 1

36
(
m2 −mn+ n2 − 7

)
(m− n)

(
c444W

4
m+n + q4

44Q
4
m+n

)
+
(
3(m4 + n4)− (2mn+ 39)(m2 + n2) + 4m2n2 + 20mn+ 108

)
× 1

3360(m− n)q2
44Lm+n

+ 1
5040m(m2 − 1)(m2 − 4)(m2 − 9)n4δ0,m+n , (B.1)

where the composite quasiprimary fields Q4, Q6,1, Q6,2 and Q6,3 are given by

Q4 = LL− 3L′′

10 , Q6,1 = LW 4 − W 4′′

6 ,

Q6,2 = L′L′ − 4
5L
′′L− ∂4L

42 , Q6,3 = L(LL)− 1
3L
′L′ − 19

30L
′′L− ∂4L

36 . (B.2)
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Solving the Jacobi identity [Lm, [W 4
n ,W

4
l ]] + cycl. = 0, we find that

q2
44 = 8

c
n4 , q6,1

44 = 28
3(c+ 24)c

4
44 , q6,2

44 = − 2(19c− 524)
3c(2c− 1)(7c+ 68)n4 ,

q6,3
44 = 96(72c+ 13)

c(2c− 1)(5c+ 22)(7c+ 68)n4 , q4
44 = 168

c(5c+ 22)n4 . (B.3)

This fixes the structure constants of the Virasoro descendants in terms of their pri-
maries. Similarly, by considering Jacobi identities of higher level, we can reobtain
in this manner the relations between structure constants given in section 3.1.1.2.

Recall from section 3.1.5 that the defining property of a minimal representation
is a character of the form

qh

1− q

∞∏
s∈2N

∞∏
n=s

1
1− qn = qh(1 + q + 2q2 + 3q3 + . . . ) , (B.4)

where h is the conformal dimension of the highest weight state Φ.
Thus, at level 1 all the states must be proportional to L−1Φ, at level 2 they

are linear combinations of, say, L2
−1Φ and L−2Φ, and at level 3 of, for instance,

L−3Φ, L−2L−1Φ and L3
−1Φ. Therefore, we can conclude that the representation

must have null relations of the form

N1W 4 = (W 4
−1 −

2w4

h
L−1)Φ , (B.5)

N2W 4 = (W 4
−2 + aL2

−1 + bL−2)Φ , (B.6)
N3W 4 = (W 4

−3 + dL−3 + eL−2L−1 + fL3
−1)Φ , (B.7)

where w4 is the eigenvalue of the zero mode of W 4 on Φ. The coefficient in front
of L−1 in N1W 4 follows from the condition

L1N1W 4 = 0 . (B.8)

Similarly, the coefficients a and b in N2W 4 can be determined from the conditions

L2
1N2W 4 = 0 and L2N2W 4 = 0 , (B.9)

and d, e and f from L3N3W 4 = 0, L2L1N3W 4 = 0 and L3
1N3W 4 = 0. The result is

a = − (5c+ 16h)w4

h(2ch+ c+ 2h(8h− 5)) , b = 4(11− 8h)w4

2ch+ c+ 2h(8h− 5) ,

d = −
6
[
c(h+ 3)(2h− 3) + 2h(h− 2)(8h− 21)− 22

]
w4[

(c− 7)h+ c+ 3h2 + 2
][

2ch+ c+ 2h(8h− 5)
] ,

e = −
12
[
c(6h(h− 1)− 2) + h(h(8h− 15) + 9)

]
w4

h
[
(c− 7)h+ c+ 3h2 + 2

][
2ch+ c+ 2h(8h− 5)

] ,
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f = − (5c+ 22)(c− h)w4

h
[
(c− 7)h+ c+ 3h2 + 2

][
2ch+ c+ 2h(8h− 5)

] . (B.10)

Finally, solving the slightly more involved null relations

W 4
1N1W 4 = 0 , W 4

2N2W 4 = 0 , W 4
3N3W 4 = 0 , (B.11)

and plugging in the structure constants (B.3) leads to the same expressions for w4,
w6 and c444 as those obtained in (3.24) and (3.25) by associativity. Here w6 is the
eigenvalue of the zero mode of W 6 on Φ.

B.2 Structure constants of hse[µ]
The algebra hse[µ] is a subalgebra of hs[µ] and the structure constants of the latter
are known explicitly, see [62]. We have rescaled the generators of this reference so
that the first few commutation relations take the form

[Lm,W s
n] = ((s− 1)m− n)W s

m+n , (B.12)

[W 4
m,W

4
n ] = − 20√

7
P 44

6 (m,n)W 6
m+n + 12√

5
(
µ2 − 19

)
P 44

4 (m,n)W 4
m+n

+ 8
(
µ4 − 13µ2 + 36

)
P 44

2 (m,n)Lm+n , (B.13)

[W 4
m,W

6
n ] = −8

√
210
143P

46
8 (m,n)W 8

m+n + 14√
5
(
µ2 − 49

)
P 46

6 (m,n)W 6
m+n

− 20√
7
(
µ4 − 41µ2 + 400

)
P 46

4 (m,n)W 4
m+n , (B.14)

[W 6
m,W

6
n ] = −252

√
5

2431P
66
10 (m,n)W 10

m+n

+ 28
√

6
143

(
µ2 − 115

)
P 66

8 (m,n)W 8
m+n

− 40
3
√

7
(
µ2 − 88

) (
µ2 − 37

)
P 66

6 (m,n)W 6
m+n

+ 14√
5

(µ2 − 49)(µ2 − 25)(µ2 − 16)P 66
4 (m,n)W 4

m+n

+ 12(µ2 − 25)(µ2 − 16)(µ2 − 9)(µ2 − 4)P 66
2 (m,n)Lm+n , (B.15)

[W 4
m,W

8
n ] = −20

√
6
17P

48
10 (m,n)W 10

m+n −
72

13
√

5
(
277− 3µ2)P 48

8 (m,n)W 8
m+n

− 40
√

210
143(µ2 − 49)(µ2 − 36)P 48

6 (m,n)W 6
m+n , (B.16)

where P ss′s′′ (m,n) are the universal polynomials containing the mode dependence
of the structure constants in a commutator of quasiprimary fields of a CFT. They
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are given by

P ss
′

s′′ (m,n) :=
s+s′−s′′−1∑

r=0

(
s+m− 1

s+ s′ − s′′ − r − 1

)
×

(−1)r(s− s′ + s′′)(r)(s′′ +m+ n)(r)

r!(2s′′)(r)
, (B.17)

where we have introduced the Pochhammer symbols x(r) = Γ (x+ r)/Γ (x). When
m,n are restricted to the wedge, these universal polynomials are essentially the
Clebsch-Gordan coefficients of sl(2) [29]. The proportionality factors between the
generators T jm of [62] and our generators W s

m are explicitly

T jm =

√
(j −m)!(j +m)!

(2j)! W j+1
m . (B.18)
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Appendix C

Aspects of the continuous
orbifold twisted sector

C.1 Twisted sector ground state energies
In this appendix we collect together some formulae for the ground state energies
of twisted fermions and bosons.

C.1.1 Complex free fermions
We begin with the case of free fermions twisted by α with − 1

2 ≤ α ≤ 1
2 . Let

us consider a pair of complex fermions that pick up eigenvalues e±2πiα under the
twist. The relevant twining character, i.e. the character with the insertion of the
eigenvalues e±2πiα, equals then in the NS-sector

χα(τ) = ϑ3(τ, α)
η(τ) , (C.1)

where we use the definitions

η(τ) = q
1
24

∞∏
n=1

(1− qn) , (C.2)

ϑ3(τ, z) =
∞∏
n=1

(1− qn) (1 + yqn−1/2) (1 + y−1qn−1/2) , (C.3)

as well as q = e2πiτ and y = e2πiz. To obtain the ground state energy of the twisted
sector we perform an S-modular transformation, using the transformation rules

η(− 1
τ ) = (−iτ)1/2 η(τ) (C.4)
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ϑ3(− 1
τ ,

z
τ ) = (−iτ)1/2 eiπz

2/τ ϑ3(τ, z) , (C.5)

to obtain for the α-twisted partition function

χα(− 1
τ ) = eiπα

2τ ϑ3(τ, τα)
η(τ) (C.6)

= q−
1
24 eiπα

2τ
∞∏
n=1

(1 + e2πiταqn−1/2) (1 + e−2πiταqn−1/2) . (C.7)

Thus the ground state energy of the α-twisted sector equals

∆hfer = 1
2α

2 . (C.8)

C.1.2 Complex free bosons and susy case
The analysis for a pair of complex bosons is essentially identical. Now the relevant
twining character equals

χα(τ) = −2 sin(πα) η(τ)
ϑ1(τ, α) , (C.9)

where ϑ1(τ, z) is defined by

ϑ1(τ, z) = −2q1/8 sin(πz)
∞∏
n=1

(1− qn) (1− yqn) (1− y−1qn) . (C.10)

The modular transformation behaviour of ϑ1(τ, z) is

ϑ1(− 1
τ ,

z
τ ) = −i(iτ)1/2eiπz

2/τ ϑ1(τ, z) , (C.11)

and hence the twisted character equals

χα(− 1
τ ) = i

sin(πα)
sin(πτα) e

−iπα2τ q−
2
24

∞∏
n=1

1
(1− e2πiατqn) (1− e−2πiατqn) . (C.12)

For − 1
2 ≤ α ≤

1
2 we read off from the leading q → 0 behaviour that

∆hbos = 1
2 |α| −

1
2α

2 . (C.13)

Note that for a supersymmetric theory, i.e., for a theory where both bosons and
fermions are twisted by the same amount, the total ground state energy is then

∆htot = ∆hbos + ∆hfer = |α|2 , (C.14)

which is indeed linear in |α|.
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C.2 Branching rules
In this appendix we explain the branching rules of su(N + 1) ⊃ su(N). They were
first derived by Weyl [167] in terms of u(N) tensors (see, e.g., [168] and [119] for
more modern and general treatments).

Let Λ = [Λ1, . . . , ΛN ] be a highest weight of su(N + 1). The procedure can be
divided into three steps:

1. Interpret Λ as a highest weight of u(N + 1) rather than su(N + 1).

2. Let ri denote the number of boxes in the ith row of the Young diagram
associated with Λ,

ri =
N∑
j=i

Λj . (C.15)

Then under the branching u(N + 1) ⊃ u(N) we have the decomposition

Λ→
⊕
Λ̃

Λ̃ , (C.16)

where Λ̃ = [Λ̃1, . . . , Λ̃N ] are highest weights of u(N) whose rows r̃i satisfy

r1 ≥ r̃1 ≥ r2 ≥ r̃2 ≥ · · · ≥ r̃N ≥ 0 , (C.17)

each Λ̃ appearing once.

3. In the end, each Λ̃ has to be restricted to su(N) by removing the last Dynkin
label.

Equation (C.17) means that from each row i = 1, . . . , N , any number ai = 0, . . . , Λi
of boxes may be removed, such that the new number of boxes in the ith row becomes

r̃i = ri − ai . (C.18)

So the weights Λ̃ are labelled by the vectors a = (a1, . . . , aN ) and we write Λ(a)
for the restriction to su(N) of the Λ̃ labelled by a. The Dynkin labels of Λ(a) are
given by

Λ(a)i = r̃i − r̃i+1 = Λi − ai + ai+1 (C.19)

for i = 1, . . . , N − 1, and thus the branching rules may be written as

Λ→
⊕

a
Λ(a) . (C.20)
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C.3 The ground state analysis
In this appendix we shall show that the coset states (5.26) actually define twisted
sector ground states. In particular, we need to show that δh(l) in (5.45) is non-
negative for all l = 0, . . . , N−1. Because the individual twists satisfy |αi| ≤ 1

2 , only
the representations with n = 0 have a chance of lowering the conformal dimension
of the original state. The so(2N)1 selection rule implies that n = 1

2 for the actual
fermionic excitations, but n = 0 can arise for the bosonic excitations (that come
from the same multiplets). Thus we need to analyse (i) whether n = 0 is allowed in
the fusion with (0; f,−(N+1)) or (0; f̄, (N+1)); and (ii) if so, whether the relevant
term in (5.44) is then positive.

The condition that n = 0 is possible simply means that Λ−(α)ε(l) is contained
in Λ+(α) under the branching rules of su(N + 1) ⊃ su(N). In the notation of
appendix C.2 the original coset state (5.26) corresponds to the choice Λ+(α) ≡ Λ,
and Λ−(α) ≡ Λ(a) with

a = a(m) = (0, . . . , 0, Λm+1, . . . , ΛN ) . (C.21)

Furthermore, generically the fusion with (0; f,−(N + 1)) or (0; f̄, (N + 1)) leads to

Λ(a)ε(l) = Λ(a′) , where a′j =
{

aj j 6= l + 1
al+1 + ε j = l + 1 .

(C.22)

However, this representation only appears in the above branching rules of the same
Λ+(α) ≡ Λ if all a′j satisfy 0 ≤ a′j ≤ Λj . Thus we see that n = 0 is only allowed if

for ε = + al+1 < Λl+1 i.e., l ≤ m

for ε = − 0 < al+1 i.e., l ≥ m+ 1 . (C.23)

(We are assuming here, for simplicity, that all Λj 6= 0.) But for these values of ε
and l, it then follows from (5.27) that −ε αl+1 ≥ 0. This therefore shows that δh(l)

in (5.45) is indeed non-negative.

C.3.1 Other potential twisted sector ground states
It is also not hard to show that among the ‘light states’, i.e., those that have n = 0,
the only twisted sector ground states are in fact those described in (5.26). The most
general light states are of the form

(
Λ;Λ(a),−|Λ|+ (N + 1)

N∑
j=1

aj

)
, |Λ| =

N∑
j=1

j Λj , (C.24)
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where a = (a1, . . . , aN ), and the ai take the values ai = 0, . . . , Λi, i = 1, . . . , N . We
want to show that among these states, the only ones that are twisted sector ground
states, i.e., annihilated by all positive fermionic and bosonic modes, are those for
which a is of the form (C.21). In order to analyse this issue, we determine the
analogue of (5.44), which now takes the form

δh(l) ∼= n+ ε

N + k + 1

(
(Λl+1 − al+1) +

N∑
i=l+2

Λi −A

)
, A =

N∑
i=1

ai . (C.25)

Using (C.22), we have again that n = 0 is only allowed for ε = + if al+1 < Λl+1,
and for ε = − if al+1 > 0 — otherwise the representation Λ(a′) does not appear
in the branching rules of su(N + 1) ⊃ su(N). It follows that if 0 < aj < Λj , both
values ε = ± allow for n = 0 and thus one of the two δh(l) will be negative. So for
a ground state, each aj is either aj = 0 or aj = Λj .

As a last step, we show that in fact a = a(m) for some m = 0, . . . , N . Requiring
(C.25) to be non-negative for all l, we obtain the inequalities

if al+1 = 0 : A ≤
N∑

j=l+1
Λj (C.26)

(recall that for al+1 = 0, n = 0 occurs for ε = +) and

if al+1 = Λl+1 :
N∑

j=l+2
Λj ≤ A (C.27)

(since for al+1 = Λl+1, n = 0 occurs for ε = −).
The sequence of partial sums Pr =

∑N
j=r Λj is strictly decreasing, whereas A

takes the same value in all of these inequalities. This implies that the aj have to
be chosen in such a way that a = (0, . . . , 0, Λm+1, . . . , ΛN ) = a(m). This completes
the proof.
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Appendix D

The N = 2 coset analysis

In this appendix we explain in some detail the construction of the spin 1 and 2
currents of the coset

su(N + 1)(1)
k+N+1

su(N)(1)
k+N+1 ⊕ u(1)(1)

κ

(D.1)

with κ = N(N + 1)(N + k + 1). We will closely follow the analysis of [85] in
the N = 4 case and [103]. The numerator consists of N(N + 2) bosonic currents
J A and free fermions ψA transforming in the adjoint representation of su(N + 1).
Given a hermitian orthonormal basis tAij of su(N + 1) satisfying

[tA, tB ] = ifABCtC and Tr(tA tB) = δAB , (D.2)

which we order in such a way that ta for a = 1, . . . , N2 − 1 form a hermitian
orthonormal basis of su(N), the numerator fields satisfy the commutation relations

[J Am ,J Bn ] = ifABCJ Cm+n + (k +N + 1)δABδm,−n ,
[J Am , ψBr ] = ifABCψCm+r ,

{ψAr , ψBs } = δABδr,−s . (D.3)

Restricting the adjoint representation to the denominator subalgebra, it decom-
poses as

su(N + 1)→ su(N)⊕ u(1)⊕N⊕ N̄ . (D.4)

We can decouple the currents from the fermions by defining

JA = J A + i

2f
ABC(ψBψC) (D.5)

in the numerator or
J̃a = J a + i

2f
abc(ψbψc) (D.6)



136 Appendix D: The N = 2 coset analysis

in the denominator, where again lower-case indices from the beginning of the al-
phabet range from 1 to N2− 1 only. These currents and the fermion bilinears give
rise to the bosonic coset

su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
. (D.7)

From the N(N + 2) fermions in the numerator we subtract the N2 fermions in the
denominator. The 2N surviving fermions can be defined by

ψi = tAN+1,iψ
A , ψ̄i = tAi,N+1ψ

A , (D.8)

satisfying

{ψir, ψ̄js} = δijδr,−s ,

{ψir, ψjs} = {ψ̄ir, ψ̄js} = 0 . (D.9)

The bosonic currents in the numerator can be split up in Ja for a = 1, . . . , N2− 1,
J i and J̄ i, for i = 1, . . . , N , and K, where we define

J i = tAN+1,iJ
A , J̄ i = tAi,N+1J

A , K = (N + 1) tAN+1,N+1J
A . (D.10)

Here, J̄ i and J i correspond to the N and N̄ of su(N), respectively, while K is the
u(1) current embedded into su(N + 1). The u(1) embedding into so(2N) can be
written as

j = −(N + 1)(ψiψ̄i) . (D.11)

The total u(1) current is then equal to K + j. It will be useful to express the
decoupled su(N)k+1 currents in terms of the decoupled su(N + 1)k currents:

J̃a = Ja + taij(ψiψ̄j) , (D.12)

where we have assumed, without loss of generality, that the matrices tA for A =
N2, . . . , N(N + 2)− 1 are of the form

tA =

 0N ∗

∗ 0

 , A = N2, . . . , N(N + 2)− 1 , (D.13)

and that tN(N+2) is diagonal. We also define the unique spin-1 primary of the
coset, which is also the lowest field in the superconformal algebra, as

J = 1
N + k + 1

(
K − k

N + 1 j
)
. (D.14)
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Then the stress-energy tensor of the coset theory is given by the difference of the
numerator and denominator Sugawara tensors:

L = Lsu(N+1) − Lsu(N) − Lu(1) + Lfree fermions

= 1
2(N + k + 1)

(
(J iJ̄ i) + (J̄ iJ i) + k

(
(∂ψiψ̄i)− (ψi∂ψ̄i)

)
− 2 taij

(
Ja(ψiψ̄j)

)
− 2
N(N + 1) (Kj)

)
, (D.15)

where we have used that

(JAJA) = (JaJa) + (J iJ̄ i) + (J̄ iJ i) + 1
N(N + 1) (KK) . (D.16)

We can split up the stress-energy tensor into three mutually commuting stress-
energy tensors given by

Lb = 1
2(N + k + 1)

(
(J iJ̄ i) + (J̄ iJ i)− 1

N + k
(JaJa)− 1

Nk
(KK)

)
,

Lf = k

2(N + k + 1)

(
(∂ψiψ̄i)− (ψi∂ψ̄i)− 2

k
taij
(
Ja(ψiψ̄j)

)
+ 1
k(N + k) (JaJa)− 1

N(N + 1)2 (jj)
)
,

L(JJ) = N + k + 1
2Nk (JJ) , (D.17)

with central charges

cb = N(k − 1)(N + 2k + 1)
(N + k)(N + k + 1) ,

cf = k(N − 1)(k + 2N + 1)
(N + k)(N + k + 1) ,

c(JJ) = 1 , (D.18)

such that the total stress-energy tensor reads

L = Lb + Lf + L(JJ) (D.19)

with total central charge

c = cb + cf + c(JJ) = 3Nk
N + k + 1 . (D.20)
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There is another elementary primary field of conformal dimension 2, which was
called W 20 in [35]. We can make an ansatz

W 20 = αLb + β Lf + γ L(JJ) . (D.21)

From the analysis in [35], we know that W 20 satisfies the OPE

W 20(z)W 20(w) ∼ n2

(z − w)4 + c222
W 20(w)
(z − w)2 + 4n2

c− 1

(
L(w)− 3

2c (JJ)(w)
)

(z − w)2

+ c222
2
W 20 ′(w)
z − w

+ 2n2

c− 1

(
L′(w)− 3

2c (JJ)′(w)
)

z − w
. (D.22)

Demanding this as well as a vanishing central term in the OPE L?W 20, we obtain

α = −

√
2k(N − 1)(2N + k + 1)(N + k + 1)n2

N(k − 1)(N + 2k + 1)(3Nk − (N + k + 1)) ,

β = −N(k − 1)(N + 2k + 1)
k(N − 1)(k + 2N + 1) α

=

√
2N(k − 1)(N + 2k + 1)(N + k + 1)n2

k(N − 1)(2N + k + 1)(3Nk − (N + k + 1)) ,

γ = 0 . (D.23)

This then also reproduces correctly the form of (c222)2 as predicted by equation
(3.27) of [35]. For the normalisation of W 20 we choose the convention

n2 = − c6(ν + 3)(ν − 3) , (D.24)

where

ν = 2µ− 1 = N − k − 1
N + k + 1 ,

c = 3Nk
N + k + 1 . (D.25)

In the c→∞ limit, the parameters then become

α→ −ν + 3
2
√

3
, β → −ν − 3

2
√

3
. (D.26)
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